WO2021090637A1 - ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法 - Google Patents

ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法 Download PDF

Info

Publication number
WO2021090637A1
WO2021090637A1 PCT/JP2020/038238 JP2020038238W WO2021090637A1 WO 2021090637 A1 WO2021090637 A1 WO 2021090637A1 JP 2020038238 W JP2020038238 W JP 2020038238W WO 2021090637 A1 WO2021090637 A1 WO 2021090637A1
Authority
WO
WIPO (PCT)
Prior art keywords
max
diamond
point
thickness
base material
Prior art date
Application number
PCT/JP2020/038238
Other languages
English (en)
French (fr)
Inventor
倫太朗 杉本
原田 高志
吉田 稔
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to US17/773,226 priority Critical patent/US20220388078A1/en
Priority to CN202080074405.3A priority patent/CN114599478A/zh
Priority to JP2021516515A priority patent/JPWO2021090637A1/ja
Priority to EP20884553.7A priority patent/EP4056728A1/en
Publication of WO2021090637A1 publication Critical patent/WO2021090637A1/ja
Priority to JP2023050121A priority patent/JP2023082059A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/08Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by physical vapour deposition [PVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2265/00Details of general geometric configurations
    • B23C2265/08Conical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric

Definitions

  • This disclosure relates to a diamond-coated tool and a diamond-coated tool manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2019-2033030, which is a Japanese patent application filed on November 8, 2019. All the contents of the Japanese patent application are incorporated herein by reference.
  • Diamond has a very high hardness, and its smooth surface has an extremely low coefficient of friction. Therefore, naturally produced single crystal diamonds and artificial diamond powders have been applied to tool applications. Furthermore, after the establishment of diamond thin film formation technology by chemical vapor deposition (CVD) in the 1980s, cutting tools and abrasion-resistant tools were developed in which diamond was deposited on a three-dimensional substrate. I came.
  • CVD chemical vapor deposition
  • Patent Document 1 discloses a diamond-coated tool member in which a hard film of diamond is coated on the surface of a cemented carbide base material.
  • the diamond coated tool of the present disclosure is A diamond-coated tool having a blade portion composed of a base material and a diamond layer provided on the base material.
  • the blade portion has a length L along the extending direction thereof.
  • all the thicknesses of the diamond layer are measured.
  • a diamond-coated tool in which all the thicknesses are the same at a point, or d min / d max, which is the ratio of the minimum value d min of the thickness to the maximum value d max of the thickness is 0.7 or more and less than 1. Is.
  • the method for manufacturing a diamond-coated tool of the present disclosure is the above-mentioned method for manufacturing a diamond-coated tool.
  • the process of preparing the base material and A step of forming a diamond layer on the base material by a thermal filament CVD method to obtain a diamond coating tool is provided.
  • the thermal filament CVD method is a method for manufacturing a diamond-coated tool, which is performed by controlling the temperature distribution in the blade portion where the cutting edge is present in the base material so as to be within 5%.
  • FIG. 1 is a diagram illustrating a configuration example of the diamond-coated tool of the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line XX of the diamond-coated tools of FIGS. 1, 3 and 4.
  • FIG. 3 is a diagram illustrating a configuration example of the diamond coating tool (taper cutter) of the first and second embodiments.
  • FIG. 4 is a diagram illustrating a configuration example of the diamond-coated tool (drill) of the first to third embodiment.
  • FIG. 5 is an enlarged view of the first blade portion 35A of FIG.
  • FIG. 6 is an enlarged view of the second blade portion 35B of FIG.
  • FIG. 7 is a diagram showing an example of the Raman spectrum at the first point.
  • FIG. 1 is a diagram illustrating a configuration example of the diamond-coated tool of the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line XX of the diamond-coated tools of FIGS. 1, 3 and 4.
  • FIG. 3
  • FIG. 8 is a diagram showing an example of the Raman spectrum at the second point.
  • FIG. 9 is a diagram showing an example of the C1s spectrum at the first point.
  • FIG. 10 is a diagram showing an example of the C1s spectrum at the second point.
  • FIG. 11 is a front view showing an example of a conventional thermal filament CVD apparatus.
  • FIG. 12 is a top view of the thermal filament CVD apparatus of FIG.
  • FIG. 13 is a diagram showing the surface temperature distribution of the base material at the time of film formation by the conventional thermal filament CVD method.
  • FIG. 14 is a diagram showing an example of the thermal filament CVD apparatus used in the second embodiment.
  • FIG. 15 is a diagram showing the surface temperature distribution of the base material at the time of film formation by the thermal filament CVD method of the second embodiment.
  • the present disclosure aims to provide a diamond coated tool having a long tool life.
  • diamond coated tools can have a long tool life.
  • the diamond-coated tool of the present disclosure is A diamond-coated tool having a blade portion composed of a base material and a diamond layer provided on the base material.
  • the blade portion has a length L along the extending direction thereof.
  • all the thicknesses of the diamond layer are measured.
  • a diamond-coated tool in which all the thicknesses are the same at a point, or d min / d max, which is the ratio of the minimum value d min of the thickness to the maximum value d max of the thickness is 0.7 or more and less than 1. Is.
  • the diamond coated tool can have a long tool life.
  • the d min / d max is preferably 0.85 or more and less than 1. According to this, the tool life of the diamond-coated tool is further improved.
  • the Raman spectrum in the range of Raman shift 900 cm -1 to 2000 cm -1 of the diamond layer is measured. if you did this,
  • I min is the ratio Id min / Is min with peak area intensity Id min and spectral entire area intensity Is min of diamond in the first point, the total peak area intensity Id max and the spectrum of the diamond at the second point it preferably has a specific I min / I max with the I max is the ratio Id max / is max and the area intensity is max is 0.7 or more and 1 or less.
  • D min / D max which is the ratio of the average particle size D min at the first point to the average particle size D max at the second point, is 0.7 or more and 1 or less.
  • R min / R max which is the ratio of the surface roughness R min at the first point to the surface roughness R max at the second point, is 0.7 or more and 1 or less.
  • the method for manufacturing a diamond-coated tool of the present disclosure is the method for manufacturing a diamond-coated tool described above.
  • the process of preparing the base material and A step of forming a diamond layer on the base material by a thermal filament CVD method to obtain a diamond coating tool is provided.
  • the thermal filament CVD method is a method for manufacturing a diamond-coated tool, which is performed by controlling the temperature distribution in the blade portion where the cutting edge is present in the base material so as to be within 5%.
  • the notation in the form of "A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when the unit is not described in A and the unit is described only in B, A The unit of and the unit of B are the same.
  • FIG. 1 is a diagram showing a configuration example when the diamond coating tool is an end mill.
  • FIG. 2 is a cross-sectional view taken along the line XX of the diamond-coated tool of FIG.
  • the diamond coating tool 10 is a diamond coating tool including a blade portion 5 including a base material 1 and a diamond layer 2 provided on the base material 1, and the blade portion.
  • Reference numeral 5 denotes a length of L along the extending direction, and a total of 11 points are arranged at the blade portion 5 along the direction along the extending direction from one end with a distance of L / 10 from each other.
  • the thickness of the diamond layer is measured at each point, the thickness is the same at all points, or d min / d max, which is the ratio of the minimum value d min of the thickness to the maximum value d max of the thickness, is 0. .7 or more and less than 1.
  • the diamond-coated tool of the present disclosure has a uniform thickness of the diamond layer, the occurrence of wear and peeling of the diamond layer is not biased, and a long tool life can be obtained.
  • FIG. 1 shows the case where the diamond coating tool is an end mill
  • FIG. 3 shows the case where the diamond coating tool is a taper cutter
  • FIGS. 4 to 6 show the case where the diamond coating tool is a drill.
  • Examples of the diamond-coated tool of the present disclosure include cutting tools such as cutting tools, cutters, drills, and end mills, and polishing-resistant tools such as dies, bending dies, drawing dies, and bonding tools.
  • the end mill which is a diamond-coated tool 10
  • the end mill which is a diamond-coated tool 10
  • the body 3 includes a body 3 and a shank 4 connected to the body 3.
  • the blade portion 3 on which the cutting edge including the bottom blade 6 and the outer peripheral blade 7 is formed is formed on the base material 1 and the base material 1 in the XX cross section as shown in FIG.
  • the diamond layer 2 provided is provided.
  • the blade portion 5 extends along the rotation axis O of the tool. Therefore, in the first embodiment, the length L of the blade portion 5 along the extending direction means the length of the blade portion 5 along the rotation axis O of the tool.
  • ⁇ Base material> As the base material, conventionally known ones can be used without particular limitation.
  • cemented carbide for example, WC-based cemented carbide, WC, as well as those containing Co or further added with carbonitrides such as Ti, Ta, Nb), cermet (TiC, TiN, TiCN, etc.), cermet (TiC, TiN, TiCN, etc.) (Main component), high-speed steel, tool steel, ceramics (titanium carbide, cemented carbide, silicon nitride, aluminum nitride, aluminum oxide, and mixtures thereof, etc.), cubic boron nitride sintered body, etc.
  • An example of such a base material can be given.
  • these base materials it is particularly preferable to select WC-based cemented carbide and cermet (particularly TiCN-based cermet). This is because these base materials have an excellent balance between hardness and strength, especially at high temperatures, and have excellent characteristics as base materials for diamond-coated cutting tools.
  • a diamond layer prepared by a conventionally known chemical vapor deposition method can be used. Above all, it is preferably formed by the thermal filament CVD method.
  • the blade portion 5 a total of 11 points are arranged along the extending direction (axis O) from one end (the end on the tip T side in FIG. 1) with a distance of L / 10 from each other.
