WO2021095837A1 - 積層コアおよび電気機器 - Google Patents

積層コアおよび電気機器 Download PDF

Info

Publication number
WO2021095837A1
WO2021095837A1 PCT/JP2020/042397 JP2020042397W WO2021095837A1 WO 2021095837 A1 WO2021095837 A1 WO 2021095837A1 JP 2020042397 W JP2020042397 W JP 2020042397W WO 2021095837 A1 WO2021095837 A1 WO 2021095837A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical steel
laminated core
steel sheet
electromagnetic steel
legs
Prior art date
Application number
PCT/JP2020/042397
Other languages
English (en)
French (fr)
Inventor
平山 隆
鉄州 村川
美穂 冨田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020227015184A priority Critical patent/KR20220075416A/ko
Priority to US17/774,771 priority patent/US20220384085A1/en
Priority to BR112022008199A priority patent/BR112022008199A2/pt
Priority to CN202080078235.6A priority patent/CN114667359A/zh
Priority to EP20886906.5A priority patent/EP4060068A4/en
Priority to JP2021556165A priority patent/JP7381941B2/ja
Publication of WO2021095837A1 publication Critical patent/WO2021095837A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest

Definitions

  • the present invention relates to laminated cores and electrical equipment.
  • the present application claims priority based on Japanese Patent Application No. 2019-206674 filed in Japan on November 15, 2019, the contents of which are incorporated herein by reference.
  • cores In electrical equipment such as single-phase transformers, cores are used.
  • a core there are laminated cores such as an EI core, an EE core, and a UI core.
  • the directions in which the main magnetic flux flows are two directions orthogonal to each other.
  • the electrical steel sheet constituting such a laminated core is a unidirectional electrical steel sheet
  • the above-mentioned two directions are the direction of the easy magnetization axis (the direction formed by the rolling direction at 0 °) and the difficult magnetization axis.
  • the direction the angle formed by the rolling direction is 90 °).
  • the unidirectional electrical steel sheet has good magnetic properties in the direction of the easy axis of magnetization.
  • the magnetic characteristics in the direction of the easily magnetized axis are significantly deteriorated with respect to the magnetic characteristics in the direction of the easily magnetized axis. Therefore, the performance of the core deteriorates, such as an increase in iron loss of the entire core.
  • the average crystal grain size after hot-rolled sheet annealing is set to 300 ⁇ m or more, cold rolling is performed at a reduction rate of 85% or more and 95% or less, and finish annealing is performed at 700 ° C. or higher and 950 ° C. or lower for 10 seconds. It is disclosed that an EI core of a small transformer is formed by using non-oriented electrical steel sheets that have been subjected to the above for 1 minute or less. This non-oriented electrical steel sheet is excellent in magnetic properties in the directions formed by angles with the rolling direction of 0 ° and 90 °.
  • Patent Document 1 does not make a concrete study when a non-oriented electrical steel sheet is applied to an electric device such as a small transformer. Therefore, there is room for improvement in the conventional laminated core for improving the magnetic characteristics.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the magnetic characteristics of the laminated core.
  • the laminated core according to one aspect of the present invention is a laminated core having a plurality of electrical steel sheets laminated so that the plate surfaces face each other, and each of the plurality of electrical steel sheets is a plurality.
  • the stacking direction of the electromagnetic steel sheets comprising the iron portion and forming the plurality of legs and the stacking direction of the electrical steel sheets forming the plurality of joint iron portions are the same, and the electromagnetic steel sheets are mass%.
  • C 0.0100% or less, Si: 1.50% to 4.00%, sol. Al: 0.0001% to 1.0%, S: 0.0100% or less, N: 0.0100% or less, Mn, Ni, Co, Pt, Pb, Cu, Au
  • the X-ray random intensity ratio of ⁇ 100 ⁇ ⁇ 011> is 5 or more and less than 30
  • the plate thickness is 0.50 mm or less, and among the angles formed with the rolling direction.
  • the electromagnetic steel plate is arranged so that one of the two directions in which the smaller angle is 45 ° is along either the extending direction of the leg portion or the extending direction of the joint iron portion.
  • the two directions having the best magnetic characteristics are the two directions in which the smaller angle of the rolling direction is 45 °.
  • the magnetic flux density B50 is the magnetic flux density when excited with a magnetic field strength of 5000 A / m.
  • the laminated core described in (1) above may satisfy the following equation (E). (B50D1 + B50D2) / 2> 1.2 ⁇ (B50L + B50C) / 2 ... (E) (4) The laminated core described in (1) above may satisfy the following equation (F). (B50D1 + B50D2) / 2> 1.8T ... (F) (5)
  • the laminated core according to (1) above may be an EI core, an EE core, a UI core, or a UU core.
  • the electric device according to one aspect of the present invention comprises a laminated core according to any one of (1) to (5) above and a coil arranged so as to orbit the laminated core. It is characterized by having.
  • the magnetic properties of the laminated core can be improved.
  • Non-oriented electrical steel sheets and steel materials which are examples of electrical steel sheets used for laminated cores, have a chemical composition capable of causing a ferrite-austenite transformation (hereinafter, ⁇ - ⁇ transformation), and have a C: 0.0100% or less, Si. : 1.50% to 4.00%, sol.
  • ⁇ - ⁇ transformation ferrite-austenite transformation
  • Al 0.0001% to 1.0%, S: 0.0100% or less, N: 0.0100% or less, Mn, Ni, Co, Pt, Pb, Cu, Au
  • ⁇ C: 0.0100% or less ⁇ C increases iron loss and causes magnetic aging. Therefore, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.0100%. Therefore, the C content is set to 0.0100% or less.
  • the reduction of the C content also contributes to the uniform improvement of the magnetic properties in all directions in the plate surface.
  • the lower limit of the C content is not particularly limited, it is preferably 0.0005% or more in consideration of the cost of decarburization treatment at the time of refining.
  • Si 1.50% -4.00%
  • Si increases the electrical resistance, reduces the eddy current loss, reduces the iron loss, increases the yield ratio, and improves the punching workability to the iron core. If the Si content is less than 1.50%, these effects cannot be sufficiently obtained. Therefore, the Si content is 1.50% or more.
  • the Si content exceeds 4.00%, the magnetic flux density decreases, the punching workability decreases due to an excessive increase in hardness, and cold rolling becomes difficult. Therefore, the Si content is set to 4.00% or less.
  • sol. Al 0.0001% -1.0% >> sol. Al increases electrical resistance, reduces eddy current loss, and reduces iron loss. sol. Al also contributes to the improvement of the relative magnitude of the magnetic flux density B50 with respect to the saturation magnetic flux density.
  • the magnetic flux density B50 is the magnetic flux density when excited with a magnetic field strength of 5000 A / m. sol. If the Al content is less than 0.0001%, these effects cannot be sufficiently obtained. Al also has a desulfurization promoting effect in steelmaking. Therefore, sol. The Al content is 0.0001% or more. On the other hand, sol. When the Al content exceeds 1.0%, the magnetic flux density is lowered, the yield ratio is lowered, and the punching workability is lowered. Therefore, sol. The Al content is 1.0% or less.
  • S is not an essential element and is contained as an impurity in steel, for example. S inhibits recrystallization and grain growth during annealing due to the precipitation of fine MnS. Therefore, the lower the S content, the better. The increase in iron loss and the decrease in magnetic flux density due to the inhibition of recrystallization and grain growth are remarkable when the S content exceeds 0.0100%. Therefore, the S content is set to 0.0100% or less.
  • the lower limit of the S content is not particularly limited, it is preferably 0.0003% or more in consideration of the cost of desulfurization treatment at the time of refining.
  • N 0.0100% or less
  • the N content is 0.0100% or less.
  • the lower limit of the N content is not particularly limited, it is preferably 0.0010% or more in consideration of the cost of denitrification treatment at the time of refining.
  • the Mn content (mass%) is [Mn]
  • the Ni content (mass%) is [Ni]
  • the Co content (mass%) is [Co]
  • the Pt content (mass%) is [Pt].
  • Pb content (mass%) is [Pb]
  • Cu content (mass%) is [Cu]
  • Au content (mass%) is [Au]
  • Si content (mass%) is [Si]
  • sol. The Al content (% by mass) was changed to [sol. Al]
  • it is preferable that the following equation (1) is satisfied in terms of mass%. ([Mn] + [Ni] + [Co] + [Pt] + [Pb] + [Cu] + [Au])-([Si] + [sol.Al])> 0% ...
  • Sn 0.000% to 0.400%
  • Sb 0.000% to 0.400%
  • P 0.000% to 0.400%
  • Sn and Sb improve the texture after cold rolling and recrystallization, and improve the magnetic flux density thereof. Therefore, these elements may be contained if necessary, but if they are contained in an excessive amount, the steel is embrittled. Therefore, both the Sn content and the Sb content are set to 0.400% or less.
  • P may be contained in order to secure the hardness of the steel sheet after recrystallization, but if it is excessively contained, it causes embrittlement of the steel. Therefore, the P content is set to 0.400% or less.
  • 0.020% to 0.400% Sn, 0.020% to 0.400% Sb, and 0.020% to 0.400% It preferably contains at least one selected from the group consisting of% P.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd 0.0000% to 0.0100% in total
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd react with S in the molten steel during casting to form sulfides, acid sulfides or both precipitates.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd may be collectively referred to as "coarse precipitate-forming element".
  • the particle size of the precipitate of the coarse precipitate-forming element is about 1 ⁇ m to 2 ⁇ m, which is much larger than the particle size of fine precipitates such as MnS, TiN, and AlN (about 100 nm). Therefore, these fine precipitates adhere to the precipitates of the coarse precipitate-forming elements, and it becomes difficult to inhibit the recrystallization and the growth of crystal grains in the intermediate annealing.
  • the total amount of these elements is preferably 0.0005% or more. However, if the total amount of these elements exceeds 0.0100%, the total amount of sulfide, acid sulfide, or both of them becomes excessive, and recrystallization and grain growth in intermediate annealing are inhibited. Therefore, the total content of the coarse precipitate-forming element is 0.0100% or less.
  • non-oriented electrical steel sheets which is an example of electrical steel sheets used for laminated cores
  • the non-oriented electrical steel sheet which is an example of the electrical steel sheet used for the laminated core
  • ⁇ 100 ⁇ crystal grains become a grown structure.
  • the non-oriented electrical steel sheet which is an example of the electrical steel sheet used for the laminated core, has an integrated strength of 5 to 30 in the ⁇ 100 ⁇ ⁇ 011> direction, and a magnetic flux density B50 in the 45 ° direction with respect to the rolling direction is particularly high. It gets higher. In this way, the magnetic flux density increases in a specific direction, but an overall high magnetic flux density can be obtained on average in all directions.
  • the integrated strength in the ⁇ 100 ⁇ ⁇ 011> orientation is less than 5
  • the integrated strength in the ⁇ 111 ⁇ ⁇ 112> orientation which reduces the magnetic flux density, increases, and the magnetic flux density decreases as a whole.
  • the manufacturing method in which the integrated strength in the ⁇ 100 ⁇ ⁇ 011> orientation exceeds 30 there is a problem that the hot-rolled plate needs to be thickened, which makes the manufacturing difficult.
  • the accumulation intensity of the ⁇ 100 ⁇ ⁇ 011> orientation can be measured by the X-ray diffraction method or the electron backscatter diffraction (EBSD) method. Since the reflection angles of X-rays and electron beams from the sample differ depending on the crystal orientation, the crystal orientation intensity can be obtained from the reflection intensity or the like with reference to the random orientation sample.
  • the integrated strength in the ⁇ 100 ⁇ ⁇ 011> direction of the non-oriented electrical steel sheet suitable as an example of the electromagnetic steel sheet used for the laminated core is 5 to 30 in the X-ray random intensity ratio. At this time, the crystal orientation may be measured by EBSD and the value converted into the X-ray random intensity ratio may be used.
  • the thickness of the non-oriented electrical steel sheet which is an example of the electrical steel sheet used for the laminated core, is 0.50 mm or less. If the thickness exceeds 0.50 mm, excellent high-frequency iron loss cannot be obtained. Therefore, the thickness is set to 0.50 mm or less.
  • B50 (T) in the rolling direction is B50L
  • B50D1 the value of B50 (T) in the direction tilted 45 ° from the rolling direction
  • B50C the value of B50 (T) in the direction tilted 90 ° from the rolling direction
  • B50D2 the value of B50 (T) in the direction inclined by 135 °
  • B50D2 the anisotropy of the magnetic flux density is observed, in which B50D1 and B50D2 are the highest and B50L and B50C are the lowest.
  • (T) refers to a unit of magnetic flux density (tesla).
  • the rolling directions are 0 ° (one direction) and 180.
  • B50D1 has a B50 value of 45 ° and 225 °
  • B50D2 has a B50 value of 135 ° and 315 °
  • B50L has a B50 value of 0 ° and 180 °
  • B50C has a B50 value of 90 ° and 270 °.
  • the B50 value at 45 ° and the B50 value at 225 ° exactly match, and the B50 value at 135 ° and the B50 value at 315 ° exactly match.
  • B50D1 and B50D2 may not exactly match because it may not be easy to make the magnetic characteristics the same in actual manufacturing.
  • the B50 value at 0 ° and the B50 value at 180 ° are exactly the same, and the B50 value at 90 ° and the B50 value at 270 ° are exactly the same, while the B50L and B50C are exactly the same. It may not be.
  • the non-oriented electrical steel sheet which is an example of the electrical steel sheet used for the laminated core, the following equations (2) and (3) are satisfied by using the average value of B50D1 and B50D2 and the average value of B50L and B50C. .. (B50D1 + B50D2) / 2> 1.7T ... (2) (B50D1 + B50D2) / 2> (B50L + B50C) / 2 ... (3)
  • the anisotropy of the magnetic flux density is higher than that of the equation (3) as shown in the following equation (4).
  • the anisotropy of the magnetic flux density is higher as shown in the following equation (5).
  • the average value of B50D1 and B50D2 is 1.8T or more.
  • 45 ° is a theoretical value, and it may not be easy to match it with 45 ° in actual manufacturing. Therefore, it is assumed that the value does not exactly match 45 °. This also applies to the 0 °, 90 °, 135 °, 180 °, 225 °, 270 °, and 315 °.
  • the magnetic flux density can be measured by cutting out a 55 mm square sample from the rolling direction such as 45 ° and 0 ° and using a single plate magnetic measuring device.
  • ⁇ Manufacturing method An example of a method for manufacturing a non-oriented electrical steel sheet, which is an example of an electromagnetic steel sheet used for a laminated core, will be described.
  • a non-directional electromagnetic steel sheet which is an example of an electromagnetic steel sheet used for a laminated core
  • hot rolling, cold rolling (first cold rolling), intermediate annealing (first annealing), Skin pass rolling (second cold rolling), finish annealing (third annealing), strain relief annealing (second annealing), and the like are performed.
  • the steel material is heated and hot-rolled.
  • the steel material is, for example, a slab manufactured by ordinary continuous casting.
  • Rough rolling and finish rolling of hot rolling are performed at a temperature in the ⁇ region (Ar1 temperature or higher). That is, hot rolling is performed so that the finishing temperature of the finish rolling is Ar1 temperature or higher, the winding temperature is more than 250 ° C., and the winding temperature is 600 ° C. or lower.
  • the structure is refined by transforming austenite to ferrite by subsequent cooling. If cold rolling is subsequently performed in the finely divided state, overhang recrystallization (hereinafter referred to as bulging) is likely to occur, so that it is possible to easily grow ⁇ 100 ⁇ crystal grains that are normally difficult to grow.
  • the temperature (finishing temperature) when passing through the final pass of finish rolling is Ar1 temperature or more, and the winding temperature is high.
  • the temperature is over 250 ° C and 600 ° C or less.
  • the crystal structure is refined by transforming austenite to ferrite. By refining the crystal structure in this way, it is possible to facilitate the occurrence of bulging through the subsequent cold rolling and intermediate annealing.
  • the hot-rolled sheet is wound without annealing, pickled, and then cold-rolled on the hot-rolled steel sheet.
  • the rolling reduction is preferably 80% to 95%. If the reduction rate is less than 80%, bulging is less likely to occur. If the rolling reduction ratio exceeds 95%, ⁇ 100 ⁇ crystal grains are likely to grow due to subsequent bulging, but the hot-rolled steel sheet must be thickened, which makes it difficult to wind the hot-rolled steel sheet and makes it difficult to operate. It will be easier.
  • the rolling reduction of cold rolling is more preferably 86% or more. When the rolling reduction of cold rolling is 86% or more, bulging is less likely to occur.
  • intermediate annealing is subsequently performed.
  • intermediate annealing is performed at a temperature that does not transform into austenite. That is, it is preferable that the intermediate annealing temperature is lower than the Ac1 temperature. By performing the intermediate annealing in this way, bulging occurs, and ⁇ 100 ⁇ crystal grains are likely to grow.
  • the intermediate annealing time is preferably 5 to 60 seconds.
  • the rolling reduction of skin pass rolling is preferably 5% to 25%. If the reduction rate is less than 5%, the amount of strain is too small, so that SIBM does not occur in the subsequent annealing, and the ⁇ 100 ⁇ ⁇ 011> crystal grains do not become large. On the other hand, when the reduction rate exceeds 25%, the amount of strain becomes too large, and recrystallized nucleation (hereinafter referred to as Nucleation) in which new crystal grains are generated from the ⁇ 111 ⁇ ⁇ 112> crystal grains occurs. In this nucleation, most of the grains produced are ⁇ 111 ⁇ ⁇ 112> crystal grains, so that the magnetic characteristics deteriorate.
  • finish annealing is performed to release distortion and improve workability.
  • the finish annealing is set to a temperature at which it does not transform into austenite, and the finish annealing temperature is set to less than the Ac1 temperature.
  • the time for the temperature to reach 600 ° C. to Ac1 temperature at the time of finish annealing is set to 1200 seconds or less. If this annealing time is too short, most of the distortion created by the skin pass remains, and warpage occurs when punching out complicated shapes. On the other hand, if the annealing time is too long, the crystal grains become too coarse, the sagging becomes large at the time of punching, and the punching accuracy cannot be obtained.
  • the non-oriented electrical steel sheet is molded to obtain the desired steel member. Then, in order to remove the strain and the like generated by the forming process (for example, punching) of the steel member made of the non-oriented electrical steel sheet, the steel member is subjected to strain relief annealing.
  • the strain-removing annealing temperature is set to, for example, about 800 ° C., and the strain-removing annealing time is about 2 hours. And.
  • the magnetic properties can be improved by strain relief annealing.
  • the finish rolling is mainly performed in the hot rolling process at Ar1 temperature or higher to perform finish rolling in the above (1).
  • the high B50 of the formula () and the excellent anisotropy of the formula (2) can be obtained.
  • the reduction rate is set to about 85% to achieve the above-mentioned equation (3), and in the skin pass rolling process, the reduction rate is set to about 10% to obtain the better anisotropy of the above equation (4). Is obtained.
  • the Ar1 temperature is obtained from the change in thermal expansion of the steel material (steel plate) being cooled at an average cooling rate of 1 ° C./sec. Further, in the present embodiment, the Ac1 temperature is obtained from the change in thermal expansion of the steel material (steel plate) being heated at an average heating rate of 1 ° C./sec.
  • a steel member made of a non-oriented electrical steel sheet can be manufactured.
  • non-oriented electrical steel sheet which is an example of the electrical steel sheet used for the laminated core
  • the non-oriented electrical steel sheet will be specifically described with reference to examples.
  • the examples shown below are merely examples of non-oriented electrical steel sheets, and the non-oriented electrical steel sheets are not limited to the following examples.
  • the scale was removed from the hot-rolled steel sheet by pickling, and the hot-rolled steel sheet was rolled at the rolling reduction ratio after cold rolling shown in Table 1. Then, intermediate annealing was performed at 700 ° C. for 30 seconds in a non-oxidizing atmosphere. Then, it was rolled by the second cold rolling (skin pass rolling) reduction ratio shown in Table 1.
  • the scale was removed from the hot-rolled steel sheet by pickling, and cold rolling was performed until the sheet thickness became 0.385 mm. Then, intermediate annealing was performed in a non-oxidizing atmosphere, and the temperature of intermediate annealing was controlled so that the recrystallization rate was 85%. Then, the second cold rolling (skin pass rolling) was performed until the plate thickness became 0.35 mm.
  • the second cold rolling skin pass rolling
  • finish annealing was performed at 800 ° C. for 30 seconds to prepare a 55 mm square sample by shearing, and then at 800 ° C. for 2 hours.
  • Strain removal annealing was performed, and the magnetic flux density B50 and the iron loss W10 / 400 were measured.
  • the magnetic flux density B50 was measured in the same procedure as in the first embodiment.
  • the iron loss W10 / 400 was measured as an energy loss (W / kg) generated in the sample when an alternating magnetic field of 400 Hz was applied so that the maximum magnetic flux density was 1.0 T.
  • the iron loss was taken as the average value of the results measured at 0 °, 45 °, 90 °, and 135 ° with respect to the rolling direction.
  • No. 201-No. All 214 were invention examples, and all had good magnetic characteristics.
  • No. 202-No. 204 is No. 201
  • the magnetic flux density B50 is higher than that of 214
  • No. 205-No. 214 is No. 201-No.
  • the iron loss W10 / 400 was lower than that of 204.
  • the electrical steel sheet shall be the non-oriented electrical steel sheet described in the section (Electrical steel sheet used for laminated core).
  • the angle between the direction inclined by 45 ° from the rolling direction and the direction inclined by 135 ° from the rolling direction with the rolling direction are collectively referred to as the two directions in which the smaller angle is 45 °.
  • the 45 ° is expressed assuming that the angle in both the clockwise and counterclockwise directions has a positive value.
  • the clockwise direction is the negative direction and the counterclockwise direction is the positive direction
  • the two directions in which the smaller angle of the rolling direction is 45 ° are the angles formed with the rolling direction.
  • the direction inclined by ⁇ ° from the rolling direction is referred to as a direction in which the angle formed with the rolling direction is ⁇ °, if necessary.
  • the direction inclined by ⁇ ° from the rolling direction and the direction formed by the angle formed with the rolling direction by ⁇ ° have the same meaning. Further, in the following description, the fact that the length, direction, position, etc.
  • the XYZ coordinates indicate the relationship of orientation in each figure.
  • the symbol with ⁇ in ⁇ indicates the direction from the back side to the front side of the paper.
  • FIG. 1 is a diagram showing an example of the appearance configuration of the laminated core 100.
  • "" shown side by side in the Z-axis direction means that what is shown is continuously and repeatedly arranged in the negative direction of the Z-axis (this also applies to other figures). It is the same).
  • FIG. 2 is a diagram showing an example of arrangement of electrical steel sheets in each layer of the laminated core 100.
  • FIG. 2A is a diagram showing an example of the arrangement of the odd-numbered electrical steel sheets from the top (counting from the positive direction side of the Z axis).
  • FIG. 2B is a diagram showing an example of arrangement of even-numbered electrical steel sheets from the top.
  • the laminated core 100 has a plurality of E-type electrical steel sheets 110 and a plurality of I-type electrical steel sheets 120.
  • the laminated core 100 has three legs 210a to 210c arranged with an interval in the Y-axis direction with the X-axis direction in the longitudinal direction (extension direction), and the Y-axis direction in the longitudinal direction (extension direction). It has two joint iron portions 220a to 220b which are arranged at intervals in the X-axis direction. One of the two joint iron portions 220a to 220b is arranged at one end of the three leg portions 210a to 210c in the longitudinal direction (X-axis direction).
  • the other of the two joint iron portions 220a to 220b is arranged at the other end of the three leg portions 210a to 210c in the longitudinal direction (X-axis direction).
  • the three leg portions 210a to 210c and the two joint iron portions 220a to 220b are magnetically coupled.
  • the shape of the plate surface in the same layer of the laminated core 100 is generally a day shape (square eight shape, which is a combination of E and I). squarish eight shape).
  • the E-type electrical steel sheet 110 constitutes one of the three leg portions 210a to 210c of the laminated core 100 and the two joint iron portions 220a to 220b of the laminated core 100.
  • the three leg portions 210a to 210c formed by the E-type electrical steel sheet 110 and the joint iron portions 220a to 220b formed by the E-type electrical steel sheet 110 are formed by being integrally cut out as described later. There are no boundaries to be described later.
  • the I-type electrical steel sheet 120 constitutes one of the two joint iron portions 220a to 220b of the laminated core 100.
  • the joint iron portions 220a to 220b formed by the I-type electrical steel sheet 120 and the three leg portions 210a to 210c formed by the E-type electrical steel sheet 110 have a boundary due to the combination of E and I.
  • What are the thickness portions at the tips of the three legs 210a to 210c formed by the E-type electrical steel sheets 110 arranged in the same layer and the plate thickness portions of the joint iron portions 220a to 220b formed by the I-type electrical steel sheets 120 ? It is more preferable that they are in contact with each other.
  • the direction in which the E-type electrical steel sheet 110 has the best magnetic characteristics is the longitudinal direction (X-axis direction) of the three legs 210a to 210c formed by the E-type electrical steel sheet 110 and the E-type electrical steel sheet 110. It coincides with the two directions of the joint iron portions 220a to 220b in the longitudinal direction (Y-axis direction).
  • the direction in which the magnetic properties of the I-type electrical steel sheet 120 are most excellent coincides with the longitudinal direction (Y-axis direction) of the joint iron portions 220a to 220b formed by the I-type electrical steel sheet 120.
  • the direction in which the magnetic characteristics are the best is referred to as an easy magnetization direction, if necessary.
  • FIG. 3 is a diagram showing an example of a method of cutting out an E-type electrical steel sheet 110 and an I-type electrical steel sheet 120 from an electromagnetic steel sheet rewound from a coiled state.
  • the electromagnetic steel sheet unwound from the coiled state is simply referred to as an electromagnetic steel strip, if necessary.
  • the legs 210a to 210c and the joint iron portions 220a to 220b corresponding to the cut out electromagnetic steel sheets are also shown.
  • the virtual line 310 indicated by the alternate long and short dash line indicates the rolling direction of the electrical steel strip (hereinafter, also referred to as the rolling direction 310).
  • the virtual lines 320a to 320b shown by the broken lines indicate the easy magnetization directions of the electrical steel strip (hereinafter, also referred to as easy magnetization directions 320a to 320b).
  • all the directions parallel to the virtual line 310 are the rolling directions of the electromagnetic steel strips
