WO2021095231A1 - 波長チェッカー - Google Patents

波長チェッカー Download PDF

Info

Publication number
WO2021095231A1
WO2021095231A1 PCT/JP2019/044866 JP2019044866W WO2021095231A1 WO 2021095231 A1 WO2021095231 A1 WO 2021095231A1 JP 2019044866 W JP2019044866 W JP 2019044866W WO 2021095231 A1 WO2021095231 A1 WO 2021095231A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
waveguide
waveguide chip
wavelength
optical
Prior art date
Application number
PCT/JP2019/044866
Other languages
English (en)
French (fr)
Inventor
田中 拓也
光太 鹿間
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021555745A priority Critical patent/JP7215595B2/ja
Priority to PCT/JP2019/044866 priority patent/WO2021095231A1/ja
Priority to US17/776,890 priority patent/US20220404565A1/en
Publication of WO2021095231A1 publication Critical patent/WO2021095231A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • G02B6/12021Comprising cascaded AWG devices; AWG multipass configuration; Plural AWG devices integrated on a single chip
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides

Definitions

  • the present invention relates to a wavelength checker, and more specifically, to a wavelength checker for confirming signal light in opening / fault isolation investigation of a PON system.
  • a plurality of lights having relatively different wavelengths such as a wavelength of 1.3 ⁇ m and a wavelength of 1.5 to 1.6 ⁇ m may be used at the same time.
  • Non-Patent Document 1 in the already introduced GE-PON (G-PON) system, the signal (uplink signal) from the user to the station building is 1260 nm to 1360 nm (only the Regular band is described in G-PON). Wavelength is used. Further, in the G-PON system, a wavelength of 1480 nm to 1500 nm is used as a signal (downlink signal) from the station building to the user, and a wavelength of 1550 nm to 1560 nm is used as the downlink video signal.
  • the 10G-EPON (XG-PON) system to be introduced in the future also uses wavelengths of 1.3 ⁇ m and 1.5 to 1.6 ⁇ m.
  • wavelengths of 1524 nm to 1544 nm (Wide band) for the uplink signal, 1596 nm to 1603 nm for the downlink signal, and 1550 nm to 1560 nm for the downlink video signal are used.
  • the optional PtPWDM (Point To Point Wavelength Division Multiplex) overlay will not be described.
  • wavelength division multiplexing is performed. These wavelength arrangements are shown in FIG.
  • the optical power is confirmed in the opening test.
  • more and more various wavelengths will be used during the transition from GE-PON to 10G-EPON.
  • the wavelength can be confirmed, the type of the signal can be identified, the failure can be easily isolated, and the work efficiency may be improved.
  • optical spectrum analyzer As a means for measuring wavelength.
  • the optical spectrum analyzer has a movable part for detecting the diffracted light obtained by moving the diffraction grating with a detector, the device is large and heavy, so that it is difficult to carry.
  • a 100V power supply is generally required.
  • conventionally there has been a problem that it is not easy to confirm whether or not signal light is coming in the opening / fault isolation investigation of the PON system.
  • the present invention has been made to solve the above problems, and an object of the present invention is to make it easy to confirm the presence or absence of signal light in opening a PON system, isolating a failure, and the like. To do.
  • the wavelength checker according to the present invention is a wavelength checker including an optical waveguide chip and an optical converter composed of a conversion material that converts near-infrared light into visible light, in which the optical waveguide chip on the side connected to the optical fiber is an array.
  • the reflector is fixed at a position on the main substrate that includes the waveguide diffraction grid and is mounted on the main substrate and faces the light emitting end surface of the optical waveguide chip on the side that outputs light to the external space.
  • the reflecting unit is provided with a reflecting surface that faces the light emitting end surface and is oblique to the plane of the main substrate so that the direction of reflection is above the main substrate. It is arranged near the light emitting end face of the waveguide chip or the light emitting end face on the inner side of the light emitting end face of the optical waveguide chip.
  • the light of the optical waveguide chip is a light conversion unit composed of a conversion material that converts infrared light into visible light by providing a reflection unit at a position facing the light emitting end face. Since it is arranged near the light emitting end face or the light emitting end face on the inner side of the light emitting end face of the optical waveguide chip, it is possible to easily confirm the presence or absence of signal light in opening the PON system, isolating the failure, and the like.
  • FIG. 1 is a plan view showing the configuration of a wavelength checker according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view showing a partial configuration of a wavelength checker according to the first embodiment of the present invention.
  • FIG. 2B is a cross-sectional view showing a partial configuration of the wavelength checker according to the first embodiment of the present invention.
  • FIG. 2C is a cross-sectional view showing a partial configuration of the wavelength checker according to the first embodiment of the present invention.
  • FIG. 2D is a cross-sectional view showing another partial configuration of the wavelength checker according to the first embodiment of the present invention.
  • FIG. 2E is a cross-sectional view showing a partial configuration of the wavelength checker according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view showing a partial configuration of a wavelength checker according to the first embodiment of the present invention.
  • FIG. 2B is a cross-sectional view showing a partial configuration of the wavelength
  • FIG. 2F is a cross-sectional view showing another partial configuration of the wavelength checker according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing the configuration of an array waveguide diffraction grating.
  • FIG. 4 is a characteristic diagram showing the calculation result of the transmission spectrum of the array waveguide diffraction grating in the optical waveguide chip 101.
  • FIG. 5A is a perspective view showing the configuration of the wavelength checker according to the second embodiment of the present invention.
  • FIG. 5B is a side view showing a partial configuration of the wavelength checker according to the second embodiment of the present invention.
  • FIG. 5C is a plan view showing a partial configuration of the wavelength checker according to the second embodiment of the present invention.
  • FIG. 5A is a perspective view showing the configuration of the wavelength checker according to the second embodiment of the present invention.
  • FIG. 5B is a side view showing a partial configuration of the wavelength checker according to the second embodiment of the present invention.
  • FIG. 5C is
  • FIG. 6A is a perspective view showing a partial configuration of the wavelength checker according to the second embodiment of the present invention.
  • FIG. 6B is a cross-sectional view showing a partial configuration of the wavelength checker according to the second embodiment of the present invention.
  • FIG. 7A is a cross-sectional view for explaining a method of manufacturing a child optical waveguide chip constituting the wavelength checker according to the second embodiment of the present invention.
  • FIG. 7B is a cross-sectional view for explaining a method of manufacturing a child optical waveguide chip constituting the wavelength checker according to the second embodiment of the present invention.
  • FIG. 7C is a cross-sectional view for explaining a method of manufacturing a child optical waveguide chip constituting the wavelength checker according to the second embodiment of the present invention.
  • FIG. 7A is a cross-sectional view for explaining a method of manufacturing a child optical waveguide chip constituting the wavelength checker according to the second embodiment of the present invention.
  • FIG. 7B is a cross-sectional view for
  • FIG. 7D is a cross-sectional view for explaining a method of manufacturing a child optical waveguide chip constituting the wavelength checker according to the second embodiment of the present invention.
  • FIG. 7E is a cross-sectional view for explaining a method of manufacturing a child optical waveguide chip constituting the wavelength checker according to the second embodiment of the present invention.
  • FIG. 8A is a cross-sectional view showing a configuration in the vicinity of the optical conversion unit of the wavelength checker according to the second embodiment of the present invention.
  • FIG. 8B is a cross-sectional view showing another configuration in the vicinity of the optical conversion unit of the wavelength checker according to the second embodiment of the present invention.
  • FIG. 9 is a characteristic diagram in which the equation (7) is plotted.
  • FIG. 10 is a plan view showing a partial configuration of another wavelength checker according to the second embodiment of the present invention.
  • FIG. 11 is a plan view showing a partial configuration of another wavelength checker according to the second embodiment of the present invention.
  • FIG. 12 is a characteristic diagram showing the calculation result of the transmission spectrum of the array waveguide diffraction grating in the child optical waveguide chip 121a.
  • FIG. 13 is a characteristic diagram showing the calculation result of the transmission spectrum of the array waveguide diffraction grating of the optical waveguide chip 101.
  • FIG. 14 is a characteristic diagram showing a spectrum obtained by combining the spectrum shown in FIG. 12 and the spectrum shown in FIG.
  • FIG. 15 is a plan view showing a partial configuration of the wavelength checker according to the third embodiment of the present invention.
  • FIG. 12 is a characteristic diagram showing the calculation result of the transmission spectrum of the array waveguide diffraction grating in the child optical waveguide chip 121a.
  • FIG. 13 is a characteristic diagram showing the calculation result
  • FIG. 16A is a plan view showing a partial configuration of the wavelength checker according to the third embodiment of the present invention.
  • FIG. 16B is a plan view showing a partial configuration of the wavelength checker according to the third embodiment of the present invention.
  • FIG. 17A is a characteristic diagram showing a calculation result of a spectrum input from the main first input waveguide 106a of the optical waveguide chip 101a and transmitted through the array waveguide diffraction grating.
  • FIG. 17B is a characteristic diagram showing a calculation result of a spectrum input from the sub-first input waveguide 106b of the optical waveguide chip 101a and transmitted through the array waveguide diffraction grating.
  • FIG. 18 is a characteristic diagram showing a spectrum obtained by combining the spectrum shown in FIG. 17A and the spectrum shown in FIG. 17B.
  • FIG. 19 is an explanatory diagram for explaining the relationship between the wavelength arrangements of NG-PON2, 10G-EPON (XG-PON), and GE-PON (G-PON
  • This wavelength checker includes an optical waveguide chip 101.
  • a known arrayed waveguide diffraction grating is formed on the optical waveguide chip 101 (see Reference 1).
  • This array waveguide diffraction grating includes a first array waveguide 103, a first input side slab waveguide 104, a first output side slab waveguide 105, a first input waveguide 106, and a first output waveguide 107.
  • FIG. 1 shows the plane of the wavelength checker.
  • Reference numeral 151 is a main substrate
  • reference numeral 109 is a reflection unit
  • reference numeral 102 is an optical conversion unit composed of a conversion material for converting near-infrared light into visible light.
  • reference numeral 161 is a fiber block
  • reference numeral 162 is an optical fiber
  • reference numeral 163 is a connector.
  • the first array waveguide 103 is composed of a plurality of waveguides having a constant optical path length difference. In the first array waveguide 103, the optical path length difference between two adjacent waveguides is constant.
  • the first input side slab waveguide 104 is connected to the optical input end of the first array waveguide 103.
  • the first output side slab waveguide 105 is connected to the optical output end of the first array waveguide 103.
  • the first input waveguide 106 is connected to the input side of the first input side slab waveguide 104.
  • a plurality of first output waveguides 107 are provided and connected to the output side of the first output side slab waveguide 105.
  • the light conversion unit 102 is composed of a conversion material that converts infrared light into visible light.
  • the reflecting portion 109 is fixed at a position on the main substrate 151 facing the output end (light emitting end face) 108 of the optical waveguide chip 101 on the side that outputs light to the external space. Further, the reflection unit 109 is provided with a reflection surface 109a that faces the output end 108 and is oblique to the plane of the main substrate 151 so that the direction of reflection is above the main substrate 151 (FIG. 2C). ..
  • the reflecting surface 109a reflects near-infrared light.
  • the reflective portion 109 can be made of a metal such as aluminum or an alloy of aluminum.
  • the reflective surface 109a can be obtained by mirror-finishing the surface of the reflective portion 109 made of such metal so as to face the output end 108.
  • the reflective surface can be formed by the reflective film 109b formed by applying a coating material that reflects near-infrared light (FIGS. 2D, 2E, 2F). When the reflective film 109b is formed, it can be said that the surface of the reflective film 109b facing the output end 108 is the reflective surface.
  • the optical conversion unit 102 is arranged near the output end 108 of the optical waveguide chip 101 or the output end 108 on the inner side of the output end 108 of the optical waveguide chip 101.
  • the optical conversion unit 102 is arranged in the vicinity of the output end 108 of the optical waveguide chip 101 at a location where the waveguide light or the emitted light passes.
  • the optical conversion unit 102 is formed so as to extend in the direction in which the plurality of first output waveguides 107 are arranged.
  • the optical conversion unit 102 extends from one end side to the other end side of the array of the plurality of first output waveguides 107, for example.
  • the conversion material is, for example, a phosphorescent body or a phosphor that converts near-infrared light into visible light.
  • the conversion material can be mixed with, for example, a thermosetting silicone resin, heated and cured to form the optical conversion unit 102.
  • a thermosetting silicone resin heated and cured to form the optical conversion unit 102.
  • Phosphor manufactured by "Lumitek International” can be used.
  • some conversion materials have a sensitivity of 700 nm to 1700 nm.
  • the wavelength is demultiplexed for each wavelength by the array waveguide diffraction grating, and the first output waveguide 107 is waveguideed.
  • the near-infrared light emitted from the output terminal 108 is the optical converter.
  • visible light is generated.
  • the generated visible light is reflected by the reflecting surface 109a (reflecting film 109b) of the reflecting portion 109 and radiated above the main substrate 151, so that it is visible above the main substrate 151.
  • the first output waveguide 107 from which the near-infrared light is emitted can be specified from the place where the visible light is generated. Since the wavelength of near-infrared light that is demultiplexed and waveguideed in each first output waveguide 107 is known, the wavelength can be confirmed by confirming the location where visible light is generated (visually observed). It will be possible.
  • the first input side slab waveguide 104 has a lower clad layer 112 formed on a Si substrate 111 made of, for example, and a core portion formed on the lower clad layer 112. It is composed of 104a and an upper clad layer 113 formed on the core portion 104a.
  • FIG. 2A shows a cross section taken along the line aa'of FIG. Further, in FIG. 2A, the main substrate 151 under the Si substrate 111 is omitted.