  • the thickness of the diamond layer is measured at (points indicated by P0 to P10 in FIG. 1), the thickness is the same at all points, or the minimum thickness value d min and the maximum thickness value d max .
  • the ratio of d min / d max is 0.7 or more and less than 1. According to this, the diamond-coated tool can have a uniform thickness of the diamond layer and have a long tool life.
  • the above d min / d max is preferably 0.85 or more and less than 1, and more preferably 0.95 or more and less than 1.
  • the thickness of the diamond layer is measured by the following procedures (1-1) to (1-2).
  • the thickness of the diamond layer is measured by observing the thickness of the diamond layer at each point using an SEM (scanning electron microscope, "JEM-2100F / Cs" (trademark) manufactured by JEOL Ltd.). Specifically, the observation magnification of the cross-sectional sample is set to 5000 times, the observation field area is set to 100 ⁇ m 2 , the thickness of three points is measured in the observation field, and the average value of the three points is taken as the thickness of the observation field. .. The measurement is performed in five observation fields, and the average value of the thicknesses of the five observation fields is taken as the thickness of the diamond layer.
  • SEM scanning electron microscope
  • the minimum value d min of the thickness of the diamond layer can be, for example, a lower limit of 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m, and an upper limit of 28 ⁇ m, 29 ⁇ m, or 30 ⁇ m.
  • the maximum value d max of the thickness of the diamond layer can be, for example, a lower limit of 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m, and an upper limit of 28 ⁇ m, 29 ⁇ m, or 30 ⁇ m.
  • the tool life of the diamond-coated tool is further improved.
  • the reason for this is not clear, but when the I min / I max value is 0.7 or more, the crystallinity of the diamond is uniform over the entire diamond layer, and the abrasion resistance and peeling resistance of the diamond layer are also bladed. It is thought that this is because it becomes uniform in the part.
  • the above I min / I max is more preferably 0.85 or more and 1 or less, and further preferably 0.9 or more and 1 or less.
  • the first point where the thickness of the diamond layer is the minimum value d min and the second point where the thickness of the diamond layer is the maximum value d max are specified.
  • the diamond coating tool is cut out by a wire electric discharge machine in the direction perpendicular to the rotation axis O to expose the cross section.
  • Each cross section is mirror-polished with a diamond slurry having an average particle size of 3 ⁇ m.
  • a rectangular measurement field of view of 50 ⁇ m ⁇ 50 ⁇ m (hereinafter, also referred to as “Raman spectroscopy measurement field of view”) is set in the diamond layer.
  • I min / I max is calculated based on the above "I min at the first point” and the above "I max at the second point".
  • the lower limit of I min at the first point can be, for example, 0.25, 0.35, 0.40, and the upper limit can be 0.70, 0.80, 0.90.
  • I max is the second point, for example, the lower limit to be a 0.25,0.35,0.40, the upper limit can be 0.70,0.80,0.90.
  • C1s spectrum When the C1s spectrum of the diamond layer is measured by X-ray Photoelectron Spectroscopy (XPS) at the first point where the thickness is the minimum value d min and the second point where the thickness is the maximum value d max.
  • it preferably has a specific Ix min / Ix max and Ix max is the ratio I3 max / I2 max of the peak area intensity I2 max of is 0.7 or more and 1 or less.
  • the tool life of the diamond-coated tool is further improved.
  • the reason for this is not clear, but when the value of Ix min / Ix max is 0.7 or more, the crystallinity of the diamond is uniform over the entire diamond layer, and the abrasion resistance of the diamond layer is also uniform at the blade portion. It is thought that it will be.
  • the above Ix min / Ix max is more preferably 0.7 or more and 1 or less, and further preferably 0.85 or more and 1 or less.
  • the first point where the thickness of the diamond layer is the minimum value d min and the second point where the thickness of the diamond layer is the maximum value d max are specified.
  • the diamond coating tool is cut out by a wire electric discharge machine in the direction perpendicular to the rotation axis O to expose the cross section.
  • Each cross section is mirror-polished with a diamond slurry having an average particle size of 3 ⁇ m.
  • the peak area intensity I3 min of sp3 carbon and the peak area intensity I2 of sp2 carbon calculating the Ix min is the ratio I3 min / I2 min with min.
  • the measurement at the first point is performed in any three measurement fields, and the average value of the three points is defined as "Ix min at the first point".
  • the peak area intensity I3 max of sp3 carbon and the peak area intensity I2 of sp2 carbon calculating the Ix max is the ratio I3 max / I2 max with max.
  • the measurement at the second point is performed in any three measurement fields, and the average value of the three points is defined as "Ix max at the second point".
  • Ix min / Ix max is calculated based on the above "Ix min at the first point” and the above "Ix max at the second point".
  • the lower limit can be 0.40, 0.45, 0.50
  • the upper limit can be 0.70, 0.80, 0.90.
  • the lower limit can be 0.40, 0.45, 0.50
  • the upper limit can be 0.70, 0.80, 0.90.
  • the average particle size is measured at the first point where the thickness is the minimum value d min and the second point where the thickness is the maximum value d max. It is preferable that the D min / D max, which is the ratio of the average particle diameter D min to the average particle diameter D max at the second point, is 0.7 or more and 1 or less.
  • the tool life of the diamond-coated tool is further improved.
  • D min / D max is 0.7 or more
  • the average particle size of diamond is uniform over the entire diamond layer, and the abrasion resistance and fracture resistance of the diamond layer are also the blade portion. It is thought that this is because it becomes uniform in.
  • the above D min / D max is more preferably 0.7 or more and 1 or less, and further preferably 0.85 or more and 1 or less.
  • the average particle size means the median diameter (d50) in the volume-based particle size distribution (volume distribution).
  • the D min / D max is calculated by the following procedure (4-1) to (4-5).
  • a first point having a minimum thickness of d min and a second point having a maximum thickness of d max are specified in the diamond layer.
  • the diamond coating tool is cut out by a wire electric discharge machine in the direction perpendicular to the rotation axis O to expose the cross section.
  • Each cross section is mirror-polished with a diamond slurry having an average particle size of 3 ⁇ m.
  • a rectangular measurement field of view of 2 ⁇ m ⁇ 2 ⁇ m (hereinafter, also referred to as “EBSD measurement field of view”) is set in the diamond layer.
  • the measurement field of view is set at a position where the distance from the surface of the diamond layer is 2 ⁇ m on one side and the distance from the surface of the diamond layer is 2 ⁇ m or more in the entire region.
  • the particle diameters of all the diamonds included in the measurement field of view are measured by the electron backscatter diffraction method, and the median diameter (d50) is calculated.
  • the electron backscatter diffraction device "SUPRA35VP" (trademark) manufactured by ZEISS is used.
  • the measurement at the first point is performed in any three measurement fields, and the average value of the three points is defined as "D min at the first point".
  • D min / D max is calculated based on the above "D min at the first point” and "D max at the second point".
  • the lower limit of D min at the first point can be, for example, 50 nm, 75 nm, and 100 nm, and the upper limit can be 800 nm, 900 nm, and 1000 nm.
  • the lower limit of D min at the second point can be, for example, 50 nm, 75 nm, and 100 nm, and the upper limit can be 800 nm, 900 nm, and 1000 nm.
  • the tool life of the diamond-coated tool is further improved.
  • the reason for this is not clear, but when R min / R max is 0.7 or more, the surface roughness of the diamond is uniform over the entire diamond layer, and the wear resistance of the diamond layer is also uniform at the blade portion. It is thought that this is the reason.
  • R min / R max is more preferably 0.7 or more and 1 or less, and further preferably 0.85 or more and 1 or less.
  • the "surface roughness Ra” refers to the arithmetic average roughness Ra defined in JIS B 0601, and is extracted from the roughness curve by the reference length in the direction of the average line, and the extracted portion of the extracted portion. It is defined as the average value of the total distance (absolute value of deviation) from the average line to the measurement curve.
  • the R min / R max is calculated by the following procedure (5-1) to (5-4).
  • a 50 ⁇ m square measurement field of view is set so as to include the first point.
  • the surface roughness is measured using a laser microscope (“OPTELICS HYBRID” (trademark) manufactured by Lasertech). The surface roughness is defined as "surface roughness R min at the first point”.
  • a 50 ⁇ m square measurement field of view is set so as to include the second point.
  • the surface roughness is measured using a laser microscope (“OPTELICS HYBRID” (trademark) manufactured by Lasertech). The surface roughness is defined as "surface roughness R max at the second point”.
  • R min / R max is calculated based on the above-mentioned “surface roughness R min at the first point” and the above-mentioned “surface roughness R max at the second point".
  • the lower limit can be 0.05, 0.06, 0.07
  • the upper limit can be 0.21, 0.25, 0.30. ..
  • the lower limit can be 0.05, 0.06, 0.07
  • the upper limit can be 0.21, 0.25, 0.30. ..
  • the taper cutter which is a diamond-coated tool 210, includes a body 23 and a shank 24 connected to the body 23.
  • the blade portion 25 on which the cutting edge composed of the outer peripheral blade 27 is formed is provided on the base material 1 and the base material 1 in the X-ray cross section as shown in FIG. It includes a diamond layer 2.
  • the blade portion 25 extends along the rotation axis O of the tool. Therefore, in the first and second embodiments, the length L of the blade portion 25 along the extending direction means the length of the blade portion 25 along the rotation axis O of the tool.
  • the entire body 23 corresponds to the blade portion 25, but a part of the body 23 may be the blade portion.
  • the d min / d max , I min / I max , Ix min / Ix max , D max / D min , R min / R max, and the measurement methods thereof at the blade portion shall be the same as those in the first embodiment. The explanation is not repeated because it can be done.
  • FIG. 4 is a diagram illustrating a configuration example of the diamond-coated tool of the first to third embodiments.
  • FIG. 5 is an enlarged view of the first blade portion 35A of FIG.
  • FIG. 6 is an enlarged view of the second blade portion 35B of FIG.
  • the drill which is a diamond-coated tool 310, includes a body 33 and a shank 34 connected to the body 33.