  • all the directions parallel to the virtual lines 320a to 320b are the directions in which the electromagnetic steel strips are easily magnetized.
  • the two directions in which the angle formed with the rolling direction 310 is 45 ° are the easy magnetization directions.
  • the angle formed by the rolling direction 310 here is a positive value in both the direction from the X-axis to the Y-axis (counterclockwise direction toward the paper surface) and the angle from the Y-axis to the X-axis. The angle of. Further, the angle formed by the two directions is the smaller angle of the angles.
  • the longitudinal direction of the three legs 210a to 210c formed by the E-shaped electromagnetic steel plate 110 is set to the easy magnetization direction 320a of the two easy magnetization directions 320a to 320b of the electrical steel strip.
  • the longitudinal direction of the joint iron portions 220a to 220b formed by the E-shaped electromagnetic steel plate 110 coincides with that of the other easy-to-magnetize direction 320b of the two easy-to-magnetize directions 320a to 320b of the electrical steel strip.
  • the regions 330a to 330b constituting the E-shaped electromagnetic steel plate 110 are cut out from the electrical steel strip.
  • the solid line indicates the cutout position.
  • the longitudinal direction of the legs 210a to 210c and one of the easy magnetization directions 320a do not exactly match, or the longitudinal direction of the joint iron portions 220a to 220b and the other easy magnetization are easy.
  • the direction 320b may not exactly match. Therefore, when the longitudinal directions of the legs 210a to 210c and the longitudinal directions of the joint iron portions 220a to 220b and the magnetization easy directions 320a to 320b coincide with each other, these two directions do not exactly match (for example). , If the deviation is within ⁇ 5 °) is also included. In the following, the same applies to the expression that the longitudinal direction of the leg portion, the joint iron portion, the region, etc., and the direction in which the magnetization is easily magnetized coincide with each other.
  • the regions 330a to 330b constituting the two E-type electrical steel sheets 110 are electromagnetically arranged so that the tips of the three legs 210a to 210c formed by the two E-type electrical steel sheets 110 are aligned with each other. Cut out from the steel strip. Cutting is realized by, for example, punching using a die, wire cutting, or the like. Further, when the regions 330a and 330b constituting the two E-shaped electromagnetic steel sheets 110 are cut out from the electrical steel strip so that the tips of the three legs 210a to 210c are aligned with each other, the two E-shaped electromagnetic steel sheets 110 are formed. The I-shaped regions 340a to 340b between the three legs 210a to 210c are also cut out.
  • the longitudinal direction of the I-shaped region 340a to 340b coincides with the easy magnetization direction 320a of one of the two easy magnetization directions 320a to 320b of the electrical steel strip. Therefore, in the present embodiment, the I-type electrical steel sheet 120 is formed using the I-type regions 340a to 340b.
  • the two legs 210a to 210b and 210b to 210c adjacent to each other are spaced apart from each other by the I-type electromagnetic steel plate 120.
  • the length is the same as the length in the width direction (Y-axis direction)
  • processing for adjusting the length in the Y-axis direction of the I-shaped regions 340a to 340b becomes unnecessary.
  • the lengths of the three legs 210a to 210c formed by the E-type electromagnetic steel plate 110 in the longitudinal direction (X-axis direction) are the same as the lengths of the I-type electromagnetic steel plate 120 in the longitudinal direction (X-axis direction).
  • the longitudinal region of the I-shaped electromagnetic steel plate 120 can be determined by cutting the I-shaped regions 340a to 340b at the center position in the longitudinal direction (X-axis direction). As described above, by using the region between the three legs 210a to 210c formed by the E-type electrical steel plate 110 as the I-type electrical steel plate 120, the E-type of the region of the electrical steel strip can be obtained. It is possible to reduce the area where neither the electrical steel sheet 110 nor the I-type electrical steel sheet 120 is formed.
  • the distances (in the Y-axis direction) of the two legs 210a to 210b and 210b to 210c adjacent to each other are the I-type electromagnetic steel plate 120.
  • the length in the width direction (Y-axis direction) is the same, and the length in the longitudinal direction (X-axis direction) of the three legs 210a to 210c formed by the E-type electromagnetic steel plate 110 is the I-type electromagnetic steel plate. It is assumed that the length is the same as the length in the longitudinal direction (X-axis direction) of 120.
  • the regions 330a to 330b constituting the two E-shaped electromagnetic steel plates 110 are cut out from the electrical steel strip so that the tips of the three legs 210a to 210c are aligned with each other, and between the three legs 210a to 210c.
  • the I-shaped regions 340a to 340b are cut out from the electrical steel strip so that the tips of the three legs 210a to 210c are aligned with each other, and between the three legs 210a to 210c.
  • two E-type electrical steel sheets 110 and two I-type electrical steel sheets 120 are formed.
  • the region between the three legs 210a to 210c formed by the E-type electrical steel sheet 110 can be used as the I-type electrical steel sheet 120 without waste.
  • FIG. 3 shows only a state in which two E-type electrical steel sheets 110 and two I-type electrical steel sheets 120 are cut out.
  • a large number of E-type electrical steel sheets 110 and I-type electrical steel sheets 120 can be cut out from the electrical steel strip.
  • I-type electrical steel sheet protrudes from the region between the two legs 210a to 210b and 210b to 210c adjacent to each other among the three leg portions 210a to 210c formed by the E-type electrical steel sheet
  • I The electrical steel sheet of the mold is cut out from a region different from the region of the electrical steel strip.
  • the layer obtained by combining the (one) E-type electrical steel sheet 110 and the (one) I-type electrical steel sheet 120 obtained as described above to form a day-shaped layer as a whole is formed into a day-shaped layer.
  • the laminated core 100 is formed by stacking the contours so that the contours match each other.
  • the E-type electrical steel sheet 110 and the I-type electrical steel sheet 120 are combined so that the directions in which the tips of the legs 210a to 210c formed by the E-type electrical steel sheet 110 are oriented alternately are opposite to each other by 180 °. .. In the examples shown in FIGS.
  • the tips of the legs 210a to 210c formed by the E-shaped electrical steel sheet 110 face the positive direction side of the X-axis, and are even-numbered from the top.
  • the tips of the legs 210a to 210c formed by the E-shaped electromagnetic steel plate 110 face the negative direction side of the X-axis.
  • one layer (single layer) in which one E-type electrical steel sheet 110 and one I-type electrical steel sheet 120 are combined is formed on the legs 210a to 210c of the E-type electrical steel sheet 110. They may be laminated so that the directions in which the tips face are alternately opposite to each other by 180 °.
  • this laminating method with a single layer does not require a structure for laminating the electromagnetic steel sheets without changing the orientation, so that the manufacturing equipment can be simplified.
  • the first laminated body in which the above-mentioned layers are laminated in a plurality of layers in the direction in which the tips of the legs 210a to 210c of the E-type electrical steel sheet 110 face, and the above-mentioned layers are the E-type electromagnetic steel sheets.
  • a plurality of layers and a second laminated body laminated so that the directions in which the tips of the legs 210a to 210c of the steel plate 110 face are opposite to each other by 180 ° may be alternately laminated. Applying this multi-layer stacking method improves the efficiency of core fabrication.
  • FIG. 4 is a diagram showing an example of the configuration of an electric device configured by using the laminated core 100.
  • the electric device 400 is a single-phase transformer will be described as an example.
  • FIG. 4 shows the longitudinal direction (Y-axis direction) and the stacking direction (Z-axis direction) of the joint iron portions 220a to 220b of the laminated core 100 at the center of the leg portions 210a to 210c of the laminated core 100 in the longitudinal direction (X-axis direction). ), The cross section when the laminated core 100 is cut is shown.
  • a part of the configuration of the electric device 400 is simplified or omitted.
  • the electrical device 400 has a laminated core 100, a primary coil 410, and a secondary coil 420.
  • An input voltage (excitation voltage) is applied to both ends of the primary coil 410.
  • An output voltage corresponding to the turns ratio of the primary coil 410 and the secondary coil 420 is output to both ends of the secondary coil 420.
  • the excitation frequency of the electric device 400 may be a commercial frequency or a frequency higher than the commercial frequency (for example, a frequency in the range of 100 Hz or more and less than 10 kHz).
  • the primary coil 410 is arranged so as to orbit the central leg 210b (side surface) of the three legs 210a to 210c of the laminated core 100.
  • the primary coil 410 is electrically isolated from the laminated core 100 and the secondary coil 420.
  • the secondary coil 420 is arranged outside the primary coil 410 so as to orbit the central leg (side surface) of the three legs of the laminated core 100.
  • the secondary coil 420 is electrically isolated from the laminated core 100 and the primary coil 410.
  • the total value of the thickness of the primary coil 410 and the thickness of the secondary coil 420 is the sum of the three legs 210a to 210c of the laminated core 100 of the two legs 210a to 210b and 210b to 210c adjacent to each other (in the Y-axis direction). ) Less than the interval.
  • the primary coil 410 and the secondary coil 420 are manufactured. Then, as shown in FIG. 4, the primary coil 410 and the secondary coil 420 are arranged. Specifically, the primary coil 410 and the secondary coil 420 are arranged so that the primary coil 410 and the secondary coil 420 are coaxial with the primary coil 410 relatively inside and the secondary coil 420 relatively outside. ..
  • the central leg 210b of the E-type electrical steel sheet 110 is hollowed out of the primary coil 410 so that the directions of the tips of the legs 210a to 210c of the E-type electrical steel sheet 110 are alternately opposite by 180 °.
  • the electromagnetic steel plate 120 of the above is arranged. By arranging the E-type electrical steel sheet 110 and the I-type electrical steel sheet 120 as described above, the primary coil 410 and the secondary coil 420 are arranged on the central leg of the E-type electrical steel sheet 110.
  • the laminated core 100 in the state is configured.
  • the electric wires constituting the primary coil 410 and the secondary coil 420 are wound around the two legs 210a to 210b, which are adjacent to each other among the three legs 210a to 210c of the laminated core 100, for each winding. It is not necessary to pass through the region between 210b and 210c. Therefore, the primary coil 410 and the secondary coil 420 can be easily configured.
  • the laminated core 100 configured as described above is fixed by a known method.
  • the laminated core 100 is fixed by attaching a case in a state of being electrically insulated from the laminated core 100 so as to cover the side surface of the laminated core 100 (the surface where the thick portion of the electromagnetic steel plate is exposed). be able to.
  • through holes penetrating in the stacking direction are formed at the four corners of the plate surface of the laminated core 100, and bolts are passed through the through holes in a state of being electrically insulated from the laminated core 100 to tighten the bolts.
  • the laminated core 100 can be fixed.
  • the laminated core 100 may be caulked to fix the laminated core 100.
  • the side surface of the laminated core 100 may be welded to fix the laminated core 100.
  • the electric device 400 may be impregnated with an insulating material such as varnish. Further, as described in the section (Electromagnetic steel plate used for the laminated core), strain removal annealing is performed on the laminated core 100.
  • the longitudinal direction (X-axis direction) of the three legs 210a to 210c formed by the E-shaped electromagnetic steel plate 110 and the joint iron portions 220a to 220b formed by the E-shaped electromagnetic steel plate 110 Two directions with the longitudinal direction (Y-axis direction) coincide with any of the easy-to-magnetize directions 320a to 320b (in the examples shown in FIGS. 1 to 3), the easy-to-magnetize directions 320a or 320b, and type I electromagnetic waves.
  • the longitudinal direction (Y-axis direction) of the joint iron portions 220a to 220b formed by the steel plate 120 coincides with any of the easy magnetization directions 320a to 320b (in the example shown in FIGS.
  • the easy magnetization direction 320a the easy magnetization direction 320a).
  • an E-type electromagnetic steel plate 110 and an I-type electromagnetic steel plate 120 are formed.
  • the longitudinal direction of the legs 210a to 210c coincides with any of the easy magnetization directions 320a to 320b (the easy magnetization direction 320a in the examples shown in FIGS. 1 to 3), and the joint iron portions 220a to 220b.
  • the E-type electrical steel sheet 110 and the I-type electrical steel sheet 120 so that the longitudinal direction coincides with any of the easy-to-magnetize directions 320a to 320b (the easy-to-magnetize direction 320a or 320b in the examples shown in FIGS. 1 to 3). Are combined to form a laminated core 100. Therefore, it is possible to realize the laminated core 100 and the electric device 400 that effectively utilize the characteristics of the non-oriented electrical steel sheet described in the section (Electromagnetic steel sheet used for the laminated core).
  • the E-type electrical steel sheet 110 and the I-type electrical steel sheet 120 are arranged so that the directions of the tips of the legs 210a to 210c formed by the E-type electrical steel sheet 110 are alternately opposite to each other by 180 °.
  • the case of combining the above was described as an example. In this way, the boundaries between the E-type electrical steel sheet 110 and the I-type electrical steel sheet 120 can be prevented from lining up in the stacking direction. Therefore, it is preferable because it is possible to reduce iron loss and growl of the laminated core 100. However, it is not always necessary to do this.
  • the E-type electrical steel sheet 110 and the I-type electrical steel sheet 120 may be combined so that the tips of the E-type electrical steel sheet 110 face in the same direction.
  • the distance between the E-type electrical steel sheet 110 and the I-type electrical steel sheet 120 arranged in the same layer is short, and the E-type electrical steel sheet arranged in the same layer is preferable.
  • the plate thickness portions at the tips of the three leg portions 210a to 210c formed by 110 are in contact with the plate thickness portions of the joint iron portions 220a to 220b formed by the I-type electromagnetic steel plate 120.
  • the thick portions of the tips of the three legs 210a to 210c formed by the E-type electrical steel sheets 110 arranged in the same layer and the I-type electrical steel sheets 120 are formed.
  • a gap may be provided between the joint iron portions 220a to 220b and the plate thickness portion, or an insulating material may be arranged.
  • the electric device 400 is a single-phase transformer
  • the electric device 400 is not limited to a single-phase transformer as long as it is an electric device having a laminated core 100 and a coil arranged so as to orbit the laminated core 100.
  • the electrical device 400 may be a single-phase current transformer, a single-phase transformer, a reactor, a choke core, or another inductor.
  • the power source for driving the electric device 400 is not limited to the single-phase power source, and may be, for example, a three-phase power source.
  • the single phase is replaced by the three phases.
  • the coil is provided individually for each phase.
  • a coil may be arranged so as to orbit each of the three legs 210a to 210c of the laminated core 100 to form an inner iron type electric device.
  • the laminated core is an EI core
  • the laminated core is an EE core
  • the electromagnetic steel sheets constituting the laminated core are mainly different between the present embodiment and the first embodiment. Therefore, in the description of the present embodiment, detailed description of the same parts as those of the first embodiment will be omitted by adding the same reference numerals as those given in FIGS. 1 to 4.
  • FIG. 5 is a diagram showing an example of the appearance configuration of the laminated core 500.
  • FIG. 6 is a diagram showing an example of arrangement of electrical steel sheets in each layer of the laminated core 500.
  • the laminated core 500 has a plurality of E-type electrical steel sheets 510.
  • the laminated core 500 has three legs 610a to 610c arranged with an interval in the Y-axis direction with the X-axis direction in the longitudinal direction, and three legs 610a to 610c arranged with an interval in the Y-axis direction, and has an interval in the X-axis direction with the Y-axis direction in the longitudinal direction. It has two joint iron portions 620a to 620b, which are arranged in the same direction.
  • One of the two joint iron portions 620a to 620b is arranged at one end of the three leg portions 610a to 610c in the longitudinal direction (X-axis direction).
  • the other of the two joint iron portions 620a to 620b is arranged at the other end of the three leg portions 610a to 610c in the longitudinal direction (X-axis direction).
  • the three leg portions 610a to 610c and the two joint iron portions 620a to 620b are magnetically coupled.
  • the shape of the plate surface in the same layer of the laminated core 500 is generally a day shape in which two Es are combined.
  • the E-type electrical steel sheet 510 has half of the regions of the three legs 610a to 610c of the laminated core 500 in the longitudinal direction (X-axis direction) of the legs and the two joint iron portions 620a to 620b of the laminated core 500. Consists of one of them. That is, the length in the longitudinal direction of the three legs 610a to 610c formed by the E-type electrical steel sheet 510 is half the length in the longitudinal direction of the three legs 610a to 610c of the laminated core 500. Further, as shown in FIGS. 5 and 6, there is a boundary between the three leg portions 610a to 610c formed by the E-type electrical steel sheet 510 and the joint iron portions 620a to 620b formed by the E-type electrical steel sheet 110. Absent.
  • FIG. 5 there is a boundary at the position of the tip of the three legs 610a to 610c formed by the E-type electrical steel sheet 510. That is, there is a boundary at the center position in the longitudinal direction (X-axis direction) of the legs 610a to 610c of the laminated core 500. It is preferable that the distance between the tips of the three legs 610a to 610c of the E-type electrical steel sheet 510 arranged in the same layer is short. It is more preferable that the thick portions at the tips of the three legs 610a to 610c formed by the E-type electrical steel sheets 510 arranged in the same layer are in contact with each other.
  • a gap may be provided between the thick portions at the tips of the three legs 610a to 610c formed by the E-shaped electromagnetic steel sheets 510 arranged in the same layer. Insulation material may be placed.
  • the easy magnetization direction of the E-type electrical steel sheet 510 is the longitudinal direction (X-axis direction) of the three legs 610a to 610c formed by the E-type electrical steel sheet 510 and the joint iron portion formed by the E-type electrical steel sheet 110. It coincides with the two directions of 620a to 620b in the longitudinal direction (Y-axis direction).
  • FIG. 7 is a diagram showing an example of a method of cutting out an E-shaped electromagnetic steel plate 510 from an electromagnetic steel strip.
  • the virtual line 710 shown by the alternate long and short dash line indicates the rolling direction of the electrical steel strip (hereinafter, also referred to as the rolling direction 710).
  • the virtual lines 720a to 720b shown by the broken lines indicate the easy magnetization directions of the electrical steel strip (hereinafter, also referred to as easy magnetization directions 720a to 720b).
  • all the directions parallel to the virtual line 710 are the rolling directions of the electromagnetic steel strips, and all the directions parallel to the virtual lines 720a to 720b are the directions in which the electromagnetic steel strips are easily magnetized.
  • the legs 610a to 610c and the joint iron portions 620a to 620b corresponding to the cut out electromagnetic steel sheets are also shown.
  • the two directions in which the angle formed with the rolling direction 710 is 45 ° are the easy magnetization directions.
  • the longitudinal direction of the three legs 610a to 610c formed by the E-shaped electromagnetic steel plate 510 is set to the easy magnetization direction 720a of one of the two easy magnetization directions 720a to 720b of the electrical steel strip. So that the longitudinal directions of the joint iron portions 620a to 620b formed by the E-shaped electromagnetic steel plate 510 coincide with each other in the easy magnetization direction 720b of the two easy magnetization directions 720a to 720b of the electrical steel strip.
  • regions 730a to 730e constituting the E-shaped electromagnetic steel plate 510 are cut out from the electrical steel strip.
  • the solid line indicates the cutout position. For convenience of notation, in FIG. 7, a part of the regions 730d to 730e constituting the E-type electrical steel sheet 510 is not shown.
  • the E-type electrical steel sheet 510 is Areas 730a to 730e constituting the E-type electromagnetic steel plate 510 are made of electrical steel so that the legs located at one end of the three legs 610a to 610c formed by another E-type electromagnetic steel plate 510 are located. Cut out from the band.
  • the region between the three legs 610a to 610c formed by the E-type electrical steel sheet 510 is formed by the three legs formed by the E-type electrical steel sheet 510 different from the E-type electrical steel sheet 510. By using it as a leg portion at one end of the portions 610a to 610c, it is possible to reduce the region of the electrical steel strip that does not become the E-type electrical steel plate 510.
  • the two legs 610a to 610b and 610b to 610c adjacent to each other are spaced apart from each other (in the Y-axis direction) by the E-shaped electromagnetic steel plate 510. If the widths (lengths in the Y-axis direction) of the legs 610a and 610c that are not located in the center of the three legs 610a to 610c are the same, the three legs 610a formed by the E-shaped electromagnetic steel plate 510 No processing is required to adjust the widths of the legs 610a and 610c that are not located in the center of the 610c.
  • the region between the three legs 610a to 610c formed by the E-type electrical steel sheet 510 is the three legs 610a to 610c of the E-type electrical steel sheet 510 different from the E-type electrical steel sheet 510. It can be used as a leg at one end without waste.
  • FIG. 7 shows only the appearance of cutting out five E-type electromagnetic steel sheets 510, but by arranging the regions 730a to 730e shown in FIG. 7 continuously, a large number of E-type electromagnetic steel sheets 510 can be made of electrical steel. Can be cut out from the obi. It is preferable to cut through the E-type electrical steel sheet 510 as shown in FIG. 7 because the region that does not become the E-type electrical steel sheet 510 can be reduced. However, it is not always necessary to cut out the E-type electrical steel sheet 510 as shown in FIG.
  • the legs 610a and 610c that are not located in the center of the three legs 610a to 610c formed of the E-type electrical steel sheet are adjacent to each other among the three legs 610a to 610c formed by the E-type electrical steel sheet.
  • the two legs 610a to 610b and 610b that are adjacent to each other among the three legs 610a to 610c formed by the E-shaped electrical steel sheet The region between 610c is not used for an E-type electrical steel sheet other than the E-type electrical steel sheet.
  • the two E-shaped electrical steel sheets 510 obtained as described above are combined so that the tips of the legs 610a to 610c of the electrical steel sheet 510 face each other to form a day-shaped layer as a whole.
  • the laminated core 500 is formed by stacking the U-shaped contours so as to match each other.
  • the electric device configured by using the laminated core 500 is realized by using the laminated core 500 of the present embodiment instead of the laminated core 100 of the electric device 400 of the first embodiment.
  • a plurality of Es are provided so that the length in the laminated direction (height direction, Z-axis direction) is the same as the length in the laminated direction of the laminated core 500.
  • Two sets of electrical steel sheets 510 of the mold are prepared by stacking them so that their contours match each other. In the following description, the two sets of the plurality of E-type electrical steel sheets 510 stacked in this way will be referred to as an E-type electrical steel sheet group, if necessary.
  • the tips of the legs 610a to 610c of the two sets of E-type electrical steel sheet groups face.
  • the central leg portion 610b of the E-shaped electromagnetic steel plate group is inserted into the hollow portion of the primary coil 410 so that the directions are opposite to each other by 180 °. By doing so, the shape of the plate surface in the same layer becomes a day shape in which two Es are combined. Further, as described in the section (Electromagnetic steel plate used for the laminated core), strain removal annealing is performed on the laminated core 500.
  • the longitudinal direction of the leg portions 610a to 610c coincides with any of the magnetization easy directions 720a to 720b (in the example shown in FIGS.
  • the laminated core 500 is formed by combining E-type electrical steel sheets 510 so that the longitudinal direction coincides with any of the easy magnetization directions 720a to 720b (720b in the easy magnetization direction in the examples shown in FIGS. 5 to 7). .. Therefore, even if the laminated core is used as the EE core, the same effect as when the laminated core is used as the EI core can be obtained. Also in this embodiment, various modifications described in the first embodiment can be adopted.
  • the laminated core is the EI core
  • the case where the laminated core is the EE core has been described as an example.
  • the laminated core is a UI core
  • the electromagnetic steel sheets constituting the laminated core are mainly different between the present embodiment and the first to second embodiments. Therefore, in the description of the present embodiment, the same parts as those of the first to second embodiments are designated by the same reference numerals as those given in FIGS. 1 to 7, and detailed description thereof will be omitted.
  • FIG. 8 is a diagram showing an example of the appearance configuration of the laminated core 800.
  • FIG. 9 is a diagram showing an example of arrangement of electrical steel sheets in each layer of the laminated core 800.
  • FIG. 9A is a diagram showing an example of the arrangement of the odd-numbered electrical steel sheets from the top (counting from the positive direction side of the Z axis).
  • FIG. 9B is a diagram showing an example of arrangement of even-numbered electrical steel sheets from the top.
  • the legs 810a to 810b and the joint iron portions 820a to 820b corresponding to the cut out electromagnetic steel sheets are also shown.
  • the laminated core 800 has a plurality of U-shaped electrical steel sheets 810 and a plurality of I-shaped electrical steel sheets 820.
  • the laminated core 800 has two legs 910a to 910b arranged with an interval in the Y-axis direction with the X-axis direction in the longitudinal direction and an interval in the X-axis direction with the Y-axis direction in the longitudinal direction. It has two joint iron portions 920a to 920b, which are arranged in the same direction. One of the two joint iron portions 920a to 920b is arranged at one end of the two leg portions 910a to 910b in the longitudinal direction (X-axis direction).
  • the other of the two joint iron portions 920a to 920b is arranged at the other end of the two leg portions 910a to 910b in the longitudinal direction (X-axis direction).
  • the two leg portions 910a to 910b and the two joint iron portions 920a to 920b are magnetically coupled.
  • the shape of the plate surface in the same layer of the laminated core 800 is generally a mouth shape (rectangular shape) in which U and I are combined. Become.
