WO2021098296A1 - 一种过渡金属单原子催化剂、其制备方法及应用 - Google Patents

一种过渡金属单原子催化剂、其制备方法及应用 Download PDF

Info

Publication number
WO2021098296A1
WO2021098296A1 PCT/CN2020/108938 CN2020108938W WO2021098296A1 WO 2021098296 A1 WO2021098296 A1 WO 2021098296A1 CN 2020108938 W CN2020108938 W CN 2020108938W WO 2021098296 A1 WO2021098296 A1 WO 2021098296A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
transition metal
peg
atom
containing small
Prior art date
Application number
PCT/CN2020/108938
Other languages
English (en)
French (fr)
Inventor
王戈
邢立文
高鸿毅
董文钧
高志猛
Original Assignee
苏州阿德旺斯新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州阿德旺斯新材料有限公司 filed Critical 苏州阿德旺斯新材料有限公司
Publication of WO2021098296A1 publication Critical patent/WO2021098296A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the technical field of functional material preparation, in particular to a transition metal single-atom catalyst, its preparation method and application.
  • Transition metal single-atom catalyst refers to a catalyst with excellent catalytic performance formed by uniformly dispersing transition metal in the form of a single atom on a carrier. In recent years, it has received extensive attention from the scientific and industrial circles.
  • transition metal single-atom catalysts when preparing transition metal single-atom catalysts in the prior art, since the transition metal nodes in the metal organic framework (MOF) are atomically dispersed and have a clear coordination environment, this makes it an ideal template for preparing transition metal single-atom catalysts Therefore, when preparing transition metal single-atom catalysts, MOF is prepared in liquid phase first, and then carbonized to obtain transition metal single-atom catalysts. However, the MOF template prepared in the liquid phase usually has a three-dimensional bulk structure. After the final carbonization, a large number of single-atom sites in the carbon-based single-atom catalyst are embedded in the bulk structure, and there are only a few single-atoms.
  • MOF metal organic framework
  • transition metal single-atom catalysts are mainly focused on how to precisely control the local coordination environment of the metal sites and how to increase the loading of metal atoms, and seldom consider adjusting the structure and properties of the carrier. Realize the regulation of transition metal single atom sites.
  • the purpose of the present invention is to provide a transition metal single-atom catalyst, its preparation method and application.
  • the preparation method provided by the present invention by selecting specific nitrogen-containing small molecules, boron-containing small molecules, and oxygen-containing molecules, the morphology of the obtained transition metal single-atom catalyst is a two-dimensional nanosheet structure and a tubular structure. Compared with a small number of monoatomic sites in the MOF micropores, the monoatomic sites are more exposed on the sheet structure and the tubular structure, which is conducive to the further improvement of catalytic activity; in addition, compared with the raw materials of MOF, the preparation method of the present invention The specific raw materials selected in are cheap and easy to obtain.
  • an embodiment of the present invention provides a preparation method of a transition metal single-atom catalyst.
  • the preparation method includes the following steps:
  • the nitrogen-containing small molecules are selected from any one or more of melamine, dicyandiamide, and urea;
  • the boron-containing small molecule is selected from any one or more of boric acid and boron oxide;
  • the oxygen-containing molecule is selected from one or more of polyethylene glycol and polyvinyl alcohol.
  • the nitrogen-containing small molecule is urea
  • the boron-containing small molecule is boric acid
  • the oxygen-containing molecule is polyethylene glycol.
  • the polyethylene glycol (PEG) includes: PEG-400, PEG-600, PEG-800, PEG-1000, PEG-2000, PEG-4000, PEG- One or more of 6000, PEG-8000, and PEG-10000; optionally, the polyethylene glycol is PEG-2000 or PEG-8000.
  • the cooling is rapid cooling; optionally, the rapid cooling is placed in liquid nitrogen.
  • the soluble metal salt includes nitrates, chlorides, and acetates of vanadium, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, ruthenium, rhodium, and palladium.
  • sulphate optionally including one or more of RuCl 3 , FeCl 3 , Ni(NO 3 ) 2 , Ag(NO 3 ) 2 ; further optionally RuCl 3 .
  • the dosage ratio of urea, boric acid, polyethylene glycol and transition metal salt is (1-10g): (0.05-0.5g): (0.1-2g): (0.005-0.5 mmol); alternatively (5-6g): (0.15-0.2g): (0.5-0.6g): (0.01-0.015mmol).
  • the carbonization temperature is 600-1000° C., and the carbonization time is 4-8 hours; optionally, the carbonization temperature is 800-900° C., and the carbonization time is 6 hours.
  • the protective gas is one or more of nitrogen (N 2 ), argon (Ar), hydrogen and argon mixed gas (H 2 /Ar), and the like.
  • the drying method is freeze-drying.
