WO2021088386A1 - 一种薄膜型熔断器及制造方法 - Google Patents

一种薄膜型熔断器及制造方法 Download PDF

Info

Publication number
WO2021088386A1
WO2021088386A1 PCT/CN2020/099132 CN2020099132W WO2021088386A1 WO 2021088386 A1 WO2021088386 A1 WO 2021088386A1 CN 2020099132 W CN2020099132 W CN 2020099132W WO 2021088386 A1 WO2021088386 A1 WO 2021088386A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fuse
electrode
link
metal sheet
Prior art date
Application number
PCT/CN2020/099132
Other languages
English (en)
French (fr)
Inventor
杨漫雪
南式荣
邓琪
Original Assignee
南京萨特科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京萨特科技发展有限公司 filed Critical 南京萨特科技发展有限公司
Publication of WO2021088386A1 publication Critical patent/WO2021088386A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • H01H69/022Manufacture of fuses of printed circuit fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • H01H2069/025Manufacture of fuses using lasers

Definitions

  • the invention belongs to the field of overcurrent and overvoltage protection components, and in particular relates to a film type surface mount fuse for overcurrent and overvoltage protection and a manufacturing method of the fuse.
  • the fuse link is generally manufactured by thick film process printing or PCB thin film process etching.
  • PCB thin film process etching it is very difficult to print fuses below 10 microns in thick film technology, and it is difficult to meet the market demand for rated current specifications below 1A; while the PCB film technology is difficult to meet the needs of automotive applications.
  • the present invention provides a thin film fuse that is easy to manufacture.
  • the present invention also provides a manufacturing method capable of manufacturing a film type fuse with a rated current specification of 1A or less that meets market demand.
  • the automatic climbing walking trolley of the present invention can adopt the following technical solutions:
  • a film type fuse comprising a base, a fuse, and an electrode; one surface of the base is covered with an insulating layer, one side of the insulating layer is attached to the base and the other side is attached to the sheet metal fuse, and the fuse is facing away
  • the two ends of the surface of the insulating layer are respectively covered with electrodes, and the part of the surface of the fuse link facing away from the insulating layer is covered with a protective layer between the two ends of the electrodes.
  • the fuse-link in the present invention is in the shape of a metal sheet and is attached to the substrate. Even if the fuse-link is relatively small, the substrate can be used as a support for the fuse-link, so that the shape and processing of the fuse-link can be easily controlled, and the thickness and pattern of the melt can be accurately controlled. So as to realize the manufacture of fuse with smaller current specification.
  • the manufacturing method of the film type fuse provided by the present invention can adopt the following technical solutions, including the following steps:
  • Fuse-link molding Take a double-layer metal sheet, one of which is used as the fuse-link layer and the other as the electrode layer, and the fuse-link layer is processed into the required fuse-link pattern;
  • Insulation layer molding take the above-mentioned double-layer metal sheet that has been formed with the fuse link, and use a printing process to form an insulating layer on one side of the silver layer of the double-layer metal sheet;
  • Substrate bonding take the above-mentioned double-layer metal sheet that has completed the insulation layer molding, and paste a layer of prepreg on one side of the insulation layer, and then paste the substrate on the prepreg;
  • Matrix molding heat the above-mentioned material that has completed the bonding of the substrate under continuous pressure conditions to complete the curing of the prepreg, and make the double-layer metal sheet adhere to the substrate;
  • Electrode layer etching process the material on the electrode layer with the above-mentioned completed matrix forming material, and etch the pattern in the middle of the electrode layer to divide the electrode layer into two electrodes, which are independent of each other and cover the fuse respectively At both ends of the same surface of the layer, the pattern part of the fuse layer is exposed through the operation of the electrode layer to etch the required pattern.
  • Forming the protective layer take the above-mentioned semi-finished product that has been processed for the fuse point, and print a protective layer on the surface of the fuse-link layer.
  • the protective layer completely covers the fuse-link pattern and the fuse-link point, and the protective layer is exposed as a fuse-link.