  • the body 33 includes a first blade portion 35A formed with a cutting edge 8A formed at the tip portion, and a second blade portion 35B formed with a cutting edge 8B formed on the shank 34 side.
  • the cutting edge 8B chamfers the hole entrance at the time of drilling.
  • the blade portion 35A and the blade portion 35B include a base material 1 and a diamond layer 2 provided on the base material 1 in the X-ray cross section as shown in FIG.
  • the blade portion 35A and the blade portion 35B extend along the rotation axis O of the tool. Therefore, in the first embodiment, the length L of the blade portion 35A and the blade portion 35B along the extending direction means the length of the blade portion 35A and the blade portion 35B along the rotation axis O of the tool. ..
  • the methods for measuring d min / d max , I min / I max , Ix min / Ix max , D max / D min , R min / R max, and these measuring methods in the blade portion 35A and the blade portion 35B are the first embodiment 1-1. The explanation is not repeated because it can be the same as.
  • the method for manufacturing a diamond-coated tool of the present disclosure is the method for manufacturing a diamond-coated tool according to the first embodiment, which includes a step of preparing a base material (hereinafter, also referred to as a “base material preparation step”) and a step of preparing the base material on the base material.
  • a step of forming a diamond layer by a hot filament CVD method to obtain a diamond coating tool (hereinafter, also referred to as a “hot filament CVD step”) is provided, and the hot filament CVD method is a cutting edge of the base material.
  • This is a method for manufacturing a diamond-coated tool, which is performed by controlling the temperature distribution in the blade portion where the diamond is present to be within 5%.
  • Base material preparation process First, the base material is prepared. Since the base material is the same as the base material described in Embodiment 1-1, the description thereof will not be repeated.
  • a diamond layer is formed on the base material by the thermal filament CVD method to obtain a diamond coating tool.
  • a diamond layer is formed on a base material by heating while supplying methane and hydrogen into a vacuum furnace.
  • the thermal filament CVD method is performed by controlling the temperature distribution in the cutting edge portion of the base material where the cutting edge is present to be within 5%.
  • the temperature distribution in the cutting edge where the cutting edge exists is within 5%, which means that when the surface temperature at both ends of the cutting edge region is measured by a radiation thermometer, the temperature difference is the temperature of the cutting edge tip. It means that it is within 5%.
  • FIG. 11 is a front view showing an example of a conventional thermal filament CVD apparatus.
  • FIG. 12 is a top view of the thermal filament CVD apparatus of FIG.
  • FIG. 13 is a diagram showing the surface temperature distribution of the base material at the time of film formation by the conventional thermal filament CVD method.
  • the conventional thermal filament CVD apparatus 20 includes a filament 21 and a mounting stage 22 for mounting equipment in the vacuum furnace 201.
  • the portion (hereinafter, also referred to as “blade region”) 55 of the base material 1 corresponding to the cutting edge may be within the heating range of the thermal filament. It was. Therefore, the non-deposition region 56 corresponding to the shank or the like is arranged outside the heating range of the filament.
  • the tip end portion (upper end portion in FIG. 13) of the base material has the highest temperature because there is no escape place for heat.
  • the temperature decreases toward the unheated shank side, and heat flows out from the base material 1 to the mounting stage 22 side (in the direction of the downward arrow in FIG. 11), resulting in a temperature distribution in the blade region 55.
  • the present inventors have found that the arrangement of the shank outside the heating range causes the temperature of the tool blade on the shank side to drop, resulting in a film thickness distribution.
  • the present inventors made the entire base material 1 the heating range of the filament 21 and mounted it on the non-film-forming region 56 such as a shank in the thermal filament CVD apparatus 220 as shown in FIG.
  • a heat insulating material 23 is provided between the stage and the heat insulating material 23 to improve heat insulating properties and suppress heat outflow from the base material 1 to the mounting stage 22 side (in the direction of the downward arrow in FIG. 14), thereby causing a temperature distribution in the blade region. It was found that the temperature can be controlled within 5% and the film thickness of the diamond layer at the cutting edge can be made uniform.
  • the method of setting the temperature distribution in the blade portion where the cutting edge is present within 5% is not limited to the above.
  • the number of filaments with respect to the base material, the distance between the filaments and the base material, the position of the base material in the furnace, etc. are appropriately changed based on the shape of the base material, the grade, and the like.
  • Example 1 As a base material, an end mill ( ⁇ 10 mm) having a cemented carbide material and having the shape shown in FIG. 1 was prepared. The length L of the blade portion of the end mill was 30 mm.
  • diamond powder was applied to the surface of the base material and seeding treatment was performed.
  • the seeding treatment was carried out by rubbing a diamond powder having an average particle size of 5 ⁇ m on the surface of the base material, washing the base material in ethanol, and drying the base material.
  • the base material subjected to the seeding treatment was set in the thermal filament CVD apparatus shown in FIG.
  • the diamond layer of sample 1 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 800 ° C.
  • the flow rate of methane and hydrogen was controlled so as to have a methane concentration of 1%, and the mixture was supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the blade portion where the cutting edge was present was within 5% of the base material.
  • Sample 2 to Sample 4 As the base material of Samples 2 to 4, the same base material as that of Sample 1 was prepared, and the seeding treatment was performed by the same method as that of Sample 1. A diamond layer was formed on the substrate using the same thermal filament CVD apparatus as Sample 1, and a diamond coating tool was obtained.
  • the diamond layer of sample 2 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 780 ° C.
  • the flow rate of methane and hydrogen was controlled so as to have a methane concentration of 1%, and the mixture was supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the blade portion where the cutting edge was present was within 5% of the base material. As a result, a diamond coating tool for Sample 2 in which a diamond layer was formed on the base material was obtained.
  • the diamond layer of sample 3 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 780 ° C.
  • the flow rate of methane and hydrogen was controlled so as to have a methane concentration of 3%, and the mixture was supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the blade portion where the cutting edge was present was within 5% of the base material.
  • the diamond layer of sample 3-1 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 760 ° C.
  • the flow rate of methane and hydrogen was controlled so as to have a methane concentration of 3%, and the mixture was supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the blade portion where the cutting edge was present was within 5% of the base material.
  • the diamond layer of sample 3-2 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 800 ° C.
  • the flow rate of methane and hydrogen was controlled so as to have a methane concentration of 4%, and the mixture was supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the blade portion where the cutting edge was present was within 5% of the base material.
  • the diamond layer of sample 4 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 800 ° C.
  • the flow rate of methane and hydrogen was controlled so as to have a methane concentration of 3%, and the mixture was supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the blade portion where the cutting edge was present was within 5% of the base material. As a result, a diamond coating tool for Sample 4 in which a diamond layer was formed on the base material was obtained.
  • Sample 5 to Sample 8 As the base material of Samples 5 to 8, the same base material as that of Sample 1 was prepared, and the seeding treatment was performed by the same method as that of Sample 1. A diamond layer was formed on the substrate using a thermal filament CVD apparatus by a method that did not consider temperature distribution control, and a diamond coating tool was obtained.
  • the diamond layer of sample 5 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 780 ° C.
  • the flow rate of methane and hydrogen was controlled so as to have a methane concentration of 3%, and the mixture was supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the cutting edge portion of the base material where the cutting edge was present was more than 5%. As a result, a diamond coating tool for sample 5 was obtained.
  • the diamond layer of sample 6 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 800 ° C.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 3%, and the mixture was placed in the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the cutting edge portion of the base material where the cutting edge was present was more than 5%. As a result, a diamond coating tool for sample 6 was obtained.
  • the diamond layer of sample 7 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 800 ° C.
  • the flow rate of methane and hydrogen was controlled so as to have a methane concentration of 1%, and the mixture was supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the cutting edge portion of the base material where the cutting edge was present was more than 5%. As a result, a diamond coating tool for sample 7 was obtained.
  • the diamond layer of sample 8 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 780 ° C.
  • the flow rate of methane and hydrogen was controlled so as to have a methane concentration of 1%, and the mixture was supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa.
  • the temperature distribution in the cutting edge portion of the base material where the cutting edge was present was more than 5%. As a result, a diamond coating tool for sample 8 was obtained.
  • the method for manufacturing the diamond-coated tools of Samples 1 to 4 corresponds to Examples.
  • the diamond coating tools of Samples 1 to 4 correspond to Examples. It was confirmed that the diamond-coated tools of Samples 1 to 4 had a long peeling distance and a long tool life.
  • the manufacturing method of the diamond-coated tools of Samples 5 to 8 corresponds to a comparative example.
  • the diamond coating tools of Samples 5 to 8 correspond to Comparative Examples.
  • the peeling distance of the diamond coating tools of Samples 5 to 8 was shorter than that of Samples 1 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