  • the preparation method includes the following steps: dissolving 5-6 g urea, 0.15-0.2 g boric acid, 0.5-0.6 g polyethylene glycol and 0.01-0.015 mmol transition metal salt at room temperature. A clear and uniform mixed solution is obtained in water, and then the mixed solution is cooled in liquid nitrogen to form a low-temperature block, and freeze-dried to remove water, and then processed by grinding or ball milling to obtain a uniform solid powder; Carbonization in an inert gas atmosphere.
  • the embodiment of the present invention also provides the transition metal single-atom catalyst prepared by the above preparation method.
  • the embodiment of the present invention also provides the application of the transition metal single-atom catalyst prepared by the above preparation method in the electrocatalytic hydrogen evolution reaction.
  • the transition metal single-atom catalyst has a tubular structure.
  • the resulting transition metal single-atom catalyst has a two-dimensional nanosheet structure and a tubular structure. Compared with a small number of monoatomic sites embedded in the MOF micropores, the monoatomic sites are more exposed on the sheet structure and the tubular structure, which is conducive to further improvement of the catalytic activity.
  • the selected specific raw materials are cheap and easy to obtain relative to the raw materials of MOF; and the reaction process is simple and the process is short, which is suitable for high-throughput preparation of transition metal monoatomic catalysts.
  • the obtained transition metal single-atom catalyst is different from the transition metal single-atom catalyst obtained after MOF carbonization.
  • the latter is a rigid structure.
  • the entire system needs to be replaced; and the transition metal single-atom catalyst obtained in the present invention cannot form a specific crystal type, similar
  • the structure of MOF but by adjusting the average molecular weight of the added polyethylene glycol, the curvature, morphology and surface area of the carbon-based carrier can be adjusted to achieve adjustments in specific applications.
  • the purpose of rapid cooling is to allow the four raw materials to "freeze” at the same time, forming a whole body, and preventing uneven composition.
  • the preparation method provided by the present invention is suitable for a variety of soluble transition metal salts and has a wide range of applications.
  • Figures 1a and 1b are respectively a field emission scanning electron microscope photograph and a scanning transmission electron microscope photograph of the transition metal single-atom catalyst obtained in Example 1 of the present invention.
  • Fig. 2a and Fig. 2b are respectively a field emission scanning electron microscope photograph and a scanning transmission electron microscope photograph of the transition metal single-atom catalyst obtained in Example 2 of the present invention.
  • Fig. 3 is a graph showing the results of comparing the performance of the tubular and sheet-shaped catalysts in Examples 1 and 2 for electrochemical hydrogen evolution reaction.
  • 4a and 4b are respectively a field emission scanning electron microscope photograph and a scanning transmission electron microscope photograph of the transition metal single-atom catalyst obtained in Example 3 of the present invention.
  • Figures 5a and 5b are respectively a field emission scanning electron microscope photograph and a scanning transmission electron microscope photograph of the transition metal single-atom catalyst obtained in Example 4 of the present invention.
  • PEG used in the following examples are all conventional types in the field and can be obtained from commercial channels.
  • concentration of each substance in the water is not limited.
  • the mixed solution is rapidly cooled in liquid nitrogen to form a low-temperature block, freeze-dried to completely remove the water, and then processed by grinding or ball milling to obtain a uniform solid powder to make the subsequent carbonization uniform.
  • the solid powder was carbonized in argon for 6 hours at a carbonization temperature of 900 degrees Celsius, and after natural cooling, a nanotube-shaped catalyst loaded with metal ruthenium single-atom sites was obtained.
  • the field emission scanning electron microscope photo of the product is shown in Figure 1a, and the spherical aberration corrected high-angle ring dark field scanning transmission electron microscope photo is shown in Figure 1b. From Figure 1b, it can be seen that there are single metal atoms on the surface of the tubular structure.
  • concentration of each substance in the water is not limited.
  • the mixed solution is rapidly cooled in liquid nitrogen to form a low-temperature block, freeze-dried to completely remove the water, and then processed by grinding or ball milling to obtain a uniform solid powder to make the subsequent carbonization uniform.
  • the solid powder was carbonized in argon for 6 hours at a carbonization temperature of 900 degrees Celsius, and after natural cooling, a nanoplatelet catalyst loaded with metal ruthenium single-atom sites was obtained.
  • the field emission scanning electron microscope photo of the product is shown in Figure 2a, and the spherical aberration-corrected high-angle annular dark field scanning transmission electron microscope photo is shown in Figure 2b. It can be seen from Figure 2b that there are single metal atoms on the surface of the tubular structure.