  • the first array waveguide 103 includes a plurality of lower clad layers 112 formed on the Si substrate 111 and a plurality of core portions 103a formed on the lower clad layer 112. It is composed of an upper clad layer 113 formed on the core portion 103a of the above.
  • FIG. 2B shows a cross section taken along the line bb'of FIG.
  • the Si substrate 111 is a silicon substrate
  • each clad layer is made of quartz glass
  • the core portion 103a and the core portion 104a are made of quartz glass.
  • the main substrate 151 under the Si substrate 111 is omitted.
  • the optical conversion unit 102 can be arranged over the entire surface of the output end 108 of the optical waveguide chip 101.
  • the reflecting unit 109 can be composed of a right-angle prism.
  • the right-angle prism has a surface arranged in contact with the main substrate 151, a surface orthogonal to this surface, and a hypotenuse surface adjacent to these two surfaces and facing the output end 108.
  • the hypotenuse surface becomes the reflection surface 109a.
  • the reflecting portion 109 is a columnar (triangular prism) structure having an isosceles triangle at the base at right angles.
  • FIG. 2C shows a cross section along the cc ' line of FIG.
  • a reflective film 109b formed by applying a coating material that reflects near-infrared light may be formed on the hypotenuse surface of the reflective portion 109 composed of a right-angled prism to form a reflective surface (FIG. 2D). ..
  • the optical conversion unit 102 can be arranged (filled) in the groove 114 formed so as to cross the optical waveguide following the output end 108 of the optical waveguide chip.
  • the groove 114 is arranged in the vicinity of the output end 108.
  • the near-infrared light that is demultiplexed for each wavelength by the array waveguide diffraction grating and waveguides through the first output waveguide 107 reaches the optical conversion unit 102 before the output end 108, and visible light is generated.
  • the generated visible light passes through the first output waveguide 107 (lower clad layer 112, upper clad layer 113) between the light conversion unit 102 and the output end 108, and is emitted from the output end 108.
  • the visible light emitted from the output end 108 is reflected by the reflective film 109b of the reflecting unit 109 and radiated above the main substrate 151.
  • the groove 114 can be produced by using dicing, etching, or the like.
  • the groove 114 can be formed by using a known photolithography technique and a dry etching technique.
  • the formed groove 114 is filled with a conversion material to form an optical conversion unit 102.
  • the groove 114 formed in this way can appropriately design the groove length through which light passes by designing a mask used in photolithography technology. By lengthening the groove length, the distance through which the near-infrared light passes through the light conversion unit 102 can be extended, and the wavelength conversion efficiency can be improved.
  • the output end 108 is retracted from the end of the Si substrate 111 on the output end 108 side, and the optical conversion unit 102 is provided at the output end 108 on the Si substrate 111 at this end. It can also be provided.
  • an optical conversion unit 102 may be provided at the output end 108 on the Si substrate 111 at the end portion, and a fixing member 102a made of a transparent material such as glass may be provided. it can.
  • the arrayed waveguide diffraction grating will be described in more detail.
  • the first array waveguide 103 is composed of eight waveguides and includes eight first output waveguides 107 will be described as an example (in FIG. 1, it is composed of 11 waveguides). However, in reality, there are more).
  • the multiplexed eight-wavelength light input to the first input waveguide 106 is branched into eight outputs.
  • the multiplex light input to the first input waveguide 106 is diffracted and spread by the first input side slab waveguide 104, and each of these is coupled to each waveguide of the first array waveguide 103 and guided.
  • the first array waveguide 103 has a long optical path length on the upper side (outside) of the paper surface in FIG. 1, and has a shorter optical path length at equal distances toward the lower side (inside) of the paper surface in FIG.
  • a phase difference is formed along the outside to inside waveguide of the first array waveguide 103.
  • the inclination of the fan-shaped equiphase plane generated by the shape of the slab waveguide changes depending on the wavelength, and the corresponding first output waveguide 107 is used for each wavelength.
  • Condenses optically coupled to.
  • the array waveguide diffraction grating light having multiple wavelengths can be branched (demultiplexed) for each wavelength.
  • the array waveguide 501 is bent at one place like an arc in a plan view.
  • reference numeral 502 indicates an input side slab waveguide
  • reference numeral 503 indicates an output side slab waveguide
  • reference numeral 504 indicates an input waveguide
  • reference numeral 505 indicates an output waveguide.
  • the first array waveguide 103 is bent at a plurality of points in a plan view and has a shape like a seagull wing in a plan view. This point will be described later.
  • the optical path length of each waveguide constituting the first array waveguide 103 of the arrayed waveguide diffraction grating in the embodiment will be described in detail.
  • the center wavelength ⁇ 0 of the array waveguide diffraction grating is represented by the following equation (1).
  • the center wavelength ⁇ 0 is usually the transmission center wavelength of the central port of the output port of the array waveguide grating.
  • n c represents the effective refractive index of the array waveguide
  • m represents the diffraction order.
  • the output end of the first output waveguide 107 in the uppermost stage is port 1
  • the output end of the first output waveguide 107 in the second stage is port 2
  • the first in the third stage is the first in the third stage.
  • the output end of the output waveguide 107 is the port 3
  • the output end of the first output waveguide 107 in the fourth stage is the port 4
  • the output end of the first output waveguide 107 in the fifth stage is the port 5, the sixth stage.
  • the output end of the 1-output waveguide 107 is a port 6
  • the output end of the 1st output waveguide 107 in the 7th stage is a port 7
  • the output end of the 1st output waveguide 107 in the 8th stage is a port 8.
  • the free spectral range (FSR) of the array waveguide diffraction grating is expressed by the following equation (2).
  • the free spectral range (FSR) of the array waveguide diffraction grating is set to 400 nm or more with a wavelength of 1250 nm to 1650 nm, the center wavelength ⁇ 0 is 1450 nm, the wavelength interval is 50 nm, and the first output waveguide 107 is designed to be eight, it is described above.
  • the entire wavelength range of the access system PON system can be covered.
  • the diffraction order m may be set to any of 1 to 3 from the equation (2).
  • the optical path length difference ⁇ L becomes a minute length on the order of ⁇ m, and cannot be realized by the arc structure in which the first array waveguide 103 bends at only one place. Therefore, in the embodiment, the first array waveguide 103 is configured to be bent at a plurality of locations between the central portion and the portions on both sides (both side portions) in a plan view. By providing a plurality of bending points in this way, the optical path length changes from the upper side (outside) of the paper surface of FIG. 1 to the side (inside) of the paper surface of FIG. 1 at different bending points of the first array waveguide 103. Can be reversed.
  • the first array waveguide 103 is bent so as to be convex outward in a plan view at the central portion, and bent inward in a plan view at both side portions including the central portion.
  • the optical path length becomes longer toward the outside (upper side of the paper surface in FIG. 1), but at both side portions, the optical path length becomes shorter toward the outside. ..
  • the difference in optical path length between adjacent waveguides in the central portion of the first array waveguide 103 and the difference in optical path length between adjacent waveguides in both side portions are set to different values, and the change in optical path length between the central portion and both side portions is set to some extent.
  • the function of the transmission spectrum of the array waveguide diffraction grating is represented by a Gaussian function.
  • An example of the calculation result is shown in FIG.
  • the transmission center wavelength of the output port 1 is 1275 nm.
  • the transmission center wavelength of the output port 2 is 1325 nm.
  • the transmission center wavelength of the output port 3 is 1375 nm.
  • the transmission center wavelength of the output port 4 is 1425 nm.
  • the transmission center wavelength of the output port 5 is 1475 nm.
  • the transmission center wavelength of the output port 6 is 1525 nm.
  • the transmission center wavelength of the output port 7 is 1575 nm.
  • the transmission center wavelength of the output port 8 is 1625 nm.
  • the function of the transmission spectrum will be explained.
  • the transmission function of the array waveguide diffraction grating can be expressed by Eq. (3), ignoring the loss (see Reference 3).
  • ⁇ f is the deviation from the transmission center frequency
  • ⁇ x is the distance between the center positions of the first output waveguide 107 connected to the first output side slab waveguide 105
  • ⁇ f is the center between adjacent channels.
  • the frequency interval, ⁇ 0, is the spot size.
  • FIG. 4 shows the result of calculating the transmission spectrum of each channel of the array waveguide diffraction grating using the equation (5).
  • the parameter ⁇ x / ⁇ 0 representing the steepness of the Gaussian function can be adjusted at the time of designing the array waveguide diffraction grating, and this parameter ⁇ x / ⁇ 0 is 4.5 in the embodiment.
  • the array waveguide diffraction grating of this design has a loss in the vicinity of 1380 nm due to absorption of OH groups in the quartz glass constituting the waveguide.
  • this wavelength band is not used for transmission, the operating characteristics of this array waveguide grating are not affected.
  • the calculation results shown in FIG. 4 do not take into account the calculation regarding the absorption of OH groups in the quartz glass constituting the waveguide.
  • the array waveguide diffraction grating described above has a channel spacing of 50 nm, but the temperature dependence of the demultiplexing wavelength of the interference type filter using the quartz waveguide is 0.01 nm / ° C. Even if the indoor / outdoor operating environment temperature change is 40 ° C from -5 ° C to 35 ° C, the wavelength fluctuation corresponds to about 0.4 nm due to the temperature dependence described above, which is 1/100 or less of the adjacent channel spacing. , There is no effect on demultiplexing characteristics. Therefore, when the arrayed waveguide diffraction grating described above is actually used, it is not necessary to apply temperature control using a Peltier element or the like.
  • This wavelength checker includes an optical waveguide chip 101.
  • the optical waveguide chip 101 is the same as that of the first embodiment described above.
  • the wavelength checker includes an optical waveguide chip 121 which is arranged side by side with the optical waveguide chip 101 and includes an optical waveguide that guides emitted light.
  • a plurality of linear optical waveguides are formed on the optical waveguide chip 121.
  • the optical waveguide chip 121 is formed with eight linear optical waveguides corresponding to the eight output waveguides of the optical waveguide chip 101.
  • eight linear optical waveguides are arranged at an interval of 1 mm, which is the same as the interval between the output ends of the eight output waveguides of the optical waveguide chip 101.
  • the optical conversion unit 102 is arranged near the output end 108 of the optical waveguide chip 101 or the output end 108 on the inner side of the output end 108 of the optical waveguide chip 101.
  • the optical conversion unit 102 is the same as that of the first embodiment described above.
  • the light conversion unit 102 can be formed by applying a conversion material that converts infrared light to visible light to the output end 108.
  • the optical waveguide chips 121 are arranged side by side in series with the optical waveguide chips 101 in the waveguide direction.
  • the optical waveguide chip 101 and the optical waveguide chip 121 are mounted on the optical waveguide chip 141. That is, they are laminated in two layers.
  • the lower optical waveguide chip is defined as a parent optical waveguide chip
  • the upper optical waveguide chip is defined as a child optical waveguide chip. Therefore, in the following, it will be referred to as a child optical waveguide chip 101, a child optical waveguide chip 121, and a parent optical waveguide chip 141.
  • the parent-optical waveguide chip 141 may have a planar light wave circuit formed or no optical circuit (only clad glass is on the Si substrate).
  • the child optical waveguide chip 101 and the optical waveguide chip 121 have a surface (the surface with the clad glass) on which each optical waveguide (plane light wave circuit) is formed, and the surface with the parent optical waveguide chip 141 (the surface with the clad glass). ), It is mounted on the parent optical waveguide chip 141 via a spacer (not shown).
  • the optical waveguide chip that allows light to pass through is a child optical waveguide chip.
  • the surface with the clad glass is the front surface
  • the back surface with the Si substrate can be seen when the child optical waveguide chip is viewed from above. That is, in the child optical waveguide chip, the portion of the optical circuit composed of the core and the clad comes to the lower side.
  • the parent optical waveguide chip 141 is mounted on the main substrate 151.
  • the parent optical waveguide chip 141 is adhered and fixed on the main substrate 151 with an adhesive.
  • the child optical waveguide chip 101 and the child optical waveguide chip 121 are arranged side by side in a column along the light input direction.
  • a fiber block 161 is connected to the input waveguide end of the child optical waveguide chip 101.
  • An optical fiber 162 provided with a connector 163 for inputting an optical signal to be confirmed is connected to the fiber block 161.
  • An optical fiber with a connector (not shown) is separately used for aligning the fiber block 161 and the input waveguide of the child optical waveguide chip 101.
  • the child optical waveguide chip 101 is fixed to the parent optical waveguide chip 141 with an adhesive via a spacer (not shown).
  • the child optical waveguide chip 121 is detachable from the parent optical waveguide chip 141 in a semi-fixed state, and can be replaced.
  • a plurality of first grooves 131 are formed in the parent optical waveguide chip 141, and a second groove 132 is formed in each of the child optical waveguide chip 101 and the child optical waveguide chip 121. Further, each of the plurality of first grooves 131 is fitted with the plurality of spacer members 171 in a form in which a part thereof protrudes from the parent optical waveguide chip 141.
  • each of the second groove 132 of the child optical waveguide chip 101 and the second groove 132 of the child optical waveguide chip 121 is fitted with the protruding portion of any one of the plurality of spacer members 171.
  • the position of the second groove 132 is arranged so as to avoid the waveguide portion (core) portion of the child optical waveguide chip 101 and the child optical waveguide chip 121.
  • the number of grooves may be three or more.
  • the first groove 131 is formed in the clad layer 143 of the parent optical waveguide chip 141.
  • the first groove 131 is formed by penetrating the clad layer 143 and reaching the substrate 142.
  • the second groove 132 is formed in the clad layer 124 including the core 123 of the child optical waveguide chip 121. The second groove 132 penetrates the clad layer 124 and reaches the substrate 122 to be formed.
  • the first groove 131 and the second groove 132 can be formed by a known photolithography technique and an etching technique (reactive ion etching or the like).
  • the first groove 131 is formed by etching the clad layer 143 with the mask pattern formed by the photolithography technique as a mask and the substrate 142 as the etching stop layer.
