WO2022009375A1 - ダイヤモンド被覆工具及びその製造方法 - Google Patents

ダイヤモンド被覆工具及びその製造方法 Download PDF

Info

Publication number
WO2022009375A1
WO2022009375A1 PCT/JP2020/026825 JP2020026825W WO2022009375A1 WO 2022009375 A1 WO2022009375 A1 WO 2022009375A1 JP 2020026825 W JP2020026825 W JP 2020026825W WO 2022009375 A1 WO2022009375 A1 WO 2022009375A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
diamond layer
less
base material
coated tool
Prior art date
Application number
PCT/JP2020/026825
Other languages
English (en)
French (fr)
Inventor
倫太朗 杉本
高志 原田
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to US18/014,436 priority Critical patent/US20230249262A1/en
Priority to CN202080102721.7A priority patent/CN115916440A/zh
Priority to EP20944665.7A priority patent/EP4180156A4/en
Priority to PCT/JP2020/026825 priority patent/WO2022009375A1/ja
Priority to JP2021520232A priority patent/JP7251716B2/ja
Priority to TW110125288A priority patent/TW202212600A/zh
Publication of WO2022009375A1 publication Critical patent/WO2022009375A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness

Definitions

  • This disclosure relates to diamond coated tools and their manufacturing methods.
  • Diamond has a very high hardness, and its smooth surface has an extremely low coefficient of friction. Therefore, conventionally, naturally produced single crystal diamonds and artificial diamond powders have been applied to tool applications. Furthermore, after the technology for forming a diamond thin film by the chemical vapor deposition (CVD) method was established in the 1980s, cutting tools and abrasion-resistant tools (hereinafter referred to as abrasion-resistant tools) in which diamond was formed on a three-dimensional substrate were formed. These tools are also referred to as “diamond coated tools").
  • CVD chemical vapor deposition
  • Patent Document 1 discloses a diamond coating body in which the surface of a substrate made of cemented carbide or cermet is coated with a diamond layer.
  • the diamond coated tool of the present disclosure is A base material and a diamond layer arranged on the base material are provided.
  • the skewness Sk of the diamond layer defined by ISO 25178 is more than 0, which is a diamond coating tool.
  • the method for manufacturing a diamond-coated tool of the present disclosure is the above-mentioned method for manufacturing a diamond-coated tool.
  • FIG. 1 is a diagram illustrating a typical configuration example of the diamond-coated tool according to the first embodiment.
  • FIG. 2 is a diagram for explaining a case where the skewness Sk is more than 0.
  • FIG. 3 is a diagram for explaining a case where the skewness Sk is less than 0.
  • FIG. 4 is a diagram showing an example of the Raman spectrum of the diamond-coated tool according to the first embodiment.
  • the diamond coated tool of the present disclosure can have a long tool life, especially in the cutting of aluminum alloys.
  • the diamond-coated tool of the present disclosure is A base material and a diamond layer arranged on the base material are provided.
  • the skewness Sk of the diamond layer defined by ISO 25178 is more than 0, which is a diamond coating tool.
  • the diamond-coated tool of the present disclosure can have a long tool life, especially in the cutting of aluminum alloys.
  • the surface roughness Ra of the diamond layer defined by JIS B 0601: 2013 is preferably 0.5 ⁇ m or less.
  • the welding resistance of the diamond-coated tool is improved, and the tool life is further extended.
  • the surface quality of the work material is also improved.
  • the ratio Id / Is of the peak area intensity Id of the diamond to the area intensity Is of the entire spectrum is 0.08 or more. Is preferable.
  • the diamond layer includes a main surface S on the surface side of the diamond coating tool and a virtual surface Q having a distance of 20 nm from the main surface S to the base material side along the normal direction of the main surface S.
  • the maximum value of the oxygen content is preferably 20 atomic% or more.
  • the oxidation resistance of the diamond layer is improved, the welding resistance and wear resistance of the diamond-coated tool are improved, and the tool life is further extended.
  • the method for manufacturing a diamond-coated tool of the present disclosure is the above-mentioned method for manufacturing a diamond-coated tool.
  • the notation in the form of "A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when there is no description of the unit in A and the unit is described only in B, A.
  • the unit of and the unit of B are the same.
  • the diamond covering tool 10 includes a base material 1 and a diamond layer 2 arranged on the base material 1, and the skewness Sk defined by ISO 25178 of the diamond layer 2 is determined. It is over 0.
  • the diamond-coated tool of the present disclosure can have a long tool life, especially in the cutting of aluminum alloys. The reason for this is not clear, but it is presumed to be as follows.
  • FIG. 2 is a diagram for explaining a case where the skewness of the surface exceeds 0.
  • FIG. 3 is a diagram for explaining a case where the skewness of the surface is less than 0. 2 and 3 are cross-sectional views taken along the normal of the surface, respectively.
  • Skewness Sk is one of the three-dimensional surface texture parameters defined in ISO25178, and indicates the deviation of the height distribution from the average plane. As shown in FIG. 2, when the unevenness of the surface is biased downward with respect to the average surface L1, Sk becomes more than 0 (plus). As shown in FIG. 3, when the unevenness of the surface is biased upward with respect to the average surface L2, Sk is less than 0 (minus). When the unevenness of the surface is even with respect to the average surface (not shown), Sk is 0 (zero).
  • the skewness (Ssk) of the diamond layer 2 is more than 0, and the unevenness of the surface of the diamond layer is biased downward as shown in FIG. According to this, when cutting oil is used during cutting, the cutting oil is likely to be retained in the recesses on the surface. Therefore, the diamond-coated tool is less likely to undergo welding even when cutting an aluminum alloy, the wear of the cutting edge due to welding is suppressed, and the tool life can be long.
  • the diamond coating tool can include any other configuration in addition to the substrate and diamond layer.
  • the diamond layer preferably covers the entire surface of the base material, and preferably covers at least the cutting edge portion of the base material. Even if a part of the base material is not covered with the diamond layer, it does not deviate from the scope of the present embodiment.
  • a base material containing known hard particles can be used.
  • cemented carbide for example, WC-based cemented carbide, WC, as well as those containing Co or further added with a carbonitride such as Ti, Ta, Nb), cermet (TiC, TiN, TiCN, etc.), cermet, etc.
  • ⁇ Diamond layer> (Skune Sk)
  • the skewness Sk specified by ISO 25178 of the diamond layer of the present disclosure is more than 0. According to this, when cutting oil is used during cutting, the cutting oil is likely to be retained in the dents on the surface. Therefore, the diamond-coated tool is less likely to undergo welding even when cutting an aluminum alloy, the wear of the cutting edge due to welding is suppressed, and the tool life can be long.
  • the lower limit of Sk in the diamond layer is more than 0, preferably 0.05 or more and 0.1 or more.
  • the upper limit of Sk in the diamond layer is preferably 1.0 or less, 0.8 or less, and 0.6 or less.
  • the Sk of the diamond layer is preferably more than 0 and 1.0 or less, 0.05 or more and 0.8 or less, and 0.1 or more and 0.6 or less.
  • the Sk of the diamond layer is measured on the surface of the diamond layer using a laser microscope (“OPTELICS HYBRID” (trademark) manufactured by Lasertech) in accordance with ISO25178-2: 2012 and ISO25178-3: 2012.