  • the tubular structure in Example 1 and the sheet-like structure in Example 2 were prepared into a solution with a concentration of 2 mg/mL, and the solution was dropped.
  • the HER performance was tested under the three-electrode system.
  • the overpotential of the tube is significantly lower than that of the sheet by 40mV. This is due to the larger curvature of the tubular material, which leads to its negative
  • the charge distribution is more concentrated near the single-atom sites, which is conducive to the precipitation of hydrogen.
  • concentration of each substance in the water is not limited.
  • the mixed solution is rapidly cooled in liquid nitrogen to form a low-temperature block, freeze-dried to completely remove the water, and then processed by grinding or ball milling to obtain a uniform solid powder to make the subsequent carbonization uniform. Then, the solid powder was carbonized in argon for 6 hours at a carbonization temperature of 900 degrees Celsius, and after natural cooling, a nanotube-like catalyst loaded with single-atom sites of metallic iron was obtained.
  • the field emission scanning electron microscope photo of the product is shown in Figure 4a, and the spherical aberration-corrected high-angle annular dark field scanning transmission electron microscope photo is shown in Figure 4b. It can be seen from Figure 4b that there are single metal atoms on the surface of the tubular structure.
  • concentration of each substance in the water is not limited.
  • the mixed solution is quickly cooled in liquid nitrogen to form a low-temperature block, freeze-dried to completely remove water, and then a uniform solid powder is obtained by grinding or ball milling to make the subsequent carbonization uniform. Then, the solid powder was carbonized in argon for 6 hours at a carbonization temperature of 900 degrees Celsius, and after natural cooling, a nanotube-like catalyst loaded with single-atom sites of metallic iron was obtained.
  • the field emission scanning electron microscope photo of the product is shown in Figure 5a, and the spherical aberration corrected high-angle ring dark field scanning transmission electron microscope photo is shown in Figure 5b. From Figure 5b, it can be seen that there are single metal atoms on the surface of the tubular structure.
  • the concentration of each substance in the water is not determined.
  • the mixed solution is rapidly cooled in liquid nitrogen to form a low-temperature block, freeze-dried to completely remove water, and then a uniform solid powder is obtained by grinding or ball milling to make the subsequent carbonization uniform.
  • the solid powder was carbonized in argon for 6 hours at a carbonization temperature of 900 degrees Celsius, and after natural cooling, a nano-sheet catalyst loaded with single-atom sites of metallic nickel was obtained.
  • concentration of each substance in the water is not limited, and then the mixture
  • the solution is rapidly cooled in liquid nitrogen to form a low-temperature block, freeze-dried to completely remove the water, and then processed by grinding or ball milling to obtain a uniform solid powder to make the subsequent carbonization uniform.
  • the solid powder was carbonized in argon for 6 hours at a carbonization temperature of 800 degrees Celsius, and after natural cooling, a nanotube-like catalyst loaded with single-atom sites of metallic silver was obtained.
  • concentration of each substance in the water is not limited, and then the mixture
  • the solution is rapidly cooled in liquid nitrogen to form a low-temperature block, freeze-dried to completely remove the water, and then processed by grinding or ball milling to obtain a uniform solid powder to make the subsequent carbonization uniform.
  • the solid powder was carbonized in argon for 6 hours at a carbonization temperature of 900 degrees Celsius, and after natural cooling, a nanoplatelet catalyst loaded with single-atom sites of metallic silver was obtained.
  • the embodiment of the present invention provides a transition metal single-atom catalyst, its preparation method and application, by dissolving nitrogen-containing small molecules, boron-containing small molecules, oxygen-containing molecules and soluble transition metal salts in water to form a solution; cooling the solution, After drying and dispersing uniformly, a solid powder is obtained; it is carbonized in a protective gas; the morphology of the obtained transition metal monoatomic catalyst is a two-dimensional nanosheet structure and a tubular structure, with a small number of monoatomic sites embedded in the MOF micropores In contrast, the single-atom sites are more exposed on the sheet-like structure and the tubular structure, which is conducive to further improvement of catalytic activity; and the reaction process is simple and the process is short, which is suitable for high-throughput preparation of transition metal single-atom catalysts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明实施例涉及一种过渡金属单原子催化剂、其制备方法及应用。该制备方法包括下述步骤:将含氮小分子、含硼小分子、含氧分子和可溶性过渡金属盐溶于水中形成溶液;将溶液冷却、干燥、分散均匀后得到固体粉末;在保护性气体中碳化。本发明提供的制备方法中,通过选择特定的含氮小分子、含硼小分子、含氧分子,使得得到的过渡金属单原子催化剂的形貌是二维纳米片状结构和管状结构,与嵌在MOF微孔中的少量单原子位点相比,单原子位点在片状结构和管状结构上更加暴露,有利于催化活性的进一步提高;另外相对于MOF的原料而言,本发明制备方法中选择的特定原料廉价易得。

