WO2021088658A1 - 物理气相沉积腔室和物理气相沉积设备 - Google Patents

物理气相沉积腔室和物理气相沉积设备 Download PDF

Info

Publication number
WO2021088658A1
WO2021088658A1 PCT/CN2020/123065 CN2020123065W WO2021088658A1 WO 2021088658 A1 WO2021088658 A1 WO 2021088658A1 CN 2020123065 W CN2020123065 W CN 2020123065W WO 2021088658 A1 WO2021088658 A1 WO 2021088658A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottom plate
vapor deposition
physical vapor
spherical surface
groove
Prior art date
Application number
PCT/CN2020/123065
Other languages
English (en)
French (fr)
Inventor
郭宏瑞
李冰
黄其伟
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to KR1020227012033A priority Critical patent/KR20220061214A/ko
Priority to US17/773,678 priority patent/US11732346B2/en
Priority to JP2022525914A priority patent/JP7316455B2/ja
Priority to KR1020237015528A priority patent/KR102635967B1/ko
Publication of WO2021088658A1 publication Critical patent/WO2021088658A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition

Definitions

  • the invention relates to the technical field of semiconductor manufacturing, in particular to a physical vapor deposition chamber.
  • the present invention also relates to a physical vapor deposition apparatus including such a physical vapor deposition chamber.
  • the magnetron In the chamber of the magnetron sputtering equipment, there is a magnetron and a target.
  • the magnetron is arranged close to the target material to apply a magnetic field force to the atoms that escape the target material, so as to drive the atoms to reach the predetermined deposition position.
  • there is a target magnetic gap between the magnetron and the target there is a target magnetic gap between the magnetron and the target.
  • the size of the target magnetic gap is different, the size of the magnetic field force is also different, so it is necessary to set a suitable target magnetic gap size according to requirements or actual conditions. This allows atoms to form a good film at a predetermined deposition position.
  • the chamber structure of the existing magnetron sputtering equipment has the problem that the size of the target magnetic gap cannot be adjusted or the adjustment is difficult.
  • the embodiment of the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a physical vapor deposition chamber and physical vapor deposition equipment, which can conveniently adjust the bottom plate assembly and the target material according to requirements or actual conditions.
  • the first aspect of the embodiments of the present invention proposes a physical vapor deposition chamber, including a chamber body, in which an upper electrode assembly is provided, and the upper electrode assembly includes A bottom plate assembly that carries the magnetron, a back plate that is spaced apart from the bottom plate assembly, and a connecting assembly that connects the bottom plate assembly and the back plate,
  • the connecting component is connected to the bottom plate component, and the connecting component is threadedly connected to the back plate, so that the bottom plate component and the back plate can be adjusted by relatively moving the connecting component and the back plate.
  • the connecting assembly includes a connecting bolt
  • the connecting bolt includes a bolt head and a bolt rod, wherein the bolt head is connected to the bottom plate assembly, and the bolt rod is threadedly connected to the back plate.
  • the bolt head is rotatably connected with the bottom plate assembly.
  • the plug head is configured as a convex spherical surface
  • the bottom plate assembly includes a bottom plate body, a first groove having a first concave spherical surface is provided in the bottom plate body, the plug head is disposed in the first groove, and the convex spherical surface is connected to the first groove.
  • a concave spherical surface fits.
  • the open end of the first groove is located on the first surface of the bottom plate body opposite to the back plate, and the bolt is located on the outside of the bottom plate body and is connected to the back plate. Plate threaded connection; or,
  • the open end of the first groove is located inside the bottom plate body, and a through hole is provided in the bottom plate body.
  • One end of the through hole is in communication with the open end of the first groove, and the other end is located at On the first surface, and the diameter of the through hole is smaller than the diameter of the convex spherical surface, the bolt extends from the through hole and is screwed with the back plate.
  • the bottom plate assembly further includes a fixing module that is detachably connected to the bottom plate main body, and a second groove having a second concave spherical surface is provided in the fixing module, and The second concave spherical surface and the first concave spherical surface are connected to form a continuous concave spherical surface, the plug head is fixed between the first groove and the second groove, and the convex spherical surface is connected to the first concave spherical surface.
  • the concave spherical surface matches the second concave spherical surface.
  • a recess is formed on the bottom plate body, the fixing module is embedded in the recess, and the surface of the fixing module exposed to the bottom plate body is away from the bottom plate body.
  • the second surface of the first surface is flush.
  • an operation hole is provided on the fixing module, one end of the operation hole is in communication with the second groove, and the other end is located on the surface of the fixing module that is exposed to the bottom plate main body; and An operating groove is provided on the bolt head corresponding to the operating hole.
  • the number of the connection components is multiple, and the multiple connection components are arranged at intervals, and each of the connection components is staggered from the magnetron.
  • the second aspect of the embodiments of the present invention proposes a physical vapor deposition apparatus including the physical vapor deposition chamber described above.
  • connection component is connected to the bottom plate component and is screwed to the back plate, and the distance between the bottom plate component and the back plate can be adjusted by relatively moving the connection component and the back plate.
  • the physical vapor deposition equipment provided by the embodiment of the present invention not only realizes the adjustment of the relative position of the bottom plate assembly and the target material by using the above physical vapor deposition chamber provided by the embodiment of the present invention, so that the target can be adjusted according to requirements or actual conditions.
  • the size of the magnetic gap, and the adjustment method is more convenient, thereby improving work efficiency.
  • Fig. 1 schematically shows a physical vapor deposition chamber according to an embodiment of the present invention.
  • Fig. 2 schematically shows a simplified diagram of an upper electrode assembly according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the direction A in FIG. 2.
  • Figure 4 schematically shows the structure of the connection assembly.
  • FIG. 5 is a schematic diagram of the direction B in FIG. 4.
  • Fig. 6 schematically shows a physical vapor deposition apparatus according to an embodiment of the present invention.
  • Figures 7a, 7b and 7c schematically show the schematic diagrams of adjusting the components of the magnetron device during the use of the physical vapor deposition equipment.
