WO2021093867A1 - 一种光伏焊带 - Google Patents

一种光伏焊带 Download PDF

Info

Publication number
WO2021093867A1
WO2021093867A1 PCT/CN2020/128795 CN2020128795W WO2021093867A1 WO 2021093867 A1 WO2021093867 A1 WO 2021093867A1 CN 2020128795 W CN2020128795 W CN 2020128795W WO 2021093867 A1 WO2021093867 A1 WO 2021093867A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
photovoltaic
cross
substrate
ribbon
Prior art date
Application number
PCT/CN2020/128795
Other languages
English (en)
French (fr)
Inventor
肖锋
Original Assignee
苏州宇邦新型材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921983167.9U external-priority patent/CN210805794U/zh
Priority claimed from CN201911124073.0A external-priority patent/CN110890441A/zh
Application filed by 苏州宇邦新型材料股份有限公司 filed Critical 苏州宇邦新型材料股份有限公司
Priority to JP2021600140U priority Critical patent/JP3237133U/ja
Priority to KR2020217000058U priority patent/KR20210002524U/ko
Publication of WO2021093867A1 publication Critical patent/WO2021093867A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to the field of photovoltaic technology, in particular to a photovoltaic soldering tape.
  • solder ribbons connected to the front and back of photovoltaic cells are of the same shape and size.
  • the existing solder ribbons connected to the back side of the battery are too thick, so that the gap between the sheets cannot be further reduced. Otherwise, it is easy to cause cell fragments or cracks.
  • the overall solder ribbon is made thinner. In order not to affect the conductivity of the solder ribbon, the solder ribbon will inevitably become wider. This will cause more obstructions on the front of the battery, and the power of the module will decrease; a larger inter-chip spacing reduces the conversion efficiency and light of the photovoltaic module. Utilization rate, while also wasting related auxiliary materials for photovoltaic modules.
  • the cross-section of the existing solder ribbon that is connected to the front of the battery is mainly rectangular or circular.
  • the utilization rate of the rectangular solder ribbon is too low, and most of the sunlight will be reflected back into the air; the circular shape has a certain degree of utilization of light Increased, but the diameter is larger, the shadow caused by the oblique incidence of light is larger, which affects the actual power generation.
  • the packaging material is thickened to reduce the stress caused by the larger diameter, and the material cost is increased.
  • the contact area is small, and reliability is also at risk.
  • the usual photovoltaic ribbons are coated with tin on the surface of the copper substrate. Due to the limitation of process capability and the influence of surface tension, the tin coating layer will be unevenly distributed on the surface of the copper substrate.
  • Figure 1 shows the triangular ribbon The solder is in a state of convex accumulation to the middle of the surface, and Figure 2 shows the state of eccentric accumulation of the solder of the round wire ribbon, which further affects the reflective effect and welding reliability.
  • the purpose of the present invention is to provide a photovoltaic ribbon.
  • a photovoltaic ribbon including at least one cycle of ribbon segments, and the single cycle of the ribbon segments includes:
  • the reflective section is used to join on the front grid line of the photovoltaic cell.
  • the reflective section includes a junction surface joined with the photovoltaic cell and a reflective surface arranged at an angle to the surface of the photovoltaic cell;
  • the reflecting section includes a first substrate and a coating layer covering the surface of the first substrate, and the surface of the first substrate has a concave structure;
  • the flat section is used for joining on the back side of the adjacent photovoltaic cell sheet, and the flat section is flat in cross section.
  • the present invention designs corresponding welding ribbons for different positions connected to the battery.
  • the reflective section is joined to the front of the battery to form a secondary reflection and maintain a small width, which reduces the shielding of the battery by the welding ribbon and improves
  • the light utilization rate increases the power of the photovoltaic module; the concave part of the first substrate of the reflection section can store the coating, which reduces the angle change of the reflection surface after the coating is coated, and ensures the maximum reflection of the light on the surface of the ribbon; the flat section is connected to the battery On the back, there is a better joint plane to ensure joint reliability.
  • a flat section is used for transition between two adjacent battery slices. Because the thickness of the flat section is thinner, the sheet spacing can be reduced.
  • each side of the first substrate corresponding to each reflecting surface has a first arc-shaped groove gradually recessed from the two end points to the middle.
  • the coating can be accumulated in the middle of the first arc-shaped groove, which reduces or eliminates the convexity in the middle of the reflection surface, and improves the light reflectivity.