Description

一种过渡金属单原子催化剂、其制备方法及应用
交叉引用
本发明要求在中国专利局提交的、申请号为201911141682.7、发明名称为“一种过渡金属单原子催化剂、其制备方法及应用”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及功能材料制备技术领域,具体涉及一种过渡金属单原子催化剂、其制备方法及应用。
背景技术
过渡金属单原子催化剂是指过渡金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂,近些年来受到了科学界和工业界的广泛关注。
现有技术在制备过渡金属单原子催化剂时,由于金属有机骨架(MOF)中的过渡金属节点是原子分散的,同时具备明确的配位环境,这使得其成为制备过渡金属单原子催化剂的理想模板,因此在制备过渡金属单原子催化剂时先液相制备MOF,然后将其碳化获得过渡金属单原子催化剂。然而,液相制备得到的MOF模板通常是三维的体相结构,最终碳化后得到的碳基单原子催化剂中大量的单原子位点是被包埋在体相结构内部的,仅有少量单原子位点暴露在碳载体表面,这实际上降低了金属组分的利用率,不利于催化活性的进一步提高;并且MOF中选取的特定配体通常价格高昂。研究人员一直在试图改进、替代上述方法。但总体上看,研究过渡金属单原子催化剂主要集中在如何精确地控制金属位点的局域配位环境、如何提高金属原子的负载量等方面,而很少考虑通过调节载体的结构和性质来实现过渡金属单原子位点的调控。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
发明目的
本发明的目的在于提供一种过渡金属单原子催化剂、其制备方法及应用。本发明提供的制备方法中,通过选择特定的含氮小分子、含硼小分子、含氧分子,使得得到的过渡金属单原子催化剂的形貌是二维纳米片状结构和管状结构,与嵌在MOF微孔中的少量单原子位点相比,单原子位点在片状结构和管状结构上更加暴露,有利于催化活性的进一步提高;另外相对于MOF的原料而言,本发明制备方法中选择的特定原料廉价易得。
解决方案
为实现本发明目的,本发明实施例提供了一种过渡金属单原子催化剂的制备方法,所述制备方法包括下述步骤:
将含氮小分子、含硼小分子、含氧分子和可溶性过渡金属盐溶于水中形成溶液;将溶液冷却、干燥、分散均匀后得到固体粉末;在保护性气体中碳化;其中:
所述含氮小分子选自三聚氰胺、双氰胺、尿素中的任意一种或多种;
所述含硼小分子选自硼酸、氧化硼中的任意一种或多种;
所述含氧分子选自聚乙二醇、聚乙烯醇中的一种或多种。
上述制备方法在一种可能的实现方式中,所述含氮小分子为尿素,所述含硼小分子为硼酸,所述含氧分子为聚乙二醇。
上述制备方法在一种可能的实现方式中,所述的聚乙二醇(PEG)包括:PEG-400、PEG-600、PEG-800、PEG-1000、PEG-2000、PEG-4000、PEG-6000、PEG-8000、PEG-10000中的一种或多种;可选地,所述聚乙二醇为PEG-2000或PEG-8000。
上述制备方法在一种可能的实现方式中,所述冷却为急速冷却;可选地,所述急速冷却的方式为置于液氮中。
上述制备方法在一种可能的实现方式中,所述的可溶性金属盐包括钒、铬、锰、铁、钴、镍、铜、钼、钌、铑、钯的硝酸盐、氯化物、醋酸盐、硫酸盐中的一种或多种;可选地包括RuCl 3、FeCl 3、Ni(NO 3) 2、Ag(NO 3) 2中的一种或多种;进一步可选地为RuCl 3·H 2O、FeCl 3·6H 2O、Ni(NO 3) 2·6H 2O、Ag(NO 3) 2
上述制备方法在一种可能的实现方式中,尿素、硼酸、聚乙二醇和过渡金属盐的用量比为(1-10g):(0.05-0.5g):(0.1-2g):(0.005-0.5mmol);可选地为(5-6g):(0.15-0.2g):(0.5-0.6g):(0.01-0.015mmol)。
上述制备方法在一种可能的实现方式中,碳化的温度为600-1000℃,碳化的时间为4-8小时;可选地碳化的温度为800-900℃,碳化的时间为6小时。
上述制备方法在一种可能的实现方式中,所述的保护性气体为氮气(N 2)、氩气(Ar)、氢氩混合气(H 2/Ar)等的一种或多种。