  • the U-shaped electromagnetic steel plate 810 constitutes one of the two leg portions 910a to 910b of the laminated core 800 and the two joint iron portions 920a to 920b of the laminated core 800. There is no boundary between the two leg portions 910a to 910b formed by the U-shaped electromagnetic steel plate 810 and the joint iron portions 920a to 920b formed by the U-shaped electromagnetic steel plate 810.
  • the I-type electrical steel sheet 820 constitutes one of the two joint iron portions of the laminated core 800. There is a boundary between the joint iron portions 920a to 920b formed by the I-type electrical steel sheet 820 and the two leg portions 910a to 910b formed by the U-type electrical steel sheet 810.
  • the easy magnetization direction of the U-shaped electromagnetic steel sheet 810 is the longitudinal direction (X-axis direction) of the two legs 910a to 910b formed by the U-shaped electromagnetic steel sheet 810 and the joint iron portion formed by the U-shaped electromagnetic steel sheet 810. It coincides with the two directions of 920a to 920b in the longitudinal direction (Y-axis direction).
  • the easy magnetization direction of the I-type electrical steel sheet 820 coincides with the longitudinal direction (Y-axis direction) of the joint iron portions 920a to 920b formed by the I-type electrical steel sheet 820.
  • FIG. 10 is a diagram showing an example of a method of cutting out a U-shaped electromagnetic steel plate 810 and an I-shaped electromagnetic steel plate 820 from an electromagnetic steel strip.
  • the virtual line 1010 shown by the one-point chain line indicates the rolling direction of the electrical steel strip (hereinafter, also referred to as the rolling direction 1010).
  • the virtual lines 1020a to 1020b shown by the broken lines indicate the easy magnetization directions of the electrical steel strip (hereinafter, also referred to as easy magnetization directions 1020a to 1020b).
  • all the directions parallel to the virtual line 1010 are the rolling directions of the electromagnetic steel strips, and all the directions parallel to the virtual lines 1020a to 1020b are the directions in which the electromagnetic steel strips are easily magnetized.
  • the two directions in which the angle formed with the rolling direction 1010 is 45 ° are the easy magnetization directions.
  • the longitudinal direction of the two legs 910a to 910b formed by the U-shaped electromagnetic steel plate 810 is set to the easy magnetization direction 1020a of one of the two easy magnetization directions 1020a to 1020b of the electrical steel strip.
  • the longitudinal direction of the joint iron portions 920a to 920b formed by the U-shaped electromagnetic steel plate 810 coincides with that of the other easy magnetization direction 1020b of the two easy magnetization directions 1020a to 1020b of the electrical steel strip.
  • the regions 1030a and 1030b constituting the U-shaped electromagnetic steel plate 810 are cut out from the electrical steel strip.
  • the solid line indicates the cutout position.
  • the regions 1030a to 1030b constituting the two U-shaped electrical steel sheets 810 are electromagnetically arranged so that the tips of the two legs 910a to 910b formed by the two U-shaped electrical steel sheets 810 are aligned with each other. Cut out from the steel strip. Further, when the regions 1030a to 1030b constituting the two U-shaped electromagnetic steel sheets 810 are cut out from the electromagnetic steel strip so that the tips of the two legs 910a to 910b are aligned with each other, the two U-shaped electromagnetic steel sheets 810 are formed. A type I region 1040 between the two legs 910a-910b is also cut out.
  • the longitudinal direction of the I-shaped region 1040 coincides with the easy magnetization direction 1020a of one of the two easy magnetization directions 1020a to 1020b of the electrical steel strip. Therefore, in the present embodiment, the I-type electrical steel sheet 820 is formed by using the I-type region 1040.
  • the distance (in the Y-axis direction) between the two legs 910a to 910b formed by the U-shaped electrical steel sheet 810 is twice the length in the width direction (Y-axis direction) of the I-shaped electrical steel sheet 820.
  • the width direction region of the I-shaped electromagnetic steel sheet 820 can be determined.
  • the lengths of the two legs 910a to 910b formed by the U-shaped electromagnetic steel plate 810 in the longitudinal direction (X-axis direction) are the same as the lengths of the I-shaped electromagnetic steel plate 820 in the longitudinal direction (X-axis direction).
  • the longitudinal region of the I-shaped electromagnetic steel plate 820 can be determined by cutting the I-shaped region 1040 at the central position in the longitudinal direction (X-axis direction). As described above, by utilizing the region between the two legs 910a to 910b formed by the U-shaped electrical steel plate 810 as the I-type electrical steel plate 820, the U-shaped steel strip region of the region of the electrical steel strip is formed. It is possible to reduce the area where neither the electrical steel sheet 810 nor the I-type electrical steel sheet 820 is formed.
  • the distance (in the Y-axis direction) between the two legs 910a to 910b formed by the U-shaped electromagnetic steel plate 810 is twice the length in the width direction (Y-axis direction) of the I-shaped electromagnetic steel plate 820, and , The length of the two legs 910a to 910b formed by the U-shaped electromagnetic steel plate 810 in the longitudinal direction (X-axis direction) is the same as the length of the I-shaped electromagnetic steel plate 820 in the longitudinal direction (X-axis direction). And.
  • the regions 1030a to 1030b constituting the two U-shaped electromagnetic steel sheets 810 are cut out from the electrical steel strip so that the tips of the two legs 910a to 910b are aligned with each other, and between the two legs 910a to 910b.
  • the I-shaped region 1040 By cutting the I-shaped region 1040 into four at the center positions in the longitudinal direction (X-axis direction) and the width direction (Y-axis direction), two U-shaped electrical steel sheets 810 are formed, and the I-shaped electromagnetic steel sheet 810 is formed.
  • Four steel sheets 820 are formed.
  • the region between the two legs 910a to 910b formed by the U-shaped electrical steel sheet 810 can be used as the I-type electrical steel sheet 820 without waste.
  • FIG. 10 shows only a state in which two U-shaped electrical steel sheets 810 are cut out and four I-type electrical steel sheets 820 are cut out.
  • regions 1030a to 1030b shown in FIG. 10 continuously, a large number of U-shaped electromagnetic steel sheets 810 and I-shaped electromagnetic steel sheets 820 can be cut out from the electrical steel strip.
  • the I-type electromagnetic steel plate protrudes from the region between the two legs 910a to 910b formed by the U-type electrical steel plate, the I-type electrical steel plate is in a region different from the region of the electrical steel strip. Cut out from.
  • the layer obtained by combining the (one) U-shaped electrical steel sheet 810 and the (one) I-shaped electrical steel sheet 820 obtained as described above to form a mouth-shaped layer as a whole is formed into a mouth-shaped layer.
  • the laminated core 800 is formed by stacking the contours so that the contours match each other.
  • the U-shaped electrical steel sheet 810 and the I-shaped electrical steel sheet 820 are combined so that the directions of the tips of the legs 910a to 910b formed by the U-shaped electrical steel sheet 810 are alternately opposite to each other by 180 °. .. In the examples shown in FIGS.
  • the tips of the legs 910a to 910b formed by the U-shaped electrical steel sheet 810 face the positive direction side of the X-axis, and are even-numbered from the top.
  • the tips of the legs 910a to 910b formed by the U-shaped electromagnetic steel plate 810 face the negative direction side of the X-axis.
  • FIG. 11 is a diagram showing an example of the configuration of an electric device configured by using the laminated core 800.
  • the electric device 1100 is a single-phase transformer
  • FIG. 11 shows the longitudinal direction (Y-axis direction) and the stacking direction of the joint iron portions 920a to 920b formed by the laminated core 800 at the center of the leg portions 910a to 910b formed by the laminated core 800 in the longitudinal direction (X-axis direction).
  • a cross section when the laminated core 800 is cut in parallel with (Z-axis direction) is shown.
  • a part of the configuration of the electric device 1100 may be simplified or omitted.
  • the electrical device 1100 has a laminated core 800, primary coils 1110a to 1110b, and secondary coils 1120a to 1120b.
  • the primary coils 1110a to 1110b are connected in series or in parallel.
  • An input voltage (excitation voltage) is applied to both ends of the primary coils 1110a to 1110b connected in series or in parallel.
  • the secondary coils 1120a to 1120b are connected in series or in parallel. At both ends of the secondary coils 1120a to 1120b connected in series or in parallel, the turns ratio of the secondary coils 1120a to 1120b connected in series or in parallel with the primary coils 1110a to 1110b connected in series or in parallel was supported.
  • the output voltage is output.
  • the primary coil 1110a is arranged so as to orbit (the side surface) of one of the two legs 910a to 910b of the laminated core 800.
  • the primary coil 1110a is electrically insulated from the laminated core 800 and the secondary coils 1120a and 1120b.
  • the primary coil 1110b is arranged so as to orbit the other leg portion 910b (side surface) of the two leg portions 910a to 910b of the laminated core 800.
  • the primary coil 1110b is electrically insulated from the laminated core 800 and the secondary coils 1120a and 1120b.
  • the secondary coil 1120a is arranged outside the primary coil 1110a so as to orbit (the side surface) of one of the two legs 910a to 910b of the laminated core 800.
  • the secondary coil 1120a is electrically insulated from the laminated core 800 and the primary coils 1110a and 1110b.
  • the secondary coil 1120b is arranged outside the primary coil 1110b so as to orbit the other leg portion 910b (side surface) of the two leg portions 910a to 910b of the laminated core 800.
  • the secondary coil 1120b is electrically insulated from the laminated core 800 and the primary coils 1110a and 1110b.
  • the total thickness of the primary coils 1110a to 1110b and the thicknesses of the secondary coils 1120a to 1120b is less than the distance (in the Y-axis direction) between the two legs of the laminated core 800.
  • the primary coils 1110a to 1110b and the secondary coils 1120a to 1120b are manufactured. Then, as shown in FIG. 11, the primary coils 1110a to 1110b and the secondary coils 1120a to 1120b are arranged. Specifically, the primary coil 1110a and the secondary coil 1120a are arranged so that the primary coil 1110a and the secondary coil 1120a are coaxial with the primary coil 1110a relatively inside and the secondary coil 1120a relatively outside. .. Similarly, the primary coil 1110b and the secondary coil 1120b are arranged so that the primary coil 1110b and the secondary coil 1120b are coaxial with the primary coil 1110b relatively inside and the secondary coil 1120b relatively outside.
  • one or the other leg portion 910a to the other leg portion 910a to be configured by the U-shaped electromagnetic steel plate 810 is formed so that the directions of the tips of the leg portions 910a to 910b formed by the U-shaped electromagnetic steel plate 810 are alternately opposite by 180 °.
  • the 910b is sequentially inserted into the hollow portions of the primary coils 1110a and 1110b, respectively, and the U-shaped electromagnetic steel plate 810 has a U-shaped electromagnetic steel plate 810 so that the shape of the plate surface is the shape of a mouth that combines U and I in the same layer.
  • the I-type electrical steel plate 820 is arranged at the tips of the constituent legs 910a to 910b.
  • the primary coil 1110a and the secondary coil 1110a and the secondary coil 1110a and the secondary coil 1110a and the secondary coil 1110a and the secondary coil 1110a and the secondary coil 1110a and the secondary coil, respectively, are formed on one and the other legs of the U-shaped electrical steel sheet 810, respectively.
  • a laminated core 800 is configured in which the coil 1120a, the primary coil 1110b, and the secondary coil 1120b are arranged. In this way, it is not necessary to pass the electric wires constituting the primary coils 1110a to 1110b and the secondary coils 1120a to 1120b through the region between the two legs 910a to 910b of the laminated core 800 for each winding.
  • the laminated core 800 can be fixed by a known method as described in the first embodiment. Further, as described in the section (Electromagnetic steel plate used for the laminated core), strain removal annealing is performed on the laminated core 800.
  • the longitudinal direction (X-axis direction) of the two leg portions 910a to 910b formed by the U-shaped electromagnetic steel plate 810 and the joint iron portions 920a to 920b formed by the U-shaped electromagnetic steel plate 810 Two directions with the longitudinal direction (Y-axis direction) coincide with any of the easy-to-magnetize directions 1020a to 1020b (the easy-to-magnetize directions 1020a or 1020b in the examples shown in FIGS. 8 to 10), and type I electromagnetic waves.
  • the longitudinal direction (Y-axis direction) of the joint iron portions 920a to 920b formed by the steel plate 820 coincides with any of the easy magnetization directions 1020a to 1020b (in the example shown in FIGS.
  • a U-shaped electromagnetic steel plate 810 and an I-shaped electromagnetic steel plate 820 are formed.
  • the longitudinal direction of the leg portions 910a to 910b coincides with any of the magnetization easy directions 1020a to 1020b (in the example shown in FIGS. 8 to 10, the magnetization easy direction 1020a), and the joint iron portions 920a to 920b.
  • the U-shaped electromagnetic steel sheet 810 and the I-shaped electrical steel sheet 820 so that the longitudinal direction coincides with any of the easily magnetized directions 1020a to 1020b (in the example shown in FIGS. 8 to 10 the easy magnetization direction 1020a or 1020b). Are combined to form a laminated core 800. Therefore, even if the laminated core is used as the UI core, the same effect as when the laminated core is used as the EI core or the EE core can be obtained.
  • the coils primary coils 1110a to 1110b and secondary coils 1120a to 1120b
  • the coil may be arranged on one leg and the coil may not be arranged on the other leg.
  • the two laminated cores 800 may be used as an outer iron type electric device. In this case, the coils are arranged in the hollow portions of the two laminated cores 800.
  • the corners of the U-shaped electrical steel sheet 810 are at right angles (bent) and are not strictly U-shaped, but such a shape is also included in the U-shaped (the U-shaped).
  • the U-shape also includes a shape in which the corners are curved (curved)). Further, also in this embodiment, various modifications described in the first to second embodiments can be adopted.
  • the configuration of the laminated core is not limited to the EI core, the EE core, and the UI core described in the first to third embodiments. It has a plurality of legs and a plurality of joint iron portions, and at the same position in the stacking direction of the electromagnetic steel sheets, at least a part of the regions of the plurality of legs and at least a part of the regions of the plurality of joint iron portions.
  • Any laminated core may be used as long as it is composed of the same (one) electromagnetic steel plate. That is, the laminated core is the same when at least a part of each of the leg portion and the joint iron portion extending orthogonally to each other at each position in the stacking direction is cut out from the same electromagnetic steel strip, for example.
  • any structure may be used as long as it is formed of an electromagnetic steel sheet that can be evaluated as having characteristics. Specifically, if the manufacturing conditions that can affect the characteristics of the electrical steel sheet, such as the rolling conditions and cooling conditions set for each equipment when manufacturing the electrical steel strips, are the same, the individual electrical steel strips are the same. It can be evaluated as having characteristics. That is, in each of the electromagnetic steel sheets, at least a part of the regions of the plurality of legs and at least a part of the regions of the plurality of joint iron portions are formed at the same position (each position) in the stacking direction of the electrical steel sheets in the laminated core. , Manufactured under the same manufacturing conditions. In this magnetic steel sheet, the magnetic property is obtained by aligning either the extension direction of the leg portion or the extension direction of the joint iron portion with one of the two directions in which the magnetic steel sheet has the best magnetic characteristics. An improved laminated core is manufactured.
  • the plurality of joint iron portions are arranged with the direction perpendicular to the extension direction of the legs as the extension direction so that a closed magnetic path is formed in the laminated core when the laminated core is excited.
  • the electromagnetic steel sheets are laminated so that the plate surfaces face each other.
  • the direction in which the main magnetic flux flows inside the laminated core when the laminated core is excited includes the extending direction of the leg portion and the extending direction of the joint iron portion.
  • E-type electrical steel sheet 110 In the first to third embodiments, two electromagnetic steel sheets (E-type electrical steel sheet 110, I-type electrical steel sheet 120, E-type electrical steel sheet 510, etc.) are used in the same layer (positions in which the stacking directions are the same).
  • the surfaces of the E-type electrical steel sheet 510, the U-type electrical steel sheet 810, and the I-type electrical steel sheet 820) facing each other are oriented in the longitudinal direction of the leg formed by at least one of the two electrical steel sheets.
  • the case where the surface is in the vertical direction (YZ plane) has been described as an example.
  • the surfaces of the two electrical steel sheets facing each other are parallel to each other, the surfaces of the two electrical steel sheets are not necessarily the longitudinal directions of the legs formed by at least one of the two electrical steel sheets. It does not have to be a plane in a direction perpendicular to (YZ plane), and may be a plane in a direction inclined with respect to the direction (for example, in FIG. 2, E-type electrical steel sheets 110 and I-type. The boundary line of the electrical steel sheet 120 may be inclined with respect to the Y axis).
  • the EE core is configured by using two sets of E-type electrical steel sheets having the same shape and size has been described as an example.
  • the lengths of the legs of the two sets of E-type electrical steel sheets may be different.
  • the laminated core may be a UU core.
  • UU core for example, two sets of U-shaped electromagnetic steel sheets in which a plurality of U-shaped electrical steel sheets 810 are stacked so that their contours match each other are prepared, and the direction in which the tips of the legs of the two sets of electrical steel sheets face is oriented. Two sets of electrical steel sheets are arranged so as to be 180 ° opposite to each other. Further, when the laminated core is used as the UI core, the lengths of the legs of the two sets of electromagnetic steel sheets may be different as in the case where the EE core is described.
  • two electromagnetic steel sheets (E-type electrical steel sheet 110, I-type electrical steel sheet 120, E-type electrical steel sheet 510, etc.) are used in the same layer (positions in which the stacking directions are the same).
  • a laminated core may be formed by combining three electromagnetic steel sheets in the same layer.
  • the coils (primary coil 410 / secondary coil 420, primary coil 1110a to 1110b / secondary coil 1120a) can be configured as described above.
  • ⁇ 1120b) is preferable because it can be easily configured.
  • the laminated core may be formed by stacking them so as to fit each other. In this case, at the same position in the stacking direction of the electromagnetic steel sheets, all regions of the plurality of legs and the plurality of joint iron portions are composed of the same (one sheet) electromagnetic steel sheets.
  • the outer shape of the plate surface in the same layer of the laminated core is a square figure eight shape and the same layer is formed by a plurality of electromagnetic steel plates, a plurality of layers forming the same layer.
  • the electromagnetic steel sheet of the above may include an electromagnetic steel sheet having a shape other than the E-type electrical steel sheet and the I-type electrical steel sheet (for example, the same layer is formed by the U-type electrical steel sheet and the T-type electrical steel sheet. May be).
  • the outer shape of the plate surface in the same layer of the laminated core is rectangular and the same layer is formed by a plurality of electrical steel sheets, the plurality of electrical steel sheets forming the same layer are formed.
  • It may include an electromagnetic steel sheet having a shape other than the U-type electrical steel sheet and the I-type electrical steel sheet (for example, the same layer may be formed by two L-type electrical steel sheets). Further, when the same layer of the laminated core is formed by a plurality of electrical steel sheets, these plurality of electrical steel sheets do not necessarily have to be cut out from the same electrical steel strip. For example, a plurality of electromagnetic steel sheets cut out from electrical steel strips (electrical steel strips having different production lots) forming different coils may form the same layer.
  • one electromagnetic steel plate forming at least a part of each of the leg portion and the joint iron portion extending at right angles to each other has been described in the above-mentioned section (Electromagnetic steel plate used for laminated core).
  • the other electrical steel sheet does not have to be the non-oriented electrical steel sheet described in the section (Electromagnetic steel sheet used for laminated core).
  • a laminated core made of an EI core using an electromagnetic steel sheet described in the section (Electromagnetic steel sheet used for a laminated core) and a laminated core made of an EI core using a known non-oriented electrical steel sheet are used.
  • Each electromagnetic steel sheet has a thickness of 0.25 mm.
  • a non-oriented electrical steel sheet a non-oriented electrical steel sheet having a W10 / 400 of 12.8 W / kg was used. W10 / 400 is an iron loss when the magnetic flux density is 1.0 T and the frequency is 400 Hz.
  • the known non-oriented electrical steel sheet has the best magnetic properties in the rolling direction, and the anisotropy of the magnetic properties is relatively small.
  • the known non-oriented electrical steel sheet will be referred to as material A, if necessary.
  • the electromagnetic steel sheet described in the section (Electromagnetic steel sheet used for the laminated core), and the electromagnetic steel sheet used for the laminated core of this embodiment is referred to as a material B, if necessary.
  • FIG. 12 is a diagram showing an example of the relationship between the B50 ratio and the angle from the rolling direction.
  • FIG. 13 is a diagram showing an example of the relationship between the W15 / 50 ratio and the angle from the rolling direction.
  • B50 is the magnetic flux density when excited with a magnetic field strength of 5000 A / m
  • W15 / 50 is the iron loss when the magnetic flux density is 1.5 T and the frequency is 50 Hz.
  • the magnetic flux density and the iron loss were measured by the method described in JIS C 2556: 2015.
  • FIGS. 12 and 13 show standardized values of measured values (magnetic flux density or iron loss) for each angle from the rolling direction of each material.
  • the average value for each angle of the material A from the rolling direction was set to 1.000.
  • the average value for each angle from the rolling direction of the material A is 0 °, 22.5 °, 45 °, 67.5 °, 90 °, 112.5 °, 135 °, and the angle formed by the rolling direction of the material A is 0 °, 22.5 °, 45 °, 67.5 °, 90 °, 112.5 °, 135 °.
  • the average value of the measured values at eight angles of 157.5 ° was used.
  • the values on the vertical axis of FIGS. 12 and 13 are relative values (dimensionless quantities).
  • the B50 ratio is the largest when the angle formed with the rolling direction is 45 °, and the B50 ratio becomes smaller as the angle formed with the rolling direction approaches 0 ° and 90 °.
  • the B50 ratio becomes small when the angle formed with the rolling direction is around 45 ° to 90 °.
  • the W15 / 50 ratio is the smallest when the angle formed with the rolling direction is 45 °, and the W15 / 50 ratio becomes smaller as the angle formed with the rolling direction approaches 0 ° and 90 °. growing.
  • the W15 / 50 ratio is the smallest when the angle formed with the rolling direction is 0 °, and becomes large when the angle formed with the rolling direction is around 45 ° to 90 °.
  • the material B has the best magnetic characteristics in the direction (easy magnetization direction) at which the angle formed with the rolling direction is 45 °.
  • the magnetic characteristics are the worst in the directions of 0 ° and 90 ° (the rolling direction and the direction orthogonal to the rolling direction) with the rolling direction. It should be noted that four regions (that is, a region of 0 ° to 22.5 ° and a region of 22.5 ° to 45 °) from the rolling direction to the direction in which the smaller angle of the rolling direction is 90 °. , 45 ° to 67.5 °, 67.5 ° to 90 °) magnetic properties have a theoretically symmetrical relationship.
  • the longitudinal directions of the three legs formed by the E-type electrical steel sheet were set to coincide with the rolling direction.
  • the longitudinal direction of the joint iron portion formed by the I-type electrical steel sheet was set to coincide with the rolling direction.
  • the longitudinal direction of the three legs formed by the E-type electrical steel sheet and the joint iron portion formed by the E-type electrical steel sheet were set to coincide with one of the two easy-to-magnetize directions.
  • the longitudinal direction of the joint iron portion formed by the I-type electrical steel sheet is made to coincide with one of the two easy magnetization directions. ..
  • Both the E-type and I-type electromagnetic steel sheets of material A and the E-type and I-type electromagnetic steel sheets of material B were cut out from the electrical steel strip by punching with a die.
  • the shape and size of the E-type electrical steel sheet of the material A and the E-type electrical steel sheet of the material B are the same.
  • the shape and size of the I-type electrical steel sheet of the material A and the I-type electrical steel sheet of the material B are the same.
  • the E-type and I-type electromagnetic steel sheets of the material A were subjected to strain relief annealing on the laminated cores stacked as described in the first embodiment, and the primary coil was placed on the central leg of the laminated cores.
  • the E-type and I-type electromagnetic steel sheets of the material B are subjected to strain relief annealing on the laminated cores stacked as described in the first embodiment, and the primary coil is arranged on the central leg of the laminated cores. did.
  • each laminated core The number of E-type and I-type electrical steel sheets constituting each laminated core is the same (the shape and size of each laminated core are the same). Further, the primary coil arranged in each laminated core is the same coil. Exciting currents with the same frequency and effective value are passed through both ends of the primary coil placed in each laminated core (that is, each laminated core is excited under the same exciting conditions), and in the central leg of each laminated core. The magnetic flux density was measured and the iron loss was measured. In addition, the exciting current flowing through the primary coil was measured to derive the primary copper loss.
  • the ratio of the primary copper loss when the laminated core of the material B was used to the primary copper loss when the laminated core of the material A was used was 0.92.
  • the ratio of the iron loss of the laminated core of the material B to the iron loss of the laminated core of the material A was 0.81.
  • the primary copper loss could be reduced by 8% and the iron loss by 19%, respectively, as compared with the case where the material A was used by using the material B.
  • the magnetic characteristics of the laminated core can be improved. Therefore, it has high industrial applicability.
  • 110,510 E-type electrical steel sheet
  • 120,820 I-type electrical steel sheet
  • 210a to 210c, 610a to 610c, 910a to 910b legs
  • 920a to 920b Electrical steel section
  • 310,710,1010 Rolling direction 320a to 320b, 720a to 720b
  • 1020a to 1020b Easy magnetization direction
  • 400,1100 Electrical equipment
  • 410,1110a to 1110b Primary coil
  • 420, 1120a to 1120b Secondary coil