基材と、前記基材上に設けられたダイヤモンド層とからなる刃部を備えるダイヤモンド被覆工具であって、前記刃部は、その延在方向に沿う長さがLであり、前記刃部において、一方の端部から前記延在方向に沿う方向に沿って、互いにL/10の距離を隔てて並ぶ計11点の各地点で前記ダイヤモンド層の厚みを測定した場合、全ての地点において前記厚みがすべて同一である、又は、前記厚みの最小値dminと前記厚みの最大値dmaxとの比であるdmin/dmaxが0.7以上1未満である。

Description

ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法
 本開示は、ダイヤモンド被覆工具及びダイヤモンド被覆工具製造方法に関する。本出願は、2019年11月8日に出願した日本特許出願である特願2019-203330号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 ダイヤモンドは硬度が非常に高く、その平滑面は極めて低い摩擦係数を有する。従って、従来より天然産単結晶ダイヤモンドや人工ダイヤモンド粉末は、工具用途への応用がなされてきた。さらに1980年代に化学的気相合成(CVD)法によるダイヤモンド薄膜の形成技術が確立されてからは、3次元状の基材に対してダイヤモンドを成膜した、切削工具や耐磨工具が開発されてきた。
 特開平11-347805(特許文献1)には、超硬合金の基材の表面にダイヤモンドの硬質膜を被覆したダイヤモンド被覆工具部材が開示されている。
特開平11-347805号公報
 本開示のダイヤモンド被覆工具は、
 基材と、前記基材上に設けられたダイヤモンド層とからなる刃部を備えるダイヤモンド被覆工具であって、
 前記刃部は、その延在方向に沿う長さがLであり、
 前記刃部において、一方の端部から前記延在方向に沿う方向に沿って、互いにL/10の距離を隔てて並ぶ計11点の各地点で前記ダイヤモンド層の厚みを測定した場合、全ての地点において前記厚みがすべて同一である、又は、前記厚みの最小値dminと前記厚みの最大値dmaxとの比であるdmin/dmaxが0.7以上1未満である、ダイヤモンド被覆工具である。
 本開示のダイヤモンド被覆工具の製造方法は、上記のダイヤモンド被覆工具の製造方法であって、
 基材を準備する工程と、
 前記基材上に、熱フィラメントCVD法によりダイヤモンド層を形成してダイヤモンド被覆工具を得る工程と、を備え、
 前記熱フィラメントCVD法は、前記基材のうち、切れ刃が存在する刃部における温度分布が5%以内となるように制御して行う、ダイヤモンド被覆工具の製造方法である。
図1は、実施形態1-1のダイヤモンド被覆工具の構成例を説明する図である。 図2は、図1、図3及び図4のダイヤモンド被覆工具のX-X線における断面図である。 図3は、実施形態1-2のダイヤモンド被覆工具(テーパーカッター)の構成例を説明する図である。 図4は、実施形態1-3のダイヤモンド被覆工具(ドリル)の構成例を説明する図である。 図5は、図4の第1の刃部35Aの拡大図である。 図6は、図4の第2の刃部35Bの拡大図である。 図7は、第1地点におけるラマンスペクトルの一例を示す図である。 図8は、第2地点におけるラマンスペクトルの一例を示す図である。 図9は、第1地点におけるC1sスペクトルの一例を示す図である。 図10は、第2地点におけるC1sスペクトルの一例を示す図である。 図11は、従来の熱フィラメントCVD装置の一例を示す正面図である。 図12は、図11の熱フィラメントCVD装置の上面図である。 図13は、従来の熱フィラメントCVD法による成膜時の基材の表面温度分布を示す図である。 図14は、実施形態2で用いる熱フィラメントCVD装置の一例を示す図である。 図15は、実施形態2の熱フィラメントCVD法による成膜時の基材の表面温度分布を示す図である。
 [本開示が解決しようとする課題]
 ダイヤモンド被覆工具では、基材上のダイヤモンド層の厚さ及び結晶性にばらつきがあると、同一工具内で、ダイヤモンド層の摩耗や剥離の発生にもばらつきが生じ、工具寿命が短くなる傾向がある。そこで、ダイヤモンド層の厚さ及び結晶性が均一であり、長い工具寿命を有するダイヤモンド被覆工具が求められている。
 本開示は、長い工具寿命を有するダイヤモンド被覆工具を提供することを目的とする。
 [本開示の効果]
 本開示によれば、ダイヤモンド被覆工具は、長い工具寿命を有することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示のダイヤモンド被覆工具は、
 基材と、前記基材上に設けられたダイヤモンド層とからなる刃部を備えるダイヤモンド被覆工具であって、
 前記刃部は、その延在方向に沿う長さがLであり、
 前記刃部において、一方の端部から前記延在方向に沿う方向に沿って、互いにL/10の距離を隔てて並ぶ計11点の各地点で前記ダイヤモンド層の厚みを測定した場合、全ての地点において前記厚みがすべて同一である、又は、前記厚みの最小値dminと前記厚みの最大値dmaxとの比であるdmin/dmaxが0.7以上1未満である、ダイヤモンド被覆工具である。
 本開示によれば、ダイヤモンド被覆工具は、長い工具寿命を有することができる。
 (2)前記dmin/dmaxは0.85以上1未満であることが好ましい。これによると、ダイヤモンド被覆工具の工具寿命が更に向上する。
 (3)前記厚みが最小値dminである第1地点及び前記厚みが最大値dmaxである第2地点において、前記ダイヤモンド層のラマンシフト900cm-1から2000cm-1の範囲のラマンスペクトルを測定した場合、
 前記第1地点におけるダイヤモンドのピーク面積強度Idminとスペクトル全体の面積強度Isminとの比Idmin/IsminであるIminと、前記第2地点におけるダイヤモンドのピーク面積強度Idmaxとスペクトル全体の面積強度Ismaxとの比Idmax/IsmaxであるImaxとの比Imin/Imaxが0.7以上1以下であることが好ましい。
 これによると、ダイヤモンド被覆工具の工具寿命が更に向上する。
 (4)前記厚みが最小値dminである第1地点及び前記厚みが最大値dmaxである第2地点において、X線光電子分光法により前記ダイヤモンド層のC1sスペクトルを測定した場合、
 前記第1地点におけるsp3炭素のピーク面積強度I3minとsp2炭素のピーク面積強度I2minとの比I3min/I2minであるIxminと、前記第2地点におけるsp3炭素のピーク面積強度I3maxとsp2炭素のピーク面積強度I2maxとの比I3max/I2maxであるIxmaxとの比Ixmin/Ixmaxが0.7以上1以下であることが好ましい。
 これによると、ダイヤモンド被覆工具の工具寿命が更に向上する。
 (5)前記厚みが最小値dminである第1地点及び前記厚みが最大値dmaxである第2地点において、電子後方散乱回折法により前記ダイヤモンド層の平均粒子径を測定した場合、
 前記第1地点における平均粒子径Dminと前記第2地点における平均粒子径Dmaxとの比であるDmin/Dmaxが0.7以上1以下であることが好ましい。
 これによると、ダイヤモンド被覆工具の工具寿命が更に向上する。
 (6)前記厚みが最小値dminである第1地点及び前記厚みが最大値dmaxである第2地点において、レーザ顕微鏡を用いて前記ダイヤモンド層の表面粗さRaを測定した場合、
 前記第1地点における表面粗さRminと前記第2地点における表面粗さRmaxとの比であるRmin/Rmaxが0.7以上1以下であることが好ましい。
 これによると、ダイヤモンド被覆工具の工具寿命が更に向上する。
 (7)本開示のダイヤモンド被覆工具の製造方法は、上記に記載のダイヤモンド被覆工具の製造方法であって、
 基材を準備する工程と、
 前記基材上に、熱フィラメントCVD法によりダイヤモンド層を形成してダイヤモンド被覆工具を得る工程と、を備え、
 前記熱フィラメントCVD法は、前記基材のうち、切れ刃が存在する刃部における温度分布が5%以内となるように制御して行う、ダイヤモンド被覆工具の製造方法である。
 本開示によれば、ダイヤモンド層の厚さが均一であり、長い工具寿命を有するダイヤモンド被覆工具を得ることができる。
 [本開示の実施形態の詳細]
 本開示のダイヤモンド被覆切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 [実施形態1:ダイヤモンド被覆工具]
 図1はダイヤモンド被覆工具がエンドミルの場合の構成例を示す図である。図2は、図1のダイヤモンド被覆工具のX-X線における断面図である。
 図1及び図2に示されるように、ダイヤモンド被覆工具10は、基材1と、基材1上に設けられたダイヤモンド層2とからなる刃部5を備えるダイヤモンド被覆工具であって、刃部5は、その延在方向に沿う長さがLであり、刃部5において、一方の端部から延在方向に沿う方向に沿って、互いにL/10の距離を隔てて並ぶ計11点の各地点でダイヤモンド層の厚みを測定した場合、全ての地点において厚みがすべて同一である、又は、厚みの最小値dminと厚みの最大値dmaxとの比であるdmin/dmaxが0.7以上1未満である。
 本開示のダイヤモンド被覆工具は、ダイヤモンド層の厚さが均一であるため、ダイヤモンド層の摩耗や剥離の発生に偏りがなく、長い工具寿命を有することができる。
 以下、本開示のダイヤモンド被覆工具の具体例について図1~図6を用いて説明する。なお、図1はダイヤモンド被覆工具がエンドミルの場合、図3はダイヤモンド被覆工具がテーパーカッターの場合、図4~図6はダイヤモンド被覆工具がドリルの場合を示すが、ダイヤモンド被覆工具の種類はこれに限定されない。本開示のダイヤモンド被覆工具としては、例えば、バイト、カッタ、ドリル、エンドミル等の切削工具、および、ダイス、曲げダイ、絞りダイス、ボンディングツール等の耐磨工具が挙げられる。
 [実施形態1-1:エンドミル]