  • the second groove 132 is formed by etching the clad layer 124 with the mask pattern formed by the photolithography technique as a mask and the substrate 122 as the etching stop layer.
  • the accuracy (deviation amount) of the position in the plane direction with respect to the design of the first groove 131 and the second groove 132 formed in this way is determined by the position accuracy of the mask pattern and the deviation amount of the position at the time of etching.
  • the position accuracy of the mask pattern is submicron or less, and the misalignment in reactive ion etching is also submicron or less. Therefore, the position in the plane direction in which the first groove 131 and the second groove 132 are formed is 1 ⁇ m or less with respect to the design.
  • the depth of the first groove 131 is determined by the thickness of the clad layer 143
  • the depth of the second groove 132 is determined by the thickness of the clad layer 124.
  • the accuracy of the thickness of the clad layer 143 and the accuracy of the thickness of the clad layer 124 are determined on the submicron order by, for example, a well-known glass deposition technique. Further, the position of the core 123 embedded in the clad layer 124 in the thickness direction is also the same.
  • the spacer member 171 can be formed by cutting an optical fiber to a predetermined length, for example, and the accuracy of the diameter of each spacer member 171 can be determined on the order of submicrons. Therefore, the position accuracy of the child optical waveguide chip 121 in the thickness direction is also determined within 1 ⁇ m.
  • the child optical waveguide chip 101 mounted on the parent optical waveguide chip 141 and the child optical waveguide chip 121 can accurately match the positions of the core centers of the corresponding optical waveguides. it can.
  • the alignment between the plurality of child chips mounted on the parent light chip as described above is performed under the condition that each chip is not warped.
  • Reference 4 Reference 5, and Reference 6.
  • This optical mounting form is called PPPP (Pluggable Photonic Circuit Platform).
  • the child optical waveguide chip 121 mounted by PPPP is characterized in that it is removable. Therefore, the child optical waveguide chips 121 having various functions can be interchanged and used, and various functions can be flexibly provided. So to speak, it can be said that PPPP has characteristics like an optical circuit (optical chip) version of an electronic block.
  • a substrate 122 made of Si is prepared.
  • the lower clad layer 124a is formed on the substrate 122, and the core forming layer 301 is formed on the lower clad layer 124a.
  • the lower clad layer 124a and the core cambium 301 can be formed by the flame deposition (FHD) method.
  • a raw material gas main component: silicon tetrachloride
  • heat-hydrolyzed glass fine particles are deposited on the substrate 122 to form a first fine particle layer to be a lower clad layer 124a. ..
  • glass fine particles having different compositions are deposited on the first fine particle layer to form a second fine particle layer to be the core forming layer 301. ..
  • the lower clad layer 124a and the core forming layer are formed. Let it be 301.
  • these layers can also be formed by a chemical vapor deposition method.
  • the core 123 is formed as shown in FIG. 7C by patterning the core forming layer 301 by a known lithography technique and etching technique used for manufacturing a semiconductor device. For example, a resist pattern is formed on the core forming layer 301 on the portion to be the core 123 by a photolithography technique. Next, using the formed resist pattern as a mask, the core forming layer 301 is etched by reactive ion etching (RIE), and the other core forming layer is removed leaving a portion to be the core 123. After that, if the resist pattern is removed, the core 123 can be formed.
  • RIE reactive ion etching
  • the upper clad layer 124b is formed on the core 123. Similar to the lower clad layer 124a described above, the upper clad layer 124b can be formed by the FHD method.
  • the upper clad layer 124b and the lower clad layer 124a are penetrated to reach the substrate 122.
  • the second groove 132 is formed.
  • a resist pattern having an opening at a position where the second groove 132 is formed is formed on the upper clad layer 124b by a photolithography technique.
  • the upper clad layer 124b and the lower clad layer 124a are etched by RIE to remove the portion to be the second groove 132.
  • the second groove 132 can be formed.
  • the substrate 122 is made of Si, it functions as an etching stop layer when the layer made of quartz glass is processed by RIE.
  • FIG. 8A and 8B show an enlarged cross section of the exit portion of the child optical waveguide chip 121.
  • the light conversion unit 102 is provided on the surface of the output end 108 of the optical waveguide chip 101, and the reflection film 109b is provided on the hypotenuse surface of the reflection unit 109 composed of prisms.
  • the output end 108 is retracted from the end of the Si substrate 111 on the output end 108 side, and an optical conversion unit 102 is provided at the output end 108 on the Si substrate 111 at this end. Therefore, the fixing member 102a made of a transparent material such as glass is provided.
  • the reflective film 109b is provided on the hypotenuse surface of the reflective portion 109 composed of prisms.
  • MFD Mode Field Diameter
  • spot size 3 ⁇ m
  • the mode field diameter is approximately the mode field diameter realized by an optical waveguide having a core cross-sectional dimension of 4.5 ⁇ m ⁇ 4.5 ⁇ m (rectangle) and a specific refractive index difference of 1.5% between the core and the clad.
  • the spot size is half that of MFD.
  • the beam spread is calculated by approximating the electric field distribution in the optical waveguide to a Gaussian distribution.
  • the light (beam) that has been guided through the child optical waveguide chip 121 and made visible by the optical conversion unit 102 is reflected above the main substrate 151 by the reflective film 109b.
  • Equation (6) the beam diameter at the point where the distance z propagates from the emission end surface is expressed by the equation (6). This is described in detail in reference 7.
  • is the wavelength. Equation (6) can be approximated by Equation (7) under the condition that the squared term in ⁇ of Equation (6) is sufficiently larger than 1 (in this case, z> about 100 ⁇ m).
  • FIG. 9 is a graph plotting the equation (7). From the formula (7), it can be seen that when the light (beam) propagates at a distance of about 6 mm, the spot size becomes 1000 ⁇ m and the MFD becomes 2 mm, which is the same as the waveguide pitch.
  • the transmission spectrum of the child optical waveguide chip 121 is the same as that of the first embodiment, and is shown in FIG. The spectrum is obtained.
  • the child optical waveguide chip 121a includes an array waveguide diffraction grating having a narrow interval between demultiplexing wavelengths.
  • reference numeral 125 is a second array waveguide
  • reference numeral 126 is a second input side slab waveguide
  • reference numeral 127 is a second output side slab waveguide
  • reference numeral 128 is a second input side waveguide, reference numeral 129. Indicates the second output waveguide, respectively.
  • a part of the second output waveguide 129 is omitted.
  • FIG. 11 shows the connection state between the child optical waveguide chip 101 and the child optical waveguide chip 121a.
  • FIG. 11 a case where the second input waveguide 128 of the child optical waveguide chip 121a is optically connected to the port 7 of the first output waveguide 107 of the child optical waveguide chip 101 will be examined.
  • the transmission wavelength spectrum of the array waveguide diffraction grating (with a narrow interval of demultiplexing wavelengths) of the child optical waveguide chip 121 is shown in FIG.
  • This spectrum is the result calculated using the equation (5).
  • the transmission spectrum of the array waveguide diffraction grating of the child optical waveguide chip 101 has a broad spectrum as shown in FIG. Since the transmission spectrum in the configuration in which the child optical waveguide chip 101 and the child optical waveguide chip 121a are connected is a combination of the spectrum shown in FIG. 12 and the spectrum shown in FIG. 13, the spectrum is as shown in FIG.
  • the transmission spectrum when the child optical waveguide chip 101 is combined with the child optical waveguide chip 121 composed of a linear optical waveguide is as shown in FIG. 4, and the wavelength resolution is 50 nm.
  • the wavelength resolution is 5 nm, and it can be seen that the wavelength can be confirmed with higher definition. ..
  • the measurement range is as wide as 400 nm, which is 1250 nm to 1650 nm, as shown in FIG.
  • the band is narrow as shown in FIG.
  • the wavelength resolution and measurement range of the wavelength checker can be flexibly changed.
  • the wavelength of the wavelength region from 1550 nm to 1600 nm is confirmed with higher definition by using an array waveguide diffraction grating with a narrow wavelength interval.
  • the array waveguide diffraction of the child optical waveguide chip 101 If an array waveguide grating with 5 nm intervals and 10 ports corresponding to the wavelength range output from this is prepared and connected to another output port of the lattice, the wavelength can be confirmed with a wavelength resolution of 5 nm even in other wavelength ranges. Understand.
  • an explanation will be added for an array waveguide diffraction grating with a narrow interval between demultiplexing wavelengths.
  • a thing having a free spectral range (FSR) equal to the channel interval ⁇ the number of channels is called a cyclic array waveguide diffraction grating (circular array waveguide diffraction grating). If the above-mentioned circumferential array waveguide diffraction grating is used for the array waveguide diffraction grating with a narrow wavelength interval, the optical chip connected to the child optical waveguide chip 101 can be shared by the same orbital array waveguide diffraction grating. ..
  • wavelengths are demultiplexed for each wavelength by an array waveguide diffraction grating, and a material that converts near-infrared light into visible light (wavelength conversion material) is irradiated with light.
  • An inspection method for visually confirming the wavelength from the port can also be proposed. Since the broad interpretation of the array waveguide diffraction grating is a diffraction grating (grating), the wavelength is separated for each wavelength by the diffraction grating (grating), the wavelength conversion material is irradiated, and the wavelength is visually observed from the shining position. An inspection method to confirm can also be proposed. These inspection methods have a feature that wavelength inspection can be easily performed without using a power source or the like.
  • the wavelength checker according to the third embodiment of the present invention will be described with reference to FIG.
  • the child optical waveguide chip 101a shown in FIG. 15 is used instead of the child optical waveguide chip 101.
  • the main first input waveguide 106a and the sub-first input waveguide 106b are connected to the input side of the first input side slab waveguide 104.
  • the other configuration is the same as that of the child optical waveguide chip 101, and is composed of a linear optical waveguide in which a plurality of linear optical waveguides are formed.
  • the first input side slab waveguide 104 of the main first input waveguide 106a The waveguide distance between the connection portion with and the connection portion of the sub-first input waveguide 106b with the first input side slab waveguide 104 is set to ⁇ x out / 2. Further, in the child optical waveguide chip 101a, the first input side slab waveguide 104, the first array waveguide 103, and the first output side slab waveguide 105 have a plan view shape of the first input side slab waveguide 104.
  • the first input side slab waveguide 104 has an arc having the same curvature as the side in contact with the input waveguide and the side in contact with the array waveguide. Therefore, the center of the input-side slab waveguide is the intersection of the straight lines diagonally connecting the four points where the straight line and the arc intersecting the outer shape of the slab waveguide. The same applies to the first output side slab waveguide 105.
  • the shapes of the first input side slab waveguide 104, the first array waveguide 103, and the first output side slab waveguide 105 are line-symmetrical, the following holds.
  • the wavelength division multiplexing light input to the sub-first input waveguide 106b is transmitted to each of the first output waveguide 107.
  • the transmission center wavelength is branched at equal intervals such as ⁇ 2, ⁇ 3, ⁇ 4, ... ⁇ 9. This is because the sub-first input waveguide 106b is displaced by one, so that the wave plane when reaching the first array waveguide 103 is tilted, and as a result, the wave plane when reaching the first output waveguide 107 is tilted. This is because the same wavelength will be focused on the first output waveguide 107, which is deviated by one.
  • the spectrum (calculated value) input from the main first input waveguide 106a and transmitted through the array waveguide diffraction grating is obtained.
  • the spectrum is the same as the transmission spectrum of the child optical waveguide chip 101. That is, the transmission center wavelengths of the first output waveguide 107 are 1275 nm, 1325 nm, 1375 nm, 1425 nm, 1475 nm, 1525 nm, 1575 nm, and 1625 nm.
  • the spectra (calculated values) input from the sub-first input waveguide 106b and transmitted through the array waveguide diffraction grating are shifted by half the wavelength interval as shown in FIG. 17B, and are 1300 nm, 1350 nm, 1400 nm, and 1450 nm.
  • the wavelengths are 1500 nm, 1550 nm, 1600 nm, and 1650 nm. That is, the transmission spectrum from the main first input waveguide 106a and the spectrum from the sub-first input waveguide 106b are staggered.
  • the effect of having the main first input waveguide 106a and the sub first input waveguide 106b is as follows.
  • the transmittance is low, so that the near-infrared light is changed to visible light.
  • the converted light is also weakened, and the light emitted by the light conversion unit 102 may not be recognized.
  • the transmitted light intensity at the port 1 and the port 2 at the wavelength of 1300 nm in FIG. 17A is deteriorated by 20 dB as compared with the most transmitted wavelength (wavelength 1275 nm or 1325 nm).
  • the transmitted light intensity of the port 1 at a wavelength of 1300 nm is increased by inputting the signal light to the sub first input waveguide 106b as well. , The most transmitted wavelength.
  • FIG. 18 by using the main first input waveguide 106a and the sub first input waveguide 106b, as shown in FIG. 18 in which FIGS. 17A and 17B are superimposed, even the least transmitted wavelength is compared with the maximum transmitted wavelength. It can be seen that 5 dB deterioration is sufficient.
  • the optical waveguide chip is formed by providing a reflecting unit at a position facing the light emitting end surface and using a conversion material for converting infrared light into visible light. Since it is placed near the light emitting end face or the light emitting end face on the inner side of the optical waveguide chip, it is easy to check the presence or absence of signal light when opening the PON system and isolating failures. become.
  • Array waveguide diffraction grid 121 ... Optical waveguide chip, 121a ... Child optical waveguide chip, 121b ... Child optical waveguide chip, 122 ... substrate, 123 ... core, 124 ... clad layer, 124a ... lower clad layer, 124b ... upper clad layer, 125 ... second array waveguide, 126 ... second input side slab waveguide, 127 ... 2nd output side slab waveguide, 128 ... 2nd input waveguide, 129 ... 2nd output waveguide, 131 ... 1st groove, 132 ... 2nd groove, 141 ... Optical waveguide chip, 142 ... Substrate, 143 ... Clad layer , 151 ...
  • Main board 161 ... Fiber block, 162 ... Optical fiber, 163 ... Connector, 171 ... Spacer member, 501 ... Array waveguide, 502 ... Input side slab waveguide, 503 ... Output side slab waveguide, 504 ... Input guide Waveguide, 505 ... Output waveguide.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

