WO2022022732A1 - 一种qcl指示方法及相关设备 - Google Patents

一种qcl指示方法及相关设备 Download PDF

Info

Publication number
WO2022022732A1
WO2022022732A1 PCT/CN2021/109944 CN2021109944W WO2022022732A1 WO 2022022732 A1 WO2022022732 A1 WO 2022022732A1 CN 2021109944 W CN2021109944 W CN 2021109944W WO 2022022732 A1 WO2022022732 A1 WO 2022022732A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
delay
doppler
spread
qcl
Prior art date
Application number
PCT/CN2021/109944
Other languages
English (en)
French (fr)
Inventor
纪刘榴
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21850028.8A priority Critical patent/EP4181447A4/en
Publication of WO2022022732A1 publication Critical patent/WO2022022732A1/zh
Priority to US18/161,776 priority patent/US20230308242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a QCL indication method and related equipment.
  • Cooperative multipoint transmission technology means that multiple transmission and reception points (TRPs) can cooperate with each other to provide downlink services for terminals, or cooperate with each other to receive uplink signals of terminals, thereby effectively reducing the number of adjacent cell signal pairs.
  • Terminal or TRP interference to improve system performance.
  • each TRP may be deployed in different geographical locations, the channels from each TRP to the terminal are different, which will lead to different channel characteristics experienced by the signals from different TRPs to the terminal. For example, when the channel has large-scale characteristics Delay and Doppler are different, resulting in inter-carrier interference, inter-symbol interference, etc., which affect the transmission performance of cooperative transmission.
  • the present application provides a quasi-co-located QCL indication method and related equipment, which are beneficial to improve multi-station transmission performance.
  • the present application provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate a delay spread of a demodulation reference signal DMRS and N tracking references The delay spread of the signal TRS is associated, and the Doppler shift of the DMRS is associated with the Doppler shift of M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the DMRS ports corresponding to the N TRSs are all the same. This method is beneficial to track the delay spread of the channel between the N network devices and the terminal through the N TRSs, and use the N delay spreads for fusion. Obtaining the delay spread of the DMRS is more in line with the multipath delay characteristics of N network devices respectively sending the same DMRS, which is beneficial to improve the channel estimation accuracy of the DMRS.
  • the method is beneficial for some of the N network devices to transmit the DMRS and the PDSCH using frequency offset compensation, so that the Doppler offsets of the channels through which the DMRS and PDSCH from different network devices reach the terminal are the same, and The terminal can obtain the corresponding reference frequency offset by using the Doppler offsets of the M TRSs to receive the DMRS and PDSCH, which is beneficial to avoid performance degradation caused by receiving the DMRS with the wrong reference frequency offset. Therefore, the method is beneficial to improve the multi-station transmission performance.
  • the method further includes: the terminal determines the delay spread of the DMRS according to the delay spread of the N TRSs, and determines the Doppler offset of the DMRS according to the Doppler offset of the M TRSs. It can be seen that the delay spread of the DMRS determined in this embodiment takes into account the delay spread between the N network devices and the terminal, and the Doppler shift of the DMRS can be accurately known, thereby improving the multi-station transmission performance.
  • the QCL indication information may use N TRSs of E-type QCLs and M TRSs of C-type QCLs to represent the above-mentioned association relationship, that is, the delay extension of the DMRS is associated with the delay extension of the N TRSs, and the delay extension of the DMRS
  • the Doppler shift is associated with the Doppler shift of the M TRSs.
  • the channel large-scale parameters of the E-type QCL include delay spread
  • the channel large-scale parameters of the C-type QCL include Doppler shift.
  • the QCL indication information is used to indicate that N transmission configurations indicate TCI states, and the QCL information indicated by each TCI state includes a TRS and the TRS is associated with a QCL of type E.
  • the TRSs of the M type C QCLs are indicated by the M TCI states, and may also be indicated by the additional M TCI states, and the implementation can be divided into two cases, namely, implementation 1.1 to implementation 1.2 Elaboration.
  • the QCL indication information is used to indicate N TCI states, the QCL information indicated by each TCI state includes a TRS, and the TRS is associated with a QCL of type E; in addition, among the M TCI states in the N TCI states , the QCL information indicated by each TCI state further includes a TRS and the TRS is associated with a C-type QCL.
  • the TRS of the E-type QCL and the TRS of the C-type QCL may be the same TRS, or may be different TRSs.
  • some TCI states can indicate TRSs of two types of QCL relationships, avoiding the use of additional TCI states to indicate TRSs of type C QCL relationships, thereby helping to save the signaling overhead required for QCL indication information.
  • the QCL indication information is used to indicate the N TCI states and also include additional M TCI states.
  • the QCL information indicated by each TCI state in the N TCI states includes a TRS and the TRS is associated with an E-type QCL;
  • the QCL information indicated by each TCI state in the M TCI states includes a TRS, and the TRS is associated with a C-type QCL.
  • the TRS of the E-type QCL and the TRS of the C-type QCL may be the same TRS, or may be different TRSs.
  • an additional TCI state can be used to indicate the TRS of the C-type QCL relationship, which is beneficial to improve the flexibility of indicating the reference frequency offset.
  • the TRSs of the N E-type QCLs and the TRSs of the M C-type QCLs may be indicated by multiple TCI fields, or may be indicated by one TCI field.
  • the TRSs of the N QCLs of type E and the TRSs of the M QCLs of type C may use one TCI status indication.
  • the above-mentioned TRSs of the N E-type QCLs and the M TRSs of the C-type QCLs are indicated by multiple TCI fields, which may be: some TCI fields are used to indicate the TCI states corresponding to the TRSs of the E-type QCLs, and some The TCI field is used to indicate the TCI state corresponding to the TRS of the C-type QCL.
  • the QCL indication information may also indicate that the spatial parameters of the TRS are associated with the spatial parameters of the DMRS.
  • the indication manner of the QCL indication information may include: the QCL information indicated by part of the TCI states in the above N TCI states also includes the TRS of the D-type QCL; or, the QCL indication information also includes other TCI states, the indicated QCL information Also includes the TRS associated with the D-type QCL.
  • the channel large-scale parameters of the D-type QCL include spatial reception parameters, which can be used for high-frequency transmission scenarios, and this method can improve the multi-station transmission performance.
  • the present application provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate the delay of each DMRS in N demodulation reference signal DMRSs
  • the spread is associated with the delay spread of the corresponding TRS, and the Doppler shift of each DMRS is associated with the Doppler shift of M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the difference between this method and the first aspect is that in this method, the DMRS ports corresponding to the TRSs respectively sent by the N network devices are different. In this way, after the terminal obtains the above-mentioned QCL indication information, the terminal can determine the corresponding DMRS delay spread according to the delay spread of each TRS.
  • the ler shift is still obtained from the Doppler shift of the M TRSs as well. That is to say, in this method, the delay spread of each DMRS may be different, but the Doppler shift of each DMRS is the same.
  • the delay spread of TRS is more accurate for channel estimation.
  • the method is beneficial for some of the N network devices to use frequency offset compensation to send DMRS and PDSCH, so that the Doppler offsets of the channels through which DMRS and PDSCH from different network devices reach the terminal are the same, and the terminal can Corresponding reference frequency offsets are obtained by using the Doppler offsets of the M TRSs to receive DMRS and PDSCH, so as to avoid performance degradation caused by using wrong reference frequency offsets to receive DMRS. Therefore, the method is beneficial to improve the multi-station transmission performance.
  • the method further includes: the terminal determines the delay spread of the corresponding DMRS according to the delay spread of each TRS, and determines the Doppler shift of each DMRS according to the Doppler shifts of the M TRSs. offset. It can be seen that the delay spread of the DMRS determined in this embodiment respectively considers the delay spread between the corresponding network device and the terminal, and can correspondingly determine the Doppler shift of the DMRS, thereby improving the multi-station transmission performance.
  • the QCL indication information may utilize N TRSs of E-type QCL relationships and M TRSs of C-type QCL relationships to represent the above-mentioned association relationship, that is, the delay spread of the DMRS is associated with the delay spread of the corresponding TRS, and The Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs.
  • the channel large-scale parameters of the E-type QCL include delay spread
  • the channel large-scale parameters of the C-type QCL include Doppler shift.
  • the DMRS ports corresponding to different TRSs are different, that is, different DMRSs, but the manner in which the QCL indication information indicates the TRSs is the same as the above-mentioned first aspect. described.
  • the present application provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate Doppler spread and N tracking of a demodulation reference signal DMRS
  • the Doppler spread of the reference signal TRS is associated, and the average delay of the DMRS is associated with the average delay of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the QCL indication method is applicable to the case where the DMRS ports corresponding to N TRSs are the same in multi-station cooperative transmission, that is, the same DMRS.
  • the terminal can track N network devices through N TRSs. Doppler expansion with the terminal, using the N Doppler expansion fusion to obtain the Doppler expansion of the DMRS, which is more in line with the multipath Doppler characteristics of N network devices sending the same DMRS respectively, which is conducive to improving the DMRS. the channel estimation accuracy.
  • this method is beneficial for some of the N network devices to use delay compensation to send DMRS and PDSCH, so that the delays of DMRS and PDSCH from different network devices reaching the terminal are the same, and the terminal can use the MRS and PDSCH to reach the terminal.
  • the average delay of each TRS obtains the corresponding reference delay for receiving DMRS and PDSCH, which is beneficial to avoid performance degradation caused by receiving DMRS with wrong reference delay. Therefore, the method is beneficial to improve the multi-station transmission performance.
  • the method further includes: the terminal determines the Doppler spread of the DMRS according to the Doppler spread of the N TRSs, and determines the average delay of the DMRS according to the average delay of the M TRSs. It can be seen that this embodiment improves the multi-station transmission performance.
  • the terminal after the terminal obtains the above-mentioned QCL indication information, it fuses the Doppler spreads of N TRSs to obtain the Doppler spreads of the DMRSs, and uses the average delay of the M TRSs to determine the DMRSs.
  • the difference between the indication method of the QCL indication information in this aspect and the implementation of the above-mentioned first aspect is that the channel large-scale parameters of the E-type QCL include Doppler spread, and the C-type QCL channel
  • the large-scale parameter includes the average delay, so the indication manner of the QCL indication information in this aspect will not be described in detail.
  • the present application provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate a Doppler Doppler of each DMRS in the N demodulation reference signal DMRSs
  • the ler spread is associated with the Doppler spread of the corresponding TRSs in the N tracking reference signal TRSs, and the average delay of each DMRS is associated with the average delay of the M TRSs among the N TRSs; N is greater than or equal to 2, M is greater than or equal to 1.
  • the Doppler extension of each DMRS is determined by using the Doppler extension of the corresponding TRS, that is, using the corresponding Doppler extension of the TRS.
  • the Doppler spreading of the TRS is used to estimate the DMR channel, but the average delay of each DMRS is also obtained according to the average delay of M TRSs. That is to say, in this method, the Doppler spread of each DMRS may be different, but the average delay of each DMRS is the same. In this way, when the DMRS ports corresponding to each TRS are different, the corresponding TRS is used. The Doppler spread is more accurate for channel estimation.
  • the method can also receive DMRS and PDSCH based on a uniform average delay, avoiding the situation that network equipment performs delay compensation to send DMRS and PDSCH, and the problem of transmission performance degradation caused by the terminal using wrong reference delay. Therefore, the method is beneficial to improve the multi-station transmission performance.
  • the terminal uses the Doppler spread of N TRSs to determine the Doppler spread of the corresponding DMRS respectively, and uses the average delay of the M TRSs.
  • the Doppler shifts of all DMRSs are determined, so the indication method of the QCL indication information in this aspect is different from the indication method of the QCL indication information in the second aspect above in that the channel large-scale parameters of the E-type QCL include multiple parameters. Puller extension, the channel large-scale parameters of the C-type QCL include the average delay.