  • Electrode forming The above-mentioned semi-finished products are subjected to surface treatment by electroplating, and finally electrodes are formed at the electrode positions. .
  • the manufacturing method provided by the present invention has the following advantages:
  • the manufacturing method is simple and feasible, and can be completed by a simple thin film process.
  • the fuse processing is easy to control, and the thickness and pattern of the melt can be precisely controlled, so as to realize the manufacture of smaller current fuse specifications, and can manufacture thin film fuse with rated current specifications below 1A that can meet market demand.
  • the fuse manufactured by this method can achieve a small rated current and can react quickly, while meeting the requirements of high breaking capacity.
  • Fig. 1 is a schematic cross-sectional view of the film-type fuse of the present invention.
  • Fig. 2 is a schematic diagram of the double-layer metal sheet of the present invention after being attached to the substrate through the prepreg.
  • FIG. 1 and FIG. 2 discloses a thin-film fuse, which includes a base 1 (ceramic substrate), a metal sheet-shaped fuse 3, and an electrode 4.
  • the electrode 4 is a copper electrode
  • the outer layer of the copper electrode 4 is covered with a nickel electrode 5
  • the outer layer of the nickel electrode 5 is covered with a tin electrode 6.
  • An insulating layer 2 is covered on one surface of the substrate. One side of the insulating layer 2 is bonded to the base 1 and the other side is bonded to the fuse 3 in the shape of a metal sheet.
  • the two ends of the surface of the fuse link 3 facing away from the insulating layer are respectively covered with electrodes 4, and the part of the surface of the fuse link 3 facing away from the insulating layer 2 between the two end electrodes is covered with a protective layer 7.
  • the insulating layer 2 is glass or high temperature resistant glass resin. Since the fuse link 3 can be supported by the base body 1 after assembly, the fuse link layer can be processed by a laser process or an etching process to form the required fuse link 3 pattern, so as to achieve a smaller current specification (smaller cross section of the fuse link) Manufacturing of fuses.
  • the second embodiment discloses a method for manufacturing a thin-film fuse according to the first embodiment.
  • the manufacturing method includes the following steps:
  • Fuse link forming take a double-layer metal sheet, one of which is used as the fuse layer (to form the fuse link 3), and the other layer is used as the electrode layer, and the fuse layer is processed into the required fuse link pattern
  • the double-layer metal sheet is a layer of silver and a layer of copper
  • the silver layer is used as the fuse layer
  • the copper layer is used as the electrode layer
  • the copper layer is preferably 1oz.
  • the fuse-link layer adopts a laser process or an etching process to process the required fuse-link pattern
  • Insulation layer molding take the above-mentioned double-layer metal sheet that has been formed with the fuse link, and use a printing process to form an insulating layer 2 on one side of the silver layer of the double-layer metal sheet; the insulating layer is glass or high-temperature resistant glass resin ;
  • Substrate bonding take the above-mentioned double-layer metal sheet that has completed the insulation layer molding, and paste a layer of prepreg on one side of the insulation layer, and then paste the substrate 1 on the prepreg;
  • Matrix molding heat the above-mentioned material that has completed the bonding of the substrate under the condition of continuous pressure to complete the curing of the prepreg, and make the double-layer metal sheet adhere to the substrate 1.
  • Electrode layer etching processing the material on the electrode layer with the above-mentioned completed matrix forming material, and etch the pattern in the middle part of the electrode layer to divide the electrode layer into two electrodes 4, which are independent of each other and cover respectively At both ends of the same surface of the fuse layer, the pattern part of the fuse layer is exposed through the operation of etching the required pattern on the electrode layer.
  • Electrode forming the above-mentioned semi-finished product is surface treated by electroplating, and finally the electrode is formed at the electrode position, that is, the electrode is formed at the electrode position to cover the nickel electrode 5 on the copper electrode 4, and the outer layer of the nickel electrode 5 is then covered with tin Electrode 6.
  • step (h) After step (a) to step (g) are processed into a semi-finished material of the array structure, and then divided to form a single semi-finished fuse, the electrode is formed through step (h).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuses (AREA)

