M363673 _ 五、新型說明. 【新型所屬之技術領域】 本創作係提供一種表面接著型電阻保險絲結構,尤指 一種岢精確地控制該電阻保險絲結構中昝熱電阻線路層之 電阻值,而不易產生誤差之表面接著型電阻保險絲結構。 【先前技術】 - 就不僅可防止過電流,亦可防止過電壓之保護元件而 _· 言,周知的有:在基板上積層發熱體與低溶點金屬體而形 成之保護元件;而習有之保護元件,在異常時發熱體會通 電,藉由發熱體之發熱,來使低熔點金屬體熔融分離。熔 融之低熔點金屬體,對於載置有低熔點金屬體的電極表面 具有良好的附著性,會被拉到電極上,結果,因低熔點金 屬體的熔斷而將電流切斷。 如第一圖所示即為一種習有保護元件之結構示意 圖,該保護元件1主要設有一基板11,該基板11上積層 _ 有發熱電阻體12、低熔點之熔絲單元13以及第一、第二、 第三端電極141、142、143,且該發熱電阻體12與低熔點 之熔絲單元13係藉由線路15相互連接,該發熱電阻體12 係連接覆蓋於第一端電極141與線路15上,該熔絲單元 . 13則連接覆蓋於第二、第三端電極142、143及線路15上, 而當異常狀態(例如過電壓或過電流)時,該發熱電阻體12 發熱則使低熔點之熔絲單元13熔融分離,以切斷電流達到 保護電路之作用。 而習有保護元件中,該基板1上先成型有各端電極 3 M363673 • 141、142、143以及線路15後再形成發熱電阻體12以及熔絲 單元13,其成型步驟較為繁複;而為了達到保護電路的精 度,所使用的發熱電阻體的阻值誤差必須越小越好,亦即 精度愈高,4同時當有大電流流經發熱電阻體時會產生高 熱,所以發熱電阻體須考慮其產生之焦耳熱量熱傳導至低 熔點熔絲單元之熱效率問題,而且發熱電阻體的電阻溫度 係數必須越低越好,以降低因溫升而造成的阻值偏差,維 持其電阻值精度,使發熱電阻體可在特定額定電流條件 - 下,產生特定的焦耳熱量,使得低炫點溶絲單元因吸收該 > 特定的焦耳熱量導致其溫度上昇至某特定溫度而熔斷。 【新型内容】 本創作之主要目的即係在提供一種可精確地控制該電 阻保險絲結構中發熱電阻線路層之電阻值,而不易產生誤 差之表面接者型電阻保險絲結構。 為達上述目的,本創作之表面接著型電阻保險絲結構 至少包含有:基板、至少四個端電極、發熱電阻線路層以 ,及熔絲層,各端電極以及發熱電阻線路層係同時形成於該 基板上,且發熱電阻線路層係與其中二端電極相互分離, 而係與另外二相對端電極相互連接形成一體,該發熱電阻 ; 線路層上設有第一保護層,該發熱電阻線路層及第一保護 層表面設有切割口,而該第一保護層表面並設有第二保護 層,以將該切割口完全覆蓋,該熔絲層則連接覆蓋於另外 二相對端電極上,不僅結構成形簡便,且可更精確地控制 該發熱電阻線路層之電阻值。 4 M363673 _ 【實施方式】 本創作之特點,可參閱本案圖式及實施例之詳細說明 而獲得清楚地瞭解。 本創作「表面接著型電阻保險絲結構」,其中,該電阻 保險絲結構2,如第二圖及第三圖所示,主要係於一基板 21表面上同時設置有至少四個端電極、發熱電阻線路層 23,圖中係設有第一、第二、第三及第四端電極221、222、 223及224,各端電極221、222、223及224彼此位於邊侧 並相互分離,其中第一、第二端電極221、222係與發熱電 B 阻線路層23相互分離,該發熱電阻線路層23係與另外二 相對之第三、第四端電極223、224形成電連接,使其發熱 電阻線路層23連接第三、第四端電極223、224形成一體, 該發熱電阻線路層23上設有第一保護層251,該發熱電阻 線路層23及第一保護層251表面設有切割口 252,而該第 一保護層251表面並設有第二保護層253,以將該切割口 252完全覆蓋,以改善習有厚膜電阻經雷射修正阻值後再 覆蓋保護層時,由於電阻體將大面積接觸該保護層,會造 ί 成電阻體之電阻值產生較大之誤差,更可精確地控制該發 熱電阻線路層之電阻值。 而該第二保護層253上方並設有熔絲層26,且該熔絲 層26並連接覆蓋於另外二個第一端電極221及第二端電極 222上,該熔絲層26上方亦可設有絕緣層27 ;當然,亦可 於該第一、第二端電極221、222分別由基板21表面延伸 至相鄰侧面形成第一、第二侧導電部225、226,如第四圖 所示,並於該整體表面上亦可進一步設有第三保護層28, 該第三保護層28可以為具低導熱率之熱阻絕緣材質。 5 M363673 而本創作之製造方法,如第五圖所示,係包含有下列 步驟: 步驟A、提供一表面覆蓋有金屬層31之基板21,如第 六圖所示,該基板21可4以為具耐熱性及尺寸安定性佳之材 料可為有機材料如:環氧樹脂含浸玻璃纖維、聚亞醯胺樹 脂及聚亞醯胺樹脂含浸玻璃纖維等及無機材料如陶瓷等, 該金屬層31可為具高電阻率之合金材料,例如可為鎳鉻、 鎳銅、錄合金、猛銅、銅合金等。 步驟B、於該金屬層31上同時形成有至少四個端電極 22卜222、223、224以及發熱電阻線路層23,如第七圖所 示,且該發熱電阻線路層23係連接其中第三、第四端電極 223、224,使其發熱電阻線路層23連接第三、第四端電極 223、224形成一體,其中可藉由貼乾膜、UV曝光、顯影、 蝕刻及剝膜等工序成型。 步驟C、可藉由印刷方式於發熱電阻線路層23表面形 成第一保護層251,如第八圖所示,該第一保護層251可 以為具高導熱率之絕緣材質,例如可以為高分子含有高導 熱率之無機填充料之高分子複合材料,其中,高分子材料 可為環氧樹脂、^夕樹脂、聚亞酸胺樹脂等熱固性樹脂材料 或聚醯胺、聚碳酸脂及液晶高分子材料等熱塑性樹脂材 料,而高導熱率之無機填充料可為二氧化矽、氧化鋁、氮 化鋁、碳化矽及氧化鈹等。 步驟D、使用雷射或機械調阻機調整該發熱電阻線路 層23之電阻值,且於該發熱電阻線路層23及第一保護層 251表面形成有切割口 252,如第九圖所示。 步驟E、形成第二保護層253於第一保護層251表面, 6 M3 63 673 ^ 並將該切割口 2 5 2完全覆蓋,如第十圖所示,而該第二保 護層253可以與第一保護層251為相同材質(高導熱率之絕 緣材質)。 4 步驟F、形成熔絲層26,該熔絲層26係連接覆蓋於另 外二個第一、第二端電極221、222上,則完成如第二圖及 第三圖所示之電阻保險絲結構2,而該熔絲層26上方亦可 設有絕緣層27,該絕緣層27可以為含松香樹脂類之助焊 劑。 如第十一圖為本創作之第三實施例,其同樣設有:基 板21、複數端電極(第一、第二、第三、第四、第五及第 六端電極221、222、223、224、227、228)、發熱電阻線 路層23以及熔絲層26,其中該基板之第一表面211係同 時設有第一、第二、第三及第四端電極221、222、223、 224及發熱電阻線路層23,請同時參閱第十二圖所示,而 基板之第二表面212亦設有第五、第六端電極227、228及 熔絲層26,請同時參閱第十三圖所示,該第一、第二表面 211、212係相對應設置,該熔絲層26與發熱電阻線路層 > 23係藉由連接組件29連接,該連接组件29設有穿孔291 以及設於穿孔291中之連接層292,該穿孔291則設於熔 絲層2 6與發熱電阻線路層2 3間,如第十四圖所示,以構 成熔絲層26與發熱電阻線路層23之連接;當然,亦可於 該基板第一表面211之第一、第二端電極221、222分別延 伸至相鄰侧面形成第一、第二侧導電部225、226,分別再 延伸至基板之第二表面212,分別連接第二表面212上之 第五、第六端電極227、228,如第十五圖所示,而成為本 創作之第四實施例,並於該整體表面上亦可進一步設有第 7 M363673 三保護層28,該第三保護層28可以為具低導熱率之熱阻 絕緣材質。 本創作相較於習有係具有下列優點: 4 1、各端電極及發熱電阻線路層係藉由單一步驟同時成 型,其加工較為簡便。 2、 本創作先進行覆膜後,再進行修正電阻值,並進行 第二次覆膜,該第二次覆膜時與電阻層之接觸面積僅限於 切割口處,所造成電阻值誤差之影響將微乎其微。 3、 該發熱電阻線路層為可具有低電阻溫度係數者(low temperature coefficient of resistance),可降低因溫 度升高而造成的電阻值偏差,維持其電阻值精度。 本創作之技術内容及技術特點已揭示如上,然而熟悉 本項技術之人士仍可能基於本創作之揭示而作各種不背離 本案創作精神之替換及修飾。因此,本創作之保護範圍應 不限於實施例所揭示者,而應包括各種不背離本創作之替 換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡單說明】 第一圖係為習有保護元件之結構示意圖。 第二圖係為本創作中電阻保險絲結構之結構剖視圖。 第三圖係為本創作中電阻保險絲結構第一實施例之結構示 意圖。 第四圖係為本創作中電阻保險絲結構第二實施例之結構示 意圖。 第五圖係為本創作中電阻保險絲結構之製造方法流程示意 圖。 M363673 第六圖至第十圖係為本創作中電阻保險絲結構製造流程之 結構示意圖。 第十一圖係為本創作中電阻保險絲結構第三實施例之結構 示意圖。 