  • the method further includes: the terminal determines the Doppler spread of the corresponding DMRS according to the Doppler spread of each TRS, and determines the average delay of each DMRS according to the average delay of the M TRSs. It can be seen that this method can ensure the channel transmission performance in the multi-station cooperative transmission.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate the delay spread of the demodulation reference signal DMRS and N tracking
  • the delay spread of the reference signal TRS is correlated
  • the Doppler spread of the DMRS is correlated with the Doppler spread of the N TRSs
  • the average delay of the DMRS is correlated with the average delay of the M TRSs
  • the Doppler spread of the DMRS The offset is associated with the Doppler offset of the M TRSs, N greater than or equal to 2, and M greater than or equal to 1.
  • the DMRS ports corresponding to the TRSs sent by the N network devices are all the same.
  • the terminal After the terminal obtains the above QCL indication information, it can track the Doppler spread between the N network devices and the terminal through the N TRSs. Delay spread, using the N Doppler spread and delay spread fusion to obtain the Doppler spread and delay spread of the DMRS, which is more in line with the multipath characteristics of N network devices respectively sending the same DMRS, which is beneficial to improve the DMRS performance. Channel estimation accuracy.
  • this method is beneficial for the network equipment to use the time delay and frequency offset compensation to send the DMRS and PDSCH, so that the time delay and frequency offset of the DMRS and PDSCH from different network equipment to the terminal are the same, and the terminal uses the average of M TRSs.
  • Time delay and Doppler offset can determine the corresponding reference time delay and reference frequency offset to receive DMRS and PDSCH, so as to avoid the performance degradation caused by the terminal using wrong reference time delay and reference frequency offset. station transmission performance.
  • the terminal determines the delay spread and Doppler spread of the DMRS according to the delay spread and Doppler spread of the N TRSs, and determines the delay spread and Doppler spread of the DMRS according to the average delay and Doppler shift of the M TRSs. Average delay and Doppler shift of DMRS.
  • multi-station transmission performance is improved.
  • the indication manner of the QCL indication information may include, but is not limited to, Embodiment 2.1 to Embodiment 2.4 below according to different types of QCL relationships associated with the TRS.
  • the QCL indication information may use M TRSs of A-type QCLs and L TRSs of E-type QCLs to represent the above-mentioned association relationship.
  • L is greater than or equal to 1
  • the sum of L and M is equal to N.
  • the channel large-scale parameters of E-type QCL include delay spread and Doppler spread
  • the channel large-scale parameters of A-type QCL include average delay, Doppler shift, delay spread and Doppler spread.
  • the QCL indication information is used to indicate N TCI states, wherein the QCL information indicated by each TCI state in the M TCI states includes a TRS and the TRS is associated with a QCL of type A; each of the remaining L TCI states The QCL information indicated by the TCI state includes a TRS and the TRS is associated with the E-type QCL; and the average delay and Doppler shift in the A-type QCL are applicable to the TCI state corresponding to the TRS of the E-type QCL.
  • this embodiment is conducive to determining the delay spread and Doppler spread of the DMRS by using the delay spread and Doppler spread of the TRS indicated by the N TCI states, and is conducive to sending the DMRS ports corresponding to the TRS in the N network devices
  • the accuracy of the DMRS channel estimation is improved.
  • the terminal can use the Doppler offset of the TRS indicated by the M TCI states as the reference frequency offset, and the average of the TRS indicated by the M TCI states.
  • the delay is used as the reference delay to prevent the terminal from receiving the DMRS and PDSCH with the wrong reference frequency offset and reference delay, thereby improving the multi-station transmission performance.
  • the QCL indication information may use N TRSs of the A-type QCL relationship to represent the above-mentioned association relationship.
  • the QCL indication information is used to indicate N TCI states, the QCL information indicated by each TCI state includes a TRS and the TRS is associated with a QCL of type A.
  • the Doppler shift and average delay of the TRS indicated by the L TCI states in the N TCI states are not used; and the Doppler shift of the TRS indicated by the M TCI states in the N TCI states respectively and the average delay applies to the remaining L TCI states.
  • L is greater than or equal to 1, and the sum of L and M is equal to N.
  • the terminal may learn that the Doppler offset and average delay of the TRS indicated by the L TCI states are not used or applicable through signaling or in a predefined manner, and the M TCI states indicated respectively.
  • the Doppler shift and average delay of the TRS apply to the remaining L TCI states.
  • the terminal may use the following Embodiments 2.2.1 to 2.2.2 to learn that the Doppler shift and average delay of the TRS indicated by the M TCI states are applicable to the remaining L TCI states.
  • the QCL information indicated by each TCI state includes a TRS and the TRS is associated with a C-type QCL, and the C-type QCL has a higher priority than The priority of type A QCL is high (or the TRS that defines type C QCL can cover the TRS of type A QCL). Since the large-scale channel parameters of type C QCL include Doppler shift and average delay, this The Doppler shift and average delay in the A-type QCL in the embodiment are not used or applicable, and the Doppler shift and average delay of the TRS of the C-type QCL are used.
  • the TRS of the C-type QCL and the TRS of the A-type QCL may be the same TRS, or may be different TRSs.
  • some TCI states can indicate TRSs of two types of QCL relationships, avoiding the use of additional TCI states to indicate TRSs of type C QCL relationships, thereby helping to save the signaling overhead required for QCL indication information.
  • the QCL indication information is used to indicate N TCI states and additional M TCI states.
  • the QCL information indicated by each TCI state in the M TCI states includes a TRS and the TRS is associated with it.
  • a QCL of type C, and the priority of the QCL of type C is higher than that of the QCL of type A (or the TRS of the QCL of type C may be defined to override the TRS of the QCL of type A).
  • the TRS of the C-type QCL and the TRS of the A-type QCL may be the same TRS, or may be different TRSs.
  • an additional TCI state can be used to indicate the TRS of the C-type QCL relationship, which is beneficial to improve the indication flexibility of the reference Doppler shift.
  • this embodiment 2.2 is beneficial to determine the delay spread and Doppler spread of the DMRS by using the delay spread and Doppler spread of the TRS indicated by the N TCI states, thereby facilitating the sending of the corresponding TRS in the N network devices.
  • the network device it is beneficial for the network device to send DMRS and PDSCH after performing time delay frequency offset compensation.
  • This method uses the Doppler offset of the TRS indicated by the M TCI states as the reference frequency offset, and the average time of the TRS indicated by the M TCI states. The delay is used as the reference delay to prevent the terminal from using the wrong reference frequency offset and reference delay to receive the DMRS and PDSCH, thereby improving the multi-station transmission performance.
  • the QCL indication information is used to indicate N TCI states, the QCL information indicated by each TCI state includes a TRS and the TRS is associated with a QCL of type E; wherein, the QCL indicated by each TCI state in the M TCI states
  • the information further includes a TRS and the TRS is associated with a C-type QCL, or the QCL indication information additionally indicates M TCI states, and the QCL information indicated by each TCI state includes a TRS and the TRS is associated with a C-type QCL.
  • the channel large-scale parameters of the E-type QCL include delay spread and Doppler spread
  • the channel large-scale parameters of the C-type QCL include Doppler shift and average delay
  • the TRS of the C-type QCL and the TRS of the E-type QCL may be the same TRS, or may be different TRSs.
  • some TCI states in the N TCI states can indicate the TRSs of the two types of QCL relationships, avoiding the use of additional TCI states to indicate the TRSs of the C-type QCL relationships, thereby helping to save the signaling overhead required for the QCL indication information .
  • Using an additional TCI state to indicate the TRS of the C-type QCL relationship is beneficial to improve the indication flexibility of the reference Doppler shift and reference delay.
  • the TRS of each type of QCL may be indicated by multiple TCI fields, or may be indicated by one TCI field.
  • the TRS of each of the above-mentioned types of QCL may use one TCI status indication.
  • the case where multiple TCI fields are used may include: part of the TCI field is used to indicate the TCI state corresponding to the TRS of the A-type QCL, and part of the TCI field is used to indicate the TCI state corresponding to the TRS of the E-type QCL.
  • part of the TCI field is used to indicate the TCI state corresponding to the TRS of the E-type QCL, and part of the TCI field is used to indicate the TCI state corresponding to the TRS of the C-type QCL.
  • part of the TCI field is used to indicate the TCI state corresponding to the TRS of the A-type QCL
  • part of the TCI field is used to indicate the TCI state corresponding to the TRS of the C-type QCL.
  • the QCL indication information may indicate that the spatial parameters of the TRS are associated with the spatial parameters of the DMRS, in addition to indicating the association relationship of the above-mentioned channel large-scale parameters.
  • the indication manner of the QCL indication information may include: some of the TCI states in the above-mentioned N TCI states also indicate the TRS associated with the D-type QCL relationship; or, the QCL indication information also indicates other TCI states for indicating the associated D-type QCL's TRS.
  • the channel large-scale parameters of the D-type QCL include spatial reception parameters, which can be used for high-frequency transmission scenarios, and this method can improve the multi-station transmission performance.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information; the QCL indication information is used to indicate the time delay of each DMRS in the N demodulation reference signal DMRSs
  • the extension is associated with the delay extension of the corresponding TRS
  • the Doppler extension of each DMRS is associated with the Doppler extension of the corresponding TRS
  • the average delay of each DMRS is associated with the average delay of M TRSs
  • the Doppler shift of each DMRS is associated with the Doppler shift of M TRSs
  • N is greater than or equal to 2
  • M is greater than or equal to 1.
  • the difference between this method and the fifth aspect is that in this method, the DMRS ports corresponding to the TRSs respectively sent by the N network devices are different.
  • the terminal can determine the Doppler spread and delay spread of the corresponding DMRS according to the Doppler spread and delay spread of each TRS, that is, by using the Doppler spread and time delay spread of the corresponding TRS DMRS channel estimation is performed by delay spreading, but the Doppler offset and average delay of each DMRS are still obtained according to the Doppler offset and average delay of M TRSs.
  • the Doppler spread and delay spread of each DMRS may be different, but the Doppler shift and average delay of each DMRS are the same.
  • the method is beneficial for the network equipment to use the time delay and frequency offset compensation to send the DMRS and the PDSCH, so that the time delay and frequency offset of the DMRS and PDSCH from different network equipment reaching the terminal are the same, and the terminal uses the average of M TRSs.
  • Time delay and Doppler offset can determine the corresponding reference time delay and reference frequency offset to receive DMRS and PDSCH, so as to avoid the performance degradation caused by the terminal using wrong reference time delay and reference frequency offset. station transmission performance.
  • the method further includes: the terminal determines the delay spread and Doppler spread of the corresponding DMRS according to the delay spread and Doppler spread of each TRS; The average delay, Doppler shift of each DMRS is determined by the shift. It can be seen that the delay spread and Doppler spread of the DMRS determined in this embodiment respectively consider the delay spread and Doppler spread between the corresponding network equipment and the terminal, and the average delay and Doppler spread of the DMRS can be known. Puller shift, thereby improving multi-station transmission performance.
  • the delay spread and Doppler spread of the DMRS are associated with the delay spread and Doppler spread of the corresponding TRS, and the average delay and Doppler shift of the DMRS are related to the average delay of the M TRSs. , and Doppler shift. That is, the difference between this aspect and the above-mentioned fifth aspect is that the DMRS ports corresponding to different TRSs are different, that is, different DMRSs, but the indication mode indicated by the QCL indication information is the same as the above-mentioned fifth aspect. For details, please refer to the above-mentioned fifth aspect. The implementation manner is not described in detail here.
  • the present application provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate a delay spread of a demodulation reference signal DMRS and N tracking references The delay spread of the signal TRS is associated, and the average delay of the DMRS is associated with the average delay of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the QCL indication method is applicable to the case where the DMRS ports corresponding to the N TRSs are the same in the multi-station cooperative transmission, that is, the same DMRS.
  • the terminal can track the delay spread between N network devices and the terminal through N TRSs, and obtain the delay spread of the DMRS by using the N delay spread fusions. It conforms to the multi-path delay characteristic that N network devices send the same DMRS respectively, which is beneficial to improve the channel estimation accuracy of the DMRS.
  • the method is also beneficial for the network device to use delay compensation to send DMRS and PDSCH on the physical downlink shared channel, so that the delays of DMRS and PDSCH from different network devices reaching the terminal are the same, and the terminal can use the average delay of M TRSs to determine the corresponding
  • the reference delay is used to receive the DMRS and PDSCH, so as to avoid the performance degradation caused by the terminal using the wrong reference delay. Therefore, this method is beneficial to improve the multi-station transmission performance.