  • OTELICS HYBRID (trademark) manufactured by Lasertech
  • the Sk measurement field of view of the diamond layer is arbitrarily set at five 200 ⁇ m square fields of view within a range of 1 mm from the ridgeline of the tool cutting edge. Sk is measured for each of the five measurement fields.
  • the average value of Ssk in the five measurement fields of view is defined as the Ssk of the diamond layer.
  • the surface roughness Ra of the diamond layer of the present disclosure specified in JIS B 0601: 2013 is preferably 0.5 ⁇ m or less. According to this, the welding resistance of the diamond-coated tool is improved, and the tool life is further extended. In addition, the surface quality of the work material is also improved.
  • the upper limit of the surface roughness Ra of the diamond layer is preferably 0.5 ⁇ m or less, 0.45 ⁇ m or less, and 0.4 ⁇ m or less.
  • the lower limit of the surface roughness Ra of the diamond layer is preferably 0.01 ⁇ m or more, 0.05 ⁇ m or more, and 0.1 ⁇ m or more.
  • the surface roughness Ra of the diamond layer is preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less, 0.05 ⁇ m or more and 0.45 ⁇ m or less, and 0.1 ⁇ m or more and 0.4 ⁇ m or less.
  • the surface roughness Ra of the diamond layer means the arithmetic average roughness Ra defined in JIS B 0601: 2013.
  • the surface roughness Ra of the diamond layer is measured by measuring the surface of the diamond layer using a laser microscope (“OPTELICS HYBRID” (trademark) manufactured by Lasertech) in accordance with JIS B 0601: 2013.
  • the measurement field of view of the surface roughness Ra of the diamond layer is arbitrarily set at 5 points of 200 ⁇ m square within a range of 1 mm from the ridgeline of the tool cutting edge.
  • the surface roughness Ra is measured for each of the five measurement fields.
  • the average value of the surface roughness Ra in the five measurement visual fields is defined as the surface roughness Ra of the diamond layer.
  • the Raman spectrum of the diamond layer of the present disclosure When the Raman spectrum of the diamond layer of the present disclosure is measured with a Raman shift of 900 cm -1 or more and 2000 cm -1 or less, the ratio Id / Is of the peak area intensity Id of the diamond to the area intensity Is of the entire spectrum is 0.08 or more. It is preferable to have.
  • the ratio Id / Is is 0.08 or more, the amount of sp2 carbon in the diamond layer is reduced, the welding resistance of the diamond-coated tool is improved, and the tool life is further extended.
  • the lower limit of the ratio Id / Is is preferably 0.08 or more, 0.085 or more, and 0.09 or more.
  • the upper limit of the ratio Id / Is is preferably 0.5 or less, 0.4 or less, and 0.3 or less.
  • the ratio Id / Is is preferably 0.08 or more and 0.5 or less, 0.085 or more and 0.4 or less, and 0.09 or more and 0.3 or less.
  • a measurement field of view of a rectangle of 200 ⁇ m ⁇ 200 ⁇ m (hereinafter, also referred to as “measurement field of view for Raman spectroscopy”) is set on the surface of the diamond layer on the surface of the tool. Five measurement fields for Raman spectroscopy are set.
  • the diamond layer of the first embodiment is surrounded by a main surface S on the surface side of the diamond coating tool and a virtual surface Q having a distance of 20 nm from the main surface S to the base material side along the normal direction of the main surface S.
  • the maximum value of the oxygen content is preferably 20 atomic% or more.
  • the oxidation resistance of the diamond layer is improved, the welding resistance and wear resistance of the diamond-coated tool are improved, and the tool life is further extended.
  • the lower limit of the maximum value of the oxygen content in the region R of the diamond layer is preferably 20 atomic% or more, 25 atomic% or more, and 30 atomic% or more.
  • the upper limit of the maximum value of the oxygen content is preferably 90 atomic% or less, 85 atomic% or less, and 80 atomic% or less.
  • the maximum value of the oxygen content is preferably 20 atomic% or more and 90 atomic% or less, 25 atomic% or more and 85 atomic% or less, and 30 atomic% or more and 80 atomic% or less.
  • the oxygen content in the region R of the diamond layer is measured in JIS K 0146: 2002 (ISO 14606: 2000) using an Auger electron spectroscope (“PHI 4800” (trademark) manufactured by ULVAC-PHI). According to this, it is measured while etching the surface of the diamond layer.
  • PHI 4800 Auger electron spectroscope
  • the measurement conditions are as follows. (Electron beam parameter) Electron energy: 10kV, current value: 3nA, incident angle: 15 ° (Ion beam (sputter parameter)) Ion type: Argon, Acceleration voltage: 1 kV, Current value: 7 mA, Raster region 1.5 mm, Time: 2 minutes (Signal measurement) Differentiation mode (Other)
  • the measurement elements are carbon, oxygen, and all other detected elements. Calculate the oxygen atom concentration for all the elements to be analyzed.
  • Etching is performed in the direction from the surface side to the base material side (hereinafter, also referred to as "depth direction") along the normal direction of the surface of the diamond layer.
  • the oxygen content is measured at each nm interval in the depth direction of the diamond layer, up to a point with a depth of 20 nm or more. This makes it possible to measure the oxygen content at intervals of 2 nm up to a point of 20 nm or more in the depth direction of the diamond layer.
  • the lower limit of the thickness of the diamond layer of the present disclosure can be 1 ⁇ m or more, 2 ⁇ m or more, and 3 ⁇ m or more.
  • the upper limit of the thickness of the diamond layer of the present disclosure can be 40 ⁇ m or less, 35 ⁇ m or less, and 30 ⁇ m or less.
  • the thickness of the diamond layer of the present disclosure can be 1 ⁇ m or more and 40 ⁇ m or less, 2 ⁇ m or more and 35 ⁇ m or less, and 3 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the diamond layer is measured by the following procedure.
  • a diamond-coated tool is cut out with a wire electric discharge machine along the normal of the surface of the diamond layer to expose the cross section.
  • the thickness of the diamond layer is measured by observing with an SEM (scanning electron microscope, "JEM-2100F / Cs" (trademark) manufactured by JEOL Ltd.).
  • the observation magnification of the cross-sectional sample is set to 5000 times, the observation field area is set to 100 ⁇ m 2 , the thickness of three points is measured in the observation field, and the average value of the three points is taken as the thickness of the observation field. do.
  • the measurement is performed in five observation fields, and the average value of the thicknesses of the five observation fields is defined as the thickness of the diamond layer.
  • the diamond-coated tool according to the present embodiment is useful as, for example, a cutting tool such as a cutting tip with a replaceable cutting edge, a cutting tool, a cutter, a drill, and an end mill, and a polishing-resistant tool such as a die, a bending die, a drawing die, and a bonding tool. Can be used.
  • the aluminum alloy was used as the work material, but the work material is not limited to this.
  • the work material include carbon fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastics), titanium, metal-based composite material, ceramics, ceramic-based composite material, and super hard alloy.
  • CFRP Carbon Fiber Reinforced Plastics
  • the method for manufacturing a diamond-coated tool according to the second embodiment is a step of preparing a base material (hereinafter, also referred to as a "base material preparation step”) and a diamond layer is formed on the base material by a chemical vapor deposition method. It comprises a step (hereinafter, also referred to as “diamond layer forming step”) and a step of performing oxygen ion etching on the diamond layer to obtain a diamond coating tool (hereinafter, also referred to as “oxygen ion etching step”). be able to.