上述制备方法在一种可能的实现方式中,干燥的方式为冷冻干燥。
上述制备方法在一种可能的实现方式中,所述制备方法包括以下步骤:常温下将5-6g尿素、0.15-0.2g硼酸、0.5-0.6g聚乙二醇和0.01-0.015mmol过渡金属盐溶于水得到澄清均一的混合溶液,随后将该混合溶液置于液氮中冷却形成低温块体,并冷冻干燥除去水,然后通过研磨或球磨处理得到均匀的固体粉末;接着将所述固体粉末在惰性气体气氛中碳化。
本发明实施例还提供了上述制备方法制得的过渡金属单原子催化剂。
本发明实施例还提供了上述制备方法制得的过渡金属单原子催化剂在电催化析氢反应中的应用。
上述应用在一种可能的实现方式中,所述过渡金属单原子催化剂为管状结构。
有益效果
(1)本发明提供的制备方法中,通过选择特定的含氮小分子、含硼小分子、含氧分子,使得得到的过渡金属单原子催化剂的形貌是二维纳米片状结构和管状结构,与嵌在MOF微孔中的少量单原子位点相比,单原子位点在片状结构和管状结构上更加暴露,有利于催化活性的进一步提高。
(2)本发明提供的制备方法中,所选择的特定原料相对于MOF的原料而言廉价易得;并且反应工艺简单、流程短,适合高通量制备过渡金属单原子催化剂。
(3)本发明提供的制备方法中,得到的过渡金属单原子催化剂与MOF碳化后得到的过渡金属单原子催化剂不同。其中:后者是一个刚性结构,在特定应用中如果一种过渡金属单原子催化剂效果不佳,整个体系都需要更换;而本发明得到的过渡金属单原子催化剂不能形成具有特定晶型的、类似MOF的结构,但可以通过调节所加入聚乙二醇的平均分子量,实现碳基载体的曲率、形貌和表面积的调控,从而实现在特定应用的调节。
(4)本发明提供的制备方法中,急速冷却的目的是为了让四种原料同时“结冰”,形成一体,防止组成不均一的做法。
(5)本发明提供的制备方法适用于多种可溶性过渡金属盐,适用范围广。
(6)本发明提供的制备方法制备的过渡金属单原子催化剂在电催化析氢反应中进行应用时,管状结构的效果更佳。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
图1a、图1b分别为本发明实施例1得到的过渡金属单原子催化剂的场发射扫描电镜照片和扫描透射电镜照片。
图2a、图2b分别为本发明实施例2得到的过渡金属单原子催化剂的场发射扫描电镜照片和扫描透射电镜照片。
图3为将实施例1和2中的管状和片状催化剂进行电化学析氢反应性能比较的结果图。
图4a、图4b分别为本发明实施例3得到的过渡金属单原子催化剂的场发射扫描电镜照片和扫描透射电镜照片。
图5a、图5b分别为本发明实施例4得到的过渡金属单原子催化剂的场发射扫描电镜照片和扫描透射电镜照片。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实施例中,对于本领域技术人员熟知的原料、元件、方法、手段等未作详细描述,以便于凸显本发明的主旨。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包 括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
以下实施例中所使用的各型号PEG均是本领域的常规型号,可从商购渠道获得。
实施例1
常温下将5g尿素、0.15g硼酸、0.5g PEG-2000和0.01mmol RuCl 3·H 2O溶于超纯水中得到澄清均一的混合溶液,对水中的各物质浓度不做限定,随后将该混合溶液置于液氮中急速冷却形成低温块体,冷冻干燥以彻底除去水,然后通过研磨或球磨处理得到均匀的固体粉末以使之后的碳化均匀。接着将上述固体粉末在氩气中碳化6小时,碳化温度为900摄氏度,自然冷却后得到负载有金属钌单原子位点的纳米管状催化剂。产物的场发射扫描电镜照片如图1a所示,球差校正的高角环形暗场扫描透射电镜照片如图1b所示,从图1b中可以看出管状结构表面有金属单原子。
实施例2