  • the terminal after receiving the above-mentioned QCL indication information, the terminal fuses the delay spreads of the N TRSs to obtain the delay spreads of the DMRSs, and uses the average delay of the M TRSs to determine the delay spreads of the DMRSs.
  • the average delay so the indication mode of the QCL indication information in this aspect is different from the above-mentioned first aspect Embodiments 1.1 to 1.2 in that the channel large-scale parameters of the E-type QCL include delay spread, and the C-type QCL Large-scale parameters of the channel include the average delay.
  • the method further includes: the terminal determines the delay spread of the DMRS according to the delay spread of the N TRSs, and determines the average delay of the DMRS according to the average delay of the M TRSs. It can be seen that this embodiment improves the multi-station transmission performance.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate the timing of each DMRS in the N demodulation reference signal DMRSs
  • the delay spread is associated with the delay spread of the corresponding TRS, and the average delay of each DMRS is associated with the average delay of M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the difference between this method and the seventh aspect is that in this method, after the terminal receives the above-mentioned QCL indication information, the delay spread of each DMRS is determined by using the delay spread of the corresponding TRS, that is, by using the corresponding TRS
  • the DMR channel estimation is performed by the delay spread of the DMRS, but the average delay of each DMRS is still obtained according to the average delay of M TRSs. That is to say, in this method, the delay spread of each DMRS may be different, but the average delay of each DMRS is the same. Delay spreading is more accurate for channel estimation.
  • This method is beneficial for network devices to use delay compensation to send DMRS and PDSCH, so that the delays of DMRS and PDSCH from different network devices reaching the terminal are the same, and the terminal can determine the corresponding benchmark by using the average delay of M TRSs.
  • the DMRS and PDSCH are received with a delay, so as to avoid the performance degradation caused by the terminal adopting the wrong reference delay. Therefore, this method is beneficial to improve the multi-station transmission performance.
  • the terminal after receiving the above-mentioned QCL indication information, uses the delay spread of N TRSs to determine the delay spread of the corresponding DMRS respectively, and uses the average delay of M TRS to determine all
  • the average time delay of the DMRS depends on the average time delay of the DMRS. Therefore, the indication method of the QCL indication information in this aspect is different from the indication method of the QCL indication information in the above-mentioned second aspect.
  • Channel large-scale parameters of type QCL include average delay.
  • the method further includes: the terminal determines the time-frequency extension information of the corresponding DMRS according to the delay extension of each TRS, and determines the average delay of each DMRS according to the average delay of the M TRSs. It can be seen that this method can ensure the channel transmission performance in the multi-station cooperative transmission.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate the Doppler spread of the demodulation reference signal DMRS and N
  • the Doppler spread of the tracking reference signal TRS is associated, and the Doppler shift of the DMRS is associated with the Doppler shift of M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the DMRS ports corresponding to the TRSs sent by N network devices are all the same.
  • the terminal can track the Doppler between the N network devices and the terminal through the N TRSs.
  • the Doppler extension of the DMRS is obtained by fusing the N Doppler extensions, which is more in line with the multipath Doppler characteristics of N network devices respectively sending the same DMRS, and is beneficial to improve the channel estimation accuracy of the DMRS.
  • this method is beneficial for the network equipment to use frequency offset compensation to send DMRS and PDSCH, so that the frequency offsets of DMRS and PDSCH from different network equipment reaching the terminal are the same, and the terminal can use the Doppler offset of M TRSs.
  • the corresponding reference frequency offset is determined to receive the DMRS and PDSCH, so as to avoid performance degradation caused by the terminal using the wrong reference frequency offset. Therefore, this method is beneficial to improve the multi-station transmission performance.
  • the terminal after receiving the above-mentioned QCL indication information, the terminal fuses the Doppler spreads of N TRSs to obtain the Doppler spreads of DMRSs, and uses the Doppler spreads of M TRSs to obtain the Doppler spreads of DMRSs.
  • the Doppler shift of the DMRS is determined by the shift, so the indication method of the QCL indication information in this aspect is different from the implementation of the first aspect above in that the channel large-scale parameters of the E-type QCL include Doppler spread, and the C-type The channel large-scale parameters of the QCL include Doppler shift.
  • the method further includes: the terminal determines the Doppler spread of the DMRS according to the Doppler spread of the N TRSs, and determines the Doppler shift of the DMRS according to the Doppler shift of the M TRSs . It can be seen that this embodiment improves the multi-station transmission performance.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate multiple numbers of each DMRS in the N demodulation reference signal DMRSs
  • the Doppler spread is associated with the Doppler spread of the corresponding TRS, and the Doppler shift of each DMRS is associated with the Doppler shifts of M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the difference between this method and the ninth aspect is that in this method, after the terminal receives the above-mentioned QCL indication information, the Doppler extension of each DMRS is determined by using the Doppler extension of the corresponding TRS, that is, using the Doppler extension of the corresponding TRS.
  • the DMRS channel estimation is performed corresponding to the Doppler spread of the TRS, but the Doppler shift of each DMRS is still obtained according to the Doppler shift of the M TRSs. That is to say, in this method, the Doppler spread of each DMRS may be different, but the Doppler shift of each DMRS is the same. Doppler spread of TRS for channel estimation is more accurate.
  • the method is also beneficial for the network equipment to send DMRS and PDSCH using frequency offset compensation, so that the frequency offsets of DMRS and PDSCH from different network equipment reaching the terminal are the same, and the terminal can determine the Doppler offset of M TRS by using the same frequency offset.
  • the corresponding reference frequency offset is used to receive DMRS and PDSCH, so as to avoid performance degradation caused by the terminal using the wrong reference frequency offset. Therefore, this method is beneficial to improve the multi-station transmission performance.
  • the terminal uses the Doppler extension of N TRSs to determine the Doppler extension of the corresponding DMRS respectively, and uses the Doppler extension of M TRSs to determine the Doppler extension of the corresponding DMRS respectively.
  • the offset determines the Doppler offset of all DMRSs, so the indication method of the QCL indication information in this aspect is different from the indication method of the QCL indication information in the second aspect above in that the channel large-scale parameters of the E-type QCL are Including Doppler spread, the channel large-scale parameters of type C QCL include Doppler shift.
  • the method further includes: the terminal determines the Doppler spread of the corresponding DMRS according to the Doppler spread of each TRS, and determines the Doppler offset of each DMRS according to the Doppler shifts of the M TRSs. shift. It can be seen that this method can ensure the channel transmission performance in the multi-station cooperative transmission.
  • the present application also provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate the delay spread of the demodulation reference signal DMRS and N
  • the delay spread of the tracking reference signal TRS is related
  • the Doppler spread of the DMRS is related to the Doppler spread of the N TRSs
  • the average delay of the DMRS is related to the average delay of the M TRSs
  • N is greater than or equal to 2
  • M is greater than or equal to 1.
  • the DMRS ports corresponding to the TRSs sent by the N network devices are all the same.
  • the terminal can track the Doppler spread between the N network devices and the terminal through the N TRSs.
  • Delay spread, the Doppler spread and delay spread of the DMRS are obtained by using the N Doppler spread and delay spread fusion, which is more in line with the multipath characteristics of N network devices respectively sending the same DMRS, which is conducive to improving DMRS the channel estimation accuracy.
  • this method is beneficial for the network device to use delay compensation to send DMRS and PDSCH, so that the delays of DMRS and PDSCH from different network devices reaching the terminal are the same, and the terminal can determine the corresponding time delay by using the average delay of M TRSs.
  • the DMRS and PDSCH are received with the reference time delay of 100%, so as to avoid the performance degradation caused by the terminal adopting the wrong reference time delay. Therefore, the method is beneficial to improve the multi-station transmission performance.
  • the terminal determines the delay spread and Doppler spread of the DMRS according to the delay spread and Doppler spread of the N TRSs, and determines the average delay of the DMRS according to the average delay of the M TRSs.
  • the terminal determines the delay spread and Doppler spread of the DMRS according to the delay spread and Doppler spread of the N TRSs, and determines the average delay of the DMRS according to the average delay of the M TRSs.
  • the indication manner of the QCL indication information may include, but is not limited to, Embodiment 1.1 to Embodiment 1.2 of the first aspect according to the type of the QCL relationship associated with the TRS, but the difference is that in this aspect, E
  • the channel large-scale parameters of type QCL include delay spread and Doppler spread
  • the channel large-scale parameters of type C QCL include average delay.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information; the QCL indication information is used to indicate the time of each DMRS in the N demodulation reference signal DMRSs.
  • the delay spread is associated with the delay spread of the corresponding TRS
  • the Doppler spread of each DMRS is associated with the Doppler spread of the corresponding TRS
  • the average delay of each DMRS is associated with the average delay of M TRSs ; N is greater than or equal to 2 and M is greater than or equal to 1.
  • the difference between this method and the above eleventh aspect is that in this method, the DMRS ports corresponding to the TRSs respectively sent by the N network devices are different.
  • the terminal can determine the Doppler spread and delay spread corresponding to the DMRS according to the Doppler spread and delay spread of each TRS, that is, by using the Doppler spread and time delay spread of the corresponding TRS DMRS channel estimation is performed by delay spreading, but the average delay of each DMRS is still obtained according to the average delay of M TRSs.
  • the Doppler spread and delay spread of each DMRS may be different, but the average delay of each DMRS is the same.
  • the method is beneficial for the network device to use delay compensation to send DMRS and PDSCH, so that the delays of DMRS and PDSCH from different network devices reaching the terminal are the same, and the terminal can determine the corresponding time delay by using the average delay of M TRSs.
  • the DMRS and PDSCH are received with the reference time delay of 100%, so as to avoid the performance degradation caused by the terminal adopting the wrong reference time delay. Therefore, the method is beneficial to improve the multi-station transmission performance.
  • the method further includes: the terminal determines the delay spread and Doppler spread of the corresponding DMRS according to the delay spread and Doppler spread of each TRS, and determines each TRS according to the average delay of the M TRSs.
  • the average delay of each DMRS It can be seen that the delay spread and Doppler spread of the DMRS determined in this embodiment respectively consider the delay spread and Doppler spread between the corresponding network equipment and the terminal, and the average delay of the DMRS can be known, thus Improved multi-station transmission performance.
  • the delay spread and Doppler spread of the DMRS are associated with the delay spread and Doppler spread of the corresponding TRS, and the average delay of the DMRS is associated with the average delay of the M TRSs. That is, the difference between this aspect and the above-mentioned eleventh aspect is that the DMRS ports corresponding to different TRSs are different, that is, different DMRSs, but the indication mode indicated by the QCL indication information is the same as the above-mentioned eleventh aspect.
  • the above-mentioned tenth aspect The implementation of one aspect will not be described in detail here.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate the delay spread of the demodulation reference signal DMRS and N
  • the delay spread of the tracking reference signal TRS is associated
  • the Doppler spread of the DMRS is associated with the Doppler spread of the N TRSs
  • the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs; N greater than or equal to 2, and M greater than or equal to 1.
  • the DMRS ports corresponding to the TRSs sent by the N network devices are all the same.
  • the terminal can track the Doppler spread between the N network devices and the terminal through the N TRSs.
  • Delay spread, the Doppler spread and delay spread of the DMRS are obtained by using the N Doppler spread and delay spread fusion, which is more in line with the multipath characteristics of N network devices respectively sending the same DMRS, which is conducive to improving DMRS the channel estimation accuracy.
  • this method is beneficial for the network equipment to use frequency offset compensation to send DMRS and PDSCH, so that the frequency offsets of DMRS and PDSCH from different network equipment reaching the terminal are the same, and the terminal can use the Doppler offset of M TRSs.
  • the corresponding reference frequency offset is determined to receive the DMRS and PDSCH, so as to avoid performance degradation caused by the terminal using the wrong reference frequency offset. Therefore, this method is beneficial to improve the multi-station transmission performance.