Abstract

一种薄膜型熔断器,包括基体(1)、熔断体(3)和电极(4),所述熔断体(3)为金属片形并贴合在基体(1)上,熔断体(3)即便较为微型,基体(1)也能够作为熔断体(3)的支撑,使熔断体(3)的形状加工易控制,可以精确控制熔断体(3)的厚度和图形,从而实现更小电流规格的熔断器的制造。且制造该熔断器的制造方法简单可行,通过简单薄膜工艺即可完成。

Description

一种薄膜型熔断器及制造方法 技术领域
本发明属于过流过压保护元件领域,具体涉及一种用于过流过压保护的薄膜型表面贴装熔断器及该熔断器的制造方法。
背景技术
随着电动汽车等新兴产业的蓬勃发展,电池均衡系统控制要求越来越高,对高分能能力、能够快速反应的小电流熔断器的需求越多。
对于1206或更小的封装尺寸熔断体一般采用厚膜工艺印刷或PCB薄膜工艺蚀刻制造。但厚膜工艺熔丝印刷10微米以下熔断器已很困难,很难做到满足市场需求的1A以下额定电流规格;而PCB薄膜工艺很难符合车载应用的需求。
故,需要一种新的技术方案以解决上述问题。
发明内容
发明目的:本发明提供一种便于制造的薄膜型熔断器。
本发明还提供一种制造方法,能够制造满足市场需求的1A以下额定电流规格的薄膜型熔断器。
技术方案:为达到上述目的,本发明自动爬升行走小车可采用如下技术方案:
一种薄膜型熔断器,包括基体、熔断体、电极;所述基体的一个表面上覆盖绝缘层,绝缘层的一面与基体贴合而另一面与金属片形的熔断体贴合,熔断体背对绝缘层的表面两端分别覆盖有电极,且熔断体背对绝缘层的表面在两端电极之间的部分覆盖有保护层。
有益效果:
本发明中的熔断体为金属片形并贴合在基体上,熔断体即便较为微型,基体也能够作为熔断体的支撑,使熔断体的形状加工易控制,可以精确控制熔体厚度和图形,从而实现更小电流规格的熔断器的制造。
本发明提供的薄膜型熔断器的制造方法可采用以下技术方案,包括以下步骤:
(a)、熔断体成型:取一块双层金属片,其中一层作为熔断体层,另一层作为电极层,将熔断体层加工出所需的熔断体图形;
(b)、绝缘层成型:取上述已完成熔断体成型的双层金属片,采用印刷工艺在双层金属片银层的一面形成一层绝缘层;
(c)、基体贴合:取上述已完成绝缘层成型的双层金属片,在绝缘层一面贴合一层半固化片,半固化片上再贴合基体;
(d)、基体成型:将上述完成基体贴合的材料,在持续加压条件下,加热使得半固化片完成固化,并使得双层金属片与基体贴合;
(e)、电极层蚀刻;将上述完成基体成型的材料进行电极层面的加工,在电极层中间部分蚀出图形而将电极层分成两个电极,该两个电极相互独立并分别覆盖在熔断体层同一个表面的两端,通过电极层蚀出所需图形的操作将熔断体层的图形部分露出,
(f)、熔断点加工:将上述完成电极层蚀刻并露出熔断体层图形部分的材料贴合干膜,对位曝光出预设熔断点,经显影工艺露出预设熔断点,经镀锡工艺在预设熔断点位置镀一层锡,再退掉其他部分的干膜;
(g)、保护层成型:取上述已完成熔断点加工的半成品,在熔断体层表面印刷一层保护层,所述保护层完全覆盖熔断体图形和熔断点,所述保护层露出作为熔断体电极的铜层端面;
(h)、电极成型:上述半成品通过电镀的方式进行表面处理,最终在电极位置成型电极。。
有益效果:相对于现有技术,本发明提供的制造方法具有以下优点,
1、该制造方法简单可行,通过简单薄膜工艺即可完成。