光変換部(102)は、赤外光を可視光に変換する変換材料から構成されている。反射部(109)は、主基板(151)の上の、外部空間に光を出力する側の光導波路チップ101の出力端(108)と対向する位置に固定されている。また、反射部(109)は、出力端108に面し、反射の方向が主基板(151)の上方となるように、主基板(151)の平面に対して斜めとされている反射面(109a)を備える。反射面(109a)は、近赤外光を反射する。

Description

波長チェッカー
 本発明は、波長チェッカーに関し、より具体的には、PONシステムの開通・故障切り分け調査における信号光の確認など行う波長チェッカーに関する。
 光通信システムのアクセス系PON(Passive Optical Network)システムでは、波長1.3μmと波長1.5~1.6μmとなど、波長が比較的離れた複数の光を同時に用いることがある。
 非特許文献1によると、すでに導入されているGE-PON(G-PON)システムでは、ユーザから局舎への信号(上り信号)として、1260nm~1360nm(G-PONにおいてはRegular帯域のみ記載)の波長が用いられている。また、G-PONシステムでは、局舎からユーザへの信号(下り信号)として、1480nm~1500nmの波長が用いられ、下りの映像信号としては、1550nm~1560nmの波長が用いられている。
 今後、導入される予定の10G-EPON(XG-PON)システムも同様に、波長1.3μmと波長1.5~1.6μmの波長が用いられる。最近標準化が完了したNG-PON2システムでは、上り信号が1524nm~1544nm(Wide帯域)、下り信号が1596nm~1603nm、下りの映像信号が1550nm~1560nmの波長が用いられている。なお、オプションのPtPWDM(Point To Point Wavelength Division Multiplex)オーバーレイは、説明を省略する。このシステムでは、GE-PON(G-PON)、10G-EPON(XG-PON)と異なり、波長多重が行われる。これらの波長配置について、図19に示す。
 ところで、GE-PONなどのPONシステムでは、開通試験において、光パワーを確認している。今後、GE-PONから10G-EPONへの移行時には、より多くの様々な波長が用いられるようになる。このような状況における試験では、波長が確認できれば信号の種類が判別でき、故障の切り分けが容易となり、作業効率を上げられる可能性がある。
胡間 遼 他、「PONシステムのさらなる高速化に関する標準化動向」、NTT技術ジャーナル、2017年8月号、51-53頁。
 ところで、波長を測定する手段としては、光スペクトラムアナライザがある。しかしながら、光スペクトラムアナライザは、回折格子を動かして得られる回折光を検出器で検知するための可動部分があるため、装置が大きく、重量が大きいため、可搬性に難があった。また、一般に100Vの電源が必要であるといった欠点もあった。このように、従来では、PONシステムの開通・故障切り分け調査において信号光が来ているかどうかの確認などが、容易に実施できないという問題があった。
 本発明は、以上のような問題点を解消するためになされたものであり、PONシステムの開通、故障切り分けなどにおける信号光の有無の確認などが、容易に実施できるようにすることを目的とする。
 本発明に係る波長チェッカーは、光導波路チップと近赤外光を可視光に変換する変換材料から構成された光変換部を備える波長チェッカーにおいて、光ファイバーと接続している側の光導波路チップがアレイ導波路回折格子を含み、かつ主基板の上に搭載されており、主基板の上の、外部空間に光を出力する側の光導波路チップの光出射端面と対向する位置に反射部が固定されており、反射部は、光出射端面に面し、反射の方向が主基板の上方となるように、主基板の平面に対して斜めとされている反射面を備え、光変換部は、光導波路チップの光出射端面、または光導波路チップの光出射端面より内部の側の光出射端面の近傍に配置されている。
 以上説明したように、本発明によれば、光出射端面と対向する位置に反射部を設け、赤外光を可視光に変換する変換材料から構成された光変換部を、光導波路チップの光出射端面、または光導波路チップの光出射端面より内部の側の光出射端面の近傍に配置したので、PONシステムの開通、故障切り分けなどにおける信号光の有無の確認などが、容易に実施できる。
図1は、本発明の実施の形態1に係る波長チェッカーの構成を示す平面図である。 図2Aは、本発明の実施の形態1に係る波長チェッカーの一部構成を示す断面図である。 図2Bは、本発明の実施の形態1に係る波長チェッカーの一部構成を示す断面図である。 図2Cは、本発明の実施の形態1に係る波長チェッカーの一部構成を示す断面図である。 図2Dは、本発明の実施の形態1に係る波長チェッカーの他の一部構成を示す断面図である。 図2Eは、本発明の実施の形態1に係る波長チェッカーの一部構成を示す断面図である。 図2Fは、本発明の実施の形態1に係る波長チェッカーの他の一部構成を示す断面図である。 図3は、アレイ導波路回折格子の構成を示す平面図である。 図4は、光導波路チップ101におけるアレイ導波路回折格子の透過スペクトルの計算結果を示す特性図である。 図5Aは、本発明の実施の形態2に係る波長チェッカーの構成を示す斜視図である。 図5Bは、本発明の実施の形態2に係る波長チェッカーの一部構成を示す側面図である。 図5Cは、本発明の実施の形態2に係る波長チェッカーの一部構成を示す平面図である。 図6Aは、本発明の実施の形態2に係る波長チェッカーの一部構成を示す斜視図である。 図6Bは、本発明の実施の形態2に係る波長チェッカーの一部構成を示す断面図である。 図7Aは、本発明の実施の形態2に係る波長チェッカーを構成する子光導波路チップの製造方法を説明するための断面図である。 図7Bは、本発明の実施の形態2に係る波長チェッカーを構成する子光導波路チップの製造方法を説明するための断面図である。 図7Cは、本発明の実施の形態2に係る波長チェッカーを構成する子光導波路チップの製造方法を説明するための断面図である。 図7Dは、本発明の実施の形態2に係る波長チェッカーを構成する子光導波路チップの製造方法を説明するための断面図である。 図7Eは、本発明の実施の形態2に係る波長チェッカーを構成する子光導波路チップの製造方法を説明するための断面図である。 図8Aは、本発明の実施の形態2に係る波長チェッカーの光変換部近傍の構成を示す断面図である。 図8Bは、本発明の実施の形態2に係る波長チェッカーの光変換部近傍の他の構成を示す断面図である。 図9は、式(7)をプロットした特性図である。 図10は、本発明の実施の形態2に係る他の波長チェッカーの一部構成を示す平面図である。 図11は、本発明の実施の形態2に係る他の波長チェッカーの一部構成を示す平面図である。 図12は、子光導波路チップ121aにおけるアレイ導波路回折格子の透過スペクトルの計算結果を示す特性図である。 図13は、光導波路チップ101のアレイ導波路回折格子の透過スペクトルの計算結果を示す特性図である。 図14は、図12に示すスペクトルと図13に示すスペクトルを合成したスペクトルを示す特性図である。 図15は、本発明の実施の形態3に係る波長チェッカーの一部構成を示す平面図である。 図16Aは、本発明の実施の形態3に係る波長チェッカーの一部構成を示す平面図である。 図16Bは、本発明の実施の形態3に係る波長チェッカーの一部構成を示す平面図である。 図17Aは、光導波路チップ101aの主第1入力導波路106aから入力されてアレイ導波路回折格子を透過するスペクトルの計算結果を示す特性図である。 図17Bは、光導波路チップ101aの副第1入力導波路106bから入力されてアレイ導波路回折格子を透過するスペクトルの計算結果を示す特性図である。 図18は、図17Aに示すスペクトルと図17Bに示すスペクトルを合成したスペクトルを示す特性図である。 図19は、NG-PON2、10G-EPON(XG-PON)、GE-PON(G-PON)の波長配置の関係を説明するための説明図である。
 以下、本発明の実施の形態に係る波長チェッカーについて説明する。
[実施の形態1]
 はじめに、本発明の実施の形態1に係る波長チェッカーについて、図1、図2A~図2Dを参照して説明する。
 この波長チェッカーは、光導波路チップ101を備える。光導波路チップ101には、公知のアレイ導波路回折格子が形成されている(参考文献1参照)。このアレイ導波路回折格子は、第1アレイ導波路103、第1入力側スラブ導波路104、第1出力側スラブ導波路105、第1入力導波路106、および第1出力導波路107を備える。図1では、波長チェッカーの平面を示している。なお、符号151は、主基板、符号109は反射部、符号102は近赤外光を可視光に変換する変換材料から構成された光変換部である。また、符号161はファイバーブロック、符号162は光ファイバー、符号163はコネクターである。
 第1アレイ導波路103は、一定の光路長差を有する複数の導波路から構成されている。第1アレイ導波路103は、隣り合う2つの導波路の光路長差が一定とされている。第1入力側スラブ導波路104は、第1アレイ導波路103の光入力端に接続されている。第1出力側スラブ導波路105は、第1アレイ導波路103の光出力端に接続されている。第1入力導波路106は、第1入力側スラブ導波路104の入力側に接続されている。第1出力導波路107は、複数設けられ、第1出力側スラブ導波路105の出力側に接続されている。
 光変換部102は、赤外光を可視光に変換する変換材料から構成されている。反射部109は、主基板151の上の、外部空間に光を出力する側の光導波路チップ101の出力端(光出射端面)108と対向する位置に固定されている。また、反射部109は、出力端108に面し、反射の方向が主基板151の上方となるように、主基板151の平面に対して斜めとされている反射面109aを備える(図2C)。反射面109aは、近赤外光を反射する。反射部109を、例えばアルミニウムまたはアルミニウムの合金などの金属から構成することができる。また、このような金属から構成した反射部109の、出力端108を向く面を鏡面加工することで、反射面109aとすることができる。また、例えば、近赤外光を反射するコーティング材を塗布することで形成された反射膜109bにより反射面を構成することもできる(図2D,図2E,図2F)。反射膜109bを形成する場合、反射膜109bの出力端108を向く面が、反射面であるということもできる。
 光変換部102は、光導波路チップ101の出力端108、または光導波路チップ101の出力端108より内部の側の出力端108の近傍に配置されている。光変換部102は、光導波路チップ101の出力端108の近傍で、導波している光、または出射した光の通過する箇所に配置されている。なお、光変換部102は、複数の第1出力導波路107が配列されている方向に延在して形成されている。光変換部102は、例えば、複数の第1出力導波路107の配列の一端側から他端側にかけて延在している。
 変換材料は、例えば、近赤外光を可視光に変換するりん光体または蛍光体である。変換材料を、例えば、熱硬化型のシリコーン樹脂に混合し、加熱して硬化させることで光変換部102とすることができる。例えば、「Lumitek International」社製のフォスファー(Phosphor)を用いることができる。例えば、変換材料には、感度が700nm~1700nmにあるものもある。
 実施の形態1における波長チェッカーによれば、アレイ導波路回折格子により波長毎に分波され、第1出力導波路107を導波し、例えば出力端108より出射した近赤外光が光変換部102に到達し、可視光が発生する。発生した可視光は、反射部109の反射面109a(反射膜109b)で反射し、主基板151の上方に放射されるので、主基板151の上方において目視可能である。また、可視光は、出射した近赤外光が到達した箇所より発生するため、可視光が発生した箇所より、近赤外光が出射した第1出力導波路107が特定可能である。各々の第1出力導波路107に、分波されて導波する近赤外光の波長は既知であるので、可視光が発生した(目視された)箇所を確認することで、波長の確認が可能となる。