  • the terminal determines the delay spread and Doppler spread of the DMRS according to the delay spread and Doppler spread of the N TRSs, and determines the Doppler spread of the DMRS according to the Doppler shift of the M TRSs. Le offset. Thus, multi-station transmission performance is improved.
  • the indication manner of the QCL indication information may include, but is not limited to, the implementation of the above-mentioned first aspect according to the type of the QCL relationship associated with the TRS, but the difference is that in this aspect, the channel of the E-type QCL
  • the large-scale parameters include delay spread and Doppler spread
  • the channel large-scale parameters of the C-type QCL include Doppler shift.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information; the QCL indication information is used to indicate the time of each DMRS in the N demodulation reference signal DMRSs.
  • the delay spread is associated with the delay spread of the corresponding TRS
  • the Doppler spread of each DMRS is associated with the Doppler spread of the corresponding TRS
  • the Doppler shift of each DMRS is associated with the Doppler spread of the M TRSs Offsets are associated
  • N is greater than or equal to 2
  • M is greater than or equal to 1.
  • the difference between this method and the thirteenth aspect above is that in this method, the DMRS ports corresponding to the TRSs respectively sent by the N network devices are different.
  • the terminal can determine the Doppler spread and delay spread of the corresponding DMRS according to the Doppler spread and delay spread of each TRS, that is, by using the Doppler spread and time delay spread of the corresponding TRS
  • the DMRS channel estimation is performed by extension extension, but the Doppler shift of each DMRS is still obtained according to the Doppler shift of M TRSs.
  • the Doppler spread and delay spread of each DMRS may be different, but the Doppler shift of each DMRS is the same. In this way, when the DMRS ports corresponding to each TRS are different , it is more accurate to use the Doppler spread and delay spread of the corresponding TRS to perform channel estimation.
  • the method is beneficial for the network equipment to use frequency offset compensation to send DMRS and PDSCH, so that the DMRS and PDSCH from different network equipment reach the terminal with the same frequency offset, and the terminal can use the Doppler offset of the M TRSs.
  • the corresponding reference frequency offset is determined to receive the DMRS and PDSCH, so as to avoid performance degradation caused by the terminal using the wrong reference frequency offset. Therefore, this method is beneficial to improve the multi-station transmission performance.
  • the method further includes: the terminal determines the delay spread and Doppler spread of the corresponding DMRS according to the delay spread and Doppler spread of each TRS, and the Doppler shift according to the M TRSs Determine the Doppler shift for each DMRS. It can be seen that the delay spread and Doppler spread of the DMRS determined in this embodiment respectively consider the delay spread and Doppler spread between the corresponding network device and the terminal, and the Doppler shift of the DMRS can be known. , thereby improving the multi-station transmission performance.
  • the delay spread and Doppler spread of the DMRS are associated with the delay spread and Doppler spread of the corresponding TRS, and the Doppler shift of the DMRS is associated with the Doppler shifts of the M TRSs . That is, the difference between this aspect and the above-mentioned thirteenth aspect is that the DMRS ports corresponding to different TRSs are different, that is, different DMRSs, but the indication mode indicated by the QCL indication information is the same as the above-mentioned thirteenth aspect. For details, please refer to the above-mentioned tenth The implementation of the three aspects will not be described in detail here.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate the delay spread of the demodulation reference signal DMRS and N
  • the delay spread of the tracking reference signal TRS is associated
  • the average delay of the DMRS is associated with the average delay of the M TRSs
  • the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs
  • N is greater than or equal to 2
  • M is greater than or equal to 1.
  • the DMRS ports corresponding to the TRSs sent by the N network devices are all the same.
  • the terminal After the terminal obtains the above QCL indication information, it can track the delay extension between the N network devices and the terminal through the N TRSs.
  • the delay spread of the DMRS obtained by the fusion of the N delay spreads is more in line with the multipath characteristics of the N network devices respectively sending the same DMRS, and is beneficial to improve the channel estimation accuracy of the DMRS.
  • this method is beneficial for the network equipment to use the time delay and frequency offset compensation to send the DMRS and PDSCH, so that the time delay and frequency offset of the DMRS and PDSCH from different network equipment to the terminal are the same, and the terminal uses the average of M TRSs.
  • Time delay and Doppler offset can determine the corresponding reference time delay and reference frequency offset to receive DMRS and PDSCH, so as to avoid the performance degradation caused by the terminal using wrong reference time delay and reference frequency offset. station transmission performance.
  • the terminal determines the Doppler spread of the DMRS according to the delay spread of the N TRSs, and determines the average delay and Doppler shift of the DMRS according to the average delay and Doppler shift of the M TRSs. offset.
  • the terminal determines the Doppler spread of the DMRS according to the delay spread of the N TRSs, and determines the average delay and Doppler shift of the DMRS according to the average delay and Doppler shift of the M TRSs. offset.
  • the indication manner of the QCL indication information may include, but is not limited to, the implementation of the above-mentioned first aspect according to the type of the QCL relationship associated with the TRS, but the difference is that in this aspect, the channel of the E-type QCL
  • the large-scale parameters include delay spread
  • the large-scale parameters of the C-type QCL channel include average delay and Doppler shift.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information; the QCL indication information is used to indicate the time of each DMRS in the N demodulation reference signal DMRSs.
  • the delay spread is associated with the delay spread of the corresponding TRS, the average delay of each DMRS is associated with the average delay of the M TRSs, and the Doppler shift of each DMRS is associated with the Doppler shift of the M TRSs. Shift is associated; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the difference between this method and the fifteenth aspect above is that in this method, the DMRS ports corresponding to the TRSs respectively sent by the N network devices are different. In this way, after the terminal obtains the above-mentioned QCL indication information, the terminal can determine the delay spread of the corresponding TRS according to the delay spread of each DMRS. The delay and Doppler shift are still obtained according to the average delay and Doppler shift of M TRSs.
  • the delay spread of each DMRS may be different, but the average delay and Doppler shift of each DMRS are the same.
  • the method is beneficial for the network device to use the time delay and frequency offset compensation to send the DMRS and the PDSCH, so that the time delay and frequency offset of the DMRS and PDSCH from different network devices reaching the terminal are the same, and the terminal uses the multiple M TRSs.
  • the Peller offset can determine the corresponding reference delay and reference frequency offset to receive DMRS and PDSCH, so as to avoid the performance degradation caused by the terminal using the wrong reference delay and reference frequency offset. Therefore, this method is beneficial to improve the multi-station transmission performance.
  • the method further includes: the terminal determines the delay spread of the corresponding DMRS according to the delay spread of each TRS, and determines the average delay of each DMRS according to the average delay and Doppler shift of the M TRSs. Time delay, Doppler shift. It can be seen that the delay spread and Doppler spread of the DMRS determined in this embodiment respectively consider the delay spread between the corresponding network device and the terminal, and the average delay and Doppler shift of the DMRS can be known, Thereby, the multi-station transmission performance is improved.
  • the delay spread of the DMRS is associated with the delay spread of the corresponding TRS
  • the average delay and Doppler shift of the DMRS are associated with the average delay and Doppler shift of the M TRSs. That is, the difference between this aspect and the fifteenth aspect above is that the DMRS ports corresponding to different TRSs are different, that is, different DMRSs, but the indication mode indicated by the QCL indication information is the same as that of the fifteenth aspect above.
  • the tenth aspect above The implementation of the five aspects will not be described in detail here.
  • the present application further provides a quasi-co-located QCL indication method, the method comprising: a terminal receiving quasi-co-located QCL indication information, where the QCL indication information is used to indicate the Doppler spread of the demodulation reference signal DMRS and N Doppler spreads of the tracking reference signal TRSs are associated, the average delay of the DMRSs is associated with the average delays of the M TRSs, and the Doppler shifts of the DMRSs are associated with the Doppler shifts of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the DMRS ports corresponding to the TRSs sent by the N network devices are all the same.
  • the terminal can track the Doppler spread between the N network devices and the terminal through the N TRSs.
  • the Doppler spread of the DMRS is obtained by fusing the N Doppler spreads, which is more in line with the multipath characteristics of N network devices respectively sending the same DMRS, and is beneficial to improve the channel estimation accuracy of the DMRS.
  • this method is beneficial for the network equipment to use the time delay and frequency offset compensation to send the DMRS and PDSCH, so that the time delay and frequency offset of the DMRS and PDSCH from different network equipment to the terminal are the same, and the terminal uses the average of M TRSs.
  • Time delay and Doppler offset can determine the corresponding reference time delay and reference frequency offset to receive DMRS and PDSCH, so as to avoid the performance degradation caused by the terminal using wrong reference time delay and reference frequency offset. station transmission performance.
  • the terminal determines the Doppler spread of the DMRS according to the Doppler spread of the N TRSs, and determines the average delay and Doppler shift of the DMRS according to the average delay and Doppler shift of the M TRSs. Le offset. Thus, multi-station transmission performance is improved.
  • the indication manner of the QCL indication information may include, but is not limited to, the implementation of the above-mentioned first aspect according to the type of the QCL relationship associated with the TRS, but the difference is that in this aspect, the channel of the E-type QCL
  • the large-scale parameters include Doppler spread
  • the large-scale parameters of the C-type QCL channel include average delay and Doppler shift.
  • the present application further provides a quasi-co-located QCL indication method.
  • the method includes: the terminal receives quasi-co-located QCL indication information; the QCL indication information is used to indicate multiple numbers of each DMRS in the N demodulation reference signal DMRSs.
  • the Pler spread is associated with the Doppler spread of the corresponding TRS, the average delay of each DMRS is associated with the average delay of the M TRSs, and the Doppler shift of each DMRS is associated with the Doppler of the M TRSs Le shift is associated; N is greater than or equal to 2 and M is greater than or equal to 1.
  • the difference between this method and the fifteenth aspect above is that in this method, the DMRS ports corresponding to the TRSs respectively sent by the N network devices are different.
  • the terminal can determine the Doppler spread of the corresponding TRS according to the Doppler spread of each DMRS, that is, the DMRS channel estimation is performed by using the Doppler spread of the corresponding TRS, but each DMRS The average delay and Doppler shift of , are still obtained according to the average delay and Doppler shift of M TRSs.
  • the Doppler spread of each DMRS may be different, but the average delay and Doppler shift of each DMRS are the same.
  • the method is beneficial for the network device to use the time delay and frequency offset compensation to send the DMRS and the PDSCH, so that the time delay and frequency offset of the DMRS and PDSCH from different network devices reaching the terminal are the same, and the terminal uses the multiple M TRSs.
  • the Peller offset can determine the corresponding reference delay and reference frequency offset to receive DMRS and PDSCH, so as to avoid the performance degradation caused by the terminal using the wrong reference delay and reference frequency offset. Therefore, this method is beneficial to improve the multi-station transmission performance.
  • the method further includes: the terminal determines the Doppler extension of the corresponding DMRS according to the Doppler extension of each TRS, and determines each DMRS according to the average delay and Doppler shift of the M TRSs The average delay and Doppler shift of . It can be seen that the Doppler spread and Doppler spread of the DMRS determined in this embodiment respectively consider the Doppler spread between the corresponding network device and the terminal, and the average delay and Doppler offset of the DMRS can be known. This improves the multi-station transmission performance.
  • the Doppler spread of the DMRS is associated with the Doppler spread of the corresponding TRS
  • the average delay and Doppler shift of the DMRS are associated with the average delay and Doppler shift of the M TRSs . That is, the difference between this aspect and the above-mentioned seventeenth aspect is that the DMRS ports corresponding to different TRSs are different, that is, different DMRSs, but the indication mode indicated by the QCL indication information is the same as the above-mentioned fifteenth aspect. For details, please refer to the above-mentioned tenth aspect. The implementation of the five aspects will not be described in detail here.
  • the QCL indication method of the first aspect to the eighteenth aspect is to indicate through the QCL indication information that the time-frequency extension information of the N TRSs is associated with the time-frequency extension information of one or more DMRSs, and the time delay of the M TRSs is The way that the frequency offset information is associated with the time delay and frequency offset information of each DMRS is helpful for the terminal to know how to perform DMRS channel estimation to improve the channel estimation performance, and to inform the terminal of the reference frequency offset and/or reference delay to be used. , so as to avoid the terminal receiving the DMRS with the wrong reference frequency offset and reference time delay, thereby improving the multi-station transmission performance.