  • FIG. 1 schematically shows a physical vapor deposition chamber 1 (hereinafter, simply referred to as chamber 1) according to an embodiment of the present invention.
  • the chamber 1 includes a chamber body 100, a target supporting plate 300 arranged above the chamber body 100 and an upper electrode assembly 200 arranged above the target supporting plate 300.
  • the upper electrode assembly 200 includes a bottom plate assembly 201 and a back plate 202 spaced apart from and connected to the bottom plate assembly 201.
  • the bottom plate assembly 201 is used to carry the magnetron 203.
  • the target supporting plate 300 is arranged on a side of the bottom plate assembly 201 away from the back plate 202.
  • the target 302 is installed on the side of the target supporting plate 300 away from the bottom plate assembly 201.
  • the chamber 1 also includes a motor 11 for driving the magnetron 203 to rotate, and other components such as a lining 12, a cover plate 13, and a deposition ring 14 to avoid atomic pollution of the internal environment of the chamber 1.
  • a motor 11 for driving the magnetron 203 to rotate and other components such as a lining 12, a cover plate 13, and a deposition ring 14 to avoid atomic pollution of the internal environment of the chamber 1.
  • the upper electrode assembly 200 includes a bottom plate assembly 201 carrying a magnetron 203, and a back plate 202 spaced apart from the bottom plate assembly 201, And a connecting assembly 205 connecting the bottom plate assembly 201 and the back plate 202.
  • the connecting component 205 is connected with the bottom plate component 201, and the connecting component 205 is threadedly connected with the back plate 202, so that the size of the gap 204 between the bottom plate component 201 and the back plate 202 can be adjusted by moving the connecting component 205 and the back plate 202 relative to each other. .
  • the above-mentioned connecting assembly 205 includes a connecting bolt 206 which includes a bolt head 207 and a bolt rod 208, wherein the bolt head 207 is connected to the bottom plate assembly 201; the bolt rod 208 is threadedly connected to the back plate 202.
  • the connection length between the bolt 208 of the connecting bolt 206 and the back plate 202 (that is, the length of the screw connection) is adjusted Therefore, the position adjustment of the bottom plate assembly 201 relative to the back plate 202 can be realized, and the size of the target magnetic gap 303 can be adjusted conveniently.
  • a threaded hole 209 is provided on the back plate 202, and the bolt 208 of the connecting bolt 206 is provided with an external thread that matches the threaded hole 209, thereby connecting the bolt 208 of the connecting bolt 206 Threaded connection with threaded hole 209.
  • the number of connection components 205 is multiple, and the plurality of connection components 205 are arranged at intervals, and each connection component 205 and the magnetron 203 are staggered from each other.
  • the connecting component 205 such as the connecting bolt 206
  • the target magnetic gap 303 can be kept constant when the connecting component 205 (such as the connecting bolt 206) is not adjusted. This helps the magnetron 203 to provide a stable magnetic field, which in turn contributes to good film formation.
  • connection assembly 205 By staggering each connection assembly 205 and the magnetron 203, it is possible to avoid affecting the installation of the magnetron 203 and the supply of the magnetic field.
  • the number of connecting bolts 206 is six, so that the bottom plate assembly 201 and the back plate 202 are connected together by six connecting bolts 206 spaced apart. It should be understood that when adjusting the target magnetic gap 303, each of these connecting components 205 needs to be adjusted.
  • the bolt head 207 of the connecting bolt 206 is rotatably connected with the bottom plate assembly 201.
  • the inclination angle of the bottom plate assembly 201 relative to the plane of the back plate 202 can be allowed to be adjusted within a certain range, so that the interval 204 between the bottom plate assembly 201 and the back plate 202 can be adjusted to an equal distance.
  • the number of connecting components 205 for example, connecting bolts 206
  • the distance 204 between the bottom plate component 201 and the back plate 202 is not equidistant, by adjusting one of the connecting bolts 206 (for example, FIG.
  • the connecting bolt at position M1) and the connection length of the back plate 202, the bottom plate assembly 201 will be raised or lowered under the drive of the connecting bolt at the position M1, and the bottom plate assembly 201 can drive other connections during the movement
  • the bolt head 207 of the bolt 206 (for example, the connecting bolts at positions M2 and M3 in FIG. 3) rotates relative to the bottom plate assembly 201 to automatically adjust the interval 204 between the bottom plate assembly 201 and the back plate 202 to an equal distance (The above adjustment process is simply referred to as the leveling of the magnetron 203).
  • one or more connecting bolts 206 may need to be adjusted; in addition, a measuring tool, such as a vernier caliper, may be used to measure the distance 204 between the bottom plate assembly 201 and the back plate 202. , In order to speed up the leveling of the magnetron 203.
  • a measuring tool such as a vernier caliper
  • the bolt head 207 of the connecting bolt 206 rotates relative to the bottom plate assembly 201 is, for example, universal rotation, and the bolt head 207 can have various structures for realizing this rotation method.
  • the bolt head 207 It is configured as a convex spherical surface 223, and as shown in FIG. 2, the bottom plate assembly 201 includes a bottom plate main body 211 in which a first groove having a first concave spherical surface 210 is provided, and a bolt head 207 is disposed in the first concave surface.
  • the convex spherical surface 223 matches the first concave spherical surface 210.
  • connection between the connecting bolt 206 and the bottom plate assembly 201 is a spherical connection.
  • the spherical connection can realize universal rotation, thereby further facilitating the leveling of the magnetron 203.
  • the convex spherical surface 223 may be an entire spherical surface or a partial spherical surface; correspondingly, the first concave spherical surface 210 of the first groove may be an entire spherical surface or a partial spherical surface.
  • the open end 212 of the first groove is located on the first surface of the bottom plate body 211 opposite to the back plate 202 (ie, the upper surface of the bottom plate body 211 in FIG. 2), and the bolt 208 is located
  • the outer side of the bottom plate main body 211 is screwed to the back plate 202.
  • the connecting bolt 206 is generally in the shape of a ball screw. In this way, in the assembled state of the bottom plate assembly 201 and the back plate 202, the bolt head 207 of the connecting bolt 206 can be stably engaged in the first groove without falling out of the first groove, so that the bottom plate assembly 201 can pass through The connecting bolt 206 is stably installed under the back plate 202.
  • the position of the opening end of the first groove is not limited to being set on the first surface, and may also be located inside the bottom plate main body 211, that is, located inside the first surface,
  • a through hole is provided in the bottom plate main body 211.