  • the base material As the base material, the base material of the above-described embodiment is prepared. It is preferable that the base material is subjected to surface treatment such as sandblasting treatment and etching treatment. As a result, the oxide film and contaminants on the surface of the substrate are removed. Further, by increasing the surface roughness of the base material, the adhesion between the base material and the diamond layer is improved.
  • the sandblasting treatment can be performed, for example, by projecting SiC having a particle size of 30 ⁇ m onto the substrate at an injection pressure of 0.15 to 0.35 MPa.
  • the etching treatment is, for example, an acid solution treatment using 30% nitric acid or the like and an alkali treatment using sodium hydroxide or the like.
  • the seeding treatment is performed by immersing the base material in, for example, a 0.1 g / L diamond seed crystal aqueous solution.
  • a diamond layer is formed by the CVD method on the surface on which the diamond seed crystals of the base material are seeded.
  • a conventionally known CVD method can be used.
  • a microwave plasma CVD method, a plasma jet CVD method, a thermal filament CVD method, or the like can be used.
  • a substrate is placed in a thermal filament CVD apparatus, methane gas and hydrogen gas are introduced into the apparatus at a mixing ratio of 0.5: 99.5 to 10:90 on a volume basis, and the substrate temperature is 700 ° C. or higher and 900 ° C. or higher. It can be formed by maintaining the temperature below ° C.
  • oxygen ion etching is performed on the diamond layer to obtain a diamond-coated tool.
  • the skewness of the diamond layer formed by CVD is 0 or less.
  • the skewness Sk on the surface of the diamond layer can be set to more than 0 by performing oxygen ion etching on the diamond layer formed by CVD.
  • the surface of the diamond layer is oxidized to improve the oxidation resistance of the diamond layer, and by selectively etching the sp2 component on the surface, the wear resistance of the diamond-coated tool and the wear resistance of the diamond-coated tool are improved. Welding resistance is improved.
  • the method of oxygen ion etching is not particularly limited, and a conventionally known method can be used.
  • the acceleration voltage during oxygen ion etching is preferably 3 kV or more and 6 kV or less.
  • the acceleration voltage is 3 kV or more, the skewness Sk of the diamond layer tends to exceed 0.
  • the acceleration voltage is 6 kV or less, the oxygen content of the diamond layer becomes appropriate, and the oxidation resistance of the diamond layer tends to be improved.
  • the oxygen partial pressure during oxygen ion etching can be 0.001 Pa or more and 1000 Pa or less, 0.01 Pa or more and 500 Pa or less, and 0.05 Pa or more and 100 Pa or less.
  • the processing time for oxygen ion etching can be 5 minutes or more and 600 minutes or less, 10 minutes or more and 450 minutes or less, and 15 minutes or more and 300 minutes or less.
  • Patent Document 1 discloses that the diamond layer is etched, but this is a process for smoothing the surface of the diamond layer. Therefore, the etching conditions described in Japanese Patent Application Laid-Open No. 2001-501873 (Patent Document 1) are different from the oxygen ion etching conditions of the present disclosure, and the skewness Sk of the diamond layer cannot be more than 0.
  • the skewness Sk specified in ISO25178 of the diamond layer of the diamond coating tool of the present disclosure is preferably more than 0 and 1 or less.
  • the skewness Sk specified by ISO25178 of the diamond layer is preferably 0.05 or more and 0.8 or less.
  • the skewness Sk specified by ISO25178 of the diamond layer is preferably 0.1 or more and 0.6 or less.
  • the surface roughness Ra of the diamond layer of the present disclosure specified in JIS B 0601: 2013 is preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the surface roughness Ra of the diamond layer defined by JIS B 0601: 2013 is preferably 0.05 ⁇ m or more and 0.45 ⁇ m or less.
  • the surface roughness Ra of the diamond layer defined by JIS B 0601: 2013 is preferably 0.1 ⁇ m or more and 0.4 ⁇ m or less.
  • the ratio Id / Is of the peak area intensity Id of the diamond to the area intensity Is of the entire spectrum is 0.08 or more and 0. 5.5 or less is preferable.
  • the ratio Id / Is is preferably 0.085 or more and 0.4 or less.
  • the ratio Id / Is is preferably 0.09 or more and 0.3 or less.
  • the oxygen content in the region R of the diamond layer of the present disclosure is preferably 20 atomic% or more and 90 atomic% or less.
  • the oxygen content is preferably 25 atomic% or more and 85 atomic% or less.
  • the oxygen content is preferably 30 atomic% or more and 80 atomic% or less.
  • the thickness of the diamond layer of the present disclosure is preferably 1 ⁇ m or more and 40 ⁇ m or less.
  • the thickness of the diamond layer of the present disclosure is preferably 2 ⁇ m or more and 35 ⁇ m or less.
  • the thickness of the diamond layer of the present disclosure is preferably 3 ⁇ m or more and 30 ⁇ m or less.
  • the method for manufacturing the diamond-coated tool of the present disclosure is as follows.
  • the process of preparing the base material and A step of forming a diamond layer on the substrate by a chemical vapor deposition method and A step of performing oxygen ion etching on the diamond layer to obtain a diamond-coated tool is provided.
  • the acceleration voltage of ions is preferably 3 kV or more and 6 kV or less.
  • the oxygen partial pressure during the oxygen ion etching is preferably 0.001 Pa or more and 1000 Pa or less.
  • the oxygen partial pressure during the oxygen ion etching is preferably 0.01 Pa or more and 500 Pa or less.
  • the oxygen partial pressure during the oxygen ion etching is preferably 0.05 Pa or more and 100 Pa or less.
  • the processing time for the oxygen ion etching is preferably 5 minutes or more and 600 minutes or less.
  • the processing time for the oxygen ion etching is preferably 10 minutes or more and 450 minutes or less.
  • the processing time for the oxygen ion etching is preferably 15 minutes or more and 300 minutes or less.
  • the film forming conditions are as follows.
  • the filament current was controlled so that the surface temperature of the base material became the temperature described in the "base material temperature (° C.)” column of the “CVD film formation conditions” in Table 1.
  • the flow rates of methane and hydrogen were controlled so that the methane concentration was the concentration described in the "methane concentration (%)" column of the "CVD film formation condition” and supplied into the furnace.
  • the pressure at the time of film formation was 500 mPa, and the film was formed until the film thickness of the diamond layer became 10 ⁇ m.
  • the substrate temperature at the time of film formation was 750 ° C.
  • the methane concentration was 1%
  • the pressure was 500 mPa.
  • Oxygen ion etching By performing oxygen ion etching on the above diamond layer, a diamond coating tool for each sample was obtained.
  • the conditions for oxygen ion etching are as follows.
  • the acceleration voltage during oxygen ion etching is as described in the "acceleration voltage (kV)" column of "oxygen ion etching” in Table 1.
  • the oxygen partial pressure was as described in the “oxygen partial pressure” column of "oxygen ion etching” in Table 1.
  • the oxygen ion etching time was 30 minutes for all samples.
  • oxygen ion etching was performed at an acceleration voltage of 3 kV and an oxygen partial pressure of 0.2 Pa for 30 minutes.
  • the diamond-coated tools of Samples 1 to 4 correspond to Examples.
  • the surface-coated diamond-coated tools of Samples 5 to 8 correspond to comparative examples. It was confirmed that Samples 1 to 4 (Example) had a longer cutting distance and a longer tool life than Samples 5 to 8 (Comparative Example).