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

積層コア(100)は、電磁鋼板の積層方向に垂直な方向を延設方向とする複数の脚部(210a~210c)と、電磁鋼板の積層方向と前記脚部(210a~210c)の延設方向とに対して直交する方向を延設方向とする複数の継鉄部(220a~220b)とを有し、電磁鋼板の積層方向の同じ位置において、脚部(210a~210c)の少なくとも一部の領域と前記継鉄部(220a~220b)の少なくとも一部の領域とが同一の電磁鋼板で構成される。電磁鋼板の磁化容易方向のうちの第1の方向が、脚部(210a~210c)の延設方向に沿い、電磁鋼板の磁化容易方向のうちの第2の方向が、継鉄部(220a~220b)の延設方向に沿うように、電磁鋼板が配置される。

Description

積層コアおよび電気機器
 本発明は、積層コアおよび電気機器に関する。
 本願は、2019年11月15日に、日本に出願された特願2019-206674号に基づき優先権を主張し、その内容をここに援用する。
 単相変圧器等の電気機器では、コア(鉄心)が用いられる。このようなコアとして、EIコア、EEコア、UIコア等の積層コアがある。このような積層コアでは、主磁束が流れる方向が、相互に直交する2つの方向となる。
 このような積層コアを構成する電磁鋼板を一方向性電磁鋼板とすると、前述の2つの方向を、磁化容易軸の方向(圧延方向とのなす角度が0°の方向)と、磁化困難軸の方向(圧延方向とのなす角度が90°の方向)に対応させる。一方向性電磁鋼板では、磁化容易軸の方向の磁気特性は良好である。しかしながら、磁化容易軸の方向の磁気特性に対し磁化困難軸の方向の磁気特性は著しく劣化する。従って、コア全体の鉄損が増加する等、コアの性能が劣化する。
 そこで、特許文献1には、熱延板焼鈍後の平均結晶粒径を300μm以上とし、冷間圧延を圧下率85%以上95%以下で施し、仕上焼鈍を700℃以上950℃以下で10秒以上1分以下施した無方向性電磁鋼板を用いて、小型変圧器のEIコアを構成することが開示されている。この無方向性電磁鋼板では、圧延方向とのなす角度が0°および90°の方向の磁気特性が優れる。
日本国特開2004-332042号公報
 しかしながら、特許文献1では、小型変圧器等の電気機器に無方向性電磁鋼板を適用した場合の具体的な検討がなされていない。このため、従来の積層コアには、磁気特性を向上させることについて改善の余地がある。
 本発明は、以上のような問題点に鑑みてなされたものであり、積層コアの磁気特性を向上させることを目的とする。
 上記課題を解決するために、本発明は以下の構成を採用する。
 (1)本発明の一態様に係る積層コアは、板面同士が相互に対向するように積層された複数の電磁鋼板を有する積層コアであって、前記複数の電磁鋼板の各々は、複数の脚部と、前記積層コアが励磁された際に、前記積層コアにおいて閉磁路が形成されるように、前記脚部の延設方向に対し垂直な方向を延設方向として配置される複数の継鉄部と、を備え、前記複数の脚部を構成する前記電磁鋼板の積層方向と前記複数の継鉄部を構成する前記電磁鋼板の積層方向は、同じであり、前記電磁鋼板は、質量%で、C:0.0100%以下、Si:1.50%~4.00%、sol.Al:0.0001%~1.0%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、Sn:0.000%~0.400%、Sb:0.000%~0.400%、P:0.000%~0.400%、およびMg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(A)式を満たし、残部がFeおよび不純物からなる化学組成を有し、圧延方向のB50をB50L、圧延方向とのなす角度が90°の方向のB50をB50C、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向のB50のうち一方の方向のB50、他方の方向のB50を、それぞれ、B50D1、B50D2としたときに、以下の(B)式且つ(C)式を満たし、{100}<011>のX線ランダム強度比が5以上30未満であり、板厚が0.50mm以下であり、前記圧延方向となす角度のうち小さい方の角度が45°となる2つの方向のうちの何れかの方向が、前記脚部の延設方向および前記継鉄部の延設方向の何れかに沿うように、前記電磁鋼板が配置されており、前記磁気特性が最も優れる2つの方向は、前記圧延方向となす角度のうち小さい方の角度が45°となる2つの方向であることを特徴とする。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%   ・・・(A)
 (B50D1+B50D2)/2>1.7T         ・・・(B)
 (B50D1+B50D2)/2>(B50L+B50C)/2・・・(C)
 ここで、磁束密度B50とは、磁界の強さ5000A/mで励磁したときの磁束密度である。
 (2)上記(1)に記載の積層コアは、以下の(D)式を満たしてよい。
 (B50D1+B50D2)/2>1.1×(B50L+B50C)/2・・・(D)
 (3)上記(1)に記載の積層コアは、以下の(E)式を満たしてよい。
 (B50D1+B50D2)/2>1.2×(B50L+B50C)/2・・・(E)
 (4)上記(1)に記載の積層コアは、以下の(F)式を満たしてよい。
 (B50D1+B50D2)/2>1.8T         ・・・(F)
 (5)上記(1)に記載の積層コアは、EIコア、EEコア、UIコア、またはUUコアであってよい。
 (6)本発明の一態様に係る電気機器は、上記(1)から(5)の何れか1項に記載の積層コアと、前記積層コアに対して周回するように配置されるコイルとを有することを特徴とする。
 本発明の上記態様によれば、積層コアの磁気特性を向上させることができる。
積層コアの外観構成の第1の例を示す図である。 積層コアの各層における電磁鋼板の配置の第1の例を示す図である。 E型の電磁鋼板とI型の電磁鋼板を、電磁鋼帯から切り抜く方法の一例を示す図である。 電気機器の構成の第1の例を示す図である。 積層コアの外観構成の第2の例を示す図である。 積層コアの各層における電磁鋼板の配置の第2の例を示す図である。 E型の電磁鋼板を、電磁鋼帯から切り抜く方法の一例を示す図である。 積層コアの外観構成の第3の例を示す図である。 積層コアの各層における電磁鋼板の配置の第3の例を示す図である。 U型の電磁鋼板とI型の電磁鋼板を、電磁鋼帯から切り抜く方法の一例を示す図である。 電気機器の構成の第3の例を示す図である。 B50比率と、圧延方向からの角度との関係の一例を示す図である。 W15/50比率と、圧延方向からの角度との関係の一例を示す図である。
(積層コアに使用する電磁鋼板)
 まず、後述する実施形態の積層コアに使用する電磁鋼板について説明する。
 まず、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板およびその製造方法で用いられる鋼材の化学組成について説明する。以下の説明において、無方向性電磁鋼板または鋼材に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。また、「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板および鋼材は、フェライト-オーステナイト変態(以下、α-γ変態)が生じ得る化学組成であって、C:0.0100%以下、Si:1.50%~4.00%、sol.Al:0.0001%~1.0%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、Sn:0.000%~0.400%、Sb:0.000%~0.400%、P:0.000%~0.400%、およびMg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、およびCdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、残部がFeおよび不純物からなる化学組成を有する。更に、Mn、Ni、Co、Pt、Pb、Cu、Au、Siおよびsol.Alの含有量が後述する所定の条件を満たす。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。
 <<C:0.0100%以下>>
 Cは、鉄損を高めたり、磁気時効を引き起こしたりする。従って、C含有量は低ければ低いほどよい。このような現象は、C含有量が0.0100%超で顕著である。このため、C含有量は0.0100%以下とする。C含有量の低減は、板面内の全方向における磁気特性の均一な向上にも寄与する。尚、C含有量の下限は特に限定しないが、精錬時の脱炭処理のコストを踏まえ、0.0005%以上とすることが好ましい。
 <<Si:1.50%~4.00%>>
 Siは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減したり、降伏比を増大させて、鉄心への打ち抜き加工性を向上したりする。Si含有量が1.50%未満では、これらの作用効果を十分に得られない。従って、Si含有量は1.50%以上とする。一方、Si含有量が4.00%超では、磁束密度が低下したり、硬度の過度な上昇により打ち抜き加工性が低下したり、冷間圧延が困難になったりする。従って、Si含有量は4.00%以下とする。
 <<sol.Al:0.0001%~1.0%>>
 sol.Alは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減する。sol.Alは、飽和磁束密度に対する磁束密度B50の相対的な大きさの向上にも寄与する。ここで、磁束密度B50とは、磁界の強さ5000A/mで励磁したときの磁束密度である。sol.Al含有量が0.0001%未満では、これらの作用効果を十分に得られない。また、Alには製鋼での脱硫促進効果もある。従って、sol.Al含有量は0.0001%以上とする。一方、sol.Al含有量が1.0%超では、磁束密度が低下したり、降伏比を低下させて、打ち抜き加工性を低下させたりする。従って、sol.Al含有量は1.0%以下とする。
 <<S:0.0100%以下>>
 Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、微細なMnSの析出により、焼鈍における再結晶および結晶粒の成長を阻害する。従って、S含有量は低ければ低いほどよい。このような再結晶および結晶粒成長の阻害による鉄損の増加および磁束密度の低下は、S含有量が0.0100%超で顕著である。このため、S含有量は0.0100%以下とする。尚、S含有量の下限は特に限定しないが、精錬時の脱硫処理のコストを踏まえ、0.0003%以上とすることが好ましい。
 <<N:0.0100%以下>>
 NはCと同様に、磁気特性を劣化させるので、N含有量は低ければ低いほどよい。したがって、N含有量は0.0100%以下とする。尚、N含有量の下限は特に限定しないが、精錬時の脱窒処理のコストを踏まえ、0.0010%以上とすることが好ましい。
 <<Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%>>
 これらの元素は、α-γ変態を生じさせるために必要な元素であることから、これらの元素を総計で2.50%以上含有させる必要がある。一方で、総計で5.00%を超えると、コスト高となり、磁束密度が低下する場合もある。したがって、これらの元素を総計で5.00%以下とする。
 また、α-γ変態が生じ得る条件として、更に以下の条件を満たしているものとする。つまり、Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、質量%で、以下の(1)式を満たすことが好ましい。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%   ・・・(1)
 前述の(1)式を満たさない場合には、α-γ変態が生じないため、磁束密度が低くなる。
 <<Sn:0.000%~0.400%、Sb:0.000%~0.400%、P:0.000%~0.400%>>
 SnやSbは冷間圧延、再結晶後の集合組織を改善して、その磁束密度を向上させる。そのため、これらの元素を必要に応じて含有させてもよいが、過剰に含まれると鋼を脆化させる。したがって、Sn含有量、Sb含有量はいずれも0.400%以下とする。また、Pは再結晶後の鋼板の硬度を確保するために含有させてもよいが、過剰に含まれると鋼の脆化を招く。したがって、P含有量は0.400%以下とする。以上のように磁気特性等のさらなる効果を付与する場合には、0.020%~0.400%のSn、0.020%~0.400%のSb、および0.020%~0.400%のPからなる群から選ばれる1種以上を含有することが好ましい。
 <<Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、およびCdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%>>
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCdは、溶鋼の鋳造時に溶鋼中のSと反応して硫化物若しくは酸硫化物またはこれらの両方の析出物を生成する。以下、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCdを総称して「粗大析出物生成元素」ということがある。粗大析出物生成元素の析出物の粒径は1μm~2μm程度であり、MnS、TiN、AlN等の微細析出物の粒径(100nm程度)よりはるかに大きい。このため、これら微細析出物は粗大析出物生成元素の析出物に付着し、中間焼鈍における再結晶および結晶粒の成長を阻害しにくくなる。これらの作用効果を十分に得るためには、これらの元素の総計が0.0005%以上であることが好ましい。但し、これらの元素の総計が0.0100%を超えると、硫化物若しくは酸硫化物またはこれらの両方の総量が過剰となり、中間焼鈍における再結晶および結晶粒の成長が阻害される。従って、粗大析出物生成元素の含有量は総計で0.0100%以下とする。
<<集合組織>>
 次に、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板の集合組織について説明する。製造方法の詳細については後述するが、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板はα-γ変態が生じ得る化学組成であり、熱間圧延での仕上げ圧延終了直後の急冷によって組織を微細化することによって{100}結晶粒が成長した組織となる。これにより、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板は{100}<011>方位の集積強度が5~30となり、圧延方向に対して45°方向の磁束密度B50が特に高くなる。このように特定の方向で磁束密度が高くなるが、全体的に全方向平均で高い磁束密度が得られる。{100}<011>方位の集積強度が5未満になると、磁束密度を低下させる{111}<112>方位の集積強度が高くなり、全体的に磁束密度が低下してしまう。また、{100}<011>方位の集積強度が30を超える製造方法は熱間圧延板を厚くする必要があり、製造が困難という課題がある。
 {100}<011>方位の集積強度は、X線回折法または電子線後方散乱回折(electron backscatter diffraction:EBSD)法により測定することができる。X線および電子線の試料からの反射角等が結晶方位毎に異なるため、ランダム方位試料を基準にしてこの反射強度等で結晶方位強度を求めることができる。積層コアに使用する電磁鋼板の一例として好適な無方向性電磁鋼板の{100}<011>方位の集積強度は、X線ランダム強度比で5~30となる。このとき、EBSDにより結晶方位を測定し、X線ランダム強度比に換算した値を用いても良い。
<<厚さ>>
 次に、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板の厚さについて説明する。積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板の厚さは、0.50mm以下である。厚さが0.50mm超であると、優れた高周波鉄損を得ることができない。従って、厚さは0.50mm以下とする。
<<磁気特性>>
 次に、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板の磁気特性について説明する。磁気特性を調べる際には、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板の磁束密度であるB50の値を測定する。製造された無方向性電磁鋼板において、その圧延方向の一方と他方とは区別できない。そのため本実施形態では、圧延方向とはその一方および他方の双方向をいう。圧延方向におけるB50(T)の値をB50L、圧延方向から45°傾いた方向におけるB50(T)の値をB50D1、圧延方向から90°傾いた方向におけるB50(T)の値をB50C、圧延方向から135°傾いた方向におけるB50(T)の値をB50D2とすると、B50D1およびB50D2が最も高く、B50LおよびB50Cが最も低いという磁束密度の異方性がみられる。尚、(T)は、磁束密度の単位(テスラ)を指す。
 ここで、例えば時計回り(反時計回りでもよい)の方向を正の方向とした磁束密度の全方位(0°~360°)分布を考えた場合、圧延方向を0°(一方向)および180°(他方向)とすると、B50D1は45°および225°のB50値、B50D2は135°および315°のB50値となる。同様に、B50Lは0°および180°のB50値、B50Cは90°および270°のB50値となる。45°のB50値と225°のB50値とは厳密に一致し、135°のB50値と315°のB50値とは厳密に一致する。しかしながら、B50D1とB50D2とは、実際の製造に際して磁気特性を同じにすることが容易でない場合があることから、厳密には一致しない場合がある。同様に、0°のB50値と180°のB50値とは厳密に一致し、90°のB50値と270°のB50値とは厳密に一致する一方で、B50LとB50Cとは厳密には一致しない場合がある。積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板では、B50D1およびB50D2の平均値と、B50LとB50Cの平均値とを用いて、以下の(2)式且つ(3)式を満たす。
 (B50D1+B50D2)/2>1.7T         ・・・(2)
 (B50D1+B50D2)/2>(B50L+B50C)/2・・・(3)
 このように、磁束密度を測定すると、(2)式のようにB50D1およびB50D2の平均値が1.7T以上となると共に、(3)式のように磁束密度の高い異方性が確認される。
 更に、(1)式を満たすことに加え、以下の(4)式のように、(3)式よりも磁束密度の異方性が高いことが好ましい。
 (B50D1+B50D2)/2>1.1×(B50L+B50C)/2・・・(4)
 更に、以下の(5)式のように、磁束密度の異方性がより高いことが好ましい。
 (B50D1+B50D2)/2>1.2×(B50L+B50C)/2・・・(5)
 更に、以下の(6)式のように、B50D1およびB50D2の平均値が1.8T以上となることが好ましい。
 (B50D1+B50D2)/2>1.8T         ・・・(6)
 尚、前記の45°は、理論的な値であり、実際の製造に際しては45°に一致させることが容易でない場合があることから、厳密には45°に一致していないものも含むものとする。このことは、当該0°,90°,135°,180°,225°,270°,315°についても同様である。
 磁束密度の測定は、圧延方向に対して45°、0°方向等から55mm角の試料を切り出し、単板磁気測定装置を用いて行うことができる。
<<製造方法>>
 次に、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板の製造方法の一例について説明する。積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板を製造する際には、例えば、熱間圧延、冷間圧延(第1の冷間圧延)、中間焼鈍(第1の焼鈍)、スキンパス圧延(第2の冷間圧延)、仕上焼鈍(第3の焼鈍)、歪取焼鈍(第2の焼鈍)等が行われる。
 まず、前述した鋼材を加熱し、熱間圧延を施す。鋼材は、例えば通常の連続鋳造によって製造されるスラブである。熱間圧延の粗圧延および仕上げ圧延はγ域(Ar1温度以上)の温度で行う。つまり、仕上げ圧延の仕上温度がAr1温度以上、巻取り温度が250℃超、600℃以下となるように熱間圧延を行う。これにより、その後の冷却によってオーステナイトからフェライトへ変態することにより組織は微細化する。微細化された状態でその後冷間圧延を施すと、張出再結晶(以下、バルジング)が発生しやすくなるので、通常は成長しにくい{100}結晶粒を成長させやすくすることができる。
 また、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板を製造する際には、更に仕上げ圧延の最終パスを通過する際の温度(仕上温度)をAr1温度以上、巻取り温度が250℃超、600℃以下とする。オーステナイトからフェライトへ変態することによって結晶組織を微細化するようにしている。このように結晶組織を微細化させることによって、その後の冷間圧延、中間焼鈍を経てバルジングを発生させやすくすることができる。