  • One end of the through hole communicates with the opening end of the first groove, and the other end is located on the first surface, and the diameter of the through hole is smaller than that of the convex spherical surface 223.
  • the diameter of the bolt 208 protrudes from the through hole and is threadedly connected with the back plate 202.
  • the bottom plate assembly 201 further includes a fixing module 214 that is detachably connected to the bottom plate body 211, and the fixing module 214 is provided with a second concave spherical surface 213. Groove, the second concave spherical surface 213 and the first concave spherical surface 210 abut to form a continuous concave spherical surface, the plug 207 is fixed between the first groove and the second groove, and the convex spherical surface 223 and the first concave spherical surface 210 It is compatible with the second concave spherical surface 213.
  • the concave spherical surface that matches the convex spherical surface 223 has a split structure, that is, the second concave spherical surface 213 and the first concave spherical surface 210 are formed by butting. It is easy to understand that for the case where the fixing module 214 is not provided, the first concave spherical surface 210 of the first groove in the bottom plate main body 211 is an integrated structure, and the convex spherical surface 223 only fits the first concave spherical surface 210 .
  • the fixing module 214 and the bottom plate body 211 can fix the bolt head 207 between them, so that the connection between the connecting bolt 206 and the bottom plate body 211 is more stable.
  • the assembly of the connecting bolt 206 can be made more convenient.
  • the bottom plate body 211 when assembling the bottom plate body 211, first place the bolt head 207 of the connecting bolt 206 in the first groove on the bottom plate body 211; then connect the fixing module 214 to the bottom plate body 211 so that the first groove is
  • the first concave spherical surface 210 and the second concave spherical surface 213 of the second groove on the fixing module 214 abut to form a continuous concave spherical surface.
  • the first groove and the second groove jointly accommodate the plug 207 therein,
  • the second concave spherical surface 213 and the first concave spherical surface 210 are both adapted to the convex spherical surface 223 of the bolt head 207.
  • the fixing module 214, the bottom plate main body 211 and the connecting bolt 206 are formed as a whole (that is, the bottom plate assembly 201 is formed). Then, the bottom plate assembly 201 is installed on the back plate 202 as a whole through the bolt 208 of the connecting bolt 206. During this process, the fixing function of the fixing module 214 on the connecting bolt 206 can prevent the connecting bolt 206 from being separated from the bottom plate main body 211, thereby facilitating the assembly of the bottom plate assembly 201. It should be understood that other devices may also be provided on the bottom plate main body 211, such as devices used for magnetron sputtering, which will not be repeated here.
  • a recess 215 is formed on the bottom plate main body 211, the fixing module 214 is embedded in the recess 215, and the surface 217 of the fixing module 214 exposed to the bottom plate main body 211 and The second surface 218 of the bottom plate main body 211 facing away from the above-mentioned first surface is flush.
  • the second surface 218 of the bottom plate body 211 and the surface 217 of the fixing module 214 form a substantially flat surface, which facilitates the placement of various devices on the bottom plate body 211, such as the magnetron 203.
  • an operating hole 221 is provided on the fixing module 214, one end of the operating hole 221 is in communication with the second groove, and the other end is located on the surface of the fixing module 214 exposed to the bottom plate main body 211 217; And, an operating groove 222 is provided on the bolt head 207 corresponding to the operating hole 221.
  • the operator can still operate the convex spherical surface 223 through the operating hole 221 to perform the leveling or leveling of the magnetron 203.
  • the size of the gap 204 between the bottom plate assembly 201 (for example, the bottom plate body 211) and the back plate 202 is adjusted.
  • the operator can use a screwdriver to pass through the operating hole 221 and fit with the operating slot 222 to screw the connecting bolt 206 to realize the leveling of the magnetron 203.
  • the detachable connection between the fixing module 214 and the bottom plate main body 211 is, for example, a fixed connection by a screw 219. More specifically, as shown in FIG. 5, the number of the screws 219 is plural and is arranged at even intervals in the circumferential direction around the operation hole 220. In another specific embodiment, the number of screws 219 is four, and they are arranged at even intervals around the operating hole 220 in the circumferential direction. In this way, the fixing module 214 can be stably installed on the bottom plate main body 211. It should also be understood that although FIG. 5 shows that the surface 217 of the fixing module 214 is substantially square, in fact, it can be any other suitable shape, such as rectangle, diamond, circle, etc.
  • Fig. 6 schematically shows a physical vapor deposition apparatus 6 according to an embodiment of the present invention.
  • the physical vapor deposition apparatus 6 includes the physical vapor deposition chamber 1 according to the above.
  • a vacuum device 610 is also included.
  • a susceptor 602 carrying a wafer 601 can also be provided. During the sputtering process, the atoms escaping from the target 302 will eventually be deposited on the wafer 601 and form a film.
  • the bottom plate assembly 201 can be adjusted in a direction away from the target 302 at regular intervals.
  • the target magnetic gap 303 between the magnetron 203 on the bottom plate assembly 201 and the target support plate 300 is D1, and the erosion surface of the target 302
  • the distance between 701 and magnetron 203 is appropriate.
  • the target magnetic gap 303 is still D1, and the distance between the erosion surface 701 of the target 302 and the magnetron 203 becomes smaller, which is caused by the continuous escape of atoms on the target 302 .
  • the magnetic field strength of the magnetic field 710 at the erosion surface 701 becomes larger, which is not conducive to the effective utilization of the target 302 (as shown in FIG. 7b).
  • Adjust the bottom plate assembly 201 toward the back plate 202 (that is, away from the target 302) the target magnetic gap 303 becomes D2, D2 is greater than D1, so that the distance between the erosion surface 701 of the target 302 and the magnetron 203 is again Is appropriate ( Figure 7c).
  • the magnetic field intensity at the erosion surface of the target 302 can always be kept within a proper range, so as to avoid that as the target 302 is consumed, the magnetic field intensity at the erosion surface becomes larger and larger, causing the target 302 The erosion rate is getting faster and faster. This contributes to improving the effective utilization rate of the target 302.
  • leveling the magnetron 203 can prevent the erosion surface 701 of the target 302 from having different magnetic field strengths, and therefore reduce the probability of uneven consumption of the target 302, which also helps to improve the effectiveness of the target 302. Utilization rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