 なお、図2Aに示すように、第1入力側スラブ導波路104は、例えばSiからなるSi基板111の上に形成された下部クラッド層112と、下部クラッド層112の上に形成されたコア部104aと、コア部104aの上に形成された上部クラッド層113とから構成されている。なお、図2Aは、図1のaa’線における断面を示している。また、図2Aでは、Si基板111の下にある主基板151は省略している。
 また、図2Bに示すように、第1アレイ導波路103は、Si基板111の上に形成された下部クラッド層112と、下部クラッド層112の上に形成された複数のコア部103aと、複数のコア部103aの上に形成された上部クラッド層113とから構成されている。なお、図2Bは、図1のbb’線における断面を示している。例えば、Si基板111は、シリコン基板であり、各クラッド層は、石英系ガラスから構成され、コア部103a、コア部104aは、石英系ガラスから構成されている。なお、図2Bでは、Si基板111の下にある主基板151は省略している。
 ここで、図2Cに示すように、光変換部102は、光導波路チップ101の出力端108の面の全域に配置することができる。また、反射部109は、直角プリズムから構成することができる。直角プリズムは、主基板151に接して配置される面と、この面に直交する面と、これらの2つの面に隣接し、出力端108を向く斜辺面とを有する。斜辺面が反射面109aとなる。反射部109は、底辺を直角に等辺三角形とする柱状(三角柱)の構造体である。図2Cは、図1のcc'線における断面を示している。また、直角プリズムから構成した反射部109の斜辺面に、近赤外光を反射するコーティング材を塗布することで形成された反射膜109bを形成して反射面とすることもできる(図2D)。
 また、図2Dに示すように、光変換部102は、光導波路チップの出力端108に続く光導波路を横切るように形成された溝114に配置(充填)することもできる。溝114は、出力端108の近傍に配置する。この場合、アレイ導波路回折格子により波長毎に分波され、第1出力導波路107を導波する近赤外光は、出力端108の手前で光変換部102に到達し、可視光が発生する。発生した可視光は、光変換部102と出力端108との間の第1出力導波路107(下部クラッド層112,上部クラッド層113)を透過し、出力端108より出射する。出力端108より出射した可視光は、反射部109の反射膜109bで反射し、主基板151の上方に放射される。
 溝114は、ダイシングやエッチングなどを用いて作製できる。例えば、公知のフォトリソグラフィ技術とドライエッチング技術とを用いることで、溝114を形成することができる。形成した溝114に変換材料を充填することで、光変換部102とする。このように形成した溝114は、フォトリソグラフィ技術に用いるマスクの設計で、光が通る溝長を適切に設計できる。溝長を長くすることで、近赤外光が光変換部102を通る距離を伸ばし、波長変換効率を上げることができる。
 また、図2Eに示すように、出力端108を、出力端108の側のSi基板111の端部より後退させ、この端部におけるSi基板111の上において、出力端108に光変換部102を設けることもできる。
 また、図2Fに示すように、上述同様に、端部におけるSi基板111の上において、出力端108に光変換部102を設け、加えて、ガラスなどの透明材料による固定部材102aを設けることもできる。
 以下、アレイ導波路回折格子についてより詳細に説明する。以下では、第1アレイ導波路103が、8本の導波路から構成され、8本の第1出力導波路107を備える場合を例に説明する(図1では11本の導波路から構成されるように記載しているが、実際はもっと多い)。このアレイ導波路回折格子は、第1入力導波路106に入力された多重された8波長の光が、8出力に分岐される。
 まず、第1入力導波路106に入力された多重光は、第1入力側スラブ導波路104で回折して広がり、これらの各々が、第1アレイ導波路103の各導波路に結合して導波する。第1アレイ導波路103は、図1の紙面上側(外側)では光路長が長く、図1の紙面下側(内側)に行くに従ってい、等距離で光路長が短くなっている。第1アレイ導波路103の終端では、第1アレイ導波路103の外側から内側の導波路に沿って位相差がつく。従って、第1出力側スラブ導波路105に入射した際には、スラブ導波路の形状により生じた扇型の等位相面の傾きが波長によって変わり、波長毎に、対応する第1出力導波路107に集光(光学的に結合)するようになる。これらの結果、アレイ導波路回折格子によれば、波長が多重した光を、波長毎に分岐(分波)することができる。
 なお、一般に用いられているアレイ導波路回折格子は、図3に示すように、アレイ導波路501が、平面視で円弧のように1カ所で屈曲している。なお、図3において、符号502は、入力側スラブ導波路、符号503は、出力側スラブ導波路、符号504は、入力導波路、符号505は、出力導波路をそれぞれ示している。これに対し、実施の形態におけるアレイ導波路回折格子では、第1アレイ導波路103が、平面視で複数の箇所で屈曲し、平面視でカモメの翼のような形状としている。この点については、後述する。
 以下、実施の形態におけるアレイ導波路回折格子の、第1アレイ導波路103を構成する各導波路の光路長について詳細に説明する。第1アレイ導波路103における隣り合う導波路の光路長差をΔLとすると、アレイ導波路回折格子の中心波長λ0は、以下の式(1)で表される。中心波長λ0は、通常アレイ導波路回折格子の出力ポートの中央のポートの透過中心波長である。なお、式(1)において、ncはアレイ導波路の実効屈折率、mは回折次数を表す。
 この例では、図1の紙面上側より、最も上段の第1出力導波路107の出力端をポート1、2段目の第1出力導波路107の出力端をポート2、3段目の第1出力導波路107の出力端をポート3、4段目の第1出力導波路107の出力端をポート4、5段目の第1出力導波路107の出力端をポート5、6段目の第1出力導波路107の出力端をポート6、7段目の第1出力導波路107の出力端をポート7、8段目の第1出力導波路107の出力端をポート8とする。
Figure JPOXMLDOC01-appb-M000001
 また、アレイ導波路回折格子のフリースペクトラルレンジ(FSR)は、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 なお、式(1)、式(2)に関しては、参考文献2、参考文献3を参照されたい。
 例えば、アレイ導波路回折格子のフリースペクトラルレンジ(FSR)を波長1250nm~1650nmの400nm以上にとり、中心波長λ0を1450nm、波長間隔を50nm、第1出力導波路107を8本に設計すると、前述したアクセス系PONシステムの全波長領域がカバーできることになる。この場合、FSRの中心波長は1450nmであるから、式(2)から、回折次数mを1~3のいずれかに設定すればよいことになる。
 ここで、(1)式より、光路長差ΔLは、μmオーダの微小な長さになり、第1アレイ導波路103が、1カ所のみで屈曲する円弧構造では実現できなくなる。このため、実施の形態では、第1アレイ導波路103を、平面視で中央部とこの両脇の部分(両脇部)との複数の箇所で屈曲する構造としている。このように、屈曲箇所を複数設けることで、第1アレイ導波路103の異なる屈曲箇所で、図1の紙面上側(外側)から図1の紙面した側(内側)へかけての光路長の変化を逆転させることができる。
 例えば、第1アレイ導波路103を、中央部では、平面視で外側に凸となるように屈曲させ、中央部を挾む両脇部では、平面視で内側に凸となるように屈曲させる。この構成とすることで、第1アレイ導波路103の中央部では、外側(図1の紙面上側)へ行くほど光路長が長くなるが、両脇部は、外側へ行くほど光路長が短くなる。第1アレイ導波路103の中央部における隣り合う導波路間の光路長差と、両脇部における隣り合う光路長差とを異なる値とし、中央部と両脇部とで光路長の変化をある程度相殺させることで、第1アレイ導波路103の全体における微小な長さの光路長差が設定できるようになる。上述した光路長差の詳しい設計は、参考文献1に記載されている。
 アレイ導波路回折格子(光導波路チップ101)の透過スペクトルの関数は、ガウス関数で表される。計算の結果例について、図4に示す。出力ポート1の透過中心波長は、1275nmである。出力ポート2の透過中心波長は、1325nmである。出力ポート3の透過中心波長は、1375nmである。出力ポート4の透過中心波長は、1425nmである。出力ポート5の透過中心波長は、1475nmである。出力ポート6の透過中心波長は、1525nmである。出力ポート7の透過中心波長は、1575nmである。出力ポート8の透過中心波長は、1625nmである。
 透過スペクトルの関数について説明する。アレイ導波路回折格子の透過関数は、損失を無視すれば、式(3)で表すことができる(参考文献3参照)。
Figure JPOXMLDOC01-appb-M000003
 式(3)において、δfは透過中心周波数からの偏差、Δxは第1出力側スラブ導波路105に接続している第1出力導波路107の中心位置の間隔、Δfは隣り合うチャンネル間の中心周波数の間隔、ω0はスポットサイズである。
 ここで、δλを透過中心波長からの偏差、Δλを隣り合うチャンネル間の中心波長の間隔とすると以下の(4)式が成り立ち、式(4)を式(3)に代入すると、式(5)が得られる。周波数領域で表されている式(3)が、式(5)により波長領域で表される。
Figure JPOXMLDOC01-appb-M000004
 図4は、アレイ導波路回折格子の各チャンネルの透過スペクトルを、式(5)を用いて計算した結果を示している。なお、ガウス関数の急峻さを表すパラメータΔx/ω0は、アレイ導波路回折格子の設計時に調整することができ、このパラメータΔx/ω0は、実施の形態では4.5としている。
 ところで、1250nm~1650nmと波長領域が広いので、導波路を構成する石英ガラス中のOH基の吸収により、1380nm近傍の損失などがこの設計のアレイ導波路回折格子にはある。しかしながら、この波長帯は伝送に用いていないので、このアレイ導波路回折格子の動作特性に影響はない。図4に示す計算結果は、導波路を構成する石英ガラス中のOH基の吸収に関する計算を考慮していない。
 また、上述したアレイ導波路回折格子は、チャンネル間隔が50nmあるが、石英系導波路を用いた干渉型のフィルタの分波波長の温度依存性は、0.01nm/℃である。屋内・屋外での使用環境温度変化が-5℃から35℃の40℃としても、上述した温度依存性より波長変動は約0.4nmに相当し、隣り合うチャンネル間隔の1/100以下であり、分波特性に影響はない。従って、上述したアレイ導波路回折格子を実際に使用する際には、ペルチェ素子などを用いて温調をかける必要はない。
 また、石英系導波路では、透過スペクトルのTE/TM偏波依存性が0.1~0.2nm程度あるが、本アレイ導波路回折格子は、隣り合うチャンネル間隔=分解能が50nmと大きいので、偏波依存性は無視できる。
[実施の形態2]
 次に、本発明の実施の形態2に係る波長チェッカーについて、図5A,図5B,図5Cを参照して説明する。
 この波長チェッカーは、光導波路チップ101を備える。光導波路チップ101は、前述した実施の形態1と同様である。また、この波長チェッカーは、光導波路チップ101に並んで配置され、出射光を導波する光導波路を備える光導波路チップ121を備える。光導波路チップ121には、複数の直線光導波路が形成されている。例えば、光導波路チップ101の8本の出力導波路に対応し、光導波路チップ121には、8本の直線光導波路が形成されている。また、光導波路チップ101の8本の出力導波路の出力端の間隔と同じ1mm間隔で、8本の直線光導波路が配列されている。
 実施の形態2において、光変換部102は、光導波路チップ101の出力端108、または光導波路チップ101の出力端108より内部の側の出力端108の近傍に配置されている。光変換部102は、前述した実施の形態1と同様である。例えば、出力端108に、赤外光を可視光に変換する変換材料を塗布することで、光変換部102が形成できる。また、光導波路チップ121は、導波方向に光導波路チップ101に直列に並んで配置されている。