常温下将5g尿素、0.15g硼酸、0.5g PEG-8000和0.01mmol RuCl 3·H 2O溶于超纯水中得到澄清均一的混合溶液,对水中的各物质浓度不做限定,随后将该混合溶液置于液氮中急速冷却形成低温块体,冷冻干燥以彻底除去水,然后通过研磨或球磨处理得到均匀的固体粉末以使之后的碳化均匀。接着将上述固体粉末在氩气中碳化6小时,碳化温度为900摄氏度,自然冷却后得到负载有金属钌单原子位点的纳米片状催化剂。产物的场发射扫描电镜照片如图2a所示,球差校正的高角环形暗场扫描透射电镜照片如图2b所示,从图2b中可以看出管状结构表面有金属单原子。
将实施例1和2中的管状和片状催化剂的电化学析氢反应性能比较,分别将实施例1中的管状结构和实施例2中的片状结构配成2mg/mL浓度的溶液,滴涂到玻碳电极上,在三电极体系下测试其HER性能,如图3所示,管状的过电位明显比片状的要小40mV,这归因于管状材料的表面更大的曲率导致其负电荷分布更加集中在单原子位点附近,因而有利于氢的析出。
实施例3
常温下将5g尿素、0.15g硼酸、0.5g PEG-2000和0.01mmol FeCl 3·6H 2O溶于超纯水中得到澄清均一的混合溶液,对水中的各物质浓度不做限定,随后将该混合溶液置于液氮中急速冷却形成低温块体,冷冻干 燥以彻底除去水,然后通过研磨或球磨处理得到均匀的固体粉末以使之后的碳化均匀。接着将上述固体粉末在氩气中碳化6小时,碳化温度为900摄氏度,自然冷却后得到负载有金属铁单原子位点的纳米管状催化剂。产物的场发射扫描电镜照片如图4a所示,球差校正的高角环形暗场扫描透射电镜照片如图4b所示,从图4b中可以看出管状结构表面有金属单原子。
实施例4
常温下将5g尿素、0.15g硼酸、0.5g PEG-2000和0.01mmol Ni(NO 3) 2·6H 2O溶于超纯水中得到澄清均一的混合溶液,对水中的各物质浓度不做限定,随后将该混合溶液置于液氮中急速冷却形成低温块体,冷冻干燥以彻底除去水,然后通过研磨或球磨处理得到均匀的固体粉末以使之后的碳化均匀。接着将上述固体粉末在氩气中碳化6小时,碳化温度为900摄氏度,自然冷却后得到负载有金属铁单原子位点的纳米管状催化剂。产物的场发射扫描电镜照片如图5a所示,球差校正的高角环形暗场扫描透射电镜照片如图5b所示,从图5b中可以看出管状结构表面有金属单原子。
实施例5
常温下将4g双氰胺、0.15g硼酸、0.5g PEG-8000和0.01mmol Ni(NO 3) 2·6H 2O溶于超纯水得到澄清均一的混合溶液,对水中的各物质浓度不做限定,随后将该混合溶液置于液氮中急速冷却形成低温块体,冷冻干燥以彻底除去水,然后通过研磨或球磨处理得到均匀的固体粉末以使之后的碳化均匀。接着将上述固体粉末在氩气中碳化6小时,碳化温度为900摄氏度,自然冷却后得到负载有金属镍单原子位点的纳米片状催化剂。
实施例6
常温下将6g尿素、0.2g硼酸、0.6g PEG-2000和0.015mmol Ag(NO 3) 2溶于超纯水得到澄清均一的混合溶液,对水中的各物质浓度不做限定,随后将该混合溶液置于液氮中急速冷却形成低温块体,冷冻干燥以彻底除去水,然后通过研磨或球磨处理得到均匀的固体粉末以使之后的碳化均匀。接着将上述固体粉末在氩气中碳化6小时,碳化温度为800摄氏度,自然冷却后得到负载有金属银单原子位点的纳米管状催化剂。
实施例7
常温下将6g尿素、0.2g硼酸、0.6g PEG-8000和0.015mmol Ag(NO 3) 2溶于超纯水得到澄清均一的混合溶液,对水中的各物质浓度不做限定,随后将该混合溶液置于液氮中急速冷却形成低温块体,冷冻干燥以彻底除去 水,然后通过研磨或球磨处理得到均匀的固体粉末以使之后的碳化均匀。接着将上述固体粉末在氩气中碳化6小时,碳化温度为900摄氏度,自然冷却后得到负载有金属银单原子位点的纳米片状催化剂。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明实施例提供的一种过渡金属单原子催化剂、其制备方法及应用,通过将含氮小分子、含硼小分子、含氧分子和可溶性过渡金属盐溶于水中形成溶液;将溶液冷却、干燥、分散均匀后得到固体粉末;在保护性气体中碳化;得到的过渡金属单原子催化剂的形貌是二维纳米片状结构和管状结构,与嵌在MOF微孔中的少量单原子位点相比,单原子位点在片状结构和管状结构上更加暴露,有利于催化活性的进一步提高;且反应工艺简单、流程短,适合高通量制备过渡金属单原子催化剂。