提供一种物理气相沉积腔室(1)和包括该物理气相沉积腔室(1)的物理气相沉积设备。该物理气相沉积腔室(1)包括腔室本体(100),在腔室本体(100)内设置有上电极组件(200),上电极组件(200)包括用于承载磁控管(203)的底板组件(201),与底板组件(201)间隔设置的背板(202),以及将底板组件(201)与背板(202)连接的连接组件(205),该连接组件(205)与底板组件(201)连接,且连接组件(205)与背板(202)螺纹连接,从而能够通过连接组件(205)与背板(202)的相对移动来调节底板组件(201)与背板(202)之间的间隔大小。其中底板组件(201)与靶材(302)之间的靶磁间隙(303)的尺寸可根据要求或实际情况方便地调节。

Description

物理气相沉积腔室和物理气相沉积设备 技术领域
本发明涉及半导体制造技术领域,特别涉及一种物理气相沉积腔室。本发明还涉及包括这种物理气相沉积腔室的物理气相沉积设备。
背景技术
在半导体集成电路制造过程中,通常使用物理气相沉积设备来制造多种不同的金属层及相关材料层,其中,应用最为广泛的是磁控溅射设备。
在磁控溅射设备的腔室中,具有磁控管和靶材。磁控管靠近靶材设置,以向逸出靶材的原子施加磁场力,从而驱使原子能够到达预定的沉积位置。并且,在磁控管和靶材之间存在有靶磁间隙,该靶磁间隙的尺寸不同,则磁场力的大小也不同,故而需要根据要求或实际情况设定合适的靶磁间隙的尺寸,以使得原子能够在预定的沉积位置良好地成膜。
但是,现有的磁控溅射设备的腔室结构存在上述靶磁间隙的尺寸无法调节或者调节困难的问题。
发明内容
本发明实施例旨在至少解决现有技术中存在的技术问题之一,提出了一种物理气相沉积腔室和物理气相沉积设备,其可根据要求或实际情况方便地调节底板组件与靶材之间的靶磁间隙的尺寸。
为实现上述目的,本发明实施例的第一方面提出了一种物理气相沉积腔室,包括:腔室本体,在所述腔室本体内设置有上电极组件,所述上电极组件包括用于承载磁控管的底板组件,与所述底板组件间隔设置的背板,以及将所述底板组件与所述背板连接的连接组件,
其中,所述连接组件与所述底板组件连接,且所述连接组件与所述背板螺纹连接,以能够通过使所述连接组件与所述背板相对移动来调节所述底板组件与所述背板之间的间隔大小。
在一个实施例中,所述连接组件包括连接栓,所述连接栓包括栓头和栓杆,其中,所述栓头与所述底板组件连接,所述栓杆与所述背板螺纹连接。
在一个实施例中,所述栓头与所述底板组件转动式连接。
在一个实施例中,所述栓头设置为凸球面;
所述底板组件包括底板主体,在所述底板主体中设置有具有第一凹球面的第一凹槽,所述栓头设置在所述第一凹槽中,且所述凸球面与所述第一凹球面相适配。
在一个实施例中,所述第一凹槽的开口端位于所述底板主体的与所述背板相对的第一表面上,所述栓杆位于所述底板主体的外侧,并与所述背板螺纹连接;或者,
所述第一凹槽的开口端位于所述底板主体的内部,且在所述底板主体中设置有贯通孔,所述贯通孔的一端与所述第一凹槽的开口端连通,另一端位于所述第一表面上,且所述贯通孔的直径小于所述凸球面的直径,所述栓杆从所述贯通孔中伸出,并与所述背板螺纹连接。
在一个实施例中,所述底板组件还包括固定模块,所述固定模块与所述底板主体可拆卸地连接,且所述固定模块中设置有具有第二凹球面的第二凹槽,所述第二凹球面与所述第一凹球面对接形成一连续的凹球面,所述栓头固定在所述第一凹槽与所述第二凹槽之间,且所述凸球面与所述第凹球面和第二凹球面相适配。
在一个实施例中,在所述底板主体上形成有凹陷,所述固定模块嵌入式安装在所述凹陷内,且所述固定模块的暴露于所述底板主体的表面与所述底板主体的背离所述第一表面的第二表面齐平。
在一个实施例中,在所述固定模块上设置有操作孔,所述操作孔的一端与所述第二凹槽连通,另一端位于所述固定模块的暴露于所述底板主体的表面;并且,在所述栓头上对应于所述操作孔设置有操作槽。
在一个实施例中,所述连接组件的数量为多个,多个所述连接组件间隔布置,且每个所述连接组件均与所述磁控管相互错开。
本发明实施例的第二方面提出了一种物理气相沉积设备,包括根据上文所述的物理气相沉积腔室。
与现有技术相比,本发明实施例的有益效果如下:
本发明实施例提供的物理气相沉积腔室,其通过将连接组件与底板组件连接,且与背板螺纹连接,可以通过使连接组件与背板相对移动来调节底板组件与背板之间的间隔大小,从而不仅实现了底板组件与靶材的相对位置的调节,以能够根据要求或实际情况调节靶磁间隙的尺寸;而且,由于仅需要旋转上述连接组件即可实现上述调节,调节方式更方便,从而提高了工作效率。
本发明实施例提供的物理气相沉积设备,其通过采用本发明实施例提供的上述物理气相沉积腔室,不仅实现了底板组件与靶材的相对位置的调节,以能够根据要求或实际情况调节靶磁间隙的尺寸,而且调节方式更方便,从而提高了工作效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示意性地显示了本发明一个实施例的物理气相沉积腔室。
图2示意性地显示了本发明一个实施例的上电极组件的简化图。