  • the bottom edge of the first base body corresponding to the joint surface has a second arc-shaped groove gradually recessed from the two end points to the middle.
  • the coating can be accumulated in the middle of the second arc-shaped groove, which reduces or eliminates the convexity in the middle of the joint surface, and improves the joint reliability.
  • each side of the first substrate corresponding to each reflecting surface has a plurality of concave first grooves.
  • the coating is dispersed and accumulated by a plurality of first grooves, which can ensure the uniform distribution of the coating on the reflective surface and improve the light reflectivity.
  • the bottom edge of the first base corresponding to the joint surface has a plurality of concave second grooves.
  • the coating layer is dispersed and accumulated through a plurality of second grooves, which can ensure that the coating layer is evenly distributed on the joint surface, the joint surface is flatter, and the joint reliability is improved.
  • the reflection section is triangular.
  • the reflection section is triangular, which can effectively reflect and reuse the light from the surface of the soldering strip to both sides and increase the power of the photovoltaic module.
  • the cross section of the base part is rectangular, trapezoidal, ellipse, semicircle, etc., and the bottom surface of the base part is a joint surface.
  • the triangular apex of the reflecting section has a circular arc angle, and the two ends of the base part have circular arcs.
  • the arc angle is set at the top corner to improve the structural stability; the arc is set at the base part under the triangle, which can reduce the shading of the bottom corner of the welding ribbon and improve the reflective performance at the bottom corner.
  • the flat section includes a second base body and a coating covering the surface of the second base body in a cross section, and the second base body has a flat hexagonal shape.
  • the reflecting section is in a trapezoidal shape, and the longer bottom side of the trapezoid is joined to the surface of the photovoltaic cell sheet.
  • a base portion extending outward is provided on the longer bottom side of the trapezoid of the reflecting section, and the bottom surface of the base portion is a joint surface for joining with the photovoltaic cell sheet.
  • the reflecting section is circular, and a plurality of third grooves are uniformly arranged on the surface of the first base body.
  • the cross section of the reflecting section is designed to be circular, which can reflect and reuse most of the light incident on the surface of the ribbon, and at the same time, there is no need to distinguish the direction when the ribbon is joined to the cell, which improves the production efficiency of photovoltaic modules;
  • a plurality of third grooves arranged on a substrate can accumulate the coating and improve the uniformity of the coating distribution.
  • Figure 1 is a schematic diagram of the structure of a triangle welding tape in the prior art
  • Figure 2 is a schematic diagram of the structure of a round wire welding tape in the prior art
  • Figure 3 is a top view of the connection state of the photovoltaic cell and the solder ribbon;
  • Fig. 4 is a schematic cross-sectional view of Fig. 3 along the length direction of the welding strip
  • Fig. 5 is a schematic structural diagram of an embodiment of the reflection section of the present invention.
  • Fig. 6 is a schematic structural diagram of another embodiment of the reflection section of the present invention.
  • Fig. 7 is a schematic structural diagram of another embodiment of the reflection section of the present invention.
  • Fig. 8 is a schematic structural view of an embodiment of the flat section of the present invention.
  • Fig. 9 is a schematic structural diagram of another embodiment of the reflecting section of the present invention.
  • a photovoltaic ribbon 1 includes at least one cycle of ribbon segments, and the single cycle of the ribbon segments includes:
  • the reflective section 10 is used for joining on the front grid line of the photovoltaic cell 90.
  • the reflective section 10 includes a junction surface 101 joined with the photovoltaic cell 90 and a reflective surface 102 arranged at an angle to the surface of the photovoltaic cell 90;
  • the reflective section 10 includes a first substrate 103 and a coating layer 104 covering the surface of the first substrate 103, and the surface of the first substrate 103 has a concave structure;
  • the flat section 20 is used to be joined to the back of the adjacent photovoltaic cell 90, and in cross section, the flat section 20 is flat.
  • the beneficial effect of adopting the above technical solution is that the corresponding welding ribbons are designed for different positions of the battery, and the reflective section is connected to the front of the battery to form a secondary reflection, and keep a small width, reduce the shielding of the battery by the welding ribbon, and improve