 実施形態1-1では、ダイヤモンド被覆工具がエンドミルの場合を説明する。図1に示されるように、ダイヤモンド被覆工具10であるエンドミルは、ボディ3と、該ボディ3に接続するシャンク4とを備える。ボディ3のうち、底刃6及び外周刃7を含む切れ刃の形成されている刃部3は、X-X断面において、図2に示されるように、基材1と該基材1上に設けられたダイヤモンド層2とを備える。
 図1では、刃部5は、工具の回転軸Oに沿って延在している。従って、実施形態1-1では、刃部5のその延在する方向に沿う長さLとは、刃部5の工具の回転軸Oに沿う長さを意味する。
 <基材>
 基材としては、従来公知のものを特に限定なく使用することができる。例えば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはさらにTi、Ta、Nb等の炭窒化物等を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、工具鋼、セラミックス(炭化チタン、炭化硅素、窒化硅素、窒化アルミニウム、酸化アルミニウム、およびこれらの混合体など)、立方晶型窒化硼素焼結体等をこのような基材の例として挙げることができる。
 これらの基材の中でも、特にWC基超硬合金、サーメット(特にTiCN基サーメット)を選択することが好ましい。これは、これらの基材が特に高温における硬度と強度とのバランスに優れ、ダイヤモンド被覆切削工具の基材として優れた特性を有するためである。
 <ダイヤモンド層>
 ダイヤモンド層は、従来公知の化学気相合成法(CVD:chemical vapor deposition)で作製されたものを用いることができる。中でも、熱フィラメントCVD法で形成されたものであることが好ましい。
 (厚み)
 刃部5において、一方の端部(図1では先端T側の端部)から延在方向(軸O)に沿うに沿って、互いにL/10の距離を隔てて並ぶ計11点の各地点(図1ではP0~P10で示される各地点)でダイヤモンド層の厚みを測定した場合、全ての地点において厚みがすべて同一である、又は、厚みの最小値dminと厚みの最大値dmaxとの比であるdmin/dmaxが0.7以上1未満である。これによると、ダイヤモンド被覆工具は、ダイヤモンド層の厚さが均一であり、長い工具寿命を有することができる。
 上記のdmin/dmaxは0.85以上1未満が好ましく、0.95以上1未満が更に好ましい。
 本明細書において、ダイヤモンド層の厚みは、下記(1-1)~(1-2)の手順で測定される。
 (1-1)刃部5の回転軸Oに沿う長さLを測定する。次に、刃部の一方の端部(例えば工具の先端部、図1では先端T側の端部)及び、該端部からの距離が(L/10)×nの長さ(ここでnは0以上10以下の整数である。)の各地点(両端部を含む合計11地点、図1ではP0~P10の11点)において、ダイヤモンド被覆工具を回転軸Oに垂直な方向にワイヤー放電加工機で切り出し、断面を露出させる。
 (1-2)各地点の断面において、ダイヤモンド層の厚みをSEM(走査型電子顕微鏡、日本電子社製「JEM-2100F/Cs」(商標))を用いて観察することにより測定する。具体的には、断面サンプルの観察倍率を5000倍とし、観察視野面積を100μmとして、該観察視野内で3箇所の厚みを測定し、該3箇所の平均値を該観察視野の厚みとする。5つの観察視野において測定を行い、該5つの観察視野の厚みの平均値をダイヤモンド層の厚みとする。
 ダイヤモンド層の厚みの最小値dminは、例えば、下限を3μm、4μm、5μmとすることができ、上限を28μm、29μm、30μmとすることができる。
 ダイヤモンド層の厚みの最大値dmaxは、例えば、下限を3μm、4μm、5μmとすることができ、上限を28μm、29μm、30μmとすることができる。
 (ラマンスペクトル)
 ダイヤモンド層の厚みが最小値dminである第1地点、及び、ダイヤモンド層の厚みが最大値dmaxである第2地点において、ダイヤモンド層のラマンシフト900cm-1から2000cm-1の範囲のラマンスペクトルを測定した場合、第1地点におけるダイヤモンドのピーク面積強度Idminとスペクトル全体の面積強度Isminとの比Idmin/IsminであるIminと、第2地点におけるダイヤモンドのピーク面積強度Idmaxとスペクトル全体の面積強度Ismaxとの比Idmax/IsmaxであるImaxとの比Imin/Imaxが0.7以上1以下であるが好ましい。
 これによると、ダイヤモンド被覆工具の工具寿命が更に向上する。この理由は明らかではないが、Imin/Imaxの値が0.7以上であると、ダイヤモンドの結晶性がダイヤモンド層の全域にわたって均一であり、ダイヤモンド層の耐摩耗性や耐剥離性も刃部において均一になるためと考えられる。
 上記のImin/Imaxは、0.85以上1以下がより好ましく、0.9以上1以下が更に好ましい。
 本明細書において、上記のImin/Imaxは、下記(2-1)~(2-6)の手順で算出される。
 (2-1)上記のダイヤモンド層の厚みの測定結果に基づき、ダイヤモンド層の厚みが最小値dminである第1地点、及び、ダイヤモンド層の厚みが最大値dmaxである第2地点を特定する。第1地点及び第2地点において、ダイヤモンド被覆工具を回転軸Oに垂直な方向にワイヤー放電加工機で切り出し、断面を露出させる。各断面を平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。
 (2-2)各地点の断面において、ダイヤモンド層内で50μm×50μmの矩形の測定視野(以下、「ラマン分光用測定視野」ともいう。)を設定する。
 (2-3)各ラマン分光用測定視野について、JIS-K0137(2010)に準拠したレーザーラマン測定法により、ラマンシフト900cm-1から2000cm-1の範囲のラマンスペクトルを得る。ラマン分光装置は、ナノフォトン社製の「Ramantouch」(商標)を用いる。第1地点及び第2地点におけるラマンスペクトルの一例を、それぞれ図7及び図8に示す。図7及び図8において、Idで示されるスペクトルはダイヤモンドに由来するスペクトルを示し、Isで示されるスペクトルは図7及び図8のそれぞれに示される全てのスペクトルの合計を示す。
 (2-4)第1地点のラマンスペクトルについて、画像処理ソフト(ナノフォトン社製の「Ramanimager」(商標))を用いて、ダイヤモンドのピーク面積強度Idminとスペクトル全体の面積強度Isminとの比Idmin/IsminであるIminを算出する。第1地点における測定を任意の3箇所の測定視野で行い、該3箇所の平均値を「第1地点におけるImin」とする。
 (2-5)第2地点のラマンスペクトルについて、画像処理ソフト(ナノフォトン社製の「Ramanimager」(商標))を用いて、ダイヤモンドのピーク面積強度Idmaxとスペクトル全体の面積強度Ismaxとの比Idmax/IsmaxであるImaxを算出する。第2地点における測定を任意の3箇所の測定視野で行い、該3箇所の平均値を「第2地点におけるImax」とする。
 (2-6)上記「第1地点におけるImin」と上記「第2地点におけるImax」とに基づき、Imin/Imaxを算出する。
 第1地点におけるIminは、例えば、下限を0.25、0.35、0.40とすることができ、上限を0.70、0.80、0.90とすることができる。
 第2地点におけるImaxは、例えば、下限を0.25、0.35、0.40とすることができ、上限を0.70、0.80、0.90とすることができる。
 (C1sスペクトル)
 厚みが最小値dminである第1地点及び厚みが最大値dmaxである第2地点において、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)によりダイヤモンド層のC1sスペクトルを測定した場合、第1地点におけるsp3炭素のピーク面積強度I3minとsp2炭素のピーク面積強度I2minとの比I3min/I2minであるIxminと、第2地点におけるsp3炭素のピーク面積強度I3maxとsp2炭素のピーク面積強度I2maxとの比I3max/I2maxであるIxmaxとの比Ixmin/Ixmaxが0.7以上1以下であることが好ましい。
 これによると、ダイヤモンド被覆工具の工具寿命が更に向上する。この理由は明らかではないが、Ixmin/Ixmaxの値が0.7以上であると、ダイヤモンドの結晶性がダイヤモンド層の全域にわたって均一であり、ダイヤモンド層の耐摩耗性も刃部において均一になるためと考えられる。
 上記のIxmin/Ixmaxは、0.7以上1以下がより好ましく、0.85以上1以下が更に好ましい。
 本明細書において、上記のIxmin/Ixmaxは、下記(3-1)~(3-6)の手順で算出される。
 (3-1)上記のダイヤモンド層の厚みの測定結果に基づき、ダイヤモンド層の厚みが最小値dminである第1地点、及び、ダイヤモンド層の厚みが最大値dmaxである第2地点を特定する。第1地点及び第2地点において、ダイヤモンド被覆工具を回転軸Oに垂直な方向にワイヤー放電加工機で切り出し、断面を露出させる。各断面を平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。
 (3-2)各地点の断面において、ダイヤモンド層内で50μm×50μmの矩形の測定視野(以下、「XPS用測定視野」ともいう。)を設定する。
 (3-3)各XPS用測定視野について、X線光電子分光法により、C1sスペクトルを得る。X線光電子分光装置は、ULVAC PHI社製の「QuanteraSXM」(商標)を用いる。第1地点及び第2地点におけるC1sスペクトルの一例を、それぞれ図9及び図10に示す。
 (3-4)第1地点のC1sスペクトルについて、画像処理ソフト(ULVAC PHI社製の「PHI MultiPak」(商標))を用いて、sp3炭素のピーク面積強度I3minとsp2炭素のピーク面積強度I2minとの比I3min/I2minであるIxminを算出する。第1地点における測定を任意の3箇所の測定視野で行い、該3箇所の平均値を「第1地点におけるIxmin」とする。