2、熔断体加工易控制,可以精确控制熔体厚度和图形,从而实现更小电流规格的熔断器的制造,能够制造满足市场需求的1A以下额定电流规格的薄膜型熔断器。
3、该方法制造的熔断器可实现小的额定电流并能够快速反应,同时满足高分断能力的要求。
附图说明
图1是本发明中薄膜型熔断器的剖面示意图。
图2是本发明中双层金属片通过半固化片贴合在基体上后的示意图。
具体实施方式
请结合图1及图2所示,本实施例公开一种薄膜型熔断器,包括基体1(陶瓷基板)、金属片形的熔断体3、电极4。所述电极4为铜电极,该铜电极4的外层覆盖有镍电极5,镍电极5的外层再覆盖有锡电极6。该基体的一个表面上覆盖绝缘层2。绝缘层2的一面与基体1贴合而另一面与金属片形的熔断体3贴合。熔断体3背对绝缘层的表面两端分别覆盖有电极4,且熔断体3背对绝缘层2的表面在两端电极之间的部分覆盖有保护层7。其中,绝缘层2为玻璃或耐高温的玻璃树脂。由于在装配后熔断体3可以被基体1支撑,熔断体层可以采用激光工艺或者蚀刻工艺加工出所需的熔断体3的图形,从而能够实现更小电流规格(熔 断体横截面更小)的熔断器的制造。
实施例二,本实施例公开上是实施例一种的薄膜型熔断器的制造方法。该制造方法包括以下步骤:
(a)、熔断体成型:取一块双层金属片,其中一层作为熔断体层(用以形成熔断体3),另一层作为电极层,将熔断体层加工出所需的熔断体图形;其中,双层金属片为一层银层级一层铜层,银层作为熔断体层,铜层作为电极层;所述铜层优选1oz。该步骤中熔断体层采用激光工艺或者蚀刻工艺加工出所需的熔断体图形;
(b)、绝缘层成型:取上述已完成熔断体成型的双层金属片,采用印刷工艺在双层金属片银层的一面形成一层绝缘层2;绝缘层为玻璃或耐高温的玻璃树脂;
(c)、基体贴合:取上述已完成绝缘层成型的双层金属片,在绝缘层一面贴合一层半固化片,半固化片上再贴合基体1;
(d)、基体成型:将上述完成基体贴合的材料,在持续加压条件下,加热使得半固化片完成固化,并使得双层金属片与基体1贴合;
(e)、电极层蚀刻;将上述完成基体成型的材料进行电极层面的加工,在电极层中间部分蚀出图形而将电极层分成两个电极4,该两个电极4相互独立并分别覆盖在熔断体层同一个表面的两端,通过电极层蚀出所需图形的操作将熔断体层的图形部分露出,
(f)、熔断点加工:将上述完成电极层蚀刻并露出熔断体层图形部分的材料贴合干膜,对位曝光出预设熔断点,经显影工艺露出预设熔断点,经镀锡工艺在预设熔断点位置镀一层锡,再退掉其他部分的干膜;
(g)、保护层成型:取上述已完成熔断点加工的半成品,在熔断体层表面印刷一层保护层7,所述保护层完全覆盖熔断体图形和熔断点,所述保护层露出作为熔断体电极的铜层端面;
(h)、电极成型:上述半成品通过电镀的方式进行表面处理,最终在电极位置成型电极,即在电极位置成型电极为在铜电极4上覆盖镍电极5,镍电极5的外层再覆盖锡电极6。
进一步的,经步骤(a)至步骤(g)加工成阵列结构的半成品材料,再进行分割形成单颗熔断器半成品后,经过步骤(h)进行电极成型。
本发明具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原 理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (10)