Abstract

ダイヤモンド被覆工具は、基材と、前記基材上に配置されたダイヤモンド層と、を備え、前記ダイヤモンド層のISO25178で規定されるスキューネスSskは、0超である。

Description

ダイヤモンド被覆工具及びその製造方法
 本開示は、ダイヤモンド被覆工具及びその製造方法に関する。
 ダイヤモンドは硬度が非常に高く、その平滑面は極めて低い摩擦係数を有する。従って、従来より天然産単結晶ダイヤモンドや人工ダイヤモンド粉末は、工具用途への応用がなされてきた。さらに1980年代に化学的気相合成(CVD)法によるダイヤモンド薄膜の形成技術が確立されてからは、3次元状の基材に対してダイヤモンドを成膜した、切削工具や耐磨工具(以下、これらの工具を「ダイヤモンド被覆工具」とも記す。)が開発されてきた。
 特表2001-501873号公報(特許文献1)には、超硬合金又はサーメットからなる基材の表面がダイヤモンド層で被覆されているダイヤモンド被覆体が開示されている。
特表2001-501873号公報
 本開示のダイヤモンド被覆工具は、
 基材と、前記基材上に配置されたダイヤモンド層と、を備え、
 前記ダイヤモンド層のISO25178で規定されるスキューネスSskは、0超である、ダイヤモンド被覆工具である。
 本開示のダイヤモンド被覆工具の製造方法は、上記のダイヤモンド被覆工具の製造方法であって、
 基材を準備する工程と、
 前記基材上にダイヤモンド層を化学気相成長法により形成する工程と、
 前記ダイヤモンド層に対して酸素イオンエッチングを行いダイヤモンド被覆工具を得る工程と、を備える、ダイヤモンド被覆工具の製造方法である。
図1は、実施形態1に係るダイヤモンド被覆工具の代表的な構成例を説明する図である。 図2は、スキューネスSskが0超の場合を説明するための図である。 図3は、スキューネスSskが0未満の場合を説明するための図である。 図4は、実施形態1に係るダイヤモンド被覆工具のラマンスペクトルの一例を示す図である。
 [本開示が解決しようとする課題]
 近年、生産性向上の観点から、特にアルミ合金の切削加工において、優れた耐溶着性及び耐摩耗性を有し、より長い工具寿命を有するダイヤモンド被覆工具が求められている。
 [本開示の効果]
 本開示のダイヤモンド被覆工具は、特にアルミ合金の切削加工においても、長い工具寿命を有することができる。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示のダイヤモンド被覆工具は、
 基材と、前記基材上に配置されたダイヤモンド層と、を備え、
 前記ダイヤモンド層のISO25178で規定されるスキューネスSskは、0超である、ダイヤモンド被覆工具である。
 本開示のダイヤモンド被覆工具は、特にアルミ合金の切削加工においても、長い工具寿命を有することができる。
[規則91に基づく訂正 14.01.2021] 
 (2)前記ダイヤモンド層のJIS B 0601:2013で規定される表面粗さRaは、0.5μm以下であることが好ましい。
 これによると、ダイヤモンド被覆工具の耐溶着性が向上し、工具寿命が更に長くなる。また、被削材の面品位も向上する。
 (3)前記ダイヤモンド層のラマンシフト900cm-1以上2000cm-1以下のラマンスペクトルを測定した場合、ダイヤモンドのピーク面積強度Idと、スペクトル全体の面積強度Isとの比Id/Isが0.08以上であることが好ましい。
 これによると、ダイヤモンド層中のsp3炭素が多く、アルミニウム合金に溶着しやすいsp2炭素が少ないため、ダイヤモンド被覆工具の耐溶着性が向上し、工具寿命が更に長くなる。
 (4)前記ダイヤモンド層は、前記ダイヤモンド被覆工具の表面側の主面Sと、前記主面Sから前記基材側へ前記主面Sの法線方向に沿う距離が20nmである仮想面Qと、に囲まれる領域Rにおいて、酸素含有率の最大値が20原子%以上であることが好ましい。
 これによると、ダイヤモンド層の耐酸化性が向上し、ダイヤモンド被覆工具の耐溶着性及び耐摩耗性が向上し、工具寿命が更に長くなる。
 (5)本開示のダイヤモンド被覆工具の製造方法は、上記のダイヤモンド被覆工具の製造方法であって、
 基材を準備する工程と、
 前記基材上にダイヤモンド層を化学気相成長法により形成する工程と、
 前記ダイヤモンド層に対して酸素イオンエッチングを行いダイヤモンド被覆工具を得る工程と、を備える、ダイヤモンド被覆工具の製造方法である。
 これによると、特にアルミ合金の切削加工においても、長い工具寿命を有することができるダイヤモンド被覆工具を得ることができる。
 [本開示の実施形態の詳細]
 本開示のダイヤモンド被覆工具及びその製造方法の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 <実施形態1:ダイヤモンド被覆工具>
 実施形態1に係るダイヤモンド被覆工具について、図1を用いて説明する。図1に示されるように、ダイヤモンド被覆工具10は、基材1と、該基材1上に配置されたダイヤモンド層2と、を備え、該ダイヤモンド層2のISO25178で規定されるスキューネスSskは、0超である。
 本開示のダイヤモンド被覆工具は、特にアルミニウム合金の切削加工においても、長い工具寿命を有することができる。この理由は明らかではないが、下記の通りと推察される。
 はじめに、本開示の理解を容易とするために、ISO25178で規定されるスキューネス(偏り度)(以下、「Ssk」とも記す。)について、図2及び図3を用いて説明する。図2は、表面のスキューネスが0超の場合を説明するための図である。図3は、表面のスキューネスが0未満の場合を説明するための図である。図2及び図3は、それぞれ表面の法線に沿う方向の断面図である。
 スキューネスSskとは、ISO25178に規定される三次元表面性状パラメータの一つであり、平均面からの高さ分布の偏りを示す。図2に示されるように、平均面L1に対し、表面の凹凸が下側に偏る場合はSskは0超(プラス)となる。図3に示されるように、平均面L2に対し、表面の凹凸が上側に偏る場合はSskは0未満(マイナス)となる。平均面に対し、表面の凹凸が均等の場合(図示せず)はSskは0(ゼロ)となる。
 本開示のダイヤモンド被覆工具では、ダイヤモンド層2のスキューネス(Ssk)は、0超であり、ダイヤモンド層の表面の凹凸は、図2に示されるように下側に偏っている。これによると、切削加工時に切削油を用いた場合、表面の凹部に切削油が保持されやすい。よって、ダイヤモンド被覆工具は、特にアルミニウム合金の切削時においても溶着が生じ難く、溶着に起因する刃先摩耗が抑制され、長い工具寿命を有することができる。
 ダイヤモンド被覆工具は、基材及びダイヤモンド層に加えて、他の任意の構成を含むことができる。ダイヤモンド層は、基材の全面を被覆することが好ましく、基材の少なくとも刃先部分を被覆することが好ましい。なお、基材の一部がダイヤモンド層で被覆されていなかったとしても本実施形態の範囲を逸脱するものではない。
 <基材>
 本開示のダイヤモンド被覆工具の基材としては、公知の硬質粒子を含む基材を使用することができる。例えば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはさらにTi、Ta、Nb等の炭窒化物等を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、工具鋼、セラミックス(炭化チタン、炭化硅素、窒化硅素、窒化アルミニウム、酸化アルミニウム、及びこれらの混合体等)、立方晶型窒化硼素焼結体、ダイヤモンド焼結体等をこのような基材の例として挙げることができる。
 <ダイヤモンド層>
 (スキューネスSsk)
 本開示のダイヤモンド層のISO25178で規定されるスキューネスSskは、0超である。これによると、切削加工時に切削油を用いた場合、表面の凹みに切削油が保持されやすい。よって、ダイヤモンド被覆工具は、特にアルミニウム合金の切削時においても溶着が生じ難く、溶着に起因する刃先摩耗が抑制され、長い工具寿命を有することができる。
 ダイヤモンド層のSskの下限は、0超であり、0.05以上、0.1以上が好ましい。ダイヤモンド層のSskの上限は、1.0以下、0.8以下、0.6以下が好ましい。ダイヤモンド層のSskは、0超1.0以下、0.05以上0.8以下、0.1以上0.6以下が好ましい。
 ダイヤモンド層のSskは、ダイヤモンド層の表面をレーザ顕微鏡(Lasertech社製「OPTELICS HYBRID」(商標))を用いて、ISO25178-2:2012及びISO25178-3:2012に準拠して測定される。
 ダイヤモンド層のSskの測定視野は、工具刃先の稜線より、1mm以内の範囲内において、200μm四方の視野を任意に5箇所設定する。5箇所の測定視野のそれぞれについてSskの測定を行う。5箇所の測定視野におけるSskの平均値を、ダイヤモンド層のSskとする。
