WO2021075358A1 - ダイヤモンド被覆工具 - Google Patents

ダイヤモンド被覆工具 Download PDF

Info

Publication number
WO2021075358A1
WO2021075358A1 PCT/JP2020/038232 JP2020038232W WO2021075358A1 WO 2021075358 A1 WO2021075358 A1 WO 2021075358A1 JP 2020038232 W JP2020038232 W JP 2020038232W WO 2021075358 A1 WO2021075358 A1 WO 2021075358A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
layer
ppma
unit layer
boron
Prior art date
Application number
PCT/JP2020/038232
Other languages
English (en)
French (fr)
Inventor
倫太朗 杉本
原田 高志
久木野 暁
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to EP20876016.5A priority Critical patent/EP4046730A4/en
Priority to US17/768,511 priority patent/US20240091863A1/en
Priority to CN202080072447.3A priority patent/CN114555857B/zh
Priority to JP2021531839A priority patent/JP7098856B2/ja
Publication of WO2021075358A1 publication Critical patent/WO2021075358A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond

Definitions

  • Diamond has the highest hardness among existing materials, and natural diamonds and ultra-high pressure diamond sintered bodies have been applied to tools such as cutting, grinding, and polishing for a long time.
  • CVD method chemical vapor deposition method
  • a base material made of cemented carbide or the like was used as a thin film made of diamond (hereinafter, “CVD method”).
  • a technique for improving the oxidation resistance and lubricity of a diamond film by doping the diamond film with boron is known.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-152423
  • a diamond film in which boron is doped the doping amount of the boron changes in the thickness direction, and the amount of diamond is increased on the surface of the film.
  • the coating is disclosed.
  • Patent Document 2 International Publication No. 2018/131166
  • a diamond coating comprising a first layer on the surface side containing less than 1000 ppm of boron and a second unit layer on the base material side containing 1000 ppm or more of boron. Is disclosed.
  • Patent Document 3 International Publication No. 2013/105348
  • a diamond layer containing atms / cm 3 of nitrogen is disclosed.
  • the diamond coated tool of the present disclosure is A diamond coating tool comprising a base material and a diamond layer provided on the base material.
  • the diamond layer has a boron content of 1 ⁇ 10 3 ppma or more in a first region surrounded by a surface of the diamond layer and a first virtual surface having a thickness direction distance of 1 ⁇ m from the surface. 1 ⁇ 10 6 ppma or less, and the content of oxygen is 1 ⁇ 10 5 ppma or less 1 ⁇ 10 2 ppma or more, diamond coated tools.
  • the diamond coated tool of the present disclosure is A diamond coating tool comprising a base material and a diamond layer provided on the base material.
  • the diamond layer is composed of alternating layers in which the first unit layer and the second unit layer are alternately laminated. In the alternating layer, the outermost surface side is the first unit layer, and the side in contact with the base material is the second unit layer.
  • the first unit layer has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and an oxygen content of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • the second unit layer is a diamond-coated tool having a boron content of 1 ⁇ 10 3 ppma or less.
  • FIG. 1 is a schematic cross-sectional view illustrating a typical configuration example of the diamond-coated tool according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating a typical configuration example of the diamond-coated tool according to the second embodiment.
  • FIG. 3 is a diagram showing an example of the XSP spectrum of the first region of the diamond-coated tool of the present disclosure.
  • FIG. 4 is a diagram showing an example of the Raman spectrum of the first region of the diamond-coated tool of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view illustrating a typical configuration example of the diamond-coated tool according to the third embodiment.
  • the purpose of this purpose is to provide a diamond-coated tool having excellent wear resistance and a long tool life.
  • the diamond coated tool of the present disclosure has excellent wear resistance and a long tool life.
  • the diamond-coated tool of the present disclosure is A diamond coating tool comprising a base material and a diamond layer provided on the base material.
  • the diamond layer has a boron content of 1 ⁇ 10 3 ppma or more in a first region surrounded by a surface of the diamond layer and a first virtual surface having a thickness direction distance of 1 ⁇ m from the surface. 1 ⁇ 10 6 ppma or less, and the content of oxygen is 1 ⁇ 10 5 ppma or less 1 ⁇ 10 2 ppma or more, diamond coated tools.
  • the diamond-coated tool of the present disclosure has excellent wear resistance and a long tool life.
  • the diamond layer contains boron in a second region surrounded by an interface between the base material and the diamond layer and a second virtual surface having a thickness direction distance of 1 ⁇ m from the interface.
  • the amount is preferably 1 ⁇ 10 3 ppma or less. According to this, it is possible to obtain a diamond coating tool having excellent adhesion between the base material and the diamond layer.
  • the diamond layer contains boron in a second region surrounded by an interface between the base material and the diamond layer and a second virtual surface having a thickness direction distance of 1 ⁇ m from the interface.
  • the amount is preferably 5 ⁇ 10 2 ppma or less. According to this, it is possible to obtain a diamond coating tool having further excellent adhesion between the base material and the diamond layer.
  • the diamond layer is composed of alternating layers in which the first unit layer and the second unit layer are alternately laminated.
  • the first unit layer is arranged on the outermost surface side
  • the second unit layer is arranged on the side in contact with the base material.
  • the first unit layer has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and an oxygen content of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • the second unit layer has a boron content of 1 ⁇ 10 3 ppma or less.
  • the thickness of the first unit layer is 1 ⁇ m or more, and is The thickness of the second unit layer is preferably 1 ⁇ m or more.
  • the wear resistance of the diamond-coated tool is improved, and the adhesion between the base material and the diamond layer is improved.
  • the first region preferably contains a boron oxide. According to this, the lubricity of the diamond layer during use of the tool is improved, so that the cutting resistance is reduced and the wear resistance of the diamond-coated tool is improved.
  • the ratio of the binding energy from the integrated intensity I bo boron and oxygen to the area the intensity I b from total binding energy of the boron I bo It is preferable that / I b is 0.1 or more and 0.8 or less.
  • the lubricity of the diamond layer during use of the tool is improved, so that the cutting resistance is reduced and the wear resistance of the diamond-coated tool is improved.
  • a bo / A dia which is the ratio of the peak area intensity A bo derived from the boron oxide to the peak area intensity A dia derived from diamond, is 0.1 or more and 10 or less. Is preferable.
  • the lubricity of the diamond layer during use of the tool is improved, so that the cutting resistance is reduced and the wear resistance of the diamond-coated tool is improved.
  • the diamond-coated tool of the present disclosure is A diamond coating tool comprising a base material and a diamond layer provided on the base material.
  • the diamond layer is composed of alternating layers in which the first unit layer and the second unit layer are alternately laminated. In the alternating layer, the outermost surface side is the first unit layer, and the side in contact with the base material is the second unit layer.
  • the first unit layer has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and an oxygen content of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • the second unit layer is a diamond-coated tool having a boron content of 1 ⁇ 10 3 ppma or less.
  • the diamond-coated tool of the present disclosure has excellent wear resistance and a long tool life.
  • the thickness of the first unit layer is 0.2 ⁇ m or more.
  • the thickness of the second unit layer is preferably 0.2 ⁇ m or more.
  • the notation in the form of "A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when the unit is not described in A and the unit is described only in B, A The unit of and the unit of B are the same.
  • boron and oxygen each include all isotopes. Therefore, the boron content and the oxygen content shall be values that include all of the respective isotopes.
  • FIG. 1 is a schematic cross-sectional view illustrating a typical configuration example of the diamond-coated tool according to the first embodiment.
  • the diamond coating tool 10 is a diamond coating tool 10 including a base material 1 and a diamond layer 2 provided on the base material 1, and the diamond layer 2 is a diamond layer 2.
  • the boron content is 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma.
  • the oxygen content is 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • the diamond-coated tool of the first embodiment has excellent wear resistance and a long tool life. The reason for this is not clear, but it is presumed to be as shown in (i) and (ii) below.
  • the diamond coating tool of the first embodiment has a boron content in the first region surrounded by the surface of the diamond layer and the first virtual surface having a thickness direction distance of 1 ⁇ m from the surface. It is 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less.
  • the boron content in the first region of the diamond layer is 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, the diamond layer can have excellent oxidation resistance and lubricity. Therefore, the diamond-coated tool has excellent wear resistance and can have a long tool life.
  • the diamond coating tool of the first embodiment has an oxygen content in a first region surrounded by a surface of the diamond layer and a first virtual surface having a thickness direction distance of 1 ⁇ m from the surface. It is 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • the first region of the diamond layer contains boron having a concentration of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less and oxygen having a concentration of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less, the first region contains Boron oxide is considered to be present.
  • the cyclic structural material composed of boron oxide undergoes shear fracture at the frictional interface between the diamond layer and the work material when the tool is used, resulting in solid lubricity. Is shown. Therefore, the coefficient of friction between the tool and the work material is reduced, so that the cutting resistance is reduced. Therefore, the diamond-coated tool has excellent wear resistance and can have a long tool life.
  • the diamond coating tool 10 of the first embodiment includes a base material 1 and a diamond layer 2 provided on the base material 1.
  • the diamond-coated tool may include any other configuration as long as it has these configurations.
  • the surface of the base material is coated with a diamond layer, the entire surface of the substrate may be coated with the diamond layer, or a part of the surface thereof is coated with the diamond layer. May be good.
  • the diamond-coated tool of the first embodiment is useful as, for example, a cutting tool such as a cutting tip with a replaceable cutting edge, a tool, a cutter, a drill, and an end mill, and a polishing-resistant tool such as a die, a bending die, a drawing die, and a bonding tool. Can be used.
  • a cutting tool such as a cutting tip with a replaceable cutting edge, a tool, a cutter, a drill, and an end mill
  • a polishing-resistant tool such as a die, a bending die, a drawing die, and a bonding tool.
  • the diamond layer of the first embodiment has a boron content of 1 ⁇ 10 3 in a first region surrounded by a surface of the diamond layer and a first virtual surface having a thickness direction distance of 1 ⁇ m from the surface. It is equal to or greater than ppma and less than or equal to 1 ⁇ 10 6 ppma.
  • the diamond layer of the first embodiment may contain any other component as long as it has the above-mentioned structure and exerts the effect of the present disclosure.
  • the boron content in the first region is 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and 1 ⁇ 10 3 ppma or more and 1 ⁇ from the viewpoint of improving wear resistance. More preferably 10 5 ppma or less, 1 ⁇ 10 3 ppma or 5 ⁇ 10 4 ppma or less is more preferable.
  • the diamond constituting the diamond layer of the first embodiment takes a polycrystalline form.
  • the boron in the diamond layer may be present in the crystal by substituting for carbon, may be present in the crystal without substituting the crystal lattice, may be present at the grain boundary, or the like. It may exist as a compound by combining with the element of. That is, the boron content in the present disclosure means the content contained in the entire first region of the diamond layer regardless of the boron content form.
  • the oxygen content in the first region is 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less, and 1 ⁇ 10 2 ppma or more and 1 ⁇ from the viewpoint of improving wear resistance. It is more preferably 10 4 ppma or less, and further preferably 1 ⁇ 10 2 ppma or more and 5 ⁇ 10 3 ppma or less.
  • Oxygen in the diamond layer is considered to exist as a boron oxide, but the existence form of oxygen is not limited to this. For example, it may be present in the crystal by substituting for carbon, may be present in the crystal without substituting the crystal lattice, or may be present at the grain boundary. That is, the oxygen content in the present disclosure means the content contained in the entire first region of the diamond layer regardless of the oxygen content form.
  • the diamond layer 2 of the first embodiment has an interface P between the base material 1 and the diamond layer 2 and a second virtual surface Q2 in which the distance from the interface P in the thickness direction is 1 ⁇ m.
  • the boron content is preferably less than 1 ⁇ 10 3 ppma. According to this, it is possible to obtain a diamond coating tool having excellent adhesion between the base material and the diamond layer.
  • the diamond layer is composed of one layer, but the boron content is different between the outermost surface side and the base material side.
  • the boron content in the second region is preferably 5 ⁇ 10 2 ppma or less, more preferably 1 ⁇ 10 2 ppma or less, from the viewpoint of improving the adhesion between the base material and the diamond layer. ..
  • the lower limit of the boron content in the second region is not particularly limited and may be 0 ppma.
  • the content of boron in the second region is preferably 0 ppma or more and 1 ⁇ 10 3 ppma or less, more preferably 0 ppma or more and 5 ⁇ 10 2 ppma or less, and further preferably 0 ppma or more and 1 ⁇ 10 2 ppma or less.
  • the boron content and oxygen content in the first region and the boron content in the second region are referred to as electron probe microprobe analyzer (EPMA) (measuring instrument: "JXA-8621” manufactured by JEOL Ltd.). Is measured using. Specifically, it is measured by the following procedures (1-1) to (1-3).
  • a diamond coating tool is cut out in a direction perpendicular to the surface of the diamond layer using a wire electric discharge machine, and the exposed cross section is mirror-polished using a diamond slurry having an average particle size of 3 ⁇ m.
  • the base material is prepared so that the surface of the base material is as smooth as possible, and the thickness of the diamond layer formed on the base material is also made uniform, so that the surface of the base material ( Even if the interface with the diamond layer is slightly uneven, the surface S of the diamond layer and the interface P are substantially parallel to each other, and there is no effect on the measurement accuracy of the boron content and the oxygen content described later.
  • the first region surrounded by the surface S of the diamond layer 2 and the first virtual surface Q1 having a thickness direction distance from the surface S to the diamond layer side of 1 ⁇ m and parallel to the surface S.
  • a rectangular measurement field (hereinafter, also referred to as “measurement field in the first region”) having a length of 10 ⁇ m along the surface S of the diamond layer ⁇ a length of 1 ⁇ m in the thickness direction of the diamond layer from the surface S is randomly selected. Set in 3 places.
  • the interface P between the base material 1 and the diamond layer 2 and the second virtual surface Q2 which has a thickness direction distance of 1 ⁇ m from the interface P to the diamond layer side and is parallel to the surface S
  • a rectangular measurement visual field having a length of 10 ⁇ m along the interface P between the base material 1 and the diamond layer 2 ⁇ a length of 1 ⁇ m in the thickness direction of the diamond layer from the interface P (hereinafter, “second”. (Also referred to as "intra-regional measurement field”) is randomly set at three locations.
  • the plane of the average height of the surface S is regarded as the surface, and the first region is set.
  • the plane of the average height of the interface P is regarded as the interface, and the second region is set.