 その後、熱間圧延板焼鈍は行わずに巻き取り、酸洗を経て、熱間圧延鋼板に対して冷間圧延を行う。冷間圧延では圧下率を80%~95%とすることが好ましい。圧下率が80%未満ではバルジングが発生しにくくなる。圧下率が95%超ではその後のバルジングによって{100}結晶粒が成長しやすくなるが、熱間圧延鋼板を厚くしないといけなく、熱間圧延の巻取りが困難になり、操業が困難になりやすくなる。冷間圧延の圧下率はより好ましくは86%以上である。冷間圧延の圧下率が86%以上では、よりバルジングが発生しにくくなる。
 冷間圧延が終了すると、続いて中間焼鈍を行う。積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板を製造する際には、オーステナイトへ変態しない温度で中間焼鈍を行う。つまり、中間焼鈍の温度をAc1温度未満とすることが好ましい。このように中間焼鈍を行うことによってバルジングが生じ、{100}結晶粒が成長しやすくなる。また、中間焼鈍の時間は、5秒間~60秒間とすることが好ましい。
 中間焼鈍が終了すると、次にスキンパス圧延を行う。前述したようにバルジングが発生した状態でスキンパス圧延、焼鈍を行うと、バルジングが発生した部分を起点に{100}結晶粒が更に成長する。これはスキンパス圧延により、{100}<011>結晶粒には歪がたまりにくく、{111}<112>結晶粒には歪がたまりやすい性質があり、その後の焼鈍で歪の少ない{100}<011>結晶粒が歪の差を駆動力に{111}<112>結晶粒を蚕食するためである。歪差を駆動力にして発生するこの蚕食現象は歪誘起粒界移動(以下、SIBM)と呼ばれる。スキンパス圧延の圧下率は5%~25%とすることが好ましい。圧下率が5%未満では歪量が少なすぎるため、この後の焼鈍でSIBMが起きなくなり、{100}<011>結晶粒は大きくならない。一方、圧下率が25%超では歪量が多くなり過ぎ、{111}<112>結晶粒の中から新しい結晶粒が生まれる再結晶核生成(以下Nucleation)が発生する。このNucleationでは殆どの生まれてくる粒が{111}<112>結晶粒のため、磁気特性が悪くなる。
 スキンパス圧延を施した後、歪を開放して加工性を向上させるために仕上げ焼鈍を行う。仕上げ焼鈍も同様にオーステナイトへ変態しない温度とし、仕上げ焼鈍の温度をAc1温度未満とする。このように仕上げ焼鈍を行うことによって、{100}<011>結晶粒が{111}<112>結晶粒を蚕食し、磁気特性を向上させることができる。また、仕上げ焼鈍時に600℃~Ac1温度となる時間を1200秒以内とする。この焼鈍時間が短すぎるとスキンパスで入れた歪がほとんど残り、複雑な形状を打ち抜くときに反りが発生する。一方、焼鈍時間が長すぎると結晶粒が粗大になり過ぎ、打ち抜き時にダレが大きくなり、打ち抜き精度が出なくなる。
 仕上焼鈍が終了すると、所望の鉄鋼部材とすべく、無方向性電磁鋼板の成形加工等が行われる。そして、無方向性電磁鋼板からなる鉄鋼部材に成形加工等(例えば打ち抜き)により生じた歪等を除去すべく、鉄鋼部材に歪取焼鈍を施す。本実施形態では、Ac1温度よりも下で、SIBMが発生し、結晶粒径も粗大に出来るようにするため、歪取焼鈍の温度を例えば800℃程度とし、歪取焼鈍の時間を2時間程度とする。歪取焼鈍により、磁気特性を向上させることができる。
 積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板(鉄鋼部材)では、前述の製造方法のうち、主に熱間圧延工程においてAr1温度以上で仕上げ圧延をすることにより、前記(1)式の高いB50および前記(2)式の優れた異方性が得られる。更に、冷間圧延工程において、圧下率を85%程度にすることで前記(3)式、スキンパス圧延工程において圧下率を10%程度にすることで前記(4)式のより優れた異方性が得られる。
 なお、本実施形態においてAr1温度は、1℃/秒の平均冷却速度で冷却中の鋼材(鋼板)の熱膨張変化から求める。また、本実施形態においてAc1温度は、1℃/秒の平均加熱速度で加熱中の鋼材(鋼板)の熱膨張変化から求める。
 以上のように積層コアに使用する電磁鋼板の一例として、無方向性電磁鋼板からなる鉄鋼部材を製造することができる。
 次に、積層コアに使用する電磁鋼板の一例である無方向性電磁鋼板について、実施例を示しながら具体的に説明する。以下に示す実施例は、無方向性電磁鋼板のあくまでも一例にすぎず、無方向性電磁鋼板が下記の例に限定されるものではない。
<<第1の実施例>>
 溶鋼を鋳造することにより、以下の表1から表2に示す成分のインゴットを作製した。ここで、式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、板厚が2.5mmになるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での温度(仕上温度)は830℃であり、すべてAr1温度より大きい温度だった。尚、γ-α変態が起こらないNo.108については、仕上温度を850℃とした。また、巻取り温度については表1に示す条件にて行った。
 次に、熱間圧延鋼板において酸洗によりスケールを除去し、表1に示す冷間圧延後の圧下率で圧延した。そして、無酸化雰囲気で700℃で30秒の中間焼鈍を行った。次いで、表1に示す2回目の冷延圧延(スキンパス圧延)圧下率で圧延した。
 次に、磁気特性を調べるために2回目の冷間圧延(スキンパス圧延)の後に800℃で30秒の仕上げ焼鈍を行い、55mm角の試料を剪断加工で作成した後、800℃で2時間の歪取焼鈍を行い、磁束密度B50を測定した。測定試料は55mm角の試料を圧延方向に0°と45°の2種類の方向に採取した。そして、この2種類の試料を測定し、圧延方向に対して0°、45°、90°、135°の磁束密度B50をそれぞれB50L、B50D1、B50C、B50D2とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から表2中の下線は、本発明の範囲から外れた条件を示している。発明例であるNo.101~No.107、No.109~No.111、No.114~No.130は、いずれも45°方向および全周平均共に磁束密度B50は良好な値であった。ただし、No.116とNo.127は適切な巻取り温度から外れたため、磁束密度B50はやや低かった。No.129とNo.130は冷間圧延の圧下率が低かったため、同等の成分、巻取り温度であるNo.118と比べて磁束密度B50はやや低かった。一方、比較例であるNo.108はSi濃度が高く、式左辺の値が0以下であり、α-γ変態しない組成であったことから、磁束密度B50はいずれも低かった。比較例であるNo.112は、スキンパス圧延率を低くしたため、{100}<011>強度を5未満であり、磁束密度B50がいずれも低かった。比較例であるNo.113は{100}<011>強度が30以上となり、本発明から外れている。No.113は熱間圧延板の厚みが7mmもあったため、操業しづらいという難点があった。
<<第2の実施例>>
 溶鋼を鋳造することにより、以下の表3に示す成分のインゴットを作製した。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、板厚が2.5mmになるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での仕上温度は830℃であり、すべてAr1温度より大きい温度だった。
 次に、熱間圧延鋼板において酸洗によりスケールを除去し、板厚が0.385mmになるまで冷間圧延を行った。そして、無酸化雰囲気中で中間焼鈍を行い、再結晶率が85%となるように中間焼鈍の温度を制御した。次いで、板厚が0.35mmになるまで2回目の冷間圧延(スキンパス圧延)を行った。
 次に、磁気特性を調べるために2回目の冷間圧延(スキンパス圧延)の後に800℃で30秒の仕上げ焼鈍を行い、55mm角の試料を剪断加工で作成した後、800℃で2時間の歪取焼鈍を行い、磁束密度B50と鉄損W10/400を測定した。磁束密度B50に関しては第1の実施例と同様の手順で測定した。一方で鉄損W10/400は、最大磁束密度が1.0Tになるように400Hzの交流磁場をかけた時に試料に生じるエネルギーロス(W/kg)として測定した。鉄損は圧延方向に対して0°、45°、90°、135°に測定した結果の平均値とした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 No.201~No.214は全て発明例であり、いずれも磁気特性が良好であった。特に、No.202~No.204はNo.201、No.205~No.214よりも磁束密度B50が高く、No.205~No.214はNo.201~No.204よりも鉄損W10/400が低かった。
 本発明者らは、かかる無方向性電磁鋼板の特性を有効に活用できるように積層コアを構成することを検討し、以下に説明する各実施形態を見出した。
 以下、図面を参照しながら、本発明の実施形態を説明する。以下の説明において、特に断りがなければ、電磁鋼板は、(積層コアに使用する電磁鋼板)の項で説明した無方向性電磁鋼板であるものとする。尚、以下の説明では、(積層コアに使用する電磁鋼板)の説明において、圧延方向から45°傾いた方向と、圧延方向から135°傾いた方向を、必要に応じて、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向と総称する。尚、当該45°は、時計回りおよび反時計回りの何れの向きの角度も正の値を有するものとして表記したものである。時計回りの方向を負の方向とし、反時計回りの方向を正の方向とする場合、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向は、圧延方向となす角度が45°、-45°となる2つの方向となる。その他、圧延方向からθ°傾いた方向を、必要に応じて、圧延方向となす角度がθ°の方向と称する。このように、圧延方向からθ°傾いた方向と、圧延方向となす角度がθ°の方向は、同じ意味である。また、以下の説明において、長さ、方向、位置等が同じである(一致する)ことは、(厳密に)同じである(一致する)場合の他、発明の主旨を逸脱しない範囲内(例えば、製造工程において生じる誤差の範囲内)で同じである(一致する)ことも含むものとする。また、各図において、X-Y-Z座標は、各図における向きの関係を示すものである。○の中に●が付されている記号は、紙面の奥側から手前側の向かう方向を示す。
(第1の実施形態)
 まず、第1の実施形態を説明する。本実施形態では、積層コアがEIコアである場合を例に挙げて説明する。
 図1は、積層コア100の外観構成の一例を示す図である。尚、図1において、Z軸方向に並べて示す「・・・」は、図示されているものがZ軸の負の方向に連続して繰り返し配置されることを指す(このことはその他の図でも同じである)。図2は、積層コア100の各層における電磁鋼板の配置の一例を示す図である。図2(a)は、上から(Z軸の正の方向側から数えて)奇数番目の電磁鋼板の配置の一例を示す図である。図2(b)は、上から偶数番目の電磁鋼板の配置の一例を示す図である。
 図1および図2において、積層コア100は、複数のE型の電磁鋼板110と複数のI型の電磁鋼板120とを有する。
 積層コア100は、X軸方向を長手方向(延設方向)とし、Y軸方向において間隔を有して配置される3つの脚部210a~210cと、Y軸方向を長手方向(延設方向)とし、X軸方向において間隔を有して配置される2つの継鉄部220a~220bと、を有する。3つの脚部210a~210cの長手方向(X軸方向)の一端に2つの継鉄部220a~220bのうちの一方が配置される。3つの脚部210a~210cの長手方向(X軸方向)の他端に2つの継鉄部220a~220bのうちの他方が配置される。3つの脚部210a~210cと2つの継鉄部220a~220bは、磁気的に結合されている。図2(a)および図2(b)に示すように、積層コア100の同一の層における板面の形状は、概ね、EとIを組み合わせた日の字状(四角ばった8の字状、squarish eight shape)となる。
 E型の電磁鋼板110は、積層コア100の3つの脚部210a~210cと、積層コア100の2つの継鉄部220a~220bのうちの1つとを構成する。E型の電磁鋼板110が構成する3つの脚部210a~210cと、E型の電磁鋼板110が構成する継鉄部220a~220bとは、後述するように一体として切り抜きされるなどして形成されており、後述する境界はない。I型の電磁鋼板120は、積層コア100の2つの継鉄部220a~220bのうちの1つを構成する。I型の電磁鋼板120が構成する継鉄部220a~220bと、E型の電磁鋼板110が構成する3つの脚部210a~210cとには、EとIを組み合わせることによる境界がある。
 同じ層に配置されるE型の電磁鋼板110とI型の電磁鋼板120との間隔は短いほど好ましい。同じ層に配置されるE型の電磁鋼板110が構成する3つの脚部210a~210cの先端の板厚部分とI型の電磁鋼板120が構成する継鉄部220a~220bの板厚部分とは接触しているのがより好ましい。
 E型の電磁鋼板110の磁気特性が最も優れる方向は、E型の電磁鋼板110が構成する3つの脚部210a~210cの長手方向(X軸方向)と、E型の電磁鋼板110が構成する継鉄部220a~220bの長手方向(Y軸方向)との2つの方向と一致する。
 I型の電磁鋼板120の磁気特性が最も優れる方向は、I型の電磁鋼板120が構成する継鉄部220a~220bの長手方向(Y軸方向)と一致する。
 以下の説明では、磁気特性が最も優れる方向を、必要に応じて磁化容易方向と称する。
 図3は、E型の電磁鋼板110とI型の電磁鋼板120を、コイル状の状態から巻き戻された電磁鋼板から切り抜く方法の一例を示す図である。尚、以下の説明では、コイル状の状態から巻き戻された電磁鋼板を、必要に応じて単に電磁鋼帯と称する。また、図3では、説明の都合上、切り抜かれた電磁鋼板に対応する脚部210a~210cおよび継鉄部220a~220bを併せて示す。
 図3において、一点鎖線で示す仮想線310は、電磁鋼帯の圧延方向(以下、圧延方向310ともいう)を示す。破線で示す仮想線320a~320bは、電磁鋼帯の磁化容易方向(以下、磁化容易方向320a~320bともいう)を示す。尚、図3において、仮想線310に平行な方向は、全て電磁鋼帯の圧延方向であり、仮想線320a~320bに平行な方向は、全て電磁鋼帯の磁化容易方向である。
 前述したように、圧延方向310となす角度が45°となる2つの方向が磁化容易方向である。ここでの圧延方向310とのなす角度は、X軸からY軸に向かう方向(紙面に向かって反時計回りの方向)およびY軸からX軸に向かう方向の何れの方向の角度も正の値の角度である。また、2つの方向のなす角度は、何れも、当該角度のうち小さい方の角度である。
 図3に示す例では、E型の電磁鋼板110が構成する3つの脚部210a~210cの長手方向が、電磁鋼帯の2つの磁化容易方向320a~320bのうちの一方の磁化容易方向320aに一致し、且つ、E型の電磁鋼板110が構成する継鉄部220a~220bの長手方向が、電磁鋼帯の2つの磁化容易方向320a~320bのうちの他方の磁化容易方向320bに一致するように、E型の電磁鋼板110を構成する領域330a~330bを電磁鋼帯から切り抜く。図3において、実線が切り抜き位置を示す。なお、例えば製造誤差などの影響により、脚部210a~210cの長手方向と一方の磁化容易方向320aとが厳密には一致していなかったり、継鉄部220a~220bの長手方向と他方の磁化容易方向320bとが厳密には一致していなかったりする場合がある。そのため、脚部210a~210cの長手方向や継鉄部220a~220bの長手方向と、磁化容易方向320a~320bとが一致することには、これらの両方向が厳密には一致していない場合(例えば、±5°以内でずれている場合)も含まれる。以下において、脚部や継鉄部、領域などの長手方向と、磁化容易方向と、が一致するという表現についても同様である。
 図3に示す例では、2つのE型の電磁鋼板110が構成する3つの脚部210a~210cの先端同士が合うように、2つのE型の電磁鋼板110を構成する領域330a~330bを電磁鋼帯から切り抜く。切り抜きは、例えば、金型を用いた打ち抜き加工や、ワイヤーカット加工等を用いることにより実現される。
 また、3つの脚部210a~210cの先端同士が合うように2つのE型の電磁鋼板110を構成する領域330a、330bを電磁鋼帯から切り抜くと、2つのE型の電磁鋼板110が構成する3つの脚部210a~210cの間のI型の領域340a~340bも切り抜かれる。I型の領域340a~340bの長手方向は、電磁鋼帯の2つの磁化容易方向320a~320bのうちの一方の磁化容易方向320aに一致する。そこで、本実施形態では、I型の領域340a~340bを用いてI型の電磁鋼板120を形成する。
 E型の電磁鋼板110が構成する3つの脚部210a~210cのうち相互に隣り合う2つの脚部210a~210b、210b~210cの(Y軸方向の)間隔が、I型の電磁鋼板120の幅方向(Y軸方向)の長さと同じである場合、I型の領域340a~340bのY軸方向の長さを調整するための加工は不要となる。また、E型の電磁鋼板110が構成する3つの脚部210a~210cの長手方向(X軸方向)の長さが、I型の電磁鋼板120の長手方向(X軸方向)の長さと同じである場合、I型の領域340a~340bを長手方向(X軸方向)の中央の位置で切断することにより、I型の電磁鋼板120の長手方向の領域を定めることができる。
 以上のように、E型の電磁鋼板110が構成する3つの脚部210a~210cの間の領域を、I型の電磁鋼板120として利用することにより、電磁鋼帯の領域のうち、E型の電磁鋼板110にもI型の電磁鋼板120にもならない領域を削減することができる。
 E型の電磁鋼板110が構成する3つの脚部210a~210cのうち相互に隣り合う2つの脚部210a~210b、210b~210cの(Y軸方向の)間隔が、I型の電磁鋼板120の幅方向(Y軸方向)の長さと同じであり、且つ、E型の電磁鋼板110が構成する3つの脚部210a~210cの長手方向(X軸方向)の長さが、I型の電磁鋼板120の長手方向(X軸方向)の長さと同じであるとする。この場合、3つの脚部210a~210cの先端同士が合うように2つのE型の電磁鋼板110を構成する領域330a~330bを電磁鋼帯から切り抜き、当該3つの脚部210a~210cの間のI型の領域340a~340bを長手方向(X軸方向)の中央の位置で切断することにより、E型の電磁鋼板110とI型の電磁鋼板120とがそれぞれ2つずつ形成される。この場合、E型の電磁鋼板110が構成する3つの脚部210a~210cの間の領域をI型の電磁鋼板120として無駄なく利用することができる。
 図3では、E型の電磁鋼板110とI型の電磁鋼板120とをそれぞれ2つずつ切り抜く様子のみを示す。しかしながら、図3に示す領域330a~330bが連続的に並ぶようにすることにより、多数のE型の電磁鋼板110およびI型の電磁鋼板120を電磁鋼帯から切り抜くことができる。尚、図3に示すようにしてE型の電磁鋼板110とI型の電磁鋼板120とを切り抜けば、E型の電磁鋼板110にもI型の電磁鋼板120にもならない領域を削減することができるので好ましい。しかしながら、必ずしも図3に示すようにしてE型の電磁鋼板110とI型の電磁鋼板120とを切り抜く必要はない。例えば、I型の電磁鋼板が、E型の電磁鋼板が構成する3つの脚部210a~210cのうち相互に隣り合う2つの脚部210a~210b、210b~210cの間の領域からはみ出す場合、I型の電磁鋼板は、電磁鋼帯の当該領域とは別の領域から切り抜かれる。
 以上のようにして得られる(1枚の)E型の電磁鋼板110と(1枚の)I型の電磁鋼板120とを組み合わせて全体として日の字状とした層を、日の字状の輪郭が相互に合うように積み重なった状態とすることにより積層コア100が構成される。このとき、E型の電磁鋼板110が構成する脚部210a~210cの先端が向く方向が交互に180°反対向きになるように、E型の電磁鋼板110とI型の電磁鋼板120とを組み合わせる。図1および図2に示す例では、上から奇数番目の層においては、E型の電磁鋼板110が構成する脚部210a~210cの先端がX軸の正の方向側を向き、上から偶数番目の層においては、E型の電磁鋼板110が構成する脚部210a~210cの先端がX軸の負の方向側を向く。
 なおこのように、1枚のE型の電磁鋼板110と1枚のI型の電磁鋼板120とを組み合わせた1つの層(単層)が、E型の電磁鋼板110の脚部210a~210cの先端が向く方向が交互に180°反対向きになるように積層されていてもよい。この単層での積層方法では、以下に示す複数層での積層方法とは異なり、そのまま電磁鋼板の向きを変えずに積層する構造が不要となるため、製造設備を簡素化できる。さらには、前述の層が、E型の電磁鋼板110の脚部210a~210cの先端が向く方向を合わせて複数層、積層された第1の積層体と、前述の層が、E型の電磁鋼板110の脚部210a~210cの先端が向く方向が180°反対向きになるように複数層、積層された第2の積層体と、が交互に積層されていてもよい。この複数層での積層方法を適用すると、コア製作の効率が向上する。
 図4は、積層コア100を用いて構成される電気機器の構成の一例を示す図である。本実施形態では、電気機器400が単相変圧器である場合を例に挙げて説明する。図4は、積層コア100の脚部210a~210cの長手方向(X軸方向)の中央において、積層コア100の継鉄部220a~220bの長手方向(Y軸方向)と積層方向(Z軸方向)とに平行に、積層コア100を切断した場合の断面を示す。尚、図4では、説明および表記の都合上、電気機器400が有する構成の一部を簡略化したり省略したりする。