图3是图2的A向示意图。
图4示意性地显示了连接组件的结构。
图5是图4的B向示意图。
图6示意性地显示了本发明一个实施例的物理气相沉积设备。
图7a、7b和7c示意性地显示了在物理气相沉积设备使用过程中,调节磁控管装置组件的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1示意性地显示了根据本发明一个实施例的物理气相沉积腔室1(以下,简称为腔室1)。
如图1所示,腔室1包括腔室本体100,设置在腔室本体100上方的靶材承托板300和设置在靶材承托板300上方的上电极组件200。具体地,上电极组件200包括底板组件201和与底板组件201间隔设置且连接的背板202。底板组件201用于承载磁控管203。靶材承托板300设置在底板组件201的远离背板202的一侧。靶材302安装在靶材承托板300的远离底板组件201的一侧。
腔室1还包括用于驱动磁控管203旋转的电机11,以及避免原子污染腔室1的内部环境的内衬12、盖板13和沉积环14等其他部件,这些部件与本发明发明构思相关度较低,不再赘述。
而且,在靶材承托板300与磁控管203之间具有靶磁间隙303。通过调 整该靶磁间隙303,可以调节磁控管203向逸出靶材302的原子施加磁场力的大小,以使得原子能够在预定的沉积位置良好地成膜。为了实现方便地调节上述靶磁间隙303,在本实施例中,如图2所示,上电极组件200包括:承载磁控管203的底板组件201,与底板组件201间隔设置的背板202,以及将底板组件201与背板202连接的连接组件205。其中,连接组件205与底板组件201连接,且连接组件205与背板202螺纹连接,以能够通过使连接组件205与背板202相对移动来调节底板组件201与背板202之间的间隔204大小。
这样,不仅实现了底板组件201与靶材302的相对位置的调节,以能够根据要求或实际情况调节靶磁间隙303的尺寸;而且,由于仅需要旋转上述连接组件205即可实现上述调节,调节方式更方便,从而提高了工作效率。
在本实施例中,上述连接组件205包括连接栓206,该连接栓206包括栓头207和栓杆208,其中,栓头207与底板组件201连接;栓杆208与背板202螺纹连接。
这样,在使用根据本发明的腔室1(或包含腔室1的物理气相沉积设备6)时,通过调节连接栓206的栓杆208与背板202的连接长度(即,螺纹连接的长度),即可实现底板组件201相对于背板202的位置调节,进而可方便地调节靶磁间隙303的尺寸。在一个具体的实施例中,在背板202上设置有螺纹孔209,连接栓206的栓杆208上设置有与螺纹孔209相适配的外螺纹,由此将连接栓206的栓杆208与螺纹孔209螺纹连接。
在一个实施例中,如图3所示,连接组件205的数量为多个,多个接组件205间隔布置,且每个连接组件205均与磁控管203相互错开。通过间隔设置多个连接组件205,不仅可以将底板组件201与背板202更稳定地连接在一起,而且在不调整连接组件205(例如连接栓206)时,可以使得靶磁间隙303保持恒定,从而有助于磁控管203提供稳定的磁场,进而有助于良 好地成膜。此外,通过使每个连接组件205与磁控管203相互错开,可以避免对磁控管203的安装和磁场的提供产生影响。在一个具体的实施例中,连接栓206的数量为六个,由此底板组件201和背板202通过六个间隔设置的连接栓206连接在一起。应理解的是,在调节靶磁间隙303时,需要调节这些连接组件205中的每一个。
在一个实施例中,连接栓206的栓头207与底板组件201转动式连接。这样,可以允许在一定的范围内调节底板组件201相对于背板202所在平面的倾斜角度,以便于将底板组件201与背板202之间的间隔204调节为等距离。尤其针对连接组件205(例如连接栓206)的数量为多个的情况,当底板组件201与背板202之间的距离204为不等距时,通过调节其中一个连接栓206(例如,图3中在位置M1处的连接栓)与背板202的连接长度,底板组件201会在该位置M1处的连接栓的带动下升高或降低,同时底板组件201可以在移动过程中带动其他的连接栓206(例如,图3中的在位置M2、M3处的连接栓)的栓头207相对于底板组件201发生转动,以自动将底板组件201与背板202之间的间隔204调节为等距离(上述调节过程简称为磁控管203的调平)。应理解的是,在磁控管203的调平过程中,可能需要对一个或多个连接栓206进行调节;此外,还可使用量具,例如游标卡尺测量底板组件201与背板202之间距离204,以加快磁控管203的调平。
上述连接栓206的栓头207相对于底板组件201发生转动的方式例如为万向转动,实现该转动方式的上述栓头207的结构可以有多种,例如,如图4所示,栓头207构造为凸球面223,并且如图2所示,底板组件201包括底板主体211,在该底板主体211中设置有具有第一凹球面210的第一凹槽,栓头207设置在该第一凹槽中,且凸球面223与第一凹球面210相适配。这样,连接栓206与底板组件201的连接为球面连接。球面连接可实现万向转动,从而进一步方便了磁控管203的调平。应理解的是,凸球面223可以为 整个球面,也可以为部分球面;相应地,第一凹槽的第一凹球面210可以为整个球面,也可以部分球面。