 また、実施の形態2では、光導波路チップ101、光導波路チップ121は、光導波路チップ141の上に搭載されている。つまり、2層に積層されている。下の光導波路チップを親光導波路チップ、上の光導波路チップを子光導波路チップと定義する。従って、以下では、子光導波路チップ101、子光導波路チップ121、親光導波路チップ141と呼んでいく。親光導波路チップ141は、平面光波回路が形成されていても、光回路が何もなくても(Si基板の上はクラッドガラスのみである)よい。子光導波路チップ101、光導波路チップ121は、各々の光導波路(平面光波回路)が形成されている面(クラッドガラスのある方の面)を、親光導波路チップ141(のクラッドガラスのある面)に向け、図示しないスペーサを介して親光導波路チップ141の上に搭載されている。
 ここで、光を通そうとする光導波路チップは子光導波路チップである。クラッドガラスのある面を表面とすると、子光導波路チップは上から目視するとSi基板のある裏面が見えていることになる。つまり、子光導波路チップにおいて、コアとクラッドで構成される光回路の部分が下側に来るようになっている。また、親光導波路チップ141は、主基板151の上に搭載されている。例えば、親光導波路チップ141は、主基板151の上に接着剤で接着されて固定されている。また、子光導波路チップ101、子光導波路チップ121は、光の入力方向に沿って縦列に並んで配置されている。
 なお、子光導波路チップ101の入力導波路端には、ファイバーブロック161が接続されている。ファイバーブロック161には、確認対象の光信号を入力するためのコネクター163が設けられた光ファイバー162が接続している。なお、ファイバーブロック161と子光導波路チップ101の入力導波路との調芯には、別途、コネクター付光ファイバー(不図示)が用いられる。また、子光導波路チップ101は、図示しないスペーサを介して親光導波路チップ141に接着剤で接着されて固定されている。一方、子光導波路チップ121は、半固定の状態で、親光導波路チップ141から着脱可能とされ、入れ替え可能とされている。
 ここで、親光導波路チップ141の上における子光導波路チップ101、子光導波路チップ121の位置決めについて、図6A,図6Bを参照して説明する。まず、親光導波路チップ141には、複数の第1溝131が形成され、子光導波路チップ101および子光導波路チップ121の各々は、第2溝132が形成されている。また、複数の第1溝131の各々は、一部が親光導波路チップ141から突出した形で複数のスペーサ部材171が嵌合している。また、子光導波路チップ101の第2溝132および子光導波路チップ121の第2溝132の各々も、いずれかの複数のスペーサ部材171の突出した部分と嵌合している。なお、第2溝132の位置は、子光導波路チップ101および子光導波路チップ121の導波路部分(コア)部分を避けて配置されている。溝の数は通常、3個以上あればよい。
 第1溝131は、親光導波路チップ141のクラッド層143に形成される。第1溝131は、クラッド層143を貫通し、基板142に到達して形成される。同様に、第2溝132は、子光導波路チップ121のコア123を備えるクラッド層124に形成される。第2溝132は、クラッド層124を貫通し、基板122に到達して形成される。
 第1溝131および第2溝132は、公知フォトリソグラフィ技術およびエッチング技術(反応性イオンエッチングなど)により形成できる。フォトリソグラフィ技術で形成したマスクパターンをマスクとし、基板142をエッチング停止層としてクラッド層143をエッチングすることで、第1溝131を形成する。同様に、フォトリソグラフィ技術で形成したマスクパターンをマスクとし、基板122をエッチング停止層としてクラッド層124をエッチングすることで、第2溝132を形成する。
 このように形成される、第1溝131および第2溝132の設計に対する面方向の位置の精度(ずれ量)は、マスクパターンの位置精度、およびエッチング時の位置のずれ量で決定される。よく知られているように、マスクパターンの位置精度は、サブミクロン以下であり、反応性イオンエッチングにおける位置ずれもサブミクロン以下である。従って、第1溝131および第2溝132が形成される面方向の位置は、設計に対して1μm以下となる。
 また、第1溝131の深さは、クラッド層143の厚さで決定され、第2溝132の深さは、クラッド層124の厚さで決定される。クラッド層143の厚さの精度、クラッド層124の厚さの精度は、例えば、よく知られたガラス堆積技術により、サブミクロンオーダで定まる。また、クラッド層124に埋め込まれるコア123の厚さ方向の位置も同様である。
 ここで、スペーサ部材171は、例えば、光ファイバーを所定の長さに切断することで形成可能であり、各々のスペーサ部材171の直径の精度は、サブミクロンオーダで決定することができる。従って、子光導波路チップ121の厚さ方向の位置精度も、1μm以内で定まる。
 以上のことより、親光導波路チップ141の上に搭載されている子光導波路チップ101と、子光導波路チップ121とは、対応する光導波路のコア中心同士の位置を、正確に一致させることができる。なお、一般に、上述したような親光チップの上に搭載する複数の子チップ間の位置合わせは、各チップに反りが生じていない条件で行っている。なお、より詳しい説明は、参考文献4、参考文献5、参考文献6を参照されたい。この光学実装形態は、PPCP(Pluggable Photonic Circuit Platform)と呼ばれている。PPCPにより実装される子光導波路チップ121は、着脱可能であるという特徴がある。このため、様々な機能の子光導波路チップ121を入れ替えて用いることができ、柔軟に様々な機能を持たせることができる。いわば、PPCPは、電子ブロックの光回路(光チップ)版のような特徴を持つとも言える。
 次に、子光導波路チップ121の製造について、図7A~図7Eを参照して説明する。
 まず、図7Aに示すように、Siからなる基板122を用意する。次に、図7Bに示すように、基板122の上に、下部クラッド層124aを形成し、下部クラッド層124aの上に、コア形成層301を形成する。
 例えば、火炎堆積(FHD)法により、下部クラッド層124a,コア形成層301が形成できる。まず、酸水素炎中に、原料ガス(主成分:四塩化シリコン)を通し、加熱加水分解したガラス微粒子を基板122の上に堆積させ、下部クラッド層124aとなる第1の微粒子層を形成する。引き続き、原料ガスの組成を変更する(GeO2ドーパント濃度を変える)ことで組成の異なるガラス微粒子を第1の微粒子層の上に堆積させ、コア形成層301となる第2の微粒子層を形成する。この後、例えば、電気炉などを用いて、第1の微粒子層および第2の微粒子層を加熱することで、各々を透明なガラス組成の膜とすることで、下部クラッド層124a,コア形成層301とする。なお、これらの層は、化学的気相成長法により形成することもできる。
 次に、半導体装置の製造に用いられる公知のリソグラフィ技術およびエッチング技術によりコア形成層301をパターニングすることで、図7Cに示すように、コア123を形成する。例えば、フォトリソグラフィ技術により、コア123とする部分の上にレジストパターンをコア形成層301の上に形成する。次に、形成したレジストパターンをマスクとし、反応性イオンエッチング(RIE)によりコア形成層301をエッチングし、コア123となる部分を残して他のコア形成層を除去する。この後、レジストパターンを除去すれば、コア123が形成できる。
 次に、図7Dに示すように、コア123の上に上部クラッド層124bを形成する。前述した下部クラッド層124aと同様に、FHD法により、上部クラッド層124bが形成できる。
 次に、公知のリソグラフィ技術およびエッチング技術により上部クラッド層124bおよび下部クラッド層124aをパターニングすることで、図7Eに示すように、上部クラッド層124bおよび下部クラッド層124aを貫通して基板122に到達する第2溝132を形成する。例えば、フォトリソグラフィ技術により、第2溝132を形成する箇所に開口を有するレジストパターンを、上部クラッド層124bの上に形成する。次に、形成したレジストパターンをマスクとし、RIEにより上部クラッド層124bおよび下部クラッド層124aをエッチングし、第2溝132となる部分を除去する。この後、レジストパターンを除去すれば、第2溝132が形成できる。特に、基板122は、Siから構成されているので、石英系ガラスから構成された層に対するRIEによる加工の際に、エッチング停止層として機能する。
 図8A、図8Bに、子光導波路チップ121の出射部を拡大した断面を示す。図8Aは、光変換部102が、光導波路チップ101の出力端108の面に設けられ、プリズムから構成した反射部109の斜辺面に、反射膜109bを備える構成である。また、図8Bは、出力端108を、出力端108の側のSi基板111の端部より後退させ、この端部におけるSi基板111の上において、出力端108に光変換部102を設け、加えて、ガラスなどの透明材料による固定部材102aを設けた構成である。また、図8Bにおいても、プリズムから構成した反射部109の斜辺面に、反射膜109bを備える。
 ここでは、例えば、光導波路中をモードフィールド径(MFD:Mode Field Diameter)6μm(=スポットサイズ3μm)で光が導波しているとする。このモードフィールド径は、例えばコアの断面の寸法4.5μm×4.5μm(矩形)、コアとクラッドとの間の比屈折率差1.5%の光導波路で実現されるモードフィールド径がおおよそ対応する。なお、スポットサイズはMFDの半分である。
 MFD6μmの光が端面(出力端108)から出射されると、ビームは回折により広がる。以下、光導波路中の電界分布をガウス分布であると近似してビームの広がりを計算する。なお、子光導波路チップ121を導波し、光変換部102で可視光とされた光(ビーム)は、反射膜109bで主基板151の上方に反射される。
 出射端のスポットサイズをω0とすると、出射端面から距離zだけ伝搬した先でのビーム径は式(6)で表される。これは参考文献7に詳しく述べられている。式(6)において、λは波長である。式(6)の√の中の2乗項が1より十分大きくなる条件(この場合z>100μm程度)で、式(6)は式(7)で近似できる。
Figure JPOXMLDOC01-appb-M000005
 式(7)をプロットしたグラフが図9である。式(7)より、光(ビーム)が距離6mm程度伝搬すると、スポットサイズが1000mμmになり、MFDは2mmと導波路ピッチと同じになることがわかる。
 なお、図5A,図5B,図5Cを用いて説明した実施の形態2に係る波長チェッカーにおいても、子光導波路チップ121の透過スペクトルは、実施の形態1と同様であり、図4に示されるスペクトルが得られる。
 ところで、図10に示すように、アレイ導波路回折格子を備える子光導波路チップ121aを子光導波路チップ121と入れ替えて用いることも可能である。子光導波路チップ121aは、分波波長の間隔が狭いアレイ導波路回折格子を備える。図10において、符号125は、第2アレイ導波路、符号126は、第2入力側スラブ導波路、符号127は、第2出力側スラブ導波路、符号128は、第2入力導波路、符号129は、第2出力導波路をそれぞれ示している。これは、第2アレイ導波路125が、平面視で円弧の形をしている通常のアレイ導波路回折格子である。分波波長が1550nmから1600nm、分波波長の間隔が5nm間隔、10ポートのアレイ導波路回折格子である。なお、図10では、一部の第2出力導波路129を省略して示している。
 図11に、子光導波路チップ101と子光導波路チップ121aとの接続状態を示す。図11に示すように、子光導波路チップ101の第1出力導波路107のポート7に、子光導波路チップ121aの第2入力導波路128を光学的に接続する場合を検討する。この場合における、子光導波路チップ121の(分波波長の間隔が狭い)アレイ導波路回折格子の透過波長スペクトルを図12に示す。このスペクトルは、式(5)を用いて計算した結果である。一方、子光導波路チップ101のアレイ導波路回折格子の透過スペクトルは、図13に示すようなブロードなスペクトルになる。子光導波路チップ101と子光導波路チップ121aとを接続した構成における透過スペクトルは図12に示すスペクトルと図13に示すスペクトルの合成となるので、図14に示すようなスペクトルになる。
 子光導波路チップ101に、直線光導波路から構成した子光導波路チップ121を組み合わせた場合の透過スペクトルは図4に示すものとなり、波長分解能が50nmである。これに対し、子光導波路チップ101に、アレイ導波路回折格子から構成した子光導波路チップ121aを組み合わせた場合の透過スペクトルでは、波長分解能は5nmになり、より高精細に波長を確認できることがわかる。
 また、子光導波路チップ101に子光導波路チップ121を組み合わせた構成では、図4に示すように測定レンジが1250nm~1650nmの400nmと広帯域となる。これに対し、子光導波路チップ101に子光導波路チップ121aを組み合わせた構成では、図14に示すように狭帯域となる。
 これらのように、PPCP実装により子光導波路チップ121と子光導波路チップ121aとを交換可能にすることで、波長チェッカーの波長分解能・測定レンジを柔軟に変更することができるようになる。
 なお、上述した説明では、波長1550nmから1600nmの波長領域に関して、狭い波長間隔のアレイ導波路回折格子を用いてより高精細に波長を確認しているが、子光導波路チップ101のアレイ導波路回折格子の別の出力ポートに、ここより出力される波長範囲対応した5nm間隔10ポートのアレイ導波路回折格子を用意して接続すれば、他の波長範囲でも5nmの波長分解能で波長を確認できることがわかる。
 ここで、分波波長の間隔が狭いアレイ導波路回折格子について説明を追加する。フリースペクトラルレンジ(FSR)が、チャンネル間隔×チャンネル数に等しいものをサイクリックアレイ導波路回折格子(周回性アレイ導波路回折格子)と呼ぶ。狭い波長間隔のアレイ導波路回折格子に、上記の周回性アレイ導波路回折格子を用いれば、子光導波路チップ101に接続する光チップを、同じ周回性アレイ導波路回折格子で共用することができる。ただし、1500nm帯と1300nm帯といったようなあまりに波長が離れているチャンネルでは、屈折率分散の影響で、屈折率差が大きくなってくるので、アレイ導波路回折格子の共用はできない。
 上述では、波長チェッカーのデバイス構造について説明したが、ここで、波長検査方法の観点から若干補足する。アクセス系PONシステムの波長検査方法としても、波長をアレイ導波路回折格子で波長毎に分波して、近赤外光を可視光に変換する材料(波長変換材料)に照射して、光ったポートから波長を目視で確認する検査方法も提案することができる。アレイ導波路回折格子の広義の解釈は、回折格子(グレーティング)であるので、波長を回折格子(グレーティング)で波長毎に分光して波長変換材料に照射して、光った位置から波長を目視で確認する検査方法も提案することができる。これらの検査方法は、電源などを用いずに簡易に波長検査ができるという特徴を有している。
[実施の形態3]
 次に、本発明の実施の形態3に係る波長チェッカーについて、図15を参照して説明する。実施の形態3では、図5A,図5B,図5Cを用いて説明した波長チェッカーにおいて、子光導波路チップ101の代わりに、図15に示す子光導波路チップ101aを用いる。子光導波路チップ101aは、主第1入力導波路106a,副第1入力導波路106bが、第1入力側スラブ導波路104の入力側に接続されている。他の構成は、子光導波路チップ101と同様であり、複数の直線光導波路が形成されている直線光導波路から構成されている。
 ここで、複数の第1出力導波路107の第1出力側スラブ導波路105との接続部分における導波路間隔をΔxoutとすると、主第1入力導波路106aの第1入力側スラブ導波路104との接続部分と、副第1入力導波路106bの第1入力側スラブ導波路104との接続部分との間の導波路間隔は,Δxout/2とされている。また、子光導波路チップ101aにおいて、第1入力側スラブ導波路104と第1アレイ導波路103と第1出力側スラブ導波路105とは、平面視の形状が、第1入力側スラブ導波路104の中心と第1出力側スラブ導波路105の中心とを結ぶ線分の中点を通り線分に垂直な直線を中心に線対称とされている。第1入力側スラブ導波路104は、入力導波路に接している側とアレイ導波路に接している側とは同じ曲率の円弧になっている。従って、入力側スラブ導波路の中心はスラブ導波路の外形を構成している直線と円弧が交わる4つの点を対角に結んだ直線の交点となる。第1出力側スラブ導波路105においても同様である。
 以下、より詳細に説明する。
 主第1入力導波路106aを第1入力側スラブ導波路104の中心に接続する。また第1出力側スラブ導波路105の中心に対し、各々の第1出力導波路107を導波路間隔Δxoutで接続し、第1出力導波路107の各々に対して透過中心波長がλ1、λ2、λ3、・・・λ8と等波長間隔で分岐されているものとする。また、副第1入力導波路106bは、主第1入力導波路106aに対して導波路間隔Δx=Δxoutで第1入力側スラブ導波路104に接続する(図16A,図16B参照)。
 前述したように、第1入力側スラブ導波路104、第1アレイ導波路103、第1出力側スラブ導波路105の平面視の形状が線対称とされていれば、以下のことが成立する。
 主第1入力導波路106aに対して副第1入力導波路106bをずらして接続すると、副第1入力導波路106bに入力される波長多重光は、第1出力導波路107の各々に対し、透過中心波長が、λ2、λ3、λ4、・・・λ9と、等間隔に分岐される。これは、副第1入力導波路106bが1個分ずれたので、第1アレイ導波路103に達するときの波面が傾き、この結果、第1出力導波路107に到達した際の波面が傾き、同じ波長は、1個分だけずれた第1出力導波路107に集光されることになるからである。
 アレイ導波路回折格子において、スラブ導波路と入力導波路との接続位置と、透過中心波長は、線形の関係である。詳しくは、参考文献8に記載されている。よって、主第1入力導波路106aと副第1入力導波路106bとの導波路間隔Δx=Δxout/2とすると、隣り合うチャンネル間の中心波長間隔をΔλとして、透過中心波長がλ1+Δλ/2、λ2+Δλ/2、λ3+Δλ/2、・・・λ8+Δλ/2となる。なお、Δλ=λ2-λ1=λ3-λ2=・・・=λ9-λ8である。
 子光導波路チップ101aにおけるアレイ導波路回折格子の設計を子光導波路チップ101と同様にすると、主第1入力導波路106aから入力されてアレイ導波路回折格子を透過するスペクトル(計算値)は,図17Aに示すように、子光導波路チップ101の透過スペクトルと同じスペクトルになる。つまり、第1出力導波路107の各々の透過中心波長は、1275nm、1325nm、1375nm、1425nm、1475nm、1525nm、1575nm、1625nmとなる。
 一方、副第1入力導波路106bから入力されてアレイ導波路回折格子を透過するスペクトル(計算値)は、図17Bに示すように、波長間隔の半分だけずれて、1300nm、1350nm、1400nm、1450nm、1500nm、1550nm、1600nm、1650nmとなる。つまり、主第1入力導波路106aからの透過スペクトルと、副第1入力導波路106bからのスペクトルとは互い違いになる。
 アレイ導波路回折格子への入力導波路が1本ある場合に比べて、主第1入力導波路106a,副第1入力導波路106bがある効果は、以下の通りである。入力導波路が1本の場合、隣り合う第1出力導波路107の透過スペクトル間の波長の光が入力された場合に、透過率が低くなっているために、近赤外光から可視光に変換された光も弱くなっており、光変換部102における発光が認識できない場合がある。
 例えば、図17Aの波長1300nmにおけるポート1、ポート2における透過光強度は、最も透過する波長(波長1275nmや1325nm)に比較して20dBも劣化してしまう。
 これに対し、主第1入力導波路106a,副第1入力導波路106bを用いる場合、副第1入力導波路106bにも信号光を入力することにより、波長1300nmにおけるポート1の透過光強度は、最も透過する波長となる。この結果、主第1入力導波路106a,副第1入力導波路106bを用いることにより、図17Aと図17Bを重ね合わせた図18に示すように、最も透過しない波長でも最大透過波長に比較して5dB劣化で済むことがわかる。
 従って、入力導波路を1本として信号光を入れても、信号光に対する透過光強度が弱いため波長がわからない場合も、主第1入力導波路106a,副第1入力導波路106bを用いて両者に信号光を入れることで、光変換部102におけるより強い発光が得られ、より確実な波長の認識が可能となる。
 以上に説明したように、本発明によれば、光出射端面と対向する位置に反射部を設け、赤外光を可視光に変換する変換材料から構成された光変換部を、光導波路チップの光出射端面、または光導波路チップの光出射端面より内部の側の光出射端面の近傍に配置したので、PONシステムの開通、故障切り分けなどにおける信号光の有無の確認などが、容易に実施できるようになる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
[参考文献1]特開平10-104446号公報
[参考文献2]高橋 浩 他、「WDM用アレイ導波路回折格子」、NTT R&D、 vol. 46、no. 7、685-692頁、1997年。
[参考文献3]H. Takahashi et al., "Transmission Characteristics of Arrayed Waveguide N×N Wavelength Multiplexer", Journal of Lightwave Technology, vol. 13, no. 3, pp. 447-455, 1995.
[参考文献4]特開2017-32950号公報
[参考文献5]H. Ishikawa et al., "Pluggable Photonic Circuit Platform Using a Novel Passive Alignment Method", The Japan Society of Applied Physics, 22nd Microoptics Conference, D-6, pp. 84-85, 2017.
[参考文献6]K. Shikama et al., "Pluggable photonic circuit platform for single-mode waveguide connections using novel passive alignment method", Japanese Journal of Applied Physics, vol. 57, 08PC03, 2018.
[参考文献7]河野健治 著、「光デバイスのための光結合系の基礎と応用」、現代工学社、初版、1991年。
[参考文献8]H. Takahashi et al., "Wavelength Multiplexer Based on SiO2-Ta2O5 Arrayed-Waveguide Grating", IEEE Journal of Lightwave Technology, vol. 12, no. 6, pp. 989-005, 1994.
 101…光導波路チップ、102…光変換部、103…第1アレイ導波路、103a…コア部、104…第1入力側スラブ導波路、104a…コア部、105…第1出力側スラブ導波路、106…第1入力導波路、106a…主第1入力導波路、106b…副第1入力導波路、107…第1出力導波路、108…出力端、109…反射部、109a…反射面、109b…反射膜、111…Si基板、112…下部クラッド層、113…上部クラッド層、120a…光導波路部、120b…アレイ導波路回折格子、121…光導波路チップ、121a…子光導波路チップ、121b…子光導波路チップ、122…基板、123…コア、124…クラッド層、124a…下部クラッド層、124b…上部クラッド層、125…第2アレイ導波路、126…第2入力側スラブ導波路、127…第2出力側スラブ導波路、128…第2入力導波路、129…第2出力導波路、131…第1溝、132…第2溝、141…光導波路チップ、142…基板、143…クラッド層、151…主基板、161…ファイバーブロック、162…光ファイバー、163…コネクター、171…スペーサ部材、501…アレイ導波路、502…入力側スラブ導波路、503…出力側スラブ導波路、504…入力導波路、505…出力導波路。