4 第十二圖係為第三實施例中基板第一表面之結構示意圖。 第十三圖係為第三實施例中基板第二表面之結構示意圖。 第十四圖係為第三實施例中電阻保險絲結構之結構剖視 圖。 第十五圖係為本創作中電阻保險絲結構第四實施例之結構 .示意圖。 【主要元件代表符號說明】 保護元件1 第一侧導電部225 基板11 第二侧導電部226 發熱電阻體12 第五端電極227 低熔點之熔絲單元13 第六端電極228 第一端電極141 第一表面211 第二端電極142 第二表面212 第三端電極143 發熱電阻線路層23 線路15 第一保護層251 電阻保險絲結構2 切割口 252 基板21 第二保護層253 第一端電極221 熔絲層26 第二端電極222 絕緣層2 7 第三端電極223 第三保護層28 第四端電極224 連接組件29 9 M363673 . 穿孔291 金屬層31 連接層292M363673 _ V. New description. [New technical field] This creation provides a surface-on-resistance fuse structure, especially a kind of 岢 accurately controlling the resistance value of the thermal resistance circuit layer in the resistor fuse structure, which is not easy to produce. The surface of the error is followed by a resistor fuse structure. [Prior Art] - It is possible to prevent overcurrent and prevent overvoltage protection components. _· It is known that a protective element is formed by laminating a heating element and a low melting point metal body on a substrate; In the protective element, when the abnormality occurs, the heating element is energized, and the low-melting-point metal body is melted and separated by the heat generation of the heating element. The molten low-melting metal body has good adhesion to the surface of the electrode on which the low-melting-point metal body is placed, and is pulled onto the electrode. As a result, the current is cut off by the melting of the low-melting metal body. As shown in the first figure, it is a schematic structural view of a conventional protective element. The protective element 1 is mainly provided with a substrate 11 on which a heat generating resistor 12, a low melting point fuse unit 13 and a first layer are stacked. The second and third end electrodes 141, 142, and 143, and the heating resistor 12 and the low melting point fuse unit 13 are connected to each other by a line 15 which is connected to the first end electrode 141 and On the line 15, the fuse unit 13 is connected to the second and third terminal electrodes 142, 143 and the line 15, and when the abnormal state (for example, overvoltage or overcurrent), the heating resistor 12 is heated. The low melting point fuse unit 13 is melted and separated to cut off the current to function as a protection circuit. In the conventional protective element, the end electrodes 3 M363673 • 141, 142, and 143 and the line 15 are formed on the substrate 1 to form the heating resistor 12 and the fuse unit 13. The molding step is complicated; The accuracy of the protection circuit, the resistance error of the heating resistor used must be as small as possible, that is, the higher the accuracy, 4 at the same time, when a large current flows through the heating resistor, high heat is generated, so the heating resistor must be considered. The thermal efficiency of the generated Joule heat is transferred to the low melting point fuse unit, and the temperature coefficient of resistance of the heating resistor must be as low as possible to reduce the resistance deviation caused by the temperature rise, maintain the resistance value precision, and make the heating resistor The body can generate a specific amount of Joule heat under a specific rated current condition, such that the low-dashed filament unit is blown by absorbing the specific Joule heat to cause its temperature to rise to a certain temperature. [New content] The main purpose of this creation is to provide a surface-contact type resistor fuse structure that can accurately control the resistance value of the heating resistor circuit layer in the resistor fuse structure without being prone to errors. In order to achieve the above object, the surface-on-resistance fuse structure of the present invention comprises at least: a substrate, at least four terminal electrodes, a heating resistor circuit layer, and a fuse layer, wherein