  • the light utilization rate increases the power of the photovoltaic module; the concave part of the first substrate of the reflection section can store the coating, which reduces the angle change of the reflection surface after the coating is coated, and ensures the maximum reflection of the light on the surface of the ribbon; the flat section is connected to the battery On the back, there is a better joint plane to ensure joint reliability.
  • a flat section is used for transition between two adjacent battery slices. Because the thickness of the flat section is thinner, the sheet spacing can be reduced.
  • the coating covering the surface of the substrate can be a metal coating or a non-metal coating, and different types of coatings can be applied to the reflective surface and the joint surface respectively, which can improve the reflectivity of the reflective surface and the joint surface.
  • the electrical conductivity and bonding force can be a metal coating or a non-metal coating, and different types of coatings can be applied to the reflective surface and the joint surface respectively, which can improve the reflectivity of the reflective surface and the joint surface.
  • the bonding method of the welding tape and the surface of the photovoltaic cell sheet in this application may be welding or bonding.
  • each side of the first substrate 103 corresponding to each reflecting surface has a first substrate gradually recessed from the two end points toward the middle.
  • Arc-shaped groove 1031 The beneficial effect of adopting the above technical solution is that the coating can be accumulated in the middle of the first arc-shaped groove, which reduces or eliminates the convexity in the middle of the reflection surface, and improves the light reflectivity.
  • the bottom edge of the first base body 103 corresponding to the joint surface has a second arc-shaped groove gradually recessed from the two end points to the middle. 1032.
  • the beneficial effect of adopting the above technical solution is that the coating can be accumulated in the middle of the second arc-shaped groove, which reduces or eliminates the convexity in the middle of the joint surface, and improves the joint reliability.
  • each side of the first base 103 corresponding to each reflecting surface has a plurality of concave first grooves 1033.
  • the beneficial effect of adopting the above technical solution is that the coating is dispersed and accumulated through a plurality of first grooves, which can ensure the uniform distribution of the coating on the reflective surface and improve the light reflectivity.
  • the bottom edge of the first base body 103 corresponding to the joint surface has a plurality of concave second grooves 1034.
  • the beneficial effect of adopting the above technical solution is that the coating is dispersed and accumulated through the plurality of second grooves, which can ensure that the coating is evenly distributed on the joint surface, the joint surface is flatter, and the joint reliability is improved.
  • the reflective section 10 is triangular, the base of the triangle corresponds to the joint surface 101, and the other two sides of the triangle correspond to the reflective surface 102.
  • the beneficial effect of adopting the above technical solution is that the reflection section is triangular, which can effectively reflect and reuse the light from the surface of the soldering strip to both sides, thereby increasing the power of the photovoltaic module.
  • the top corner of the cross-sectional triangle of the reflective section 10 has a circular arc angle 105.
  • the beneficial effect of adopting the above technical solution is that the arc angle is set at the top corner, which can improve the stability of the structure.
  • FIG. 6 in other embodiments of the present invention, there is a base portion 107 extending outward on the bottom side of the triangle of the reflection section, and there are arcs 106 at both ends of the base portion 107, which can reduce welding. With bottom corner shading, while improving the reflective performance of the bottom corner.
  • the flat section 20 includes a second substrate 201 and a coating layer covering the surface of the second substrate 201 in a cross section, and the second substrate 201 has a flat hexagonal shape.
  • the beneficial effect of adopting the above technical solution is to provide a larger bonding area and improve bonding reliability.
  • the reflective section 10 is circular in cross section, and a plurality of third grooves 1035 are uniformly arranged on the surface of the first substrate.
  • the beneficial effect of adopting the above technical solution is that the cross-section of the reflecting section is designed to be circular, which can reflect and reuse most of the light incident on the surface of the ribbon, and at the same time, there is no need to distinguish the direction when the ribbon is joined to the cell, which improves the production of photovoltaic modules.
  • Efficiency The provision of multiple third grooves on the first substrate can accumulate the coating and improve the uniformity of the coating distribution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种光伏焊带,包括反射段和扁平段。针对于电池的不同位置设计相应的焊带,反射段接合于电池正面,形成二次反射,并保持较小宽度,减少焊带对电池片的遮挡,提高光线利用率,提高光伏组件功率;反射段的第一基体上内凹部分可存涂层,减少涂层涂布后反射面角度变化,确保焊带表面光线得到最大程度反射;扁平段接合于电池背面,具有较好的接合平面,保证接合可靠性,在相邻两电池片之间采用扁平段过渡,由于扁平段的厚度较薄可以减少片间距。