  • Electron probe microprobe analyzer (EPMA) analysis (measuring equipment: "JXA-8621" manufactured by JEOL Ltd.) is performed on each of the above-mentioned measurement field of view in the first region and the measurement field of view in the second region.
  • EPMA Electron probe microprobe analyzer
  • the electron beam is irradiated at an acceleration voltage of 25 kV, the characteristic X-ray obtained from the sample surface is separated with a detection region of 10 ⁇ m ⁇ , and the boron concentration and the oxygen concentration are obtained from the obtained peak intensity.
  • Concentration quantification is performed by comparison with a separately prepared standard sample (diamond single crystal with known boron concentration and oxygen concentration prepared by ion implantation).
  • the above EPMA analysis is performed in the measurement visual fields in the second region at three locations, and the average value of the boron concentration in the measurement visual fields at the three locations is calculated.
  • the value of the average value is defined as the boron content in the second region.
  • the first region of the diamond layer preferably contains a boron oxide.
  • the boron oxide include B 2 O 3 . It is considered that B 2 O 3 has an annular structure (for example, a six-membered ring structure) and exists in a layered form in which a plurality of sheets having an annular structure are laminated in the diamond layer.
  • the cyclic structure material of the boron oxide undergoes shear fracture at the frictional interface between the diamond layer and the work material when the tool is used. This shows solid lubricity. Therefore, the coefficient of friction between the tool and the work material is reduced, so that the cutting resistance is reduced. Therefore, the diamond-coated tool has excellent wear resistance and can have a long tool life.
  • the first region of the diamond layer contains boron oxide. Specifically, it can be confirmed by the following procedures (2-1) to (2-4).
  • a diamond coating tool is cut out in a direction perpendicular to the surface of the diamond layer using a wire electric discharge machine, and the exposed cross section is mirror-polished using a diamond slurry having an average particle size of 3 ⁇ m.
  • the diamond layer is formed in the first region A1 surrounded by the surface S of the diamond layer 2 and the first virtual surface Q1 in which the distance from the surface S to the diamond layer side in the thickness direction is 1 ⁇ m.
  • a rectangular measurement visual field having a length of 20 ⁇ m along the surface S of the surface S and a length of 1 ⁇ m in the thickness direction of the diamond layer from the surface S (hereinafter, also referred to as “measurement field for Raman spectroscopy”) is randomly set.
  • FIG. 4 shows an example of the Raman spectrum after peak separation in the diamond-coated tool of the first embodiment.
  • the peak near Raman shift 800 cm -1 observed after peak separation indicates the presence of a BO ring structure (a ring structure containing a bond between boron and oxygen). That is, the peak near Raman shift 800 cm -1 indicates the presence of boron oxide. Therefore, after the above peak separation treatment, it is possible to confirm whether or not the first region of the diamond layer contains boron oxide by confirming whether or not a peak is observed in the vicinity of Raman shift 800 cm -1. it can.
  • I bo / I b is 0.1 or more and 0.8 or less, it is considered that boron oxide is present in the first region.
  • the cyclic structure material of the boron oxide undergoes shear fracture at the friction interface between the diamond layer and the work material when the tool is used, thereby exhibiting solid lubricity. Therefore, the coefficient of friction between the tool and the work material is reduced, so that the cutting resistance is reduced. Therefore, the diamond-coated tool has excellent wear resistance and can have a long tool life.
  • I bo / I b is more preferably 0.2 or more and 0.8 or less, and further preferably 0.3 or more and 0.8 or less.
  • I bo / I b is calculated by the following procedure (3-1) to (3-5).
  • a diamond coating tool is cut out in a direction perpendicular to the surface of the diamond layer using a wire electric discharge machine, and the exposed cross section is mirror-polished using a diamond slurry having an average particle size of 3 ⁇ m.
  • the diamond layer is formed in the first region A1 surrounded by the surface S of the diamond layer 2 and the first virtual surface Q1 in which the distance from the surface S to the diamond layer side in the thickness direction is 1 ⁇ m.
  • a rectangular measurement field of view (hereinafter, also referred to as “measurement field of view for XPS”) having a length of 20 ⁇ m along the surface S of the surface S and a length of 1 ⁇ m in the thickness direction of the diamond layer from the surface S is randomly set.
  • a spectrum showing a BB bond (interboron bond) by performing peak separation of the B1s spectrum obtained above by function fitting (hereinafter, also referred to as "BB bond spectrum”) and A spectrum showing a BO bond (boron-oxygen bond) (hereinafter, also referred to as "BO bond spectrum”) is obtained.
  • the peak fitting function uses the Voigt function, which is a convolution integral of the Gaussian function and the Lorenz function.
  • the total binding energy in which boron is involved means the sum of the BB binding energy and the BO binding energy.
  • FIG. 3 shows an example of the above B1s spectrum, BB bond spectrum, and BO bond spectrum in the diamond coating tool of the first embodiment.
  • I bo / I b is calculated from I b and I bo obtained above.
  • a bo / A dia which is the ratio of the peak area intensity A bo derived from the boron oxide to the peak area intensity A dia derived from diamond, is 0. It is preferably 1 or more and 10 or less.
  • a bo / A dia is 0.1 or more and 10 or less, it is considered that a boron oxide having a cyclic structure is present in the first region.
  • the cyclic structure material of the boron oxide undergoes shear fracture at the frictional interface between the diamond layer and the work material when the tool is used, resulting in solid lubricity. Is shown. Therefore, the coefficient of friction between the tool and the work material is reduced, so that the cutting resistance is reduced. Therefore, the diamond-coated tool has excellent wear resistance and can have a long tool life.
  • a bo / A dia is more preferably 0.2 or more and 8 or less, and further preferably 0.3 or more and 7 or less, from the viewpoint of improving the lubricity of the diamond layer and maintaining the wear resistance.
  • a bo / A dia is calculated by the following procedure (4-1) to (4-4).
  • a diamond coating tool is cut out in a direction perpendicular to the surface of the diamond layer using a wire electric discharge machine, and the exposed cross section is mirror-polished using a diamond slurry having an average particle size of 3 ⁇ m.
  • the diamond layer is formed in the first region A1 surrounded by the surface S of the diamond layer 2 and the first virtual surface Q1 in which the distance from the surface S to the diamond layer side in the thickness direction is 1 ⁇ m.
  • a rectangular measurement visual field having a length of 20 ⁇ m along the surface S of the surface S and a length of 1 ⁇ m in the thickness direction of the diamond layer from the surface S (hereinafter, also referred to as “measurement field for Raman spectroscopy”) is randomly set.
  • FIG. 4 shows an example of the Raman spectrum after peak separation in the diamond-coated tool of the first embodiment.
  • the peak near Raman shift 800 cm -1 observed after peak separation is derived from the BO ring structure (ring structure containing the bond between boron and oxygen). That is, it is considered that the peak near Raman shift 800 cm -1 is derived from boron oxide.
  • the peak near Raman shift 800 cm -1 is also referred to as "boron oxide-derived peak”.
  • the peak near Raman shift 1330 cm -1 observed after peak separation is derived from diamond.
  • the peak near Raman shift 1330 cm -1 is also referred to as a “diamond-derived peak”.
  • the peak area intensity is measured using image processing software (“Ramanimager” (trademark) manufactured by Nanophoton).
  • a bo / A dia is calculated from the peak area intensity A bo of the boron oxide-derived peak and the peak area intensity A dia of the diamond-derived peak obtained above.
  • the average particle size of the diamond particles contained in the diamond layer can be, for example, 0.05 to 3 ⁇ m. When the average particle size of the diamond particles is in the above range, the diamond layer can have excellent wear resistance and defect resistance.
  • the average particle size of the diamond particles is more preferably 0.2 to 1.5 ⁇ m.
  • the average particle size means the median diameter (d50) in the volume-based particle size distribution (volume distribution).
  • the particle size of each particle for calculating the average particle size of diamond particles can be measured by the following method. First, the cross section of the diamond layer is mirror-polished, and the reflected electron image of the diamond layer in an arbitrary region (measurement field of view 2 ⁇ m ⁇ 2 ⁇ m) is observed at a magnification of 5000 times using an electron microscope. Next, in this backscattered electron image, the diameter of the circle circumscribing the diamond particles (that is, the diameter corresponding to the circumscribed circle) is measured, and the diameter is taken as the particle size of the diamond particles.
  • the diamond layer preferably has an overall thickness of 3 ⁇ m or more and 30 ⁇ m or less. When the film thickness is in this range, the balance between the wear resistance and the fracture resistance of the diamond-coated tool is good.
  • the thickness of the diamond layer is more preferably 5 ⁇ m or more and 25 ⁇ m or less, and further preferably 7 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the diamond layer can be measured by observing the cross section of the diamond layer using an SEM (scanning electron microscope, "S4800-at” manufactured by Hitachi High-Technologies Corporation). Specifically, the observation magnification of the cross-sectional sample is 5000 to 10000 times, the observation area is 100 to 500 ⁇ m 2 , the thickness widths of three points are measured in one field of view, and the average value is defined as “thickness”. The thickness of each layer described later is the same unless otherwise specified.
  • ⁇ Base material> As the base material 1 of the diamond coating tool 10 of the first embodiment, conventionally known ones can be used without particular limitation.
  • cemented carbide for example, WC-based cemented carbide, WC, as well as those containing Co or further added with carbonitrides such as Ti, Ta, Nb), cermet (TiC, TiN, TiCN, etc.), cermet (TiC, TiN, TiCN, etc.) (Main component), high-speed steel, tool steel, ceramics (titanium carbide, cemented carbide, cermet nitride, aluminum nitride, aluminum oxide, and mixtures thereof, etc.), cubic boron nitride sintered body, etc.
  • An example of such a base material can be given.
  • these base materials it is particularly preferable to select WC-based cemented carbide and cermet (particularly TiCN-based cermet). This is because these base materials have an excellent balance between hardness and strength, especially at high temperatures, and have excellent characteristics as base materials for diamond-coated cutting tools.
  • FIG. 2 is a schematic cross-sectional view illustrating a typical configuration example of the diamond-coated tool according to the second embodiment.
  • the diamond coating tool 210 includes a base material 1 and a diamond layer 220 provided on the base material 1, and the diamond layer 220 is formed from the surface S of the diamond layer and the surface S.
  • the boron content is 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less
  • the oxygen content is Is 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less
  • the diamond layer 220 is composed of an alternating layer in which the first unit layer 21 and the second unit layer 22 are alternately laminated, and is the outermost surface of the alternating layer.
  • the first unit layer 21 is arranged on the side, the second unit layer 22 is arranged on the side in contact with the base material 1, and the first unit layer 21 has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma.
  • the oxygen content of the second unit layer is 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less, and the boron content of the second unit layer is less than 1 ⁇ 10 3 ppma.
  • the thickness is 1 ⁇ m or more, and the thickness of the second unit layer is 1 ⁇ m or more.
  • the diamond-coated tool of the second embodiment can have the same configuration as the diamond-coated tool of the first embodiment except for the configuration of the diamond layer. Therefore, in this embodiment, the diamond layer will be described.
  • the diamond layer 220 of the second embodiment is composed of alternating layers in which the first unit layer 21 and the second unit layer 22 are alternately laminated.
  • the first unit layer 21 is arranged on the outermost surface side
  • the second unit layer 22 is arranged on the side in contact with the base material 1.
  • the first unit layer 21 has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and an oxygen content of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • the second unit layer has a boron content of 1 ⁇ 10 3 ppma or less.
  • the surface side in contact with the work material is composed of the first unit layer.
  • the first unit layer has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and an oxygen content of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less, and has excellent oxidation resistance. It can have properties and lubricity. Therefore, the diamond-coated tool has excellent wear resistance and can have a long tool life.
  • the side in contact with the base material is composed of the second unit layer.
  • the second unit layer has a boron content of 1 ⁇ 10 3 ppma or less, and has excellent adhesion to a substrate. Therefore, the diamond-coated tool has excellent adhesion between the base material and the diamond layer, and can have a long tool life.
  • the lower limit of the thickness of the first unit layer is 1 ⁇ m or more. According to this, the growth of cracks generated on the surface of the diamond layer can be suppressed.
  • the lower limit of the thickness of the first unit layer can be 1.5 ⁇ m or more and 2 ⁇ m or more.
  • the upper limit of the thickness of the first unit layer can be 29 ⁇ m or less, 28.5 ⁇ m or less, and 28 ⁇ m or less.
  • the thickness of the first unit layer can be 1 ⁇ m or more and 29 ⁇ m or less, 1.5 ⁇ m or more and 28.5 ⁇ m or less, and 2 ⁇ m or more and 28 ⁇ m or less.
  • the lower limit of the thickness of the second unit layer is 1 ⁇ m or more. According to this, the interfacial strength with the base material can be maintained and peeling can be suppressed.
  • the upper limit of the thickness of the second unit layer can be 29 ⁇ m or less, 28.5 ⁇ m or less, and 28 ⁇ m or less.
  • the thickness of the second unit layer can be 1 ⁇ m or more and 29 ⁇ m or less, 1.5 ⁇ m or more and 28.5 ⁇ m or less, and 2 ⁇ m or more and 28 ⁇ m or less.
  • the number of layers of the first unit layer and the second unit layer is preferably 1 or more and 15 or less. According to this, the fracture resistance and the wear resistance can be improved in a well-balanced manner.
  • the thickness of the entire diamond layer can be 2 ⁇ m or more and 30 ⁇ m or less, 3 ⁇ m or more and 25 ⁇ m or less, and 4 ⁇ m or more and 20 ⁇ m or less.
  • the first unit layer and the second unit layer are alternately laminated to form a multi-layer structure, which means that the cross section of the diamond layer is TEM (transmission electron microscope, JEM-2100F manufactured by JEOL Ltd.). By observing with "/ Cs" (trademark), the difference in contrast can be confirmed as indicating a multi-layer structure.
  • the number of layers of the first unit layer and the second unit layer can be measured by observing the cross section of the diamond layer using a TEM (transmission electron microscope). Specifically, it can be measured by irradiating a sliced sample with an electron beam, forming an image of electrons transmitted through the sample or scattered electrons, and observing them at a high magnification.
  • TEM transmission electron microscope
  • FIG. 5 is a schematic cross-sectional view illustrating a typical configuration example of the diamond-coated tool according to the third embodiment.
  • the diamond coating tool 310 includes a base material 1 and a diamond layer 320 provided on the base material 1, and the diamond layer 320 includes a first unit layer 31 and a second unit layer. It is composed of alternating layers in which 32 and 32 are alternately laminated. In the alternating layer, the first unit layer 31 is arranged on the outermost surface side, the second unit layer 32 is arranged on the side in contact with the base material 1, and the first unit layer is arranged. No.
  • boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and an oxygen content of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • the content of boron is less than 1 ⁇ 10 3 ppma.
  • the diamond-coated tool of the third embodiment has excellent wear resistance and a long tool life. The reason for this is not clear, but it is presumed to be as follows (I) to (III).
  • the first unit layer arranged on the outermost surface side of the diamond layer has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less and oxygen.