[規則91に基づく訂正 14.01.2021] 
 (表面粗さRa)
 本開示のダイヤモンド層のJIS B 0601:2013で規定される表面粗さRaは、0.5μm以下であることが好ましい。これによると、ダイヤモンド被覆工具の耐溶着性が向上し、工具寿命が更に長くなる。また、被削材の面品位も向上する。
[規則91に基づく訂正 14.01.2021] 
 ダイヤモンド層の表面粗さRaの上限は、0.5μm以下、0.45μm以下、0.4μm以下が好ましい。ダイヤモンド層の表面粗さRaの下限は、0.01μm以上、0.05μm以上、0.1μm以上が好ましい。ダイヤモンド層の表面粗さRaは、0.01μm以上0.5μm以下、0.05μm以上0.45μm以下、0.1μm以上0.4μm以下が好ましい。
 ダイヤモンド層の表面粗さRaは、JIS B 0601:2013に規定される算術平均粗さRaを意味する。ダイヤモンド層の表面粗さRaは、ダイヤモンド層の表面をレーザ顕微鏡(Lasertech社製「OPTELICS HYBRID」(商標))を用いて、JIS B 0601:2013に準拠して測定される。
 ダイヤモンド層の表面粗さRaの測定視野は、工具刃先の稜線より、1mm以内の範囲内において、200μm四方の視野を任意に5箇所設定する。5箇所の測定視野のそれぞれについて表面粗さRaの測定を行う。5箇所の測定視野における表面粗さRaの平均値を、ダイヤモンド層の表面粗さRaとする。
 (ラマンスペクトル)
 本開示のダイヤモンド層のラマンシフト900cm-1以上2000cm-1以下のラマンスペクトルを測定した場合、ダイヤモンドのピーク面積強度Idと、スペクトル全体の面積強度Isとの比Id/Isが0.08以上であることが好ましい。
 上記比Id/Isが大きいほど、ダイヤモンド層中のsp3炭素が多く、アルミニウム合金に溶着しやすいsp2炭素が少ないことを示す。本開示のダイヤモンド層では、比Id/Isが0.08以上であるため、ダイヤモンド層中のsp2炭素量が低減され、ダイヤモンド被覆工具の耐溶着性が向上し、工具寿命が更に長くなる。
 比Id/Isの下限は0.08以上、0.085以上、0.09以上が好ましい。比Id/Isの上限は、0.5以下、0.4以下、0.3以下が好ましい。比Id/Isは0.08以上0.5以下、0.085以上0.4以下、0.09以上0.3以下が好ましい。
 本明細書において、上記の比Id/Isは、下記(1-1)~(1-4)の手順で算出される。
 (1-1)工具表面のダイヤモンド層表面に200μm×200μmの矩形の測定視野(以下、「ラマン分光用測定視野」ともいう。)を設定する。ラマン分光用測定視野は5箇所設定する。
 (1-2)各ラマン分光用測定視野について、JIS K 0137(2010)に準拠したレーザーラマン測定法により、ラマンシフト900cm-1から2000cm-1の範囲のラマンスペクトルを得る。この際、入射光に用いる光の波長は紫外(325nm)とする。ラマン分光装置は、ナノフォトン社製の「Ramantouch」(商標)を用いる。本開示のダイヤモンド層のラマンスペクトルの一例を、図4に示す。図4において、Sdで示されるスペクトルはダイヤモンドに由来するスペクトルを示し、Ssで示されるスペクトルは図4に示される全てのスペクトルの合計を示す。
 (1-3)上記のラマンスペクトルについて、画像処理ソフト(ナノフォトン社製の「Ramanimager」(商標))を用いて、ダイヤモンドのピーク面積強度Idとスペクトル全体の面積強度Isとの比Id/Isを算出する。
 (1-4)5箇所の測定視野における比Id/Isの平均値を算出し、該平均値をダイヤモンド層の比Id/Isとする。
 (酸素含有率)
 実施形態1のダイヤモンド層は、ダイヤモンド被覆工具の表面側の主面Sと、主面Sから基材側へ主面Sの法線方向に沿う距離が20nmである仮想面Qと、に囲まれる領域Rにおいて、酸素含有率の最大値が20原子%以上であることが好ましい。
 これによると、ダイヤモンド層の耐酸化性が向上し、ダイヤモンド被覆工具の耐溶着性及び耐摩耗性が向上し、工具寿命が更に長くなる。
 ダイヤモンド層の領域Rにおける酸素含有率の最大値の下限は20原子%以上、25原子%以上、30原子%以上が好ましい。該酸素含有率の最大値の上限は90原子%以下、85原子%以下、80原子%以下が好ましい。該酸素含有率の最大値は20原子%以上90原子%以下、25原子%以上85原子%以下、30原子%以上80原子%以下が好ましい。
 本明細書において、ダイヤモンド層の領域Rにおける酸素含有率は、オージェ電子分光装置(アルバック・ファイ社製「PHI 4800」(商標))を用いて、JIS K 0146:2002(ISO 14606:2000)に準拠して、ダイヤモンド層の表面をエッチングしながら測定される。
 測定条件は下記の通りである。
 (電子線パラメータ)
 電子エネルギー:10kV、電流値:3nA、入射角:15°
 (イオンビーム(スパッタパラメータ))
 イオン種:アルゴン、加速電圧:1kV、電流値:7mA、ラスター領域1.5mm、時間:2分間
 (信号測定)
 微分モード
 (その他)
 測定元素は炭素、酸素、他検出された元素全て。解析元素全てに対し、酸素原子濃度を算出する。
 エッチングは、ダイヤモンド層の表面の法線方向に沿って、該表面側から基材側に向かう方向(以下「深さ方向」とも記す。)で行う。酸素含有率の測定は、ダイヤモンド層の深さ方向に nm間隔毎の地点で、深さ20nm以上の地点まで行う。これにより、ダイヤモンド層の深さ方向20nm以上の地点まで、2nm間隔毎の酸素含有率を測定することができる。
 (厚さ)
 本開示のダイヤモンド層の厚さの下限は、1μm以上、2μm以上、3μm以上とすることができる。本開示のダイヤモンド層の厚さの上限は、40μm以下、35μm以下、30μm以下とすることができる。本開示のダイヤモンド層の厚さは、1μm以上40μm以下、2μm以上35μm以下、3μm以上30μm以下とすることができる。
 本明細書において、ダイヤモンド層の厚さは下記の手順で測定される。ダイヤモンド被覆工具を、ダイヤモンド層の表面の法線に沿ってワイヤー放電加工機で切り出し、断面を露出させる。断面において、ダイヤモンド層の厚さをSEM(走査型電子顕微鏡、日本電子社製「JEM-2100F/Cs」(商標))を用いて観察することにより測定する。具体的には、断面サンプルの観察倍率を5000倍とし、観察視野面積を100μmとして、該観察視野内で3箇所の厚さを測定し、該3箇所の平均値を該観察視野の厚さとする。5つの観察視野において測定を行い、該5つの観察視野の厚さの平均値をダイヤモンド層の厚さとする。
 (用途)
 本実施形態に係るダイヤモンド被覆工具は、例えば、刃先交換型切削チップ、バイト、カッタ、ドリル、エンドミル等の切削工具、及び、ダイス、曲げダイ、絞りダイス、ボンディングツール等の耐磨工具として有用に用いることができる。
 上記では、被削材としてアルミニウム合金を用いて説明したが、被削材はこれに限定されない。被削材としては、例えば、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)、チタン、金属基複合材料、セラミックス、セラミックス基複合材料、超硬合金等が挙げられる。
 <実施形態2:ダイヤモンド被覆工具の製造方法>
 実施形態2に係るダイヤモンド被覆工具の製造方法は、基材を準備する工程(以下、「基材準備工程」とも記す。)と、該基材上にダイヤモンド層を化学気相成長法により形成する工程(以下、「ダイヤモンド層形成工程」とも記す。)と、該ダイヤモンド層に対して酸素イオンエッチングを行いダイヤモンド被覆工具を得る工程(以下、「酸素イオンエッチング工程」とも記す。)と、を備えることができる。
 (基材準備工程)
 基材としては、上述の実施形態の基材を準備する。基材には、サンドブラスト処理やエッチング処理等の表面処理を施すことが好ましい。これにより、基材表面の酸化膜や汚染物質が除去される。更に、基材の表面粗さが増大することにより、基材とダイヤモンド層との密着力が向上する。
 サンドブラスト処理は、例えば、粒径30μmのSiCを噴射圧力0.15~0.35MPaにて基材へ投射することにより行うことができる。
 エッチング処理は、例えば、30%硝酸等を用いた酸溶液処理及び水酸化ナトリウム等を用いたアルカリ処理を行う。
 (ダイヤモンド層形成工程)
 次に、上記基材を例えば0.1g/Lのダイヤモンド種結晶水溶液に漬け込むことにより、種付け処理を行う。
 次に、基材のダイヤモンド種結晶が種付けされた表面上に、ダイヤモンド層をCVD法により形成する。CVD法は、従来公知のCVD法を用いることができる。例えば、マイクロ波プラズマCVD法、プラズマジェットCVD法、熱フィラメントCVD法等を用いることができる。