Description

一种光伏焊带 技术领域
本发明涉及光伏技术领域,具体涉及一种光伏焊带。
背景技术
目前接合在光伏电池正面与背面的焊带为相同形状,相同尺寸,而现有与背面电池接合的焊带太厚,使得片间距不能进一步减少,否则容易引起电池片碎片或隐裂,而如果整体焊带做薄,为不影响焊带导电性能则焊带必然变宽,这会导致电池正面会有较多遮挡,组件功率将下降;较大的片间距降低了光伏组件的转换效率及光线利用率,同时也浪费了光伏组件的相关辅材。
现有的与电池正面接合的焊带截面主要是矩形或圆形,矩形焊带对光线的利用率太低,大部分太阳光都会被反射回空气中;圆形对光线的利用有了一定的提升,但直径较大,光线斜入射时造成的阴影较大,影响实际发电量,同时为降低较大直径带来的应力加厚了封装材料,增加了材料成本,而且圆形由于与焊点的接触面积小,可靠性也存在风险。
另外,通常的光伏焊带都是在铜基体表面进行涂锡,由于工艺能力的限制以及表面张力影响,涂锡层在铜基体表面会分布不均匀,附图1中则示出了三角焊带焊料往表面中间成外凸堆积的状态,附图2则示出了圆丝焊带焊料成偏心堆积的状态,进而影响反光效果和焊接可靠性。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供了一种光伏焊带。
为达到上述目的,本发明解决其技术问题所采用的技术方案是:一种光伏焊带,包括至少一个周期的焊带段,单个周期的所述焊带段包括:
反射段,其用于接合在光伏电池片的正面栅线上,所述反射段包括与光伏电池片接合的接合面、以及与光伏电池片表面成角度设置的反射面;在横截面上,所述反射段包括第一基体和覆盖在第一基体表面的涂层,所述第一基体的表面具有内凹结构;
扁平段,其用于接合在相邻光伏电池片的背面,在横截面上,所述扁平段成扁平形。
本发明相较于现有技术,针对接合于电池的不同位置设计相应的焊带,反射段接合于电池正面,形成二次反射,并保持较小宽度,减少焊带对电池片的遮挡,提高光线利用率,提高光伏组件功率;反射段的第一基体上内凹部分可存涂层,减少涂层涂布后反射面角度变化,确保焊带表面光线得到最大程度反射;扁平段接合于电池背面,具有较好的接合平面,保证接合可靠性,在相邻两电池片之间采用扁平段过渡,由于扁平段的厚度较薄可以减少片间距。
进一步地,在横截面上,所述第一基体的对应于每个反射面的每条边上都具有一从两端点向中间逐渐凹陷的第一弧形凹槽。
采用上述优选的方案,第一弧形凹槽中间能积聚涂层,减轻或消除反射面中间外凸量,提高光线反射率。
进一步地,在横截面上,所述第一基体的对应于接合面的底边上具有一从两端点向中间逐渐凹陷的第二弧形凹槽。
采用上述优选的方案,第二弧形凹槽中间能积聚涂层,减轻或消除接合面中间外凸量,提高接合可靠性。
进一步地,在横截面上,所述第一基体的对应于每个反射面的每条边上都具有多个内凹的第一凹槽。
采用上述优选的方案,通过多个第一凹槽分散积聚涂层,能确保反射面上涂层均匀分布,提高光线反射率。
进一步地,在横截面上,所述第一基体的对应于接合面的底边上具有多个内凹的第二凹槽。
采用上述优选的方案,通过多个第二凹槽分散积聚涂层,能确保接合面上涂层均匀分布,接合面更为平整,提高接合可靠性。
进一步地,在横截面上,所述反射段成三角形。
采用上述优选的方案,反射段成三角形,可以有效地将焊带表面光线向两侧反射重新利用,提升光伏组件功率。
进一步地,在所述反射段三角形的底边上具有向外延伸的底座部,底座部的横截面成矩形、梯形、椭圆、半圆等形状,该底座部的底面为接合面。
进一步地,所述反射段三角形顶角具有圆弧角,在底座部的两端具有圆弧。
采用上述优选的方案,在顶角处设置圆弧角,可以提高结构稳定性;在三角形下方底座部设置圆弧,可以减少焊带底角遮光,同时提高底角处的反光性能。
进一步地,所述扁平段在横截面上包括第二基体以及覆盖于第二基体表面的涂层,所述第二基体成扁平的六边形。
采用上述优选的方案,提高接合可靠性。
进一步地,在横截面上,所述反射段成梯形,梯形较长底边接合在光伏电池片表面。
进一步地,在横截面上,在所述反射段梯形的较长底边上具有向外延伸的底座部,该底座部的底面为与光伏电池片接合的接合面。
进一步地,在横截面上,所述反射段成圆形,在所述第一基体的表面设有均匀设置的多个第三凹槽。
采用上述优选的方案,反射段截面设计成圆形,能将入射到焊带表面的绝大部分光线反射再利用,同时焊带与电池片接合时无需区分方向,提高光伏组件的生产效率;第一基体上设置多个第三凹槽可以积聚涂层,提高涂层分布均匀性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域 普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术三角焊带的结构示意图;
图2是现有技术圆丝焊带的结构示意图;
图3是光伏电池片与焊带连接状态的俯视图;