 (3-5)第2地点のC1sスペクトルについて、画像処理ソフト(ULVAC PHI社製の「PHI MultiPak」(商標))を用いて、sp3炭素のピーク面積強度I3maxとsp2炭素のピーク面積強度I2maxとの比I3max/I2maxであるIxmaxを算出する。第2地点における測定を任意の3箇所の測定視野で行い、該3箇所の平均値を「第2地点におけるIxmax」とする。
 (3-6)上記「第1地点におけるIxmin」と上記「第2地点におけるIxmax」とに基づき、Ixmin/Ixmaxを算出する。
 第1地点におけるIxminは、例えば、下限を0.40、0.45、0.50とすることができ、上限を0.70、0.80、0.90とすることができる。
 第2地点におけるIxmaxは、例えば、下限を0.40、0.45、0.50とすることができ、上限を0.70、0.80、0.90とすることができる。
 (平均粒子径)
 厚みが最小値dminである第1地点及び厚みが最大値dmaxである第2地点において電子後方散乱回折法(EBSD:Electron Backscatter Diffraction Pattern)により平均粒子径を測定した場合、第1地点における平均粒子径Dminと第2地点における平均粒子径Dmaxとの比であるDmin/Dmaxが0.7以上1以下であることが好ましい。
 これによると、ダイヤモンド被覆工具の工具寿命が更に向上する。この理由は明らかではないが、Dmin/Dmaxが0.7以上であると、ダイヤモンドの平均粒子径がダイヤモンド層の全域にわたって均一であり、ダイヤモンド層の耐摩耗性及び耐欠損性も刃部において均一になるためと考えられる。
 上記のDmin/Dmaxは、0.7以上1以下がより好ましく、0.85以上1以下が更に好ましい。
 本明細書において、「平均粒子径」とは、体積基準の粒度分布(体積分布)におけるメジアン径(d50)を意味する。
 上記Dmin/Dmaxは、下記(4-1)~(4-5)の手順で算出される。
 (4-1)上記のダイヤモンド層の厚みの測定結果に基づき、ダイヤモンド層において、厚みが最小値dminである第1地点、及び、厚みが最大値dmaxである第2地点を特定する。第1地点及び第2地点において、ダイヤモンド被覆工具を回転軸Oに垂直な方向にワイヤー放電加工機で切り出し、断面を露出させる。各断面を平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。
 (4-2)各地点の断面において、ダイヤモンド層内で2μm×2μmの矩形の測定視野(以下、「EBSD用測定視野」ともいう。)設定する。該測定視野は、一辺がダイヤモンド層の表面からの距離が2μm、かつ、全領域がダイヤモンド層の表面からの距離が2μm以上となるような位置に設定する。
 (4-3)第1地点のEBSD用測定視野において、電子後方散乱回折法により、測定視野に含まれる全てのダイヤモンドの粒子径を測定し、メジアン径(d50)を算出する。電子後方散乱回折装置は、ZEISS社製の「SUPRA35VP」(商標)を用いる。第1地点における測定を任意の3箇所の測定視野で行い、該3箇所の平均値を「第1地点におけるDmin」とする。
 (4-4)第2地点のEBSD用測定視野において、電子後方散乱回折法により、測定視野に含まれる全てのダイヤモンドの粒子径を測定し、メジアン径(d50)を算出する。第2地点における測定を任意の3箇所の測定視野で行い、該3箇所の平均値を「第2地点におけるDmax」とする。
 (4-5)上記「第1地点におけるDmin」と「第2地点におけるDmax」とに基づき、Dmin/Dmaxを算出する。
 第1地点におけるDminは、例えば、下限を50nm、75nm、100nmとすることができ、上限を800nm、900nm、1000nmとすることができる。
 第2地点におけるDminは、例えば、下限を50nm、75nm、100nmとすることができ、上限を800nm、900nm、1000nmとすることができる。
 (表面粗さRa)
 厚みが最小値dminである第1地点及び厚みが最大値dmaxである第2地点においてレーザ顕微鏡を用いてダイヤモンド層の表面粗さRaを測定した場合、第1地点における表面粗さRminと第2地点における表面粗さRmaxとの比であるRmin/Rmaxが0.7以上1以下であることが好ましい。
 これによると、ダイヤモンド被覆工具の工具寿命が更に向上する。この理由は明らかではないが、Rmin/Rmaxが0.7以上であると、ダイヤモンドの表面粗さがダイヤモンド層の全域にわたって均一であり、ダイヤモンド層の耐摩耗性も刃部において均一になるためと考えられる。
 上記のRmin/Rmaxは、0.7以上1以下がより好ましく、0.85以上1以下が更に好ましい。
 本明細書において、「表面粗さRa」とは、JIS B 0601に規定される算術平均粗さRaをいい、粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から測定曲線までの距離(偏差の絶対値)を合計し平均した値と定義される。
 上記Rmin/Rmaxは、下記(5-1)~(5-4)の手順で算出される。
 (5-1)上記のダイヤモンド層の厚みの測定結果に基づき、ダイヤモンド層において、厚みが最小値dminである第1地点及び厚みが最大値dmaxである第2地点を特定する。
 (5-2)ダイヤモンド層の表面において、第1地点を含むように50μm四方の測定視野を設定する。該測定視野において、レーザ顕微鏡(Lasertech社製「OPTELICS HYBRID」(商標))を用いて表面粗さを測定する。該表面粗さを「第1地点の表面粗さRmin」とする。
 (5-3)ダイヤモンド層の表面において、第2地点を含むように50μm四方の測定視野を設定する。該測定視野において、レーザ顕微鏡(Lasertech社製「OPTELICS HYBRID」(商標))を用いて表面粗さを測定する。該表面粗さを「第2地点の表面粗さRmax」とする。
 (5-4)上記「第1地点の表面粗さRmin」と上記「第2地点の表面粗さRmax」とに基づき、Rmin/Rmaxを算出する。
 第1地点の表面粗さRminは、例えば、下限を0.05、0.06、0.07とすることができ、上限を0.21、0.25、0.30とすることができる。
 第2地点の表面粗さRminは、例えば、下限を0.05、0.06、0.07とすることができ、上限を0.21、0.25、0.30とすることができる。
 [実施形態1-2:テーパーカッター]
 実施形態1-2では、ダイヤモンド被覆工具がテーパーカッターの場合を説明する。図3に示されるように、ダイヤモンド被覆工具210であるテーパーカッターは、ボディ23と、該ボディ23に接続するシャンク24とを備える。ボディ23のうち、外周刃27からなる切れ刃の形成されている刃部25は、X-X線断面において、図2に示されるように、基材1と該基材1上に設けられたダイヤモンド層2とを備える。
 図3では、刃部25は、工具の回転軸Oに沿って延在している。従って、実施形態1-2では、刃部25のその延在する方向に沿う長さLとは、刃部25の工具の回転軸Oに沿う長さを意味する。
 図3では、ボディ23の全体が刃部25に該当するが、ボディ23の一部が刃部であってもよい。
 刃部における、dmin/dmax、Imin/Imax、Ixmin/Ixmax、Dmax/Dmin、Rmin/Rmax及びこれらの測定方法は、実施形態1-1と同様とすることができるためその説明は繰り返さない。
 [実施形態1-3:ドリル]
 実施形態1-3では、ダイヤモンド被覆工具がドリルの場合を説明する。図4は、実施形態1-3のダイヤモンド被覆工具の構成例を説明する図である。図5は、図4の第1の刃部35Aの拡大図である。図6は、図4の第2の刃部35Bの拡大図である。
 図4~図6に示されるように、ダイヤモンド被覆工具310であるドリルは、ボディ33と、該ボディ33に接続するシャンク34とを備える。ボディ33は、先端部に形成された切れ刃8Aの形成された第1の刃部35A、及び、シャンク34側に形成された切れ刃8Bの形成された第2の刃部35Bとを含む。切れ刃8Bは、穴開け時に穴入り口の面取りを行う。
 刃部35A及び刃部35Bは、X-X線断面において、図2に示されるように、基材1と該基材1上に設けられたダイヤモンド層2とを備える。
 図4では、刃部35A及び刃部35Bは、工具の回転軸Oに沿って延在している。従って、実施形態1-3では、刃部35A及び刃部35Bのその延在する方向に沿う長さLとは、刃部35A及び刃部35Bの工具の回転軸Oに沿う長さを意味する。
 刃部35A及び刃部35Bにおける、dmin/dmax、Imin/Imax、Ixmin/Ixmax、Dmax/Dmin、Rmin/Rmax及びこれらの測定方法は、実施形態1-1と同様とすることができるためその説明は繰り返さない。
 [実施形態2:ダイヤモンド被覆工具の製造方法]
 本開示のダイヤモンド被覆工具の製造方法は、実施形態1のダイヤモンド被覆工具の製造方法であって、基材を準備する工程(以下、「基材準備工程」ともいう。)と、基材上に、熱フィラメントCVD法によりダイヤモンド層を形成してダイヤモンド被覆工具を得る工程(以下、「熱フィラメントCVD工程」ともいう。)と、を備え、熱フィラメントCVD法は、前記基材のうち、切れ刃が存在する刃部における温度分布が5%以内となるように制御して行う、ダイヤモンド被覆工具の製造方法である。
 (基材準備工程)
 まず、基材を準備する。基材は、実施形態1-1に記載の基材と同一であるためその説明は繰り返さない。
 (熱フィラメントCVD工程)
 次に、基材上に、熱フィラメントCVD法によりダイヤモンド層を形成してダイヤモンド被覆工具を得る。熱フィラメントCVD法では、例えば、真空炉内にメタンと水素とを供給しながら、加熱することにより、基材上にダイヤモンド層を形成する。熱フィラメントCVD法は、基材のうち、切れ刃が存在する刃部における温度分布が5%以内となるように制御して行う。
 ここで、切れ刃が存在する刃部における温度分布が5%以内とは、放射温度計により刃部領域の両端の表面温度を測定した場合において、その温度差分が、切れ刃先端部の温度の5%以内であることを意味する。