  • the content of is 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • the boron content of the first unit layer is 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, the first unit layer can have excellent oxidation resistance and lubricity. Therefore, the diamond-coated tool has excellent wear resistance and can have a long tool life.
  • the first unit layer contains boron having a concentration of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less and oxygen having a concentration of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less
  • the first unit layer is used. It is considered that boron oxide is present in the unit layer.
  • the cyclic structural material composed of boron oxide undergoes shear fracture at the frictional interface between the diamond layer and the work material during use of the tool, resulting in solid lubrication. Show sex. Therefore, the coefficient of friction between the tool and the work material is reduced, so that the cutting resistance is reduced. Therefore, the diamond-coated tool has excellent wear resistance and can have a long tool life.
  • the second unit layer arranged on the side of the diamond layer in contact with the base material has a boron content of less than 1 ⁇ 10 3 ppma. According to this, the adhesion between the base material and the diamond layer is good. Therefore, the diamond-coated tool is less likely to peel off during use and can have a long tool life.
  • the diamond-coated tool of the third embodiment can have the same configuration as the diamond-coated tool of the first embodiment except for the configuration of the diamond layer. Therefore, in this embodiment, the diamond layer will be described.
  • the diamond layer 320 of the third embodiment is composed of an alternating layer in which the first unit layer 31 and the second unit layer 32 are alternately laminated.
  • the first unit layer 31 is arranged on the outermost surface side
  • the second unit layer 32 is arranged on the side in contact with the base material 1.
  • the first unit layer 31 has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and an oxygen content of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • the second unit layer 32 has a boron content of 1 ⁇ 10 3 ppma or less.
  • the surface side in contact with the work material is composed of the first unit layer.
  • the first unit layer has a boron content of 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and an oxygen content of 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less, and has excellent oxidation resistance. It can have properties and lubricity. Therefore, the diamond-coated tool has excellent wear resistance and can have a long tool life.
  • the side in contact with the base material is composed of the second unit layer.
  • the second unit layer has a boron content of 1 ⁇ 10 3 ppma or less, and has excellent adhesion to a substrate. Therefore, the diamond-coated tool has excellent adhesion between the base material and the diamond layer, and can have a long tool life.
  • the boron content and oxygen content in the first unit layer and the boron content in the second unit layer were determined using an electron probe microprobe analyzer (EPMA) (measuring equipment: "JXA-8621" manufactured by JEOL Ltd.). Be measured. Specifically, it is measured by the following procedures (5-1) to (5-3).
  • EPMA electron probe microprobe analyzer
  • a diamond coating tool is cut out and exposed in a direction perpendicular to the surface of the diamond layer in the same manner as in (1-1) above according to the first embodiment.
  • the cross section is mirror-polished using a diamond slurry having an average particle size of 3 ⁇ m.
  • the above exposed cross section was observed with a TEM (transmission electron microscope, "JEM-2100F / Cs” (trademark) manufactured by JEOL Ltd.), and the first unit layer on the outermost surface side and the second unit on the side in contact with the base material 1 were observed. Identify the unit layer.
  • a rectangular measurement field of view having a length of 10 ⁇ m along the surface S of the diamond layer ⁇ a length along the thickness direction of the first unit layer and the same length as the thickness (hereinafter, “measurement in the first unit layer”). (Also called "field of view”) is randomly set at three locations.
  • a rectangular measurement field of view having a length of 10 ⁇ m along the surface S of the diamond layer ⁇ a length along the thickness direction of the second unit layer and the same length as the thickness (hereinafter, “measurement in the second unit layer”). (Also called "field of view”) is randomly set at three locations. (5-2) Electron microprobe analyzer (EPMA) analysis (measurement equipment: "JXA-8621" manufactured by JEOL Ltd.) was performed for each of the above-mentioned measurement field in the first unit layer and the measurement field in the second unit layer. Do.
  • EPMA Electron microprobe analyzer
  • the electron beam is irradiated at an acceleration voltage of 25 kV, the characteristic X-ray obtained from the sample surface is separated with a detection region of 10 ⁇ m ⁇ , and the boron concentration and the oxygen concentration are obtained from the obtained peak intensity.
  • Concentration quantification is performed by comparison with a separately prepared standard sample (diamond single crystal with known boron concentration and oxygen concentration prepared by ion implantation).
  • the above EPMA analysis is performed in the measurement visual fields in the second unit layer at three locations, and the average value of the boron concentration in the measurement visual fields at the three locations is calculated.
  • the value of the average value is defined as the boron content in the second unit layer.
  • the thickness of the first unit layer is preferably 0.2 ⁇ m or more. According to this, the growth of cracks generated on the surface of the diamond layer can be suppressed.
  • the lower limit of the thickness of the first unit layer can be 0.3 ⁇ m or more.
  • the upper limit of the thickness of the first unit layer can be 1 ⁇ m or less and 0.8 ⁇ m or less.
  • the thickness of the first unit layer can be 0.2 ⁇ m or more and 1 ⁇ m or less, and 0.3 ⁇ m or more and 0.8 ⁇ m or less.
  • the thickness of the second unit layer is preferably 0.2 ⁇ m or more. According to this, the interfacial strength with the base material can be maintained and peeling can be suppressed.
  • the lower limit of the thickness of the second unit layer can be 0.3 ⁇ m or more.
  • the upper limit of the thickness of the second unit layer can be 1 ⁇ m or less and 0.8 ⁇ m or less.
  • the thickness of the second unit layer can be 0.2 ⁇ m or more and 1 ⁇ m or less, and 0.3 ⁇ m or more and 0.8 ⁇ m or less.
  • the number of layers of the first unit layer and the second unit layer is preferably 5 or more and 75 or less. According to this, the fracture resistance and the wear resistance can be improved in a well-balanced manner.
  • the thickness of the entire diamond layer is preferably 3 ⁇ m or more and 25 ⁇ m or less, and more preferably 4 ⁇ m or more and 20 ⁇ m or less.
  • the first unit layer and the second unit layer are alternately laminated to form a multi-layer structure, which means that the cross section of the diamond layer is TEM (transmission electron microscope, JEM-2100F manufactured by JEOL Ltd.). By observing with "/ Cs" (trademark), the difference in contrast can be confirmed as indicating a multi-layer structure.
  • the number of layers of the first unit layer and the second unit layer can be measured by observing the cross section of the diamond layer using a TEM (transmission electron microscope). Specifically, it can be measured by irradiating a sliced sample with an electron beam, forming an image of electrons transmitted through the sample or scattered electrons, and observing them at a high magnification.
  • TEM transmission electron microscope
  • the method for manufacturing a diamond-coated tool according to the first embodiment can include a step of applying diamond powder to the surface of a base material, performing a seeding treatment, and then forming a diamond layer by a chemical vapor deposition method.
  • a chemical vapor deposition method conventionally known CVD methods such as a thermal filament CVD method, a microwave plasma CVD method, and a plasma jet CVD method can be used.
  • the diamond layer can contain a predetermined concentration of boron and oxygen.
  • the boron content in the first region of the diamond layer is 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and oxygen.
  • the content of is 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less.
  • B 2 H 6 diborane, gas
  • B (CH 3 ) 3 trimethylboron: TMB, liquid
  • O 2 oxygen, gas
  • B (OCH 3 ) 3 trimethyl borate, liquid
  • the gases can be introduced directly into the gas phase.
  • the boron source and the oxygen source are liquids, the liquids can be introduced as a mixed gas by bubbling with an arbitrary carrier gas.
  • the method for manufacturing the diamond-coated tool of the second embodiment and the third embodiment is basically the same as the manufacturing method of the diamond-coated tool of the fourth embodiment.
  • the difference is that when the diamond is vapor-deposited, the concentrations of the boron and oxygen sources in the gas phase are changed at regular intervals, so that the concentrations of boron and oxygen in the diamond layer are different.
  • the second unit layer is formed alternately.
  • the boron content of the first unit layer is 1 ⁇ 10 3 ppma or more and 1 ⁇ 10 6 ppma or less, and the oxygen content is contained.
  • the amount shall be 1 ⁇ 10 2 ppma or more and 1 ⁇ 10 5 ppma or less, and the boron content of the second unit layer shall be 1 ⁇ 10 3 ppma or less.
  • diamond powder was applied to the surface of the base material and seeding treatment was performed.
  • the seeding treatment was carried out by rubbing a diamond powder having an average particle size of 0.1 ⁇ m on the surface of the base material, washing the base material in ethanol, and drying the base material.
  • the base material subjected to the above-mentioned seeding treatment was set in a known thermal filament CVD apparatus.
  • the diamond layer of sample 1 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 800 ° C.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rates of the boron source and the oxygen source were set to zero.
  • the total thickness of the diamond layer was 10 ⁇ m. As a result, the diamond coating tool of Sample 1 was obtained.
  • sample 2 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rates of the boron source and the oxygen source are set to zero, and when the first unit layer is formed, the concentration of the oxygen source is controlled to be 60% of the boron source, and the boron and oxygen sources are formed.
  • the flow rate was controlled so that the concentration was 0.5% with respect to the total raw material gas.
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 2 was obtained.
  • sample 3 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.01% with respect to the total raw material gas.
  • the flow rate was controlled so that the concentration of the oxygen source was 35% with respect to the boron source and the concentration of the boron and the oxygen source was 0.2% with respect to the total raw material gas. ..
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond-coated tool for sample 3 was obtained.
  • sample 4 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.02% with respect to the total raw material gas.
  • the flow rate of the oxygen source was set to zero, and the flow rate was controlled so that the concentration of the boron source was 0.2% with respect to the total raw material gas.
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 4 was obtained.
  • sample 5 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.05% with respect to the total raw material gas.
  • the flow rate was controlled so that the concentration of the oxygen source was 20% with respect to the boron source and the concentration of the boron and the oxygen source was 0.5% with respect to the total raw material gas. ..
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 5 was obtained.
  • sample 6 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the diamond layer of sample 6 was formed under the following conditions.
  • the filament current was controlled so that the tool surface temperature averaged 800 ° C.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.1% of the total raw material gas.
  • the flow rate was controlled so that the concentration of the oxygen source was 70% with respect to the boron source and the concentration of the boron and the oxygen source was 0.3% with respect to the total raw material gas. ..
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 6 was obtained.
  • sample 7 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the second unit layer was formed, the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.3% of the total raw material gas.
  • the flow rates of the boron source and the oxygen source were set to zero.
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 7 was obtained.
  • sample 8 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.5% with respect to the total raw material gas.
  • the flow rate was controlled so that the concentration of the oxygen source was 40% with respect to the boron source and the concentration of the boron and the oxygen source was 0.5% with respect to the total raw material gas. ..
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 8 was obtained.
  • sample 9 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.2% with respect to the total raw material gas.
  • the flow rate was controlled so that the concentration of the oxygen source was 50% with respect to the boron source and the concentration of the boron and the oxygen source was 5% with respect to the total raw material gas.
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 9 was obtained.
  • sample 10 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.1% of the total raw material gas.
  • the flow rate was controlled so that the concentration of the oxygen source was 30% with respect to the boron source and the concentration of the boron and the oxygen source was 10% with respect to the total raw material gas.
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 10 was obtained.
  • sample 11 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.2% with respect to the total raw material gas.
  • the flow rate was controlled so that the concentration of the oxygen source was 60% with respect to the boron source and the concentration of the boron and the oxygen source was 0.1% with respect to the total raw material gas. ..
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 11 was obtained.
  • sample 12 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 3% of the total raw material gas.
  • the flow rate was controlled so that the concentration of the oxygen source was 12% with respect to the boron source and the concentration of the boron and the oxygen source was 7% with respect to the total raw material gas.
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 12 was obtained.
  • sample 13 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled so that the concentrations of the boron source and the oxygen source were 0.1% of the total raw material gas.
  • the flow rate was controlled so that the concentration of the oxygen source was 10% with respect to the boron source and the concentration of the boron and the oxygen source was 50% with respect to the total raw material gas.
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 13 was obtained.
  • sample 14 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the concentrations of the boron source and the oxygen source were set to zero with respect to the total raw material gas.
  • the flow rate is controlled so that the concentration of the oxygen source is 20% with respect to the boron source, and the concentration of the boron and the oxygen source is 0.5% with respect to the total raw material gas.
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 14 was obtained.
  • sample 15 As the base material, the same base material as that of sample 1 was prepared. A diamond layer was formed on the substrate under the following conditions.
  • the filament current was controlled so that the tool surface temperature would be 800 ° C on average.
  • the flow rate of methane and hydrogen was controlled so that the methane concentration was 1%, and the pressure at the time of film formation was 500 mPa.
  • the flow rate was controlled to be 0.1%.
  • the flow rate is controlled so that the concentration of the oxygen source is 15% with respect to the boron source and the concentration of the boron and the oxygen source is 40% with respect to the total raw material gas. did.
  • the thickness and the number of layers of the first unit layer and the second unit layer are as shown in Table 1.
  • the total thickness of the diamond layer was 10 ⁇ m.
  • the diamond layer is composed of alternating layers, the side in contact with the base material is the second unit layer, and the outermost surface side is the first unit layer. As a result, a diamond coating tool for sample 12 was obtained.
  • the surface coating cutting tool of Sample 1, Sample 4, and Sample 7 does not contain boron and / or oxygen in the first region, and corresponds to a comparative example. These samples had a large amount of wear and a short tool life as compared with the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