each terminal electrode and the heating resistor circuit layer are simultaneously formed on the substrate On the substrate, and the heating resistor circuit layer is separated from the two end electrodes thereof, and is connected to the other two opposite end electrodes to form an integral body, the heating resistor; the circuit layer is provided with a first protective layer, the heating resistor circuit layer and The surface of the first protective layer is provided with a cutting opening, and the surface of the first protective layer is provided with a second protective layer to completely cover the cutting opening, and the fuse layer is connected to cover the other two opposite end electrodes, not only the structure The forming is simple, and the resistance value of the heating resistor circuit layer can be controlled more accurately. 4 M363673 _ [Embodiment] The characteristics of this creation can be clearly understood by referring to the detailed description of the drawings and the examples. The present invention relates to a "surface-on-resistance fuse structure", wherein the resistor fuse structure 2, as shown in the second and third figures, is mainly provided on the surface of a substrate 21 with at least four terminal electrodes and a heating resistor circuit. The layer 23 is provided with first, second, third and fourth end electrodes 221, 222, 223 and 224, and the end electrodes 221, 222, 223 and 224 are located on the side and separated from each other, wherein the first The second end electrodes 221 and 222 are separated from the heating electric resistance circuit layer 23, and the heating resistor circuit layer 23 is electrically connected to the other third and fourth end electrodes 223 and 224, so that the heating resistor is formed. The circuit layer 23 is connected to the third and fourth end electrodes 223 and 224, and the first protective layer 251 is disposed on the heating resistor circuit layer 23, and the surface of the heating resistor circuit layer 23 and the first protective layer 251 is provided with a cutting opening 252. And the surface of the first protective layer 251 is provided with a second protective layer 253 to completely cover the cutting opening 252, so as to improve the resistance of the conventional thick film resistor after the laser correction resistance is covered, due to the resistor body Will contact the protective layer over a large area Ί will make the resistance of the resistor to the greater of the error, more precise control of the resistance value of the wiring layer of the heat generating resistor. A fuse layer 26 is disposed above the second protective layer 253, and the fuse layer 26 is connected to cover the other two first end electrodes 221 and the second end electrode 222, and the fuse layer 26 may also be over the fuse layer 26 An insulating layer 27 is provided; of course, the first and second terminal electrodes 221 and 222 may respectively extend from the surface of the substrate 21 to the adjacent side surfaces to form the first and second side conductive portions 225 and 226, as shown in the fourth figure. Further, a third protective layer 28 may be further disposed on the entire surface, and the third protective layer 28 may be a thermal resistance insulating material having a low thermal conductivity. 