  • the problems to be solved by the above-mentioned QCL indication methods are the same, that is, to improve the multi-station transmission performance, and have corresponding specific technical features, and the effect achieved is to improve the multi-station transmission performance. Therefore, the above-mentioned QCL indication methods belong to the same An inventive concept that meets the requirement of unity.
  • the present application provides a quasi-co-located QCL indication method, which corresponds to the above-mentioned first aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information, the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler offset of the DMRS is related to Doppler shifts of the M TRSs are associated; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned first aspect.
  • the present application provides a quasi-co-located QCL indication method, which corresponds to the above-mentioned second aspect and is described from the perspective of a network device.
  • the method includes: the network device determines quasi-co-located QCL indication information, where the QCL indication information is used to indicate that the delay spread of each DMRS in the N demodulation reference signal DMRSs is associated with the delay spread of the corresponding TRS, and each The Doppler offset of the DMRS is associated with the Doppler offset of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned second aspect.
  • the present application provides a quasi-co-located QCL indication method, which corresponds to the third aspect and is described from the perspective of a network device.
  • the method includes: the network device determines quasi-co-located QCL indication information, the QCL indication information is used to indicate that the Doppler spread of the demodulation reference signal DMRS is associated with the Doppler spread of the N tracking reference signals TRS, and the average of the DMRS
  • the delay is associated with the average delay of M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned third aspect.
  • the present application provides a quasi-co-located QCL indication method, which corresponds to the fourth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines quasi-co-located QCL indication information, where the QCL indication information is used to indicate the Doppler spread of each DMRS in the N demodulation reference signals DMRS and the multiplicity of the corresponding TRS in the N tracking reference signal TRSs Puller spread is associated, and the average delay of each DMRS is associated with the average delay of M TRSs in N TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned fourth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the fifth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information, where the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler spread of the DMRS is related to the N
  • the Doppler spread of the TRS is associated, the average delay of the DMRS is associated with the average delay of the M TRSs, and the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs, N greater than or equal to 2.
  • M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned fifth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the sixth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines quasi-co-located QCL indication information; the QCL indication information is used to indicate that the delay spread of each DMRS in the N demodulation reference signal DMRSs is associated with the delay spread of the corresponding TRS, and the delay spread of each DMRS is associated with The Doppler spread is associated with the Doppler spread of the corresponding TRS, the average delay of each DMRS is associated with the average delay of the M TRSs, and the Doppler shift of each DMRS is associated with the multiplication of the M TRSs.
  • the Puller offset is associated; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the sixth aspect.
  • the present application provides a quasi-co-located QCL indication method, which corresponds to the seventh aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information, where the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the average delay of the DMRS is related to the M delay spreads The average delay of the TRS is associated; N is greater than or equal to 2, M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned seventh aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the eighth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines quasi-co-located QCL indication information, where the QCL indication information is used to indicate that the delay spread of each DMRS in the N demodulation reference signal DMRSs is associated with the delay spread of the corresponding TRS, and each The average delay of the DMRS is associated with the average delay of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned eighth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the ninth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information, where the QCL indication information is used to indicate that the Doppler spread of the demodulation reference signal DMRS is associated with the Doppler spread of the N tracking reference signals TRS, and the Doppler offset of the DMRS The shift is associated with the Doppler shifts of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the ninth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the tenth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information, the QCL indication information is used to indicate that the Doppler spread of each DMRS in the N demodulation reference signal DMRSs is associated with the Doppler spread of the corresponding TRS, and each DMRS The Doppler shifts of are associated with the Doppler shifts of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the tenth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the eleventh aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information, where the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler spread of the DMRS is related to the N The Doppler spread of the TRS is associated, and the average delay of the DMRS is associated with the average delay of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned eleventh aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the twelfth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information; the QCL indication information is used to indicate that the delay spread of each DMRS in the N demodulation reference signal DMRSs is associated with the delay spread of the corresponding TRS, and the Doppler
  • the extension is associated with the Doppler extension of the corresponding TRS, and the average delay of each DMRS is associated with the average delay of M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information .
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the twelfth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the thirteenth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information, where the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler spread of the DMRS is related to the N The Doppler spread of the TRS is associated, the Doppler shift of the DMRS is associated with the Doppler shifts of M TRSs, N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the thirteenth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the above fourteenth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines quasi-co-located QCL indication information; the QCL indication information is used to indicate that the delay spread of each DMRS in the N demodulation reference signal DMRSs is associated with the delay spread of the corresponding TRS, and the delay spread of each DMRS is associated with The Doppler spread is associated with the Doppler spread of the corresponding TRS, and the Doppler shift of each DMRS is associated with the Doppler shifts of M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; The network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned fourteenth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the fifteenth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information, where the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the average delay of the DMRS is related to the M TRSs and the Doppler shifts of the DMRSs are associated with the Doppler shifts of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the fifteenth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the sixteenth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines quasi-co-located QCL indication information; the QCL indication information is used to indicate that the delay spread of each DMRS in the N demodulation reference signal DMRSs is associated with the delay spread of the corresponding TRS, and the delay spread of each DMRS is associated with The average delay is associated with the average delay of the M TRSs, and the Doppler shift of each DMRS is associated with the Doppler shift of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; network The device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the above-mentioned sixteenth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the seventeenth aspect and is described from the perspective of a network device.
  • the method includes: the network device determines QCL indication information, where the QCL indication information is used to indicate that the Doppler spread of the demodulation reference signal DMRS is associated with the Doppler spread of the N tracking reference signals TRS, and the average delay of the DMRS is related to M The average delays of the TRSs are associated, and the Doppler shifts of the DMRSs are associated with the Doppler shifts of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1; the network device sends the QCL indication information.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the seventeenth aspect.
  • the present application further provides a quasi-co-located QCL indication method, which corresponds to the eighteenth aspect and is described from the perspective of a network device.
  • the method includes: the terminal receives quasi-co-located QCL indication information; the QCL indication information is used to indicate that the Doppler spread of each DMRS in the N demodulation reference signal DMRSs is associated with the Doppler spread of the corresponding TRS, and each DMRS is associated with the Doppler spread of the corresponding TRS.
  • the average delay of is associated with the average delay of the M TRSs, and the Doppler shift of each DMRS is associated with the Doppler shift of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • the QCL indication method in this aspect can improve the multi-station transmission performance as in the eighteenth aspect.
  • the network device may also receive the uplink signal according to the QCL indication information.
  • the uplink signal received by this embodiment may be sent by the terminal based on the reference frequency offset and/or the reference delay based on the QCL indication information, which is beneficial to make the uplink signal sent by the terminal reach each TRP with the same delay, which is beneficial to Improve multi-station transmission performance.
  • the present application further provides a terminal, which has some or all of the functions of the terminal in the method example of any one of the first to eighteenth aspects.
  • the functions of the terminal may have this function.
  • the functions in some or all of the embodiments in the application may also have the functions of independently implementing any one of the embodiments in the application.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the terminal may include a processing unit and a communication unit, and the processing unit is configured to support the terminal to perform corresponding functions in the above method.
  • the communication unit is used to support the communication between the terminal and other devices.
  • the terminal may further include a storage unit, which is used for coupling with the processing unit and the sending unit, and which stores necessary program instructions and data of the terminal.
  • the terminal includes:
  • the communication unit is used to receive quasi-co-located QCL indication information, where the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler spread of the DMRS is related to N
  • the Doppler spread of the TRSs is associated, the average delay of the DMRS is associated with the average delay of the M TRSs, and the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs; N is greater than or equal to 2, M is greater than or equal to 1.
  • the terminal further includes a processing unit,
  • the processing unit is configured to determine the delay spread and Doppler spread of the DMRS according to the delay spread and Doppler spread of the N TRSs, and determine the DMRS according to the average delay and Doppler shift of the M TRSs. Average delay, Doppler shift.
  • the terminal can also execute the related content of the first aspect to the fourth aspect or the sixth aspect to the eighteenth aspect through the communication unit and/or the processing unit, the difference is that the QCL indication information indicates The content is different and will not be described in detail here.
  • the processing unit may be a processor
  • the communication unit may be a transceiver
  • the storage unit may be a memory
  • the terminal includes:
  • the transceiver is used to receive quasi-co-located QCL indication information, and the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler spread of the DMRS is related to N
  • the Doppler spread of the TRSs is associated, the average delay of the DMRS is associated with the average delay of the M TRSs, and the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs; N is greater than or equal to 2, M is greater than or equal to 1.
  • the terminal further includes a processor
  • the processor is configured to determine the delay spread and Doppler spread of the DMRS according to the delay spread and Doppler spread of the N TRSs, and determine the delay spread and Doppler spread of the DMRS according to the average delay and Doppler shift of the M TRSs. Average delay, Doppler shift.
  • the terminal may also use the transceiver and/or the processor to execute the relevant content of the first aspect to the fourth aspect, or the sixth aspect to the eighteenth aspect, the difference is that the QCL indicates The content indicated by the information is different and will not be described in detail here.
  • the present application further provides a network device.
  • the network device has part or all of the functions of the network device in the method for implementing any one of the nineteenth to thirty-sixth aspects.
  • the function of the network device may have the function of some or all of the embodiments of the network device in this application, and may also have the function of independently implementing any one of the embodiments of this application.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the network device may include a processing unit and a communication unit, and the communication unit is configured to support the network device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the network device and other devices.
  • the network device may further include a storage unit, which is used for coupling with the acquiring unit and the sending unit, and which stores necessary program instructions and data of the network device.
  • the network device includes:
  • the processing unit is configured to determine the quasi-co-located QCL indication information, where the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler spread of the DMRS is related to N
  • the Doppler spread of the TRSs is associated, the average delay of the DMRS is associated with the average delay of the M TRSs, and the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs; N is greater than or equal to 2, M is greater than or equal to 1;
  • the communication unit is used for sending QCL indication information.
  • the terminal may also perform any one of the nineteenth aspect to the twenty-second aspect, or any of the twenty-fourth aspect to the thirty-sixth aspect, through the processing unit and the communication unit.
  • the difference is that the content indicated by the QCL indication information is different, which will not be described in detail here.
  • the communication unit may be a transceiver and the processing unit may be a processor.
  • the network device includes:
  • the processor is configured to determine quasi-co-located QCL indication information, where the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler spread of the DMRS is related to the N
  • the Doppler spread of the TRSs is associated, the average delay of the DMRS is associated with the average delay of the M TRSs, and the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs; N is greater than or equal to 2, M is greater than or equal to 1;
  • Transceiver for sending QCL indication information.
  • the network device may also perform any one of the nineteenth aspect to the twenty-second aspect, or any of the twenty-fourth aspect to the thirty-sixth aspect, through a processor and a transceiver.
  • the relevant content of any aspect is different in that the content indicated by the QCL indication information is different, and will not be described in detail here.
  • the processor may be used to perform, for example, but not limited to, baseband related processing
  • the transceiver may be used to perform, for example, but not limited to, radio frequency transmission and reception.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a System on Chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the specific needs of product design. The embodiment of the present invention does not limit the specific implementation form of the above device.
  • the present application further provides a processor for executing the above-mentioned various methods.
  • the process of sending and receiving the above-mentioned information in the above-mentioned methods can be understood as the process of outputting the above-mentioned information by the processor, and the process of receiving the above-mentioned information input by the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. Furthermore, after the above information is output by the processor, other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • the receiving QCL indication information mentioned in the foregoing method may be understood as the processor inputting the QCL indication information.
  • sending the QCL indication information may be understood as the processor outputting the QCL indication information.
  • the operations of transmitting, sending and receiving involved in the processor can be understood more generally as
  • the processor outputs and receives, inputs, etc. operations, rather than the transmit, transmit, and receive operations directly performed by the radio frequency circuit and antenna.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the present invention does not limit the type of the memory and the setting manner of the memory and the processor.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the above-mentioned terminal, including the method used in any one of the first to eighteenth aspects for executing the above-mentioned method. procedures involved.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the above-mentioned network device, including the method for executing the nineteenth to thirty-sixth aspects of the above method. Procedures involved in any aspect.