基材と、基材上に設けられたダイヤモンド層と、を備えるダイヤモンド被覆工具であって、ダイヤモンド層は、ダイヤモンド層の表面と、表面からの厚さ方向の距離が1μmである第1仮想面と、に囲まれる第1領域において、硼素の含有量が1×103ppma以上1×106ppma以下、かつ、酸素の含有量が1×102ppma以上1×105ppma以下である。

Description

ダイヤモンド被覆工具
 本開示は、ダイヤモンド被覆工具に関する。本出願は、2019年10月18日に出願した日本特許出願である特願2019-191080号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 ダイヤモンドは現存する物質中最高の硬度を持ち、古くから天然ダイヤモンドや、超高圧ダイヤモンド焼結体等は、切削、研削、研磨等の工具への応用が図られてきた。1980年代に化学気相成長法(以下、「CVD法」ともいう。)による、ダイヤモンド薄膜製造技術が確立されてからは、超硬合金等からなる基材を、ダイヤモンドからなる薄膜(以下、「ダイヤモンド被膜」ともいう。)で被覆することにより、工具の長寿命化を図る技術開発が進んできた。
 ダイヤモンド被膜に対して硼素をドーピングすることにより、ダイヤモンド被膜の耐酸化性及び潤滑性を向上させる技術が知られている。
 特許文献1(特開2006-152423号公報)には、ボロンがドーピングされているダイヤモンド被膜であって、該ボロンのドーピング量が厚さ方向において変化しており、被膜表面では多くされているダイヤモンド被膜が開示されている。
 特許文献2(国際公開第2018/131166号)には、1000ppm未満のホウ素を含有する表面側の第1層と、1000ppm以上のホウ素を含有する母材側の第2単位層とを備えるダイヤモンド被膜が開示されている。
 特許文献3(国際公開第2013/105348号)には、ダイヤモンドと1.0×1018~1.0×1022atms/cmのホウ素と1.0×1017~1.0×1021atms/cmの窒素とを含むダイヤモンド層が開示されている。
特開2006-152423号公報 国際公開第2018/131166号 国際公開第2013/105348号
 本開示のダイヤモンド被覆工具は、
 基材と、前記基材上に設けられたダイヤモンド層と、を備えるダイヤモンド被覆工具であって、
 前記ダイヤモンド層は、前記ダイヤモンド層の表面と、前記表面からの厚さ方向の距離が1μmである第1仮想面と、に囲まれる第1領域において、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下である、ダイヤモンド被覆工具である。
 本開示のダイヤモンド被覆工具は、
 基材と、前記基材上に設けられたダイヤモンド層と、を備えるダイヤモンド被覆工具であって、
 前記ダイヤモンド層は、第1単位層と第2単位層とが交互に積層された交互層からなり、
 前記交互層において、最表面側は前記第1単位層であり、前記基材と接する側は前記第2単位層であり、
 前記第1単位層は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、
 前記第2単位層は、硼素の含有量が1×10ppma以下である、ダイヤモンド被覆工具である。
図1は、実施の形態1に係るダイヤモンド被覆工具の代表的な構成例を説明する模式的断面図である。 図2は、実施の形態2に係るダイヤモンド被覆工具の代表的な構成例を説明する模式的断面図である。 図3は、本開示のダイヤモンド被覆工具の第1領域のXSPスペクトルの一例を示す図である。 図4は、本開示のダイヤモンド被覆工具の第1領域のラマンスペクトルの一例を示す図である。 図5は、実施の形態3に係るダイヤモンド被覆工具の代表的な構成例を説明する模式的断面図である。
 [本開示が解決しようとする課題]
 基材をダイヤモンド被膜で被覆したダイヤモンド被覆工具を用いて加工を行った場合、被膜の摩耗により工具寿命が低下する場合がある。従って、耐摩耗性に優れ、長い工具寿命を有するダイヤモンド被覆工具が求められている。
 そこで、本目的は、耐摩耗性に優れ、長い工具寿命を有するダイヤモンド被覆工具を提供することを目的とする。
 [本開示の効果]
 本開示のダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有する。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示のダイヤモンド被覆工具は、
 基材と、前記基材上に設けられたダイヤモンド層と、を備えるダイヤモンド被覆工具であって、
 前記ダイヤモンド層は、前記ダイヤモンド層の表面と、前記表面からの厚さ方向の距離が1μmである第1仮想面と、に囲まれる第1領域において、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下である、ダイヤモンド被覆工具である。
 本開示のダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有する。
 (2)前記ダイヤモンド層は、前記基材と前記ダイヤモンド層との界面と、前記界面からの厚さ方向の距離が1μmである第2仮想面と、に囲まれる第2領域において、硼素の含有量が1×10ppma以下であることが好ましい。これによると、基材とダイヤモンド層との密着性が優れたダイヤモンド被覆工具を得ることができる。
 (3)前記ダイヤモンド層は、前記基材と前記ダイヤモンド層との界面と、前記界面からの厚さ方向の距離が1μmである第2仮想面と、に囲まれる第2領域において、硼素の含有量が5×10ppma以下であることが好ましい。これによると、基材とダイヤモンド層との密着性が更に優れたダイヤモンド被覆工具を得ることができる。
 (4)前記ダイヤモンド層は、第1単位層と第2単位層とが交互に積層された交互層からなり、
 前記交互層において、最表面側に前記第1単位層が配置され、前記基材と接する側に前記第2単位層が配置され、
 前記第1単位層は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、
 前記第2単位層は、硼素の含有量が1×10ppma以下であり、
 前記第1単位層の厚みは、1μm以上であり、
 前記第2単位層の厚みは、1μm以上であることが好ましい。
 これによると、ダイヤモンド被覆工具の耐摩耗性が向上するとともに、基材とダイヤモンド層との密着性が向上する。
 (5)前記第1領域は、硼素酸化物を含むことが好ましい。これによると、工具の使用時のダイヤモンド層の潤滑性が向上するため切削抵抗が低減し、ダイヤモンド被覆工具の耐摩耗性が向上する。
 (6)前記第1領域のXPS(X線光電子分光法)スペクトルにおいて、硼素の全結合エネルギー由来の面積強度Iに対する硼素と酸素との結合エネルギー由来の面積強度Iboの比率であるIbo/Iが0.1以上0.8以下であることが好ましい。
 これによると、工具の使用時のダイヤモンド層の潤滑性が向上するため切削抵抗が低減し、ダイヤモンド被覆工具の耐摩耗性が向上する。
 (7)前記第1領域のラマンスペクトルにおいて、ダイヤモンド由来のピーク面積強度Adiaに対する前記硼素酸化物由来のピーク面積強度Aboの比率であるAbo/Adiaが0.1以上10以下であることが好ましい。
 これによると、工具の使用時のダイヤモンド層の潤滑性が向上するため切削抵抗が低減し、ダイヤモンド被覆工具の耐摩耗性が向上する。
 (8)本開示のダイヤモンド被覆工具は、
 基材と、前記基材上に設けられたダイヤモンド層と、を備えるダイヤモンド被覆工具であって、
 前記ダイヤモンド層は、第1単位層と第2単位層とが交互に積層された交互層からなり、
 前記交互層において、最表面側は前記第1単位層であり、前記基材と接する側は前記第2単位層であり、
 前記第1単位層は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、
 前記第2単位層は、硼素の含有量が1×10ppma以下である、ダイヤモンド被覆工具である。
 本開示のダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有する。
 (9)前記第1単位層の厚みは、0.2μm以上であり、
 前記第2単位層の厚みは、0.2μm以上であることが好ましい。
 これによると、ダイヤモンド被覆工具の耐摩耗性が向上する。
 [本開示の実施形態の詳細]
 本開示のダイヤモンド被覆工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 本明細書において、硼素及び酸素は、それぞれ同位体を全て含む。したがって、硼素の含有量及び酸素の含有量は、それぞれの同位体を全て含んだ値とする。
 [実施の形態1:ダイヤモンド被覆工具(1)]
 実施の形態1のダイヤモンド被覆工具について、図1を用いて説明する。図1は、実施の形態1に係るダイヤモンド被覆工具の代表的な構成例を説明する模式的断面図である。図1に示されるように、ダイヤモンド被覆工具10は、基材1と、基材1上に設けられたダイヤモンド層2と、を備えるダイヤモンド被覆工具10であって、ダイヤモンド層2は、ダイヤモンド層2の表面Sと、表面Sからの厚さ方向の距離が1μmである第1仮想面Q1と、に囲まれる第1領域A1において、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下である。
 実施の形態1のダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有する。この理由は明らかではないが、下記(i)及び(ii)の通りと推察される。
 (i)実施の形態1のダイヤモンド被覆工具は、ダイヤモンド層の表面と、表面からの厚さ方向の距離が1μmである第1仮想面と、に囲まれる第1領域において、硼素の含有量が1×10ppma以上1×10ppma以下である。ダイヤモンド層の第1領域における硼素の含有量が1×10ppma以上1×10ppma以下であると、ダイヤモンド層は優れた耐酸化性及び潤滑性を有することができる。したがって、ダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有することができる。
 (ii)実施の形態1のダイヤモンド被覆工具は、ダイヤモンド層の表面と、表面からの厚さ方向の距離が1μmである第1仮想面と、に囲まれる第1領域において、酸素の含有量が1×10ppma以上1×10ppma以下である。ダイヤモンド層の第1領域が1×10ppma以上1×10ppma以下の濃度の硼素とともに、1×10ppma以上1×10ppma以下の濃度の酸素を含む場合、第1領域中に硼素酸化物が存在すると考えられる。ダイヤモンド層の第1領域中に硼素酸化物が存在すると、工具の使用時に、ダイヤモンド層と被削材との摩擦界面において、硼素酸化物からなる環状構造物質がせん断破壊を受けることにより固体潤滑性を示す。このため、工具と被削材との摩擦係数が減少することにより切削抵抗が減少する。したがって、ダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有することができる。
 実施の形態1のダイヤモンド被覆工具10は、基材1と、基材1上に設けられたダイヤモンド層2とを含む。ダイヤモンド被覆工具は、これらの構成を有する限り、他の任意の構成を含んでいてもよい。なお、本開示において基材の表面は、ダイヤモンド層により被覆されるものであり、その表面の全面がダイヤモンド層で被覆されていてもよいし、その表面の一部がダイヤモンド層により被覆されていてもよい。
 実施の形態1のダイヤモンド被覆工具は、たとえば、刃先交換型切削チップ、バイト、カッタ、ドリル、エンドミル等の切削工具、および、ダイス、曲げダイ、絞りダイス、ボンディングツール等の耐磨工具として有用に用いることができる。
 <ダイヤモンド層>
 実施の形態1のダイヤモンド層は、ダイヤモンド層の表面と、表面からの厚さ方向の距離が1μmである第1仮想面と、に囲まれる第1領域において、硼素の含有量が1×10ppma以上1×10ppma以下である。
 実施の形態1のダイヤモンド層は、上記の構成を有し本開示の効果を奏する限り、他の任意の成分を含んでいても差し支えない。
 実施の形態1のダイヤモンド層において、第1領域における硼素の含有量は、耐摩耗性向上の観点から、1×10ppma以上1×10ppma以下であり、1×10ppma以上1×10ppma以下がより好ましく、1×10ppma以上5×10ppma以下が更に好ましい。
 実施の形態1のダイヤモンド層を構成するダイヤモンドは、多結晶の形態をとる。ダイヤモンド層中の硼素は、結晶内において炭素に置換して存在してもよいし、結晶内に結晶格子を置換せずに存在してもよく、結晶粒界に存在してもよいし、他の元素と結合して化合物として存在してもよい。すなわち、本開示における硼素含有量は、硼素の含有形態に係わらず、ダイヤモンド層の第1領域全体に含まれる含有量を意味する。
 実施の形態1のダイヤモンド層において、第1領域における酸素の含有量は、耐摩耗性向上の観点から、1×10ppma以上1×10ppma以下であり、1×10ppma以上1×10ppma以下がより好ましく、1×10ppma以上5×10ppma以下が更に好ましい。
 ダイヤモンド層中の酸素は、硼素酸化物として存在すると考えられるが、酸素の存在形態はこれに限定されない。例えば、結晶内において炭素に置換して存在してもよいし、結晶内に結晶格子を置換せずに存在してもよく、結晶粒界に存在してもよい。すなわち、本開示における酸素含有量は、酸素の含有形態に係わらず、ダイヤモンド層の第1領域全体に含まれる含有量を意味する。