 図4において、電気機器400は、積層コア100と、一次コイル410と、二次コイル420とを有する。
 一次コイル410の両端には、入力電圧(励磁電圧)が印加される。二次コイル420の両端には、一次コイル410と二次コイル420の巻数比に応じた出力電圧が出力される。電気機器400の励磁周波数(一次コイル410に流す励磁電流の周波数)は、商用周波数であっても、商用周波数を上回る周波数(例えば、100Hz以上10kHz未満の範囲の周波数)であってもよい。
 一次コイル410は、積層コア100の3つの脚部210a~210cのうち中央の脚部210b(の側面)を周回するように配置される。一次コイル410は、積層コア100および二次コイル420と電気的に絶縁されている。二次コイル420は、一次コイル410の外側において、積層コア100の3つの脚部のうち中央の脚部(の側面)を周回するように配置される。二次コイル420は、積層コア100および一次コイル410と電気的に絶縁されている。
 一次コイル410の厚みと二次コイル420の厚みの合計値は、積層コア100の3つの脚部210a~210cのうち相互に隣り合う2つの脚部210a~210b、210b~210cの(Y軸方向の)間隔を下回る。
 電気機器400を構成する際には、まず、一次コイル410および二次コイル420を作製する。そして、図4に示すように一次コイル410および二次コイル420を配置する。具体的に、一次コイル410を相対的に内側とし、二次コイル420を相対的に外側として一次コイル410および二次コイル420が同軸になるように、一次コイル410および二次コイル420を配置する。
 その後、E型の電磁鋼板110の脚部210a~210cの先端が向く方向が交互に180°反対向きになるように、E型の電磁鋼板110の中央の脚部210bを、一次コイル410の中空部に順次挿入すると共に、同一の層において板面の形状がEとIを組み合わせた日の字状になるように、E型の電磁鋼板110が構成する脚部210a~210cの先端にI型の電磁鋼板120を配置する。以上のようにしてE型の電磁鋼板110とI型の電磁鋼板120とを配置することにより、E型の電磁鋼板110の中央の脚部に、一次コイル410および二次コイル420が配置された状態の積層コア100が構成される。このようにすれば、一次コイル410および二次コイル420を構成する電線を、一巻き毎に、積層コア100の3つの脚部210a~210cのうち相互に隣り合う2つの脚部210a~210b、210b~210cの間の領域に通す必要がなくなる。そのため、一次コイル410および二次コイル420を容易に構成することができる。
 尚、以上のようにして構成される積層コア100は、公知の方法で固定される。例えば、積層コア100の側面(電磁鋼板の板厚部分が露出している面)を覆うように、積層コア100と電気的に絶縁された状態でケースを取り付けることにより、積層コア100を固定することができる。また、積層コア100の板面の四隅の部分に、積層方向に貫通する貫通孔を形成し、積層コア100と電気的に絶縁された状態で当該貫通孔にボルトを通してボルト締めを行うことにより、積層コア100を固定することができる。また、積層コア100にカシメを設けて積層コア100を固定してもよい。また、積層コア100の側面を溶接して積層コア100を固定してもよい。また、ワニス等の絶縁材料を用いて電気機器400に対し含浸処理を行ってもよい。
 また、(積層コアに使用する電磁鋼板)の項で説明したように、積層コア100に対して歪取焼鈍が行われる。
 以上のように本実施形態では、E型の電磁鋼板110が構成する3つの脚部210a~210cの長手方向(X軸方向)と、E型の電磁鋼板110が構成する継鉄部220a~220bの長手方向(Y軸方向)との2つの方向が磁化容易方向320a~320bの何れかの方向(図1~図3に示す例では磁化容易方向320aまたは320b)と一致し、I型の電磁鋼板120が構成する継鉄部220a~220bの長手方向(Y軸方向)が磁化容易方向320a~320bの何れかの方向(図1~図3に示す例では磁化容易方向320a)に一致するように、E型の電磁鋼板110およびI型の電磁鋼板120を構成する。そして、脚部210a~210cの長手方向が磁化容易方向320a~320bの何れかの方向(図1~図3に示す例では磁化容易方向320a)に一致し、且つ、継鉄部220a~220bの長手方向が磁化容易方向320a~320bの何れかの方向(図1~図3に示す例では磁化容易方向320aまたは320b)に一致するように、E型の電磁鋼板110およびI型の電磁鋼板120を組み合わせて積層コア100を構成する。従って、(積層コアに使用する電磁鋼板)の項で説明した無方向性電磁鋼板の特性を有効に活用した積層コア100および電気機器400を実現することができる。
 本実施形態では、E型の電磁鋼板110が構成する脚部210a~210cの先端が向く方向が交互に180°反対向きになるように、E型の電磁鋼板110とI型の電磁鋼板120とを組み合わせる場合を例に挙げて説明した。このようにすれば、E型の電磁鋼板110とI型の電磁鋼板120との境界が積層方向において並ばないようにすることができる。よって、積層コア100の鉄損や唸りの低減等を図ることができるので好ましい。しかしながら、必ずしもこのようにする必要はない。E型の電磁鋼板110の先端が向く方向が同じになるように、E型の電磁鋼板110とI型の電磁鋼板120とを組み合わせてもよい。このようにする場合も、前述したように、同じ層に配置されるE型の電磁鋼板110とI型の電磁鋼板120との間隔は短いほど好ましく、同じ層に配置されるE型の電磁鋼板110が構成する3つの脚部210a~210cの先端の板厚部分とI型の電磁鋼板120が構成する継鉄部220a~220bの板厚部分とは接触しているのがより好ましい。ただし、積層コアの磁気飽和を抑制するため、同じ層に配置されるE型の電磁鋼板110が構成する3つの脚部210a~210cの先端の板厚部分とI型の電磁鋼板120が構成する継鉄部220a~220bの板厚部分との間に空隙を設けたり、絶縁材を配置したりすることがある。
 また、本実施形態では、電気機器400が単相変圧器である場合を例に挙げて説明した。しかしながら、積層コア100と、積層コア100に対して周回するように配置されるコイルとを有する電気機器であれば、電気機器400は単相変圧器に限定されない。例えば、電気機器400は、単相変流器であっても、単相変成器であっても、リアクトルであっても、チョークコアであっても、その他のインダクタであってもよい。また、電気機器400を駆動するための電源は単相電源に限定されず、例えば、三相電源であってもよい。この場合、前述した説明において、単相は三相に置き換わる。また、コイルは、各相に対して個別に設けられる。例えば、積層コア100の3つの脚部210a~210cのそれぞれを周回するようにコイルを配置し、内鉄型の電気機器としてもよい。
(第2の実施形態)
 次に、第2の実施形態を説明する。第1の実施形態では、積層コアがEIコアである場合を例に挙げて説明した。これに対し、本実施形態では、積層コアがEEコアである場合を例に挙げて説明する。このように本実施形態と第1の実施形態は、積層コアを構成する電磁鋼板が主として異なる。従って、本実施形態の説明において、第1の実施形態と同一の部分については、図1~図4に付した符号と同一の符号を付す等して詳細な説明を省略する。
 図5は、積層コア500の外観構成の一例を示す図である。図6は、積層コア500の各層における電磁鋼板の配置の一例を示す図である。
 図5および図6において、積層コア500は、複数のE型の電磁鋼板510を有する。
 積層コア500は、X軸方向を長手方向とし、Y軸方向において間隔を有して配置される3つの脚部610a~610cと、Y軸方向を長手方向とし、X軸方向において間隔を有して配置される2つの継鉄部620a~620bと、を有する。3つの脚部610a~610cの長手方向(X軸方向)の一端に2つの継鉄部620a~620bのうちの一方が配置される。3つの脚部610a~610cの長手方向(X軸方向)の他端に2つの継鉄部620a~620bのうちの他方が配置される。3つの脚部610a~610cと2つの継鉄部620a~620bは、磁気的に結合されている。図6に示すように、積層コア500の同一の層における板面の形状は、概ね、2つのEを組み合わせた日の字状となる。
 E型の電磁鋼板510は、積層コア500の3つの脚部610a~610cの領域のうち当該脚部の長手方向(X軸方向)の半分と、積層コア500の2つの継鉄部620a~620bのうちの1つとを構成する。即ち、E型の電磁鋼板510が構成する3つの脚部610a~610cの長手方向の長さは、積層コア500の3つの脚部610a~610cの長手方向の長さの半分である。また、図5および図6に示すように、E型の電磁鋼板510が構成する3つの脚部610a~610cと、E型の電磁鋼板110が構成する継鉄部620a~620bとには境界はない。
 一方、図5に示すように、E型の電磁鋼板510が構成する3つの脚部610a~610cの先端の位置に境界がある。即ち、積層コア500の脚部610a~610cの長手方向(X軸方向)の中央の位置に境界がある。同じ層に配置されるE型の電磁鋼板510の3つの脚部610a~610cの先端の間隔は短いほど好ましい。同じ層に配置されるE型の電磁鋼板510が構成する3つの脚部610a~610cの先端の板厚部分同士は接触しているのがより好ましい。ただし、積層コア500の磁気飽和を抑制するため、同じ層に配置されるE型の電磁鋼板510が構成する3つの脚部610a~610cの先端の板厚部分同士の間に空隙を設けたり、絶縁材を配置したりすることがある。
 E型の電磁鋼板510の磁化容易方向は、E型の電磁鋼板510が構成する3つの脚部610a~610cの長手方向(X軸方向)と、E型の電磁鋼板110が構成する継鉄部620a~620bの長手方向(Y軸方向)との2つの方向と一致する。
 図7は、E型の電磁鋼板510を、電磁鋼帯から切り抜く方法の一例を示す図である。
 図7において、一点鎖線で示す仮想線710は、電磁鋼帯の圧延方向(以下、圧延方向710ともいう)を示す。破線で示す仮想線720a~720bは、電磁鋼帯の磁化容易方向(以下、磁化容易方向720a~720bともいう)を示す。尚、図7において、仮想線710に平行な方向は、全て電磁鋼帯の圧延方向であり、仮想線720a~720bに平行な方向は、全て電磁鋼帯の磁化容易方向である。また、図7では、説明の都合上、切り抜かれた電磁鋼板に対応する脚部610a~610cおよび継鉄部620a~620bを併せて示す。
 前述したように、圧延方向710となす角度が45°となる2つの方向が磁化容易方向である。
 図7に示す例では、E型の電磁鋼板510が構成する3つの脚部610a~610cの長手方向が、電磁鋼帯の2つの磁化容易方向720a~720bのうちの一方の磁化容易方向720aに一致し、且つ、E型の電磁鋼板510が構成する継鉄部620a~620bの長手方向が、電磁鋼帯の2つの磁化容易方向720a~720bのうちの他方の磁化容易方向720bに一致するように、E型の電磁鋼板510を構成する領域730a~730eを電磁鋼帯から切り抜く。図7において、実線が切り抜き位置を示す。尚、表記の都合上、図7では、E型の電磁鋼板510を構成する領域730d~730eの一部の図示を省略する。
 図7に示す例では、E型の電磁鋼板510が構成する3つの脚部のうち相互に隣り合う2つの脚部610a~610b、610b~610cの間に、当該E型の電磁鋼板510とは別のE型の電磁鋼板510が構成する3つの脚部610a~610cのうち一方の端に位置する脚部が位置するように、E型の電磁鋼板510を構成する領域730a~730eを電磁鋼帯から切り抜く。
 以上のように、E型の電磁鋼板510が構成する3つの脚部610a~610cの間の領域を、当該E型の電磁鋼板510とは別のE型の電磁鋼板510が構成する3つの脚部610a~610cのうち一方の端の脚部として利用することにより、電磁鋼帯の領域のうち、E型の電磁鋼板510にならない領域を削減することができる。
 E型の電磁鋼板510が構成する3つの脚部610a~610cのうち相互に隣り合う2つの脚部610a~610b、610b~610cの(Y軸方向の)間隔が、E型の電磁鋼板510が構成する3つの脚部610a~610cのうち中央に位置しない脚部610a、610cの幅(Y軸方向の長さ)と同じである場合、E型の電磁鋼板510が構成する3つの脚部610a~610cのうち中央に位置しない脚部610a、610cの幅を調整するための加工は不要となる。この場合、E型の電磁鋼板510が構成する3つの脚部610a~610cの間の領域を当該E型の電磁鋼板510とは別のE型の電磁鋼板510の3つの脚部610a~610cのうち一方の端の脚部として無駄なく利用することができる。
 図7では、E型の電磁鋼板510を5つ切り抜く様子のみを示すが、図7に示す領域730a~730eが連続的に並ぶようにすることにより、多数のE型の電磁鋼板510を電磁鋼帯から切り抜くことができる。尚、図7に示すようにしてE型の電磁鋼板510を切り抜けば、E型の電磁鋼板510にならない領域を削減することができるので好ましい。しかしながら、必ずしも図7に示すようにしてE型の電磁鋼板510を切り抜く必要はない。例えば、E型の電磁鋼板が構成する3つの脚部610a~610cのうち中央に位置しない脚部610a、610cが、E型の電磁鋼板が構成する3つの脚部610a~610cのうち相互に隣り合う2つの脚部610a~610b、610b~610cの間の領域からはみ出す場合、E型の電磁鋼板が構成する3つの脚部610a~610cのうち相互に隣り合う2つの脚部610a~610b、610b~610cの間の領域は、当該E型の電磁鋼板とは別のE型の電磁鋼板には使用されない。
 以上のようにして得られる2枚のE型の電磁鋼板510を、当該電磁鋼板510の脚部610a~610cの先端同士が対向するように組み合わせて全体として日の字状とした層を、日の字状の輪郭が相互に合うように積み重なった状態とすることにより積層コア500が構成される。
 積層コア500を用いて構成される電気機器は、第1の実施形態の電気機器400の積層コア100に代えて本実施形態の積層コア500を用いることにより実現される。ただし、本実施形態では、積層コア500を構成する際に、積層方向(高さ方向、Z軸方向)の長さが、積層コア500の積層方向の長さと同じになるように、複数のE型の電磁鋼板510を、相互に輪郭が合うように積み重ねたものを2組用意する。以下の説明では、このようにして積み重ねられた2組の複数のE型の電磁鋼板510を、必要に応じて、E型の電磁鋼板群と称する。
 第1の実施形態で説明したように、図4に示すようにして一次コイル410および二次コイル420を配置した後、2組のE型の電磁鋼板群の脚部610a~610cの先端が向く方向が180°反対向きになるように、E型の電磁鋼板群の中央の脚部610bを、一次コイル410の中空部に挿入する。このようにすることにより、同一の層において板面の形状が2つのEを組み合わせた日の字状になる。
 また、(積層コアに使用する電磁鋼板)の項で説明したように、積層コア500に対して歪取焼鈍が行われる。
 以上のように本実施形態では、E型の電磁鋼板510が構成する3つの脚部610a~610cの長手方向(X軸方向)と、E型の電磁鋼板510が構成する継鉄部620a~620bの長手方向(Y軸方向)との2つの方向が磁化容易方向720a~720bの何れかの方向(図5~図7に示す例では磁化容易方向720aまたは720b)と一致するように、E型の電磁鋼板510を構成する。そして、脚部610a~610cの長手方向が磁化容易方向720a~720bの何れかの方向(図5~図7に示す例では磁化容易方向720a)に一致し、且つ、継鉄部620a~620bの長手方向が磁化容易方向720a~720bの何れかの方向(図5~図7に示す例では磁化容易方向720b)に一致するように、E型の電磁鋼板510を組み合わせて積層コア500を構成する。従って、積層コアをEEコアとしても、積層コアをEIコアとする場合と同様の効果を奏することができる。
 尚、本実施形態においても、第1の実施形態で説明した種々の変形例を採用することができる。
(第3の実施形態)
 次に、第3の実施形態を説明する。第1の実施形態では、積層コアがEIコアであり、第2の実施形態では、積層コアがEEコアである場合を例に挙げて説明した。これに対し、本実施形態では、積層コアがUIコアである場合を例に挙げて説明する。このように本実施形態と第1~第2の実施形態は、積層コアを構成する電磁鋼板が主として異なる。従って、本実施形態の説明において、第1~第2の実施形態と同一の部分については、図1~図7に付した符号と同一の符号を付す等して詳細な説明を省略する。
 図8は、積層コア800の外観構成の一例を示す図である。図9は、積層コア800の各層における電磁鋼板の配置の一例を示す図である。図9(a)は、上から(Z軸の正の方向側から数えて)奇数番目の電磁鋼板の配置の一例を示す図である。図9(b)は、上から偶数番目の電磁鋼板の配置の一例を示す図である。尚、図9では、説明の都合上、切り抜かれた電磁鋼板に対応する脚部810a~810bおよび継鉄部820a~820bを併せて示す。
 図8および図9において、積層コア800は、複数のU型の電磁鋼板810と複数のI型の電磁鋼板820とを有する。
 積層コア800は、X軸方向を長手方向とし、Y軸方向において間隔を有して配置される2つの脚部910a~910bと、Y軸方向を長手方向とし、X軸方向において間隔を有して配置される2つの継鉄部920a~920bと、を有する。2つの脚部910a~910bの長手方向(X軸方向)の一端に2つの継鉄部920a~920bのうちの一方が配置される。2つの脚部910a~910bの長手方向(X軸方向)の他端に2つの継鉄部920a~920bのうちの他方が配置される。2つの脚部910a~910bと2つの継鉄部920a~920bは、磁気的に結合されている。図9(a)および図9(b)に示すように、積層コア800の同一の層における板面の形状は、概ね、UとIを組み合わせた口の字状(矩形状、square shape)となる。
 U型の電磁鋼板810は、積層コア800の2つの脚部910a~910bと、積層コア800の2つの継鉄部920a~920bのうちの1つとを構成する。U型の電磁鋼板810が構成する2つの脚部910a~910bと、U型の電磁鋼板810が構成する継鉄部920a~920bとには境界はない。I型の電磁鋼板820は、積層コア800の2つの継鉄部のうちの1つを構成する。I型の電磁鋼板820が構成する継鉄部920a~920bと、U型の電磁鋼板810が構成する2つの脚部910a~910bとには境界がある。
 同じ層に配置されるU型の電磁鋼板810とI型の電磁鋼板820との間隔は短いほど好ましい。同じ層に配置されるU型の電磁鋼板810が構成する2つの脚部910a~910bの先端の板厚部分とI型の電磁鋼板820が構成する継鉄部920a~920bの板厚部分とは接触しているのがより好ましい。
 U型の電磁鋼板810の磁化容易方向は、U型の電磁鋼板810が構成する2つの脚部910a~910bの長手方向(X軸方向)と、U型の電磁鋼板810が構成する継鉄部920a~920bの長手方向(Y軸方向)との2つの方向と一致する。
 I型の電磁鋼板820の磁化容易方向は、I型の電磁鋼板820が構成する継鉄部920a~920bの長手方向(Y軸方向)と一致する。
 図10は、U型の電磁鋼板810とI型の電磁鋼板820を、電磁鋼帯から切り抜く方法の一例を示す図である。
 図10において、一点鎖線で示す仮想線1010は、電磁鋼帯の圧延方向(以下、圧延方向1010ともいう)を示す。破線で示す仮想線1020a~1020bは、電磁鋼帯の磁化容易方向(以下、磁化容易方向1020a~1020bともいう)を示す。尚、図10において、仮想線1010に平行な方向は、全て電磁鋼帯の圧延方向であり、仮想線1020a~1020bに平行な方向は、全て電磁鋼帯の磁化容易方向である。
 前述したように、圧延方向1010となす角度が45°となる2つの方向が磁化容易方向である。
 図10に示す例では、U型の電磁鋼板810が構成する2つの脚部910a~910bの長手方向が、電磁鋼帯の2つの磁化容易方向1020a~1020bのうちの一方の磁化容易方向1020aに一致し、且つ、U型の電磁鋼板810が構成する継鉄部920a~920bの長手方向が、電磁鋼帯の2つの磁化容易方向1020a~1020bのうちの他方の磁化容易方向1020bに一致するように、U型の電磁鋼板810を構成する領域1030a、1030bを電磁鋼帯から切り抜く。図10において、実線が切り抜き位置を示す。
 図10に示す例では、2つのU型の電磁鋼板810が構成する2つの脚部910a~910bの先端同士が合うように、2つのU型の電磁鋼板810を構成する領域1030a~1030bを電磁鋼帯から切り抜く。
 また、2つの脚部910a~910bの先端同士が合うように2つのU型の電磁鋼板810を構成する領域1030a~1030bを電磁鋼帯から切り抜くと、2つのU型の電磁鋼板810が構成する2つの脚部910a~910bの間のI型の領域1040も切り抜かれる。I型の領域1040の長手方向は、電磁鋼帯の2つの磁化容易方向1020a~1020bのうちの一方の磁化容易方向1020aに一致する。そこで、本実施形態では、I型の領域1040を用いてI型の電磁鋼板820を形成する。
 U型の電磁鋼板810が構成する2つの脚部910a~910bの(Y軸方向の)間隔が、I型の電磁鋼板820の幅方向(Y軸方向)の長さの2倍である場合、I型の領域1040を幅方向(Y軸方向)の中央の位置で切断することにより、I型の電磁鋼板820の幅方向の領域を定めることができる。また、U型の電磁鋼板810が構成する2つの脚部910a~910bの長手方向(X軸方向)の長さが、I型の電磁鋼板820の長手方向(X軸方向)の長さと同じである場合、I型の領域1040を長手方向(X軸方向)の中央の位置で切断することにより、I型の電磁鋼板820の長手方向の領域を定めることができる。