  • the present application further provides a computer program product comprising instructions, which, when executed on a computer, cause the computer to perform the method of any one of the above-mentioned first to eighteenth aspects.
  • the present application also provides a computer program product comprising instructions, which, when executed on a computer, cause the computer to perform the method of any one of the nineteenth to thirty-sixth aspects above.
  • the present application provides a chip system
  • the chip system includes a processor and an interface for supporting a terminal to implement the functions involved in any one of the first to eighteenth aspects, for example, determining or At least one of the data and information involved in the above method is processed.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes a processor and an interface for supporting a network device to implement the functions involved in any one of the nineteenth to thirty-sixth aspects above, For example, at least one of the data and information involved in the above method is determined or processed.
  • the chip system further includes a memory, wherein the memory is used for saving necessary program instructions and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application further provides a communication system, the system includes at least one terminal device and at least one network device according to the above aspects.
  • the system may further include other devices that interact with the terminal or network device in the solution provided in this application.
  • the present application further provides a communication device, the communication device includes a processor and a memory; the memory is used for storing a computer program; the processor is used for executing the computer program stored in the memory , when the computer program is executed, the communication device is made to implement the method as described in any one of the first to eighteenth aspects, or as described in any of the nineteenth to thirty-sixth aspects method described.
  • the memory may be located outside the communication device.
  • Fig. 1 is a kind of scene schematic diagram of adjacent cell interference
  • Fig. 2 is a kind of scene schematic diagram that adopts DCS/DPS technology
  • Fig. 3 is a kind of scene schematic diagram that adopts CB/CS technology
  • Fig. 4 is a kind of scene schematic diagram that adopts JT technology
  • FIG. 5 is a schematic diagram of the architecture of a plurality of TRPs
  • Fig. 6 is a kind of schematic diagram of Doppler shift of channel between TRP1 and TRP2 respectively and UE;
  • FIG. 7 is a schematic flowchart of a QCL indication method 1100 provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a signal transmission method 1100 provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a method for determining a delay spread of a DMRS provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a TRP1 and TRP2 cooperative transmission provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another TRP1 and TRP2 cooperative transmission provided by an embodiment of the present application.
  • TRP1 and TRP2 are schematic diagrams of another TRP1 and TRP2 cooperative transmission provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a QCL indication method 1200 provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a signal transmission method 1200 provided by an embodiment of the present application.
  • 15 is a schematic diagram of a method for determining Doppler spread of a DMRS provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of cooperative transmission of TRP1 and TRP2 using the QCL indication method 1200 provided by an embodiment of the present application;
  • 17 is a schematic diagram of another TRP1 and TRP2 cooperative transmission using the QCL indication method 1200 provided by an embodiment of the present application;
  • FIG. 18 is a schematic flowchart of a QCL indication method 1300 provided by an embodiment of the present application.
  • FIG. 19 is a schematic flowchart of a signal transmission method 1300 provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of cooperative transmission of TRP1 and TRP2 using the QCL indication method 1300 provided by an embodiment of the present application;
  • 21 is a schematic diagram of another TRP1 and TRP2 cooperative transmission using the QCL indication method 1300 provided by an embodiment of the present application;
  • FIG. 22 is a schematic diagram of another TRP1 and TRP2 cooperative transmission using the QCL indication method 1300 provided by an embodiment of the present application;
  • FIG. 23 is a schematic diagram of a simulation of performance improvement provided by an embodiment of the present application.
  • FIG. 24 is a simulation schematic diagram of another performance improvement provided by an embodiment of the present application.
  • FIG. 25 is a schematic flowchart of a QCL indication method 3100 provided by an embodiment of the present application.
  • 26 is a schematic diagram of a transmission time of an uplink signal provided by an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the technical solutions of the present application can be applied to various communication systems.
  • global system for mobile communications LTE frequency division duplex system, LTE time division duplex system, universal mobile communication system, 4G system, and with the continuous development of communication technology
  • the technical solution of the present application can also be used for subsequent evolved communication systems , such as 5G systems, future communication systems, etc.
  • the communication system in the embodiments of the present application can provide downlink services for the same terminal by using the Coordinated Multi-Point (CoMP) technology, or receive uplink signals of the same terminal, so as to solve the interference that the terminal receives between multiple cells .
  • CoMP Coordinated Multi-Point
  • the coordinated multipoint transmission technology may also be referred to as multi-station coordinated transmission.
  • the dotted line represents the interference to the terminal from the neighboring cell
  • the solid line represents the useful signal of the cell.
  • the user equipment (UE) at the edge of the cell receives the useful signal of the cell.
  • Neighboring interference In order to solve this interference problem, in one scenario, the CoMP technology can use dynamic cell selection/dynamic point selection (DCS/DPS), that is, the network side dynamically selects a better transmission access point (transmission access point). point, TRP), serving the UE.
  • DCS/DPS the TRP of each UE is dynamically selected.
  • the TRP of UE2 can be dynamically switched from TRP2 to TRP2.
  • TRP1 to ensure that UE2 is under a stronger cell signal, and let the weaker cell signal become interference, so as to utilize the difference in the channel between the TRP to the UE between the two cells, and improve the signal-to-interference-noise ratio of the UE.
  • the CoMP technology may use the beamforming/coordinated scheduling (coordinated beamforming/coordinated scheduling, CB/CS) technology to serve the UE.
  • CB/CS coordinated beamforming/coordinated scheduling
  • the neighboring cell of the cell where the UE is located can adjust the transmitted signal.
  • the signals corresponding to the dotted lines from UE1 to UE4 in Figure 3 are adjusted to avoid strong interference.
  • the direction of the signal is sent to the UE, thereby reducing the interference level of the neighboring cell to the UE.
  • the CoMP technology may use a joint transmission (joint transmission, JT) technology to serve the UE.
  • JT joint transmission
  • multiple TRPs jointly send data to the UE.
  • UE2 can send data jointly by TRP1 and TRP2
  • UE3 can send data jointly by TRP2, TRP3 and TRP4.
  • TRP1 and TRP2 can send data jointly by TRP1 and TRP2
  • TRP3 and TRP4 can send data jointly by TRP2, TRP3 and TRP4.
  • UE2 and UE3 can receive data for it.
  • improve the transmission rate improve the transmission rate.
  • multiple TRPs jointly transmit data to the UE, including but not limited to the following schemes: Scheme 1, multiple TRPs transmit the same data signal to the UE, and the UE does not distinguish which TRP the data comes from.
  • Scheme 1 multiple TRPs transmit the same data signal to the UE, and the UE does not distinguish which TRP the data comes from.
  • SFN frequency network
  • DMP distributed multi point
  • JMP JT joint multi point joint transmission
  • multiple TRPs can transmit the same data signal to the UE , the UE does not distinguish which TRP the data signal comes from
  • scheme 2 multiple TRPs transmit different data to the UE, and the UE can distinguish which TRP the data comes from.
  • multiple The TRP transmits different data signals to the UE, and the UE can distinguish the data signals from each TRP.
  • different TRPs may transmit data based on the same demodulation reference signal (demodulation reference signal, DMRS) port, or different DMRS ports.
  • DMRS demodulation reference signal
  • Different TRPs transmit data based on different DMRS ports, that is, the transmission data of different TRPs correspond to different DMRS ports. In this way, the UE can also distinguish different DMRS ports and obtain channel estimation results from different TRPs to the UE.
  • the embodiments of the present application can be applied to independent networking, that is, communication systems such as new base stations, backhaul links, and core networks deployed in future networks, and can also be applied to various communication systems such as non-independent networking.
  • the embodiments of the present application may be used in a fifth generation (5th generation, 5G) system, which may also be referred to as a new radio (new radio, NR) system, or a sixth generation (6th generation, 6G) system or other future communication systems ; or can also be used in device to device (device to device, D2D) systems, machine to machine (machine to machine, M2M) systems, long term evolution (long term evolution, LTE) systems and so on.
  • 5G fifth generation
  • NR new radio
  • 6G sixth generation
  • device to device device to device
  • M2M machine to machine
  • LTE long term evolution
  • the network device may be a device with a wireless transceiver function or a chip that can be provided in the device, and the network device includes but is not limited to: an evolved node B (evolved node B, eNB), a radio network controller ( radio network controller, RNC), node B (Node B, NB), network equipment controller (base station controller, BSC), network equipment transceiver station (base transceiver station, BTS), home network equipment (for example, home evolved Node B , or home Node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, wireless fidelity (wireless fidelity, WIFI) system Transmission point (transmission and reception point, TRP or transmission point, TP), etc.; it can also be a device used in 5G, 6G or even 7G systems, such as gNB in NR system, or transmission point (TRP or TP), in 5G system One or a group (including multiple antenna panels)
  • RNC radio network controller
  • terminal equipment may include, but is not limited to: user equipment (user equipment, UE), access terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, User terminal equipment, user agent or user equipment, etc.
  • user equipment user equipment, UE
  • access terminal equipment subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, User terminal equipment, user agent or user equipment, etc.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, industrial control Wireless terminals in (industrial control), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals in the aforementioned V2X Internet of Vehicles, or RSUs of the wireless terminal type, etc.
  • a mobile phone mobile phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (VR) terminal device
  • AR augmented reality
  • industrial control Wireless terminals in (industrial control) wireless terminals in self-driving
  • wireless terminals in remote medical wireless terminals in smart grid
  • transportation safety wireless terminals in smart cities wireless terminals in smart homes, wireless terminals in the aforementioned V2X Internet of Vehicles, or RSUs of the wireless terminal type,
  • a gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the multiple TRPs shown in FIG. 1 to FIG. 4 may physically be a group of antennas.
  • the baseband processing unit of a base station is located in a geographical location, the baseband processing unit can be connected to the radio frequency processing units in multiple geographical locations, and the distance from the baseband processing unit to the radio frequency processing unit can be 100 meters Therefore, the transmission time between the baseband processing unit and the radio frequency processing unit is shorter and the transmission capacity is larger.
  • the baseband processing unit after the baseband processing unit has processed the baseband signal, if the signal of the control channel is generated, it can be transmitted to a plurality of transmission and reception points, and each transmission and reception point sends out its own control channel.
  • the multiple TRPs or multiple network devices for cooperative transmission in this embodiment of the present application may belong to different radio frequency processing units of the same base station or to different base stations, wherein the TRPs and network devices may be replaced with each other.
  • TRP1 may Instead of using the first network device, the TRP2 may be replaced by the second network device, which is not limited in this application.
  • the channel large-scale parameters of one antenna port can be derived from the channel large-scale parameters obtained by the other antenna port.
  • the two antenna ports have a QCL relationship, then the large-scale characteristics of the channel that transmits a signal at one port can be inferred from the large-scale characteristics of the channel that transmits a signal at the other port, also referred to simply as having a QCL relationship between the two signals .
  • the parameters of one antenna port can be used to determine the parameters of another antenna port with a QCL relationship to that antenna port, or both antenna ports have the same parameters , or the parameter difference between the two antenna ports is less than a certain threshold.
  • the referenced signal may be a source signal, a source reference signal or a reference reference signal, and another signal may be referred to as a target signal or a target reference signal.
  • the signal 1 and the signal 2 have a QCL relationship, which also means that the antenna port corresponding to the signal 1 and the antenna port corresponding to the signal 2 have a QCL relationship. Therefore, in this application, for the sake of brevity, the description is mainly made in the manner of having a QCL relationship between signals, or the manner of correlation between channel parameters of the signals.
  • the source signal may be a channel state information reference signal (Channel State Information Reference Signal, CSI-RS), a synchronization signal block (synchronization signal block, SSB), a synchronization signal physical broadcast channel block (synchronization signal physical) broadcast channel block, SSPBCHB), primary synchronization signal (PSS), or secondary synchronization signal (secondary synchronization signal, SSS), downlink control channel (physical downlink control channel, PDCCH), etc.