 例えば、熱フィラメントCVD装置内に基板を配置し、装置内にメタンガスと水素ガスとを体積基準で0.5:99.5~10:90の混合割合で導入し、基板温度を700℃以上900℃以下に維持して形成することができる。
 (酸素イオンエッチング工程)
 次に、上記ダイヤモンド層に対して酸素イオンエッチングを行いダイヤモンド被覆工具を得る。通常CVDにより形成されたダイヤモンド層のスキューネスは、0以下である。本実施形態では、CVDにより形成されたダイヤモンド層に対して酸素イオンエッチングを行うことにより、ダイヤモンド層表面のスキューネスSskを0超とすることができる。
 また、酸素イオンエッチングを行うことにより、ダイヤモンド層の表面が酸化され、ダイヤモンド層の耐酸化性が向上し、また表面のsp2成分を選択的にエッチングすることにより、ダイヤモンド被覆工具の耐摩耗性及び耐溶着性が向上する。
 酸素イオンエッチングの方法は特に限定されず、従来公知の方法を用いることができる。
 酸素イオンエッチング時の加速電圧は3kV以上6kV以下が好ましい。加速電圧が3kV以上であると、ダイヤモンド層のスキューネスSskが0超となりやすい。加速電圧が6kV以下であると、ダイヤモンド層の酸素含有率が適度となり、ダイヤモンド層の耐酸化性が向上しやすい。
 酸素イオンエッチング時の酸素分圧は0.001Pa以上1000Pa以下、0.01Pa以上500Pa以下、0.05Pa以上100Pa以下とすることができる。
 酸素イオンエッチングの処理時間は5分以上600分以下、10分以上450分以下、15分以上300分以下とすることができる。
 なお、特表2001-501873号公報(特許文献1)には、ダイヤモンド層に対してエッチングを行うことが開示されているが、これはダイヤモンド層の表面を滑らかにするための処理である。よって、特表2001-501873号公報(特許文献1)に記載のエッチング条件は、本開示の酸素イオンエッチングの条件とは異なるものであり、ダイヤモンド層のスキューネスSskを0超とすることはできない。
 <付記1>
 本開示のダイヤモンド被覆工具のダイヤモンド層のISO25178で規定されるスキューネスSskは、0超1以下が好ましい。
 上記ダイヤモンド層のISO25178で規定されるスキューネスSskは、0.05以上0.8以下が好ましい。
 上記ダイヤモンド層のISO25178で規定されるスキューネスSskは、0.1以上0.6以下が好ましい。
[規則91に基づく訂正 14.01.2021] 
 <付記2>
 本開示のダイヤモンド層のJIS B 0601:2013で規定される表面粗さRaは、0.01μm以上0.5μm以下が好ましい。
 上記ダイヤモンド層のJIS B 0601:2013で規定される表面粗さRaは、0.05μm以上0.45μm以下が好ましい。
 上記ダイヤモンド層のJIS B 0601:2013で規定される表面粗さRaは、0.1μm以上0.4μm以下が好ましい。
 <付記3>
 本開示のダイヤモンド層のラマンシフト900cm-1以上2000cm-1以下のラマンスペクトルを測定した場合、ダイヤモンドのピーク面積強度Idと、スペクトル全体の面積強度Isとの比Id/Isは0.08以上0.5以下が好ましい。
 上記比Id/Isは0.085以上0.4以下が好ましい。
 上記比Id/Isは0.09以上0.3以下が好ましい。
 <付記4>
 本開示のダイヤモンド層の領域Rにおける酸素含有率は、20原子%以上90原子%以下が好ましい。
 上記酸素含有率は、25原子%以上85原子%以下が好ましい。
 上記酸素含有率は、30原子%以上80原子%以下が好ましい。
 <付記5>
 本開示のダイヤモンド層の厚さは、1μm以上40μm以下が好ましい。
 本開示のダイヤモンド層の厚さは、2μm以上35μm以下が好ましい。
 本開示のダイヤモンド層の厚さは、3μm以上30μm以下が好ましい。
 <付記6>
 本開示のダイヤモンド被覆工具の製造方法は、
 基材を準備する工程と、
 前記基材上にダイヤモンド層を化学気相成長法により形成する工程と、
 前記ダイヤモンド層に対して酸素イオンエッチングを行いダイヤモンド被覆工具を得る工程と、を備え、
 前記酸素イオンエッチングにおいて、イオンの加速電圧は3kV以上6kV以下であることが好ましい。
 <付記7>
 上記酸素イオンエッチング時の酸素分圧は0.001Pa以上1000Pa以下が好ましい。
 上記酸素イオンエッチング時の酸素分圧は0.01Pa以上500Pa以下が好ましい。
 上記酸素イオンエッチング時の酸素分圧は0.05Pa以上100Pa以下が好ましい。
 <付記8>
 上記酸素イオンエッチングの処理時間は5分以上600分以下が好ましい。
 上記酸素イオンエッチングの処理時間は10分以上450分以下が好ましい。
 上記酸素イオンエッチングの処理時間は15分以上300分以下が好ましい。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 [試料1~試料8]
 <ダイヤモンド被覆工具の作製>
 (基材の準備)
 基材として、材質がWC-6%Co(超硬合金)であって、形状(工具型番AOET11T308PEFR-S)であるエンドミル用切削インサートを準備した。
 (ダイヤモンド層の形成)
 続いて、上記基材の表面にダイヤモンド粉末の種付け処理を行なった。種付け処理は平均粒径0.05μmのダイヤモンド粉末を水と混合した溶液に基材を漬け込むことでおこなった。
 次に、上記種付け処理が行なわれた基材を熱フィラメントCVD装置にセットし、ダイヤモンド層を形成した。成膜条件は下記の通りである。
 基材表面温度が表1の「CVD成膜条件」の「基材温度(℃)」欄に記載の温度になるよう、フィラメント電流を制御した。メタンと水素とを、メタン濃度が「CVD成膜条件」の「メタン濃度(%)」欄に記載の濃度となるように流量を制御して炉内に供給した。全ての試料において、成膜時の圧力は500mPaとし、ダイヤモンド層の膜厚が10μmとなるまで成膜を行った。
 例えば、試料1では、成膜時の基材温度750℃、メタン濃度1%、圧力500mPaとした。
 (酸素イオンエッチング)
 上記のダイヤモンド層に対して酸素イオンエッチングを行うことにより、各試料のダイヤモンド被覆工具を得た。酸素イオンエッチングの条件は下記の通りである。
 酸素イオンエッチング時の加速電圧は表1の「酸素イオンエッチング」の「加速電圧(kV)」欄に記載の通りとした。酸素分圧は表1の「酸素イオンエッチング」の「酸素分圧」欄に記載の通りとした。酸素イオンエッチングの時間は、全ての試料において30分とした。
 例えば、試料1では、酸素イオンエッチングは、加速電圧3kV、酸素分圧0.2Paで30分間行った。
[規則91に基づく訂正 14.01.2021] 
Figure WO-DOC-TABLE-1
 <評価>
 (スキューネスSsk、表面粗さRa、比Id/Is、酸素含有率の最大値)
 各試料のダイヤモンド層について、スキューネスSsk、表面粗さRa、比Id/Is、領域Rにおける酸素含有率の最大値を測定した。具体的な測定方法は実施の形態1に記載されているため、その説明は繰り返さない。結果を表1の「ダイヤモンド層」の「Ssk」、「Ra」、「Id/Is」、「酸素含有率の最大値(原子%)」欄に示す。
 (切削試験)
 各試料のダイヤモンド被覆工具(切削インサート)をエンドミルシャンク(鋼製、工具型番WEZ11032E02、工具径φ32、2枚刃)に取り付け、下記の条件で切削試験を行った。
 被削材:ダイキャストアルミ(ADC12) 300mm×150mm×50mmのブロック材
 切削速度Vc:1000m/min
 送り量Fz:0.15mm/t
 軸方向切り込み量ap:8mm
 横方向切り込み量ae:3mm
 切削油:有り
 上記の切削試験において、最大逃げ面摩耗量が0.01mmに到達するまでの切削距離を測定した。切削距離が長いほど、工具寿命が長いことを示す。結果を表1の「切削試験」の「距離」欄に示す。
 <評価>
 試料1~試料4のダイヤモンド被覆工具は実施例に該当する。試料5~試料8の表面被覆ダイヤモンド被覆工具は比較例に該当する。試料1~試料4(実施例)は、試料5~試料8(比較例)に比べて、切削距離が長く、工具寿命が長いことが確認された。
 試料1~試料4では、ダイヤモンド層のSskが0超のため、切削時に表面の凹部に切削油が保持されやすく、溶着が生じ難いため、溶着に起因する刃先摩耗が抑制され、工具寿命が長いと推察される。
 試料5~試料8では、ダイヤモンド層のSskが0未満であるため、切削時に切削油がダイヤモンド層の表面に保持されにくく、溶着が生じ、刃先摩耗が進行しやすいと推察される。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 基材、2 ダイヤモンド層、10 ダイヤモンド被覆工具、S 主面S、Q 仮想面Q、R 領域R