在一个具体的实施例中,上述第一凹槽的开口端212位于底板主体211的与背板202相对的第一表面(即,图2中底板主体211的上表面)上,栓杆208位于底板主体211的外侧,并与背板202螺纹连接。从整体上看,连接栓206大体为球头螺钉状。这样,在底板组件201与背板202的装配状态中,连接栓206的栓头207可以稳定地接合在第一凹槽内,而不会从第一凹槽内脱出,从而使得底板组件201通过连接栓206稳定地安装在背板202的下方。
需要说明的是,在实际应用中,上述第一凹槽的开口端位置并不局限于设置在上述第一表面,还可以位于底板主体211的内部,即,位于上述第一表面的内侧,在这种情况下,且在底板主体211中设置有贯通孔,该贯通孔的一端与第一凹槽的开口端连通,另一端位于上述第一表面上,且贯通孔的直径小于凸球面223的直径,栓杆208从该贯通孔中伸出,并与背板202螺纹连接。
在一个实施例中,如图2所示,底板组件201还包括固定模块214,该固定模块214与底板主体211可拆卸地连接,且固定模块214中设置有具有第二凹球面213的第二凹槽,该第二凹球面213与第一凹球面210对接形成一连续的凹球面,栓头207固定在第一凹槽与第二凹槽之间,且凸球面223与第一凹球面210和第二凹球面213相适配。也就是说,在增设了固定模块214时,与凸球面223相适配的凹球面为分体式结构,即由第二凹球面213和第一凹球面210对接形成。容易理解,对于未设置该固定模块214的情况,上述底板主体211中的第一凹槽所具有的第一凹球面210为一体式结构,凸球面223仅与该第一凹球面210相适配。
这样,固定模块214与底板主体211能够将栓头207固定在二者之间, 使得连接栓206与底板主体211的连接更加稳定。此外,通过使固定模块214与底板主体211可拆卸地连接,可以使得连接栓206的装配更加方便。例如,在装配底板主体211时,首先将连接栓206的栓头207放置在底板主体211上的第一凹槽中;然后将固定模块214与底板主体211连接,以使该第一凹槽所具有的第一凹球面210与固定模块214上的第二凹槽所具有的第二凹球面213对接形成连续的凹球面,第一凹槽和第二凹槽共同将栓头207容纳在其中,且第二凹球面213和第一凹球面210均与栓头207的凸球面223相适配。这样,固定模块214、底板主体211和连接栓206就形成为一个整体(即,形成底板组件201)。然后,再通过连接栓206的栓杆208将底板组件201作为一个整体安装到背板202上。在此过程中,固定模块214对连接栓206的固定作用可防止连接栓206与底板主体211脱开,从而方便了底板组件201的装配。应理解的是,在底板主体211上还可以具有其他器件,例如用于磁控溅射的器件,这里不再赘述。
在一个具体的实施例中,如图2所示,在底板主体211上形成有凹陷215,固定模块214嵌入式安装在该凹陷215内,且固定模块214的暴露于底板主体211的表面217与底板主体211的背离上述第一表面的第二表面218齐平。这样,从整体上看,底板主体211的第二表面218连同固定模块214的表面217大体形成平面,这有助于在底板主体211上设置各种器件,例如磁控管203。
在一个实施例中,如图4所示,在固定模块214上设置有操作孔221,该操作孔221的一端与第二凹槽连通,另一端位于固定模块214的暴露于底板主体211的表面217;并且,在栓头207上对应于操作孔221设置有操作槽222。这样,在连接栓206的栓头207与第二凹槽的第二凹球面213配合的情况下,操作者仍然能够经由操作孔221来操作凸球面223,从而进行磁控管203的调平或调节底板组件201(例如,底板主体211)与背板202之 间的间隔204的大小。例如,操作者可使用螺丝刀穿过操作孔221并与操作槽222配合,从而拧动连接栓206,进而实现磁控管203的调平。
在一个具体的实施例中,固定模块214和底板主体211的可拆卸地连接方式例如为通过螺钉219固定连接。更具体地,如图5所示,螺钉219的数量为多个并且围绕操作孔220在周向上均匀间隔布置。在另一个具体的实施例中,螺钉219的数量为四个,并且围绕操作孔220在周向上均匀间隔布置。这样,可稳定地将固定模块214安装在底板主体211上。还应理解的是,虽然图5中显示了固定模块214的表面217大体为正方形,但实际上也可以为其他任何适当的形状,例如长方形、菱形、圆形等。
图6示意性地显示了本发明一个实施例的物理气相沉积设备6。该物理气相沉积设备6包括根据上文所述的物理气相沉积腔室1。此外,还包括抽真空设备610。在物理气相沉积腔室1内,还可设置承载晶片601的基座602。在溅射过程中,从靶材302上逸出的原子最终会沉积到晶片601并形成膜层。