 図1に示されるように、実施の形態1のダイヤモンド層2は、基材1とダイヤモンド層2との界面Pと、界面Pからの厚さ方向の距離が1μmである第2仮想面Q2と、に囲まれる第2領域A2において、硼素の含有量が1×10ppma未満であることが好ましい。これによると、基材とダイヤモンド層との密着性が優れたダイヤモンド被覆工具を得ることができる。なお、この形態は、ダイヤモンド層が1層からなるが、最表面側と基材側とでは、硼素の含有量が異なることを示す。
 実施の形態1のダイヤモンド層において、第2領域における硼素の含有量は、基材とダイヤモンド層の密着性向上の観点から、5×10ppma以下が好ましく、1×10ppma以下がさらに好ましい。第2領域における硼素の含有量の下限は特に限定されず、0ppmaとすることができる。第2領域における硼素の含有量は、0ppma以上1×10ppma以下が好ましく、0ppma以上5×10ppma以下がより好ましく、0ppma以上1×10ppma以下が更に好ましい。
 本明細書において、第1領域における硼素含有量及び酸素含有量、並びに、第2領域における硼素含有量は、電子線マイクロプローブアナライザー(EPMA)(測定機器:日本電子社製「JXA-8621」)を用いて測定される。具体的には下記の(1-1)~(1-3)の手順で測定される。
 (1-1)ダイヤモンド被覆工具をダイヤモンド層の表面に対して垂直な方向に、ワイヤー放電加工機を用いて切り出し、露出した断面を、平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。本実施形態では基材の表面が極力平滑となるように基材を作製し、かつ、その上に形成されるダイヤモンド層の厚さも均一となるように形成しているため、基材の表面(ダイヤモンド層との界面)に多少凹凸があったとしても、ダイヤモンド層の表面Sと界面Pとは実質的には平行となり、後述する硼素含有量及び酸素含有量の測定精度への影響はない。
 上記の露出断面において、ダイヤモンド層2の表面Sと、表面Sからダイヤモンド層側への厚さ方向の距離が1μmであり、表面Sと平行な第1仮想面Q1と、に囲まれる第1領域A1内で、ダイヤモンド層の表面Sに沿う長さ10μm×表面Sからダイヤモンド層の厚み方向の長さ1μmの矩形の測定視野(以下、「第1領域内測定視野」ともいう。)を無作為に3箇所設定する。
 また、上記の断面において、基材1とダイヤモンド層2との界面Pと、界面Pからダイヤモンド層側への厚さ方向の距離が1μmであり、表面Sと平行な第2仮想面Q2と、に囲まれる第2領域A2内で、基材1とダイヤモンド層2との界面Pに沿う長さ10μm×界面Pからダイヤモンド層の厚み方向の長さ1μmの矩形の測定視野(以下、「第2領域内測定視野」ともいう。)を無作為に3箇所設定する。
 なお、ダイヤモンド層2の表面Sが凹凸を有する場合は、表面Sの平均高さの平面を表面と見做して、第1領域を設定する。基材1とダイヤモンド層2との界面Pが凹凸を有する場合は、界面Pの平均高さの平面を界面と見做して、第2領域を設定する。なお、上記の断面において、「平均高さの平面から最表面側に張り出しているダイヤモンド層の面積」と「平均高さの平面から基材側に張り出しているダイヤモンド層の面積」とは同一となる。
 (1-2)上記の第1領域内測定視野及び第2領域内測定視野のそれぞれについて、電子線マイクロプローブアナライザー(EPMA)分析(測定機器:日本電子社製「JXA-8621」)を行う。EPMA分析では、電子線を加速電圧25kVにて照射、検出領域10μmΦとして、試料表面から得られる特性X線を分光し、得られるピーク強度から硼素濃度及び酸素濃度を求める。
 濃度定量は、別途用意した標準試料(イオン注入により作製した硼素濃度及び酸素濃度が既知であるダイヤモンド単結晶)との比較により行う。
 (1-3)上記のEPMA分析を、3箇所の第1領域内測定視野で行い、3箇所の測定視野における硼素濃度及び酸素濃度のそれぞれの平均値を算出する。該平均値の値を、第1領域における硼素含有量及び酸素含有量とする。
 上記のEPMA分析を、3箇所の第2領域内測定視野で行い、3箇所の測定視野における硼素濃度の平均値を算出する。該平均値の値を、第2領域における硼素含有量とする。
 ダイヤモンド層の第1領域は、硼素酸化物を含むことが好ましい。硼素酸化物としては、例えば、Bが挙げられる。Bは環状構造(例えば、六員環構造)を有し、ダイヤモンド層中で環状構造からなるシートが複数積層された層状の形態で存在すると考えられる。ダイヤモンド層の第1領域に、特に、環状構造を有する硼素酸化物が存在すると、工具の使用時に、ダイヤモンド層と被削材との摩擦界面において、硼素酸化物の環状構造物質がせん断破壊を受けることにより固体潤滑性を示す。このため、工具と被削材との摩擦係数が減少することにより切削抵抗が減少する。したがって、ダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有することができる。
 ダイヤモンド層の第1領域が硼素酸化物を含むことは、ラマン分光分析により確認することができる。具体的には、下記の(2-1)~(2-4)の手順で確認することができる。
 (2-1)ダイヤモンド被覆工具をダイヤモンド層の表面に対して垂直な方向に、ワイヤー放電加工機を用いて切り出し、露出した断面を、平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。
 上記の露出断面において、ダイヤモンド層2の表面Sと、表面Sからダイヤモンド層側への厚さ方向の距離が1μmである第1仮想面Q1と、に囲まれる第1領域A1内で、ダイヤモンド層の表面Sに沿う長さ20μm×表面Sからダイヤモンド層の厚み方向の長さ1μmの矩形の測定視野(以下、「ラマン分光用測定視野」ともいう。)を無作為に設定する。
 (2-2)上記のラマン分光用測定視野について、JIS-K0137(2010)に準拠したレーザーラマン測定法により、500~2000cm-1の範囲のラマンスペクトルを得る。ラマン分光装置は、ナノフォトン社製の「Ramantouch」(商標)を用いる。
 (2-3)上記で得られたラマンスペクトルに対して、画像処理ソフト(ナノフォトン社製の「Ramanimager」(商標))を用いて、多重散乱除去処理を行い、ピーク分離処理を行う。実施の形態1のダイヤモンド被覆工具におけるピーク分離後のラマンスペクトルの一例を図4に示す。
 (2-4)ピーク分離後に観察されるラマンシフト800cm-1付近のピークは、B-O環構造(硼素と酸素との結合を含む環構造)の存在を示す。すなわち、ラマンシフト800cm-1付近のピークは、硼素酸化物の存在を示す。従って、上記のピーク分離処理後に、ラマンシフト800cm-1付近にピークが観察されるか否かを確認することにより、ダイヤモンド層の第1領域が硼素酸化物を含むか否かを確認することができる。
 <XPSスペクトル>
 実施の形態1のダイヤモンド被覆工具は、第1領域のXPSスペクトルにおいて、硼素の全結合エネルギー由来の面積強度Iに対する硼素と酸素との結合エネルギー由来の面積強度Iboの比率であるIbo/Iが0.1以上0.8以下であることが好ましい。
 Ibo/Iが0.1以上0.8以下であると、第1領域中に硼素酸化物が存在すると考えられる。特に、環状構造を有する硼素酸化物が存在すると、工具の使用時に、ダイヤモンド層と被削材との摩擦界面において、硼素酸化物の環状構造物質がせん断破壊を受けることにより固体潤滑性を示す。このため、工具と被削材との摩擦係数が減少することにより切削抵抗が減少する。したがって、ダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有することができる。
 Ibo/Iは、ダイヤモンド層の潤滑性向上の観点から、0.2以上0.8以下がより好ましく、0.3以上0.8以下が更に好ましい。
 本明細書において、Ibo/Iは下記の(3-1)~(3-5)の手順で算出される。
 (3-1)ダイヤモンド被覆工具をダイヤモンド層の表面に対して垂直な方向に、ワイヤー放電加工機を用いて切り出し、露出した断面を、平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。
 上記の露出断面において、ダイヤモンド層2の表面Sと、表面Sからダイヤモンド層側への厚さ方向の距離が1μmである第1仮想面Q1と、に囲まれる第1領域A1内で、ダイヤモンド層の表面Sに沿う長さ20μm×表面Sからダイヤモンド層の厚み方向の長さ1μmの矩形の測定視野(以下、「XPS用測定視野」ともいう。)を無作為に設定する。
 (3-2)上記のXPS用測定視野について、X線光電子分光測定法により、結合エネルギー190eV付近に現れる硼素のB1sスペクトルを得る。X線光電子分光装置は、ULVAC PHI社製の「QuanteraSXM」(商標)を用いる。
 (3-3)上記で得られたB1sスペクトルを関数フィッティングによるピーク分離を行うことにより、B-B結合(硼素間結合)を示すスペクトル(以下、「B-B結合スペクトル」ともいう。)及びB-O結合(硼素酸素間結合)を示すスペクトル(以下、「B-O結合スペクトル」ともいう。)を得る。ピークのフィッティング関数はGauss関数とLorenz関数の畳み込み積分であるVoigt関数を用いる。本明細書において、硼素が関与する全結合エネルギーとは、B-B結合エネルギー及びB-O結合エネルギーの合計を意味する。
 実施の形態1のダイヤモンド被覆工具における上記のB1sスペクトル、B-B結合スペクトル及びB-O結合スペクトルの一例を図3に示す。
 (3-4)上記で得られたB1sスペクトル、B-B結合スペクトル及びB-O結合スペクトルのそれぞれについて、画像処理ソフト(ULVAC PHI社製の「PHI MultiPak」(商標))を用いて、ピーク面積強度を測定する。B1sスペクトルのピーク面積強度は、硼素が関与する全結合エネルギー由来の面積強度Iに該当する。B-B結合スペクトルのピーク面積強度は、硼素間結合エネルギー由来の面積強度Ibbに該当する。B-O結合スペクトルのピーク面積強度は、硼素と酸素との結合エネルギー由来の面積強度Iboに該当する。
 (3-5)上記で得られたI及びIboから、Ibo/Iを算出する。
 <ラマンスペクトル>
 実施の形態1のダイヤモンド被覆工具は、第1領域のラマンスペクトルにおいて、ダイヤモンド由来のピーク面積強度Adiaに対する前記硼素酸化物由来のピーク面積強度Aboの比率であるAbo/Adiaが0.1以上10以下であることが好ましい。
 Abo/Adiaが0.1以上10以下であると、第1領域中に環状構造を有する硼素酸化物が存在すると考えられる。第1領域中に環状構造を有する硼素酸化物が存在すると、工具の使用時に、ダイヤモンド層と被削材との摩擦界面において、硼素酸化物の環状構造物質がせん断破壊を受けることにより固体潤滑性を示す。このため、工具と被削材との摩擦係数が減少することにより切削抵抗が減少する。したがって、ダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有することができる。
 Abo/Adiaは、ダイヤモンド層の潤滑性向上と耐摩耗性維持の観点から、0.2以上8以下がより好ましく、0.3以上7以下が更に好ましい。
 本明細書において、Abo/Adiaは下記の(4-1)~(4-4)の手順で算出される。
 (4-1)ダイヤモンド被覆工具をダイヤモンド層の表面に対して垂直な方向に、ワイヤー放電加工機を用いて切り出し、露出した断面を、平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。
 上記の露出断面において、ダイヤモンド層2の表面Sと、表面Sからダイヤモンド層側への厚さ方向の距離が1μmである第1仮想面Q1と、に囲まれる第1領域A1内で、ダイヤモンド層の表面Sに沿う長さ20μm×表面Sからダイヤモンド層の厚み方向の長さ1μmの矩形の測定視野(以下、「ラマン分光用測定視野」ともいう。)を無作為に設定する。
 (4-2)上記のラマン分光用測定視野について、JIS-K0137(2010)に準拠したレーザーラマン測定法により、500~2000cm-1の範囲のラマンスペクトルを得る。ラマン分光装置は、ナノフォトン社製の「Ramantouch」(商標)を用いる。
 (4-3)上記で得られたラマンスペクトルに対して、画像処理ソフト(ナノフォトン社製の「Ramanimager」(商標))を用いて、多重散乱除去処理を行い、ピーク分離処理を行う。実施の形態1のダイヤモンド被覆工具におけるピーク分離後のラマンスペクトルの一例を図4に示す。
 (4-4)ピーク分離後に観察されるラマンシフト800cm-1付近のピークは、B-O環構造(硼素と酸素との結合を含む環構造)に由来する。すなわち、ラマンシフト800cm-1付近のピークは硼素酸化物に由来すると考えられる。以下、ラマンシフト800cm-1付近のピークを「硼素酸化物由来ピーク」ともいう。
 ピーク分離後に観察されるラマンシフト1330cm-1付近のピークはダイヤモンドに由来する。以下、ラマンシフト1330cm-1付近のピークを「ダイヤモンド由来ピーク」ともいう。
 上記で得られた硼素酸化物由来ピーク及びダイヤモンド由来ピークのそれぞれについて、画像処理ソフト(ナノフォトン社製の「Ramanimager」(商標))を用いて、ピーク面積強度を測定する。
 上記で得られた硼素酸化物由来ピークのピーク面積強度Abo及びダイヤモンド由来のピークのピーク面積強度Adiaから、Abo/Adiaを算出する。