Claims (5)

  1.  基材と、前記基材上に配置されたダイヤモンド層と、を備え、
     前記ダイヤモンド層のISO25178で規定されるスキューネスSskは、0超である、ダイヤモンド被覆工具。
  2. [規則91に基づく訂正 14.01.2021] 
     前記ダイヤモンド層のJIS B 0601:2013で規定される表面粗さRaは、0.5μm以下である、請求項1に記載のダイヤモンド被覆工具。
  3.  前記ダイヤモンド層のラマンシフト900cm-1以上2000cm-1以下のラマンスペクトルを測定した場合、ダイヤモンドのピーク面積強度Idと、スペクトル全体の面積強度Isとの比Id/Isが0.08以上である、請求項1又は請求項2に記載のダイヤモンド被覆工具。
  4.  前記ダイヤモンド層は、前記ダイヤモンド被覆工具の表面側の主面Sと、前記主面Sから前記基材側へ前記主面Sの法線方向に沿う距離が20nmである仮想面Qと、に囲まれる領域Rにおいて、酸素含有率の最大値が20原子%以上である、請求項1から請求項3のいずれか1項に記載のダイヤモンド被覆工具。
  5.  請求項1から請求項4のいずれか1項に記載のダイヤモンド被覆工具の製造方法であって、
     基材を準備する工程と、
     前記基材上にダイヤモンド層を化学気相成長法により形成する工程と、
     前記ダイヤモンド層に対して酸素イオンエッチングを行いダイヤモンド被覆工具を得る工程と、を備える、ダイヤモンド被覆工具の製造方法。
PCT/JP2020/026825 2020-07-09 2020-07-09 ダイヤモンド被覆工具及びその製造方法 WO2022009375A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/014,436 US20230249262A1 (en) 2020-07-09 2020-07-09 Diamond-coated tool and method for manufacturing the same
CN202080102721.7A CN115916440A (zh) 2020-07-09 2020-07-09 金刚石包覆工具及其制造方法
EP20944665.7A EP4180156A4 (en) 2020-07-09 2020-07-09 DIAMOND COATED TOOL AND METHOD OF PRODUCTION
PCT/JP2020/026825 WO2022009375A1 (ja) 2020-07-09 2020-07-09 ダイヤモンド被覆工具及びその製造方法
JP2021520232A JP7251716B2 (ja) 2020-07-09 2020-07-09 ダイヤモンド被覆工具及びその製造方法
TW110125288A TW202212600A (zh) 2020-07-09 2021-07-09 被覆有鑽石之工具及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026825 WO2022009375A1 (ja) 2020-07-09 2020-07-09 ダイヤモンド被覆工具及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022009375A1 true WO2022009375A1 (ja) 2022-01-13