随着靶材302的消耗,可每隔一段时间沿远离靶材302的方向调节一次底板组件201。如图7a到7c所示,在初始状态(如图7a),底板组件201上的磁控管203与靶材承托板300的之间的靶磁间隙303为D1,靶材302的侵蚀面701与磁控管203之间的距离适当。在靶材302使用一段时候后,靶磁间隙303仍为D1,靶材302的侵蚀面701与磁控管203之间的距离变小,这是由于靶材302上的原子不断逸出造成的。这种情况下,侵蚀面701处的磁场710磁场强度变大,不利于靶材302的有效利用率(如图7b)。将底板组件201朝向背板202调节(即,远离靶材302的方向),靶磁间隙303变为D2,D2大于D1,这样靶材302的侵蚀面701与磁控管203之间的距离再次为适当(如图7c)。由此,可将靶材302的侵蚀面处的磁场强度始终保持在适当的范围内,以避免随着靶材302的消耗,其侵蚀面处的磁场强度越来越大,而造成靶材302的侵蚀速度越来越快。由此,有助于提高靶材302 的有效利用率。
另外,将磁控管203调平,可避免靶材302的侵蚀面701存在磁场强度不相同的情况,并因此减小靶材302消耗不均匀的几率,这也有助于提高靶材302的有效利用率。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种物理气相沉积腔室,其特征在于,包括腔室本体,在所述腔室本体内设置有上电极组件,所述上电极组件包括用于承载磁控管的底板组件,与所述底板组件间隔设置的背板,以及将所述底板组件与所述背板连接的连接组件,
    其中,所述连接组件与所述底板组件连接,且所述连接组件与所述背板螺纹连接,以能够通过使所述连接组件与所述背板相对移动来调节所述底板组件与所述背板之间的间隔大小。
  2. 根据权利要求1所述的物理气相沉积腔室,其特征在于,所述连接组件包括连接栓,所述连接栓包括栓头和栓杆,其中,所述栓头与所述底板组件连接,所述栓杆与所述背板螺纹连接。
  3. 根据权利要求2所述的物理气相沉积腔室,其特征在于,所述栓头与所述底板组件转动式连接。
  4. 根据权利要求3所述的物理气相沉积腔室,其特征在于,所述栓头构造为凸球面;
    所述底板组件包括底板主体,在所述底板主体中设置有具有第一凹球面的第一凹槽,所述栓头设置在所述第一凹槽中,且所述凸球面与所述第一凹球面相适配。
  5. 根据权利要求4所述的物理气相沉积腔室,其特征在于,所述第一凹槽的开口端位于所述底板主体的与所述背板相对的第一表面上,所述栓杆位于所述底板主体的外侧,并与所述背板螺纹连接;或者,
    所述第一凹槽的开口端位于所述底板主体的内部,且在所述底板主体中设置有贯通孔,所述贯通孔的一端与所述第一凹槽的开口端连通,另一端位于所述第一表面上,且所述贯通孔的直径小于所述凸球面的直径,所述栓杆从所述贯通孔中伸出,并与所述背板螺纹连接。
  6. 根据权利要求5所述的物理气相沉积腔室,其特征在于,所述底板 组件还包括固定模块,所述固定模块与所述底板主体可拆卸地连接,且所述固定模块中设置有具有第二凹球面的第二凹槽,所述第二凹球面与所述第一凹球面对接形成一连续的凹球面,所述栓头固定在所述第一凹槽与所述第二凹槽之间,且所述凸球面与所述第一凹球面和第二凹球面相适配。
  7. 根据权利要求6所述的物理气相沉积腔室,其特征在于,在所述底板主体上形成有凹陷,所述固定模块嵌入式安装在所述凹陷内,且所述固定模块的暴露于所述底板主体的表面与所述底板主体的背离所述第一表面的第二表面齐平。
  8. 根据权利要求7所述的物理气相沉积腔室,其特征在于,在所述固定模块上设置有操作孔,所述操作孔的一端与所述第二凹槽连通,另一端位于所述固定模块的暴露于所述底板主体的表面;并且,在所述栓头上对应于所述操作孔设置有操作槽。
  9. 根据权利要求1-8任意一项所述的物理气相沉积腔室,其特征在于,所述连接组件的数量为多个,多个所述连接组件间隔布置,且每个所述连接组件均与所述磁控管相互错开。
  10. 一种物理气相沉积设备,其特征在于,包括根据权利要求1到9中任一项所述的物理气相沉积腔室。
PCT/CN2020/123065 2019-11-04 2020-10-23 物理气相沉积腔室和物理气相沉积设备 WO2021088658A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227012033A KR20220061214A (ko) 2019-11-04 2020-10-23 물리 기상 증착 챔버와 물리 기상 증착 장비
US17/773,678 US11732346B2 (en) 2019-11-04 2020-10-23 Physical vapor deposition chamber and physical vapor deposition apparatus
JP2022525914A JP7316455B2 (ja) 2019-11-04 2020-10-23 物理蒸着チャンバおよび物理蒸着装置
KR1020237015528A KR102635967B1 (ko) 2019-11-04 2020-10-23 물리 기상 증착 챔버와 물리 기상 증착 장비