 <平均粒子径>
 ダイヤモンド層に含まれるダイヤモンド粒子の平均粒子径は、例えば、0.05~3μmとすることができる。ダイヤモンド粒子の平均粒子径が前記の範囲であると、ダイヤモンド層は優れた耐摩耗性及び対欠損性を有することができる。ダイヤモンド粒子の平均粒子径は、0.2~1.5μmがより好ましい。
 本明細書において、「平均粒子径」とは、体積基準の粒度分布(体積分布)におけるメジアン径(d50)を意味する。
 ダイヤモンド粒子の平均粒子径を算出するための各粒子の粒子径は、次の方法によって測定することができる。まず、ダイヤモンド層の断面を鏡面研磨し、任意の領域(測定視野2μm×2μm)のダイヤモンド層の反射電子像を、電子顕微鏡を用いて5000倍の倍率で観察する。次に、この反射電子像において、ダイヤモンド粒子に外接する円の直径(すなわち外接円相当径)を測定し、該直径をダイヤモンド粒子の粒径とする。
 <厚み>
 ダイヤモンド層は、全体厚み3μm以上30μm以下であることが好ましい。膜厚がこの範囲であると、ダイヤモンド被覆工具の耐摩耗性と耐欠損性とのバランスが良好となる。ダイヤモンド層の厚みは、5μm以上25μm以下がより好ましく、7μm以上20μm以下が更に好ましい。
 ダイヤモンド層の厚みは、ダイヤモンド層の断面をSEM(走査型電子顕微鏡、日立ハイテクノロジーズ社製「S4800-at」)を用いて観察することにより測定することができる。具体的には、断面サンプルの観察倍率を5000~10000倍とし、観察面積を100~500μmとして、1視野において3箇所の厚み幅を測定し、その平均値を「厚み」とする。後述の各層の厚みについても、特に記載のない限り同様である。
 <基材>
 実施の形態1のダイヤモンド被覆工具10の基材1としては、従来公知のものを特に限定なく使用することができる。例えば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはさらにTi、Ta、Nb等の炭窒化物等を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、工具鋼、セラミックス(炭化チタン、炭化硅素、窒化硅素、窒化アルミニウム、酸化アルミニウム、およびこれらの混合体など)、立方晶型窒化硼素焼結体等をこのような基材の例として挙げることができる。
 これらの基材の中でも、特にWC基超硬合金、サーメット(特にTiCN基サーメット)を選択することが好ましい。これは、これらの基材が特に高温における硬度と強度とのバランスに優れ、ダイヤモンド被覆切削工具の基材として優れた特性を有するためである。
 [実施の形態2:ダイヤモンド被覆工具(2)]
 実施の形態2のダイヤモンド被覆工具について、図2を用いて説明する。図2は、実施の形態2に係るダイヤモンド被覆工具の代表的な構成例を説明する模式的断面図である。図2に示されるように、ダイヤモンド被覆工具210は、基材1と、基材1上に設けられたダイヤモンド層220と、を備え、ダイヤモンド層220は、ダイヤモンド層の表面Sと、表面Sからの厚さ方向の距離が1μmである第1仮想面Q1と、に囲まれる第1領域A1において、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、ダイヤモンド層220は、第1単位層21と第2単位層22とが交互に積層された交互層からなり、交互層において、最表面側に第1単位層21が配置され、基材1と接する側に第2単位層22が配置され、第1単位層21は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、第2単位層は、硼素の含有量が1×10ppma未満であり、第1単位層21の厚みは1μm以上であり、第2単位層の厚みは1μm以上である。
 実施の形態2のダイヤモンド被覆工具は、実施の形態1のダイヤモンド被覆工具と、ダイヤモンド層の構成以外は同様の構成とすることができる。従って、本実施形態では、ダイヤモンド層について説明する。
 <ダイヤモンド層>
 実施の形態2のダイヤモンド層220は、第1単位層21と第2単位層22とが交互に積層された交互層からなる。交互層において、最表面側に第1単位層21が配置され、基材1と接する側に第2単位層22が配置される。第1単位層21は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下である。第2単位層は、硼素の含有量が1×10ppma以下である。
 実施の形態2のダイヤモンド層では、被削材と接する表面側が第1単位層からなる。該第1単位層は硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、優れた耐酸化性及び潤滑性を有することができる。したがって、ダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有することができる。
 実施の形態2のダイヤモンド層では、基材と接する側が第2単位層からなる。該第2単位層は硼素の含有量が1×10ppma以下であり、基材との密着性が優れている。従って、ダイヤモンド被覆工具は、基材とダイヤモンド層との密着性が優れ、長い工具寿命を有することができる。
 第1単位層の厚みの下限は、1μm以上である。これによると、ダイヤモンド層の表面で発生したクラックの進展を抑制することができる。第1単位層の厚みの下限は、1.5μm以上、2μm以上とすることができる。第1単位層の厚みの上限は、29μm以下、28.5μm以下、28μm以下とすることができる。第1単位層の厚みは、1μm以上29μm以下、1.5μm以上28.5μm以下、2μm以上28μm以下とすることができる。
 第2単位層の厚みの下限は、1μm以上である。これによると、基材との界面強度を保ち、剥離を抑制することができる。第2単位層の厚みの上限は、29μm以下、28.5μm以下、28μm以下とすることができる。第2単位層の厚みは、1μm以上29μm以下、1.5μm以上28.5μm以下、2μm以上28μm以下とすることができる。
 第1単位層及び第2単位層のそれぞれの積層数は、1以上15以下が好ましい。これによると、耐欠損性と耐摩耗性をバランス良く向上させることができる。
 ダイヤモンド層全体の厚みは、2μm以上30μm以下、3μm以上25μm以下、4μm以上20μm以下とすることができる。
 交互層において、第1単位層と第2単位層とが交互に積層して多層構造を形成していることは、ダイヤモンド層の断面をTEM(透過型電子顕微鏡、日本電子社製「JEM-2100F/Cs」(商標))で観察し、コントラストの差を多層構造を示すものとして確認することができる。
 第1単位層及び第2単位層の積層数は、ダイヤモンド層の断面をTEM(透過型電子顕微鏡)を用いて観察することにより測定することができる。具体的には、薄片化した試料に電子線を照射し、試料を透過した電子や散乱した電子を結像し、高倍率で観察することにより測定することができる。
 [実施の形態3:ダイヤモンド被覆工具(3)]
 実施の形態3のダイヤモンド被覆工具について、図5を用いて説明する。図5は、実施の形態3に係るダイヤモンド被覆工具の代表的な構成例を説明する模式的断面図である。図5に示されるように、ダイヤモンド被覆工具310は、基材1と、基材1上に設けられたダイヤモンド層320と、を備え、ダイヤモンド層320は、第1単位層31と第2単位層32とが交互に積層された交互層からなり、交互層において、最表面側に第1単位層31が配置され、基材1と接する側に第2単位層32が配置され、第1単位層31は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、第2単位層32は、硼素の含有量が1×10ppma未満である。
 実施の形態3のダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有する。この理由は明らかではないが、下記(I)~(III)の通りと推察される。
 (I)実施の形態3のダイヤモンド被覆工具では、ダイヤモンド層の最表面側に配置される第1単位層は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下である。第1単位層の硼素の含有量が1×10ppma以上1×10ppma以下であると、第1単位層は優れた耐酸化性及び潤滑性を有することができる。したがって、ダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有することができる。
 (II)更に、第1単位層が1×10ppma以上1×10ppma以下の濃度の硼素とともに、1×10ppma以上1×10ppma以下の濃度の酸素を含む場合、第1単位層中に硼素酸化物が存在すると考えられる。ダイヤモンド層の第1単位層中に硼素酸化物が存在すると、工具の使用時に、ダイヤモンド層と被削材との摩擦界面において、硼素酸化物からなる環状構造物質がせん断破壊を受けることにより固体潤滑性を示す。このため、工具と被削材との摩擦係数が減少することにより切削抵抗が減少する。したがって、ダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有することができる。
 (III)実施の形態3のダイヤモンド被覆工具では、ダイヤモンド層の基材に接する側に配置される第2単位層は、硼素の含有量が1×10ppma未満である。これによると、基材とダイヤモンド層との密着性が良好である。よって、ダイヤモンド被覆工具は、使用時に被膜の剥離が生じ難く、長い工具寿命を有することができる。
 実施の形態3のダイヤモンド被覆工具は、実施の形態1のダイヤモンド被覆工具と、ダイヤモンド層の構成以外は同様の構成とすることができる。従って、本実施形態では、ダイヤモンド層について説明する。
 <ダイヤモンド層>
 実施の形態3のダイヤモンド層320は、第1単位層31と第2単位層32とが交互に積層された交互層からなる。交互層において、最表面側に第1単位層31が配置され、基材1と接する側に第2単位層32が配置される。第1単位層31は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下である。第2単位層32は、硼素の含有量が1×10ppma以下である。
 実施の形態3のダイヤモンド層では、被削材と接する表面側が第1単位層からなる。該第1単位層は硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、優れた耐酸化性及び潤滑性を有することができる。したがって、ダイヤモンド被覆工具は、耐摩耗性に優れ、長い工具寿命を有することができる。
 実施の形態3のダイヤモンド層では、基材と接する側が第2単位層からなる。該第2単位層は硼素の含有量が1×10ppma以下であり、基材との密着性が優れている。従って、ダイヤモンド被覆工具は、基材とダイヤモンド層との密着性が優れ、長い工具寿命を有することができる。
 第1単位層における硼素含有量及び酸素含有量、並びに、第2単位層における硼素含有量は、電子線マイクロプローブアナライザー(EPMA)(測定機器:日本電子社製「JXA-8621」)を用いて測定される。具体的には下記の(5-1)~(5-3)の手順で測定される。
 (5-1)実施の形態1に記載の上記(1-1)と同様の方法で、ダイヤモンド被覆工具をダイヤモンド層の表面に対して垂直な方向に、ワイヤー放電加工機を用いて切り出し、露出した断面を、平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。
 上記の露出断面をTEM(透過型電子顕微鏡、日本電子社製「JEM-2100F/Cs」(商標))で観察し、最表面側の第1単位層と、基材1と接する側の第2単位層とを特定する。該第1単位層において、ダイヤモンド層の表面Sに沿う長さ10μm×第1単位層の厚み方向に沿う、該厚みと同一の長さの矩形の測定視野(以下、「第1単位層内測定視野」ともいう。)を無作為に3箇所設定する。
 該第2単位層において、ダイヤモンド層の表面Sに沿う長さ10μm×第2単位層の厚み方向に沿う、該厚みと同一の長さの矩形の測定視野(以下、「第2単位層内測定視野」ともいう。)を無作為に3箇所設定する。
 (5-2)上記の第1単位層内測定視野及び第2単位層内測定視野のそれぞれについて、電子線マイクロプローブアナライザー(EPMA)分析(測定機器:日本電子社製「JXA-8621」)を行う。EPMA分析では、電子線を加速電圧25kVにて照射、検出領域10μmΦとして、試料表面から得られる特性X線を分光し、得られるピーク強度から硼素濃度及び酸素濃度を求める。
 濃度定量は、別途用意した標準試料(イオン注入により作製した硼素濃度及び酸素濃度が既知であるダイヤモンド単結晶)との比較により行う。
 (5-3)上記のEPMA分析を、3箇所の第1単位層内測定視野で行い、3箇所の測定視野における硼素濃度及び酸素濃度のそれぞれの平均値を算出する。該平均値の値を、第1単位層における硼素含有量及び酸素含有量とする。
 上記のEPMA分析を、3箇所の第2単位層内測定視野で行い、3箇所の測定視野における硼素濃度の平均値を算出する。該平均値の値を、第2単位層における硼素含有量とする。
 第1単位層の厚みは、0.2μm以上が好ましい。これによると、ダイヤモンド層の表面で発生したクラックの進展を抑制することができる。第1単位層の厚みの下限は、0.3μm以上とすることができる。第1単位層の厚みの上限は、1μm以下、0.8μm以下とすることができる。第1単位層の厚みは、0.2μm以上1μm以下、0.3μm以上0.8μm以下とすることができる。