  1. 一种薄膜型熔断器,包括基体、熔断体、电极;其特征在于,所述基体的一个表面上覆盖绝缘层,绝缘层的一面与基体贴合而另一面与金属片形的熔断体贴合,熔断体背对绝缘层的表面两端分别覆盖有电极,且熔断体背对绝缘层的表面在两端电极之间的部分覆盖有保护层。
  2. 根据权利要求1所述的薄膜型熔断器,其特征在于:所述电极为铜电极,该铜电极的外层覆盖有镍电极,镍电极的外层再覆盖有锡电极。
  3. 根据权利要求1或2所述的薄膜型熔断器,其特征在于:所述基体为陶瓷基板。
  4. 根据权利要求3所述的薄膜型熔断器,其特征在于:所述绝缘层为玻璃或耐高温的玻璃树脂。
  5. 一种薄膜型熔断器的制造方法,其特征在于,包括以下步骤:
    (a)、熔断体成型:取一块双层金属片,其中一层作为熔断体层,另一层作为电极层,将熔断体层加工出所需的熔断体图形;
    (b)、绝缘层成型:取上述已完成熔断体成型的双层金属片,采用印刷工艺在双层金属片银层的一面形成一层绝缘层;
    (c)、基体贴合:取上述已完成绝缘层成型的双层金属片,在绝缘层一面贴合一层半固化片,半固化片上再贴合基体;
    (d)、基体成型:将上述完成基体贴合的材料,在持续加压条件下,加热使得半固化片完成固化,并使得双层金属片与基体贴合;
    (e)、电极层蚀刻;将上述完成基体成型的材料进行电极层面的加工,在电极层中间部分蚀出图形而将电极层分成两个电极,该两个电极相互独立并分别覆盖在熔断体层同一个表面的两端,通过电极层蚀出所需图形的操作将熔断体层的图形部分露出,
    (f)、熔断点加工:将上述完成电极层蚀刻并露出熔断体层图形部分的材料贴合干膜,对位曝光出预设熔断点,经显影工艺露出预设熔断点,经镀锡工艺在预设熔断点位置镀一层锡,再退掉其他部分的干膜;
    (g)、保护层成型:取上述已完成熔断点加工的半成品,在熔断体层表面印刷一层保护层,所述保护层完全覆盖熔断体图形和熔断点,所述保护层露出作为熔断体电极的铜层端面;
    (h)、电极成型:上述半成品通过电镀的方式进行表面处理,最终在电极位置成型电极。
  6. 根据权利要求5所述的制造方法,其特征在于:步骤(a)中,双层金属片为一层银层级一层铜层,银层作为熔断体层,铜层作为电极层;步骤(b)中,绝 缘层为玻璃或耐高温的玻璃树脂。
  7. 根据权利要求5或6所述的制造方法,其特征在于:将熔断体层采用激光工艺或者蚀刻工艺加工出所需的熔断体图形。
  8. 根据权利要求6所述的制造方法,其特征在于:步骤(h)中,在电极位置成型电极为在铜电极上覆盖镍电极,镍电极的外层再覆盖锡电极。
  9. 根据权利要求5所述的制造方法,其特征在于:所述双层金属片使用阵列结构,经步骤(a)至步骤(g)加工成阵列结构的半成品材料,再进行分割形成单颗熔断器半成品后,经过步骤(h)进行电极成型。
  10. 根据权利要求5所述的制造方法,其特征在于:所述铜层厚度为1oz。
PCT/CN2020/099132 2019-11-06 2020-06-30 一种薄膜型熔断器及制造方法 WO2021088386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911074381.7 2019-11-06
CN201911074381.7A CN110828243B (zh) 2019-11-06 2019-11-06 一种薄膜型熔断器及制造方法

Publications (1)

Publication Number Publication Date
WO2021088386A1 true WO2021088386A1 (zh) 2021-05-14

Family

ID=69552796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099132 WO2021088386A1 (zh) 2019-11-06 2020-06-30 一种薄膜型熔断器及制造方法

Country Status (2)