5 M363673 The manufacturing method of the present invention, as shown in the fifth figure, comprises the following steps: Step A: providing a substrate 21 having a surface covered with a metal layer 31, as shown in the sixth figure, the substrate 21 can be considered as The material having good heat resistance and dimensional stability may be an organic material such as epoxy resin impregnated glass fiber, polyimide resin and polyamidene resin impregnated glass fiber, and inorganic materials such as ceramics, etc., the metal layer 31 may be The alloy material having high electrical resistivity may be, for example, nickel chromium, nickel copper, alloy, copper, copper alloy or the like. Step B, at least four terminal electrodes 22, 222, 223, and 224 and a heat generating resistor circuit layer 23 are simultaneously formed on the metal layer 31, as shown in the seventh figure, and the heat generating resistor circuit layer 23 is connected to the third layer. The fourth end electrodes 223 and 224 are formed such that the heating resistor circuit layer 23 is connected to the third and fourth end electrodes 223 and 224, and can be formed by laminating film, UV exposure, development, etching, and stripping. . Step C, the first protective layer 251 can be formed on the surface of the heating resistor circuit layer 23 by printing. As shown in FIG. 8 , the first protective layer 251 can be an insulating material with high thermal conductivity, for example, a polymer. A polymer composite material containing an inorganic filler having a high thermal conductivity, wherein the polymer material may be a thermosetting resin material such as an epoxy resin, an epoxy resin, or a polyamic acid amine resin, or a polyamine, a polycarbonate, or a liquid crystal polymer. A thermoplastic resin material such as a material, and the inorganic filler having a high thermal conductivity may be cerium oxide, aluminum oxide, aluminum nitride, cerium carbide, cerium oxide or the like. In step D, the resistance value of the heating resistor circuit layer 23 is adjusted by using a laser or a mechanically controlled resistor, and a cutting opening 252 is formed on the surface of the heating resistor circuit layer 23 and the first protective layer 251, as shown in FIG. Step E, forming a second protective layer 253 on the surface of the first protective layer 251, 6 M3 63 673 ^ and completely covering the cutting opening 2 5 2, as shown in the tenth figure, and the second protective layer 253 can be A protective layer 251 is made of the same material (insulating material with high thermal conductivity). 4 Step F, forming a fuse layer 26, the fuse layer 26 is connected to cover the other two first and second end electrodes 221, 222, then complete the resistor fuse structure as shown in the second figure and the third figure 2, and the insulating layer 27 may be disposed above the fuse layer 26, and the insulating layer 27 may be a flux containing a rosin resin. 11 is a third embodiment of the present invention, which is also provided with a substrate 21 and a plurality of terminal electrodes (first, second, third, fourth, fifth and sixth terminal electrodes 221, 222, 223). 224, 227, 228), the heating resistor circuit layer 23 and the fuse layer 26, wherein the first surface 211 of the substrate is provided with first, second, third and fourth terminal electrodes 221, 222, 223, 224 and the heating resistor circuit layer 23, please also refer to the twelfth figure, and the second surface 212 of the substrate is also provided with the fifth and sixth end electrodes 227, 228 and the fuse layer 26, please also refer to the thirteenth As shown in the figure, the first and second surfaces 211 and 212 are correspondingly disposed, and the fuse layer 26 and the heat-generating resistor circuit layer are connected by a connecting component 29, and the connecting component 29 is provided with a through hole 291 and In the connection layer 292 in the through hole 291, the through hole 291 is disposed between the fuse layer 26 and the heat generating resistor circuit layer 23, as shown in FIG. 14 to form the fuse layer 26 and the heat generating resistor circuit layer 23. Connecting; of course, the first and second end electrodes 221, 222 of the first surface 211 of the substrate may extend to adjacent