Claims (7)

  1.  光導波路チップと近赤外光を可視光に変換する変換材料から構成された光変換部を備える波長チェッカーにおいて、
     光ファイバーと接続している側の前記光導波路チップがアレイ導波路回折格子を含み、かつ主基板の上に搭載されており、
     前記主基板の上の、外部空間に光を出力する側の前記光導波路チップの光出射端面と対向する位置に反射部が固定されており、
     前記反射部は、前記光出射端面に面し、反射の方向が前記主基板の上方となるように、前記主基板の平面に対して斜めとされている反射面を備え、
     前記光変換部は、前記光導波路チップの前記光出射端面、または前記光導波路チップの前記光出射端面より内部の側の前記光出射端面の近傍に配置されている
     ことを特徴とする波長チェッカー。
  2.  請求項1記載の波長チェッカーにおいて、
     前記光導波路チップの前記光出射端面より内部の側の前記光出射端面の近傍に配置されている前記光変換部は、前記光導波路チップの前記光出射端面に続く光導波路を横切るように形成された溝に配置されている
     ことを特徴とする波長チェッカー。
  3.  請求項1または2記載の波長チェッカーにおいて、
     前記反射部は、斜辺面に近赤外光を反射する反射膜が形成されて前記反射面とされた直角プリズムから構成されていることを特徴とする波長チェッカー。
  4.  請求項1~3のいずれか1項に記載の波長チェッカーにおいて、
     前記光導波路チップは2層に積層され、
     前記光導波路チップが基板および前記基板の上のコアとクラッドもしくは前記基板および前記基板の上のクラッドから構成され、
     前記クラッドの側を前記光導波路チップの表面と定義すると、
     積層されている上下層の前記光導波路チップの表面を対向させ、
     下層側の前記光導波路チップを親光導波路チップ、上層側の前記光導波路チップを子光導波路チップと定義すると、前記親光導波路チップが1個あり、前記子光導波路チップが複数あり、
     前記親光導波路チップのクラッド部分に複数の第1溝が形成され、前記子光導波路チップのクラッド部分に複数の第2溝が形成され、
    前記複数の第1溝の各々は、一部が前記親光導波路チップから突出した形で複数のスペーサ部材が嵌合し、
     前記子光導波路チップの第2溝の各々は、いずれかの前記複数のスペーサ部材の突出した部分と嵌合し、
     光ファイバーと接続している側の前記子光導波路チップは、アレイ導波路回折格子を含み、他の前記子光導波路チップは直線導波路群もしくはアレイ導波路回折格子の少なくとも一方を含み、
     前記親光導波路チップは前記主基板の上に固定されている
     ことを特徴とする波長チェッカー。
  5.  請求項4記載の波長チェッカーにおいて、
     前記スペーサ部材は、光ファイバーから構成されていることを特徴とする波長チェッカー。
  6.  請求項4または5のいずれか1項に記載の波長チェッカーにおいて、
     前記光導波路チップの前記基板はSiから構成され、前記コアと前記クラッドは石英系ガラスで構成されている
     ことを特徴とする波長チェッカー。
  7.  請求項1~6のいずれか1項に記載の波長チェッカーにおいて、
     前記変換材料はフォスファーであることを特徴とする波長チェッカー。
PCT/JP2019/044866 2019-11-15 2019-11-15 波長チェッカー WO2021095231A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021555745A JP7215595B2 (ja) 2019-11-15 2019-11-15 波長チェッカー
PCT/JP2019/044866 WO2021095231A1 (ja) 2019-11-15 2019-11-15 波長チェッカー
US17/776,890 US20220404565A1 (en) 2019-11-15 2019-11-15 Wavelength Checker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044866 WO2021095231A1 (ja) 2019-11-15 2019-11-15 波長チェッカー

Publications (1)

Publication Number Publication Date
WO2021095231A1 true WO2021095231A1 (ja) 2021-05-20

Family

ID=75912975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044866 WO2021095231A1 (ja) 2019-11-15 2019-11-15 波長チェッカー

Country Status (3)

Country Link
US (1) US20220404565A1 (ja)
JP (1) JP7215595B2 (ja)
WO (1) WO2021095231A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11747557B2 (en) * 2019-08-23 2023-09-05 Nippon Telegraph And Telephone Corporation Wavelength checker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232682A (ja) * 2002-02-08 2003-08-22 Nippon Telegr & Teleph Corp <Ntt> 光周波数計
US20040096151A1 (en) * 2002-11-15 2004-05-20 Svilans Mikelis Nils Optical spectrum analyzer
US20060072188A1 (en) * 2004-10-06 2006-04-06 Jds Uniphase Corporation Spectrally resolved fast monitor
JP2006267961A (ja) * 2005-03-25 2006-10-05 Fujitsu Ltd 光分波装置および光モニタ装置
JP2012013527A (ja) * 2010-06-30 2012-01-19 Keio Gijuku 分光光度計

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10009964A1 (de) * 2000-03-02 2001-09-13 Phoenix Contact Gmbh & Co Anschlußvorrichtung für einen Lichtwellenleiter
US7444053B2 (en) * 2003-06-16 2008-10-28 The Regents Of The University Of California Integrated electrical and optical sensor for biomolecule analysis with single molecule sensitivity
CA2490603C (en) * 2003-12-24 2012-12-11 National Research Council Of Canada Optical off-chip interconnects in multichannel planar waveguide devices
JP4513471B2 (ja) * 2004-09-14 2010-07-28 沖電気工業株式会社 分波装置
JP2008096237A (ja) * 2006-10-11 2008-04-24 Nippon Telegr & Teleph Corp <Ntt> 心線対照用光検出装置
US7394841B1 (en) * 2007-01-18 2008-07-01 Epicrystals Oy Light emitting device for visual applications
JP6684461B2 (ja) * 2015-10-01 2020-04-22 中国電力株式会社 光可視化フィルタ及びそれを用いた通信光可視化装置
JP2017194565A (ja) * 2016-04-20 2017-10-26 日本オクラロ株式会社 光通信モジュール及びその製造方法
EP3492909B1 (en) * 2017-12-01 2023-11-01 ams AG Chemical sensing device using fluorescent sensing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232682A (ja) * 2002-02-08 2003-08-22 Nippon Telegr & Teleph Corp <Ntt> 光周波数計
US20040096151A1 (en) * 2002-11-15 2004-05-20 Svilans Mikelis Nils Optical spectrum analyzer
US20060072188A1 (en) * 2004-10-06 2006-04-06 Jds Uniphase Corporation Spectrally resolved fast monitor
JP2006267961A (ja) * 2005-03-25 2006-10-05 Fujitsu Ltd 光分波装置および光モニタ装置
JP2012013527A (ja) * 2010-06-30 2012-01-19 Keio Gijuku 分光光度計

Also Published As

Publication number Publication date
JP7215595B2 (ja) 2023-01-31
JPWO2021095231A1 (ja) 2021-05-20
US20220404565A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP6089077B1 (ja) 導波路型光回折格子及び光波長フィルタ
JPH116928A (ja) アレイ導波路格子型波長合分波器
JP2007241226A (ja) 波長選択性光学デバイスおよびその波長特性調整方法
US6404946B1 (en) Arrayed waveguide grating type optical multiplexer/demultiplexer
JP7099279B2 (ja) 波長チェッカー
CN101010898B (zh) 双级式光学双向收发器
JP2002323626A (ja) 光波長合分波器および光合分波システム
JP2001519923A (ja) 光学スペクトルに含まれるスペクトル光線を多重化解除する装置
WO2021095231A1 (ja) 波長チェッカー
WO2021095165A1 (ja) 波長チェッカー
JP2004523764A (ja) 高いスペクトル解像度を有している集積型分光器および特に高速通信と高速測定とのための集積型分光器ならびにその製造方法
US6539158B2 (en) Optical waveguide circuit
JP7124638B2 (ja) 波長チェッカー
JP4505313B2 (ja) 光装置および光制御方法
JP7215584B2 (ja) 波長チェッカー
Juhari et al. Optical loss analysis in 13-channel SOI-based AWG for CWDM network
JP2000131542A (ja) 光送受信モジュール
JP2010506201A (ja) 反射格子を有するハイブリッド・プレーナ型光波回路
KR101501140B1 (ko) 광 파워 모니터 구조를 개량시킨 평판형 광도파로 소자 모듈
JP4477263B2 (ja) アレイ導波路回折格子型光合分波器の製造方法
Zou et al. Mode-matched ion-exchanged glass-waveguide bridge for high-performance dense wavelength division multiplexer
JEŘÁBEK et al. The design of polymer planar optical triplexer with MMI filter and directional coupler
JP2003149479A (ja) 石英系ガラス光導波路及びそれを用いた光モジュール
WO2021038643A1 (ja) 光回路
JP4696521B2 (ja) デマルチプレクサ、光導波路、及び波長多重光伝送モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952734

Country of ref document: EP

Kind code of ref document: A1