图4是图3的顺着焊带长度方向的截面示意图;
图5是本发明反射段一种实施方式的结构示意图;
图6是本发明反射段另一种实施方式的结构示意图;
图7是本发明反射段另一种实施方式的结构示意图;
图8是本发明扁平段一种实施方式的结构示意图;
图9是本发明反射段另一种实施方式的结构示意图。
图中数字和字母所表示的相应部件的名称:
1-光伏焊带;10-反射段;101-接合面;102-反射面;103-第一基体;1031-第一弧形凹槽;1032-第二弧形凹槽;1033-第一凹槽;1034-第二凹槽;1035-第三凹槽;104-涂层;105-圆弧角;106-底座部;107-圆弧;20-扁平段;201-第二基体;90-电池片。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图3-5、8所示,一种光伏焊带1,包括至少一个周期的焊带段,单个周期的所述焊带段包括:
反射段10,其用于接合在光伏电池片90的正面栅线上,反射段10包括与光伏电池片90接合的接合面101、以及与光伏电池片90表面成角度设置的反射面102;在横截面上,反射段10包括第一基体103和覆盖在第一基体103表面的涂层104,第一基体103的表面具 有内凹结构;
扁平段20,其用于接合在相邻光伏电池片90的背面,在横截面上,扁平段20成扁平形。
采用上述技术方案的有益效果是:针对接合于电池的不同位置设计相应的焊带,反射段接合于电池正面,形成二次反射,并保持较小宽度,减少焊带对电池片的遮挡,提高光线利用率,提高光伏组件功率;反射段的第一基体上内凹部分可存涂层,减少涂层涂布后反射面角度变化,确保焊带表面光线得到最大程度反射;扁平段接合于电池背面,具有较好的接合平面,保证接合可靠性,在相邻两电池片之间采用扁平段过渡,由于扁平段的厚度较薄可以减少片间距。
覆盖在基体表面的涂层可以是金属涂层也可以是非金属涂层,还可以在反射面和接合面分别涂覆不同类型的涂层,这样可以针对性提高反射面的反光性、以及接合面的导电性和接合力。
本申请焊带与光伏电池片表面接合的方式可以是焊接或者粘接方式。
如图5所示,在本发明的另一些实施方式中,在横截面上,第一基体103的对应于每个反射面的每条边上都具有一从两端点向中间逐渐凹陷的第一弧形凹槽1031。采用上述技术方案的有益效果是:第一弧形凹槽中间能积聚涂层,减轻或消除反射面中间外凸量,提高光线反射率。
如图5所示,在本发明的另一些实施方式中,在横截面上,第一基体103的对应于接合面的底边上具有一从两端点向中间逐渐凹陷的第二弧形凹槽1032。采用上述技术方案的有益效果是:第二弧形凹槽中间能积聚涂层,减轻或消除接合面中间外凸量,提高接合可靠性。
如图7所示,在本发明的另一些实施方式中,在横截面上,第一基体103的对应于每个反射面的每条边上都具有多个内凹的第一凹槽1033。采用上述技术方案的有益效果是:通过多个第一凹槽分散积聚涂层,能确保反射面上涂层均匀分布,提高光线反射率。
如图7所示,在本发明的另一些实施方式中,在横截面上,第一 基体103的对应于接合面的底边上具有多个内凹的第二凹槽1034。采用上述技术方案的有益效果是:通过多个第二凹槽分散积聚涂层,能确保接合面上涂层均匀分布,接合面更为平整,提高接合可靠性。
如图5-7所示,在本发明的另一些实施方式中,在横截面上,反射段10成三角形,三角形的底边对应于接合面101,三角形的另外两边对应于反射面102。采用上述技术方案的有益效果是:反射段成三角形,可以有效地将焊带表面光线向两侧反射重新利用,提升光伏组件功率。
如图6所示,在本发明的另一些实施方式中,在横截面上,反射段10截面三角形的顶角处具有圆弧角105。采用上述技术方案的有益效果是:在顶角处设置圆弧角,可以提高结构稳定性。
如图6所示,在本发明的另一些实施方式中,在所述反射段三角形的底边上具有向外延伸的底座部107,在底座部107的两端具有圆弧106,可以减少焊带底角遮光,同时提高底角处的反光性能。
如图8所示,在本发明的另一些实施方式中,扁平段20在横截面上包括第二基体201以及覆盖于第二基体201表面的涂层,第二基体201成扁平的六边形。采用上述技术方案的有益效果是:提供较大的接合面积,提高接合可靠性。
如图9所示,在本发明的另一些实施方式中,在横截面上,反射段10成圆形,在所述第一基体的表面设有均匀设置的多个第三凹槽1035。采用上述技术方案的有益效果是:反射段截面设计成圆形,能将入射到焊带表面的绝大部分光线反射再利用,同时焊带与电池片接合时无需区分方向,提高光伏组件的生产效率;第一基体上设置多个第三凹槽可以积聚涂层,提高涂层分布均匀性。
上述实施例只为说明本发明的技术构思及特点,其目的在于让本领域普通技术人员能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (12)