 本開示で用いられるの熱フィラメントCVD法の理解を深めるために、従来の熱フィラメントCVD法について、図11~図13を用いて説明する。図11は、従来の熱フィラメントCVD装置の一例を示す正面図である。図12は、図11の熱フィラメントCVD装置の上面図である。図13は、従来の熱フィラメントCVD法による成膜時の基材の表面温度分布を示す図である。
 図11及び図12に示されるように、従来の熱フィラメントCVD装置20は、真空炉201内にフィラメント21及び機材を搭載するための搭載ステージ22とを備える。従来の熱フィラメントCVD装置20では、基材1のうち、切れ刃に相当する部分(以下、「刃部領域」とも記す。)55が熱フィラメントの加熱範囲に入っていれば良いと考えられていた。このため、シャンク等に相当する非成膜領域56はフィラメントの加熱範囲外に配置されていた。
 この場合、図13に示されるように、基材の先端部(図13において上端部)は、熱の逃げ場がないため最も高温となる。一方、加熱されないシャンク側に向かうにしたがい温度が低下し、かつ、熱が基材1から搭載ステージ22側へ流出し(図11において下向き矢印方向)、結果として刃部領域55内において温度分布が発生する。この知見から、本発明者らは、シャンクが加熱範囲外に配置されることが、シャンク側の工具刃の温度低下を招き、膜厚分布を生じさせている原因であること見出した。
 そこで、本発明者らは鋭意検討の結果、図14に示されるように、熱フィラメントCVD装置220において、基材1全体をフィラメント21の加熱範囲とし、かつシャンク等の非成膜領域56と搭載ステージとの間に断熱材23を設けて断熱性を向上させ、基材1から搭載ステージ22側への熱の流出(図14において下向き矢印方向)を抑制することにより、刃部領域における温度分布を5%以内に制御することができ、刃部におけるダイヤモンド層の膜厚を均一とすることができることを見出した。
 この場合、図15に示されるように、基材の先端部とシャンク側との温度分布が小さくなり、膜厚が均一となる。
 切れ刃が存在する刃部における温度分布を5%以内とする方法は上記に限定されない。基材に対するフィラメントの本数やフィラメントと基材との距離、炉内の基材の位置等は、基材の形状、材種等に基づき、適宜変更する。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 [試料1]
 基材として、材質が超硬合金であって、図1に示される形状のエンドミル(φ10mm)を準備した。エンドミルの刃部の長さLは30mmであった。
 続いて、基材の表面にダイヤモンド粉末を塗布して、種付け処理を行なった。種付け処理は平均粒径5μmのダイヤモンド粉末を基材表面に擦りつけた後、基材をエタノール中で洗浄し乾燥させることにより行なった。次に、上記種付け処理が行なわれた基材を図14に示される熱フィラメントCVD装置にセットした。
 試料1のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度1%となるように流量を制御して炉内に供給した。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%以内であった。これにより、基材上にダイヤモンド層が形成された試料1のダイヤモンド被覆工具を得た。
 [試料2~試料4]
 試料2~試料4の基材は、試料1と同一の基材を準備し、試料1と同一の方法で種付け処理を行った。基材上に、試料1と同一の熱フィラメントCVD装置を用いてダイヤモンド層を成膜し、ダイヤモンド被覆工具を得た。
 試料2のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均780℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度1%となるように流量を制御して炉内に供給した。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%以内であった。これにより、基材上にダイヤモンド層が形成された試料2のダイヤモンド被覆工具を得た。
 試料3のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均780℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度3%となるように流量を制御して炉内に供給した。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%以内であった。これにより、基材上にダイヤモンド層が形成された試料3のダイヤモンド被覆工具を得た。
 試料3-1のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均760℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度3%となるように流量を制御して炉内に供給した。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%以内であった。これにより、基材上にダイヤモンド層が形成された試料3-1のダイヤモンド被覆工具を得た。
 試料3-2のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度4%となるように流量を制御して炉内に供給した。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%以内であった。これにより、基材上にダイヤモンド層が形成された試料3-1のダイヤモンド被覆工具を得た。
 試料4のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度3%となるように流量を制御して炉内に供給した。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%以内であった。これにより、基材上にダイヤモンド層が形成された試料4のダイヤモンド被覆工具を得た。
 [試料5~試料8]
 試料5~試料8の基材は、試料1と同一の基材を準備し、試料1と同一の方法で種付け処理を行った。基材上に、温度分布制御を考慮しない方法にて熱フィラメントCVD装置を用いてダイヤモンド層を成膜し、ダイヤモンド被覆工具を得た。
 試料5のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均780℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度3%となるように流量を制御して炉内に供給した。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%超であった。これにより、試料5のダイヤモンド被覆工具を得た。
 試料6のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度3%となるように流量を制御して炉内に居うゅうした。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%超であった。これにより、試料6のダイヤモンド被覆工具を得た。
 試料7のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度1%となるように流量を制御して炉内に供給した。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%超であった。これにより、試料7のダイヤモンド被覆工具を得た。
 試料8のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均780℃になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度1%となるように流量を制御して炉内に供給した。成膜時の圧力は500mPaとした。成膜時には、基材のうち、切れ刃が存在する刃部における温度分布が5%超であった。これにより、試料8のダイヤモンド被覆工具を得た。
 <評価>
 (dmin/dmax、dmin/dmax、Imin/Imax、Ixmin/Ixmax、Dmax/Dmin、Rmin/Rmax
 試料1~試料8のダイヤモンド被覆工具について、dmin/dmax、dmin/dmax、Imin/Imax、Ixmin/Ixmax、Dmax/Dmin、Rmin/Rmaxを測定した。具体的な測定方法は実施の形態1に記載されているため、その説明は繰り返さない。結果を表1に示す。
 (切削試験)
 試料1~試料8のダイヤモンド被覆工具を用いて、下記の条件で切削試験を行った。
 被削材:炭素繊維強化樹脂
 切削速度:270m/min.
 回転数:8600rpm
 送り速度:860m/min.
 切り込み:10mm
 上記の切削試験において、ダイヤモンド層が剥離するまでの距離(剥離距離)を測定した。ダイヤモンド層の剥離は、光学顕微鏡による観察により確認した。剥離距離が長いほど、工具寿命が長いことを意味する。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 試料1~試料4のダイヤモンド被覆工具の製造方法は実施例に該当する。試料1~試料4のダイヤモンド被覆工具は実施例に該当する。試料1~試料4のダイヤモンド被覆工具は、剥離距離が長く、工具寿命が長いことが確認された。
 試料5~試料8のダイヤモンド被覆工具の製造方法は比較例に該当する。試料5~試料8のダイヤモンド被覆工具は比較例に該当する。試料5~試料8のダイヤモンド被覆工具は、剥離距離が試料1~試料4に比べて短かった。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 基材、2 ダイヤモンド層、3,23,33 ボディ、4,24,34 シャンク、5,25,35A,35B 刃部、6 底刃、7,27 外周刃、8,8A,8B 切れ刃、10,210,310,410 ダイヤモンド被覆工具、20,220 熱フィラメントCVD装置、21 フィラメント、55 刃部領域、56 非成膜領域、201 真空炉

