JP2010506201A - 反射格子を有するハイブリッド・プレーナ型光波回路 - Google Patents

反射格子を有するハイブリッド・プレーナ型光波回路 Download PDF

Info

Publication number
JP2010506201A
JP2010506201A JP2009530743A JP2009530743A JP2010506201A JP 2010506201 A JP2010506201 A JP 2010506201A JP 2009530743 A JP2009530743 A JP 2009530743A JP 2009530743 A JP2009530743 A JP 2009530743A JP 2010506201 A JP2010506201 A JP 2010506201A
Authority
JP
Japan
Prior art keywords
diffraction grating
substrate
core layer
slab waveguide
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009530743A
Other languages
English (en)
Inventor
ピアソン,マット
バラクリッシュナン,アショク
ビッドニク,サージ
Original Assignee
エネブレンス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エネブレンス インコーポレイテッド filed Critical エネブレンス インコーポレイテッド
Publication of JP2010506201A publication Critical patent/JP2010506201A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本発明は、高度に正確な深堀り反応性イオン・エッチング・プロセスを用いてエッチングされたシリコン反射型回折格子が、高い光学性能のシリカ・オン・シリコン導波路デバイス内に形成されたトレンチ内に取り付けられる、ハイブリッド・プレーナ型光波回路に関する。