  1. 一种光伏焊带,其特征在于,包括至少一个周期的焊带段,单个周期的所述焊带段包括:
    反射段,其用于接合在光伏电池片的正面栅线上,所述反射段包括与光伏电池片接合的接合面、以及与光伏电池片表面成角度设置的反射面;在横截面上,所述反射段包括第一基体和覆盖在第一基体表面的涂层,所述第一基体的表面具有内凹结构;
    扁平段,其用于接合在相邻光伏电池片的背面,在横截面上,所述扁平段成扁平形。
  2. 根据权利要求1所述的光伏焊带,其特征在于,在横截面上,所述第一基体的对应于每个反射面的每条边上都具有一从两端点向中间逐渐凹陷的第一弧形凹槽。
  3. 根据权利要求2所述的光伏焊带,其特征在于,在横截面上,所述第一基体的对应于接合面的底边上具有一从两端点向中间逐渐凹陷的第二弧形凹槽。
  4. 根据权利要求1所述的光伏焊带,其特征在于,在横截面上,所述第一基体的对应于每个反射面的每条边上都具有多个内凹的第一凹槽。
  5. 根据权利要求4所述的光伏焊带,其特征在于,在横截面上,所述第一基体的对应于接合面的底边上具有多个内凹的第二凹槽。
  6. 根据权利要求1所述的光伏焊带,其特征在于,在横截面上,所述反射段成三角形。
  7. 根据权利要求6所述的光伏焊带,其特征在于,在横截面上,在所述反射段三角形的底边上具有向外延伸的底座部,该底座部的底面为接合面。
  8. 根据权利要求7所述的光伏焊带,其特征在于,所述反射段三角形顶角具有圆弧角,在底座部的两端具有圆弧。
  9. 根据权利要求1所述的光伏焊带,其特征在于,所述扁平段在横截面上包括第二基体以及覆盖于第二基体表面的涂层,所述第二基体成 扁平的六边形。
  10. 根据权利要求1所述的光伏焊带,其特征在于,在横截面上,所述反射段成圆形,在所述第一基体的表面设有均匀设置的多个第三凹槽。
  11. 根据权利要求1所述的光伏焊带,其特征在于,在横截面上,所述反射段成梯形,梯形较长底边接合在光伏电池片表面。
  12. 根据权利要求11所述的光伏焊带,其特征在于,在横截面上,在所述反射段梯形的较长底边上具有向外延伸的底座部,该底座部的底面为与光伏电池片接合的接合面。
PCT/CN2020/128795 2019-11-15 2020-11-13 一种光伏焊带 WO2021093867A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021600140U JP3237133U (ja) 2019-11-15 2020-11-13 太陽電池溶接ストリップ
KR2020217000058U KR20210002524U (ko) 2019-11-15 2020-11-13 태양광 리본