Claims (7)

  1.  基材と、前記基材上に設けられたダイヤモンド層とからなる刃部を備えるダイヤモンド被覆工具であって、
     前記刃部は、その延在方向に沿う長さがLであり、
     前記刃部において、一方の端部から前記延在方向に沿う方向に沿って、互いにL/10の距離を隔てて並ぶ計11点の各地点で前記ダイヤモンド層の厚みを測定した場合、全ての地点において前記厚みがすべて同一である、又は、前記厚みの最小値dminと前記厚みの最大値dmaxとの比であるdmin/dmaxが0.7以上1未満である、ダイヤモンド被覆工具。
  2.  前記dmin/dmaxは0.85以上1未満である、請求項1に記載のダイヤモンド被覆工具。
  3.  前記厚みが最小値dminである第1地点及び前記厚みが最大値dmaxである第2地点において、前記ダイヤモンド層のラマンシフト900cm-1から2000cm-1の範囲のラマンスペクトルを測定した場合、
     前記第1地点におけるダイヤモンドのピーク面積強度Idminとスペクトル全体の面積強度Isminとの比Idmin/IsminであるIminと、前記第2地点におけるダイヤモンドのピーク面積強度Idmaxとスペクトル全体の面積強度Ismaxとの比Idmax/IsmaxであるImaxとの比Imin/Imaxが0.7以上1以下である、請求項1又は請求項2に記載のダイヤモンド被覆工具。
  4.  前記厚みが最小値dminである第1地点及び前記厚みが最大値dmaxである第2地点において、X線光電子分光法により前記ダイヤモンド層のC1sスペクトルを測定した場合、
     前記第1地点におけるsp3炭素のピーク面積強度I3minとsp2炭素のピーク面積強度I2minとの比I3min/I2minであるIxminと、前記第2地点におけるsp3炭素のピーク面積強度I3maxとsp2炭素のピーク面積強度I2maxとの比I3max/I2maxであるIxmaxとの比Ixmin/Ixmaxが0.7以上1以下である、請求項1から請求項3のいずれか1項に記載のダイヤモンド被覆工具。
  5.  前記厚みが最小値dminである第1地点及び前記厚みが最大値dmaxである第2地点において、電子後方散乱回折法により前記ダイヤモンド層の平均粒子径を測定した場合、
     前記第1地点における平均粒子径Dminと前記第2地点における平均粒子径Dmaxとの比であるDmin/Dmaxが0.7以上1以下である、請求項1から請求項4のいずれか1項に記載のダイヤモンド被覆工具。
  6.  前記厚みが最小値dminである第1地点及び前記厚みが最大値dmaxである第2地点において、レーザ顕微鏡を用いて前記ダイヤモンド層の表面粗さRaを測定した場合、
     前記第1地点における表面粗さRminと前記第2地点における表面粗さRmaxとの比であるRmin/Rmaxが0.7以上1以下である、請求項1から請求項5のいずれか1項に記載のダイヤモンド被覆工具。
  7.  請求項1から請求項6のいずれか1項に記載のダイヤモンド被覆工具の製造方法であって、
     基材を準備する工程と、
     前記基材上に、熱フィラメントCVD法によりダイヤモンド層を形成してダイヤモンド被覆工具を得る工程と、を備え、
     前記熱フィラメントCVD法は、前記基材のうち、切れ刃が存在する刃部における温度分布が5%以内となるように制御して行う、ダイヤモンド被覆工具の製造方法。
PCT/JP2020/038238 2019-11-08 2020-10-09 ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法 WO2021090637A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/773,226 US20220388078A1 (en) 2019-11-08 2020-10-09 Diamond-coated tool and method of manufacturing diamond-coated tool
CN202080074405.3A CN114599478A (zh) 2019-11-08 2020-10-09 金刚石包覆工具和金刚石包覆工具的制造方法
JP2021516515A JPWO2021090637A1 (ja) 2019-11-08 2020-10-09 ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法
EP20884553.7A EP4056728A1 (en) 2019-11-08 2020-10-09 Diamond-coated tool and method for manufacturing same
JP2023050121A JP2023082059A (ja) 2019-11-08 2023-03-27 ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-203330 2019-11-08
JP2019203330 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021090637A1 true WO2021090637A1 (ja) 2021-05-14

Family

ID=75849919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038238 WO2021090637A1 (ja) 2019-11-08 2020-10-09 ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法

Country Status (5)

Country Link
US (1) US20220388078A1 (ja)
EP (1) EP4056728A1 (ja)
JP (2) JPWO2021090637A1 (ja)
CN (1) CN114599478A (ja)
WO (1) WO2021090637A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544907B (zh) * 2022-01-14 2023-07-18 淮北矿业股份有限公司 一种基于基氏流动度特征指标的混焦煤鉴别评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347805A (ja) 1998-06-11 1999-12-21 Toshiba Tungaloy Co Ltd ダイヤモンド被覆工具部材およびその製造方法
JP2000117523A (ja) * 1998-10-09 2000-04-25 Osaka Diamond Ind Co Ltd ダイヤモンドコーティングエンドミル又はドリル並びに切削法
CN108559970A (zh) * 2017-12-06 2018-09-21 上海交通大学 复杂形状金刚石涂层刀具的hfcvd批量制备方法
JP2019203330A (ja) 2018-05-24 2019-11-28 株式会社富士昭技研 耐震合成壁

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334453A (en) * 1989-12-28 1994-08-02 Ngk Spark Plug Company Limited Diamond-coated bodies and process for preparation thereof
JPH07196379A (ja) * 1993-12-28 1995-08-01 Kobe Steel Ltd 気相合成ダイヤモンドろう付け工具およびその製造方法
US7815735B2 (en) * 2003-03-21 2010-10-19 Cemecon Ag Body having a smooth diamond layer, device and method therefor
JP2007284773A (ja) * 2006-04-20 2007-11-01 Sumitomo Electric Ind Ltd ダイヤモンドの合成方法
DE102010023952A1 (de) * 2010-06-16 2011-12-22 Universität Augsburg Verfahren zum Herstellen von Diamantschichten und mit dem Verfahren hergestellte Diamanten
JP2016155207A (ja) * 2015-02-26 2016-09-01 三菱マテリアル株式会社 耐欠損性に優れたダイヤモンド被覆超硬合金製切削工具
CN107532296B (zh) * 2015-04-27 2019-11-08 京瓷株式会社 被覆部件
JP6635675B2 (ja) * 2015-05-13 2020-01-29 国立研究開発法人産業技術総合研究所 不純物ドープダイヤモンド及びその製造方法
CN105603385B (zh) * 2016-01-15 2018-07-06 山西大学 一种制备金刚石晶体薄膜材料的装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347805A (ja) 1998-06-11 1999-12-21 Toshiba Tungaloy Co Ltd ダイヤモンド被覆工具部材およびその製造方法
JP2000117523A (ja) * 1998-10-09 2000-04-25 Osaka Diamond Ind Co Ltd ダイヤモンドコーティングエンドミル又はドリル並びに切削法
CN108559970A (zh) * 2017-12-06 2018-09-21 上海交通大学 复杂形状金刚石涂层刀具的hfcvd批量制备方法
JP2019203330A (ja) 2018-05-24 2019-11-28 株式会社富士昭技研 耐震合成壁

Also Published As

Publication number Publication date
CN114599478A (zh) 2022-06-07
US20220388078A1 (en) 2022-12-08
JP2023082059A (ja) 2023-06-13
JPWO2021090637A1 (ja) 2021-11-25
EP4056728A4 (en) 2022-09-14
EP4056728A1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
KR102053677B1 (ko) 피복 부재
WO2012144088A1 (ja) 表面被覆切削工具およびその製造方法
JP6635340B2 (ja) 表面被覆切削工具およびその製造方法
JP2011067883A (ja) 表面被覆切削工具
WO2012132032A1 (ja) 表面被覆切削工具およびその製造方法
US11065692B2 (en) Diamond-coated tool
JP2023082059A (ja) ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法
JP7035296B2 (ja) 表面被覆切削工具及びその製造方法
JP6786763B1 (ja) 切削工具
JP6996064B2 (ja) 表面被覆切削工具及びその製造方法
WO2022009375A1 (ja) ダイヤモンド被覆工具及びその製造方法
JPWO2019171653A1 (ja) 表面被覆切削工具及びその製造方法
JPWO2019171648A1 (ja) 表面被覆切削工具及びその製造方法
JP5693039B2 (ja) 表面被覆部材
JP4908767B2 (ja) 表面被覆部材および切削工具
WO2022009374A1 (ja) ダイヤモンド被覆工具
WO2021075358A1 (ja) ダイヤモンド被覆工具
WO2022230362A1 (ja) 切削工具
JP2022171410A (ja) 切削工具
JP2022171412A (ja) 切削工具
JP2022171409A (ja) 切削工具
JP2022171411A (ja) 切削工具
JP2022171408A (ja) 切削工具
JP6039479B2 (ja) 表面被覆部材
JP2022139718A (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516515

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020884553

Country of ref document: EP

Effective date: 20220608