Description

本発明は、プレーナ型光波回路(PLC)に関し、具体的には、多層導波路構造体上にハイブリッド化された反射型回折格子を有するPLCに関する。
光学において、回折格子は、反射基板または透明基板上の微細な平行で等間隔の溝(「刻線」)のアレイであり、その溝により、反射されるまたは伝送される電磁エネルギーを「次数」または「スペクトル次数」と呼ばれる離散的な方向に集中させる、回折および相互干渉効果を生ずる。
溝の寸法および間隔は、当該の波長程度となる。光学の領域では、回折格子の使用は最も一般的であり、ミリメートル当たり数百または数千個の溝がある。
次数0は、正透過または正反射に相当する。より高い次数は、幾何(光線)光学によって予測される方向からの、入射ビームの偏向を生ずる。入射の法線角度が角度θの場合、幾何光学によって予測される方向からの、回折される光線の偏向は以下の式によって与えられ、ただし、mはスペクトル次数、λは波長、dは隣接する溝の対応する部分の間隔である。
Figure 2010506201
回折されるビームの偏向角は波長に依存するので回折格子は分散性であり、すなわち、回折格子は入射ビームをその構成波長成分に空間的に分離し、スペクトルを生じる。
回折格子によって発生されるスペクトル次数は、入射ビームのスペクトル内容および格子上の単位距離当たりの溝の数に応じて重なり得る。スペクトル次数が高くなるほど、次に低い次数への重なりは大きくなる。回折格子は、モノクロメータおよび他の光学器械でしばしば用いられる。溝の断面形状を制御することにより、関心のある次数に回折エネルギーの大部分を集中させることが可能である。この技法は、「ブレージング」と呼ばれる。
当初は、高分解能回折格子は、刻線されていた。高品質の刻線機械の構築は、大きな事業であった。後のフォトリソグラフィ技法により、ホログラフィー干渉パターンから格子を生成することが可能となる。ホログラフィック格子は、正弦波状の溝を有し、同程度に明るくはないが、ブレーズ格子よりも迷光レベルがはるかに低くなるので、モノクロメータには好ましい。コピー技法により、マスタ格子から高品質の複製を作製することが可能であり、これは格子のコストを低減するのに役立つ。
プレーナ型導波路反射型回折格子は、規則的な並びで配置されたファセットのアレイを含む。簡単な回折格子の性能は、図1を参照して示される。複数の波長チャネルλ,λ,λ、・・・を有する光学ビーム1は、格子ピッチΛ、および回折次数mを有する回折格子2に、特定の入射角θinにて入る。次いで光学ビームは、次の回折格子の式に従い、波長および次数に応じて、角度θoutにて角度的に分散される。
Figure 2010506201
回折格子の式(1)から、回折次数の形成の条件は、入射光の波長λに依存する。スペクトルの構成を考えるとき、回折角θNoutが、入射波長θinに対してどのように変化するかを知る必要がある。したがって入射角θinは固定と仮定し、式(1)をθNoutで微分することにより次式が導かれる。
Figure 2010506201
量δθNout/δλは、波長λの小さな変化に対応する回折角θNoutの変化であり、これは回折格子の角分散として知られる。角分散は、次数mの増加、格子ピッチΛの減少、および回折角θNoutの増加と共に増加する。回折格子の線形分散は、この項と系の実効焦点距離の積となる。
異なる波長λの光は、異なる角度θNoutにて回折されるので、各次数mはスペクトルに引き伸ばされる。θNoutは90°を超えることはできないので、所与の回折格子によって発生することができる次数の数は、格子ピッチΛによって制限される。最も高い次数は、Λ/λによって与えられる。したがって、(大きなΛを有する)粗い格子は多くの次数を発生し、微細な格子が発生できるのは1つまたは2つだけとなり得る。
ブレーズ格子は、図1に示されるように回折格子の溝が、ブレーズ角wを有する直角三角形を形成するように制御されたものである。ブレーズ角wの選択は、特に所与の波長に対して、回折格子の全体的な効率プロファイルを最適化する機会を与える。
プレーナ型導波路回折をベースとするデバイスは、高密度波長分割多重(DWDM)用の近赤外(1550nm)領域で優れた性能をもたらす。特に、通常、高い回折次数(40から80)、大きな入射角(約60°)、および大きな格子ピッチにて動作するエシェル格子における進歩は、干渉する経路間での大きな位相差をもたらした。格子ファセットの寸法は回折次数と共にスケーリングされるので、このような大きな位相差は、回折をベースとするプレーナ型導波路デバイスの信頼性のある製造のために必要であると長い間考えられてきた。したがって既存のデバイスは、高い回折次数が必要なため、狭い波長範囲での動作に限定される。