Forming first and second side conductive portions 225, 226, respectively extending to the second surface 212 of the substrate, respectively connecting the fifth and sixth end electrodes 227, 228 on the second surface 212, as shown in FIG. The fourth embodiment of the present invention is further provided with a seventh M363673 protective layer 28, which may be a thermal resistance insulating material having a low thermal conductivity. Compared with Xiyou, this creation has the following advantages: 4 1. Each terminal electrode and the heating resistor circuit layer are simultaneously formed by a single step, and the processing is relatively simple. 2. After the film is first coated, the resistance value is corrected and a second film is applied. The contact area of the second film with the resistive layer is limited to the cutting port, and the resistance value error is caused. Will be minimal. 3. The heating resistor circuit layer is a low temperature coefficient of resistance, which can reduce the deviation of the resistance value caused by the temperature rise and maintain the accuracy of the resistance value. The technical content and technical features of the present invention have been disclosed above, but those skilled in the art may still make various substitutions and modifications without departing from the spirit of the present invention based on the disclosure of the present invention. Therefore, the scope of protection of the present invention is not limited to the embodiments disclosed, but includes various alternatives and modifications that do not depart from the present invention and are covered by the following claims. [Simple description of the diagram] The first diagram is a schematic diagram of the structure of the conventional protection component. The second figure is a cross-sectional view of the structure of the resistor fuse in the present invention. The third figure is a schematic view of the structure of the first embodiment of the resistor fuse structure in the present invention. The fourth figure is a schematic view of the structure of the second embodiment of the resistor fuse structure in the present invention. The fifth figure is a schematic flow chart of the manufacturing method of the resistor fuse structure in the present invention. M363673 The sixth to tenth drawings are the structural diagrams of the manufacturing process of the resistor fuse structure in this creation. The eleventh figure is a schematic view showing the structure of the third embodiment of the resistor fuse structure in the present invention. 4Twelfth is a schematic structural view of the first surface of the substrate in the third embodiment. The thirteenth drawing is a schematic structural view of the second surface of the substrate in the third embodiment. Fig. 14 is a cross-sectional view showing the structure of a resistor fuse in the third embodiment. The fifteenth figure is a schematic view of the structure of the fourth embodiment of the resistor fuse structure in the present invention. [Description of main component representative symbols] Protective element 1 First side conductive portion 225 Substrate 11 Second side conductive portion 226 Heating resistor 12 Fifth end electrode 227 Low melting point fuse unit 13 Sixth end electrode 228 First end electrode 141 First surface 211 second end electrode 142 second surface 212 third end electrode 143 heating resistance circuit layer 23 line 15 first protective layer 251 resistance fuse structure 2 cutting opening 252 substrate 21 second protective layer 253 first end electrode 221 melting Silk layer 26 second end electrode 222 insulating layer 2 7 third end electrode 223 third protective layer 28 fourth end electrode 224 connection assembly 29 9 M363673 . perforation 291 metal layer 31 connection layer 292
1010