  • CSI-RS Channel State Information Reference Signal
  • SSB synchronization signal block
  • SSPBCHB synchronization signal physical broadcast channel block
  • PSS primary synchronization signal
  • secondary synchronization signal secondary synchronization signal
  • downlink control channel physical downlink control channel
  • PDCCH physical downlink control channel
  • the target signal may be a DMRS, a CSI-RS, or a signal of a side link (Sidelink).
  • the DMRS may be in a physical downlink control channel (physical downlink control channel, PDCCH) or a physical downlink shared channel (physical downlink share channel, PDSCH). demodulate.
  • Target and source signals having a QCL relationship may belong to the same type of signals of different indices, or belong to different types of signals.
  • both the source signal and the target signal may be CSI-RS, but with different indices.
  • the source signal is CSI-RS
  • the target signal is DMRS.
  • the channel large-scale parameters of the signal may include one or more of the following: average gain, average delay, delay spread, Doppler shift, Doppler shift Doppler spread, spatial parameter.
  • the spatial parameters may include one or more of the following parameters: angle of arrival (AoA), dominant (Dominant) angle of incidence AoA, average angle of incidence, power angular spectrum (PAS) of the angle of incidence, Angle of Departure (AOD), Dominant AoD, Average AoD, Angle of Arrival (AOA), Dominant AoA, Average AoA ), channel correlation matrix, power angle spread spectrum of arrival angle, power angle spread spectrum of departure angle, transmit channel correlation, receive channel correlation, transmit beamforming, receive beamforming, spatial channel correlation, spatial filter, spatial Filter parameters, spatial Rx parameters, etc.
  • the standard defines four types of QCL relationships, and the channel large-scale parameters of different types of QCL relationships are also different, for example:
  • QCL Type A Doppler shift, Doppler spread, average delay, delay spread
  • QCL relationship of type B (QCL Type B): Doppler shift, Doppler spread;
  • QCL relationship of type C (QCL Type C): average delay, Doppler shift;
  • Doppler shift can be translated as Doppler shift, Doppler frequency shift or Doppler frequency offset.
  • the parameters included in the channel large-scale parameters of the two are the same.
  • the source signal and the target signal have QCL Type A, it means that the Doppler shift, Doppler spread, average delay, and delay spread of the source signal can be used to derive the Doppler shift, Doppler spread, average delay, and delay spread of the target signal.
  • TCI Transmission configuration indication
  • the TCI field is a field in downlink control information (DCI) used to indicate the quasi colocation (QCL) of DMRS in PDSCH or PDCCH, or used for DMRS in PDSCH or PDCCH and one or
  • DCI downlink control information
  • QCL quasi colocation
  • the QCL relationship configured between multiple downlink reference signals can be understood as the channel characteristics of the PDSCH or PDCCH transmission process this time. Therefore, the terminal can learn the channel large-scale parameters of the DMRS of the received PDSCH based on the TCI state indicated by the TCI field, and then demodulate the PDSCH based on the channel estimation.
  • the TCI state may not be indicated by DCI, for example, it may be obtained by means of RRC configuration, MAC CE indication, or joint determination by MAC CE and DCI.
  • the QCL relationship and channel parameters between the source signal and the target signal indicated by the QCL indication information in some embodiments of this document may also be obtained in a predefined manner, for example, the source signal and channel that have a QCL relationship with the target signal are predefined. It is not necessary to indicate that the source signal and channel parameters that have a QCL relationship with the target signal belong to a certain TCI state.
  • the QCL indication information in this embodiment of the present application may be used to indicate, but not limited to, multiple TCI states.
  • the QCL indication information may also indicate other parameter information.
  • the above-mentioned TCI field is used to configure the QCL relationship between the DMRS in the PDSCH or PDCCH and one or more downlink reference signals, one or more downlink reference signals and one or more types of QCL relationships associated with them. It can be summarized as QCL configuration information, and different TCI states can be associated or correspond to different QCL configuration information.
  • a QCL configuration information may also be referred to as a QCL information or a QCL assumption.
  • the downlink reference signal may be the above-mentioned source signal, which will not be described in detail here.
  • TRPs are located in different geographical locations, and the TCI states of the channels between each TRP and the terminal are also different.
  • one transmission includes parallel transmission of multiple PDSCHs. Therefore, the network device needs to configure the TCI states of the multiple PDSCHs for the terminal, that is, the multiple TCI states can be obtained from the same TCI in one DCI from one TRP.
  • the domain indication may also be indicated by multiple TCI domains; or, the multiple TCI states may be transmitted by multiple DCIs from different TRPs. That is, for the terminal, different TRPs have different TCI states (states) in the process of cooperative PDSCH transmission.
  • the TCI state may be referred to as TCI for short.
  • the DMRS ports corresponding to the transmission data of different TRPs may be the same or different.
  • the source signals indicated by the TCI states of different TRPs such as TRS, may also be the same or different. . That is, if the DMRS ports corresponding to the transmission data of different TRPs are the same, the DMRS ports corresponding to the TRSs indicated by different TCI states are also the same; if the DMRS ports corresponding to the transmission data of different TRPs are different, the corresponding TRSs indicated by the different TCI states DMRS ports are also different.
  • the different TRPs are deployed in different geographical locations, and the channels reaching the terminal are also different, and then the channel large-scale parameters of these channels are also different, which will lead to different delays of the transmission signals of different TRPs to the terminal.
  • the Dopplers of the transmitted signals of different TRPs to the terminal are different. Among them, the different delays are caused by the different transmission delays caused by the clock accuracy, clock calibration error and distance to the terminal of different TRPs, and the different signal delays will cause the PDSCH of cooperative transmission to generate time domain delays. interference, inter-symbol interference, inter-carrier interference, etc.
  • the difference in Doppler is caused by the different angles of relative motion between different TRPs and the terminal, and such different Dopplers will cause signals to have different frequency offsets, thereby causing carrier interference.
  • FIG. 6 is a schematic diagram of Doppler shifts of channels between TRP1 and TRP2 and the UE respectively.
  • the number and form of devices in FIG. 6 are used as examples and do not constitute a limitation on the embodiments of the present application.
  • FIG. 6 takes the cooperation of TRP1 and TRP2 as an example for a terminal to transmit data.
  • TRP1 and TRP2 are deployed in different geographical locations, and TRP1 and TRP2 can transmit TRS1 and TRS2 at their respective center frequencies.
  • TRP1 and TRP2 have different frequencies
  • the center frequencies of TRP1 and TRP2 are different; if TRP1 and TRP2 have the same frequency, the center frequencies can be the same, as shown in Figure 6, taking the center frequency fc as an example. in:
  • TRP1 sends TRS1 at the center frequency fc
  • TRP2 sends TRS2 at the center frequency fc
  • the Doppler frequency offset of TRS1 sent by TRP1 to the terminal is f d1
  • the Doppler frequency offset of TRS2 sent by TRP2 to the terminal is f d2 ;
  • a DCI is used to transmit the TCI states of TRP1 and TRP2, where TCI state 1 corresponds to TRS1, and TCI state 2 corresponds to TRS2; the terminal derives the corresponding DMRS receiving frequency based on the large-scale channel parameters of TRS1 as f c +f d1 , The terminal derives the receiving frequency point of the corresponding DMRS based on the channel large-scale parameters of TRS2 is f c +f d2 ;
  • the receiving frequencies of the DMRS and PDSCH respectively transmitted by TRP1 and TRP2 are different, resulting in the interference between the carriers of the DMRS and PDSCH reaching the terminal, resulting in loss of multi-station transmission performance.
  • the present application provides a QCL indication method 1100, which can be applied to multi-station cooperative transmission.
  • a terminal can receive QCL indication information, and the QCL indication information can be used to indicate the delay extension of DMRS and the time delay of N TRSs.
  • the extension spread is associated, and the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • this method is beneficial to the scenario where the DMRS ports corresponding to N TRSs are the same, and the delay spread of the DMRS is obtained based on the delay spread of the N TRSs, thereby integrating the multipath delay characteristics of different TRPs to the terminal, which is conducive to improving The accuracy of the DMRS channel estimation; and, it is beneficial for the network device to send the DMRS in a frequency offset compensation manner to make the frequency offsets of the DMRSs from different TRPs consistent, avoid carrier interference, and pass the compensated reference frequency offset through the M TRSs.
  • the Doppler offset is notified to the terminal to prevent the terminal from using the wrong reference frequency offset to receive the compensated DMRS. Therefore, the method can improve multi-station transmission performance.
  • the present application provides another QCL indication method 1200, which can be applied to multi-station cooperative transmission.
  • the terminal can receive QCL indication information, and the QCL indication information can be used to indicate the Doppler spread of DMRS and N TRSs
  • the Doppler spread of , and the average delay of the DMRS is associated with the average delay of the M TRSs; N is greater than or equal to 2, and M is greater than or equal to 1.
  • this method is beneficial to the scenario where the DMRS ports corresponding to N TRSs are the same.
  • the Doppler extension of the DMRS is obtained based on the Doppler extension of the N TRSs, thereby integrating different Doppler characteristics of different TRPs to the terminal. It is beneficial to improve the accuracy of DMRS channel estimation; and, it is beneficial for network equipment to send DMRS in a delay compensation manner to make the delays of DMRS from different TRPs consistent, avoid inter-symbol interference, and pass the compensated reference delay through
  • the average delay of the M TRSs is notified to the terminal to prevent the terminal from receiving the DMRS with a wrong reference delay. Therefore, the method can improve multi-station transmission performance.
  • the present application provides another QCL indication method 1300, which can be applied to multi-station cooperative transmission.
  • the terminal can receive QCL indication information, and the QCL indication information can be used to indicate the Doppler spread of DMRS and N TRSs
  • the Doppler spread of the DMRS is correlated with the delay spread of the N TRSs
  • the Doppler shift of the DMRS is correlated with the Doppler shift of the M TRSs
  • the average delay of the DMRS Associated with the average delay of M TRSs N is greater than or equal to 2
  • M is greater than or equal to 1.
  • this method is conducive to making the DMRS ports corresponding to N TRSs the same.
  • the Doppler extension of DMRS is obtained based on the Doppler extension of N TRSs, and the delay extension of DMRS is obtained based on the delay extension of N TRSs. Therefore, the multipath characteristics of different TRPs to the terminal are integrated, which is beneficial to improve the accuracy of DMRS channel estimation; and, it is beneficial for network equipment to transmit DMRS by means of frequency offset and delay compensation, so that the frequency offset and time delay of DMRS from different TRPs are improved.
  • the reference frequency offset receives DMRS. Therefore, the method can improve multi-station transmission performance.
  • the present application also provides a QCL indication method 1400 to a QCL indication method 1800, and the difference from the above methods is that the time-frequency extension information and time-delay frequency offset information indicated by the QCL indication information are different.
  • the time-frequency spread information may include time delay spread and/or Doppler spread; the time delay and frequency offset information may include average delay and/or Doppler offset. Therefore, in addition to the above-mentioned method in which the QCL indication information indicates delay spread and Doppler shift, the method in which the QCL indication information indicates Doppler spread and average delay, and the QCL indication information indicates Doppler spread, delay spread, average delay In addition to the methods of time delay and Doppler migration:
  • the QCL indication information is used to indicate that the Doppler spread of DMRS is associated with the Doppler spread of N TRSs, the delay spread of DMRS is associated with the delay spread of N TRSs, and the Doppler spread of DMRS is associated with the delay spread of N TRSs.
  • the ler shift is associated with the Doppler shift of the M TRSs.
  • the QCL indication information can be used to indicate that the Doppler spread of the DMRS is associated with the Doppler spread of N TRSs, the delay spread of the DMRS is associated with the delay spread of the N TRSs, the average time of the DMRS The delay is associated with the average delay of the M TRSs.
  • the QCL indication information can be used to indicate that the Doppler spread of the DMRS is associated with the Doppler spread of the N TRSs, the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs, And the average delay of the DMRS is associated with the average delay of the M TRSs.
  • the QCL indication information can be used to indicate that the delay spread of the DMRS is associated with the delay spread of the N TRSs, the Doppler shift of the DMRS is associated with the Doppler shift of the M TRS, and the DMRS The average delay of is associated with the average delay of M TRSs.