プレーナ型光波回路内に直接エッチングされる反射型回折格子は、その高い性能と小さな寸法により、波長フィルタとしてしばしば用いられる。従来型のPLCは、シリカ・オン・シリコン、シリコン・オン・インシュレ一夕(SOI)、またはインジウム・リン(InP)を含む、いろいろないくつかのタイプの基板上に製作することができる。スラブ導波路の側面に形成された回折格子フィルタの典型的な構成を、図1に示す。すべての動作は、ページの平面に平行な2次元平面内にあり、すなわち光は(ページに垂直な)垂直方向において制限されるものと想定される。
図2および3にはもう1つのシステムが示され、このシステムでは、チップ12内に設けられたスラブ導波路11の縁部に、凹面反射型回折格子10が形成される。入力ポートは導波路13の端部によって定義され、導波路13は、複数の波長チャネル(λ,λ,λ、・・・)を含む波長分割多重(WDM)入力信号をスラブ導波路11に伝送するためにチップ12の縁部からスラブ導波路11に延びる。光は、入力ポートを通って2次元スラブ導波路11内に入り、水平に拡がり、すなわち水平面内に分散する。続いて、光は複数の小さな反射ファセットからなる反射格子10に遭遇する。1次の反射信号は、光の波長に基づいて1つの位置で強め合うように組み合わされ、そこには当該の波長チャネルを捕捉するために出力導波路15の端部が配置される。
参照により本明細書に組み込まれる2006年12月19日にEnablence Technologies社に発行された米国特許第7,151,635号に記載される、図2に示されるような回折格子10は、3より大きく、好ましくは5より大きく、潜在的には10より大きいアスペクト比(F/S)、および波長チャネル(λ,λ,λ、・・・)の平均波長以下の側壁長Sを有する。入力導波路13は、入射角θinが45°未満、好ましくは30度未満、潜在的には15度未満、さらには6°未満となることを確実にするように配置され、格子ピッチΛは、格子10が5以下、好ましくは3以下の次数にて回折を生じることを確実にするように選択される。回折格子10は、入力信号を構成波長に分散させ、各波長チャネルを、出力導波路15の端部の形での別々の出力ポート上に収束させ、それら端部は、チップ12の縁部に戻るように伝送するために、ローランド円によって定義される格子10の焦点線16に沿って配置される。図示のデバイスはまた、導波路15に入力されるいくつかの波長チャネルを、単一の出力信号に多重化し、入力導波路13を通じてチップ12の縁部から送出するために用いることもできる。入力および出力ポートは、光を発射または捕捉することができる、スラブ導波路11上の位置を表すが、各ポートは他の伝送デバイスと光学的に結合することができ、または単に遮断することができる。
PLCにおいて図1および2に示されるような反射型回折格子を製作する場合の最大の課題の1つは、小さな反射ファセットを生成するのに必要な、非常に高品質のエッチングである。効率的な格子を製作するために克服しなければならない2つの主な課題があり、すなわちエッチングのほぼ完全な垂直性と、非常に平滑な側壁である。通常、図2に示される格子歯状物は、その反射率を改善するために、金属被覆されることになる。しかし、光は下にあるシリカ内を進むので、シリカ・エッチングのほぼすべての粗さおよび非垂直性に従う内側の金属から反射され、結果として格子の性能問題を生ずる。この問題を解消する唯一の方法は、粗さが非常に小さい、非常に高品質の垂直エッチングを開発することである。
残念ながら、通常ほとんどのエッチング・プロセスでは、良好な格子を作製するために必要なものとは反して、エッチングの垂直性と、エッチングされた壁面の粗さとの間にトレードオフが存在する。これは、ほとんどの材料系において当てはまるが、最近のシリコンの深堀り反応性イオン・エッチング(DRIE)の進歩により、シリコンに実施される場合にのみ、極めて深い、垂直で平滑なエッチングが可能になった。DRIEプロセスは、MEMS構成部品および他の多くの応用分野での使用において、非常に一般的となった。
しかし、シリコンをPLC導波路として用いるのは、非常に制限があり、通常、結果として低性能の構成部品となる。最新の電気通信システムで必要とされる高性能で低損失の構成部品を実現するために、ほとんどのPLCフィルタ・チップはシリカ・オン・シリコン基板内に製作され、その場合、光はシリコンの上の薄いガラス層内のみを進む。DRIE技術は、シリカ・ウェハに適用することはできるが、エッチングの結果は、シリコンで見られるものほど良好ではない。この理由により、事実上すべての、シリカ内にエッチングされる反射型回折格子は、エッチングされたミラーの垂直性および/または粗さに関連する性能問題を生ずる。
米国特許第7,151,635号
本発明の目的は、高精度の回折格子が高品質の導波路構造体とは別々に製造される、ハイブリッドPLCデバイスを実現することにより、従来技術の欠点を克服することである。
したがって、本発明は、プレーナ型光波回路(PLC)デバイスに関し、このデバイスは、
入力光ビームを発射するための入力ポートと、
第1の基板上のスラブ導波路であって、上部クラッドと下部クラッドの間のコア層を画定し、その中に下方にコア層まで形成されたトレンチを有するスラブ導波路と、
入力光ビームを回折するためにトレンチ内に取り付けられた第2の基板上の反射型回折格子と、
入力光ビームの少なくとも一部分を出力するための第1の出力ポートと
を備え、コア層および反射型回折格子は、異なる材料から別々に形成されるものであり、
反射型光デバイスは、スラブ導波路内で可能であるよりも高精度でエッチングされる。
本発明のもう1つの実施形態は、プレーナ型光波回路を形成する方法に関し、この方法は、
(a)上部クラッドと下部クラッドの間のコア層を含む第1の基板上に、スラブ導波路を形成するステップと、
(b)スラブ導波路内に、下方にコア層までトレンチを形成するステップと、
(c)第2の基板上に回折格子を形成するステップと、
(d)回折格子をトレンチ内に取り付けるステップとを含む。
本発明について、本発明の好ましい実施形態を表す添付の図面を参照して、より詳細に説明する。
従来型の反射型回折格子を示す図である。 従来型の凹面反射型回折格子を示す図である。 図2の凹面反射型回折格子を有する、従来型のPLCデバイスを示す図である。 本発明によるハイブリッドPLCデバイスの断面図である。 図5aは位置合わせマーカを有する、図4のデバイスの反射型回折格子の代替実施形態の上面図である。図5bは図5aの反射型回折格子の側面図である。 図4のデバイスのPLC導波路チップの上面図である。 本発明によるハイブリッドPLCデバイスの代替実施形態の断面図である。 図8aはスペーサ突起を有する、図4のデバイスの反射型回折格子の代替実施形態の上面図である。図8bは図8aの反射型回折格子の側面図である。
図4を参照すると、本発明による、たとえばシリカ・オン・シリコンであるPLCチップ21は、シリコン基板26上に形成された上部クラッド層23と下部クラッド層24の間のシリカ(または他のいくつかの高品質の導波材料)のコア層22を有し、図3に示されるレイアウトと概観および機能が非常に似たように製作される。しかし、高品質の格子歯状物をシリカ材料系内に直接エッチングするのは非常に難しいので、別個の反射型回折格子28を収容するために、下方にコア層22を貫通して下部クラッド層23内へ、またはそれより深く、単なる深いトレンチ27がエッチングされ、格子28はトレンチ27内に取り付けられる。トレンチ27は、目的とする格子28よりわずかに大きな輪郭を有するが、全体的には格子28の形状に従い、格子歯状物はなく、単なる連続する壁面をもつだけである。トレンチ27のエッチングされた壁面の垂直性および平滑度は、決定的に重要ではない。
目的とする格子28は、シリコン、シリコンをベースとする材料、またはインジウム・リン(InP)材料など、コア層22とは異なる材料の純粋な基板31を用いた別個のウェハ格子チップ29上に、DRIEシステムなどのはるかに高精度を有する最先端のエッチング・システムを用いてエッチングされ、その結果、格子28の歯状物のための非常に垂直で平滑な側壁となる。高度に反射性の歯状物の側壁を生成するために、格子28上に金などの反射性材料の薄い層が堆積される。格子28の三角形の歯状物は比較的小さいので、通常、数千個のこのような格子が、標準の6インチのシリコン・ウェハ上に収まることになる。格子28は、入力光学ビームを、たとえば最大8、16、または40以上の複数の構成波長チャネルに分離するための上述の回折格子10と、同様または同一であることが好ましい。
格子28はダイシングされ、反転されて、シリカPLCチップ21上のエッチングされたトレンチ27内に挿入される。通常、全プロセスは、自動化されたフリップチップ・ボンダを用いて行われ、ボンダはPLC基板26上に格子チップ29を位置合わせし、トレンチ27内の所定位置に格子28を落とし、はんだボンディング・プロセスを完了させ、このはんだボンディング・プロセスは、基板31上の対応するはんだパッドとPLCチップ21の間に、はんだ32を配置し、または単にそれらの間に予め配置された既存のはんだバンプを加熱して、PLCチップ21上の所定位置に格子チップ29を固定するものである。
格子28に向かって進む光は、通常なら、シリカPLCチップ21内にエッチングされた粗いトレンチ27での散乱によって高い損失を受けるが、この損失をなくすために、格子トレンチ27の一端近くに、屈折率が整合するエポキシ35が分注される。格子チップ29とトレンチ27は、たとえばそれらの間に一定の間隙をもつように設計され、それによりエポキシ35は、格子28とトレンチ27のエッチングされたシリカ壁面の間の薄い間隔にわたって吸い上がり(wick)、すべてのクラックを完全に充填し、実質的に格子28をシリカ・トレンチ27内に沈めるようになる。次いで、屈折率が整合するエポキシ35は、たとえば100℃の焼成により硬化され、その時にエポキシ35は屈折率が、PLCチップ21のコア22内に用いられるたとえばシリカなどの導波路材料の屈折率とほぼ同一になるように硬化し、それによってトレンチ27のすべての粗さおよび非垂直性を含む、導波路材料内のどのような光学的界面もなくし、シリカ・チップ21を通って直接反射格子28に至るまで、連続する屈折率を生ずる。
したがって、非常に低損失のシリカまたは他のいくつかの高品質の導波材料を用いたハイブリッドPLCデバイスが生成され、また、シリコンまたは他の高精度エッチング材料を用いることにより使用可能となるDRIEの能力を利用して、高精度または平滑な光学格子28が構築される。結果として、両方の材料系の最も優れたものが、ハイブリッド方式により統合されて1つの構成部品を形成する。
提案されている構成はまた、別のいくつかの材料系および格子構成に対して実施することができる。反射格子および凹面反射格子に対してだけでなく、同じ技法は特に、PLCチップ内の隘路の周りに効率的に光を経路設定するために、格子チップ29を1つまたは複数の反射性の表面、または少なくとも部分的に反射性の表面を有する別のチップに置き換えることにより、非常に平滑な凹面、湾曲面、または放物面のミラーなどの効率的なミラーを生成するために用いることができる。
このようなフィルタの最も効果的な応用分野の1つは、接続通信市場向けのダイプレクサまたはトリプレクサの製作であり、具体的には、参照により本明細書に組み込まれる、2006年12月19日にEnablence Technologies社に発行された米国特許第7,151,635号で開示されたものなどの反射面と無反射側壁を交互にもつ三角形の歯状物を有するステップ型回折格子を含む、2006年6月27日にBidnykらに発行された米国特許第7,068,885号、2006年12月12日にBalakrishnanらに発行された米国特許第7,149,387号、および2007年4月24日にPearsonらに発行された米国特許第7,209,612号で開示されたものであり、これらすべてを参照により本明細書に組み込む。Enablence特許で開示された回折格子は、格子28が多重化/逆多重化するように設計される、たとえば1550nmの入力光の平均波長の2倍以下、好ましくは入力光の平均波長以下の側壁長Sを必要とする。さらに、ファセット長を側壁長で除した値で定義される回折格子のアスペクト比は、3より大きく、好ましくは5より大きく、さらに好ましくは10より大きい。上述の仕様は、高度に正確な製造プロセスを必要とし、シリカ・オン・シリコン構造体で実現するのは難しいが、シリコンの深堀り反応性イオン・エッチングでは実現可能である。
好ましくは、格子チップ29は、深堀り反応性イオン・エッチング(DRIE)プロセスを用いてエッチングされる単結晶シリコン基板、シリコンをベースとする基板、またはInP基板を含む。DRIEプロセスは、比較的標準的であり、世界中のウェハ製造会社から容易に利用可能であり、通常、シリコン・エッチング・プラズマ(SF)と不動態化プラズマ(C)を交互に行うエッチング・プロセスを用い、結果として格子28の平滑で垂直なエッチングにより、非常に高いアスペクト比のウェルを生ずる。
格子ウェハは、格子28自体だけを含むので、標準の6インチウェハ上に非常に多数の、しばしば数千個の格子チップ29を含むことができる。格子28および位置合わせマーク41を画定するために、図5aおよび5bに示されるように単一層のエッチング・プロセスを用いることができる。位置合わせマーク41は、位置合わせマーク41と格子歯状物の間にマスク位置合わせ誤差がないことを確実にするために、格子28の歯状物を画定するマスクと同じマスクを用いて、格子28の構造体内にエッチングされた凹みまたは穴である。位置合わせマーク41は、図5cに示される、PLCチップ21上、具体的にはトレンチ27内のマーカ42に対応する、たとえば十字形、三角形などの特定の形状を有する。
図4に示されるようなPLCチップ21にハイブリッド方式により取り付けられた格子28の場合は、反射格子28の壁面の垂直性は、格子チップ29すなわち基板31の下面が取り付けられる、PLCチップ21の平坦な水平上面30によって確立される。多くのPLC製作プロセスでは、すべてにわたって平坦な上面30は、常には実現できないが、通常、多くの場合、PLCチップ21の上面30のトポロジーは、異常な粗い部分46とは別に一定の平坦部分45を有して、チップごとおよびウェハごとに、非常に再現可能である。したがって、図7に示される本発明の代替実施形態は、前述の回折格子28と同様な反射型回折格子58と平行に、基板51から延びる1つまたは複数のバンプまたはスペーサ突起52を有する格子チップ49を含む。スペーサ突起52は、格子58と同じ製造ステップおよび/またはプロセスを用いて形成することができる。
図7に示されるものと同様な技法は、制御された鉛直角とするために格子58に意図的に角度をもたせるために用いることができる。たとえば、平坦部分25を有するPLCチップ21上において、格子チップ49上のバンプ52に、角度をもたせた表面を組み入れることにより、格子58の意図的な非垂直性を加えることができ、それによって基板51は基板26およびコア層22に対して鋭角にて取り付けられる。この鋭角は、光が水平方向から垂直方向へ向きを変えて進むことを可能にするように45°以下とすることができるが、±20°未満、または±10°未満の角度が、より実用的である。通常、不正確なエッチング・プロセスを補償するには、±6度未満の角度で十分である。したがって、より大きな角度を用いて、一部またはすべての光を下部クラッド23または上部クラッド24内へ反射させて反射信号の一定の減衰をもたらすことが可能であり、またはそのような他の用途が可能である。
本発明の用途の一例は、電気通信システムにおいて光の波長を分離するために用いられるハイブリッド・フィルタ・チップである。米国特許第7,068,885号で開示されたもののような、ファイバ・ツー・ザ・ホーム(FTTH)システムで用いられるトリプレクサがそのような構成部品であり、ハイブリッド格子2は、様々な上りおよび/または下り波長を分離するために用いられる。
本発明は、過去においてウェハ製造会社にとって重要な問題であった、プレーナ型光波回路(PLC)反射格子技術に伴う非常に挑戦を要するエッチング要件の多くを緩和する。本発明は、これらのエッチング要件を、シリコンにおける新しいDRIE技術を利用することができるハイブリッド格子へ移す。その結果、ウェハ製作コストの低減、およびはるかに簡単な、容易に他の製造会社への移転が可能な導波路プロセスをもたらす。
本発明は、低損失のシリカ導波路PLC1を、高品質のDRIEエッチングされたシリコン格子2と、ハイブリッド方式により統合することによって従来技術の欠点を克服する。ハイブリッド方式による統合は、通常、レーザおよび検出器をPLC基板上に取り付けるために用いられる最新のフリップチップ・ボンディング技法によって可能となる。さらに、本発明は、ボンディング時に、格子の垂直性を意図的に変化させる手段を提供する。
21 シリカPLCチップ、PLCチップ、シリカ・チップ
22 コア層、コア
23 上部クラッド層
24 下部クラッド層
26 シリコン基板、PLC基板、基板
27 格子トレンチ、トレンチ、シリカ・トレンチ
28 反射型回折格子、格子、直接反射格子、光学格子、反射格子
29 ウェハ格子チップ、格子チップ
30 水平上面、上面
31 基板
32 はんだ
35 エポキシ
41 マーク
42 マーカ
45 平坦部分
46 異常な粗い部分
49 格子チップ
51 基板
52 バンプ
58 格子

Claims (23)

  1. プレーナ型光波回路(PLC)デバイスであって、
    入力光ビームを発射するための入力ポートと、
    第1の基板上のスラブ導波路であって、上部クラッドと下部クラッドの間のコア層を画定し、その中に下方に前記コア層まで形成されたトレンチを有するスラブ導波路と、
    前記入力光ビームを回折するために、前記入力ポートに光学的に結合された前記トレンチ内に取り付けられた第2の基板上に設けられた反射型回折格子と、
    前記反射型回折格子によって方向を変えられた前記入力光ビームの少なくとも一部分を出力するための、前記反射型回折格子と光学的に結合された第1の出力ポートと
    を備え、前記コア層および前記反射型回折格子は、異なる材料から別々に製作される、PLCデバイス。
  2. 前記反射型光デバイスが、シリコン、シリコンをベースとする材料、およびインジウム・リンからなる群から選択された材料内にエッチングされた、複数の歯状物を備える反射型回折格子である、請求項1に記載のPLCデバイス。
  3. 前記スラブ導波路が、シリカ・オン・シリコン構造体を備え、前記コア層がシリカである、請求項1または2に記載のPLCデバイス。
  4. 前記トレンチ内で前記コア層と前記反射型光デバイスの間に接着剤をさらに備え、前記接着剤は前記コア層の屈折率と整合する屈折率を有する、請求項1、2、または3に記載のPLCデバイス。
  5. 前記スラブ導波路上の表面異常を避けるように前記第2の基板を前記スラブ導波路から間隔をあけるための突起であって、前記第2の基板から延び、前記スラブ導波路の平坦部分と接触する接触面を有する突起をさらに備える、請求項1から4のいずれか一項に記載のPLCデバイス。
  6. 前記接触面が、前記第2の基板に対して鋭角をなし、それにより、前記入力ビームを鋭角にて前記コア層に向けるように前記第2の基板が前記第1の基板に対して鋭角にて取り付けられる、請求項5に記載のPLCデバイス。
  7. 前記反射型回折格子が、前記入力光ビームを複数の構成波長に分離し、前記PLCデバイスは、前記複数の構成波長を出力するための複数の出力ポートをさらに備える、請求項1から6のいずれか一項に記載のPLCデバイス。
  8. 前記反射型回折格子が、前記第2の基板内に、湾曲面、凹面、または放物線状の反射面を備える、請求項1から7のいずれか一項に記載のPLCデバイス。
  9. 前記反射型回折格子を前記コア層と位置合わせするために、前記反射型回折格子上の第1の位置合わせ手段と、前記第1の位置合わせ手段と係合する前記トレンチ内の第2の位置合わせ手段とをさらに備える、請求項1から8のいずれか一項に記載のPLCデバイス。
  10. 前記反射型回折格子が、ファセット長によって定義される複数の反射壁と、側壁長によって定義される複数の側壁とを有し、前記ファセット長を前記側壁長で除した値で定義される前記回折格子のアスペクト比が3より大きい、請求項1から9のいずれか一項に記載のPLCデバイス。
  11. 前記アスペクト比が5より大きい、請求項10に記載のPLCデバイス。
  12. 前記アスペクト比が10より大きい、請求項10に記載のデバイス。
  13. 前記反射型回折格子が、ファセット長によって定義される複数の反射壁と、側壁長によって定義される複数の側壁とを有し、前記側壁長が前記入力光ビームの平均波長の2倍以下である、請求項1から12のいずれか一項に記載のデバイス。
  14. 前記側壁長が、前記入力光ビームの平均波長以下である、請求項13に記載のデバイス。
  15. プレーナ型光波回路を形成する方法であって、
    (a)上部クラッドと下部クラッドの間のコア層を含む第1の基板上に、スラブ導波路を形成するステップと、
    (b)前記スラブ導波路内に、下方に前記コア層までトレンチを形成するステップと、
    (c)第2の基板上に回折格子を形成するステップと、
    (d)前記回折格子を前記トレンチ内に取り付けるステップと
    を含む方法。
  16. ステップ(c)が、前記コア層とは異なる適当な材料の前記回折格子をDRIEエッチングするステップと、前記回折格子を反射性材料で被覆するステップとを含む、請求項15に記載の方法。
  17. 前記適当な材料が、シリコン、シリコンをベースとする材料、およびインジウム・リンからなる群から選択される、請求項16に記載の方法。
  18. ステップ(a)が、シリカの前記コア層を形成するステップを含む、請求項15、16、または17に記載の方法。
  19. ステップ(d)が、前記トレンチ内に前記回折格子を有して前記第2の基板を前記スラブ導波路上にフリップチップ・ボンディングするステップを含む、請求項15から18のいずれか一項に記載の方法。
  20. ステップ(d)が、前記スラブ導波路と前記格子の間にエポキシを配置するステップを含み、前記エポキシは前記スラブ導波路の前記コア層と整合する屈折率を有する、請求項15から19のいずれか一項に記載の方法。
  21. ステップ(c)が、前記スラブ導波路上の表面異常を避けるように前記第2の基板を前記スラブ導波路から間隔をあけるために、前記スラブ導波路の一部分と接触するための接触面を有する、前記第2の基板から延びる突起を形成するステップを含む、請求項15から20のいずれか一項に記載の方法。
  22. 前記反射型回折格子を前記コア層と位置合わせするために、ステップ(b)が、前記反射型回折格子上に第1の位置合わせ手段を形成するステップを含み、ステップ(c)が、前記トレンチ内に第2の位置合わせ手段を形成するステップを含み、ステップ(d)が、前記第1の位置合わせ手段を前記第2の位置合わせ手段と係合させるステップを含む、請求項15から21のいずれか一項に記載の方法。
  23. ステップ(c)が、前記スラブ導波路の一部分と接触するための接触面を有する、前記第2の基板から延びる突起を形成するステップを含み、前記接触面は、前記第2の基板に対して鋭角をなし、前記入力光ビームの一部分を前記コア層に対して鋭角にて反射するように、前記第2の基板が前記第1の基板に対して鋭角にて取り付けられる、請求項15から22のいずれか一項に記載の方法。
JP2009530743A 2006-10-04 2007-10-03 反射格子を有するハイブリッド・プレーナ型光波回路 Pending JP2010506201A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82808006P 2006-10-04 2006-10-04
PCT/CA2007/001776 WO2008040125A1 (en) 2006-10-04 2007-10-03 Hybrid planar lightwave circuit with reflective gratings

Publications (1)

Publication Number Publication Date
JP2010506201A true JP2010506201A (ja) 2010-02-25

Family

ID=39268088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009530743A Pending JP2010506201A (ja) 2006-10-04 2007-10-03 反射格子を有するハイブリッド・プレーナ型光波回路

Country Status (7)

Country Link
EP (1) EP2082270A4 (ja)
JP (1) JP2010506201A (ja)
KR (1) KR20090060365A (ja)
CN (1) CN101548212A (ja)
CA (1) CA2665111A1 (ja)
NO (1) NO20091514L (ja)
WO (1) WO2008040125A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508227A (ja) * 2012-01-30 2015-03-16 オラクル・インターナショナル・コーポレイション ダイナミック格子コーム光源

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300728B2 (en) * 2020-02-11 2022-04-12 Cisco Technology, Inc. Solder reflow compatible connections between optical components
WO2023239774A1 (en) * 2022-06-07 2023-12-14 Marvell Asia Pte., Ltd. Low loss and stable planar lightwave circuit attachement with silicon interposer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL111219A0 (en) * 1993-10-18 1994-12-29 Hughes Aircraft Co Microelement assembly
JPH0943440A (ja) * 1995-07-28 1997-02-14 Toshiba Corp 集積化光合分波器
US6134359A (en) * 1997-11-24 2000-10-17 Jds Uniphase Inc. Optical multiplexing/demultiplexing device having a wavelength dispersive element
JPH11109184A (ja) * 1997-09-30 1999-04-23 Kyocera Corp 光デバイス実装用基板及び光モジュール
US6095697A (en) * 1998-03-31 2000-08-01 Honeywell International Inc. Chip-to-interface alignment
US6959129B2 (en) * 2000-12-22 2005-10-25 Metrophotonics Inc. Bidirectional multiplexer and demultiplexer based on a single echelle waveguide grating
JP3701618B2 (ja) * 2001-08-24 2005-10-05 日本電信電話株式会社 導波路型光素子及びその作製方法
US7155085B2 (en) * 2002-11-13 2006-12-26 Battelle Memorial Institute Amplifying wavelength division mux/demux
DE10333371A1 (de) * 2003-07-23 2005-02-10 Bayer Ag Fungizide Wirkstoffkombinationen
US7151635B2 (en) * 2004-03-24 2006-12-19 Enablence, Inc. Planar waveguide reflective diffraction grating
KR100637929B1 (ko) * 2004-11-03 2006-10-24 한국전자통신연구원 하이브리드형 광소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508227A (ja) * 2012-01-30 2015-03-16 オラクル・インターナショナル・コーポレイション ダイナミック格子コーム光源

Also Published As

Publication number Publication date
WO2008040125A1 (en) 2008-04-10
EP2082270A4 (en) 2010-04-14
NO20091514L (no) 2009-04-27
KR20090060365A (ko) 2009-06-11
CN101548212A (zh) 2009-09-30
CA2665111A1 (en) 2008-04-10
EP2082270A1 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
US7720335B2 (en) Hybrid planar lightwave circuit with reflective gratings
JP6089077B1 (ja) 導波路型光回折格子及び光波長フィルタ
JP4789619B2 (ja) 光学装置および光学装置を組み込んだ光学アセンブリ
EP2803123B1 (en) Integrated sub-wavelength grating system
US7209612B2 (en) Two-stage optical bi-directional transceiver
JP2007530992A (ja) プレーナ導波路反射型回折格子
JP2021508851A (ja) 温度非感受性フィルタ
JP2006154535A (ja) 光モジュール
JP2006189672A (ja) 光学モジュール
KR20140082853A (ko) 광학 연결부
JP2010506201A (ja) 反射格子を有するハイブリッド・プレーナ型光波回路
JP5599175B2 (ja) 分散素子、分光装置、及び波長選択スイッチ
US8279525B2 (en) Three-dimensional diffractive structure, method for making, and applications thereof
CN1549938B (zh) 集成透明衬底及衍射光学组件
US20030026520A1 (en) Optical component having a flat top output
KR20110044048A (ko) 표면실장형 다파장 필터 모듈
JP7215593B2 (ja) 波長チェッカー
WO2021095231A1 (ja) 波長チェッカー
JP2003066269A (ja) 波長多重分離光学デバイス及び波長多重光伝送モジュール
US20030031412A1 (en) Optical arrayed waveguide grating devices
US7289702B2 (en) Optical waveguide apparatus
JP7215584B2 (ja) 波長チェッカー
TWI394395B (zh) 複合功能之波長多工/解多工裝置及其製作方法
WO2020209284A1 (ja) 光導波路部品及びその製造方法
JP2005249966A (ja) 光学部材とその製造方法,光モジュール