Family

ID=79552448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026825 WO2022009375A1 (ja) 2020-07-09 2020-07-09 ダイヤモンド被覆工具及びその製造方法

Country Status (6)

Country Link
US (1) US20230249262A1 (ja)
EP (1) EP4180156A4 (ja)
JP (1) JP7251716B2 (ja)
CN (1) CN115916440A (ja)
TW (1) TW202212600A (ja)
WO (1) WO2022009375A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058079A1 (ja) * 2022-09-16 2024-03-21 Dowaエレクトロニクス株式会社 光半導体素子の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360902A (ja) * 1989-07-28 1991-03-15 Mitsubishi Materials Corp 耐摩耗性のすぐれた表面被覆切削工具部材
JPH08267644A (ja) * 1995-03-31 1996-10-15 Kyocera Corp ダイヤモンド複合部材およびその製造方法
JP2001501873A (ja) 1996-10-10 2001-02-13 サンドビック アクティエボラーグ 後処理されたダイヤモンド被覆体
WO2005011902A1 (ja) * 2003-07-31 2005-02-10 A.L.M.T.Corp. ダイヤモンド膜被覆工具およびその製造方法
WO2016104420A1 (ja) * 2014-12-25 2016-06-30 住友電気工業株式会社 プリント配線板用基板及びその製造方法、プリント配線板及びその製造方法、並びに、樹脂基材
WO2019054289A1 (ja) * 2017-09-14 2019-03-21 三菱日立ツール株式会社 小径ドリルおよび小径ドリルの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393694A (ja) * 1989-09-06 1991-04-18 Sumitomo Electric Ind Ltd 砥粒の製造方法
US20090185875A1 (en) * 2004-09-23 2009-07-23 Cemecon Ag Machining Tool and Method For The Production Thereof
JP2007313636A (ja) 2006-04-27 2007-12-06 Kyocera Corp 切削工具およびそれを用いた被削材の切削方法
US20090214826A1 (en) * 2008-01-04 2009-08-27 Charles West Controlling diamond film surfaces
JP5338181B2 (ja) 2008-08-05 2013-11-13 株式会社不二越 ダイヤモンド被覆膜の研磨方法及びダイヤモンド被覆切削工具並びにダイヤモンド被覆切削工具の製造方法
JP5804589B2 (ja) 2010-02-10 2015-11-04 日立金属株式会社 摺動特性に優れた被覆金型または鋳造用部材及びその製造方法
EP2700683B1 (en) 2012-08-23 2016-06-08 3M Innovative Properties Company Structural adhesive film
JP7006881B2 (ja) * 2017-08-22 2022-01-24 住友電工ハードメタル株式会社 切削工具およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360902A (ja) * 1989-07-28 1991-03-15 Mitsubishi Materials Corp 耐摩耗性のすぐれた表面被覆切削工具部材
JPH08267644A (ja) * 1995-03-31 1996-10-15 Kyocera Corp ダイヤモンド複合部材およびその製造方法
JP2001501873A (ja) 1996-10-10 2001-02-13 サンドビック アクティエボラーグ 後処理されたダイヤモンド被覆体
WO2005011902A1 (ja) * 2003-07-31 2005-02-10 A.L.M.T.Corp. ダイヤモンド膜被覆工具およびその製造方法
WO2016104420A1 (ja) * 2014-12-25 2016-06-30 住友電気工業株式会社 プリント配線板用基板及びその製造方法、プリント配線板及びその製造方法、並びに、樹脂基材
WO2019054289A1 (ja) * 2017-09-14 2019-03-21 三菱日立ツール株式会社 小径ドリルおよび小径ドリルの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058079A1 (ja) * 2022-09-16 2024-03-21 Dowaエレクトロニクス株式会社 光半導体素子の製造方法
JP7464667B2 (ja) 2022-09-16 2024-04-09 Dowaエレクトロニクス株式会社 光半導体素子の製造方法

Also Published As

Publication number Publication date
EP4180156A4 (en) 2023-08-16
TW202212600A (zh) 2022-04-01
JPWO2022009375A1 (ja) 2022-01-13
US20230249262A1 (en) 2023-08-10
JP7251716B2 (ja) 2023-04-04
CN115916440A (zh) 2023-04-04
EP4180156A1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
CN102257176B (zh) 金刚石涂层工具
JP5124790B2 (ja) ダイヤモンド被覆切削工具
KR102320077B1 (ko) 표면 피복 절삭 공구 및 그 제조 방법
EP2965842B1 (en) Coated cutting tool
JP5841170B2 (ja) 被覆工具
CN106536102A (zh) 表面包覆切削工具
KR102312226B1 (ko) 표면 피복 절삭 공구 및 그 제조 방법
JP6635340B2 (ja) 表面被覆切削工具およびその製造方法
WO2017122448A1 (ja) 表面被覆切削工具およびその製造方法
WO2018216256A1 (ja) 被膜および切削工具
WO2017217012A1 (ja) 表面被覆切削工具
KR102652149B1 (ko) 다이아몬드 피복 공구
JP6728551B2 (ja) 表面被覆切削工具およびその製造方法
WO2022009375A1 (ja) ダイヤモンド被覆工具及びその製造方法
CA2943776A1 (en) Compound sintered body and surface-coated boron nitride sintered body tool
JP7035296B2 (ja) 表面被覆切削工具及びその製造方法
JP2023082059A (ja) ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法
JP6996064B2 (ja) 表面被覆切削工具及びその製造方法
JPWO2019171653A1 (ja) 表面被覆切削工具及びその製造方法
WO2022009374A1 (ja) ダイヤモンド被覆工具
WO2022230362A1 (ja) 切削工具
WO2022230360A1 (ja) 切削工具
JP7072053B2 (ja) 被膜
JP2022171410A (ja) 切削工具
JP2022171412A (ja) 切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021520232

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020944665

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE