WO2021088078A1 - 参考信号传输方法及装置 - Google Patents

参考信号传输方法及装置 Download PDF

Info

Publication number
WO2021088078A1
WO2021088078A1 PCT/CN2019/116878 CN2019116878W WO2021088078A1 WO 2021088078 A1 WO2021088078 A1 WO 2021088078A1 CN 2019116878 W CN2019116878 W CN 2019116878W WO 2021088078 A1 WO2021088078 A1 WO 2021088078A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
frequency domain
reference signal
target reference
time domain
Prior art date
Application number
PCT/CN2019/116878
Other languages
English (en)
French (fr)
Inventor
刘显达
刘鹍鹏
纪刘榴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19951969.5A priority Critical patent/EP4040890A4/en
Priority to PCT/CN2019/116878 priority patent/WO2021088078A1/zh
Priority to CN201980101979.2A priority patent/CN114631375B/zh
Publication of WO2021088078A1 publication Critical patent/WO2021088078A1/zh
Priority to US17/737,526 priority patent/US20220272728A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for transmitting a reference signal.
  • phase tracking reference signal Phase tracking reference signal
  • PDSCH physical downlink shared channel
  • multiple sites can support the same PDSCH transmission.
  • the transmission path of each site is very different. Therefore, the data transmitted by each site and reference signals such as DMRS will adopt different QCL assumptions. .
  • the QCL hypothesis is used to characterize the large-scale parameters used in channel estimation, and then these large-scale parameters are used to receive reference signals such as PTRS or DMRS to perform channel estimation.
  • the total time-domain resources for scheduling the PDSCH may correspond to at least two QCL hypotheses respectively.
  • the time-domain density and frequency-domain density used by PTRS still use a determination mechanism similar to the single-site scenario, that is, based on the total frequency domain resources occupied by the PDSCH (that is, the scheduled time-frequency resources). Confirmation will lead to sparse distribution of PTRS corresponding to each QCL hypothesis, resulting in inaccurate phase estimation and poor transmission performance.
  • the present application provides a reference signal transmission method and device, which can improve the accuracy of channel estimation.
  • this application provides a reference signal transmission method.
  • the frequency domain resources to be scheduled include the first frequency domain resources and the second frequency domain resources.
  • the receiving end can determine the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB ; according to the frequency domain density K, determine the third frequency domain resource carrying the target reference signal in the first frequency domain resource, and, the second The fourth frequency domain resource carrying the target reference signal among the frequency domain resources.
  • the first frequency domain resource is associated with the first QCL hypothesis
  • the second frequency domain resource is associated with the second QCL hypothesis.
  • the receiving end may adopt the first QCL hypothesis to receive the target reference signal carried in the third frequency domain resource, and/or adopt the second QCL hypothesis to receive the target reference signal carried in the fourth frequency domain resource.
  • the number of frequency domain resources M RB is greater than zero and less than N RB
  • the N RB is the number of scheduled frequency domain resources.
  • the frequency domain density K determined by the reference signal transmission method using M RB is relatively small. Since the frequency domain density K means that the target reference signal is mapped once every K frequency domain resource blocks, the smaller K is, the frequency domain resources bear The denser the target reference signal, which can improve the accuracy of channel estimation.
  • the target reference signal port corresponding to the target reference signal carried in the third frequency domain resource is associated with the DMRS port corresponding to the demodulation reference signal DMRS carried in the first frequency domain resource; and the fourth The target reference signal port corresponding to the target reference signal carried in the frequency domain resource is associated with the DMRS port corresponding to the DMRS carried in the second frequency domain resource.
  • the target reference signal port is associated with the DMRS port, the target reference signal corresponding to the target reference signal port can be based on the DMRS measurement corresponding to the DMRS port to obtain the QCL hypothesis, and then the QCL hypothesis is used to receive the PTRS; and the target reference signal is used for channeling Estimate, and use the channel estimation result and the QCL hypothesis to receive the DMRS corresponding to the DMRS port.
  • the receiving end may also use the channel estimation result of the target reference signal corresponding to the target reference signal port to assist the channel estimation of the DMRS.
  • the M RB is equal to the N RB divided by N QCL and rounded up, or equal to the N RB divided by N QCL and rounded down;
  • the N QCL is The total number of QCL hypotheses associated with the scheduled frequency domain resources. The total number is the number of TCI states or QCL hypotheses indicated by the TCI field in the DCI.
  • the first frequency domain resource and the second frequency domain resource are used to carry PDSCH or PUSCH.
  • the QCL assumption only includes Type D.
  • N QCL is 2.
  • N QCL is the number of TCI states indicated by the TCI field in the DCI.
  • N QCL is the number of TCI states indicated in the TCI field configured through RRC signaling.
  • the M RB is equal to the N RB divided by N QCL .
  • the M RB is equal to the number of the first frequency domain resources, or equal to the number of the second frequency domain resources. In other words, M RB is equal to the number of frequency domain resources associated with one QCL hypothesis among all RBs occupied by the scheduled PDSCH.
  • the third frequency domain resource that carries the target reference signal in the first frequency domain resource is determined according to the frequency domain density K, and the second frequency domain resource carries all the resources in the second frequency domain.
  • the fourth frequency domain resource of the target reference signal includes: starting from the reference frequency domain resource block in the scheduled frequency domain resource, the target reference signal is mapped once every K frequency domain resource blocks, and the target reference signal is obtained. Frequency domain resource block; from the frequency domain resource blocks carrying the target reference signal, a frequency domain resource block belonging to the first frequency domain resource is selected as the third frequency domain resource; and/or, from the frequency domain resource block carrying the target reference signal Among the frequency domain resource blocks, a frequency domain resource block belonging to the second frequency domain resource is selected as the fourth frequency domain resource.
  • mapping the target reference signal once for every K frequency domain resource blocks means that the reference frequency domain resource block is used as the starting position, and K frequency domain resource blocks are spaced apart as the frequency domain resource blocks that carry the target reference signal. , Until the last frequency domain resource block occupied by the shared channel.
  • “mapping the target reference signal once every K frequency domain resource blocks” means that the reference frequency domain resource block is used as the starting position, and every K frequency domain resource blocks are used as the frequency domain resources carrying the target reference signal. Block until the last frequency domain resource block occupied by the shared channel.
  • the third frequency domain resource carrying the target reference signal in the first frequency domain resource is determined according to the frequency domain density K, and/or the second frequency domain resource
  • the fourth frequency domain resource carrying the target reference signal in the first frequency domain resource includes: starting from the reference frequency domain resource block in the first frequency domain resource, mapping the PTRS once every K frequency domain resource blocks to obtain the target reference signal bearing The frequency domain resource block is used as the third frequency domain resource; and, starting from the reference frequency domain resource block in the second frequency domain resource, PTRS is mapped once every K frequency domain resource blocks to obtain the frequency domain carrying the target reference signal The resource block is used as the fourth frequency domain resource.
  • this implementation is compared with the previous implementation to determine the frequency domain resource carrying the target reference signal.
  • the previous implementation starts the mapping determination for the reference frequency domain resource block in the entire scheduled frequency domain resource.
  • this embodiment is to perform mapping to determine the third frequency domain resource for the reference frequency domain resource block in the first frequency domain resource as the start, and to perform mapping for the reference frequency domain resource block in the second frequency domain resource as the start.
  • the mapping determines the fourth frequency domain resource.
  • the target reference signal is a reference signal used for channel estimation or for assisting demodulation reference signal DMRS for channel estimation.
  • the target reference signal includes a phase tracking reference signal PTRS.
  • the target reference signal is associated with the DMRS.
  • this application also provides a reference signal transmission method.
  • the scheduled frequency domain resources include the first frequency domain resource and the second frequency domain resource, the first frequency domain resource is associated with the first QCL hypothesis, and the second frequency domain resource is associated with the second frequency domain resource.
  • QCL assumes association.
  • the PTRS is mapped on a frequency domain resource associated with the QCL hypothesis.
  • the method for determining the frequency domain density K is the same as the above-mentioned first aspect, and will not be described in detail here.
  • the target reference signal can be received using the first QCL hypothesis, and/or the channel estimation result of the target reference signal can be used to assist the first frequency domain resource Receiving the bearer DMRS; and, starting from the reference frequency domain resource block in the first frequency domain resource, one or more frequency domain resource blocks obtained by mapping the target reference signal once every K frequency domain resource blocks are used as the bearer The frequency domain resource of the target reference signal.
  • the target reference signal can be received using the second QCL hypothesis, and/or the channel estimation result of the target reference signal can be used to assist the first frequency domain resource Receiving the bearer DMRS; and, starting from the reference frequency domain resource block in the second frequency domain resource, one or more frequency domain resource blocks obtained by mapping the target reference signal once every K frequency domain resource blocks are used as the bearer The frequency domain resource of the target reference signal.
  • the reference signal transmission method can clarify the transmission rule of the target reference signal, thereby avoiding the problem of affecting the transmission performance due to the unclear rule.
  • the target reference signal carried on the scheduled frequency domain resource has one QCL hypothesis
  • the target reference signal is mapped on the frequency domain resources associated with the two QCL hypotheses, but the target reference signal is received in which One QCL hypothesis, the phase estimation result of the target reference signal can be shared with two QCL hypotheses.
  • the manner in which the target reference signal is mapped on the scheduled frequency domain resource and the frequency domain density K of the target reference signal may be determined based on the scheduled frequency domain resource.
  • the method for receiving the target reference signal is to adopt the first QCL hypothesis or the second QCL hypothesis to receive the target reference signal carried on the scheduled frequency domain resources.
  • the channel estimation result based on the PTRS can be used to respectively assist the reception of the DMRS carried on the first frequency domain resource and the reception of the DMRS carried on the second frequency domain resource.
  • the reference signal transmission method can clarify the transmission rule of the target reference signal when the target reference signal has a QCL hypothesis, thereby avoiding the problem that the channel estimation performance is affected by the unclear rule.
  • different QCL assumptions are used to receive data and DMRS on the same time-frequency domain resource, and the data corresponding to different QCL assumptions and DMRS correspond to different ports, or different QCL assumptions correspond to different CDM groups of DMRS, and,
  • the target reference signal on the time-frequency domain resource is limited to be received using a QCL hypothesis, that is, the target reference signal is configured as a port, and the target reference signal port is associated with a corresponding QCL hypothesis on the time-frequency resource .
  • the association relationship between the target reference signal port and the corresponding QCL hypothesis on the time-frequency resource may be predefined. Specifically, when the TCI field indicates two TCI states, the first TCI state is used to indicate the QCL hypothesis of the target reference signal by default, or the second TCI state is used to indicate the QCL hypothesis of the target reference signal by default.
  • the target reference signal port is associated with one or more DMRS ports, or is associated with one or more CDM groups.
  • the TCI state corresponding to the DMRS port or CDM is the same as the TCI state corresponding to the target reference signal port.
  • the target reference signal port is the same as the TCI status of the associated DMRS port or associated CDM group, or the QCL assumption is the same.
  • the TCI status or QCL assumption includes the QCL assumption Type A, Type B, and Type D. One or more.
  • the target reference signal port and the unrelated DMRS port, or the unrelated code division multiplexing (code division multiplexing, CDM) group have different TCI states, or the QCL assumptions are different.
  • the target reference signal port and the non-associated DMRS port, or the TCI state of the non-associated CDM group is different, or the QCL hypothesis is different, then the QCL hypothesis Type B of the target reference signal port and the non-associated DMRS port are the same.
  • the first frequency domain resource and the second frequency domain resource are used to carry PDSCH or PUSCH.
  • the QCL assumption only includes Type D.
  • the present application also provides a reference signal transmission method.
  • the frequency domain density of the target reference signal can be determined by using the aforementioned M RB or N RB , but the target reference signal is being scheduled.
  • the mapping manner in the frequency domain resources or the determination manner of the frequency domain resources carrying the target reference signal in the scheduled frequency domain resources may be separately mapped or determined for the frequency domain resources associated with different QCL hypotheses.
  • the reference signal transmission method includes: the receiving end determines the frequency domain density of the target reference signal according to M RB or N RB.
  • the receiving end starts from the reference frequency domain resource block in the first frequency domain resource, and one or more frequency domain resource blocks obtained by mapping the target reference signal once every K frequency domain resource blocks are used as the first frequency domain resource block that carries the target reference signal.
  • the receiving end uses the first QCL hypothesis to receive the target reference signal carried on the third frequency domain resource, and uses the second QCL hypothesis to receive the target reference signal carried on the fourth frequency domain resource.
  • the receiving end determines the third frequency domain resource and the fourth frequency domain resource on the first frequency domain resource and the second frequency domain resource respectively according to the same frequency domain density, and the third frequency domain resource and the fourth frequency domain resource are used in the third frequency domain resource and the fourth frequency domain resource.
  • the target reference signal is mapped on the resource at the same time.
  • the target reference signal is simultaneously mapped on the third frequency domain resource and the fourth frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are used to carry PDSCH or PUSCH.
  • the QCL assumption only includes Type D.
  • the reference signal transmission method facilitates the frequency domain resources associated with each QCL hypothesis to carry the target reference signal, thereby facilitating the channel estimation performance corresponding to each QCL hypothesis.
  • this application also provides a reference signal transmission method.
  • the reference signal transmission method helps to ensure that the time domain resources associated with each QCL hypothesis carry the target reference signal, thereby helping to ensure the channel estimation performance of each QCL hypothesis.
  • the receiving end determines the time domain density L of the target reference signal according to the modulation and coding method MCS information;
  • the reference time domain resource block in the domain resources is the start, the target reference signal is mapped once every L time domain resource blocks, and the third time domain resource carrying the target reference signal is obtained; and from the second time domain resource
  • the reference time domain resource block is the starting point, and the target reference signal is mapped once every L time domain resource blocks to obtain the fourth time domain resource carrying the target reference signal; the first QCL assumption is adopted to receive the third time domain resource
  • the target reference signal carried in the fourth time domain resource is received using the second QCL hypothesis.
  • the MCS information is used to indicate the modulation and coding scheme of the scheduled time domain resource; the scheduled time domain resource includes the first time domain resource and the second time domain resource; the first time domain resource It is associated with the first QCL hypothesis, and the second time domain resource is associated with the second QCL hypothesis.
  • the target reference signal port corresponding to the target reference signal carried in the third time domain resource is associated with the DMRS port corresponding to the demodulation reference signal DMRS carried in the first time domain resource; and the fourth time domain The target reference signal port corresponding to the target reference signal carried in the resource is associated with the DMRS port corresponding to the demodulation reference signal DMRS carried in the second time domain resource.
  • the target reference signal is a reference signal used for channel estimation or for assisting demodulation reference signal DMRS for channel estimation.
  • the target reference information includes the phase tracking reference signal PTRS.
  • the first frequency domain resource and the second frequency domain resource are used to carry PDSCH or PUSCH.
  • the QCL assumption only includes Type D.
  • the present application also provides a reference signal transmission method, which corresponds to the methods described in the first and second aspects, and is explained from the perspective of the sender.
  • the transmitting end determines the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB ; according to the frequency domain density K, determines the frequency domain density of the first frequency domain resource that carries the target reference signal The third frequency domain resource, and/or the fourth frequency domain resource carrying the target reference signal in the second frequency domain resource; the first quasi co-located QCL hypothesis is used to transmit the data carried in the third frequency domain resource The target reference signal, and/or the second quasi co-located QCL hypothesis is used to transmit the target reference signal carried in the fourth frequency domain resource.
  • the number of frequency domain resources M RB is greater than zero and less than N RB , where N RB is the number of scheduled frequency domain resources, and the scheduled frequency domain resources include the first frequency domain resources and the A second frequency domain resource; the first frequency domain resource is associated with a first quasi co-located QCL hypothesis, and the second frequency domain resource is associated with a second QCL hypothesis.
  • the target reference signal port corresponding to the target reference signal carried in the third frequency domain resource is associated with the DMRS port corresponding to the demodulation reference signal DMRS carried in the first frequency domain resource; and/or, The target reference signal port corresponding to the target reference signal carried in the fourth frequency domain resource is associated with the DMRS port corresponding to the DMRS carried in the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are used to carry PDSCH or PUSCH.
  • the QCL assumption only includes Type D.
  • the selectable value of the M RB and the mapping manner of the target reference signal can be referred to the related content of the first aspect, which will not be described in detail here.
  • this application also provides a reference signal transmission method.
  • This reference signal transmission method corresponds to the method described in the fourth aspect, and is explained from the perspective of the sending end.
  • the reference signal transmission method includes: the sending end determines the time domain density L of the target reference signal according to the modulation and coding mode MCS information; starting from the reference time domain resource block in the first time domain resource, every L time domain resource blocks The target reference signal is mapped once to obtain the third time domain resource carrying the target reference signal; and/or, starting from the reference time domain resource block in the second time domain resource, every L time domain resource blocks Map the target reference signal once to obtain the fourth time domain resource carrying the target reference signal; use the first QCL hypothesis to transmit the target reference signal carried in the third time domain resource, and/or use the second QCL hypothesis to transmit The target reference signal carried in the fourth time domain resource.
  • the MCS information is used to indicate the modulation and coding scheme of the scheduled time domain resource; the scheduled time domain resource includes the first time domain resource and the second time domain resource; the first time domain resource It is associated with the first QCL hypothesis, and the second time domain resource is associated with the second QCL hypothesis.
  • the target reference signal port corresponding to the target reference signal carried in the third time domain resource is associated with the DMRS port corresponding to the demodulation reference signal DMRS carried in the first time domain resource;
  • the target reference signal port corresponding to the target reference signal carried in the fourth time domain resource is associated with the DMRS port corresponding to the demodulation reference signal DMRS carried in the second time domain resource.
  • the first frequency domain resource and the second frequency domain resource are used to carry PDSCH or PUSCH.
  • the QCL assumption only includes Type D.
  • an embodiment of the present application also provides a communication device.
  • the communication device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device has some or all of the functions of the receiving end in the method examples described in the first aspect to the fourth aspect.
  • the function of the communication device may have some or all of the functions in the embodiments of the present application, or may have a separate function.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a transceiver unit.
  • the processing unit is configured to support the communication device to perform a corresponding function in the method provided in any one of the first aspect to the fourth aspect.
  • the transceiver unit is used to support communication between the communication device and other devices, and the other devices may be terminal devices.
  • the communication device may further include a storage unit, which is used for coupling with the processing unit and the transceiver unit, and stores the program instructions and data necessary for the communication device.
  • the communication device includes a transceiver unit and a processing unit;
  • the processing unit is configured to determine the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB;
  • the processing unit is configured to determine, according to the frequency domain density K, a third frequency domain resource carrying the target reference signal in the first frequency domain resource, and/or the second frequency domain resource carrying the target reference The fourth frequency domain resource of the signal;
  • the number of frequency domain resources M RB is greater than zero and less than N RB , where N RB is the number of frequency domain resources that are scheduled, and the scheduled frequency domain resources include the first frequency domain resources and the Second frequency domain resource;
  • the first frequency domain resource is associated with a first quasi co-located QCL hypothesis, and the second frequency domain resource is associated with a second QCL hypothesis;
  • the transceiving unit is configured to use the first quasi co-located QCL assumption to receive the target reference signal carried in the third frequency domain resource, and/or use the second quasi co-located QCL assumption to receive the target reference signal The target reference signal carried in the fourth frequency domain resource.
  • the communication device includes a transceiver unit and a processing unit;
  • the processing unit is configured to determine the time domain density L of the target reference signal according to the modulation and coding mode MCS information;
  • the processing unit is configured to start from a reference time domain resource block in the first time domain resource, map the target reference signal once every L time domain resource blocks, and obtain a third time that carries the target reference signal Domain resources; and/or, starting from the reference time domain resource block in the second time domain resource, the target reference signal is mapped once every L time domain resource blocks to obtain the fourth time that carries the target reference signal Domain resources
  • the transceiving unit is configured to adopt the first QCL assumption to receive the target reference signal carried in the third time domain resource, and/or adopt the second QCL assumption to receive the target reference signal carried in the fourth time domain resource;
  • the MCS information is used to indicate the modulation and coding scheme of the scheduled time domain resource; the scheduled time domain resource includes the first time domain resource and the second time domain resource; the first time domain resource It is associated with the first QCL hypothesis, and the second time domain resource is associated with the second QCL hypothesis.
  • the processing unit may be a processor
  • the transceiving unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the communication device includes a communication interface and a processor
  • the processor is configured to determine the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB;
  • the processor is configured to determine, according to the frequency domain density K, a third frequency domain resource carrying the target reference signal in the first frequency domain resource, and/or the second frequency domain resource carrying the target reference The fourth frequency domain resource of the signal;
  • the number of frequency domain resources M RB is greater than zero and less than N RB , where N RB is the number of frequency domain resources that are scheduled, and the scheduled frequency domain resources include the first frequency domain resources and the Second frequency domain resource;
  • the first frequency domain resource is associated with a first quasi co-located QCL hypothesis, and the second frequency domain resource is associated with a second QCL hypothesis;
  • the communication interface is configured to use the first quasi co-located QCL assumption to receive the target reference signal carried in the third frequency domain resource, and/or to use the second quasi co-located QCL assumption to receive the target reference signal.
  • the target reference signal carried in the fourth frequency domain resource.
  • the communication device includes a communication interface and a processor
  • the processor is configured to determine the time domain density L of the target reference signal according to the MCS information of the modulation and coding mode;
  • the processor is configured to start with a reference time domain resource block in the first time domain resource, map the target reference signal once for every L time domain resource blocks, and obtain a third time that carries the target reference signal Domain resources; and/or, starting from the reference time domain resource block in the second time domain resource, the target reference signal is mapped once every L time domain resource blocks to obtain the fourth time that carries the target reference signal Domain resources
  • the communication interface is configured to adopt the first QCL assumption to receive the target reference signal carried in the third time domain resource, and/or adopt the second QCL assumption to receive the target reference signal carried in the fourth time domain resource;
  • the MCS information is used to indicate the modulation and coding scheme of the scheduled time domain resource; the scheduled time domain resource includes the first time domain resource and the second time domain resource; the first time domain resource It is associated with the first QCL hypothesis, and the second time domain resource is associated with the second QCL hypothesis.
  • an embodiment of the present application also provides a communication device.
  • the communication device may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the communication device has some or all of the functions of the sending end in the method examples described in the fifth aspect to the sixth aspect.
  • the function of the communication device may have some or all of the functions in the embodiments of the present application, or may have a separate function.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a transceiver unit.
  • the processing unit is configured to support the communication device to perform a corresponding function in the method provided in any one of the fifth aspect to the sixth aspect.
  • the transceiver unit is used to support communication between the communication device and other devices, and the other devices may be terminal devices.
  • the communication device may further include a storage unit, which is used for coupling with the processing unit and the transceiver unit, and stores the program instructions and data necessary for the communication device.
  • the communication device includes a transceiver unit and a processing unit;
  • the processing unit is configured to determine the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB;
  • the processing unit is configured to determine, according to the frequency domain density K, a third frequency domain resource carrying the target reference signal in the first frequency domain resource, and/or the second frequency domain resource carrying the target reference The fourth frequency domain resource of the signal;
  • the number of frequency domain resources M RB is greater than zero and less than N RB , where N RB is the number of frequency domain resources that are scheduled, and the scheduled frequency domain resources include the first frequency domain resources and the Second frequency domain resource;
  • the first frequency domain resource is associated with a first quasi co-located QCL hypothesis, and the second frequency domain resource is associated with a second QCL hypothesis;
  • the transceiver unit is configured to use the first quasi co-located QCL hypothesis to transmit the target reference signal carried in the third frequency domain resource, and/or use the second quasi co-located QCL hypothesis to transmit the target reference signal.
  • the target reference signal carried in the fourth frequency domain resource.
  • the communication device includes a transceiver unit and a processing unit;
  • the processing unit is configured to determine the time domain density L of the target reference signal according to the modulation and coding mode MCS information;
  • the processing unit is configured to start from a reference time domain resource block in the first time domain resource, map the target reference signal once every L time domain resource blocks, and obtain a third time that carries the target reference signal Domain resources; and/or, starting from the reference time domain resource block in the second time domain resource, the target reference signal is mapped once every L time domain resource blocks to obtain the fourth time that carries the target reference signal Domain resources
  • the transceiving unit is configured to use the first QCL assumption to transmit the target reference signal carried in the third time domain resource, and/or use the second QCL assumption to receive the target reference signal carried in the fourth time domain resource;
  • the MCS information is used to indicate the modulation and coding scheme of the scheduled time domain resource; the scheduled time domain resource includes the first time domain resource and the second time domain resource; the first time domain resource Is associated with the first QCL hypothesis, and the second time domain resource is associated with the second QCL hypothesis.
  • the processing unit may be a processor
  • the transceiving unit may be a transceiver
  • the storage unit may be a memory
  • the communication device includes a transceiver and a processor
  • the processor is configured to determine the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB;
  • the processor is configured to determine, according to the frequency domain density K, a third frequency domain resource carrying the target reference signal in the first frequency domain resource, and/or the second frequency domain resource carrying the target reference The fourth frequency domain resource of the signal;
  • the number of frequency domain resources M RB is greater than zero and less than N RB , where N RB is the number of frequency domain resources that are scheduled, and the scheduled frequency domain resources include the first frequency domain resources and the Second frequency domain resource;
  • the first frequency domain resource is associated with a first quasi co-located QCL hypothesis, and the second frequency domain resource is associated with a second QCL hypothesis;
  • the communication interface is configured to use the first quasi co-located QCL hypothesis to transmit the target reference signal carried in the third frequency domain resource, and/or use the second quasi co-located QCL hypothesis to transmit the target reference signal The target reference signal carried in the fourth frequency domain resource.
  • the communication device includes a transceiver and a processor
  • the processor is configured to determine the time domain density L of the target reference signal according to the MCS information of the modulation and coding mode;
  • the processor is configured to start with a reference time domain resource block in the first time domain resource, map the target reference signal once for every L time domain resource blocks, and obtain a third time that carries the target reference signal Domain resources; and/or, starting from the reference time domain resource block in the second time domain resource, the target reference signal is mapped once every L time domain resource blocks to obtain the fourth time that carries the target reference signal Domain resources
  • the communication interface is configured to use the first QCL assumption to send the target reference signal carried in the third time domain resource, and/or adopt the second QCL assumption to receive the target reference signal carried in the fourth time domain resource;
  • the MCS information is used to indicate the modulation and coding scheme of the scheduled time domain resource; the scheduled time domain resource includes the first time domain resource and the second time domain resource; the first time domain resource It is associated with the first QCL hypothesis, and the second time domain resource is associated with the second QCL hypothesis.
  • the processor can be used to perform, for example, but not limited to, baseband related processing; the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on separate chips, or at least part or all of them may be arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system on chip. Whether each device is arranged independently on different chips or integrated on one or more chips often depends on the specific needs of product design. The embodiment of the present application does not limit the specific implementation form of the foregoing device.
  • an embodiment of the present application provides a processor for executing the methods provided in the first aspect to the sixth aspect.
  • the processes of sending and receiving the above information can be understood as output by the processor.
  • the process of the above information and the process of the processor receiving the input of the above information.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver.
  • other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor.
  • the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the processor outputs and receives, inputs and other operations, instead of transmitting, sending and receiving directly by the radio frequency circuit and antenna.
  • the foregoing processor may be a processor specifically configured to execute these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated with the processor on the same chip, or may be separately arranged on different chips.
  • ROM read only memory
  • an embodiment of the present application also provides a chip system, which includes a processor and an interface.
  • the chip system can be deployed in network equipment.
  • the interface is used to send first indication information to the second network device, the first indication information is used to request capability information of the terminal device; and to receive the first capability information from the second network device Information, the first capability information includes capability information of the terminal device.
  • the processor is used to determine the first indication information.
  • the interface is used to receive first indication information from the first network device, the first indication information is used to request capability information of the terminal device; and to send the first capability information to the first network device Information, the first capability information includes capability information of the terminal device.
  • the processor is configured to determine first capability information according to the first instruction information.
  • the chip system also includes a memory, which is used to store necessary program instructions and data for the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer software instructions used by the foregoing receiving end, including instructions for executing any one of the foregoing first to fourth aspects. The procedures involved in the method.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer software instructions used by the foregoing receiving end, including instructions for executing any one of the foregoing fifth aspect to sixth aspect The procedures involved in the method.
  • embodiments of the present application provide a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in any one of the first to fourth aspects.
  • the embodiments of the present application provide a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in any one of the fifth aspect to the sixth aspect.
  • an embodiment of the present application provides a system including at least two transmitting ends and at least one receiving end.
  • the first transmitting end determines the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB And according to the frequency domain density K, determine the third frequency domain resource carrying the target reference signal in the first frequency domain resource, and use the first quasi co-located QCL hypothesis to transmit the bearer in the third frequency domain resource The target reference signal.
  • the second sending end uses the second quasi co-located QCL hypothesis to transmit the fourth frequency domain resource in the second frequency domain resource that carries the target reference signal.
  • the target reference signal carried.
  • the receiving end determines the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB ; and according to the frequency domain density K, determines the third frequency domain resource carrying the target reference signal in the first frequency domain resource, And the fourth frequency domain resource carrying the target reference signal in the second frequency domain resource; adopting the first quasi co-located QCL hypothesis to transmit the target reference signal carried in the third frequency domain resource and adopting the The second quasi co-located QCL assumes that the target reference signal carried in the fourth frequency domain resource is transmitted.
  • the number of frequency domain resources M RB is greater than zero and less than N RB , where N RB is the number of scheduled frequency domain resources, and the scheduled frequency domain resources include the first frequency domain resources and The second frequency domain resource;
  • the first frequency domain resource is associated with a first quasi co-located QCL hypothesis, and the second frequency domain resource is associated with a second QCL hypothesis;
  • one of the first sending end and the second sending end may perform the above steps, and the corresponding receiving end may perform related operations accordingly.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of carrying PTRS in a scheduled time domain resource according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of carrying PTRS in a scheduled frequency domain resource provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a hypothetical association between PRG and QCL in a scheduled time domain resource according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of carrying PTRS in another scheduled frequency domain resource provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of carrying PTRS in another scheduled frequency domain resource provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a reference signal transmission method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of carrying PTRS in another scheduled frequency domain resource provided by an embodiment of the present application.
  • FIG. 9A is a schematic diagram of carrying PTRS in another scheduled frequency domain resource provided by an embodiment of the present application.
  • FIG. 9B is a schematic diagram of carrying PTRS in another scheduled frequency domain resource provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another reference signal transmission method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of carrying PTRS in frequency domain resources that are scheduled when one PTRS port is configured according to an embodiment of the present application;
  • FIG. 12 is a schematic flowchart of yet another reference signal transmission method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of yet another reference signal transmission method provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of carrying PTRS in a scheduled time domain resource according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • the technical solution of the present application can be specifically applied to various communication systems.
  • the technical solutions of this application can also be used in future networks, such as 5G systems, 6G systems, etc., can also be called new radio (NR) systems; or can also be used from device to device (device to device, D2D) system, machine to machine (machine to machine, M2M) system, etc.
  • NR new radio
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the application.
  • the communication system may include, but is not limited to, one network device and one terminal device.
  • the number and form of devices shown in FIG. 1 are used as examples and do not constitute a limitation to the embodiment of the present application. In actual applications, it may include two or more Network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 takes two network devices, and the two network devices can provide services for the same terminal device as an example.
  • the network device in FIG. 1 takes the transmission receiving point TRP as an example
  • the terminal device takes a mobile phone as an example.
  • the network device may be a device with a wireless transceiver function or a chip that can be installed in the device.
  • the network device includes, but is not limited to: evolved node B (evolved node B, eNB), radio network controller (radio network controller).
  • RNC node B
  • BSC network equipment controller
  • BTS network equipment transceiver station
  • home network equipment for example, home evolved Node B, or home Node B, HNB
  • BBU baseband unit
  • AP access point
  • WIFI wireless relay node
  • wireless backhaul node transmission point in wireless fidelity (WIFI) system
  • WIFI wireless fidelity
  • TRP or transmission point, TP transmission point
  • the gNB or transmission point may include a centralized unit (CU) and a distributed unit (DU, distributed unit).
  • the gNB or transmission point may also include a radio unit (RU).
  • the CU implements part of the functions of the gNB or transmission point, and the DU implements some of the functions of the gNB or transmission point.
  • the CU implements radio resource control (RRC) and the packet data convergence protocol (PDCP) layer.
  • Function, DU realizes radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • Function, DU realizes radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network (core network, CN), which is not limited here.
  • terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, user agent or
  • UE user equipment
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile equipment user terminal
  • user agent user agent
  • the user device can be applied to 5G, 6G and even 7G systems.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, the wireless terminal in the aforementioned V2X car networking, or the wireless terminal type RSU, etc.
  • the term "exemplary” is used to indicate an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, the term example is used to present the concept in a concrete way.
  • At least one can also be described as one or more, and the multiple can be two, three, four or more, which is not limited by this application.
  • the technical features in the technical feature are distinguished by "first”, “second”, etc., and the technical features described by the "first” and “second” There is no order or size order between them.
  • the resources in the communication system are divided into multiple symbols in terms of time. For example, multiple orthogonal frequency division multiple access (Orthogonal Frequency Division Multiple, OFDM) symbols.
  • the time domain resource block can be referred to as a time unit.
  • the time domain resource block can be one or more radio frames, one or more subframes, one or more time slots, one or more mini slots, one or more orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, discrete fourier transform spread spectrum orthogonal frequency division multiplexing (discrete fourier transform spread spectrum orthogonal frequency division multiplexing, DFT-S-OFDM) symbols, etc., can also be multiple frames Or a time window formed by subframes, such as a system information (SI) window.
  • SI system information
  • the resources in the communication system are divided into several sub-carriers in terms of frequency.
  • the frequency domain resource block may be referred to as a frequency domain unit.
  • the frequency domain resource block may be one or more resource blocks (resource block, RB), one or more subcarriers, and so on.
  • resource block resource block
  • the number of subcarriers included in one RB is 12.
  • One subcarrier in one RB in the frequency domain and one OFDM symbol in the time domain form a resource element (Resource Element, RE).
  • the location and quantity of scheduled frequency domain resources may be indicated by the frequency domain resource allocation (frequency domain resource allocation, FDRA) field.
  • this field can be in the form of bitmap bitmap.
  • the whole system bandwidth or part of the bandwidth BWP is divided into RB groups with granularity.
  • Each RB group is a granular resource set corresponding to a bit in the bitmap, and a certain bitmap in the bitmap.
  • a bit is set to 0 to indicate that the corresponding RB group is not scheduled, and a bit in the bitmap is set to 1 to indicate that the corresponding RB group is scheduled.
  • the size of the RB group can be one or more RBs.
  • the FDRA field may also indicate the starting position of the frequency domain occupied by the scheduling data and the size of the frequency domain occupied.
  • the location and quantity of scheduled time domain resources can be indicated through the time domain resource allocation (TDRA) field.
  • TDRA time domain resource allocation
  • this field indicates the position of the time slot or subframe occupied by the scheduling data, which can be based on the relative position based on the DCI detection time slot or subframe, or based on a time slot or subframe defined by the system. Absolute position.
  • the scheduled frequency domain resource may be the frequency domain resource occupied by the scheduled shared channel.
  • the base station scheduling PDSCH occupies 8 RBs, that is, the scheduled frequency domain resources are 8 RBs, or the number of scheduled frequency domain resources is 8.
  • the number of frequency domain resources that are scheduled is equal to the number of frequency domain resource blocks included in the frequency domain resources that are scheduled.
  • the scheduled time domain resource may be the time domain resource occupied by the shared channel.
  • the base station schedules 10 symbols for the PDSCH, that is, the scheduled time domain resources are 10 symbols, or the number of scheduled time domain resources is 10.
  • the number of time-domain resources that are scheduled is equal to the number of time-domain resource blocks included in the scheduled time-domain resources.
  • the scheduled frequency domain resources and time domain resources are indicated by downlink control information (DCI), or indicated by RRC signaling.
  • DCI downlink control information
  • RRC Radio Resource Control
  • the concept of a precoding resource group is introduced.
  • the PRG is used as the granularity to be divided into multiple RB groups, and the number of RBs included in each RB group is the value of the PRG.
  • the precoding methods (precoding) of data, target reference signals, etc., delivered in an RB group are the same.
  • the target reference signal (target resource signal, target RS) is used for channel estimation or used to assist the demodulation reference signal (decoding modulation resource signal, DMRS) for channel estimation.
  • the target reference signal is used to estimate the relevant parameters of the channel, for example, phase estimation, phase tracking, or phase estimation.
  • a phase tracking reference signal (PTRS) is used to assist the DMRS in channel estimation.
  • the target reference signal is mapped in the time-frequency resource occupied by the shared channel.
  • the target reference signal will be scheduled at the same time.
  • the target reference signal is mapped based on the time domain density L and the reference time domain resource block in the time domain resources occupied by the shared channel.
  • the time domain resources carrying the PTRS are: the time domain resources occupied by the shared channel start from the reference time domain resource block, and each L time domain resource blocks are mapped to the PTRS once to obtain one or more time domain resource blocks.
  • the first understanding of PTRS mapping every L time domain resource blocks is that the reference time domain resource block is used as the starting position, and the interval L time domain resource blocks are used as the time domain resource blocks for carrying PTRS until the shared channel occupies Until the last time domain resource block.
  • the second understanding of PTRS mapping once every L time domain resource blocks is that the reference time domain resource block is used as the starting position, and every L time domain resource block is used as the time domain resource block carrying PTRS until the shared channel occupies Until the last time domain resource block.
  • the time domain resources occupied by the shared channel are 8 symbols starting from the third symbol to the end of the tenth symbol in a slot; the reference time domain resource block and the time domain resource block are One symbol is the unit. Since DMRS will occupy the first N symbols of the time domain resource, for example, N is equal to 1 or 2, that is, the third symbol or the fourth symbol in the time slot, PTRS can occupy the N+th symbol of the time domain resource. 1 symbol and the symbols after it, that is, the 4th or 5th symbol and the symbols after it in the time slot.
  • the reference time domain resource block is the fourth symbol in the time slot, and the time domain density L is equal to 2, then, according to the first understanding mentioned above, the time domain of the PTRS is mapped
  • the offset of the time domain position of the mapped PTRS relative to the reference time domain resource block is Lxi, that is, the time domain position of the mapped PTRS is i 0 +Lxi, i can take 0, 1, 2,..., the time domain resources for mapping PTRS are: starting from the 4th symbol in the slot, PTRS is mapped every 2 symbols, and the obtained symbols carrying PTRS are the 4th, 6th, and 8th symbols in the slot. , 10 symbols.
  • the frequency domain resources occupied by the target reference signal in the frequency domain resources occupied by the shared channel may be determined based on the frequency domain density K and the reference frequency domain resource block.
  • the frequency domain resources carrying the PTRS are: the frequency domain resources occupied by the shared channel start from the reference frequency domain resource block, and the PTRS is mapped once every K frequency domain resource blocks to obtain one or more frequency domain resource blocks.
  • the first understanding of “map PTRS once every K frequency domain resource blocks” is to use the reference frequency domain resource block as the starting position, and the interval K frequency domain resource blocks as the frequency domain resource blocks carrying PTRS until the shared channel is located. Up to the last frequency domain resource block occupied. That is to say, starting from the reference frequency domain resource block, there are K frequency domain resource blocks between two adjacent frequency domain resources for carrying PTRS, that is, the reference frequency domain resource block carries PTRS, except for the reference frequency domain.
  • the frequency domain position of the mapped PTRS outside the resource block is j 0 +Kxj+1, where j 0 is the position of the reference frequency domain resource block, K is the frequency domain density, and j can be 1, 2, ....
  • the frequency domain resource block carrying the PTRS is: the frequency domain resource occupied by the shared channel starts from the reference frequency domain resource block, and the PTRS is mapped once every K frequency domain resource blocks, and one or more frequency domain resource blocks are obtained. That is, the reference frequency domain resource block carries the PTRS. Except for the reference frequency domain resource block, the frequency domain position of the mapped PTRS is j 0 +Kxj+1, where j is the position of the reference frequency domain resource block, and K is the frequency domain density , J can be 1, 2,....
  • the frequency domain resources carrying the PTRS are: the first and sixth RBs in the frequency domain resources occupied by the shared channel.
  • the reference frequency domain resource block is used as the starting position, and every K frequency domain resource blocks are used as frequency domain resource blocks that carry PTRS until the shared channel is located. Up to the last frequency domain resource block occupied. That is, the offset of the frequency domain position of the mapped PTRS relative to the reference frequency domain resource block is Kxj, where j can be 0, 1, 2, ....
  • the frequency domain resources carrying the PTRS are: the first and fifth RBs in the frequency domain resources occupied by the shared channel.
  • the subcarriers occupied by the PTRS can be determined from the frequency domain resource blocks carrying the PTRS.
  • PTRS occupies one subcarrier in one RB, and the position of the subcarrier is determined according to the index number of the DMRS port associated with the PTRS (DMRS port number for short) and the subcarrier position offset value.
  • Table 1 Represents the offset between the subcarrier occupied by the PTRS and the starting subcarrier in the RB, referred to as resource element offset (resource element offset) or subcarrier position offset value.
  • the subcarrier occupied by the PTRS is: one of the subcarrier index numbers 0, 2, 6, and 8 in the frequency domain resource block carrying the PTRS Sub-carrier.
  • the terminal equipment needs to perform channel estimation according to DMRS, PTRS, etc., and use the channel estimation result to receive corresponding data, thereby improving the data receiving performance.
  • the large-scale parameters of some channels can be used to assist the reception of signals such as DMRS and PTRS, and can also be used to assist the reception of data.
  • the QCL hypothesis is used to characterize this large-scale parameter.
  • QCL assumptions include one or more of the following parameters: angle of arrival (AoA), dominant (dominant) angle of incidence AoA, average angle of incidence, power angle spectrum (PAS) of incident angle , Angle of departure (AoD), main exit angle, average exit angle, power angle spectrum of exit angle, terminal transmit beamforming, terminal receive beamforming, spatial channel correlation, base station transmit beamforming, base station receive beamforming , Average channel gain, average channel delay (average delay), delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), spatial reception parameters (spatial Rx parameters), etc.
  • QCL assumptions include one or more of the following types of large-scale parameters:
  • QCL hypothetical types A: Doppler shift, Doppler spread, average delay, delay spread;
  • the QCL hypothesis indication method is: associating the reference signal to be received with a reference reference signal (reference RS), so that the large-scale parameters obtained through the reference reference signal can be used to process the RS to be received.
  • the reference signal to be received may be a DMRS
  • the DMRS may be associated with the measurement reference signal to indicate that the two have an association relationship of QCL Type A and Type D. Therefore, the information of QCL Type A and Type D can be obtained through the measurement reference signal.
  • the reference signal to be received may be a DMRS, and the DMRS may be associated with a PTRS to indicate that the two have an association relationship of QCL Type A and Type D.
  • the information of QCL Type A and Type D can be obtained through DMRS reception for assistance PTRS reception.
  • the reference signal to be received may be a DMRS, and the DMRS may be associated with the PTRS to indicate that the two have an association relationship of QCL Type B, and the QCL Type B information can be obtained through the DMRS to assist the reception of PTRS.
  • the reference signal to be received may be a DMRS, and the DMRS may be associated with the PTRS to indicate that the two have an association relationship of QCL Type B, and the QCL Type B information can be obtained through the PTRS to assist the reception of the DMRS.
  • the DCI will include a transmission configuration indication (transmission configuration indication, TCI) field, which indicates the QCL assumption adopted by the DMRS carried in the scheduled time-frequency resource. Since the QCL assumption adopted when the data carried in the scheduled time-frequency resource is received is the same as the QCL assumption adopted by the carried DMRS, the TCI field can also be referred to as the QCL assumption associated with the scheduled time-frequency resource . That is, a time-frequency resource is associated with a QCL hypothesis, which may indicate that the data and DMRS carried in the time-frequency resource are received using the QCL hypothesis.
  • TCI transmission configuration indication
  • PTRS is associated with DMRS.
  • the estimation result of PTRS can be used to adjust some large-scale parameters in the QCL assumption adopted by the DMRS, such as QCL types B, and PTRS can be received using the QCL assumption adopted by DMRS.
  • QCL types A and QCL types D in the QCL hypothesis are used to receive PTRS.
  • the large-scale parameters used in the reception of PTRS such as QCL Type A, Type B, and Type D, are obtained from the reception of DMRS.
  • time-frequency resources described herein may be time-domain resources, frequency-domain resources, or time-domain resources and frequency-domain resources. Therefore, this article refers to scenarios that are suitable for these three situations, collectively referred to as time-frequency resources.
  • the time-frequency resource is associated with the QCL hypothesis, which means: the time domain resource is associated with the QCL hypothesis, the frequency domain resource is associated with the QCL hypothesis, and the time domain resource and the frequency domain resource are all associated with the QCL hypothesis.
  • association with the QCL hypothesis described herein can also be referred to as the association with the TCI state.
  • Multi-station coordinated transmission scenarios can support a shared channel (also referred to as a transmission block) to be cooperatively transmitted by multiple transmission nodes (for example, multiple base stations), and multiple transmission nodes can respectively use different frequency domain resources to transmit the shared channel That is to say, the multiple frequency domain resource blocks that are scheduled are divided into two groups, and different transmission nodes respectively carry the data, target reference signals, etc. issued by them.
  • multiple transmission nodes may use different time domain resources to transmit the shared channel, that is, multiple time domain resource blocks that are scheduled are divided into two groups, and different transmission nodes are used to carry the transmitted data. Data, target reference signal, etc.
  • multiple transmission nodes may respectively use different space resources to transmit the shared channel, that is, multiple transmission ports are scheduled, and different transmission nodes respectively carry the data, target reference signals, etc. issued by them.
  • the DCI will use the TCI field to indicate the QCL hypothesis respectively adopted by the target reference signal (such as DMRS) issued by each transmission node. Since each transmission node uses different frequency domain resources to transmit the shared channel, the TCI field supports indicating that multiple QCL hypotheses are used for data and DMRS reception. Multiple QCL hypotheses can respectively correspond to different frequency domain resources, and/or time domain resources, and/or transmission port resources.
  • target reference signal such as DMRS
  • the frequency domain resources to be scheduled can be divided into frequency domain resources respectively adopted by different transmission nodes based on the PRG indication.
  • TCI status 1 and TCI status 2 indicated by the TCI field correspond to two QCL hypotheses; the scheduled frequency domain resources are divided into the first frequency domain resources and the second frequency domain resources based on the PRG mentioned above, then , TCI status 1 and TCI status 2 indicated by the TCI field can be interpreted as: the first frequency domain resource is associated with TCI status 1 or QCL hypothesis 1 indicated by TCI status 1, and the second frequency domain resource is indicated by TCI status 2 or TCI status 2 The QCL hypothesis 2 is associated.
  • the receiving end when the TCI field indicates two TCI states, according to the predefined correspondence between the two TCI states and frequency domain resources, the first frequency domain resource and TCI state 1 or TCI can be learned The QCL hypothesis 1 indicated by state 1 is associated, and the second frequency domain resource is associated with TCI state 2 or QCL hypothesis 2 indicated by TCI state 2. Then, the receiving end can receive the target reference signal carried in the first frequency domain resource based on QCL hypothesis 1 And data, etc.; and the receiving end can receive the target reference signal and data carried in the second frequency domain resource based on QCL hypothesis 2.
  • dividing the scheduled frequency domain resources based on the PRG may include:
  • the frequency domain resource (the total number of RBs included is N RB) is the first (also can be called the one with the smallest index number)
  • Each RB is the frequency domain resource used by a transmission node, that is, the receiving end adopts QCL hypothesis 1 to receive the data and target reference signal carried by the frequency domain resource; the remaining frequency domain resources are scheduled
  • Each RB is a frequency domain resource used by another transmission node, that is, the receiving end adopts QCL hypothesis 2 to receive data and target reference signals carried by the frequency domain resource.
  • the frequency domain resource corresponding to the PRG with an even number is the frequency domain resource used by a transmission node, that is, the receiving end adopts QCL assumption 1 or QCL assumption 2 to receive the data and target carried by the frequency domain resource Reference signal, etc.;
  • the frequency domain resource corresponding to the PRG with an odd number is the frequency domain resource used by another transmission node, that is, the receiving end adopts QCL hypothesis 2 or QCL hypothesis 1 to receive the data carried by the frequency domain resource and the target reference signal, etc. .
  • the first 4 RBs are a PRG, denoted as PRG0, and the latter
  • the four RBs are one PRG, which is marked as PRG1.
  • the TCI field indicates two QCL hypotheses, namely QCL hypotheses 1 and 2
  • the frequency domain resource corresponding to PRG0 is associated with QCL hypothesis 1
  • the frequency domain resource corresponding to PRG1 is associated with QCL hypothesis 2, which can be simply denoted as PRG0 and QCL Assumption 1 is associated
  • PRG1 is associated with QCL Assumption 2.
  • the frequency domain resources represented by the gray filled boxes are associated with QCL hypothesis 1
  • the frequency domain resources represented by the white filled boxes are associated with QCL hypothesis 2.
  • the former refers to the RB with the earlier index number in the scheduled frequency domain resource
  • the back refers to the RB with the lower index number in the scheduled frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are used to carry the PDSCH or the physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the QCL assumption only includes Type D.
  • the frequency domain resource occupied by the target reference signal in the scheduled frequency domain resource (also called the scheduled bandwidth), or the frequency domain resource carrying the target reference signal, can be based on the frequency domain density K and the reference frequency.
  • the domain resource block is determined.
  • the frequency domain density K of the PTRS is determined based on the number of scheduled RBs N RB .
  • N RB0 , N RB1 , and N RB2 are preset values (the values reported by the network equipment side based on the UE, and then configured to the UE through RRC signaling).
  • N is between RB N RB 0 and N RB 1
  • the frequency-domain density of 2 indicates every two RB RB has a PTRS be used to carry, or at intervals of 2 frequency-domain resource RB for determining Carry PTRS.
  • N RB is greater than N RB1 , the frequency domain density is 4, which means that one RB in every 4 RBs can be used to carry PTRS, or frequency domain resources determined with an interval of 4 RBs are used to carry PTRS.
  • one RB in every K RBs can be used to carry the PTRS, and which of the K RBs is used to carry the PTRS can be determined based on the reference RB.
  • the RB position determined according to the following formula exceeds the RB position occupied by the PDSCH, then the RB in the i-th group carrying PTRS
  • the offset between the positions relative to the reference RB is ixK, which can also be determined according to the following formula:
  • the frequency domain resources corresponding to each QCL hypothesis should be associated with a target reference signal port (such as a PTRS port), which can be understood as: Different QCL assumes that the target reference signal port on the associated frequency domain resource is a different target reference signal port, or it can also be understood as different QCL assumes that the target reference signal port on the associated frequency domain resource is the same reference signal port , But the QCL hypothesis corresponding to the target reference signal port on the frequency domain resources associated with different QCL hypotheses is determined according to the QCL hypothesis associated with the frequency domain resource where the target reference signal is located.
  • a target reference signal port such as a PTRS port
  • the PTRS is sparsely distributed on the scheduled bandwidth.
  • the frequency domain density K is determined based on N RB as described above, the PTRS distribution on the frequency domain resources associated with each QCL hypothesis will be too sparse, thereby affecting the estimation performance.
  • the hypothetical association relationship between RB and QCL shown in FIG. 5 and FIG. 4 is the same. Assuming that in Figure 5, based on N RB is equal to 8, the determined frequency domain density K is equal to 4, and the reference RB is the first RB among the 4 RBs, then based on formula (1), it can be determined that the RBs carrying PTRS are the ones in PRG0. The first RB and the first RB in PRG1. It can be seen that the four RBs associated with each QCL are assumed to carry only one PTRS, that is, only one subcarrier in one RB carries the PTRS, which can be used for phase estimation.
  • each RB will carry one PTRS, which is equivalent to the 4 RBs carrying PTRS.
  • the frequency domain density K can be determined by using a value close to the number of frequency domain resources corresponding to each QCL hypothesis, so that each QCL hypothesis corresponds to the frequency domain. There are more PTRS carried in the resource, thereby improving the phase estimation performance.
  • the reference signal transmission method may include the following steps:
  • the receiving end determines the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB;
  • the number of frequency domain resources M RB is greater than zero and less than N RB
  • the N RB is the number of frequency domain resources that are scheduled. It can be seen that the implementation method uses M RB less than N RB when determining the frequency domain density K, so the determined frequency domain density K is relatively small. According to formula (1), it can be seen that the RBs carrying PTRS are relatively close, which is beneficial to improve the PTRS bearer Intensive degree. Further, when the number of scheduled RBs is relatively small, at this time, based on the reference signal transmission method described in this application, redundant PTRS can be avoided.
  • the M RB is equal to the N RB divided by N QCL and rounded up, or equal to the N RB divided by N QCL and rounded down;
  • the N QCL is The total number of QCL hypotheses associated with the scheduled frequency domain resources. The total number is the number of TCI states or QCL hypotheses indicated by the TCI field in the DCI.
  • N QCL is 2.
  • N QCL is the number of TCI states indicated by the TCI field in the DCI.
  • N QCL is the number of TCI states indicated in the TCI field configured through RRC signaling.
  • the M RB is equal to the N RB divided by N QCL .
  • the number of frequency domain resources described herein refers to the number of frequency domain resource blocks included in the frequency domain resource. Taking the frequency domain resource block as an RB as an example, it is the number of RBs included in the frequency domain resource.
  • the M RB is equal to the number of the first frequency domain resources, or equal to the number of the second frequency domain resources. That is to say, M RB is equal to the number of RBs of frequency domain resources associated with one QCL hypothesis among all RBs occupied by the scheduled PDSCH.
  • the receiving end determines, according to the frequency domain density K, a third frequency domain resource that carries the target reference signal in the first frequency domain resource, and a fourth frequency domain that carries the target reference signal in the second frequency domain resource.
  • the scheduled frequency domain resource includes the first frequency domain resource and the second frequency domain resource; the first frequency domain resource is associated with a first quasi co-located QCL hypothesis, and the second frequency domain resource is associated with The second QCL assumes association.
  • the receiving end determines the third frequency domain resource carrying the target reference signal in the first frequency domain resource according to the frequency domain density K, including:
  • the reference frequency domain resource block in the frequency domain resources is the start, and each K frequency domain resource blocks is mapped to one or more frequency domain resource blocks obtained by the PTRS; the one or more frequency domain resource blocks belong to the first frequency domain.
  • the frequency domain resource block of the domain resource is used as the third frequency domain resource that carries the target reference signal.
  • the receiving end determines the fourth frequency domain resource carrying the target reference signal in the second frequency domain resource according to the frequency domain density K, which includes: the reference frequency domain resource block in the scheduled frequency domain resource is Initially, PTRS is mapped once every K frequency domain resource blocks to obtain one or more frequency domain resource blocks; among the one or more frequency domain resource blocks, the frequency domain resource block belonging to the second frequency domain resource is taken as The fourth frequency domain resource carrying the target reference signal.
  • the receiving end determines the frequency domain resource used to carry the target reference signal according to the frequency domain density K, including: starting from a reference frequency domain resource block in the scheduled frequency domain resources, every K frequency
  • the domain resource block maps one or more frequency domain resource blocks obtained by PTRS at one time.
  • the frequency domain resource used to carry the target reference signal belongs to the first frequency domain resource, it is the third frequency domain resource.
  • the received QCL of the target reference signal carried is assumed to refer to the first frequency domain resource associated with the first frequency domain resource. QCL assumptions. If the frequency domain resource used to carry the target reference signal belongs to the second frequency domain resource, it is the fourth frequency domain resource.
  • the received QCL hypothesis of the carried target reference signal refers to the second QCL hypothesis associated with the second frequency domain resource .
  • FIG. 8 has the same association relationship between the PRG group and the QCL hypothesis as in FIG. 5, and the same scheduled frequency domain resources.
  • M RB is equal to the N RB divided by N QCL and rounded up, that is, M RB is equal to 4. Since 4 is less than 8, if the preset value shown in Table 2 is used to determine the frequency domain density as shown in Figure 5, the frequency domain density determined by 4 can be less than the frequency domain density 4 determined by 8, so it is assumed that M RB is equal to The frequency domain density K determined by 4 is equal to 2.
  • the reference RB in the 8 RBs is the first RB in PRG0
  • every 2 RBs are mapped to PTRS once, and one or more RBs obtained are: the first and third RBs in PRG0, and the first and third RBs in PRG1.
  • the first and third RBs It can be seen that there are two RBs carrying PTRS on the frequency domain resources associated with each QCL hypothesis in Figure 8. Compared with Figure 5, the number of PTRS carried on the frequency domain resources associated with each QCL hypothesis is increased, which is beneficial Improve phase estimation performance.
  • step 102 may determine the third frequency domain resource and the fourth frequency domain resource based on the above formula (1).
  • formula (1) It can be determined based on the following formula:
  • n RNTI is the sequence value adopted by DCI.
  • the specific subcarriers carrying the PTRS in the third frequency domain resource and the fourth frequency domain resource may be determined based on the following formula:
  • the reference position of k is the starting subcarrier position in the frequency domain resource block.
  • k 1
  • the subcarrier carrying PTRS in the frequency domain resource block is a subcarrier that is offset by 1 from subcarrier 0.
  • step 102 the receiving end determines the third frequency domain resource carrying the target reference signal in the first frequency domain resource according to the frequency domain density K, including:
  • the reference frequency domain resource block in the frequency domain resource is the starting point, and one or more frequency domain resource blocks obtained by mapping the PTRS once every K frequency domain resource blocks are used as the third frequency domain resource carrying the target reference signal.
  • the receiving end determines the fourth frequency domain resource carrying the target reference signal in the second frequency domain resource according to the frequency domain density K, including: starting from the reference frequency domain resource block in the second frequency domain resource, each The K frequency domain resource blocks are mapped to one or more frequency domain resource blocks obtained by the PTRS at one time as the fourth frequency domain resource that carries the target reference signal.
  • PRG0 For PRG0, suppose that the reference frequency domain resource block in PRG0 is the first RB in it. Starting with the first RB, PTRS is mapped once every 2 RBs to obtain one The or multiple RBs are respectively: the first and third RBs in the PRG0. Similarly, for PRG1, this implementation manner can also be used to determine the RB that bears the PTRS.
  • This implementation manner is beneficial to avoid that the frequency domain resources associated with certain QCL assumptions do not carry PTRS when the frequency domain resources associated with the QCL assumptions are not continuous.
  • the above formulas (1) to (3) may also be used to determine the frequency domain resources carrying the PTRS respectively.
  • both the transmitting end and the receiving end can adopt the mapping method described in the foregoing embodiment to determine the RB that carries the PTRS.
  • the assumption of FIG. 9B is the same as that of FIG. 9A.
  • the RB carrying PTRS is determined for the frequency domain resources associated with QCL assumption 1, and then the frequency associated with QCL assumption 2.
  • the domain resource determines the RB that bears the PTRS. In this way, the PTRS distribution as shown in FIG. 9B can be obtained, so that the frequency domain resources associated with each QCL hypothesis carry PTRS.
  • the receiving end adopts the first quasi co-located QCL assumption on the third frequency domain resource to receive the target reference signal, and adopts the second quasi co-located QCL assumption on the fourth frequency domain resource Receiving the target reference signal.
  • the target reference signal carried in the third frequency domain resource is associated with the DMRS carried in the first frequency domain resource.
  • the target reference signal port (such as the PTRS port) corresponding to the target reference signal carried in the third frequency domain resource is associated with the DMRS port corresponding to the DMRS carried in the first frequency domain resource.
  • the receiving end can use the DMRS measurement carried in the third frequency domain resource to obtain the first QCL hypothesis, such as QCL hypothesis Type A or Type B or Type D to receive PTRS; the receiving end can also use the PTRS carried in the third frequency domain resource to perform Phase or phase estimation, and using the phase estimation result and the first QCL hypothesis to receive the data and DMRS carried in the first frequency domain resource.
  • the receiving end can also use the phase estimation result obtained by the PTRS to assist in the estimation of the DMRS.
  • the target reference signal carried in the third frequency domain resource corresponds to target reference signal port (such as PTRS port) 0
  • the DMRS carried in the first frequency domain resource corresponds to DMRS port 0
  • the target reference signal port (Such as PTRS port) 0 is associated with DMRS port 0, indicating that the target reference signal port (such as PTRS port) 0 and DMRS port 0 adopt the same QCL types A and QCL types D, and the target reference signal port (such as PTRS port)
  • the estimation result of the PTRS corresponding to 0 can be used to adjust the QCL type B used by DMRS port 0.
  • the target reference signal carried in the fourth frequency domain resource is associated with the DMRS carried in the second frequency domain resource.
  • the target reference signal port (such as the PTRS port) corresponding to the target reference signal carried in the fourth frequency domain resource is associated with the DMRS port corresponding to the DMRS carried in the second frequency domain resource.
  • the receiving end can use the DMRS measurement carried in the fourth frequency domain resource to obtain the second QCL hypothesis, for example, the QCL hypothesis Type A or Type B or Type D to receive PTRS; the receiving end can also use the PTRS carried in the fourth frequency domain resource to perform Phase or phase estimation, and using the phase estimation result and the second QCL hypothesis to receive the data and DMRS carried in the second frequency domain resource.
  • the receiving end can also use the phase estimation result obtained by the PTRS to assist in the estimation of the DMRS.
  • the target reference signal carried in the fourth frequency domain resource corresponds to target reference signal port (such as PTRS port) 1
  • the DMRS carried in the first frequency domain resource corresponds to DMRS port 1
  • the target reference signal port (E.g. PTRS port) 1 is associated with DMRS port 1, indicating that the target reference signal port (e.g. PTRS port) 1 and DMRS port 1 adopt the same QCL types A and QCL types D
  • the channel parameter (such as phase) estimation result of the target reference signal corresponding to 1 can be used to adjust the channel parameter adopted by the DMRS port 1.
  • the reference signal transmission method shown in FIG. 7 can improve the phase estimation performance by using frequency domain resources less than N RB to determine the frequency domain density K.
  • the target reference signal corresponding to the target reference signal port (such as the PTRS port) 0
  • the signal is only carried on the RB corresponding to the target reference signal port (such as PTRS port) 0
  • the target reference signal (such as PTRS) corresponding to the target reference signal port (such as PTRS port) 1 is only carried on the target reference signal port (such as PTRS port) 1 corresponds to the implementation on the RB.
  • the frequency domain density K1 of the first frequency domain resource and the frequency domain density K2 of the second frequency domain resource may also be determined respectively.
  • the previous RBs are used to determine the frequency domain density K1 of the PTRS corresponding to PTRS port 0, and the rest Each RB is used to determine the frequency domain density K2 of the PTRS corresponding to the PTRS port 1. Since the number of frequency domain resources associated with each QCL assumption may not be strictly equal, the frequency domain density of the two PTRS ports may be different.
  • PTRS corresponding to PTRS port 0 is only mapped first RB up (front RBs are associated with QCL hypothesis 1), the PTRS corresponding to PTRS port 1 is only mapped on the remaining RB on (remaining Each RB is associated with QCL hypothesis 2). Among them, the PTRS corresponding to PTRS port 0 is first Each RB is mapped once every K1 RB, and PTRS port 1 is in the remaining Each RB is mapped once every K2 RBs.
  • the number of RBs for all PRGs with an even number is used to determine the frequency domain density K1 of the PTRS corresponding to PTRS port 0, and the number of RBs for all PRGs with an odd number is used for Determine the frequency domain density K2 of the PTRS corresponding to the PTRS port 1.
  • the PTRS corresponding to PTRS port 0 is only mapped on all PRGs with even-numbered index numbers (all PRGs with even-numbered index numbers are associated with QCL hypothesis 1), and the PTRS corresponding to PTRS port 1 is only mapped on all PRGs with odd-numbered index numbers (index All PRGs with odd numbers are associated with QCL assumption 2).
  • the PTRS corresponding to PTRS port 0 is mapped once per K1 RB on the even PRG, and the PTRS corresponding to PTRS port 1 is mapped once per K2 RB on the odd PRG. Way to map.
  • PTRS In a multi-station coordinated transmission scenario, different QCL assumptions can be used on different frequency domain resources for the corresponding data and DMRS reception, but for the QCL assumptions for PTRS reception, in addition to the PTRS mentioned in the transmission method 1, the PTRS should also be used. Different QCL assumptions are received (the PTRS can be a single port, but the QCL assumptions on different frequency domain resources are different, or the PTRS can also be multiple ports, and the QCL assumptions for different ports are different), PTRS can also be limited In order to use only one QCL hypothetical reception, this situation mainly considers the processing capabilities of the UE and the resource overhead occupied by the RS.
  • this application also provides a reference signal transmission method, which can be used when the target reference signal port only uses one QCL hypothetical reception.
  • the target reference signal port (such as the PTRS port) may be associated with one of the multiple QCL hypotheses indicated by the DCI. That is, the QCL hypothesis can be used to receive the target reference signal port.
  • the foregoing association relationship may be predefined, that is, when multiple QCL hypotheses are indicated in the DCI or RRC signaling, the first QCL hypothesis is assumed to be the QCL hypothesis of the PTRS, or the second QCL hypothesis is assumed to be the QCL hypothesis of the PTRS by default.
  • the target reference signal port (such as the PTRS port) may be carried in the frequency domain resource corresponding to the QCL hypothesis associated with the target reference signal port.
  • the receiving end only needs to determine the third frequency domain resource of the PTRS carried in the first frequency domain resource.
  • the receiving end It only needs to adopt the first QCL assumption to receive the PTRS carried in the third frequency domain resource.
  • the receiving end only needs to determine the fourth frequency domain resource of the PTRS carried in the second frequency domain resource. Accordingly, the receiving end only needs to use The second QCL assumes that the PTRS carried in the fourth frequency domain resource is received.
  • Figure 10 illustrates the first case as an example.
  • the PTRS port can be associated with a DMRS port corresponding to a QCL hypothesis.
  • the PTRS port and the unassociated DMRS port that is, the QCL hypothesis of the unassociated DMRS port is different from the QCL hypothesis of the PTRS port, and the QCL hypothesis Type B of the PTRS port and the unassociated DMRS port are the same. That is, the DMRS port using multiple QCL hypotheses shares the PTRS port, or all DMRSs on the scheduling bandwidth share the PTRS.
  • the target reference signal transmission method may include the following steps:
  • the receiving end determines the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB;
  • M RB may be equal to the number of frequency domain resources associated with the QCL hypothesis, or equal to N RB divided by N QCL and rounded up, or equal to N RB divided by N QCL and rounded down.
  • the N RB is the number of frequency domain resources that are scheduled.
  • the N QCL is the total number of QCL hypotheses associated with the scheduled frequency domain resource.
  • the receiving end determines, according to the frequency domain density K, a third frequency domain resource that carries the target reference signal in the first frequency domain resource.
  • the receiving end determines the third frequency domain resource carrying the target reference signal in the first frequency domain resource according to the frequency domain density K, including:
  • the reference frequency domain resource block is the start, and one or more frequency domain resource blocks obtained by PTRS are mapped once every K frequency domain resource blocks as the third frequency domain resource that carries the target reference signal.
  • this implementation manner may also use the above formulas (1) to (3) to determine the frequency domain resources carrying the PTRS. It should be noted that in this case, the maximum value of i in formulas (1) and (2) is determined based on the number of first frequency domain resources.
  • the receiving end uses the first quasi co-located QCL hypothesis to receive the target reference signal on the third frequency domain resource.
  • the scheduled frequency domain resource includes the first frequency domain resource and the second frequency domain resource; the first frequency domain resource is associated with a first quasi co-located QCL hypothesis, and the second frequency domain The resource is associated with the second QCL hypothesis.
  • steps 201 to 203 are parts of steps 101 to 103 respectively. Therefore, the relevant explanations of steps 201 to 203 can be found in the relevant content of the second part above. No more details.
  • the PTRS port adopts the QCL hypothesis associated with each RB, and from the previous The reference RB in each RB is the starting point, and the PTRS is mapped once every K RBs to determine the frequency domain resources that carry the PTRS. At this time, it can be understood that the PTRS port is in front of the On RB
  • the DMRS port is associated, that is, the QCL of the PTRS port and the DMRS port assumes Type A and/or Type D are the same, but the PTRS is not associated with the DMRS ports on the remaining RBs, that is, the PTRS is only related to the QCL of the DMRS port Type B is the same.
  • the PTRS port is associated with the QCL hypothesis corresponding to the PRG with an even number
  • the reference RB from all PRGs with an even number is the starting point, and each K RB is mapped
  • the frequency domain resources that carry the PTRS are determined.
  • the number of RBs of all PRGs whose index numbers are even numbers are mapped in a manner of mapping once every K RBs.
  • the PTRS port is associated with the DMRS port located on the even-numbered PRG, that is, the QCL of the PTRS port and the DMRS port assumes the same Type A and/or Type D, but the PTRS is the same as the DMRS located on the odd-numbered PRG.
  • the port is not associated, that is, the PTRS is only the same as the QCL Type B of the DMRS port.
  • the frequency domain densities of FIGS. 11 and 8 are the same, assuming that a PTRS port 0 is configured and the PTRS port 0 is associated with QCL hypothesis 1.
  • QCL assumes that the reference RB in all PRGs with an even index number associated with 1 is the first RB
  • the receiving end can use QCL hypothesis 1 to receive PTRS on these RBs.
  • QCL assumes that no PTRS is carried on the frequency domain resource associated with QCL 2.
  • the target reference signal transmission method can clarify the transmission rules of the PTRS, thereby avoiding the problem that the transmission performance is affected by the unclear rules.
  • this application also provides a target reference signal (such as PTRS) transmission method.
  • the target reference signal (such as PTRS) transmission method is different from the implementation of mode 1.
  • the mapping mode of the target reference signal is determined based on the total scheduling bandwidth, that is, the frequency domain density and the mapping mode are based on all scheduling The bandwidth is determined.
  • the PTRS port can be associated with a DMRS port corresponding to a QCL hypothesis.
  • the QCL hypothesis of the PTRS port and the associated DMRS port are the same.
  • the QCL hypothesis includes one or more of QCL hypotheses Type A, Type B, and Type D.
  • the PTRS port and the unassociated DMRS port that is, the QCL hypothesis of the unassociated DMRS port is different from the QCL hypothesis of the PTRS port, and the QCL hypothesis Type B of the PTRS port and the unassociated DMRS port are the same. That is, the DMRS port using multiple QCL hypotheses shares the PTRS port, or all DMRSs on the scheduling bandwidth share the PTRS.
  • the frequency domain density K can be determined by referring to the related content of 101 in FIG. 7, and the frequency domain resource carrying the target reference signal can be determined by referring to the related content of 102 in FIG. 7.
  • the receiving end can receive the target reference signal (such as PTRS) carried in the third frequency domain resource and the fourth frequency domain resource based on the first QCL assumption or the second QCL assumption. ).
  • the receiving end can use the channel parameter (such as frequency offset) estimation result of the target reference signal (such as PTRS) to adjust the channel parameters in the first QCL hypothesis and/or the second QCL hypothesis (such as QCL type-B).
  • the above-mentioned methods one and two can indicate the receiving end through signaling, which method is used to receive the target reference signal (such as PTRS).
  • the PTRS mapping method corresponding to mode 2 is used to send the PTRS; otherwise, the PTRS mapping method corresponding to mode 1 is used to send the PTRS.
  • the PTRS mapping method corresponding to mode one is used to send PTRS
  • the PTRS mapping method corresponding to mode two is used to send PTRS.
  • the reference signal transmission method of mode 1 can ensure that the channel parameters (such as frequency offset) assumed by a QCL are estimated accurately while maintaining low signaling overhead;
  • the second reference signal transmission method can ensure that each QCL hypothesis has channel parameters (such as frequency offset) estimates, and shares the same target reference signal port (such as PTRS port), reducing signaling overhead and channel parameters (such as frequency offset) Estimated complexity.
  • a target reference signal port such as a PTRS port
  • PTRS target reference signal port
  • channel parameters such as frequency offset
  • each QCL assumption corresponds to the data corresponding to the DMRS.
  • a different port is used, or each QCL is assumed to correspond to a CDM group of DMRS.
  • DMRS port 0, or DMRS ports 0 and 1 correspond to QCL hypothesis 1
  • DMRS port 2, or DMRS ports 2 and 3 correspond to QCL hypothesis 2.
  • the PTRS on the time-frequency domain resources is limited to adopt a QCL hypothetical reception, that is, the PTRS is configured as a port.
  • the processing capability of the UE and the resource overhead occupied by the RS are considered.
  • the QCL assumption adopted by the PTRS and the association relationship between the PTRS and the DMRS have also become a problem to be solved urgently.
  • the target reference signal port (such as the PTRS port) may be associated with one of the multiple QCL hypotheses indicated by the DCI. That is, the QCL hypothesis can be used to receive the target reference signal port.
  • the foregoing association relationship may be predefined, that is, when multiple QCL hypotheses are indicated in the DCI or RRC signaling, the first QCL hypothesis is assumed to be the QCL hypothesis of the PTRS, or the second QCL hypothesis is assumed to be the QCL hypothesis of the PTRS by default.
  • the PTRS port can be associated with a DMRS port corresponding to a QCL hypothesis.
  • the QCL hypothesis of the PTRS port and the associated DMRS port are the same.
  • the QCL hypothesis includes one or more of QCL hypotheses Type A, Type B, and Type D.
  • the PTRS port and the unassociated DMRS port that is, the QCL hypothesis of the unassociated DMRS port is different from the QCL hypothesis of the PTRS port, and the QCL hypothesis Type B of the PTRS port and the unassociated DMRS port are the same.
  • DMRS ports assumed by multiple QCLs share the PTRS port.
  • the reference signal transmission method may include the following steps:
  • the receiving end receives TCI indication signaling, the TCI indication signaling indicates multiple QCL hypotheses (TCI status)
  • multiple QCL hypotheses each correspond to a CDM group of DMRS.
  • CDM group 1 of DMRS adopts QCL hypothesis 1 to receive
  • CDM group 2 of DMRS adopts QCL hypothesis 2 to receive.
  • the receiving end determines the QCL hypothesis adopted by the PTRS according to a predefined rule.
  • the PTRS may adopt the first QCL hypothesis among multiple QCL hypotheses, or the last QCL hypothesis.
  • PTRS is associated with the DMRS port in the default CDM group, for example, PTRS is associated with the DMRS port in the first CDM group indicated, or PTRS is associated with the DMRS port in the last CDM indicated. relationship.
  • the PTRS port and the associated DMRS port have the same QCL assumption Type A and/or Type D.
  • the PTRS port and the non-associated DMRS port have the same QCL assumption Type B.
  • the receiving end receives the PTRS according to the QCL assumption adopted by the PTRS.
  • the reference signal transmission method can determine the PTRS transmission method when the frequency domain resources used in the multi-station coordinated transmission are the same, thereby helping to improve the channel estimation performance.
  • the time-domain resources corresponding to each QCL hypothesis should be associated with a target reference signal port (such as a PTRS port), which can assist in the time-domain resource
  • a target reference signal port such as a PTRS port
  • the carried DMRS performs channel estimation to improve channel estimation performance. Therefore, for the aforementioned multi-station cooperative transmission scenario, two target reference signal ports (such as PTRS ports) can be configured, and one target reference signal port (such as PTRS port) is associated with the data transmitted by one transmission node and the QCL assumption adopted by the DMRS. For example, target reference signal port (such as PTRS port) 0 is associated with QCL hypothesis 1, and target reference signal port (such as PTRS port) 2 is associated with QCL hypothesis 2.
  • each transmission receiving point uses different time domain resources to deliver data and DMRS, that is, the scheduled time domain resources include at least two time domain resources in the time domain (that is, at least two time domain resources).
  • the scheduled time domain resources include at least two time domain resources in the time domain (that is, at least two time domain resources).
  • Time period each time domain resource corresponds to one or more OFDM symbols, and any two time domain resources do not overlap in the time domain, and each time domain resource can be associated with different QCL hypotheses.
  • each time domain resource needs to carry a target reference signal (such as PTRS). Therefore, this application also provides a reference signal transmission method on time domain resources.
  • the reference signal transmission method includes:
  • the receiving end determines the time domain density L of the target reference signal according to the modulation and coding mode MCS information
  • the receiving end starts from the reference time domain resource block in the first time domain resource, maps the target reference signal once every L time domain resource blocks, and obtains the third time domain resource carrying the target reference signal; and
  • the reference time domain resource block in the time domain resource is the start, the target reference signal is mapped once every L time domain resource blocks, and the fourth time domain resource carrying the target reference signal is obtained;
  • the receiving end adopts the first QCL assumption to receive the target reference signal carried in the third time domain resource, and adopts the second QCL assumption to receive the target reference signal carried in the fourth time domain resource.
  • the MCS information is used to indicate information such as the modulation and coding mode of the scheduled time domain resources.
  • the scheduled time domain resources include a first time domain resource and a second time domain resource.
  • the first time domain resource is associated with the first QCL hypothesis
  • the second time domain resource is associated with the second QCL hypothesis.
  • the target reference signal port corresponding to the target reference signal carried in the third time domain resource is associated with the DMRS port corresponding to the DMRS carried in the first time domain resource; the target reference signal carried in the fourth time domain resource corresponds to The target reference signal port is associated with the DMRS port corresponding to the DMRS carried in the second time domain resource.
  • the modulation and coding scheme information may be one of the modulation and coding scheme index I MCS , the modulation order Qm, the target code rate Rx, and the spectral efficiency.
  • the receiving end determines the time domain density L of the target reference signal according to the modulation and coding method MCS information.
  • the preset value shown in Table 3 (such as ptrs- MCS 1 , ptrs-MCS 2 , ptrs-MCS 3 , ptrs-MCS 4 ), determine the interval in which I MCS is located, and then determine the time domain density L.
  • I MCS Time domain density L I MCS ⁇ ptrs-MCS 1 PTRS does not exist ptrs-MCS1 ⁇ I MCS ⁇ ptrs-MCS2 4 ptrs-MCS2 ⁇ I MCS ⁇ ptrs-MCS3 2 ptrs-MCS3 ⁇ I MCS ⁇ ptrs-MCS4 1
  • the specific determination method of step 402 is illustrated by taking FIG. 14 as an example.
  • the first time domain resource is the first to fifth symbols in the time slot, that is, the symbols represented by the gray-filled boxes.
  • the second time domain resource is the 6th to 10th symbols in the time slot, that is, the symbols represented by the white filled boxes.
  • the first time domain resource is associated with QCL hypothesis 1
  • the second time domain resource is associated with QCL hypothesis 2.
  • the reference time domain resource block in the first time domain resource may be the second symbol in the time slot
  • the reference time domain resource block in the second time domain resource may be the seventh symbol in the time slot
  • the first time domain resource starts with the second symbol, and the PTRS is mapped every L(2) symbols, and the determined symbols to carry the PTRS are the second and fourth symbols in the time slot;
  • the domain resource starts with the 7th symbol, and the PTRS is mapped once every L(2) symbols, and the determined symbols to carry the PTRS are the 7th and 9th symbols in the time slot, respectively.
  • the symbols carrying PTRS are represented by the boxes filled with gray squares in Figure 13.
  • the receiving end can use the channel parameter (such as frequency offset) estimation result of the target reference signal (such as PTRS) and the first QCL hypothesis Receive the data and DMRS carried in the first time domain resource.
  • the receiving end can use the channel parameter (such as frequency offset) estimation result of the target reference signal (such as PTRS) and the second QCL hypothesis to receive Data and DMRS carried in the second time domain resource.
  • the reference signal transmission method shown in Figure 12 can be used in a multi-site coordinated transmission scenario, where each transmission receiving point of the coordinated transmission shared channel uses different time domain resources and two target reference signal ports (such as PTRS ports) are configured. Next, the target reference signal (such as PTRS) is transmitted, so that channel parameters (such as frequency offset) can be estimated on the time domain resources associated with each QCL hypothesis, thereby improving the receiving performance.
  • target reference signal such as PTRS
  • each transmission receiving point of the coordinated transmission shared channel uses different or the same time domain resources, but a target reference signal port (such as a PTRS port) is configured, this application also provides a Reference signal transmission method.
  • the receiving end may perform the above step 301, perform some operations in the above step 302, and some operations in the above step 303.
  • step 402 part of the operations in step 402 are:
  • the receiving end starts from the reference time domain resource block in the first time domain resource, maps the PTRS once for every L time domain resource blocks, and obtains the third time domain resource carrying the PTRS; or
  • the PTRS is mapped once every L time domain resource blocks to obtain the fourth time domain resource carrying the PTRS.
  • Part of the operations in step 403 are:
  • the receiving end adopts the first QCL hypothesis to receive the target reference signal carried in the third time domain resource;
  • the second QCL is assumed to receive the target reference signal carried in the fourth time domain resource.
  • the first time domain resource is the same as the second time domain resource
  • the third time domain resource is the same as the fourth time domain resource
  • a configured target reference signal port (such as a PTRS port) is associated with one of the QCL hypotheses, and correspondingly, the PTRS can be mapped or carried on the time domain resources associated with the QCL hypothesis, and further, the receiving end or the transmitting end
  • the QCL is assumed to receive the target reference signal (such as PTRS) on the time domain resource.
  • Other QCL assumes that no target reference signal (such as PTRS) is carried on the associated time domain resource.
  • multiple QCL hypotheses indicated by DCI can be associated with the same target reference signal port (such as a PTRS port).
  • the time domain resource carrying the target reference signal such as PTRS
  • the time domain resources carrying the target reference signal are: starting from the reference time domain resource block in the scheduled time domain resources, the target reference signal (such as PTRS), until the last time domain resource block in the scheduled time domain resources ends, the obtained time domain resource block carrying the target reference signal (such as PTRS) is obtained.
  • the receiving end may use one of the QCL types A and D assumed by the QCL to receive the target reference signal (such as PTRS) carried in the scheduled time domain resources, and use the channel parameters (frequency of the target reference signal (such as PTRS)). Bias)
  • the estimation result adjusts the channel parameters in one or all QCL hypotheses (such as QCL type B).
  • the first target reference signal (such as PTRS) transmission method in this part supports the case of two target reference signal ports (such as PTRS ports), so as to ensure that each QCL hypothesis has a target reference signal (such as PTRS) for frequency offset estimation , That is, they all carry the target reference signal.
  • the second target reference signal (such as PTRS) transmission method in this part can support the configuration of a target reference signal port (such as PTRS port) to ensure that the channel parameters (such as frequency offset) assumed by a QCL are estimated accurately while maintaining Lower signaling overhead; or ensure that each QCL hypothesis has channel parameters (such as frequency offset) estimates and share the same target reference signal port (such as PTRS port) to reduce signaling overhead and channel parameters (such as frequency offset) Estimated complexity.
  • the reference signal transmission method in the frequency domain provided above can be used in combination with the reference signal transmission method in the time domain, that is, the reference signal transmission method in the frequency domain on the scheduled time-frequency resource can be used in conjunction with the time-domain reference signal transmission method.
  • the above reference signal transmission method is combined to transmit the target reference signal to improve the channel estimation performance.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device 1500 shown in FIG. 15 may include a transceiving unit 1501 and a processing unit 1502.
  • the transceiving unit 1501 may include a transmitting unit and a receiving unit.
  • the transmitting unit is used to implement a transmitting function
  • the receiving unit is used to implement a receiving function
  • the transceiving unit 1501 may implement a transmitting function and/or a receiving function.
  • the transceiver unit can also be described as a communication unit.
  • the communication device 1500 may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device includes a transceiver unit 1501 and a processing unit 1502;
  • the processing unit 1502 is configured to determine the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB ; and according to the frequency domain density K, determine the frequency domain density K of the first frequency domain resource that carries the target reference signal The third frequency domain resource, and/or the fourth frequency domain resource carrying the target reference signal in the second frequency domain resource.
  • the transceiving unit 1501 is configured to use the first quasi co-located QCL hypothesis to transmit the target reference signal carried in the third frequency domain resource, and/or use the second quasi co-located QCL hypothesis to transmit The target reference signal carried in the fourth frequency domain resource.
  • the number of frequency domain resources M RB is greater than zero and less than N RB , where N RB is the number of frequency domain resources that are scheduled, and the scheduled frequency domain resources include the first frequency domain resources and the Second frequency domain resource;
  • the first frequency domain resource is associated with a first quasi co-located QCL hypothesis
  • the second frequency domain resource is associated with a second QCL hypothesis.
  • the communication device includes a transceiver unit 1501 and a processing unit 1502;
  • the processing unit 1502 is configured to determine the time domain density L of the target reference signal according to the MCS information of the modulation and coding method; and start from the reference time domain resource block in the first time domain resource, and every L time domain resource blocks The target reference signal is mapped once to obtain the third time domain resource carrying the target reference signal; and/or, starting from the reference time domain resource block in the second time domain resource, every L time domain resource blocks Map the target reference signal once to obtain a fourth time domain resource that carries the target reference signal;
  • the transceiver unit 1501 is configured to adopt the first QCL assumption to receive the target reference signal carried in the third time domain resource, and/or adopt the second QCL assumption to receive the target reference signal carried in the fourth time domain resource;
  • the MCS information is used to indicate the modulation and coding scheme of the scheduled time domain resource; the scheduled time domain resource includes the first time domain resource and the second time domain resource; the first time domain resource It is associated with the first QCL hypothesis, and the second time domain resource is associated with the second QCL hypothesis.
  • the communication device 1300 may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the processing unit 1502 is configured to determine the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB ; and according to the frequency domain density K, determine the frequency domain density K of the first frequency domain resource that carries the target reference signal The third frequency domain resource, and/or the fourth frequency domain resource carrying the target reference signal in the second frequency domain resource;
  • the number of frequency domain resources M RB is greater than zero and less than N RB , where N RB is the number of frequency domain resources that are scheduled, and the scheduled frequency domain resources include the first frequency domain resources and the Second frequency domain resource;
  • the first frequency domain resource is associated with a first quasi co-located QCL hypothesis, and the second frequency domain resource is associated with a second QCL hypothesis;
  • the transceiving unit 1501 is configured to use the first quasi co-located QCL hypothesis to transmit the target reference signal carried in the third frequency domain resource, and/or use the second quasi co-located QCL hypothesis to transmit The target reference signal carried in the fourth frequency domain resource.
  • the communication device includes a transceiver unit 1501 and a processing unit 1502;
  • the processing unit 1502 is configured to determine the time domain density L of the target reference signal according to the MCS information of the modulation and coding method; and start from the reference time domain resource block in the first time domain resource, and every L time domain resource blocks The target reference signal is mapped once to obtain the third time domain resource carrying the target reference signal; and/or, starting from the reference time domain resource block in the second time domain resource, every L time domain resource blocks Map the target reference signal once to obtain a fourth time domain resource that carries the target reference signal;
  • the transceiving unit 1501 is configured to adopt the first QCL assumption to send the target reference signal carried in the third time domain resource, and/or adopt the second QCL assumption to receive the target reference signal carried in the fourth time domain resource;
  • the MCS information is used to indicate the modulation and coding scheme of the scheduled time domain resource; the scheduled time domain resource includes the first time domain resource and the second time domain resource; the first time domain resource It is associated with the first QCL hypothesis, and the second time domain resource is associated with the second QCL hypothesis.
  • FIG 16 shows a schematic diagram of the structure of a communication device.
  • the communication device 1600 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the foregoing method, or a chip or a chip system that supports the terminal device to implement the foregoing method. , Or processor, etc.
  • the device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the communication device 1600 may include one or more processors 1601.
  • the processor 1601 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process The data of the software program.
  • the communication device 1600 may include one or more memories 1602, on which instructions 1604 may be stored, and the instructions may be executed on the processor 1601, so that the device 1600 executes the foregoing method implementation.
  • the memory 1602 may also store data.
  • the processor 1601 and the memory 1602 can be provided separately or integrated together.
  • the communication device 1600 may further include a transceiver 1605 and an antenna 1606.
  • the transceiver 1605 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing the transceiver function.
  • the transceiver 1605 may include a receiver and a transmitter.
  • the receiver may be referred to as a receiver or a receiving circuit, etc., to implement a receiving function;
  • the transmitter may be referred to as a transmitter or a transmitting circuit, etc., to implement a transmitting function.
  • the communication device 1600 is a terminal device: the processor 1601 is used to perform steps 101 and 102 in FIG. 7; perform steps 201 and 202 in FIG. 10; steps 301 and 302 in FIG. 12; and steps 401 and 401 in FIG. 402.
  • the transceiver 1605 is used to perform step 103 in FIG. 7; perform step 203 in FIG. 10; step 303 in FIG. 12; and step 403 in FIG.
  • the communication device 1600 is a network device: the processor 1601 is used to perform steps 101 and 102 in FIG. 7; perform steps 201 and 202 in FIG. 10; steps 301 and 302 in FIG. 12; and steps 401 and 401 in FIG. 402.
  • the transceiver 1605 is used to perform step 103 in Figure 7, but need to replace "receive” with “send” operation; perform step 203 in Figure 10, but need to replace “receive” with “send” operation; in Figure 12 Step 303, but need to replace “receive” with “send” operation; step 403 in Figure 13, but need to replace “receive” with “send” operation.
  • the processor 1601 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces, or interface circuits used to implement the receiving and transmitting functions can be separated or integrated.
  • the foregoing transceiver circuit, interface, or interface circuit may be used for code/data reading and writing, or the foregoing transceiver circuit, interface, or interface circuit may be used for signal transmission or transmission.
  • the processor 1601 may store an instruction 1603, and the instruction 1603 runs on the processor 1601, so that the communication device 1600 can execute the method described in the foregoing method embodiment.
  • the instruction 1603 may be solidified in the processor 1601.
  • the processor 1601 may be implemented by hardware.
  • the communication device 1600 may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured by various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiment may be a network device or a terminal device, but the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 14.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the set of ICs may also include storage components for storing data and instructions;
  • ASIC such as modem (MSM)
  • the communication device can be a chip or a chip system
  • the chip 1700 shown in FIG. 17 includes a processor 1701 and an interface 1702.
  • the number of processors 1701 may be one or more, and the number of interfaces 1702 may be more than one.
  • the processor 1701 is configured to determine the frequency domain density K of the target reference signal according to the number of frequency domain resources M RB ; and according to the frequency domain density K, determine the bearer in the first frequency domain resource The third frequency domain resource of the target reference signal, and/or the fourth frequency domain resource carrying the target reference signal in the second frequency domain resource; the interface 1702 is configured to adopt the first quasi co-location QCL assumes that the target reference signal carried in the third frequency domain resource is received, and/or adopts the second quasi co-located QCL hypothesis to receive the target reference signal carried in the fourth frequency domain resource.
  • the processor 1701 is configured to determine the time domain density L of the target reference signal according to the modulation and coding scheme MCS information; and to start from the reference time domain resource block in the first time domain resource , Mapping the target reference signal once every L time domain resource blocks to obtain a third time domain resource carrying the target reference signal; and/or starting from a reference time domain resource block in the second time domain resource , The target reference signal is mapped once every L time domain resource blocks to obtain the fourth time domain resource carrying the target reference signal; the interface 1702 is used to use the first QCL assumption to receive the target carried in the third time domain resource The reference signal, and/or, the second QCL hypothesis is used to receive the target reference signal carried in the fourth time domain resource.
  • the processor 1701 is configured to determine the frequency domain density K of the target reference signal according to the number M RB of frequency domain resources; and, according to the frequency domain density K, determine that the first frequency domain resource carries the target reference The third frequency domain resource of the signal, and/or the fourth frequency domain resource carrying the target reference signal in the second frequency domain resource; the interface 1702 is configured to use the first quasi co-located QCL hypothesis to transmit the The target reference signal carried in the third frequency domain resource, and/or the second quasi co-located QCL hypothesis is used to transmit the target reference signal carried in the fourth frequency domain resource.
  • the processor 1701 is configured to determine the time domain density L of the target reference signal according to the MCS information of the modulation and coding mode; and is configured to start from the reference time domain resource block in the first time domain resource, and every L time domain
  • the resource block maps the target reference signal once to obtain the third time domain resource carrying the target reference signal; and/or, starting from the reference time domain resource block in the second time domain resource, every L time domain
  • the resource block maps the target reference signal once to obtain a fourth time domain resource that carries the target reference signal;
  • the interface 1702 is configured to adopt the first QCL assumption to send the target reference signal carried in the third time domain resource, and/or adopt the second QCL assumption to receive the target reference signal carried in the fourth time domain resource.
  • the chip further includes a memory 1703, and the memory 1703 is used to store necessary program instructions and data for the terminal device.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also adopt other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供一种参考信号传输方法及装置,应用于多站协作传输场景中。该参考信号传输方法,可分别确定每个QCL假设关联的频域资源或时域资源中承载目标参考信号的频域资源,进而分别采用相应的QCL假设接收其关联的频域资源中承载的目标参考信号。从而,有利于使得每个QCL假设都能够进行信道参数估计,进而,利用该信道参数估计结果辅助DMRS进行信道估计,改善信道估计的准确度。

Description

参考信号传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号传输方法及装置。
背景技术
为了提升通信系统的容量,新一代5G通信系统向更高毫米波频率转变。然而,由于发射器和接收器的频率振荡器的不匹配,毫米波设备会遭受严重的相位噪声的影响,针对相位噪声所带来的不利影响,新一代5G通信系统可采用相位跟踪参考信号(phase tracking reference signal,PTRS)进行信道估计以评估相位噪声对信号造成的影响,并部分补偿相位噪声导致的信号失真。其中,PTRS仅映射在物理下行共享信道(physical downlink shared channel,PDSCH)所占用的时频资源内,并以一定的时域密度和频域密度进行映射。
在多站协作传输场景中,多个站点可支持同一个PDSCH的传输,其中,每个站点的传输路径差异很大,因此,每个站点传输的数据和DMRS等参考信号会采用不同的QCL假设。该QCL假设用于表征进行信道估计时所采用的大尺度参数,进而采用这些大尺度参数接收PTRS或DMRS等参考信号,以进行信道估计。相应地,由于不同站点传输同一个PDSCH所占的时频资源也可不同,因此,调度该PDSCH的总时域资源上可分别对应至少两个QCL假设。
然而,若该场景下,PTRS所采用的时域密度和频域密度,仍采用类似于单站点场景的确定机制,即基于PDSCH所占的总频域资源(即被调度的时频资源)来确定,将会导致每个QCL假设对应的PTRS分布稀疏,从而导致相位估计不准确而引起的传输性能较差。
发明内容
本申请提供一种参考信号传输方法及装置,能够改善信道估计的准确性。
第一方面,本申请提供一种参考信号传输方法。该方法中,被调度的频域资源包括所述第一频域资源和所述第二频域资源。接收端可根据频域资源的数量M RB,确定目标参考信号的频域密度K;根据频域密度K,确定第一频域资源中承载目标参考信号的第三频域资源,和,第二频域资源中承载目标参考信号的第四频域资源。其中,第一频域资源与第一QCL假设关联,第二频域资源与第二QCL假设关联。接收端可采用第一QCL假设接收第三频域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四频域资源中承载的目标参考信号。
其中,频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量。
可见,该参考信号传输方法采用M RB确定的频域密度K相对较小,由于频域密度K是指每K个频域资源块映射一次目标参考信号,故K越小,频域资源上承载的目标参考信号越密集,从而能够改善信道估计的准确性。
其中,所述第三频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第一频域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和所述第四频域资源 中承载的目标参考信号对应的目标参考信号端口,与,所述第二频域资源中承载的DMRS对应的DMRS端口关联。
目标参考信号端口与DMRS端口关联,目标参考信号端口对应的目标参考信号可基于该DMRS端口对应的DMRS测量,获取QCL假设,进而,利用该QCL假设接收该PTRS;以及利用该目标参考信号进行信道估计,并利用该信道估计结果和该QCL假设接收该DMRS端口对应的DMRS。或者,接收端还可以利用该目标参考信号端口对应的目标参考信号的信道估计结果,辅助DMRS的信道估计。
在一种可选的实施方式中,所述M RB等于所述N RB除以N QCL且向上取整,或等于所述N RB除以N QCL且向下取整;所述N QCL为所述被调度的频域资源关联的QCL假设的总个数。该总个数为DCI中TCI字段所指示的TCI状态或QCL假设的个数。
可选的,第一频域资源和第二频域资源用于承载PDSCH或者PUSCH。
可选的,当第一频域资源和第二频域资源用于承载PUSCH,则QCL假设仅包括Type D。
可选的,N QCL为2。
可选的,N QCL为通过DCI中TCI字段指示的TCI状态的数量。
可选的,N QCL为通过RRC信令配置的TCI字段中指示的TCI状态的数量。
可选的,所述M RB等于所述N RB除以N QCL
在另一种可选的实施方式中,所述M RB等于所述第一频域资源的数量,或者等于所述第二频域资源的数量。也就是说,M RB等于调度PDSCH所占的所有RB中一个QCL假设关联的频域资源的RB数量。
在一种可选的实施方式中,所述根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和,第二频域资源中承载所述目标参考信号的第四频域资源,包括:从被调度的频域资源中的基准频域资源块为起始,每K个频域资源块映射一次目标参考信号,获得承载目标参考信号的频域资源块;从所述承载目标参考信号的频域资源块中,选择属于第一频域资源的频域资源块作为第三频域资源;和/或,从所述承载目标参考信号的频域资源块中,选择属于第二频域资源的频域资源块作为第四频域资源。
在一种实施方式中,“每K个频域资源块映射一次目标参考信号”表示以基准频域资源块作为起始位置,间隔K个频域资源块作为承载目标参考信号的频域资源块,直到共享信道所占的最后一个频域资源块为止。
在另一种实施方式中,“每K个频域资源块映射一次目标参考信号”表示以基准频域资源块作为起始位置,每K个频域资源块作为承载目标参考信号的频域资源块,直到共享信道所占的最后一个频域资源块为止。
在另一种可选的实施方式中,所述根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源,包括:从第一频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第三频域资源;和,从第二频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第四频域资源。
可见,该实施方式与上一实施方式确定承载目标参考信号的频域资源方式相比,上一 实施方式是针对整个被调度的频域资源中的基准频域资源块为起始进行映射确定的,而该实施方式是分别针对第一频域资源中的基准频域资源块为起始进行映射确定第三频域资源,以及针对第二频域资源中的基准频域资源块为起始进行映射确定第四频域资源。该实施方式有利于在QCL假设关联的频域资源不是连续的情况下,避免某些QCL假设关联的频域资源上没有承载目标参考信号。
本申请实施例中,所述目标参考信号为用于进行信道估计或用于辅助解调参考信号DMRS进行信道估计的参考信号。可选的,所述目标参考信号包括相位追踪参考信号PTRS。其中,该目标参考信号与DMRS关联。
第二方面,本申请还提供一种参考信号传输方法。该参考信号传输方法中,被调度的频域资源包括所述第一频域资源和所述第二频域资源,第一频域资源与第一QCL假设关联,第二频域资源与第二QCL假设关联。
第一种情况,针对被调度的频域资源上承载的目标参考信号具有一个QCL假设的情况,PTRS映射在一个QCL假设关联的频域资源上。该参考信号传输方法中,频域密度K的确定方法与上述第一方面相同,此处不再详述。
若目标参考信号与第一频域资源上承载的DMRS关联,则该目标参考信号可采用第一QCL假设接收,和/或,该目标参考信号的信道估计结果可用于辅助第一频域资源上承载的DMRS的接收;以及,从第一频域资源中的基准频域资源块为起始,每K个频域资源块映射一次目标参考信号获得的一个或多个频域资源块,作为承载该目标参考信号的频域资源。
若目标参考信号与第二频域资源上承载的DMRS关联,则该目标参考信号可采用第二QCL假设接收,和/或,该目标参考信号的信道估计结果可用于辅助第一频域资源上承载的DMRS的接收;以及,从第二频域资源中的基准频域资源块为起始,每K个频域资源块映射一次目标参考信号获得的一个或多个频域资源块,作为承载该目标参考信号的频域资源。
可见,该参考信号传输方法能够明确目标参考信号的传输规则,从而避免了由于规则不明确影响传输性能的问题。
第二种情况,针对被调度的频域资源上承载的目标参考信号具有一个QCL假设的情况,目标参考信号映射在两个QCL假设关联的频域资源上,但该目标参考信号的接收采用其中一个QCL假设,该目标参考信号的相位估计结果可与两个QCL假设共享。
其中,目标参考信号映射在被调度的频域资源上的方式和目标参考信号的频域密度K可基于被调度的频域资源确定。目标参考信号的接收方式是采用第一QCL假设或第二QCL假设,接收被调度的频域资源上承载的目标参考信号。进一步的,基于该PTRS的信道估计结果可用于分别辅助第一频域资源上承载的DMRS的接收,以及第二频域资源上承载的DMRS的接收。
可见,该参考信号传输方法在目标参考信号具有一个QCL假设的情况下,能够明确目标参考信号的传输规则,从而避免了由于规则不明确影响信道估计性能的问题。
第三种情况,同一时频域资源上采用不同的QCL假设接收数据和DMRS,不同QCL假设对应的数据和DMRS对应了不同的端口,或者,不同QCL假设对应不同的DMRS的CDM组,并且,在该时频域资源上的目标参考信号被限定为采用一个QCL假设接收,也 就是说,目标参考信号被配置为一个端口,该目标参考信号端口与该时频资源上对应的一个QCL假设关联。
可选的,采用该QCL假设接收该目标参考信号端口。
可选的,目标参考信号端口和该时频资源上对应的QCL假设的关联关系可以为预先定义的。具体的,当TCI字段指示了两个TCI状态,则默认第一个TCI状态用于指示目标参考信号的QCL假设,或者默认第二个TCI状态用于指示目标参考信号的QCL假设。
可选的,目标参考信号端口关联一个或者多个DMRS端口,或者,关联一个或者多个CDM组。该DMRS端口或者CDM对应的TCI状态和目标参考信号端口对应的TCI状态相同。
可选的,目标参考信号端口与关联的DMRS端口或者关联的CDM组的TCI状态相同,或者,QCL假设相同,具体的,TCI状态或者QCL假设包括QCL假设Type A、Type B、Type D中的一个或者多个。
可选的,目标参考信号端口与非关联的DMRS端口,或者非关联的码分复用(code domain modulation,CDM)组的TCI状态不同,或者,QCL假设不同。
可选的,目标参考信号端口与非关联的DMRS端口,或者非关联的CDM组的TCI状态不同,或者,QCL假设不同,则目标参考信号端口与非关联的DMRS端口的QCL假设Type B相同。
可选的,第一频域资源和第二频域资源用于承载PDSCH或者PUSCH。
可选的,当第一频域资源和第二频域资源用于承载PUSCH,则QCL假设仅包括Type D。
第三方面,本申请还提供一种参考信号传输方法,该参考信号传输方法中,目标参考信号的频域密度可采用上述所述的M RB或N RB确定,但是,目标参考信号在被调度的频域资源中的映射方式或被调度的频域资源中承载目标参考信号的频域资源的确定方式,可针对不同QCL假设关联的频域资源分开映射或确定。
针对被调度的频域资源上承载的目标参考信号具有两个QCL假设的情况,该参考信号传输方法包括:接收端根据M RB或N RB确定目标参考信号的频域密度。接收端从第一频域资源中的基准频域资源块为起始,每K个频域资源块映射一次目标参考信号获得的一个或多个频域资源块,作为承载该目标参考信号的第三频域资源;以及从第二频域资源中的基准频域资源块为起始,每K个频域资源块映射一次目标参考信号获得的一个或多个频域资源块,作为承载该目标参考信号的第四频域资源。接收端利用第一QCL假设接收第三频域资源上承载的目标参考信号,以及利用第二QCL假设接收第四频域资源上承载的目标参考信号。
可选的,接收端在第一频域资源和第二频域资源上,分别根据同一频域密度确定第三频域资源和第四频域资源,在第三频域资源和第四频域资源上同时映射目标参考信号。
可选的,第三频域资源和第四频域资源上同时映射目标参考信号。
可选的,第一频域资源和第二频域资源用于承载PDSCH或者PUSCH。
可选的,当第一频域资源和第二频域资源用于承载PUSCH,则QCL假设仅包括Type D。
可见,该参考信号传输方法有利于每个QCL假设关联的频域资源上均承载了目标参考信号,从而有利于每个QCL假设对应的信道估计性能。
第四方面,本申请还提供一种参考信号传输方法。该参考信号传输方法有利于保证每个QCL假设关联的时域资源上均承载有目标参考信号,从而有利于保证每个QCL假设的信道估计性能。
针对被调度的时域资源上承载的PTRS可具有两个QCL假设的情况,该参考信号传输方法中,接收端根据调制编码方式MCS信息,确定目标参考信号的时域密度L;从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;采用第一QCL假设接收第三时域资源中承载的目标参考信号,和采用第二QCL假设接收第四时域资源中承载的目标参考信号。
所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
其中,所述第三时域资源中承载的目标参考信号对应的目标参考信号端口与所述第一时域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和所述第四时域资源中承载的目标参考信号对应的目标参考信号端口与所述第二时域资源中承载的解调参考信号DMRS对应的DMRS端口关联。
本申请实施例中,所述目标参考信号为用于进行信道估计或用于辅助解调参考信号DMRS进行信道估计的参考信号。
本申请实施例中,所述目标参考信息包括相位追踪参考信号PTRS。
可选的,第一频域资源和第二频域资源用于承载PDSCH或者PUSCH。
可选的,当第一频域资源和第二频域资源用于承载PUSCH,则QCL假设仅包括Type D。
第五方面,本申请还提供一种参考信号传输方法,该方法与第一方面、第二方面所述的方法对应,从发送端的角度进行阐述。
该参考信号传输方法中,发送端根据频域资源的数量M RB,确定目标参考信号的频域密度K;根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
其中,频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联。
其中,所述第三频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第一频域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,所述第四频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第二频域资源中承载的DMRS对应的DMRS端口关联。
可选的,第一频域资源和第二频域资源用于承载PDSCH或者PUSCH。
可选的,当第一频域资源和第二频域资源用于承载PUSCH,则QCL假设仅包括Type D。
本申请实施例中,所述M RB的可选取值、目标参考信号的映射方式可参见第一方面的相关内容,此处不再详述。
第六方面,本申请还提供一种参考信号传输方法。该参考信号传输方法与第四方面所述的方法对应,从发送端的角度进行阐述。该参考信号传输方法包括:发送端根据调制编码方式MCS信息,确定目标参考信号的时域密度L;从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;采用第一QCL假设发送第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设发送第四时域资源中承载的目标参考信号。
所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
其中,所述第三时域资源中承载的目标参考信号对应的目标参考信号端口与所述第一时域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,
所述第四时域资源中承载的目标参考信号对应的目标参考信号端口与所述第二时域资源中承载的解调参考信号DMRS对应的DMRS端口关联。
可选的,第一频域资源和第二频域资源用于承载PDSCH或者PUSCH。
可选的,当第一频域资源和第二频域资源用于承载PUSCH,则QCL假设仅包括Type D。
该方面的其他内容,可参见第四方面所述的内容,此处不再详述。
第七方面,本申请实施例还提供一种通信装置。该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够与终端设备匹配使用的装置。该通信装置具有实现第一方面至第四方面所述方法示例中接收端的部分或全部功能,例如通信装置的功能可具备本申请实施例中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
一种可能的设计中,通信装置的结构中可包括处理单元和收发单元。处理单元被配置为支持通信装置执行上述第一方面至第四方面任一方面提供的方法中相应的功能。收发单元用于支持通信装置与其他设备之间的通信,其他设备可以是终端设备。通信装置还可以包括存储单元,存储单元用于与处理单元和收发单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,通信装置包括收发单元和处理单元;
所述处理单元,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;
所述处理单元,用于根据所述频域密度K,确定第一频域资源中承载所述目标参考信 号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;
所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联;
所述收发单元,用于采用所述第一准共址QCL假设接收所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设接收所述第四频域资源中承载的所述目标参考信号。
另一种实施方式中,通信装置包括收发单元和处理单元;
所述处理单元,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;
所述处理单元,用于从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
所述收发单元,用于采用第一QCL假设接收第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号;
所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
作为示例,处理单元可以为处理器,收发单元可以为收发器或通信接口,存储单元可以为存储器。
一种实施方式中,通信装置包括通信接口和处理器;
所述处理器,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;
所述处理器,用于根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;
所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联;
所述通信接口,用于采用所述第一准共址QCL假设接收所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设接收所述第四频域资源中承载的所述目标参考信号。
另一种实施方式中,通信装置包括通信接口和处理器;
所述处理器,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;
所述处理器,用于从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
所述通信接口,用于采用第一QCL假设接收第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号;
所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
第八方面,本申请实施例还提供一种通信装置。该通信装置可以是网络设备,也可以是网络设备中的装置,或者是能够与网络设备匹配使用的装置。该通信装置具有实现第五方面至第六方面所述方法示例中发送端的部分或全部功能,例如通信装置的功能可具备本申请实施例中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
一种可能的设计中,通信装置的结构中可包括处理单元和收发单元。处理单元被配置为支持通信装置执行上述第五方面至第六方面任一方面提供的方法中相应的功能。收发单元用于支持通信装置与其他设备之间的通信,其他设备可以是终端设备。通信装置还可以包括存储单元,存储单元用于与处理单元和收发单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,通信装置包括收发单元和处理单元;
所述处理单元,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;
所述处理单元,用于根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;
所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联;
所述收发单元,用于采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
另一种实施方式中,通信装置包括收发单元和处理单元;
所述处理单元,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;
所述处理单元,用于从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
所述收发单元,用于采用第一QCL假设发送第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号;
所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联, 所述第二时域资源与所述第二QCL假设关联。
作为示例,处理单元可以为处理器,收发单元可以为收发器,存储单元可以为存储器。
一种实施方式中,通信装置包括收发器和处理器;
所述处理器,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;
所述处理器,用于根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;
所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联;
所述通信接口,用于采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
另一种实施方式中,通信装置包括收发器和处理器;
所述处理器,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;
所述处理器,用于从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
所述通信接口,用于采用第一QCL假设发送第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号;
所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理;收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
第九方面,本申请实施例提供一种处理器,用于执行上述第一方面至第六方面提供的方法的过程中,有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。具体来说,在输出上述信息时,处理器将上述信息输出给收发器,以便由收发器进行发射。更进一步的,上述信息在由处理 器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收上述信息,并将其输入处理器。更进一步的,在收发器收到上述信息之后,上述信息可能需要进行其他的处理,然后才输入处理器。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第十方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器和接口。该芯片系统可部署在网络设备中。
在一种可能的设计中,接口用于向第二网络设备发送第一指示信息,所述第一指示信息用于请求终端设备的能力信息;以及接收来自所述第二网络设备的第一能力信息,所述第一能力信息包括所述终端设备的能力信息。处理器用于确定第一指示信息。
在一种可能的设计中,接口用于接收来自第一网络设备的第一指示信息,所述第一指示信息用于请求终端设备的能力信息;以及向所述第一网络设备发送第一能力信息,所述第一能力信息包括所述终端设备的能力信息。处理器用于根据第一指示信息,确定第一能力信息。
在一种可能的设计中,该芯片系统还包括存储器,存储器用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请实施例提供一种计算机可读存储介质,用于储存为上述接收端所用的计算机软件指令,其包括用于执行上述第一方面至第四方面任一方面所述的方法所涉及的程序。
第十二方面,本申请实施例提供一种计算机可读存储介质,用于储存为上述接收端所用的计算机软件指令,其包括用于执行上述第五方面至第六方面任一方面所述的方法所涉及的程序。
第十三方面,本申请实施例提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面任一方面所述的方法。
第十四方面,本申请实施例提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第五方面至第六方面任一方面所述的方法。
第十五方面,本申请实施例提供一种系统,该系统包括至少两个发送端和至少一个接收端,第一发送端根据频域资源的数量M RB,确定目标参考信号的频域密度K;以及根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号。第二发送端根据 所述频域密度K,第二频域资源中承载所述目标参考信号的第四频域资源;采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
接收端根据频域资源的数量M RB,确定目标参考信号的频域密度K;以及根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和第二频域资源中承载所述目标参考信号的第四频域资源;采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号以及采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
其中,所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联;
可选的,该系统中,针对目标参考信号具有一个QCL假设的情况,第一发送端和第二发送端中其中一个执行上述步骤即可,相应的接收端对应执行相关操作。其他可选的实施方式可参见上述第一方面至第六方面的相关内容,此处不再详述。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种被调度的时域资源中承载PTRS的示意图;
图3是本申请实施例提供的一种被调度的频域资源中承载PTRS的示意图;
图4是本申请实施例提供的一种被调度的时域资源中PRG与QCL假设关联的示意图;
图5是本申请实施例提供的另一种被调度的频域资源中承载PTRS的示意图;
图6是本申请实施例提供的又一种被调度的频域资源中承载PTRS的示意图;
图7是本申请实施例提供的一种参考信号传输方法的流程示意图;
图8是本申请实施例提供的又一种被调度的频域资源中承载PTRS的示意图;
图9A是本申请实施例提供的又一种被调度的频域资源中承载PTRS的示意图;
图9B是本申请实施例提供的又一种被调度的频域资源中承载PTRS的示意图;
图10是本申请实施例提供的另一种参考信号传输方法的流程示意图;
图11是本申请实施例提供的一种配置一个PTRS端口情况下被调度的频域资源中承载PTRS的示意图;
图12是本申请实施例提供的又一种参考信号传输方法的流程示意图;
图13是本申请实施例提供的又一种参考信号传输方法的流程示意图;
图14是本申请实施例提供的一种被调度的时域资源中承载PTRS的示意图;
图15是本申请实施例提供的一种通信装置的结构示意图;
图16是本申请实施例提供的另一种通信装置的结构示意图;
图17为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可具体应用于各种通信系统中。例如,随着通信技术的不断发展,本申请的技术方案还可用于未来网络,如5G系统,6G系统等,也可以称为新空口(new radio,NR)系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统等等。
请参见图1,图1为本申请实施例提供的一种通信系统的结构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以两个网络设备,且该两个网络设备能够为同一终端设备提供服务为例进行阐述。其中,图1中的网络设备以传输接收点TRP为例,终端设备以手机为例。
本申请中,网络设备可为具有无线收发功能的设备或可设置于该设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G、6G甚至7G系统中使用的设备,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的网络设备的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit),或微微网络设备(Picocell),或毫微微网络设备(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)。
在一些部署中,gNB或传输点可以包括集中式单元(centralized unit,CU)和分布式单元(DU,distributed unit)等。gNB或传输点还可以包括射频单元(radio unit,RU)。CU实现gNB或传输点的部分功能,DU实现gNB或传输点的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成物理层的信息,或者,由物理层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
本申请中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置,可以应用于5G、6G甚至7G系统。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无 线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。
为了便于理解本申请公开的实施例,作出以下几点说明。
(1)本申请公开的实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
(2)本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
(3)在本申请公开的实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
(4)本申请公开的实施例中,“的(of)”,“相应的(relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
(5)本申请公开的实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请公开的实施例中,对于一种技术特征,通过“第一”、“第二”等区分该种技术特征中的技术特征,该“第一”、“第二”描述的技术特征间无先后顺序或者大小顺序。
为便于理解本申请公开的实施例,首先对本申请实施例涉及的一些概念进行阐述。这些概念的阐述包括但不限于以下内容。
一、概念阐述
1、频域资源块、时域资源块
通信系统中的资源,从时间上看被划分为多个符号。例如,多个正交频分复用多址(Orthogonal Frequency Division Multiple,OFDM)符号。时域资源块可称为时间单元。例如,时域资源块可以是一个或多个无线帧,一个或多个子帧,一个或多个时隙,一个或多个微时隙(mini slot),一个或多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、离散傅里叶变换扩频的正交频分复用(discrete fourier transform spread spectrum orthogonal frequency division multiplexing,DFT-S-OFDM)符号等,也可以是多个帧或子帧构成的时间窗口,例如系统信息(system information,SI)窗口。
通信系统中的资源,从频率上看被划分为若干个子载波。频域资源块可称为频域单元。例如,频域资源块可以是一个或多个资源块(resource block,RB),一个或多个子载波等。例如,一个RB中包含的子载波的数量为12个。频域上一个RB内的一个子载波和时域上一个OFDM符号组成一个资源元素(Resource Element,RE)。
其中,被调度的频域资源位置、数量等可通过频域资源配置(frequency domain resource  allocation,FDRA)字段指示。具体指示方式例如,该字段可以采用位图bitmap的方式,将整个系统带宽或者部分带宽BWP以RB组为粒度划分,每个RB组为粒度的资源集合对应bitmap中的一个比特,bitmap中的某个比特置0表明相应RB组未被调度,bitmap中的某个比特置1表明相应RB组被调度。RB组的大小可以为一个或者多个RB。再例如,该FDRA字段还可指示调度数据所占的频域起始位置和所占的频域大小。
被调度的时域资源位置、数量等可通过时域资源配置(time domain resource allocation,TDRA)字段指示。具体指示方式例如,该字段指示调度数据所占的时隙或者子帧的位置,可以是以DCI检测时隙或者子帧为基准的相对位置,或者以系统定义的一个时隙或者子帧为基准的绝对位置。
被调度的频域资源可为被调度的共享信道所占的频域资源。例如,基站调度PDSCH占用了8个RB,即被调度的频域资源为8个RB,或被调度的频域资源的数量为8。本文中,被调度的频域资源的数量等于被调度的频域资源包含的频域资源块的数量。
被调度的时域资源可为共享信道所占的时域资源。例如,基站为PDSCH调度了10个符号,即被调度的时域资源为10个符号,或被调度的时域资源的数量为10。本文中,被调度的时域资源的数量等于以被调度的时域资源包含的时域资源块的数量。
被调度的频域资源以及时域资源通过下行控制信息(downlink control information,DCI)指示,或者通过RRC信令指示。
为了适应不同频域资源上的信道变化引入了预编码资源组(precoding resource group,PRG)的概念。针对被调度的频域资源中的RB,以PRG为粒度划分为多个RB组,每个RB组包含的RB数为PRG的取值。一个RB组内下发的数据、目标参考信号等的预编码方式(precoding)是相同的。
例如,PRG指示为宽带(wideband),被调度的频域资源中所有RB被分为一组,在调度的频域资源上不同的RB内传输的DMRS和相应的数据采用相同的预编码方式。再例如,PRG指示也可以为2或者4,表示每2个或者4个RB为一组,RB组内不同RB上承载的数据采用相同的预编码方式。
2、目标参考信号
目标参考信号(target resource signal,target RS)用于进行信道估计或用于辅助解调参考信号(decoding modulation resource signal,DMRS)进行信道估计。或者,目标参考信号用于进行信道的相关参数的估计,例如,相位估计,相位跟踪或者相位估计等等。例如,相位追踪参考信号(phase tracking reference signal,PTRS)用于辅助DMRS进行信道估计。
目标参考信号映射在共享信道占用的时频资源中,当有共享信道被调度时,会同时有目标参考信号被调度。
目标参考信号在该共享信道占用的时域资源中基于时域密度L和基准时域资源块进行映射。比如,承载PTRS的时域资源为:该共享信道占用的时域资源中从基准时域资源块开始,每L个时域资源块映射一次PTRS,获得的一个或多个时域资源块。每L个时域资源块映射一次PTRS的第一种理解为,以基准时域资源块作为起始位置,间隔L个时域资源块作为承载PTRS的时域资源块,直到共享信道所占的最后一个时域资源块为止。每L 个时域资源块映射一次PTRS的第二种理解为,以基准时域资源块作为起始位置,每L个时域资源块作为承载PTRS的时域资源块,直到共享信道所占的最后一个时域资源块为止。
例如,如图2所示,假设共享信道占用的时域资源为一个时隙中的第3个符号起始至第10个符号结束的8个符号;基准时域资源块和时域资源块以一个符号为单位。由于DMRS会占用该时域资源的起始N个符号,比如,N等于1或2,即该时隙中的第3个符号或第4个符号,PTRS可占用该时域资源的第N+1个符号及其之后的符号,即该时隙中的第4或5个符号及其之后的符号。假设DMRS占用该时隙中的第3个符号,基准时域资源块为该时隙中的第4个符号,时域密度L等于2,那么,按照上述第一种理解,映射PTRS的时域资源为:从该时隙中第4个符号开始,即i 0=4,相邻的两个用于承载PTRS的时域资源之间间隔L个时域资源块,即,基准时域资源块上承载PTRS,除基准时域资源块外映射PTRS的时域位置是i 0+Lⅹi+1,其中,i 0是基准时域资源块的位置,L是时域密度,i可以取1,2,…,获得的承载PTRS的符号分别是该时隙中的第4、7、9个符号。按照上述第二种理解,即,映射PTRS的时域位置相对于基准时域资源块的偏移量是Lⅹi,也就是映射PTRS的时域位置是i 0+Lⅹi,i可以取0,1,2,…,映射PTRS的时域资源为:从该时隙中第4个符号开始,每2个符号映射一次PTRS,获得的承载PTRS的符号分别是该时隙中的第4、6、8、10个符号。
目标参考信号在该共享信道占用的频域资源中占用的频域资源可基于频域密度K和基准频域资源块确定。比如,承载PTRS的频域资源为:该共享信道占用的频域资源中从基准频域资源块开始,每K个频域资源块映射一次PTRS,获得的一个或多个频域资源块。
“每K个频域资源块映射一次PTRS”的第一种理解为,以基准频域资源块作为起始位置,间隔K个频域资源块作为承载PTRS的频域资源块,直到共享信道所占的最后一个频域资源块为止。也就是说,从基准频域资源块开始,相邻的两个用于承载PTRS的频域资源之间间隔K个频域资源块,即,基准频域资源块上承载PTRS,除基准频域资源块外映射PTRS的频域位置是j 0+Kⅹj+1,其中,j 0是基准频域资源块的位置,K是频域密度,j可以取1,2,…。
比如,承载PTRS的频域资源块为:该共享信道占用的频域资源中从基准频域资源块开始,每K个频域资源块映射一次PTRS,获得的一个或多个频域资源块,即,基准频域资源块上承载PTRS,除基准频域资源块外,映射PTRS的频域位置是j 0+Kⅹj+1,其中,j是基准频域资源块的位置,K是频域密度,j可以取1,2,…。例如,假设共享信道占用的频域资源包括N RB个RB,其中,N RB=8,频域密度等于4,基准频域资源块为该共享信道占用的频域资源中的第1个RB。那么,承载PTRS的频域资源为:该共享信道占用的频域资源中的第1、6个RB。
“每K个频域资源块映射一次PTRS”的第二种理解为,以基准频域资源块作为起始位置,每K个频域资源块作为承载PTRS的频域资源块,直到共享信道所占的最后一个频域资源块为止。即,映射PTRS的频域位置相对于基准频域资源块的偏移量是Kⅹj,j可以取0,1,2,…。例如,假设共享信道占用的频域资源包括N RB个RB,其中,N RB=8,频域密度等于4,基准频域资源块为该共享信道占用的频域资源中的第1个RB。那么,承载PTRS的频域资源为:该共享信道占用的频域资源中的第1、5个RB。
进一步的,可从承载PTRS的频域资源块中,确定PTRS占用的子载波。以频域资源块为一个RB为例,PTRS在一个RB中占用一个子载波,且该子载波的位置根据PTRS关联的DMRS端口的索引号(简称DMRS端口号)以及子载波位置偏移值确定。如表1所示,
Figure PCTCN2019116878-appb-000001
表示PTRS占用的子载波与RB中起始子载波之间的偏置,简称资源元素偏移(resource element offset)或子载波位置偏移值。例如,假设PTRS与DMRS端口号“1000”关联,且DMRS配置类型1,那么,PTRS占用的子载波为:承载PTRS的频域资源块中子载波索引号0、2、6、8中的一个子载波。
表1 PTRS子载波位置偏移值
Figure PCTCN2019116878-appb-000002
3、准共址(Quasi co-location,QCL)假设
终端设备需要根据DMRS、PTRS等进行信道估计,利用信道估计结果接收相应的数据,从而改善数据的接收性能。
一些信道的大尺度参数可以用来辅助DMRS、PTRS等信号的接收,也可以用来辅助数据的接收。QCL假设用于表征该大尺度参数。QCL假设中包括下述参数中的一种或多种:入射角(angle of arrival,AoA)、主(Dominant)入射角AoA、平均入射角、入射角的功率角度谱(power angular spectrum,PAS)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端发送波束成型、终端接收波束成型、空间信道相关性、基站发送波束成型、基站接收波束成型、平均信道增益、平均信道时延(average delay)、时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(Doppler shift)、空间接收参数(spatial Rx parameters)等。
QCL假设包括以下一个或多个类型的大尺度参数:
QCL假设类型(QCL types)A:Doppler shift,Doppler spread,average delay,delay spread;
QCL types B:Doppler shift,Doppler spread
QCL types C:average delay,Doppler shift
QCL types D:Spatial Rx parameter。
QCL假设指示方式是:将待接收的参考信号与一个参考参考信号(reference RS)相关联,从而可以将通过参考参考信号获取的大尺度参数用于处理待接收RS。比如,待接收参考信号可以为DMRS,该DMRS可以与测量参考信号关联表明两者具有QCL Type A和Type D的关联关系,从而,通过测量参考信号可以获得QCL Type A和Type D的信息,用于辅助DMRS的接收。再比如,待接收参考信号可以为DMRS,该DMRS可以与PTRS关联表明两者具有QCL Type A和Type D的关联关系,从而,通过DMRS接收可以获得QCL Type A和Type D的信息,用于辅助PTRS的接收。再比如,待接收参考信号可以为DMRS,该DMRS可以与PTRS关联表明两者具有QCL Type B的关联关系,通过DMRS可以获得QCL Type B信息从而辅助PTRS的接收。再比如,待接收参考信号可以为DMRS,该DMRS可以与PTRS关联表明两者具有QCL Type B的关联关系,通过PTRS可以获得QCL Type B信息从而辅助DMRS的接收。
DCI中会包含传输配置指示(transmission configuration indication,TCI)字段,该TCI字段指示被调度的时频资源中承载的DMRS所采用的QCL假设。由于该被调度的时频资源中承载的数据在被接收时采用的QCL假设与承载的DMRS所采用QCL假设相同,因此,该TCI字段也可称为被调度的时频资源所关联的QCL假设。也就是说,一时频资源与一QCL假设关联,可表示该时频资源中承载的数据和DMRS采用该QCL假设进行接收。
另外,除DMRS外的其他目标参考信号,用于辅助DMRS进行信道估计。例如,PTRS的相位估计结果,可用于调整该时频资源中承载的DMRS所采用的QCL假设中的部分参数。因此,PTRS与DMRS关联,一种理解为:PTRS的估计结果可用于调整该DMRS所采用的QCL假设中的部分大尺度参数,比如QCL types B,以及PTRS可采用DMRS所采用的QCL假设来接收,比如采用QCL假设中的QCL types A、QCL types D接收PTRS。另一种理解为:PTRS的接收所采用的大尺度参数,比如QCL Type A、Type B、Type D从DMRS的接收中获取。
本文所述的时频资源可以是时域资源,也可以是频域资源,还可以是时域资源和频域资源。故本文针对这三种情况均适合的场景,统称为时频资源。例如,时频资源与QCL假设关联,表示:时域资源与QCL假设关联、频域资源与QCL假设关联、时域资源和频域资源均与该QCL假设关联。
本文所述的与QCL假设关联,也可以称为与TCI状态关联。
4、多站协作传输场景
多站协作传输场景可支持一个共享信道(也可称为一个传输块)由多个传输节点(例如多个基站)协作发送,多个传输节点可分别采用不同的频域资源来传输该共享信道,也就是说,被调度的多个频域资源块分为两组,分别由不同传输节点来承载其所下发的数据、目标参考信号等。或者,多个传输节点可分别采用不同的时域资源来传输该共享信道,也就是说,被调度了多个时域资源块分为两组,分别由不同传输节点来承载其所下发的数据、目标参考信号等。或者,多个传输节点可分别采用不同的空域资源来传输该共享信道,也就是说,被调度了多个传输端口,分别由不同传输节点来承载其所下发的数据、目标参考信号等。
由于每个传输节点到达接收端的传输路径差异较大,DCI会通过TCI字段,指示每个传输节点所下发的目标参考信号(如DMRS)所分别采用的QCL假设。由于每个传输节点分别采用不同的频域资源来传输该共享信道,故TCI字段支持指示多个QCL假设用于数据和DMRS的接收。多个QCL假设分别可以对应不同的频域资源,和/或,时域资源,和/或,传输端口资源。
可基于PRG指示将被调度的频域资源划分为不同传输节点所分别采用的频域资源。例如,TCI字段指示的TCI状态1、TCI状态2,对应两个QCL假设;被调度的频域资源,基于上述所述的PRG,被划分为第一频域资源和第二频域资源,那么,TCI字段指示的TCI状态1、TCI状态2可解读为:第一频域资源与TCI状态1或TCI状态1指示的QCL假设1关联,第二频域资源与TCI状态2或TCI状态2指示的QCL假设2关联。也就是说,对于接收端来说,当TCI字段指示了两个TCI状态时,根据预先定义的两个TCI状态和频域资源的对应关系,可获知第一频域资源与TCI状态1或TCI状态1指示的QCL假设1关联,第二频域资源与TCI状态2或TCI状态2指示的QCL假设2关联,那么,接收端可基于QCL假设1接收第一频域资源中承载的目标参考信号和数据等;以及接收端可基于QCL假设2接收第二频域资源中承载的目标参考信号和数据等。
其中,对于多站协作传输场景,基于PRG划分被调度的频域资源,可包括:
当PRG指示为宽带时,被调度的频域资源(包括的总RB数量为N RB)中前(也可称为索引号最小的)
Figure PCTCN2019116878-appb-000003
个RB为一个传输节点采用的频域资源,即接收端采用QCL假设1接收该频域资源承载的数据和目标参考信号等;被调度的频域资源中剩余的
Figure PCTCN2019116878-appb-000004
个RB为另一个传输节点采用的频域资源,即接收端采用QCL假设2接收该频域资源承载的数据和目标参考信号等。
当PRG指示为2或者4,索引号为偶数的PRG对应的频域资源为一个传输节点采用的频域资源,即接收端采用QCL假设1或者QCL假设2接收该频域资源承载的数据和目标参考信号等;索引号为奇数的PRG对应的频域资源为另一个传输节点采用的频域资源,即接收端采用QCL假设2或者QCL假设1接收该频域资源承载的数据和目标参考信号等。
例如,如图4所示,假设被调度的频域资源的数量(即被调度的RB的数量)N RB等于8,PRG指示为宽带,则前4个RB为一个PRG,记为PRG0,后四个RB为一个PRG,记为PRG1。假设TCI字段指示两个QCL假设,分别是QCL假设1、2,那么,PRG0对应的频域资源与QCL假设1关联,PRG1对应的频域资源与QCL假设2关联,可简单记为PRG0与QCL假设1关联,PRG1与QCL假设2关联。如图4所示,即灰色填充的方框所表示的频域资源与QCL假设1关联,白色填充的方框所表示的频域资源与QCL假设2关联。其中,本文所述的前是指该被调度的频域资源中索引号靠前的RB,相应的,后是指该被调度的频域资源中索引号靠后的RB。
可选的,第一频域资源和第二频域资源用于承载PDSCH或者物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
可选的,当第一频域资源和第二频域资源用于承载PUSCH,则QCL假设仅包括Type D。
二、频域资源上的参考信号传输方法一
如上文所述,目标参考信号在被调度的频域资源(也可称为调度的带宽)中占用的频域资源,或者承载目标参考信号的频域资源,可基于频域密度K和基准频域资源块确定。
例如,目前,PTRS的频域密度K是基于调度的RB数量N RB确定的。N RB取值不同,PTRS的频域密度会发生变化。如表2中,N RB0、N RB1、N RB2为预设值(是网络设备侧基于UE上报的值,然后通过RRC信令配置给UE的)。比如,N RB处于N RB0和N RB1之间时,频域密度为2,表示每2个RB中有一个RB可用于承载PTRS,或者以间隔为2个RB确定的频域资源用于承载PTRS。N RB大于N RB1时,频域密度为4,表示每4个RB中有一个RB可用于承载PTRS,或者以间隔为4个RB确定的频域资源用于承载PTRS。
其中,每K个RB中有一个RB可用于承载PTRS,该K个RB中的哪一个RB用于承载该PTRS,可基于基准RB来确定。比如,基准RB在调度的带宽中索引号最小的K个RB中的排序记为
Figure PCTCN2019116878-appb-000005
每K个RB为一组,记为第i组,i=0、1、2……直到根据下述公式确定的RB位置超出PDSCH所占的RB位置为止,则第i组中承载PTRS的RB相对于基准RB的位置之间的偏移为iⅹK,也可以根据如下公式确定:
Figure PCTCN2019116878-appb-000006
表2 PTRS频域密度
调度的带宽 频域密度K
N RB<N RB0 PTRS不存在
N RB0≤N RB<N RB1 2
N RB1≤N RB 4
为了使得每个QCL假设关联的频域资源上均能够进行信道参数(如相位)估计,每个QCL假设对应的频域资源都应该关联一个目标参考信号端口(如PTRS端口),可以理解为,不同的QCL假设关联的频域资源上的目标参考信号端口为不同的目标参考信号端口,或者,也可以理解为不同的QCL假设关联的频域资源上的目标参考信号端口为相同的参考信号端口,但是位于不同QCL假设关联的频域资源上的目标参考信号端口对应的QCL假设根据目标参考信号所在的频域资源关联的QCL假设确定。
如上述表2可知,调度的带宽越大,频域密度K越大,代入上述公式(1)可知,PTRS在该调度的带宽上的分布就越稀疏。我们发现若仍采用上述所述的基于N RB来确定频域密度K,会导致每个QCL假设关联的频域资源上PTRS的分布过于稀疏,从而影响估计性能。
如图5所示,图5与图4所示的RB与QCL假设的关联关系相同。假设图5中,基于N RB等于8,确定的频域密度K等于4,基准RB为4个RB中的第1个RB,那么基于公式(1)可确定承载PTRS的RB分别是PRG0中的第1个RB以及PRG1中的第1个RB。可见,针对每个QCL假设关联的4个RB仅承载了一个PTRS,即仅有一个RB中的一个子载波承载PTRS,可用于相位估计。
而对于单站传输模式来说,即指示一个QCL假设1,且其关联的频域资源的数量等于4,即N RB等于4,确定的频域密度K可能等于2(N RB越小,频域密度K越小),如图6 所示,每一个RB都会承载一个PTRS,相当于该4个RB均承载了PTRS。通过比较图5、图6可知,在多站协作传输场景,若仍采用目前的参考信号传输方法,会导致QCL假设关联的频域资源上,所承载的PTRS过于稀疏,从而影响相位估计性能。
为了解决该问题,本申请提供一种参考信号传输方法,可采用每个QCL假设对应的频域资源的数量比较接近的值来确定频域密度K,从而,使得每个QCL假设对应的频域资源中承载的PTRS较多,从而改善相位估计性能。
如图7所示,该参考信号传输方法可以包括以下步骤:
101、接收端根据频域资源的数量M RB,确定目标参考信号的频域密度K;
在一种可选的实施方式中,所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量。可见,该实现方式确定频域密度K时使用的M RB小于N RB,故确定的频域密度K相对较小,采用公式(1)可知,承载PTRS的RB相对较近,有利于提高PTRS承载的密集程度。进一步的,当调度的RB数比较少的时候,此时基于本申请所述的参考信号传输方法,可以避免多余的PTRS。
在一种可选的实施方式中,所述M RB等于所述N RB除以N QCL且向上取整,或等于所述N RB除以N QCL且向下取整;所述N QCL为所述被调度的频域资源关联的QCL假设的总个数。该总个数为DCI中TCI字段所指示的TCI状态或QCL假设的个数。
可选的,N QCL为2。
可选的,N QCL为通过DCI中TCI字段指示的TCI状态的数量。
可选的,N QCL为通过RRC信令配置的TCI字段中指示的TCI状态的数量。
可选的,所述M RB等于所述N RB除以N QCL
需要说明的是,本文所述的频域资源的数量是指频域资源包含的频域资源块的数量,以频域资源块为RB为例,即为频域资源包含的RB数。
在另一种可选的实施方式中,所述M RB等于所述第一频域资源的数量,或者等于所述第二频域资源的数量。也就是说,M RB等于调度PDSCH所占的所有RB中,一个QCL假设关联的频域资源的RB数量。
102、接收端根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和第二频域资源中承载所述目标参考信号的第四频域资源;
所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联。
在一种可选的实施方式中,步骤102中,接收端根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,包括:从被调度的频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS获得的一个或多个频域资源块;所述一个或多个频域资源块中属于第一频域资源的频域资源块,作为承载该目标参考信号的第三频域资源。
相应的,接收端根据所述频域密度K,确定第二频域资源中承载所述目标参考信号的第四频域资源,包括:从被调度的频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得的一个或多个频域资源块中;所述一个或多个频域资源块中属于第二频域资源的频域资源块,作为承载该目标参考信号的第四频域资源。
可选的,接收端根据所述频域密度K,确定用于承载目标参考信号的频域资源,包括:从被调度的频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS获得的一个或多个频域资源块。其中,若用于承载目标参考信号的频域资源属于第一频域资源,则为第三频域资源,另外,承载的该目标参考信号的接收QCL假设参考第一频域资源关联的第一QCL假设。若用于承载目标参考信号的频域资源属于第二频域资源,则为第四频域资源,另外,承载的该目标参考信号的接收QCL假设参考第二频域资源关联的第二QCL假设。
例如,如图8所示,图8具有与图5相同的PRG组与QCL假设之间的关联关系,以及相同的被调度的频域资源。M RB等于所述N RB除以N QCL且向上取整,即M RB等于4。由于4小于8,与图5同样采用表2所示的预设值做判断确定频域密度的话,采用4确定的频域密度可小于采用8确定的频域密度4,故假设基于M RB等于4确定的频域密度K等于2。假设该8个RB中的基准RB为PRG0中的第一个RB,那么,每2个RB映射一次PTRS,获得的一个或多个RB分别是:PRG0中的第1、3个RB,PRG1中的第1、3个RB。可见,图8中每个QCL假设关联的频域资源上具有两个RB承载PTRS,相比于图5,增加了每个QCL假设关联的频域资源上所承载的PTRS的数量,从而有利于改善相位估计性能。
在另一种可选的实施方式中,步骤102可基于上述公式(1)来确定第三频域资源、第四频域资源。其中,公式(1)中
Figure PCTCN2019116878-appb-000007
可基于如下公式确定:
Figure PCTCN2019116878-appb-000008
其中,n RNTI是DCI采用的序列值。
进一步的,第三频域资源、第四频域资源中承载PTRS的具体的子载波可基于如下公式确定:
Figure PCTCN2019116878-appb-000009
其中,k的参考位置为该频域资源块中的起始子载波位置。也就是说,若该频域资源块中的起始子载波位置为子载波0,那么k=1,表示频域资源块中承载PTRS的子载波为与子载波0之间偏移1的子载波,即子载波1。其中,
Figure PCTCN2019116878-appb-000010
表示一个频域资源块中子载波的总个数。
在又一种可选的实施方式中,步骤102中,接收端根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,包括:从第一频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS获得的一个或多个频域资源块,作为承载该目标参考信号的第三频域资源。
接收端根据所述频域密度K,确定第二频域资源中承载所述目标参考信号的第四频域资源,包括:从第二频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS获得的一个或多个频域资源块,作为承载该目标参考信号的第四频域资源。
例如,如图8所示,先针对PRG0,假设PRG0中的基准频域资源块为其中的第1个RB,以该第1个RB为起始,每2个RB映射一次PTRS,获得的一个或多个RB分别为: 该PRG0中的第1、3个RB。同理,针对PRG1也可采用该实施方式确定承载PTRS的RB。
该实施方式有利于在QCL假设关联的频域资源不是连续的情况下,避免某些QCL假设关联的频域资源上没有承载PTRS。
其中,该实施方式也可采用上述公式(1)至(3)分别确定承载PTRS的频域资源。
例如,图9A中,假设N RB等于16,M RB等于8,基于M RB确定的K为4;PRG指示为2,每两个RB为一个PRG组;以及索引号偶数的PRG组与QCL假设1关联,索引号奇数的PRG组与QCL假设2关联。那么,各PRG组与各QCL假设的关联关系如图9A所示,灰色填充的框表示的PRG与QCL假设1关联,白色填充的框表示的PTRS与QCL假设2关联。若采用该16个RB中的第1个RB作为基准RB,并且以该基准RB为起始,每4个RB映射一次PTRS,获得的承载PTRS的RB分别是如图9A所示的灰色格子填充的框所表示的RB或PRG。
可见,QCL假设2关联的频域资源中没有承载PTRS。因此,针对该情况,发送端、接收端均可采用上述实施方式所述的映射方式,确定承载PTRS的RB。例如,如图9B所示,图9B的假设情况与图9A相同,不同的是,图9B中,先针对QCL假设1关联的频域资源确定承载PTRS的RB;再针对QCL假设2关联的频域资源确定承载PTRS的RB。这样,可获得如图9B所示的PTRS分布,从而使得每个QCL假设关联的频域资源上均承载有PTRS。
103、接收端在所述第三频域资源上采用所述第一准共址QCL假设接收所述目标参考信号,和在所述第四频域资源上采用所述第二准共址QCL假设接收所述目标参考信号。
其中,第三频域资源中承载的目标参考信号与第一频域资源中承载的DMRS关联。或者,第三频域资源中承载的目标参考信号对应的目标参考信号端口(如PTRS端口)与第一频域资源中承载的DMRS对应的DMRS端口关联。接收端可以利用第三频域资源中承载的DMRS测量,获取第一QCL假设,例如QCL假设Type A或者Type B或者Type D接收PTRS;接收端还可利用第三频域资源中承载的PTRS进行相位或者相位估计,并利用该相位估计结果和所述第一QCL假设来接收第一频域资源中承载的数据和DMRS。
或者,接收端还可以利用PTRS获取的相位估计结果用于辅助DMRS的估计。例如,假设第三频域资源中承载的目标参考信号对应的是目标参考信号端口(如PTRS端口)0,第一频域资源中承载的DMRS对应的是DMRS端口0,那么,目标参考信号端口(如PTRS端口)0与DMRS端口0关联,表示目标参考信号端口(如PTRS端口)0与DMRS端口0所采用的QCL types A、QCL types D相同,并且,目标参考信号端口(如PTRS端口)0对应的PTRS的估计结果可用于调整DMRS端口0所采用的QCL types B。
其中,第四频域资源中承载的目标参考信号与第二频域资源中承载的DMRS关联。或者,第四频域资源中承载的目标参考信号对应的目标参考信号端口(如PTRS端口)与第二频域资源中承载的DMRS对应的DMRS端口关联。接收端可以利用第四频域资源中承载的DMRS测量,获取第二QCL假设,例如QCL假设Type A或者Type B或者Type D接收PTRS;接收端还可利用第四频域资源中承载的PTRS进行相位或者相位估计,并利用该相位估计结果和所述第二QCL假设来接收第二频域资源中承载的数据和DMRS。
或者,接收端还可以利用PTRS获取的相位估计结果用于辅助DMRS的估计。例如, 假设第四频域资源中承载的目标参考信号对应的是目标参考信号端口(如PTRS端口)1,第一频域资源中承载的DMRS对应的是DMRS端口1,那么,目标参考信号端口(如PTRS端口)1与DMRS端口1关联,表示目标参考信号端口(如PTRS端口)1与DMRS端口1所采用的QCL types A、QCL types D相同,并且,目标参考信号端口(如PTRS端口)1对应的目标参考信号的信道参数(如相位)估计结果可用于调整DMRS端口1所采用的信道参数。
综上所述,图7所示的参考信号传输方法,通过采用小于N RB的频域资源来确定频域密度K,能够改善相位估计性能。
在又一种可选的实施例中,针对步骤102中第一频域资源和第二频域资源分别映射目标参考信号的实施方式,即目标参考信号端口(如PTRS端口)0对应的目标参考信号仅承载于目标参考信号端口(如PTRS端口)0对应的RB上,目标参考信号端口(如PTRS端口)1对应的目标参考信号(如PTRS)仅承载于目标参考信号端口(如PTRS端口)1对应的RB上的实施方式,步骤101中也可分别确定第一频域资源的频域密度K1、第二频域资源的频域密度K2。
例如,对于PRG指示为wideband的情况,前
Figure PCTCN2019116878-appb-000011
个RB用于确定PTRS端口0对应的PTRS的频域密度K1,其余
Figure PCTCN2019116878-appb-000012
个RB用于确定PTRS端口1对应的PTRS的频域密度K2。由于每个QCL假设关联的频域资源的数量不一定严格相等,所以2个PTRS端口的频域密度可能不同。PTRS端口0对应的PTRS仅映射在前
Figure PCTCN2019116878-appb-000013
个RB上(前
Figure PCTCN2019116878-appb-000014
个RB关联QCL假设1),PTRS端口1对应的PTRS仅映射在剩余
Figure PCTCN2019116878-appb-000015
个RB上(剩余
Figure PCTCN2019116878-appb-000016
个RB关联QCL假设2)。其中,PTRS端口0对应的PTRS在前
Figure PCTCN2019116878-appb-000017
个RB上以每K1个RB映射一次的方式映射,PTRS端口1在剩余
Figure PCTCN2019116878-appb-000018
个RB上以每K2个RB映射一次的方式映射。
再例如,对于PRG指示为2或4的情况,索引号为偶数的所有PRG的RB数用于确定PTRS端口0对应的PTRS的频域密度K1,索引号为奇数的所有PRG的RB数用于确定PTRS端口1对应的PTRS的频域密度K2。PTRS端口0对应的PTRS仅映射在索引号为偶数的所有PRG上(索引号为偶数的所有PRG关联QCL假设1),PTRS端口1对应的PTRS仅映射在索引号为奇数的所有PRG上(索引号为奇数的所有PRG关联QCL假设2),PTRS端口0对应的PTRS在偶数PRG上以每K1个RB映射一次的方式映射,PTRS端口1对应的PTRS在奇数PRG上以每K2个RB映射一次的方式映射。
三、频域资源上的参考信号传输方法二
在多站协作传输场景中,不同频域资源上可以采用不同的QCL假设用于相应的数据和DMRS接收,但对于PTRS接收的QCL假设而言,除了传输方法一中提及的PTRS也要采用不同的QCL假设接收的情况(该PTRS可以为单端口,但不同频域资源上的QCL假设不同,或者,该PTRS也可以为多个端口,不同端口的QCL假设不同),PTRS还可以被限定为仅采用一个QCL假设接收,这种情况主要考虑到UE的处理能力和RS占用的资源开销等问题。此时,该PTRS所采用的QCL假设,以及该PTRS与DMRS的关联关系也成为一个亟待解决的问题。因此,本申请还提供了一种参考信号传输方法,该参考信号传输方 法可用于目标参考信号端口仅采用一个QCL假设接收的情况。
方式一:
该目标参考信号端口(如PTRS端口)可与DCI指示的多个QCL假设中的其中一个QCL假设关联。即可采用该QCL假设接收该目标参考信号端口。
上述关联关系可以为预先定义的,即当DCI或者RRC信令中指示了多个QCL假设时,默认第一个QCL假设作为PTRS的QCL假设,或者默认第二个QCL假设作为PTRS的QCL假设。
可选的,该目标参考信号端口(如PTRS端口)在与该目标参考信号端口所关联的该QCL假设对应的频域资源中承载即可。
也就是说,一种情况,以PTRS端口与第一QCL假设关联为例,那么,接收端只需确定第一频域资源中承载的PTRS的第三频域资源即可,相应的,接收端只需采用第一QCL假设接收第三频域资源中承载的PTRS。另一种情况,以PTRS端口与第二QCL假设关联为例,那么,接收端只需确定第二频域资源中承载的PTRS的第四频域资源即可,相应的,接收端只需采用第二QCL假设接收第四频域资源中承载的PTRS。图10以第一种情况为例进行阐述。
可选的,PTRS端口可以关联一个QCL假设对应的DMRS端口。
可选的,PTRS端口与关联的DMRS端口的QCL假设相同,具体的,QCL假设包括QCL假设Type A、Type B、Type D中的一个或者多个。
可选的,PTRS端口与非关联的DMRS端口,即非关联的DMRS端口的QCL假设与PTRS端口的QCL假设不同,则PTRS端口与非关联的DMRS端口的QCL假设Type B相同。也就是说,采用多个QCL假设的DMRS端口共享该PTRS端口,或者,所有调度带宽上的DMRS共享该PTRS。
如图10所示,该目标参考信号传输方法可包括以下步骤:
201、接收端根据频域资源的数量M RB,确定目标参考信号的频域密度K;
其中,M RB可等于QCL假设关联的频域资源的数量,或等于N RB除以N QCL且向上取整,或等于N RB除以N QCL且向下取整。所述N RB为被调度的频域资源的数量。所述N QCL为所述被调度的频域资源关联的QCL假设的总个数。
202、接收端根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源;
在一种可选的实施方式中,接收端根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,包括:从第一频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS获得的一个或多个频域资源块,作为承载该目标参考信号的第三频域资源。
可选的,该实施方式也可采用上述公式(1)至(3)确定承载PTRS的频域资源。需要注意的是,该情况下公式(1)、(2)中的i的最大取值是基于第一频域资源的数量确定的。
203、接收端在所述第三频域资源上采用所述第一准共址QCL假设接收所述目标参考信号。
其中,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联。
可见,该实施例与图7所示的实施例相比,步骤201至203分别是步骤101至103中的部分,故步骤201至203的相关阐述可参见上述第二部分的相关内容,此处不再详述。
例如,对于PRG指示为wideband的情况,PTRS端口采用前
Figure PCTCN2019116878-appb-000019
个RB关联的QCL假设,并且从该前
Figure PCTCN2019116878-appb-000020
个RB中基准RB为起始,每K个RB映射一次PTRS的方式,确定承载PTRS的频域资源。此时,可以理解为,PTRS端口与位于前
Figure PCTCN2019116878-appb-000021
个RB上的
DMRS端口关联,也就是说,PTRS端口与DMRS端口的QCL假设Type A和/或Type D相同,但PTRS与位于其余RB上的DMRS端口非关联,也就是说,PTRS仅与该DMRS端口的QCL Type B相同。再例如,对于PRG指示为2或者4,假设PTRS端口与该索引号为偶数的PRG对应的QCL假设关联,那么从该索引号为偶数的所有PRG中基准RB为起始,每K个RB映射一次PTRS的方式,确定承载PTRS的频域资源。索引号为偶数的所有PRG的RB数以每K个RB映射一次的方式映射。此时,可以理解为,PTRS端口与位于偶数PRG上的DMRS端口关联,也就是说,PTRS端口与该DMRS端口的QCL假设Type A和/或Type D相同,但PTRS与位于奇数PRG上的DMRS端口非关联,也就是说,PTRS仅与该DMRS端口的QCL Type B相同。
例如,图11与8的频域密度相同,假设配置一个PTRS端口0且该PTRS端口0与QCL假设1关联。假设QCL假设1关联的索引号为偶数的所有PRG中基准RB为其中的第1个RB,那么,基于图10所述的参考信号传输方法,可确定承载PTRS的RB为如图11中灰色方格填充的框所表示的RB。相应的,接收端可在这些RB上采用QCL假设1接收PTRS。可见,QCL假设2关联的频域资源上没有承载PTRS。可见,该目标参考信号传输方法能够明确PTRS的传输规则,从而避免了由于规则不明确影响传输性能的问题。
方式二:
针对上述目标参考信号端口仅采用一个QCL假设接收的情况,本申请还提供一种目标参考信号(如PTRS)传输方法。该目标参考信号(如PTRS)传输方法与方式一的实施方式不同,方式二的参考信号传输方法中,目标参考信号的映射方式基于全部调度带宽确定,即频域密度和映射方式均根据全部调度带宽确定。
可选的,PTRS端口可以关联对应一个QCL假设的DMRS端口。
可选的,PTRS端口与关联的DMRS端口的QCL假设相同,具体的,QCL假设包括QCL假设Type A、Type B、Type D中的一个或者多个。
可选的,PTRS端口与非关联的DMRS端口,即非关联的DMRS端口的QCL假设与PTRS端口的QCL假设不同,则PTRS端口与非关联的DMRS端口的QCL假设Type B相同。也就是说,采用多个QCL假设的DMRS端口共享该PTRS端口,或者,所有调度带宽上的DMRS共享该PTRS。
可选的,该参考信号传输方法中,频域密度K的确定可参见上述图7中101的相关内容,确定承载目标参考信号的频域资源可参见图7中102的相关内容。与图7中103的操作不同,该参考信号传输方法中,接收端可基于第一QCL假设或第二QCL假设接收第三 频域资源、第四频域资源中承载的目标参考信号(如PTRS)。可选的,接收端可将该目标参考信号(如PTRS)的信道参数(如频偏)估计结果用于调整第一QCL假设和/或第二QCL假设中的信道参数(如QCL type-B)。
综上所述,针对配置一个目标参考信号端口(如PTRS端口)的情况,上述方式一、二可通过信令指示接收端,采用哪种方式来接收目标参考信号(如PTRS)。比如,当DMRS采用的QCL假设未包括type D,或者仅包括QCL Type B,则采用方式二对应的PTRS映射方式发送PTRS,否则,采用方式一对应的PTRS映射方式发送PTRS。
可选的,当配置的PTRS端口数量为1时,采用方式一对应的PTRS映射方法发送PTRS,当配置的PTRS端口数量为2时,采用方式二对应的PTRS映射方法发送PTRS。
另外,当配置了一个目标参考信号端口(如PTRS端口),方式一的参考信号传输方法可以确保一个QCL假设的信道参数(如频偏)估计是准确的,同时保持较低信令开销;方式二的参考信号传输方法可以确保每个QCL假设都有信道参数(如频偏)估计,且共享同一个目标参考信号端口(如PTRS端口),减小信令开销和信道参数(如频偏)估计的复杂度。避免了目前多站协作传输场景配置一个目标参考信号端口(如PTRS端口),导致目标参考信号(如PTRS)如何关联两个QCL假设的规则不清晰,进而导致接收端的信道参数(如频偏)估计结果不准确。
在又一种可能的实现方式中,在多站协作传输场景中,相同的时频域资源上可以采用不同的QCL假设用于相应的数据和DMRS接收,每个QCL假设对应的数据和DMRS对应了一个不同的端口,或者,每个QCL假设对应一个DMRS的CDM组。例如,DMRS端口0,或者DMRS端口0和1(CDM组1)对应QCL假设1,DMRS端口2,或者DMRS端口2和3(CDM组2)对应QCL假设2。在该时频域资源上的PTRS被限定为采用一个QCL假设接收,也就是说,PTRS被配置为一个端口,这种情况考虑到UE的处理能力和RS占用的资源开销等问题。此时,该PTRS所采用的QCL假设,以及该PTRS与DMRS的关联关系也成为一个亟待解决的问题。
该目标参考信号端口(如PTRS端口)可与DCI指示的多个QCL假设中的其中一个QCL假设关联。即可采用该QCL假设接收该目标参考信号端口。
上述关联关系可以为预先定义的,即当DCI或者RRC信令中指示了多个QCL假设时,默认第一个QCL假设作为PTRS的QCL假设,或者默认第二个QCL假设作为PTRS的QCL假设。
可选的,PTRS端口可以关联对应一个QCL假设的DMRS端口。
可选的,PTRS端口与关联的DMRS端口的QCL假设相同,具体的,QCL假设包括QCL假设Type A、Type B、Type D中的一个或者多个。
可选的,PTRS端口与非关联的DMRS端口,即非关联的DMRS端口的QCL假设与PTRS端口的QCL假设不同,则PTRS端口与非关联的DMRS端口的QCL假设Type B相同。也就是说,采用多个QCL假设的DMRS端口共享该PTRS端口。
如图12所示,该参考信号传输方法可包括以下步骤:
301、接收端接收TCI指示信令,该TCI指示信令指示了多个QCL假设(TCI状态)
其中,多个QCL假设(TCI状态)各自对应了一个DMRS的CDM组,例如,DMRS 的CDM组1采用QCL假设1接收,DMRS的CDM组2采用QCL假设2接收。
302、接收端根据预定义的规则确定PTRS采用的QCL假设。
其中,PTRS可以采用多个QCL假设中的第一个QCL假设,或者最后一个QCL假设。
可选的,PTRS与默认的CDM组中的DMRS端口存在关联关系,比如PTRS与指示的第一个CDM组中的DMRS端口存在关联关系,或者PTRS与指示的最后一个CDM中的DMRS端口存在关联关系。该PTRS端口和关联的DMRS端口具有相同的QCL假设Type A和/或,Type D。
可选的,PTRS端口与非关联的DMRS端口具有相同的QCL假设Type B。
303、接收端根据PTRS采用的QCL假设接收PTRS。
可见,该参考信号传输方法能够在多站协作传输采用的频域资源相同的情况下,确定PTRS的传输方法,从而有利于改善信道估计性能。
四、时域资源上的参考信号传输方法
为了使得每个QCL假设关联的时域资源上均能够进行频偏估计,每个QCL假设对应的时域资源都应该关联一个目标参考信号端口(如PTRS端口),从而可辅助该时域资源中承载的DMRS进行信道估计,改善信道估计性能。因此,针对上述多站协作传输场景,可配置两个目标参考信号端口(如PTRS端口),一个目标参考信号端口(如PTRS端口)与一个传输节点传输的数据和DMRS所采用的QCL假设关联。比如目标参考信号端口(如PTRS端口)0与QCL假设1关联,目标参考信号端口(如PTRS端口)2与QCL假设2关联。
针对多站协作场景中,每个传输接收点采用不同的时域资源来下发数据和DMRS的情况,即被调度的时域资源在时域上包括至少两个时域资源(即至少两个时间段),每个时域资源对应一个或者多个OFDM符号,且任意两个时域资源在时域上不重叠,每个时域资源可以关联不同的QCL假设。为了使得具有不同QCL假设关联的时域资源内可以有独立的信道参数(如频偏)估计,每个时域资源内需要承载目标参考信号(如PTRS)。因此,本申请还提供一种时域资源上的参考信号传输方法。
如图13所示,该参考信号传输方法包括:
401、接收端根据调制编码方式MCS信息,确定目标参考信号的时域密度L;
402、接收端从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次目标参考信号,获得承载目标参考信号的第三时域资源;以及从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次目标参考信号,获得承载目标参考信号的第四时域资源;
403、接收端采用第一QCL假设接收第三时域资源中承载的目标参考信号,以及采用第二QCL假设接收第四时域资源中承载的目标参考信号。
其中,MCS信息用于指示被调度的时域资源的调制编码方式等信息。被调度的时域资源包括第一时域资源、第二时域资源。第一时域资源与第一QCL假设关联,第二时域资源与第二QCL假设关联。
其中,第三时域资源中承载的目标参考信号对应的目标参考信号端口,与,第一时域资源中承载的DMRS对应的DMRS端口关联;第四时域资源中承载的目标参考信号对应的 目标参考信号端口,与,第二时域资源中承载的DMRS对应的DMRS端口关联。
本申请实施例中,调制编码方式信息可为调制编码方式索引I MCS、调制阶数Qm、目标码率Rx、频谱效率等中的一个。
以调制编码方式信息为调制编码方式索引I MCS为例,步骤301接收端根据调制编码方式MCS信息,确定目标参考信号的时域密度L,可采用表3所示的预设值(如ptrs-MCS 1、ptrs-MCS 2、ptrs-MCS 3、ptrs-MCS 4),确定I MCS所在的区间,进而确定时域密度L。
表3 PTRS的时域密度L
I MCS 时域密度L
I MCS<ptrs-MCS 1 PTRS不存在
ptrs-MCS1≤I MCS<ptrs-MCS2 4
ptrs-MCS2≤I MCS<ptrs-MCS3 2
ptrs-MCS3≤I MCS<ptrs-MCS4 1
步骤402的具体确定方式以图14为例进行阐述。如图14所示,第一时域资源为该时隙中的第1至5个符号,即灰色填充的方框表示的符号。第二时域资源为该时隙中第6至10个符号,即白色填充的方框表示的符号。并且第一时域资源与QCL假设1关联,第二时域资源与QCL假设2关联。假设确定的时域密度L等于2,第一时域资源中承载DMRS的符号为该时隙中的第1个符号,第二时域资源中承载DMRS的符号为该时隙中的第6个符号,故第一时域资源中基准时域资源块可为该时隙中的第2个符号,第二时域资源中基准时域资源块可为该时隙中的第7个符号。因此,第一时域资源中以第2个符号为起始,每L(2)个符号映射一次PTRS,确定的承载PTRS的符号分别为该时隙中第2、4个符号;第二时域资源中以第7个符号为起始,每L(2)个符号映射一次PTRS,确定的承载PTRS的符号分别为该时隙中第7、9个符号。其中,承载PTRS的符号如图13中灰色方格填充的方框所表示的符号。
步骤403中,接收端采用第一QCL假设接收第三时域资源中承载的目标参考信号后,可利用该目标参考信号(如PTRS)的信道参数(如频偏)估计结果和第一QCL假设接收第一时域资源中承载的数据和DMRS。相应的,接收端采用第二QCL假设接收第四时域资源中承载的目标参考信号后,可利用该目标参考信号(如PTRS)的信道参数(如频偏)估计结果和第二QCL假设接收第二时域资源中承载的数据和DMRS。
可见,图12所示的参考信号传输方法,能够在多站协作传输场景,协作传输共享信道的各传输接收点采用不同时域资源以及配置了两个目标参考信号端口(如PTRS端口)的情况下,传输目标参考信号(如PTRS),从而实现每个QCL假设关联的时域资源上均能够进行信道参数(如频偏)估计,从而改善接收性能。
另外,针对多站协作传输场景,协作传输共享信道的各传输接收点采用不同或相同时域资源,但配置了一个目标参考信号端口(如PTRS端口)的情况下,本申请还提供了一种参考信号传输方法。该参考信号传输方法中,接收端可执行上述步骤301,执行上述步骤302中的部分操作,以及上述步骤303中的部分操作。
其中,步骤402中的部分操作为:
接收端从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次PTRS,获得承载PTRS的第三时域资源;或者
从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次PTRS,获得承载PTRS的第四时域资源。
步骤403中的部分操作为:
接收端采用第一QCL假设接收第三时域资源中承载的目标参考信号;或者
采用第二QCL假设接收第四时域资源中承载的目标参考信号。
其中,协作传输共享信道的各传输接收点采用相同时域资源时,第一时域资源与第二时域资源相同,第三时域资源与第四时域资源相同。
也就是说,配置的一个目标参考信号端口(如PTRS端口)与其中一个QCL假设关联,相应的,在该QCL假设关联的时域资源上映射或承载PTRS即可,进而,接收端或发送端在该时域资源上采用该QCL假设接收目标参考信号(如PTRS)。其他的QCL假设关联的时域资源上不承载目标参考信号(如PTRS)。
或者,另一种方式,DCI指示的多个QCL假设可关联同一个目标参考信号端口(如PTRS端口),这样,基于时域密度L确定承载目标参考信号(如PTRS)的时域资源时,是基于该时域密度L在被调度的时域资源上顺次映射的,不是重新映射的。也就是说,承载目标参考信号(如PTRS)的时域资源为:从被调度的时域资源中的基准时域资源块为起始,每L个时域资源块映射一次目标参考信号(如PTRS),直至该被调度的时域资源中的最后一个时域资源块结束,获得的承载目标参考信号(如PTRS)的时域资源块。例如,图13中,假设被调度的时隙中基准时域资源块为第2个符号,那么,以该第2个符号为起始,每2个符号映射一次PTRS,直至第9个符号上映射一次PTRS,获得承载PTRS的所有符号。而不需要采用上述图12所述的映射方式,第一时域资源和第二时域资源分别从各自的基准时域资源块为起始进行映射。
进一步的,接收端可采用其中一个QCL假设的QCL types A、D接收被调度的时域资源中承载的目标参考信号(如PTRS),并利用该目标参考信号(如PTRS)的信道参数(频偏)估计结果调整其中一个或所有QCL假设中的信道参数(如QCL types B)。
该部分的第一种目标参考信号(如PTRS)传输方法,支持2个目标参考信号端口(如PTRS端口)的情况,从而保证每个QCL假设均有频偏估计的目标参考信号(如PTRS),即均承载了目标参考信号。该部分的第二种目标参考信号(如PTRS)传输方法可支持配置一个目标参考信号端口(如PTRS端口)的情况,确保一个QCL假设的信道参数(如频偏)估计是准确的,同时保持较低信令开销;或者确保每个QCL假设都有信道参数(如频偏)估计,且共享同一个目标参考信号端口(如PTRS端口),减小信令开销和信道参数(如频偏)估计的复杂度。避免接收端、发送端针对一个目标参考信号端口(如PTRS端口)该如何关联两个QCL假设规则不清晰,导致接收端的信道参数(如频偏)估计不准确。
本申请中,上述提供的频域上的参考信号传输方法可与时域上的参考信号传输方法结合使用,即在被调度的时频资源上以频域上的参考信号传输方法可与时域上的参考信号传输方法结合,传输目标参考信号,以改善信道估计性能。
请参见图15,为本申请实施例提供的一种通信装置的结构示意图。图15所示的通信装置1500可包括收发单元1501和处理单元1502。收发单元1501可包括发送单元和接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,收发单元1501可以实现发送功能和/或接收功能。收发单元也可以描述为通信单元。
通信装置1500可以是终端设备,也可以终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
一种实施方式中,通信装置包括收发单元1501和处理单元1502;
所述处理单元1502,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;以及根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源。
所述收发单元1501,用于采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联。
另一种实施方式中,通信装置包括收发单元1501和处理单元1502;
所述处理单元1502,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;以及从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
所述收发单元1501,用于采用第一QCL假设接收第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号;
所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
通信装置1300可以是网络设备,也可以网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
在一种实施方式中,
所述处理单元1502,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;以及根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;
所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设 关联;
所述收发单元1501,用于采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
其中,该实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
另一种实施方式中,通信装置包括收发单元1501和处理单元1502;
所述处理单元1502,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;以及从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
所述收发单元1501,用于采用第一QCL假设发送第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号;
所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
图16给出了一种通信装置的结构示意图。所述通信装置1600可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1600可以包括一个或多个处理器1601。所述处理器1601可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1600中可以包括一个或多个存储器1602,其上可以存有指令1604,所述指令可在所述处理器1601上被运行,使得所述装置1600执行上述方法实施例中描述的方法。可选的,所述存储器1602中还可以存储有数据。所述处理器1601和存储器1602可以单独设置,也可以集成在一起。
可选的,所述通信装置1600还可以包括收发器1605、天线1606。所述收发器1605可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1605可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
所述通信装置1600为终端设备:处理器1601用于执行图7中的步骤101、102;执行图10中的步骤201、202;图12中的步骤301、302;图13中的步骤401、402。收发器1605用于执行图7中的步骤103;执行图10中的步骤203;图12中的步骤303;图13中的步骤403。
所述通信装置1600为网络设备:处理器1601用于执行图7中的步骤101、102;执行 图10中的步骤201、202;图12中的步骤301、302;图13中的步骤401、402。收发器1605用于执行图7中的步骤103,但是需将“接收”替换为“发送”操作;执行图10中的步骤203,但是需将“接收”替换为“发送”操作;图12中的步骤303,但是需将“接收”替换为“发送”操作;图13中的步骤403,但是需将“接收”替换为“发送”操作。
在另一种可能的设计中,处理器1601中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,可选的,处理器1601可以存有指令1603,指令1603在处理器1601上运行,可使得所述通信装置1600执行上述方法实施例中描述的方法。指令1603可能固化在处理器1601中,该种情况下,处理器1601可能由硬件实现。
在又一种可能的设计中,通信装置1600可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图14的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图17所示的芯片的结构示意图。图17所示的芯片1700包括处理器1701和接口1702。其中,处理器1701的数量可以是一个或多个,接口1702的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
一种实施方式中,所述处理器1701,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;以及根据所述频域密度K,确定第一频域资源中承载所述目标参考信号 的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;所述接口1702,用于采用所述第一准共址QCL假设接收所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设接收所述第四频域资源中承载的所述目标参考信号。
一种实施方式中,所述处理器1701,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;以及用于从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;接口1702,用于采用第一QCL假设接收第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
一种实施方式中,
所述处理器1701,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;以及用于根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;所述接口1702,用于采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
另一种实施方式中,
所述处理器1701,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;以及用于从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
所述接口1702,用于采用第一QCL假设发送第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号。
可选的,芯片还包括存储器1703,存储器1703用于存储终端设备必要的程序指令和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种参考信号传输方法,其特征在于,包括:
    根据频域资源的数量M RB,确定目标参考信号的频域密度K;
    根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;
    所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
    所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联;
    采用所述第一准共址QCL假设接收所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设接收所述第四频域资源中承载的所述目标参考信号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第三频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第一频域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,
    所述第四频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第二频域资源中承载的DMRS对应的DMRS端口关联。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述M RB等于所述N RB除以N QCL且向上取整,或等于所述N RB除以N QCL且向下取整;
    所述N QCL为所述被调度的频域资源关联的QCL假设的总个数。
  4. 根据权利要求1或2所述的方法,其特征在于,
    所述M RB等于所述第一频域资源的数量,或者等于所述第二频域资源的数量。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源,包括:
    从被调度的频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块;
    从所述承载目标参考信号的频域资源块中,选择属于第一频域资源的频域资源块作为第三频域资源;和/或,从所述承载目标参考信号的频域资源块中,选择属于第二频域资源的频域资源块作为第四频域资源。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源,包括:
    从第一频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第三频域资源;和/或,
    从第二频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第四频域资源。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述目标参考信号为用于进行信道估计或用于辅助解调参考信号DMRS进行信道估计的参考信号。
  8. 根据权利要求7所述的方法,其特征在于,所述目标参考信息包括相位追踪参考信号PTRS。
  9. 一种参考信号传输方法,其特征在于,包括:
    根据调制编码方式MCS信息,确定目标参考信号的时域密度L;
    从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
    采用第一QCL假设接收第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号;
    所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第三时域资源中承载的目标参考信号对应的目标参考信号端口与所述第一时域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,
    所述第四时域资源中承载的目标参考信号对应的目标参考信号端口与所述第二时域资源中承载的解调参考信号DMRS对应的DMRS端口关联。
  11. 根据权利要求9或10所述的方法,其特征在于,所述目标参考信号为用于进行信道估计或用于辅助解调参考信号DMRS进行信道估计的参考信号。
  12. 根据权利要求11所述的方法,其特征在于,所述目标参考信息包括相位追踪参考信号PTRS。
  13. 一种参考信号传输方法,其特征在于,包括:
    根据频域资源的数量M RB,确定目标参考信号的频域密度K;
    根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源, 和/或,第二频域资源中承载所述目标参考信号的第四频域资源;
    所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
    所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联;
    采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第三频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第一频域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,
    所述第四频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第二频域资源中承载的DMRS对应的DMRS端口关联。
  15. 根据权利要求13或14所述的方法,其特征在于,
    所述M RB等于所述N RB除以N QCL且向上取整,或等于所述N RB除以N QCL且向下取整;
    所述N QCL为所述被调度的频域资源关联的QCL假设的总个数。
  16. 根据权利要求13或14所述的方法,其特征在于,
    所述M RB等于所述第一频域资源的数量,或者等于所述第二频域资源的数量。
  17. 根据权利要求13至16任一项所述的方法,其特征在于,所述根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源,包括:
    从被调度的频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块;
    从所述承载目标参考信号的频域资源块中,选择属于第一频域资源的频域资源块作为第三频域资源;和/或,从所述承载目标参考信号的频域资源块中,选择属于第二频域资源的频域资源块作为第四频域资源。
  18. 根据权利要求13至16任一项所述的方法,其特征在于,所述根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源,包括:
    从第一频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第三频域资源;和/或,
    从第二频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第四频域资源。
  19. 根据权利要求13至18任一项所述的方法,其特征在于,所述目标参考信号为用于进行信道估计或用于辅助解调参考信号DMRS进行信道估计的参考信号。
  20. 根据权利要求19所述的方法,其特征在于,所述目标参考信息包括相位追踪参考信号PTRS。
  21. 一种参考信号传输方法,其特征在于,包括:
    根据调制编码方式MCS信息,确定目标参考信号的时域密度L;
    从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
    采用第一QCL假设发送第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设发送第四时域资源中承载的目标参考信号;
    所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
  22. 根据权利要求21所述的方法,其特征在于,
    所述第三时域资源中承载的目标参考信号对应的目标参考信号端口与所述第一时域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,
    所述第四时域资源中承载的目标参考信号对应的目标参考信号端口与所述第二时域资源中承载的解调参考信号DMRS对应的DMRS端口关联。
  23. 根据权利要求21或22所述的方法,其特征在于,所述目标参考信号为用于进行信道估计或用于辅助解调参考信号DMRS进行信道估计的参考信号。
  24. 根据权利要求23所述的方法,其特征在于,所述目标参考信息包括相位追踪参考信号PTRS。
  25. 一种通信装置,其特征在于,包括:处理器和通信接口;
    所述处理器,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;
    所述处理器,用于根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;
    所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
    所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联;
    所述通信接口,用于采用所述第一准共址QCL假设接收所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设接收所述第四频域资源中承载的所述目标参考信号。
  26. 根据权利要求25所述的装置,其特征在于,
    所述第三频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第一频域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,
    所述第四频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第二频域资源中承载的DMRS对应的DMRS端口关联。
  27. 根据权利要求25或26所述的装置,其特征在于,
    所述M RB等于所述N RB除以N QCL且向上取整,或等于所述N RB除以N QCL且向下取整,或者等于所述第一频域资源的数量,或者等于所述第二频域资源的数量;
    所述N QCL为所述被调度的频域资源关联的QCL假设的总个数。
  28. 根据权利要求25至27任一项所述的装置,其特征在于,
    所述通信接口,用于从第一频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第三频域资源;和/或,从第二频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第四频域资源。
  29. 一种通信装置,其特征在于,包括:处理器和通信接口;
    所述处理器,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;
    所述处理器,用于从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
    所述通信接口,用于采用第一QCL假设接收第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号;
    所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
  30. 根据权利要求29所述的装置,其特征在于,
    所述第三时域资源中承载的目标参考信号对应的目标参考信号端口与所述第一时域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,
    所述第四时域资源中承载的目标参考信号对应的目标参考信号端口与所述第二时域资源中承载的解调参考信号DMRS对应的DMRS端口关联。
  31. 一种通信装置,其特征在于,包括:处理器和通信接口;
    所述处理器,用于根据频域资源的数量M RB,确定目标参考信号的频域密度K;
    所述处理器,用于根据所述频域密度K,确定第一频域资源中承载所述目标参考信号的第三频域资源,和/或,第二频域资源中承载所述目标参考信号的第四频域资源;
    所述频域资源的数量M RB大于零,且小于N RB,所述N RB为被调度的频域资源的数量,所述被调度的频域资源包括所述第一频域资源和所述第二频域资源;
    所述第一频域资源与第一准共址QCL假设关联,所述第二频域资源与第二QCL假设关联;
    所述通信接口,用于采用所述第一准共址QCL假设发送所述第三频域资源中承载的所述目标参考信号,和/或,采用所述第二准共址QCL假设发送所述第四频域资源中承载的所述目标参考信号。
  32. 根据权利要求31所述的装置,其特征在于,
    所述第三频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第一频域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,
    所述第四频域资源中承载的目标参考信号对应的目标参考信号端口,与,所述第二频域资源中承载的DMRS对应的DMRS端口关联。
  33. 根据权利要求31或32所述的装置,其特征在于,
    所述M RB等于所述N RB除以N QCL且向上取整,或等于所述N RB除以N QCL且向下取整,或者等于所述第一频域资源的数量,或者等于所述第二频域资源的数量;
    所述N QCL为所述被调度的频域资源关联的QCL假设的总个数。
  34. 根据权利要求31至33任一项所述的装置,其特征在于,
    所述通信接口,用于从第一频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第三频域资源;和/或,从第二频域资源中的基准频域资源块为起始,每K个频域资源块映射一次PTRS,获得承载目标参考信号的频域资源块,作为第四频域资源。
  35. 一种通信装置,其特征在于,包括:处理器和通信接口;
    所述处理器,用于根据调制编码方式MCS信息,确定目标参考信号的时域密度L;
    所述处理器,用于从第一时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第三时域资源;和/或,从第二时域资源中的基准时域资源块为起始,每L个时域资源块映射一次所述目标参考信号,获得承载所述目标参考信号的第四时域资源;
    所述通信接口,用于采用第一QCL假设发送第三时域资源中承载的目标参考信号,和/或,采用第二QCL假设接收第四时域资源中承载的目标参考信号;
    所述MCS信息用于指示被调度的时域资源的调制编码方式;所述被调度的时域资源包括所述第一时域资源、所述第二时域资源;所述第一时域资源与所述第一QCL假设关联,所述第二时域资源与所述第二QCL假设关联。
  36. 根据权利要求35所述的装置,其特征在于,
    所述第三时域资源中承载的目标参考信号对应的目标参考信号端口与所述第一时域资源中承载的解调参考信号DMRS对应的DMRS端口关联;和/或,
    所述第四时域资源中承载的目标参考信号对应的目标参考信号端口与所述第二时域资源中承载的解调参考信号DMRS对应的DMRS端口关联。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至8任一项所述的方法,或权利要求9至12任一项所述的方法被执行,或权利要求13至20任一项所述的方法,或权利要求21至24任一项所述的方法。
PCT/CN2019/116878 2019-11-08 2019-11-08 参考信号传输方法及装置 WO2021088078A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19951969.5A EP4040890A4 (en) 2019-11-08 2019-11-08 REFERENCE SIGNAL TRANSMISSION METHOD AND APPARATUS
PCT/CN2019/116878 WO2021088078A1 (zh) 2019-11-08 2019-11-08 参考信号传输方法及装置
CN201980101979.2A CN114631375B (zh) 2019-11-08 2019-11-08 参考信号传输方法及装置
US17/737,526 US20220272728A1 (en) 2019-11-08 2022-05-05 Reference signal transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116878 WO2021088078A1 (zh) 2019-11-08 2019-11-08 参考信号传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/737,526 Continuation US20220272728A1 (en) 2019-11-08 2022-05-05 Reference signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2021088078A1 true WO2021088078A1 (zh) 2021-05-14

Family

ID=75849549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116878 WO2021088078A1 (zh) 2019-11-08 2019-11-08 参考信号传输方法及装置

Country Status (4)

Country Link
US (1) US20220272728A1 (zh)
EP (1) EP4040890A4 (zh)
CN (1) CN114631375B (zh)
WO (1) WO2021088078A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631987A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 参考信号的处理方法及装置
US20190166615A1 (en) * 2018-01-12 2019-05-30 Ajit Nimbalker Time density and frequency density determination of phase tracking reference signals (pt-rs) in new radio (nr) systems
CN110214466A (zh) * 2017-02-02 2019-09-06 夏普株式会社 基站装置、终端装置、通信方法和集成电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150030661A (ko) * 2012-07-09 2015-03-20 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
CN110247748B (zh) * 2016-02-26 2021-06-22 北京佰才邦技术有限公司 探测参考信号的传输方法、装置及终端
CN105898872B (zh) * 2016-03-31 2021-01-22 电信科学技术研究院 一种上行传输方法及装置
WO2018171792A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种参考信号传输方法、装置及系统
CN109391448B (zh) * 2017-08-11 2021-10-01 华为技术有限公司 一种信息传输方法及装置
CN109802796B (zh) * 2017-11-17 2023-10-20 华为技术有限公司 参考信号的传输方法和传输装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110214466A (zh) * 2017-02-02 2019-09-06 夏普株式会社 基站装置、终端装置、通信方法和集成电路
CN108631987A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 参考信号的处理方法及装置
US20190166615A1 (en) * 2018-01-12 2019-05-30 Ajit Nimbalker Time density and frequency density determination of phase tracking reference signals (pt-rs) in new radio (nr) systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETRI: "Discussion on phase tracking RS design", 3GPP DRAFT; R1-1702345 DISCUSSION ON PHASE TRACKING RS DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051209499 *
See also references of EP4040890A4 *

Also Published As

Publication number Publication date
CN114631375A (zh) 2022-06-14
CN114631375B (zh) 2024-05-17
US20220272728A1 (en) 2022-08-25
EP4040890A1 (en) 2022-08-10
EP4040890A4 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2021254506A1 (zh) 上行传输方法及相关装置
WO2022022732A1 (zh) 一种qcl指示方法及相关设备
WO2022213294A1 (zh) 一种时域资源分配的方法及装置
WO2021159467A1 (zh) 一种资源的配置方法及网络设备
WO2023245521A1 (zh) 一种控制资源的位置信息的确定方法及其装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2021142802A1 (zh) 一种上行控制信息的传输方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2021120135A1 (zh) 一种资源确定方法及资源确定装置
WO2023124411A1 (zh) 数据传输方法以及通信装置
WO2022063277A1 (zh) 波束查找方法及装置
WO2021088078A1 (zh) 参考信号传输方法及装置
WO2023231037A1 (zh) 一种数据链路层l2的缓冲器大小的确定方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2023050212A1 (zh) 一种cg资源的harq反馈的方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2024067617A1 (zh) 资源配置的方法及装置
WO2024021130A1 (zh) 一种信道估计方法及其装置
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2024031578A1 (zh) 信道发送方法、信道接收方法、装置、设备及存储介质
WO2023206565A1 (zh) 探测参考信号srs的传输方法、srs资源配置方法及其装置
JP7511004B2 (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
WO2023206568A1 (zh) 多天线面板协作传输的解调参考信号端口分配方法及装置
WO2023231036A1 (zh) 一种传输块的处理方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019951969

Country of ref document: EP

Effective date: 20220504

NENP Non-entry into the national phase

Ref country code: DE