 以上のように、U型の電磁鋼板810が構成する2つの脚部910a~910bの間の領域を、I型の電磁鋼板820として利用することにより、電磁鋼帯の領域のうち、U型の電磁鋼板810にもI型の電磁鋼板820にもならない領域を削減することができる。
 U型の電磁鋼板810が構成する2つの脚部910a~910bの(Y軸方向の)間隔が、I型の電磁鋼板820の幅方向(Y軸方向)の長さの2倍であり、且つ、U型の電磁鋼板810が構成する2つの脚部910a~910bの長手方向(X軸方向)の長さが、I型の電磁鋼板820の長手方向(X軸方向)の長さと同じであるとする。この場合、2つの脚部910a~910bの先端同士が合うように2つのU型の電磁鋼板810を構成する領域1030a~1030bを電磁鋼帯から切り抜き、当該2つの脚部910a~910bの間のI型の領域1040を長手方向(X軸方向)および幅方向(Y軸方向)の中央の位置で4つに切断することにより、U型の電磁鋼板810が2つ形成され、I型の電磁鋼板820が4つ形成される。この場合、U型の電磁鋼板810が構成する2つの脚部910a~910bの間の領域をI型の電磁鋼板820として無駄なく利用することができる。
 図10では、U型の電磁鋼板810を2つ切り抜き、I型の電磁鋼板820を4つ切り抜く様子のみを示す。しかしながら、図10に示す領域1030a~1030bが連続的に並ぶようにすることにより、多数のU型の電磁鋼板810およびI型の電磁鋼板820を電磁鋼帯から切り抜くことができる。尚、図10に示すようにしてU型の電磁鋼板810とI型の電磁鋼板820とを切り抜けば、U型の電磁鋼板810にもI型の電磁鋼板820にもならない領域を削減することができるので好ましい。しかしながら、必ずしも図10に示すようにしてU型の電磁鋼板810とI型の電磁鋼板820とを切り抜く必要はない。例えば、I型の電磁鋼板が、U型の電磁鋼板が構成する2つの脚部910a~910bの間の領域からはみ出す場合、I型の電磁鋼板は、電磁鋼帯の当該領域とは別の領域から切り抜かれる。
 以上のようにして得られる(1枚の)U型の電磁鋼板810と(1枚の)I型の電磁鋼板820とを組み合わせて全体として口の字状とした層を、口の字状の輪郭が相互に合うように積み重なった状態とすることにより積層コア800が構成される。このとき、U型の電磁鋼板810が構成する脚部910a~910bの先端が向く方向が交互に180°反対向きになるように、U型の電磁鋼板810とI型の電磁鋼板820とを組み合わせる。図8および図9に示す例では、上から奇数番目の層においては、U型の電磁鋼板810が構成する脚部910a~910bの先端がX軸の正の方向側を向き、上から偶数番目の層においては、U型の電磁鋼板810が構成する脚部910a~910bの先端がX軸の負の方向側を向く。
 図11は、積層コア800を用いて構成される電気機器の構成の一例を示す図である。本実施形態でも第1の実施形態と同様に、電気機器1100が単相変圧器である場合を例に挙げて説明する。図11は、積層コア800が構成する脚部910a~910bの長手方向(X軸方向)の中央において、積層コア800が構成する継鉄部920a~920bの長手方向(Y軸方向)と積層方向(Z軸方向)とに平行に、積層コア800を切断した場合の断面を示す。尚、図11では、説明および表記の都合上、電気機器1100が有する構成の一部を簡略化したり省略したりする。
 図11において、電気機器1100は、積層コア800と、一次コイル1110a~1110bと、二次コイル1120a~1120bとを有する。
 一次コイル1110a~1110bは、直列または並列に接続される。直列または並列に接続された一次コイル1110a~1110bの両端には入力電圧(励磁電圧)が印加される。二次コイル1120a~1120bは、直列または並列に接続される。直列または並列に接続された二次コイル1120a~1120bの両端には、直列または並列に接続された一次コイル1110a~1110bと直列または並列に接続された二次コイル1120a~1120bの巻数比に応じた出力電圧が出力される。
 一次コイル1110aは、積層コア800の2つの脚部910a~910bのうち一方の脚部910a(の側面)を周回するように配置される。一次コイル1110aは、積層コア800および二次コイル1120a、1120bと電気的に絶縁されている。一次コイル1110bは、積層コア800の2つの脚部910a~910bのうち他方の脚部910b(の側面)を周回するように配置される。一次コイル1110bは、積層コア800および二次コイル1120a、1120bと電気的に絶縁されている。二次コイル1120aは、一次コイル1110aの外側において、積層コア800の2つの脚部910a~910bのうち一方の脚部910a(の側面)を周回するように配置される。二次コイル1120aは、積層コア800および一次コイル1110a、1110bと電気的に絶縁されている。二次コイル1120bは、一次コイル1110bの外側において、積層コア800の2つの脚部910a~910bのうち他方の脚部910b(の側面)を周回するように配置される。二次コイル1120bは、積層コア800および一次コイル1110a、1110bと電気的に絶縁されている。
 一次コイル1110a~1110bの厚みと二次コイル1120a~1120bの厚みの合計値は、積層コア800の2つの脚部の(Y軸方向の)間隔を下回る。
 電気機器1100を構成する際には、まず、一次コイル1110a~1110bおよび二次コイル1120a~1120bを作製する。そして、図11に示すように一次コイル1110a~1110bおよび二次コイル1120a~1120bを配置する。具体的に、一次コイル1110aを相対的に内側とし、二次コイル1120aを相対的に外側として一次コイル1110aおよび二次コイル1120aが同軸になるように、一次コイル1110aおよび二次コイル1120aを配置する。同様に、一次コイル1110bを相対的に内側とし、二次コイル1120bを相対的に外側として一次コイル1110bおよび二次コイル1120bが同軸になるように、一次コイル1110bおよび二次コイル1120bを配置する。
 その後、U型の電磁鋼板810が構成する脚部910a~910bの先端が向く方向が交互に180°反対向きになるように、U型の電磁鋼板810が構成する一方・他方の脚部910a~910bを、それぞれ、一次コイル1110a・1110bの中空部に順次挿入すると共に、同一の層において板面の形状がUとIを組み合わせた口の字状になるように、U型の電磁鋼板810が構成する脚部910a~910bの先端にI型の電磁鋼板820を配置する。以上のようにしてU型の電磁鋼板810とI型の電磁鋼板820とを配置することにより、U型の電磁鋼板810が構成する一方・他方の脚部に、それぞれ、一次コイル1110aおよび二次コイル1120a・一次コイル1110bおよび二次コイル1120bが配置された状態の積層コア800が構成される。このようにすれば、一次コイル1110a~1110bおよび二次コイル1120a~1120bを構成する電線を、一巻き毎に、積層コア800の2つの脚部910a~910bの間の領域に通す必要がなくなる。そのため、一次コイル1110a~1110bおよび二次コイル1120a~1120bを容易に構成することができる。
 尚、積層コア800の固定は、第1の実施形態で説明したように、公知の方法で実現することができる。また、(積層コアに使用する電磁鋼板)の項で説明したように、積層コア800に対して歪取焼鈍が行われる。
 以上のように本実施形態では、U型の電磁鋼板810が構成する2つの脚部910a~910bの長手方向(X軸方向)と、U型の電磁鋼板810が構成する継鉄部920a~920bの長手方向(Y軸方向)との2つの方向が磁化容易方向1020a~1020bの何れかの方向(図8~図10に示す例では磁化容易方向1020aまたは1020b)と一致し、I型の電磁鋼板820が構成する継鉄部920a~920bの長手方向(Y軸方向)が磁化容易方向1020a~1020bの何れかの方向(図8~図10に示す例では磁化容易方向1020a)と一致するように、U型の電磁鋼板810およびI型の電磁鋼板820を構成する。そして、脚部910a~910bの長手方向が磁化容易方向1020a~1020bの何れかの方向(図8~図10に示す例では磁化容易方向1020a)に一致し、且つ、継鉄部920a~920bの長手方向が磁化容易方向1020a~1020bの何れかの方向(図8~図10に示す例では磁化容易方向1020aまたは1020b)に一致するように、U型の電磁鋼板810およびI型の電磁鋼板820を組み合わせて積層コア800を構成する。従って、積層コアをUIコアとしても、積層コアをEIコアやEEコアとする場合と同様の効果を奏することができる。
 本実施形態では、積層コア800の2つの脚部910a~910bのそれぞれにコイル(一次コイル1110a~1110bおよび二次コイル1120a~1120b)を配置する場合を例に挙げて説明した。しかしながら、必ずしもこのようにする必要はない。例えば、積層コア800の2つの脚部910a~910bのうち、一方の脚部にコイルを配置し、他方の脚部にコイルを配置しなくてもよい。また、2つの積層コア800を用いて外鉄型の電気機器としてもよい。このようにする場合、2つの積層コア800の中空部にコイルが配置される。
 尚、本実施形態において、U型の電磁鋼板810の角部は直角であり(屈曲しており)、厳密にはU型ではないが、このような形状もU型に含まれるものとする(角部が曲率を有する(湾曲している)形状もU型に含まれる)。
 また、本実施形態においても、第1~第2の実施形態で説明した種々の変形例を採用することができる。
 積層コアの構成は、第1~第3の実施形態で説明したEIコア、EEコア、UIコアに限定されない。複数の脚部と、複数の継鉄部と、を有し、電磁鋼板の積層方向の同じ位置において、複数の脚部の少なくとも一部の領域と複数の継鉄部の少なくとも一部の領域とが同一(1枚)の電磁鋼板で構成されていれば、どのような積層コアであってもよい。すなわち、積層コアは、積層方向の各々の位置において互いに直交して延びる脚部および継鉄部それぞれの少なくとも一部同士が、それぞれ、例えば同一の電磁鋼帯から切り出されたものである場合など同じ特性を有すると評価できる電磁鋼板によって形成された構成であればよい。具体的には、電磁鋼帯を製造する際に各設備に設定される圧延条件や冷却条件といった電磁鋼板の特性に影響を与え得る製造条件が同じであれば、個々の電磁鋼帯は同一の特性を有すると評価可能である。つまり、各々の電磁鋼板は、積層コアにおける電磁鋼板の積層方向の同じ位置(各々の位置)において、複数の脚部の少なくとも一部の領域と複数の継鉄部の少なくとも一部の領域とが、同じ製造条件で製造さている。この電磁鋼板において、脚部の延設方向および継鉄部の延設方向の何れかに、電磁鋼板の磁気特性が最も優れる2つの方向のうちの何れかの方向が沿うことで、磁気特性が向上された積層コアが製造される。
 ただし、複数の継鉄部は、積層コアが励磁された際に、積層コアにおいて閉磁路が形成されるように、脚部の延設方向に対し垂直な方向を延設方向として配置される。また、電磁鋼板は、板面が相互に対向するように積層される。尚、このような積層コアにおいては、電磁鋼板の積層方向の同じ位置において同一の電磁鋼板で構成されている領域(脚部の少なくとも一部の領域と継鉄部の少なくとも一部の領域との間)には境界がなく、当該領域は、一続きの領域となっている。また、積層コアが励磁された際に、積層コアの内部において主磁束が流れる方向は、脚部の延設方向および継鉄部の延設方向を含む。
 例えば、第1~第3の実施形態では、同じ層(積層方向が同じ位置)において、2枚の電磁鋼板(E型の電磁鋼板110・I型の電磁鋼板120、E型の電磁鋼板510・E型の電磁鋼板510、U型の電磁鋼板810・I型の電磁鋼板820)の相互に対向する面は、当該2枚の電磁鋼板の少なくとも一方の電磁鋼板が構成する脚部の長手方向に垂直な方向の面(Y-Z平面)である場合を例に挙げて説明した。しかしながら、同じ層において、2枚の電磁鋼板が相互に対向する面は、相互に平行な面であれば、必ずしも、当該2枚の電磁鋼板の少なくとも一方の電磁鋼板が構成する脚部の長手方向に垂直な方向の面(Y-Z平面)でなくてもよく、当該方向に対して傾斜した方向の面であってもよい(例えば、図2において、E型の電磁鋼板110およびI型の電磁鋼板120の境界線が、Y軸に対して傾斜していてもよい)。
 また、第2の実施形態では、同じ形状および大きさの2組のE型の電磁鋼板群を用いてEEコアを構成する場合を例に挙げて説明した。しかしながら、2組のE型の電磁鋼板群の脚部の長さは異なっていてもよい。
 また、積層コアは、UUコアであってもよい。この場合、例えば、複数のU型の電磁鋼板810を相互に輪郭が合うように積み重ねたU型の電磁鋼板群を2組用意し、2組の電磁鋼板群の脚部の先端が向く方向が180°反対向きになるように、2組の電磁鋼板群が配置されるようにする。また、積層コアをUIコアとする場合も、EEコアについて説明した場合と同様に、2組の電磁鋼板群の脚部の長さは異なっていてもよい。
 また、第1~第3の実施形態では、同じ層(積層方向が同じ位置)において、2枚の電磁鋼板(E型の電磁鋼板110・I型の電磁鋼板120、E型の電磁鋼板510・E型の電磁鋼板510、U型の電磁鋼板810・I型の電磁鋼板820)を組み合わせることにより、積層コア100、500、800を構成する場合を例に挙げて説明した。しかしながら、同じ層において、3枚の電磁鋼板を組み合わせることにより、積層コアを構成してもよい。
 このように、同じ層において、複数枚の電磁鋼板を組み合わせることにより、積層コアを構成すれば、前述したようにコイル(一次コイル410・二次コイル420、一次コイル1110a~1110b・二次コイル1120a~1120b)を容易に構成することができるので好ましい。しかしながら、必ずしもこのようにする必要はない。例えば、板面の形状が日の字状または口の字状の(1枚の)電磁鋼板として、同じ大きさおよび形状の電磁鋼板を複数用意し、当該複数の電磁鋼板を、輪郭が相互に合うように積み重なった状態とすることにより積層コアを構成してもよい。この場合、電磁鋼板の積層方向の同じ位置において、複数の脚部および複数の継鉄部の全ての領域が同一(1枚)の電磁鋼板で構成される。
 あるいは、積層コアの同一の層における板面の外形状が、四角ばった8の字状の場合であって、同一の層が複数の電磁鋼板によって形成されているとき、同一の層を形成する複数の電磁鋼板が、E型の電磁鋼板とI型の電磁鋼板以外の形状の電磁鋼板を含んでいてもよい(例えば、同一の層が、U型の電磁鋼板とT型の電磁鋼板によって形成されていてもよい)。さらに、積層コアの同一の層における板面の外形状が矩形状の場合であって、同一の層が複数の電磁鋼板によって形成されているとき、同一の層を形成する複数の電磁鋼板が、U型の電磁鋼板とI型の電磁鋼板以外の形状の電磁鋼板を含んでいてもよい(例えば、同一の層が、L型の電磁鋼板2枚によって形成されていてもよい)。また、積層コアの同一の層が、複数の電磁鋼板によって形成されている場合、これらの複数の電磁鋼板が、必ずしも同一の電磁鋼帯から切り出されていなくてもよい。例えば、互いに異なるコイルを形成する電磁鋼帯(製造ロットが異なる電磁鋼帯)から切り出された複数の電磁鋼板が、同一の層を形成してもよい。またこのような場合において、互いに直交して延びる脚部および継鉄部それぞれの少なくとも一部同士を形成する1枚の電磁鋼板が、前述した(積層コアに使用する電磁鋼板)の項で説明した無方向性電磁鋼板であれば、他の電磁鋼板は、(積層コアに使用する電磁鋼板)の項で説明した無方向性電磁鋼板でなくてもよい。
(実施例)
 次に、実施例を説明する。本実施例では、(積層コアに使用する電磁鋼板)の項で説明した電磁鋼板を用いてEIコアとした積層コアと、公知の無方向性電磁鋼板を用いてEIコアとした積層コアとを比較した。何れの電磁鋼板も、厚さは0.25mmである。公知の無方向性電磁鋼板として、W10/400が12.8W/kgの無方向性電磁鋼板を用いた。W10/400は、磁束密度が1.0T、周波数が400Hzのときの鉄損である。また、当該公知の無方向性電磁鋼板は、圧延方向の磁気特性が最も優れており、磁気特性の異方性は比較的小さい。以下の説明では、当該公知の無方向性電磁鋼板を、必要に応じて素材Aと称する。また、(積層コアに使用する電磁鋼板)の項で説明した電磁鋼板であって、本実施例の積層コアに用いた電磁鋼板を、必要に応じて素材Bと称する。
 図12は、B50比率と、圧延方向からの角度との関係の一例を示す図である。図13は、W15/50比率と、圧延方向からの角度との関係の一例を示す図である。ここで、B50は、磁界の強さ5000A/mで励磁したときの磁束密度であり、W15/50は、磁束密度が1.5T、周波数が50Hzのときの鉄損である。ここでは、磁束密度および鉄損を、JIS C 2556:2015に記載の手法で測定した。
 また、図12および図13では、各素材の圧延方向からの角度毎の測定値(磁束密度または鉄損)を規格化した値を示す。規格化にあたっては、素材Aの圧延方向からの角度毎の平均値を1.000として規格化した。素材Aの圧延方向からの角度毎の平均値は、素材Aの圧延方向となす角度が0°、22.5°、45°、67.5°、90°、112.5°、135°、157.5°の8つの角度における測定値の平均値とした。このように、図12および図13の縦軸の値は、相対値(無次元量)である。
 図12に示すように、素材Bでは、圧延方向となす角度が45°であるときのB50比率が最も大きく、圧延方向となす角度が0°、90°に近付くほどB50比率は小さくなる。
 一方、素材Aでは、圧延方向となす角度が45°~90°近傍においてB50比率は小さくなる。
 図13に示すように、素材Bでは、圧延方向となす角度が45°であるときのW15/50比率が最も小さく、圧延方向となす角度が0°、90°に近付くほどW15/50比率は大きくなる。
 一方、素材Aでは、W15/50比率は、圧延方向となす角度が0°であるときに最も小さく、圧延方向となす角度が45°~90°近傍において大きくなる。
 以上のように素材Bでは、圧延方向となす角度が45°の方向(磁化容易方向)における磁気特性が最も優れる。一方、圧延方向となす角度が0°、90°の方向(圧延方向、および、圧延方向に直交する方向)における磁気特性が最も劣る。
 尚、圧延方向から、圧延方向となす角度のうち小さい方の角度が90°になる方向までの4つの領域(すなわち、0°~22.5°の領域、22.5°~45°の領域、45°~67.5°の領域、67.5°~90°の領域)の磁気特性は、理論的には対称な関係を有する。
 素材AのE型の電磁鋼板については、E型の電磁鋼板が構成する3つの脚部の長手方向が圧延方向と一致するようにした。素材AのI型の電磁鋼板については、I型の電磁鋼板が構成する継鉄部の長手方向が圧延方向と一致するようにした。
 素材BのE型の電磁鋼板については、第1の実施形態で説明したように、E型の電磁鋼板が構成する3つの脚部の長手方向と、E型の電磁鋼板が構成する継鉄部の長手方向との2つの方向が2つの磁化容易方向の何れかと一致するようにした。素材BのI型の電磁鋼板についても、第1の実施形態で説明したように、I型の電磁鋼板が構成する継鉄部の長手方向が2つの磁化容易方向の何れかと一致するようにした。
 素材AのE型・I型の電磁鋼板も、素材BのE型・I型の電磁鋼板も、金型による打ち抜き加工により電磁鋼帯から切り抜いた。素材AのE型の電磁鋼板と、素材BのE型の電磁鋼板の形状および大きさは同じである。素材AのI型の電磁鋼板と、素材BのI型の電磁鋼板の形状および大きさは同じである。
 素材AのE型・I型の電磁鋼板を、第1の実施形態で説明したようにして積み重ねた積層コアに歪取焼鈍を施し、積層コアの中央の脚部に一次コイルを配置した。同様に、素材BのE型・I型の電磁鋼板を、第1の実施形態で説明したようにして積み重ねた積層コアに歪取焼鈍を施し、積層コアの中央の脚部に一次コイルを配置した。
 それぞれの積層コアを構成するE型・I型の電磁鋼板の枚数は同じである(それぞれの積層コアの形状および大きさは同じである)。また、それぞれの積層コアに配置する一次コイルは同じコイルである。
 それぞれの積層コアに配置した一次コイルの両端に、周波数および実効値が同じ励磁電流を流し(即ち、それぞれの積層コアを同一の励磁条件で励磁し)、それぞれの積層コアの中央の脚部における磁束密度を測定すると共に鉄損を測定した。また、一次コイルに流れる励磁電流を測定し一次銅損を導出した。
 その結果、素材Aの積層コアを用いた場合の一次銅損に対する素材Bの積層コアを用いた場合の一次銅損の比は0.92であった。また、素材Aの積層コアの鉄損に対する素材Bの積層コアの鉄損の比は0.81であった。このように、本実施例では、素材Bを用いることにより素材Aを用いる場合に比べて、一次銅損を8%、鉄損を19%それぞれ低減することができた。
 尚、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本発明によれば、積層コアの磁気特性を向上させることができる。よって、産業上の利用可能性が高い。
 100,500,800:積層コア、110,510:E型の電磁鋼板、120,820:I型の電磁鋼板、210a~210c,610a~610c,910a~910b:脚部、220a~220c,620a~620c,920a~920b:継鉄部、310,710,1010:圧延方向320a~320b,720a~720b,1020a~1020b:磁化容易方向、400,1100:電気機器、410,1110a~1110b:一次コイル、420,1120a~1120b:二次コイル