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911067926.1 2019-11-04
CN201911067926.1A CN110885965B (zh) 2019-11-04 2019-11-04 物理气相沉积腔室和物理气相沉积设备

Publications (1)

Publication Number Publication Date
WO2021088658A1 true WO2021088658A1 (zh) 2021-05-14

Family

ID=69746868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123065 WO2021088658A1 (zh) 2019-11-04 2020-10-23 物理气相沉积腔室和物理气相沉积设备

Country Status (5)

Country Link
US (1) US11732346B2 (zh)
JP (1) JP7316455B2 (zh)
KR (2) KR20220061214A (zh)
CN (1) CN110885965B (zh)
WO (1) WO2021088658A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885965B (zh) 2019-11-04 2021-07-13 北京北方华创微电子装备有限公司 物理气相沉积腔室和物理气相沉积设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165569A (ja) * 1994-12-12 1996-06-25 Chugai Ro Co Ltd 反応性マグネトロンスパッタリング成膜装置
CN1890399A (zh) * 2003-12-12 2007-01-03 应用材料公司 磁电管及溅镀靶间的间距补偿
CN101280420A (zh) * 2008-05-28 2008-10-08 东北大学 一种具有磁场增强和调节功能的磁控溅射靶
CN102226269A (zh) * 2011-06-15 2011-10-26 星弧涂层科技(苏州工业园区)有限公司 阴极电弧的磁场调节装置
CN203096163U (zh) * 2013-02-27 2013-07-31 东莞汇海光电科技实业有限公司 一种磁场均匀镀膜调节装置
CN105154839A (zh) * 2015-09-22 2015-12-16 上海晓睿真空科技有限公司 一种平面阴极
CN108754441A (zh) * 2018-05-29 2018-11-06 大连维钛克科技股份有限公司 一种arc后部磁场调整机构
CN110885965A (zh) * 2019-11-04 2020-03-17 北京北方华创微电子装备有限公司 物理气相沉积腔室和物理气相沉积设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100981A (en) * 1979-01-24 1980-08-01 Murata Mfg Co Ltd Magnetron sputtering apparatus
JPH07224380A (ja) * 1994-02-15 1995-08-22 Mitsubishi Chem Corp スパッタリング装置
US5656091A (en) * 1995-11-02 1997-08-12 Vacuum Plating Technology Corporation Electric arc vapor deposition apparatus and method
KR20110046074A (ko) * 2009-10-28 2011-05-04 김만수 스퍼터링 증착장치의 자기장 조절 캐소드 건
JP5841172B2 (ja) 2011-12-16 2016-01-13 キヤノンアネルバ株式会社 スパッタリング装置
US9580795B2 (en) 2013-03-05 2017-02-28 Applied Materials, Inc. Sputter source for use in a semiconductor process chamber
WO2014192209A1 (ja) 2013-05-31 2014-12-04 キヤノンアネルバ株式会社 スパッタリング装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165569A (ja) * 1994-12-12 1996-06-25 Chugai Ro Co Ltd 反応性マグネトロンスパッタリング成膜装置
CN1890399A (zh) * 2003-12-12 2007-01-03 应用材料公司 磁电管及溅镀靶间的间距补偿
CN101280420A (zh) * 2008-05-28 2008-10-08 东北大学 一种具有磁场增强和调节功能的磁控溅射靶
CN102226269A (zh) * 2011-06-15 2011-10-26 星弧涂层科技(苏州工业园区)有限公司 阴极电弧的磁场调节装置
CN203096163U (zh) * 2013-02-27 2013-07-31 东莞汇海光电科技实业有限公司 一种磁场均匀镀膜调节装置
CN105154839A (zh) * 2015-09-22 2015-12-16 上海晓睿真空科技有限公司 一种平面阴极
CN108754441A (zh) * 2018-05-29 2018-11-06 大连维钛克科技股份有限公司 一种arc后部磁场调整机构
CN110885965A (zh) * 2019-11-04 2020-03-17 北京北方华创微电子装备有限公司 物理气相沉积腔室和物理气相沉积设备

Also Published As

Publication number Publication date
KR20230067714A (ko) 2023-05-16
CN110885965B (zh) 2021-07-13
US11732346B2 (en) 2023-08-22
KR20220061214A (ko) 2022-05-12
CN110885965A (zh) 2020-03-17
JP2022548410A (ja) 2022-11-18
KR102635967B1 (ko) 2024-02-13
JP7316455B2 (ja) 2023-07-27
US20220380887A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP3794586B2 (ja) スパッタされた膜において、均一な等方性の応力を生じさせるための方法および装置
JP4991069B2 (ja) プラズマ処理システムで用いられる直線駆動システム
KR900002082B1 (ko) 박막흡착장치 및 그 방법
WO2021088658A1 (zh) 物理气相沉积腔室和物理气相沉积设备
WO2017063428A1 (zh) 一种溅镀设备的靶材更换装置及溅镀设备
JP2006330656A (ja) 液晶配向膜用真空蒸着装置およびその成膜方法
TW201810382A (zh) 基於大型旋轉料架的基座的微調平
US20120006266A1 (en) Sputtering apparatus, method of operating the same, and method of manufacturing substrate using the same
JP4321785B2 (ja) 成膜装置及び成膜方法
JP2001230307A (ja) 半導体製造装置
CN108728827B (zh) 一种调平装置和等离子体设备
JP7134095B2 (ja) 高精度シャドーマスク堆積システム及びその方法
TWI706506B (zh) 基板支撐設備及其製造方法
CN104900473A (zh) 平行度调节装置及cvd生长膜装置
US8293081B2 (en) Physical vapor deposition device
CN205062173U (zh) 一种压环
US9773647B2 (en) Plasma processing apparatus and upper electrode assembly
JP5002532B2 (ja) スパッタリング方法及びスパッタリング装置
JPH11340165A (ja) スパッタリング装置及びマグネトロンユニット
JP7128024B2 (ja) スパッタリング装置及びコリメータ
JPH07316808A (ja) スパッタリング装置
CN220265811U (zh) 一种半导体薄膜沉积设备
JPH03243762A (ja) マグネトロンスパッタリング装置
KR20030008295A (ko) 애싱 장치의 가스 분사 플레이트
KR101790619B1 (ko) 플라즈마 증착 장치용 마그넷 구동수단

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227012033

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022525914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885486

Country of ref document: EP

Kind code of ref document: A1