 第2単位層の厚みは、0.2μm以上が好ましい。これによると、基材との界面強度を保ち、剥離を抑制することができる。第2単位層の厚みの下限は、0.3μm以上とすることができる。第2単位層の厚みの上限は、1μm以下、0.8μm以下とすることができる。第2単位層の厚みは、0.2μm以上1μm以下、0.3μm以上0.8μm以下とすることができる。
 第1単位層及び第2単位層のそれぞれの積層数は、5以上75以下が好ましい。これによると、耐欠損性と耐摩耗性をバランス良く向上させることができる。
 ダイヤモンド層全体の厚みは、3μm以上25μm以下が好ましく、4μm以上20μm以下が更に好ましい。
 交互層において、第1単位層と第2単位層とが交互に積層して多層構造を形成していることは、ダイヤモンド層の断面をTEM(透過型電子顕微鏡、日本電子社製「JEM-2100F/Cs」(商標))で観察し、コントラストの差を多層構造を示すものとして確認することができる。
 第1単位層及び第2単位層の積層数は、ダイヤモンド層の断面をTEM(透過型電子顕微鏡)を用いて観察することにより測定することができる。具体的には、薄片化した試料に電子線を照射し、試料を透過した電子や散乱した電子を結像し、高倍率で観察することにより測定することができる。
 [実施の形態4:ダイヤモンド被覆工具の製造方法(1)]
 実施の形態1のダイヤモンド被覆工具の製造方法は、基材の表面にダイヤモンド粉末を塗布して、種付け処理を行った後、ダイヤモンド層を化学気相成長法により形成する工程を含むことができる。化学気相成長法としては、熱フィラメントCVD法、マイクロ波プラズマCVD法、プラズマジェットCVD法等の従来公知のCVD法を用いることができる。
 ダイヤモンドを気相成長させる際に、気相中に硼素源及び酸素源を所定の濃度で導入することにより、ダイヤモンド層が所定の濃度の硼素及び酸素を含むことができる。具体的には、気相中の硼素源及び酸素源の濃度を調整することにより、ダイヤモンド層の第1領域における硼素の含有量を1×10ppma以上1×10ppma以下、かつ、酸素の含有量を1×10ppma以上1×10ppma以下とする。
 硼素源としては、B(ジボラン、気体)、B(CH(トリメチルボロン:TMB、液体)等を用いることができる。酸素源としては、O(酸素、気体)、B(OCH(ホウ酸トリメチル、液体)等を用いることができる。
 硼素源及び酸素源が気体の場合は、該気体を直接気相中に導入することができる。硼素源及び酸素源が液体の場合は、該液体を任意のキャリアガスでバブリングすることにより混合ガスとして導入することができる。
 [実施の形態5:ダイヤモンド被覆工具の製造方法(2)]
 実施の形態2及び実施の形態3のダイヤモンド被覆工具の製造方法は、基本的に、実施の形態4のダイヤモンド被覆工具の製造方法と同様である。異なる点は、ダイヤモンドを気相成長させる際に、気相中の硼素源及び酸素源の濃度を一定時間毎に変化させることにより、ダイヤモンド層中の硼素及び酸素の濃度が異なる第1単位層及び第2単位層を交互に形成することである。
 具体的には、気相中の硼素源及び酸素源の濃度を調整することにより、第1単位層の硼素の含有量を1×10ppma以上1×10ppma以下、かつ、酸素の含有量を1×10ppma以上1×10ppma以下、かつ、第2単位層の硼素の含有量を1×10ppma以下とする。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 [試料1]
 基材として、材質が超硬合金であって、形状が旋削用の刃先交換型チップを準備した。
 続いて、基材の表面にダイヤモンド粉末を塗布して、種付け処理を行なった。種付け処理は平均粒径0.1μmのダイヤモンド粉末を基材表面に擦りつけた後、基材をエタノール中で洗浄し乾燥させることにより行なった。次に、上記種付け処理が行なわれた基材を公知の熱フィラメントCVD装置にセットした。
 試料1のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。硼素源と酸素源は流量をゼロとした。ダイヤモンド層の合計厚みは10μmとした。これにより、試料1のダイヤモンド被覆工具を得た。
 [試料2]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の流量をゼロとし、第1単位層の形成時は酸素源の濃度を硼素源に対し60%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し0.5%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料2のダイヤモンド被覆工具を得た。
 [試料3]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.01%となるよう流量を制御した。第1単位層の形成時は酸素源の濃度を硼素源に対し35%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し0.2%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料3のダイヤモンド被覆工具を得た。
 [試料4]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.02%となるよう流量を制御した。第1単位層の形成時は酸素源の流量をゼロにし、硼素源の濃度を全体の原料ガスに対し0,2%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料4のダイヤモンド被覆工具を得た。
 [試料5]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.05%となるよう流量を制御した。第1単位層の形成時は酸素源の濃度を硼素源に対し20%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し0.5%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料5のダイヤモンド被覆工具を得た。
 [試料6]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 試料6のダイヤモンド層は下記の条件で成膜した。工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.1%となるよう流量を制御した。第1単位層の形成時は酸素源の濃度を硼素源に対し70%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し0.3%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料6のダイヤモンド被覆工具を得た。
 [試料7]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.3%となるよう流量を制御した。第1単位層の形成時は硼素源と酸素源は流量をゼロとした。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料7のダイヤモンド被覆工具を得た。
 [試料8]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.5%となるよう流量を制御した。第1単位層の形成時は酸素源の濃度を硼素源に対し40%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し0.5%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料8のダイヤモンド被覆工具を得た。
 [試料9]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.2%となるよう流量を制御した。第1単位層の形成時は酸素源の濃度を硼素源に対し50%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し5%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料9のダイヤモンド被覆工具を得た。
 [試料10]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.1%となるよう流量を制御した。第1単位層の形成時は酸素源の濃度を硼素源に対し30%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し10%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料10のダイヤモンド被覆工具を得た。
 [試料11]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.2%となるよう流量を制御した。第1単位層の形成時は酸素源の濃度を硼素源に対し60%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し0.1%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料11のダイヤモンド被覆工具を得た。
[試料12]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し3%となるよう流量を制御した。第1単位層の形成時は酸素源の濃度を硼素源に対し12%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し7%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料12のダイヤモンド被覆工具を得た。
 [試料13]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.1%となるよう流量を制御した。第1単位層の形成時は酸素源の濃度を硼素源に対し10%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し50%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料13のダイヤモンド被覆工具を得た。
 [試料14]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとした。まず第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対しゼロとした。続いて、第1単位層の形成時は酸素源の濃度を硼素源に対し20%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し0.5%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料14のダイヤモンド被覆工具を得た。
 [試料15]
 基材として、試料1と同一の基材を準備した。基材上に下記の条件でダイヤモンド層を成膜した。
 工具表面温度が平均800℃になるよう、フィラメント電流を制御した。メタンと水素をメタン濃度1%となるように流量を制御し、成膜時の圧力は500mPaとしたまず、第2単位層の形成時は硼素源と酸素源の濃度を全体の原料ガスに対し0.1%となるよう流量を制御した。続いて、第1単位層の形成時は酸素源の濃度を硼素源に対し15%になるよう制御しながら、硼素、酸素源の濃度を全体の原料ガスに対し40%となるよう流量を制御した。第1単位層及び第2単位層のそれぞれの厚み及び層数は、表1に示す通りである。ダイヤモンド層の合計厚みは10μmとした。該ダイヤモンド層は交互層からなり、基材と接する側は第2単位層であり、最表面側が第1単位層である。これにより、試料12のダイヤモンド被覆工具を得た。
 <評価>
 (硼素含有量、酸素含有量、Ibo/I、Abo/Adia
 試料1~試料15のダイヤモンド被覆工具について、第1領域における硼素含有量、酸素含有量、第2領域における硼素含有量、Ibo/I、Abo/Adiaを測定した。具体的な測定方法は実施の形態1に記載されているため、その説明は繰り返さない。結果を表1に示す。
 (切削試験)
 試料1~試料15のダイヤモンド被覆工具を用いて、下記の条件で切削試験を行った。被削材:アルミニウム合金(A390)
 切削速度:800m/min.
 送り速度:250m/min.
 切込み:0.1mm
 クーラント:水溶性切削油
 切削方法:旋削
 工具寿命は、逃げ面摩耗幅が0.03mmに達した時点、もしくは膜剥離が生じた時点とした。また、15m加工時の逃げ面摩耗量(表1において「摩耗量」と示す。)も測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 試料2、試料3、試料5、試料6、試料8~試料15の表面被覆切削工具は実施例に該当する。これらの試料は、摩耗量が小さく、耐摩耗性に優れ、工具寿命が長いことが確認された。
 試料1、試料4、試料7の表面被覆切削工具は、第1領域が硼素及び/又は酸素を含まず、比較例に該当する。これらの試料は、実施例に比べて摩耗量が大きく、工具寿命が短かった。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 基材、2,220,320 ダイヤモンド層、10,210,310 ダイヤモンド被覆工具、21,31 第1単位層、22,32 第2単位層、A1 第1領域、A2 第2領域、S 最表面、P 界面