Claims (10)

  1. 一种过渡金属单原子催化剂的制备方法,其特征在于:包括下述步骤:
    将含氮小分子、含硼小分子、含氧分子和可溶性过渡金属盐溶于水中形成溶液;将溶液冷却、干燥、分散均匀后得到固体粉末;在保护性气体中碳化;其中:
    所述含氮小分子选自三聚氰胺、双氰胺、尿素中的任意一种或多种;
    所述含硼小分子选自硼酸、氧化硼中的任意一种或多种;
    所述含氧分子选自聚乙二醇、聚乙烯醇中的一种或多种。
  2. 根据权利要求1所述的制备方法,其特征在于:所述含氮小分子为尿素,所述含硼小分子为硼酸,所述含氧分子为聚乙二醇。
  3. 根据权利要求2所述的制备方法,其特征在于:所述的聚乙二醇包括:PEG-400、PEG-600、PEG-800、PEG-1000、PEG-2000、PEG-4000、PEG-6000、PEG-8000、PEG-10000中的一种或多种;可选地,所述聚乙二醇为PEG-2000或PEG-8000。
  4. 根据权利要求1所述的制备方法,其特征在于:所述冷却为急速冷却;可选地,所述急速冷却的方式为置于液氮中。
  5. 根据权利要求1所述的制备方法,其特征在于:所述的可溶性过渡金属盐包括钒、铬、锰、铁、钴、镍、铜、钼、钌、铑、钯的硝酸盐、氯化物、醋酸盐、硫酸盐中的一种或多种;可选地包括RuCl 3、FeCl 3、Ni(NO 3) 2、Ag(NO 3) 2中的一种或多种;进一步可选地为RuCl 3·H 2O、FeCl 3·6H 2O、Ni(NO 3) 2·6H 2O、Ag(NO 3) 2
  6. 根据权利要求2所述的制备方法,其特征在于:尿素、硼酸、聚乙二醇和过渡金属盐的用量比为(1-10g):(0.05-0.5g):(0.1-2g):(0.005-0.5mmol);可选地为(5-6g):(0.15-0.2g):(0.5-0.6g):(0.01-0.015mmol)。
  7. 根据权利要求1所述的制备方法,其特征在于:碳化的温度为600-1000℃,碳化的时间为4-8小时;可选地碳化的温度为800-900℃,碳化的时间为6小时。
  8. 一种根据权利要求1-7之一所述的制备方法制得的过渡金属单原子催化剂。
  9. 一种根据权利要求1-7之一所述的制备方法制得的过渡金属单原子催化剂在电催化析氢反应中的应用。
  10. 根据权利要求9所述的应用,所述过渡金属单原子催化剂为管状结构。
PCT/CN2020/108938 2019-11-20 2020-08-13 一种过渡金属单原子催化剂、其制备方法及应用 WO2021098296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911141682.7 2019-11-20
CN201911141682.7A CN110773156B (zh) 2019-11-20 2019-11-20 一种过渡金属单原子催化剂、其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2021098296A1 true WO2021098296A1 (zh) 2021-05-27

Family

ID=69392058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108938 WO2021098296A1 (zh) 2019-11-20 2020-08-13 一种过渡金属单原子催化剂、其制备方法及应用

Country Status (2)