Claims (6)

  1.  板面同士が相互に対向するように積層された複数の電磁鋼板を有する積層コアであって、
     前記複数の電磁鋼板の各々は、
     複数の脚部と、
     前記積層コアが励磁された際に、前記積層コアにおいて閉磁路が形成されるように、前記脚部の延設方向に対し垂直な方向を延設方向として配置される複数の継鉄部と、を備え、
     前記複数の脚部を構成する前記電磁鋼板の積層方向と前記複数の継鉄部を構成する前記電磁鋼板の積層方向は、同じであり、
     前記電磁鋼板は、
     質量%で、
     C:0.0100%以下、
     Si:1.50%~4.00%、
     sol.Al:0.0001%~1.0%、
     S:0.0100%以下、
     N:0.0100%以下、
     Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、
     Sn:0.000%~0.400%、
     Sb:0.000%~0.400%、
     P:0.000%~0.400%、および
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
     Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(A)式を満たし、
     残部がFeおよび不純物からなる化学組成を有し、
     圧延方向のB50をB50L、圧延方向とのなす角度が90°の方向のB50をB50C、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向のB50のうち一方の方向のB50、他方の方向のB50を、それぞれ、B50D1、B50D2としたときに、以下の(B)式且つ(C)式を満たし、{100}<011>のX線ランダム強度比が5以上30未満であり、板厚が0.50mm以下であり、
     前記電磁鋼板の磁気特性が最も優れる2つの方向のうちの何れかの方向が、前記脚部の延設方向および前記継鉄部の延設方向の何れかに沿うように、前記電磁鋼板が配置されており、
     前記磁気特性が最も優れる2つの方向は、前記圧延方向となす角度のうち小さい方の角度が45°となる2つの方向であることを特徴とする積層コア。
     ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%   ・・・(A)
     (B50D1+B50D2)/2>1.7T         ・・・(B)
     (B50D1+B50D2)/2>(B50L+B50C)/2・・・(C)
  2.  以下の(D)式を満たすことを特徴とする請求項1に記載の積層コア。
     (B50D1+B50D2)/2>1.1×(B50L+B50C)/2・・・(D)
  3.  以下の(E)式を満たすことを特徴とする請求項1に記載の積層コア。
     (B50D1+B50D2)/2>1.2×(B50L+B50C)/2・・・(E)
  4.  以下の(F)式を満たすことを特徴とする請求項1に記載の積層コア。
     (B50D1+B50D2)/2>1.8T         ・・・(F)
  5.  前記積層コアは、EIコア、EEコア、UIコア、またはUUコアであることを特徴とする請求項1に記載の積層コア。
  6.  請求項1から5のいずれか1項に記載の積層コアと、前記積層コアに対して周回するように配置されるコイルとを有することを特徴とする電気機器。
PCT/JP2020/042397 2019-11-15 2020-11-13 積層コアおよび電気機器 WO2021095837A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227015184A KR20220075416A (ko) 2019-11-15 2020-11-13 적층 코어 및 전기 기기
US17/774,771 US20220384085A1 (en) 2019-11-15 2020-11-13 Laminated core and electrical device
BR112022008199A BR112022008199A2 (pt) 2019-11-15 2020-11-13 Núcleo laminado, e, dispositivo elétrico
CN202080078235.6A CN114667359A (zh) 2019-11-15 2020-11-13 层叠芯体及电气设备
EP20886906.5A EP4060068A4 (en) 2019-11-15 2020-11-13 LAMINATE CORE AND ELECTRICAL DEVICE
JP2021556165A JP7381941B2 (ja) 2019-11-15 2020-11-13 積層コアおよび電気機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019206674 2019-11-15
JP2019-206674 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095837A1 true WO2021095837A1 (ja) 2021-05-20

Family

ID=75912768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042397 WO2021095837A1 (ja) 2019-11-15 2020-11-13 積層コアおよび電気機器

Country Status (8)

Country Link
US (1) US20220384085A1 (ja)
EP (1) EP4060068A4 (ja)
JP (1) JP7381941B2 (ja)
KR (1) KR20220075416A (ja)
CN (1) CN114667359A (ja)
BR (1) BR112022008199A2 (ja)
TW (1) TWI740714B (ja)
WO (1) WO2021095837A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303213A (ja) * 2000-04-21 2001-10-31 Kawasaki Steel Corp 高効率モータ用の無方向性電磁鋼板
JP2004332042A (ja) 2003-05-07 2004-11-25 Nippon Steel Corp 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
JP2006199999A (ja) * 2005-01-20 2006-08-03 Nippon Steel Corp 粒成長後の磁気特性が優れたセミプロセス電磁鋼板およびその製造方法
JP2011111658A (ja) * 2009-11-27 2011-06-09 Nippon Steel Corp 磁束密度の高い無方向性電磁鋼板の製造方法
JP2017145462A (ja) * 2016-02-17 2017-08-24 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2017193731A (ja) * 2016-04-18 2017-10-26 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
JP2019178380A (ja) * 2018-03-30 2019-10-17 日本製鉄株式会社 電磁鋼板、及び、電磁鋼板の製造方法
JP2019206674A (ja) 2018-05-30 2019-12-05 積水ポリマテック株式会社 ディスペンサ用硬化型シリコーン組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231191A (ja) * 2000-02-18 2001-08-24 Matsushita Electric Ind Co Ltd ステータコア及びそれを搭載した小型モータ
JP5671871B2 (ja) * 2010-08-09 2015-02-18 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP5896937B2 (ja) * 2013-02-08 2016-03-30 三菱電機株式会社 分割鉄心、及びこの分割鉄心を用いた固定子、並びにこの固定子を備えた回転電機
JP6102731B2 (ja) * 2013-12-26 2017-03-29 新日鐵住金株式会社 積層コアの焼鈍方法
JP6587800B2 (ja) * 2014-12-26 2019-10-09 Jfeスチール株式会社 積層鉄心の製造方法
US20170352466A1 (en) * 2015-05-27 2017-12-07 Hitachi Industrial Equipment Systems Co., Ltd. Laminated Iron Core Structure and Transformer Including the Same
JP6848597B2 (ja) * 2017-03-29 2021-03-24 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
JP6880920B2 (ja) * 2017-03-29 2021-06-02 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
JP2019071745A (ja) * 2017-10-11 2019-05-09 株式会社三井ハイテック 積層鉄心の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303213A (ja) * 2000-04-21 2001-10-31 Kawasaki Steel Corp 高効率モータ用の無方向性電磁鋼板
JP2004332042A (ja) 2003-05-07 2004-11-25 Nippon Steel Corp 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
JP2006199999A (ja) * 2005-01-20 2006-08-03 Nippon Steel Corp 粒成長後の磁気特性が優れたセミプロセス電磁鋼板およびその製造方法
JP2011111658A (ja) * 2009-11-27 2011-06-09 Nippon Steel Corp 磁束密度の高い無方向性電磁鋼板の製造方法
JP2017145462A (ja) * 2016-02-17 2017-08-24 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2017193731A (ja) * 2016-04-18 2017-10-26 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
JP2019178380A (ja) * 2018-03-30 2019-10-17 日本製鉄株式会社 電磁鋼板、及び、電磁鋼板の製造方法
JP2019206674A (ja) 2018-05-30 2019-12-05 積水ポリマテック株式会社 ディスペンサ用硬化型シリコーン組成物

Also Published As

Publication number Publication date
JP7381941B2 (ja) 2023-11-16
KR20220075416A (ko) 2022-06-08
CN114667359A (zh) 2022-06-24
JPWO2021095837A1 (ja) 2021-05-20
EP4060068A4 (en) 2022-11-02
EP4060068A1 (en) 2022-09-21
BR112022008199A2 (pt) 2022-07-12
TW202124737A (zh) 2021-07-01
TWI740714B (zh) 2021-09-21
US20220384085A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP5375559B2 (ja) 無方向性電磁鋼板の剪断方法及びその方法を用いて製造した電磁部品
CN111656465B (zh) 方向性电磁钢板、使用该方向性电磁钢板而成的变压器的卷绕铁芯和卷绕铁芯的制造方法
KR101607909B1 (ko) 방향성 전자 강판 및 그것을 이용한 변압기 철심
WO2019132363A1 (ko) 이방향성 전기장판 및 그의 제조방법
JPWO2020262494A1 (ja) Fe基アモルファス合金薄帯及びその製造方法、鉄心、並びに変圧器
WO2021095837A1 (ja) 積層コアおよび電気機器
JP7350069B2 (ja) 無方向性電磁鋼板およびその製造方法
JP6900686B2 (ja) 方向性電磁鋼板およびその製造方法
JP6750524B2 (ja) ブランク、鉄心構成部材および積み鉄心
WO2021095857A1 (ja) ステータコアおよび回転電機
JP7318845B1 (ja) 三相三脚巻鉄心およびその製造方法
WO2023167015A1 (ja) 三相三脚巻鉄心およびその製造方法
TWI750894B (zh) 轉子鐵芯、轉子及旋轉電機
JP7151946B1 (ja) 巻鉄心および巻鉄心の製造方法
JP7485954B2 (ja) 巻鉄心
JP7488443B2 (ja) 積層コアおよび回転電機
CN114341383B (zh) 无方向性电磁钢板的制造方法
WO2023007952A1 (ja) 巻鉄心および巻鉄心の製造方法
JPH0920966A (ja) 磁気特性と打ち抜き性に優れた電磁鋼板
WO2022092114A1 (ja) 巻鉄心
WO2022092120A1 (ja) 巻鉄心
EP4060060A1 (en) Non-oriented electromagnetic steel sheet
JP4269138B2 (ja) セミプロセス用無方向性電磁鋼板
JPH0814016B2 (ja) 高周波用無方向性電磁鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556165

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227015184

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008199

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020886906

Country of ref document: EP

Effective date: 20220615

ENP Entry into the national phase

Ref document number: 112022008199

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220428