Country Link
CN (1) CN110828243B (zh)
WO (1) WO2021088386A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828243B (zh) * 2019-11-06 2021-04-30 南京隆特电子有限公司 一种薄膜型熔断器及制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052989A (ja) * 2006-08-23 2008-03-06 Koa Corp チップ型回路保護素子
CN101933113A (zh) * 2009-03-30 2010-12-29 釜屋电机株式会社 片式熔断器及其制造方法
CN101944463A (zh) * 2010-08-31 2011-01-12 广东风华高新科技股份有限公司 一种薄膜片式保险丝及其制备方法
CN101964287A (zh) * 2010-10-22 2011-02-02 广东风华高新科技股份有限公司 薄膜片式保险丝及其制备方法
CN102623254A (zh) * 2012-04-25 2012-08-01 东莞市贝特电子科技股份有限公司 片式保险丝的制造方法
CN102646550A (zh) * 2012-04-20 2012-08-22 中国振华集团云科电子有限公司 片式熔断器的制作方法及该片式熔断器
CN104813433A (zh) * 2012-09-28 2015-07-29 釜屋电机株式会社 片式熔断器和片式熔断器的制造方法
CN110828243A (zh) * 2019-11-06 2020-02-21 南京隆特电子有限公司 一种薄膜型熔断器及制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052989A (ja) * 2006-08-23 2008-03-06 Koa Corp チップ型回路保護素子
CN101933113A (zh) * 2009-03-30 2010-12-29 釜屋电机株式会社 片式熔断器及其制造方法
CN101944463A (zh) * 2010-08-31 2011-01-12 广东风华高新科技股份有限公司 一种薄膜片式保险丝及其制备方法
CN101964287A (zh) * 2010-10-22 2011-02-02 广东风华高新科技股份有限公司 薄膜片式保险丝及其制备方法
CN102646550A (zh) * 2012-04-20 2012-08-22 中国振华集团云科电子有限公司 片式熔断器的制作方法及该片式熔断器
CN102623254A (zh) * 2012-04-25 2012-08-01 东莞市贝特电子科技股份有限公司 片式保险丝的制造方法
CN104813433A (zh) * 2012-09-28 2015-07-29 釜屋电机株式会社 片式熔断器和片式熔断器的制造方法
CN110828243A (zh) * 2019-11-06 2020-02-21 南京隆特电子有限公司 一种薄膜型熔断器及制造方法

Also Published As

Publication number Publication date
CN110828243B (zh) 2021-04-30
CN110828243A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
TWI274363B (en) Low resistance polymer matrix fuse apparatus and method
JP4632358B2 (ja) チップ型ヒューズ
JP6437262B2 (ja) 実装体の製造方法、温度ヒューズ素子の実装方法及び温度ヒューズ素子
JP2004214033A (ja) 保護素子
US20160372293A1 (en) Fuse in chip design
JP2006237008A (ja) 低抵抗ヒューズおよび低抵抗ヒューズを製造する方法
US20090009281A1 (en) Fuse element and manufacturing method thereof
JP2005243621A (ja) 低抵抗ポリマーマトリックスヒューズの装置および方法
TWI497535B (zh) 具有軟性材料層之微電阻元件及其製造方法
JP2008294012A (ja) 薄型固体電解コンデンサ
JP2013516068A (ja) ハイパワー放熱端子を備えた表面実装抵抗器およびその製造方法
WO2009104279A1 (ja) チップヒューズ及びその製造方法
WO2021088386A1 (zh) 一种薄膜型熔断器及制造方法
JP2007227718A (ja) 抵抗素子を有する電子部品およびその製造法
TWM363673U (en) Structure of surface mount resistor fuse
US20010008167A1 (en) Method for manufacturing a PTC element
JP5027284B2 (ja) チップヒューズとその製造方法
JP2004319195A (ja) チップ型ヒューズ
JP2006173441A (ja) 固体電解コンデンサの製造方法
JP4306892B2 (ja) 回路保護素子の製造方法
TWI740468B (zh) 過電流保護裝置及其製造方法
JP2024060298A (ja) 走査アンテナ及び走査アンテナの製造方法
JPH02106029A (ja) モールドチップタンタル固体電解コンデンサ
JPH0130779Y2 (zh)
JP2016039283A (ja) 薄膜キャパシタシートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885974

Country of ref document: EP

Kind code of ref document: A1