Country Link
CN (1) CN110773156B (zh)
WO (1) WO2021098296A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663716A (zh) * 2021-09-28 2021-11-19 南京工业大学 氧化铟负载金属单原子型催化剂及其应用
CN113731463A (zh) * 2021-08-18 2021-12-03 重庆大学 一种过渡金属单原子光催化剂的制备方法及其应用
CN114808026A (zh) * 2022-03-11 2022-07-29 浙江大学衢州研究院 一种二维金属有机框架纳米片支撑贵金属单原子催化剂及其制备方法和应用
CN114797911A (zh) * 2022-04-24 2022-07-29 安徽大学 一种光稳定型超薄BiOCl原子层锚定过渡金属单原子催化剂及其制备与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773156B (zh) * 2019-11-20 2021-07-06 苏州阿德旺斯新材料有限公司 一种过渡金属单原子催化剂、其制备方法及应用
CN111266099A (zh) * 2020-02-24 2020-06-12 联科华技术股份有限公司 一系列无机抗菌防霉单原子催化剂及其制备方法
CN112156802A (zh) * 2020-09-28 2021-01-01 苏州阿德旺斯新材料有限公司 一种单原子催化剂及其应用
CN113549935B (zh) * 2021-05-20 2023-03-10 中国科学技术大学 杂原子掺杂过渡金属单原子催化剂及其制备方法与应用
CN113832574B (zh) * 2021-09-20 2023-09-29 哈尔滨工程大学 配位原子掺杂多孔碳纤维限域过渡金属单原子材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192334A (ja) * 2011-03-16 2012-10-11 Toyota Motor Corp 触媒微粒子の製造方法
CN105529475A (zh) * 2015-12-30 2016-04-27 中国科学院长春应用化学研究所 一种铂单原子分散的催化剂及其制备方法
CN107346826A (zh) * 2017-07-05 2017-11-14 北京化工大学 一种单原子铁分散的氧还原电催化剂的制备方法
CN109012732A (zh) * 2018-08-24 2018-12-18 中山大学 一种制备类单原子催化剂的方法
CN109382106A (zh) * 2017-08-03 2019-02-26 中国科学院大连化学物理研究所 一种电还原二氧化碳催化材料及其制备和应用
CN110773156A (zh) * 2019-11-20 2020-02-11 苏州阿德旺斯新材料有限公司 一种过渡金属单原子催化剂、其制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192334A (ja) * 2011-03-16 2012-10-11 Toyota Motor Corp 触媒微粒子の製造方法
CN105529475A (zh) * 2015-12-30 2016-04-27 中国科学院长春应用化学研究所 一种铂单原子分散的催化剂及其制备方法
CN107346826A (zh) * 2017-07-05 2017-11-14 北京化工大学 一种单原子铁分散的氧还原电催化剂的制备方法
CN109382106A (zh) * 2017-08-03 2019-02-26 中国科学院大连化学物理研究所 一种电还原二氧化碳催化材料及其制备和应用
CN109012732A (zh) * 2018-08-24 2018-12-18 中山大学 一种制备类单原子催化剂的方法
CN110773156A (zh) * 2019-11-20 2020-02-11 苏州阿德旺斯新材料有限公司 一种过渡金属单原子催化剂、其制备方法及应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731463A (zh) * 2021-08-18 2021-12-03 重庆大学 一种过渡金属单原子光催化剂的制备方法及其应用
CN113663716A (zh) * 2021-09-28 2021-11-19 南京工业大学 氧化铟负载金属单原子型催化剂及其应用
CN113663716B (zh) * 2021-09-28 2022-07-05 南京工业大学 氧化铟负载金属单原子型催化剂及其应用
CN114808026A (zh) * 2022-03-11 2022-07-29 浙江大学衢州研究院 一种二维金属有机框架纳米片支撑贵金属单原子催化剂及其制备方法和应用
CN114797911A (zh) * 2022-04-24 2022-07-29 安徽大学 一种光稳定型超薄BiOCl原子层锚定过渡金属单原子催化剂及其制备与应用
CN114797911B (zh) * 2022-04-24 2023-10-03 安徽大学 一种光稳定型超薄BiOCl原子层锚定过渡金属单原子催化剂及其制备与应用

Also Published As

Publication number Publication date
CN110773156B (zh) 2021-07-06
CN110773156A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2021098296A1 (zh) 一种过渡金属单原子催化剂、其制备方法及应用
Chen et al. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction
Ma et al. Platinum‐Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface‐Diffusion‐Assisted, Solid‐State Oriented Attachment
CN108232209B (zh) 中温碳化金属骨架化合物扩孔技术用于高活性铁氮碳催化剂制备
Zhang et al. Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks
CN110289424B (zh) 一种mof衍生碳与蜂窝状多孔碳复合材料的制备方法
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
JP5931069B2 (ja) 酸素還元触媒の製造方法ならびにその用途
CN110010911B (zh) 一种双掺杂多孔石墨烯阴极非铂催化剂及其制备方法
CN111244484B (zh) 一种亚纳米铂基有序合金的制备方法
US20060165995A1 (en) Carbon-metal composite material and process of preparing the same
WO2021135252A1 (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
CN113471452B (zh) 一种用于析氢氧还原的多位点复合纳米管及其制法与应用
CN114497585A (zh) 一种具有结构耦合效应的铂基协同催化剂的制备方法
CN109742415A (zh) 一种高载量负载金属单原子石墨烯材料及其制备方法
CN110571440B (zh) 一种FeN4-CNT氧还原催化剂的制备方法
Yi et al. Fe/Co/C–N nanocatalysts for oxygen reduction reaction synthesized by directly pyrolyzing Fe/Co-doped polyaniline
US11631865B2 (en) Transition metal support for catalyst electrode and method of manufacturing same
CN111450842B (zh) 一种微花结构黑铅铜矿相金属氧化物电催化剂的制备方法、电催化剂及其应用
CN111048793B (zh) 铂基八面体催化剂的制备方法
KR101847993B1 (ko) 연료전지용 비백금 촉매 및 그 제조방법
CN104607224A (zh) 一种氮掺杂的石墨化碳封装铁纳米颗粒的制备方法
CN116364892A (zh) 一种高容量cof基锂离子电池正极材料及其制备方法与应用
CN114214657B (zh) 钼基氮化物/碳化物电催化剂及其制备方法与应用
CN114433166A (zh) 一种高熵单原子催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889045

Country of ref document: EP

Kind code of ref document: A1