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921983167.9U CN210805794U (zh) 2019-11-15 2019-11-15 一种光伏焊带
CN201911124073.0 2019-11-15
CN201911124073.0A CN110890441A (zh) 2019-11-15 2019-11-15 一种光伏焊带
CN201921983167.9 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021093867A1 true WO2021093867A1 (zh) 2021-05-20

Family

ID=75911847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128795 WO2021093867A1 (zh) 2019-11-15 2020-11-13 一种光伏焊带

Country Status (3)

Country Link
JP (1) JP3237133U (zh)
KR (1) KR20210002524U (zh)
WO (1) WO2021093867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602745A (zh) * 2022-10-27 2023-01-13 安徽华晟新能源科技有限公司(Cn) 焊带件及其制备方法、光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204243054U (zh) * 2014-11-26 2015-04-01 江苏宇邦光伏材料有限公司 多栅光伏组件
CN107579131A (zh) * 2017-08-28 2018-01-12 苏州腾晖光伏技术有限公司 一种光伏焊带及其制备方法
CN209357739U (zh) * 2019-03-28 2019-09-06 晶科能源有限公司 一种光伏组件及其高反光焊带
CN110890441A (zh) * 2019-11-15 2020-03-17 苏州宇邦新型材料股份有限公司 一种光伏焊带

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204243054U (zh) * 2014-11-26 2015-04-01 江苏宇邦光伏材料有限公司 多栅光伏组件
CN107579131A (zh) * 2017-08-28 2018-01-12 苏州腾晖光伏技术有限公司 一种光伏焊带及其制备方法
CN209357739U (zh) * 2019-03-28 2019-09-06 晶科能源有限公司 一种光伏组件及其高反光焊带
CN110890441A (zh) * 2019-11-15 2020-03-17 苏州宇邦新型材料股份有限公司 一种光伏焊带

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602745A (zh) * 2022-10-27 2023-01-13 安徽华晟新能源科技有限公司(Cn) 焊带件及其制备方法、光伏组件

Also Published As

Publication number Publication date
KR20210002524U (ko) 2021-11-17
JP3237133U (ja) 2022-04-15

Similar Documents

Publication Publication Date Title
CN208045523U (zh) 一种低电阻型反光焊带的连接结构
US9716198B2 (en) Photovoltaic interconnect wire
CN205985032U (zh) 一种具有凹凸表面的焊带
CN110890441A (zh) 一种光伏焊带
WO2021093867A1 (zh) 一种光伏焊带
CN210156398U (zh) 一种分段反光光伏焊带
WO2021004146A1 (zh) 导电件及其制造方法、光伏组件及其制造方法
US20240105871A1 (en) Photovoltaic module and method for preparing the photovoltaic module
CN109346548A (zh) 光伏组件用焊带及光伏组件
CN113644156A (zh) 一种双面反光光伏焊带及光伏组件
WO2021098702A1 (zh) 一种光伏焊带
CN110890442A (zh) 一种光伏焊带
CN210805796U (zh) 一种光伏焊带
CN210805794U (zh) 一种光伏焊带
CN209896086U (zh) 一种用于光伏组件的反光焊带及光伏组件
CN213459762U (zh) 一种光伏焊带及光伏组件
CN208608213U (zh) 太阳能电池片连接用焊带及组件
CN207818587U (zh) 光伏组件用高效分段式焊带
CN209729933U (zh) 一种降低焊带反光损失的焊带结构
CN210136883U (zh) 用于电连接光伏电池的导电件及光伏组件
JP7223092B1 (ja) 溶接ストリップ及びセルモジュール
CN208489215U (zh) 一种聚光焊带
CN211957663U (zh) 一种光伏焊带
CN215418198U (zh) 一种双面反光光伏焊带及光伏组件
CN219286429U (zh) 一种拱形分段焊带

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021600140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887945

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20887945

Country of ref document: EP

Kind code of ref document: A1