Claims (9)

  1.  基材と、前記基材上に設けられたダイヤモンド層と、を備えるダイヤモンド被覆工具であって、
     前記ダイヤモンド層は、前記ダイヤモンド層の表面と、前記表面からの厚さ方向の距離が1μmである第1仮想面と、に囲まれる第1領域において、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下である、ダイヤモンド被覆工具。
  2.  前記ダイヤモンド層は、前記基材と前記ダイヤモンド層との界面と、前記界面からの厚さ方向の距離が1μmである第2仮想面と、に囲まれる第2領域において、硼素の含有量が1×10ppma以下である、請求項1に記載のダイヤモンド被覆工具。
  3.  前記ダイヤモンド層は、前記基材と前記ダイヤモンド層との界面と、前記界面からの厚さ方向の距離が1μmである第2仮想面と、に囲まれる第2領域において、硼素の含有量が5×10ppma以下である、請求項1に記載のダイヤモンド被覆工具。
  4.  前記ダイヤモンド層は、第1単位層と第2単位層とが交互に積層された交互層からなり、
     前記交互層において、最表面側に前記第1単位層が配置され、前記基材と接する側に前記第2単位層が配置され、
     前記第1単位層は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、
     前記第2単位層は、硼素の含有量が1×10ppma以下であり、
     前記第1単位層の厚みは、1μm以上であり、
     前記第2単位層の厚みは、1μm以上である、請求項1から請求項3のいずれか1項に記載のダイヤモンド被覆工具。
  5.  前記第1領域は、硼素酸化物を含む、請求項1から請求項4のいずれか1項に記載のダイヤモンド被覆工具。
  6.  前記第1領域のXPSスペクトルにおいて、硼素の全結合エネルギー由来の面積強度Iに対する硼素と酸素との結合エネルギー由来の面積強度Iboの比率であるIbo/Iが0.1以上0.8以下である、請求項1から請求項5のいずれか1項に記載のダイヤモンド被覆工具。
  7.  前記第1領域のラマンスペクトルにおいて、ダイヤモンド由来のピーク面積強度Adiaに対する前記硼素酸化物由来のピーク面積強度Aboの比率であるAbo/Adiaが0.1以上10以下である、請求項5又は請求項6に記載のダイヤモンド被覆工具。
  8.  基材と、前記基材上に設けられたダイヤモンド層と、を備えるダイヤモンド被覆工具であって、
     前記ダイヤモンド層は、第1単位層と第2単位層とが交互に積層された交互層からなり、
     前記交互層において、最表面側は前記第1単位層であり、前記基材と接する側は前記第2単位層であり、
     前記第1単位層は、硼素の含有量が1×10ppma以上1×10ppma以下、かつ、酸素の含有量が1×10ppma以上1×10ppma以下であり、
     前記第2単位層は、硼素の含有量が1×10ppma以下である、ダイヤモンド被覆工具。
  9.  前記第1単位層の厚みは0.2μm以上であり、
     前記第2単位層の厚みは、0.2μm以上である、請求項8に記載のダイヤモンド被覆工具。
PCT/JP2020/038232 2019-10-18 2020-10-09 ダイヤモンド被覆工具 WO2021075358A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20876016.5A EP4046730A4 (en) 2019-10-18 2020-10-09 DIAMOND COATED TOOL
US17/768,511 US20240091863A1 (en) 2019-10-18 2020-10-09 Diamond coated tool
CN202080072447.3A CN114555857B (zh) 2019-10-18 2020-10-09 金刚石包覆工具
JP2021531839A JP7098856B2 (ja) 2019-10-18 2020-10-09 ダイヤモンド被覆工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019191080 2019-10-18
JP2019-191080 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075358A1 true WO2021075358A1 (ja) 2021-04-22

Family

ID=75538441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038232 WO2021075358A1 (ja) 2019-10-18 2020-10-09 ダイヤモンド被覆工具

Country Status (5)

Country Link
US (1) US20240091863A1 (ja)
EP (1) EP4046730A4 (ja)
JP (1) JP7098856B2 (ja)
CN (1) CN114555857B (ja)
WO (1) WO2021075358A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360902A (ja) * 1989-07-28 1991-03-15 Mitsubishi Materials Corp 耐摩耗性のすぐれた表面被覆切削工具部材
JPH10146703A (ja) * 1996-07-31 1998-06-02 De Beers Ind Diamond Div Ltd Cvdダイヤモンド層
JP2006152423A (ja) 2004-12-01 2006-06-15 Osg Corp ボロンドープダイヤモンド被膜およびダイヤモンド被覆加工工具
WO2011018917A1 (ja) * 2009-08-11 2011-02-17 住友電気工業株式会社 ダイヤモンド被覆工具
WO2013105348A1 (ja) 2012-01-10 2013-07-18 住友電工ハードメタル株式会社 ダイヤモンド被覆工具
WO2018131166A1 (ja) 2017-01-16 2018-07-19 オーエスジー株式会社 工具
CN109570539A (zh) * 2019-02-14 2019-04-05 廊坊西波尔钻石技术有限公司 一种用于加工铝合金的刀具
JP2019191080A (ja) 2018-04-27 2019-10-31 春日電機株式会社 間隔検出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314540B2 (en) 2003-05-26 2008-01-01 Sumitomo Electric Industries, Ltd. Diamond-coated electrode and method for producing same
JP2005212076A (ja) * 2004-01-30 2005-08-11 Allied Material Corp ダイヤモンド膜被覆半導体製造用工具
JP2006150572A (ja) * 2004-12-01 2006-06-15 Osg Corp ボロンドープダイヤモンド被膜およびダイヤモンド被覆加工工具
JP7023477B2 (ja) * 2016-07-19 2022-02-22 国立研究開発法人産業技術総合研究所 ホウ素ドープダイヤモンド
EP3549912B1 (en) 2016-11-30 2022-06-15 Sumitomo Electric Industries, Ltd. Polycrystalline diamond method for producing same, cutting tool, and processing method in which polycrystalline diamond is used
JP6863076B2 (ja) * 2017-05-24 2021-04-21 住友電気工業株式会社 多結晶ダイヤモンドおよびその製造方法、スクライブツール、スクライブホイール、ドレッサー、回転工具、伸線ダイス、切削工具、電極ならびに多結晶ダイヤモンドを用いた加工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360902A (ja) * 1989-07-28 1991-03-15 Mitsubishi Materials Corp 耐摩耗性のすぐれた表面被覆切削工具部材
JPH10146703A (ja) * 1996-07-31 1998-06-02 De Beers Ind Diamond Div Ltd Cvdダイヤモンド層
JP2006152423A (ja) 2004-12-01 2006-06-15 Osg Corp ボロンドープダイヤモンド被膜およびダイヤモンド被覆加工工具
WO2011018917A1 (ja) * 2009-08-11 2011-02-17 住友電気工業株式会社 ダイヤモンド被覆工具
WO2013105348A1 (ja) 2012-01-10 2013-07-18 住友電工ハードメタル株式会社 ダイヤモンド被覆工具
WO2018131166A1 (ja) 2017-01-16 2018-07-19 オーエスジー株式会社 工具
JP2019191080A (ja) 2018-04-27 2019-10-31 春日電機株式会社 間隔検出装置
CN109570539A (zh) * 2019-02-14 2019-04-05 廊坊西波尔钻石技术有限公司 一种用于加工铝合金的刀具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4046730A4

Also Published As

Publication number Publication date
CN114555857B (zh) 2024-01-09
EP4046730A1 (en) 2022-08-24
JPWO2021075358A1 (ja) 2021-11-25
US20240091863A1 (en) 2024-03-21
CN114555857A (zh) 2022-05-27
JP7098856B2 (ja) 2022-07-12
EP4046730A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
CN105308210B (zh) 涂层切削工具
US9725811B2 (en) Coated cutting tool
CN106470786B (zh) 表面包覆切削工具
WO2016175088A1 (ja) 被覆部材
WO2013081047A1 (ja) 被覆工具
JP5935479B2 (ja) 高速ミーリング切削加工、高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
US11065692B2 (en) Diamond-coated tool
JP2012030309A (ja) 切削工具およびその製造方法
WO2021075358A1 (ja) ダイヤモンド被覆工具
JP6709536B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JPWO2019171653A1 (ja) 表面被覆切削工具及びその製造方法
JPWO2019171648A1 (ja) 表面被覆切削工具及びその製造方法
WO2021090637A1 (ja) ダイヤモンド被覆工具及びダイヤモンド被覆工具の製造方法
JP7251716B2 (ja) ダイヤモンド被覆工具及びその製造方法
US20220297201A1 (en) Diamond cutting tool
JP2019136823A (ja) 硬質被覆層がすぐれた耐溶着性と耐異常損傷性を発揮する表面被覆切削工具
JP7055961B2 (ja) 表面被覆切削工具及びその製造方法
JP5983878B2 (ja) 被覆切削工具
WO2022009374A1 (ja) ダイヤモンド被覆工具
JP2017024136A (ja) 被覆切削工具
JP5898051B2 (ja) 被覆工具
JP2022171410A (ja) 切削工具
JPWO2020250626A1 (ja) 切削工具
JP2002194546A (ja) 硬質炭素被覆部材及び切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531839

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17768511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020876016

Country of ref document: EP

Effective date: 20220518