  • the QCL indication information can be used to indicate that the Doppler spread of the DMRS is associated with the Doppler spread of the N TRSs, and the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs.
  • the QCL indication information can be used to indicate that the delay spread of the DMRS is associated with the delay spread of the N TRSs, and the average delay of the DMRS is associated with the average delay of the M TRSs.
  • the delay spread of the DMRS is associated with the delay spread of the N TRSs, and can also be expressed as: the DMRS has a QCL relationship with the N TRSs, and the large-scale channel parameters corresponding to the QCL relationship include the delay spread; Alternatively, the DMRS and the N TRSs satisfy the QCL relationship in terms of delay spread. In this way, the delay spread of the DMRS can be obtained based on the delay spread of N TRSs.
  • the Doppler spread of the DMRS is associated with the Doppler spread of the N TRSs, which can also be expressed as: the DMRS has a QCL relationship with the N TRSs, and the large-scale channel parameters corresponding to the QCL relationship include Doppler ler spread; alternatively, the DMRS and N TRSs satisfy the QCL relation on the Doppler spread. In this way, the Doppler spread of the DMRS can be obtained based on the Doppler spread of the N TRSs.
  • the average delay of the DMRS is associated with the average delay of the M TRSs, which can also be expressed as: the DMRS and the M TRSs have a QCL relationship, and the large-scale channel parameters corresponding to the QCL relationship include the average delay; Alternatively, the DMRS and the M TRSs satisfy the QCL relationship on the average delay. In this way, the average delay of the DMRS can be obtained based on the average delay of the M TRSs.
  • the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs, which can also be expressed as: the DMRS and the M TRSs have a QCL relationship, and the large-scale channel parameters corresponding to the QCL relationship include: Doppler shift; or, the DMRS and M TRS satisfy the QCL relationship on the Doppler shift.
  • the Doppler shift of the DMRS can be obtained based on the Doppler shift of the M TRSs.
  • the M TRSs may be part of the N TRSs, or may be additional M TRSs.
  • the present application also provides a QCL indication method 2100 to a QCL indication method 2900, wherein the QCL indication method 2100 to the QCL indication method 2900 correspond to the above-mentioned QCL indication method 1100 to the QCL indication method 1900 respectively, and the difference lies in that the above-mentioned
  • the QCL indication method 1100 to the QCL indication method 1900 can be applied to the situation where the DMRS ports corresponding to the N TRSs are the same in the N TRP cooperative transmission scenario, and the QCL indication method 2100 to the QCL indication method 2900 can be applied to the N TRP cooperative transmission scenario.
  • the DMRS ports corresponding to each TRS are different.
  • the QCL indication method 2100 corresponds to the QCL indication method 1100, and is different from the QCL indication method 1100 in that the delay spread of each DMRS is obtained based on the delay spread of the corresponding TRS.
  • the offset is obtained based on the Doppler offset of the M TRSs.
  • the delay spread of each DMRS may be different, but the Doppler shift of each DMRS is the same. It is more accurate to perform channel estimation with extended extension.
  • the method can also receive DMRS and PDSCH based on a unified reference frequency offset, avoid the situation that the network equipment performs frequency offset compensation to send DMRS and PDSCH, and the problem of transmission performance degradation caused by the terminal using the wrong reference frequency offset. Therefore, the method is beneficial to improve the multi-station transmission performance.
  • the QCL indication method 2200 corresponds to the QCL indication method 1200, and is different from the QCL indication method 1200 in that the Doppler spread of each DMRS is obtained based on the Doppler spread of the corresponding TRS, and the average delay of each DMRS is obtained based on the average delay of M TRSs.
  • the delay spread of each DMRS may be different, but the average delay of each DMRS is the same. In this way, when the DMRS ports corresponding to each TRS are different, the Doppler spread of the corresponding TRS is used. It is more accurate to perform channel estimation.
  • the method can also receive DMRS and PDSCH based on a uniform average delay, avoiding the situation that network equipment performs delay compensation to send DMRS and PDSCH, and the problem of transmission performance degradation caused by the terminal using wrong reference delay. Therefore, the method is beneficial to improve the multi-station transmission performance.
  • the QCL indication method 2300 corresponds to the QCL indication method 1300, and is different from the QCL indication method 1200 in that the delay spread of each DMRS is obtained based on the delay spread of the corresponding TRS, and the Doppler spread of each DMRS is obtained based on the Doppler extension of the corresponding TRS, the Doppler shift of each DMRS is obtained based on the Doppler shift of M TRSs, and the average delay of each DMRS is based on the average delay of M TRSs acquired.
  • the delay spread and Doppler spread of each DMRS may be different. When the DMRS ports corresponding to each TRS are different, it is more accurate to use the delay spread and Doppler spread of the respective TRSs for channel estimation.
  • the method can also receive DMRS and PDSCH based on the uniform average delay and Doppler offset, avoiding the situation that the network equipment performs delay and frequency offset compensation to send DMRS and PDSCH, and the terminal adopts the wrong reference delay and reference frequency offset.
  • the problem of degraded transmission performance. Therefore, the method is beneficial to improve the multi-station transmission performance.
  • N TRPs may correspond to N TCI states, and the QCL relationship associated with the TRS in the QCL information indicated by each TCI state may be different in different QCL indication methods.
  • the M TRSs in this embodiment of the present application may be another TRS or the same TRS in the QCL information indicated by the M TCI states in the N TCI states.
  • the M TRSs in this embodiment of the present application are some TRSs in the above-mentioned N TRSs that are different from the above-mentioned N TCI states, but are indicated by additional M TCI states, or additional TRSs, which are not made in this application. limited.
  • N TRSs are associated with time-frequency spread information, such as delay spread and/or Doppler spread; M TRSs are associated with delay and frequency offset information, such as average delay and/or Doppler offset Therefore, the indication manner of the QCL indication information may include but not limited to the following implementations:
  • the QCL indication information is used to indicate N TCI states, wherein the QCL information indicated by each TCI state in the M TCI states includes TRS-related time-frequency extension information and time-delay frequency offset information;
  • the QCL information indicated by each TCI state includes one TRS, and the TRS is associated with time-frequency extension information.
  • L is greater than or equal to 1, and the sum of L and M is equal to N.
  • the QCL information indicated by each TCI state in the M TCI states includes a TRS and the time-frequency associated with the TRS Extension information and time delay frequency offset information, in the QCL information indicated by each TCI state in the remaining L TCI states, the TRS may only be associated with time-frequency extension information.
  • the QCL information indicated by each TCI state in the M TCI states includes two TRSs, one of which is associated with Time-frequency extension information, and another TRS is associated with time-delay frequency offset information.
  • the TRS may only be associated with time-frequency extension information, L is greater than or equal to 1, and the sum of L and M is equal to N.
  • the QCL indication information is used to indicate N TCI states
  • the QCL information indicated by each TCI state respectively includes a TRS and the TRS is associated with time-frequency extension information and time-delay frequency offset information.
  • the network device side also informs the terminal of the following information: the delay frequency offset information indicated by the L TCI states is unavailable, and the delay frequency offset information indicated by the M TCI states is applicable to the remaining L TCI states.
  • L is greater than or equal to 1, and the sum of L and M is equal to N.
  • the manner in which the network device side informs the terminal of the above-mentioned information may include, but is not limited to, the following manners: In the M TCI states among the N TCI states, the priority ratio of the TRS associated with the delay and frequency offset information The priority of the TRS associated with the delay and frequency offset information in the remaining L TCI states is high. Therefore, in the M TCI states, the delay frequency offset information associated with the TRS may cover the delay frequency offset information associated with the TRS in the remaining L TCI states.
  • the TRS associated with the time-delay frequency offset information and the TRS associated with the time-frequency extension information and the delay frequency offset information may belong to the same TRS, or may belong to different TRSs.
  • some TCI states can indicate TRSs of two types of QCL relationships, avoiding the use of additional TCIs to indicate TRSs of different types of QCL relationships, thereby helping to save the signaling overhead required for QCL indication information.
  • the manner in which the network device side informs the terminal of the above-mentioned information may include, but is not limited to, the following manners: the QCL indication information is used to indicate the N TCI states, and is also used to indicate additional M TCI states.
  • the QCL information indicated by each TCI state in the TCI state includes a TRS, and the TRS is only associated with time delay and frequency offset information.
  • the priority of the TRS associated with the time delay and frequency offset information in the M TCI states is higher than the priority of the TRS associated with the time and frequency extension information and the delay frequency offset information in the above N TCI states.
  • the TRS of the frequency offset information may cover the TRS of the associated time-frequency extension information and the time-delay frequency offset information).
  • the TRS associated only with the time delay frequency offset information and the TRS associated with the time frequency extension information and the delay frequency offset information may be the same TRS, or may be different TRSs. It can be seen that in this embodiment, additional TCI can be used to indicate the delay frequency offset information, which is beneficial to improve the flexibility of indicating the delay frequency offset information.
  • the QCL indication information is used to indicate N TCI states
  • the QCL information indicated by each TCI state respectively includes a TRS and the TRS is associated with time-frequency extension information.
  • each TCI state in the M TCI states is also used to indicate a TRS and the TRS is associated with delay frequency offset information, or the QCL indication information also additionally indicates M TCI states, and each TCI state is used to indicate a TRS And the TRS is associated with time delay and frequency offset information.
  • the embodiment 1.3 may include but not limited to the embodiment 1.3.1 and the embodiment 1.3.2.
  • the QCL indication information is used to indicate N TCI states, the QCL information indicated by each TCI state includes a TRS and the TRS is associated with time-frequency extension information; in addition, among the M TCI states, each The QCL information indicated by the TCI state further includes a TRS and the TRS is associated with time delay and frequency offset information.
  • the QCL indication information is used to indicate N TCI states, the QCL information indicated by each TCI state includes a TRS and the TRS is associated with time-frequency extension information; in addition, the QCL indication information is also used to indicate another There are M TCI states, the QCL information indicated by each TCI state includes a TRS and the TRS is associated with time delay and frequency offset information.
  • the TRS associated with the time delay and frequency offset information indicated by the M TCI statuses and the TRS associated with the time-frequency extension information may be the same TRS, or may be different TRSs.
  • the TRS indicated by the M TCI statuses may be sent by the network devices among the N network devices for cooperative transmission, but when the same network device sends multiple TRSs, the sending frequencies of the multiple TRSs may be different.
  • the M TRS inform the terminal about the reference time delay or the reference frequency offset.
  • the QCL indication information in this embodiment of the present application may adopt N TCI states Part of the TCI status or additional TCI status in the TRS is used to indicate the TRS and its associated spatial parameters, which is beneficial to improve the multi-station transmission performance in the multi-station cooperation scenario combined with the high-frequency communication scenario.
  • the related implementation of using part of the TCI states or additional TCI states in the N TCI states to indicate the TRS and its associated spatial parameters is similar to the manner in which the delay frequency offset information is indicated in Embodiment 1.1 to Embodiment 1.3, The difference lies in the indicated parameters, which are not detailed here.
  • the above-mentioned N TCI states, or N TCI states and M TCI states may be located in the same TCI domain, or may be located in multiple TCI domains.
  • the above-mentioned N TCI states, or N TCI states and M TCI states may be transmitted by the same DCI, or may be transmitted by multiple DCIs.
  • DCIs may include but not limited to the following embodiments:
  • the QCL information indicated by the M DCIs respectively includes a TRS and the TRS is associated with time-frequency extension information and delay frequency offset information
  • the QCL information indicated by the other L DCIs respectively includes a TRS and the TRS Associate time-frequency extension information.
  • L is greater than or equal to 1
  • the sum of L and M is equal to N.
  • the QCL information respectively indicated by the N DCIs includes a TRS, and the TRS is associated with time-frequency extension information and time-delay frequency offset information.
  • the network device side also informs the terminal of the following information: the delay frequency offset information indicated by the L DCIs is unavailable, and the delay frequency offset information indicated by the M DCIs is applicable to the remaining L DCIs.
  • L is greater than or is equal to 1, and the sum of L and M is equal to N", or "the terminal can obtain the available delay frequency offset information based on Embodiment 2.2.1 or Embodiment 2.2.2".
  • the manner in which the network device side informs the terminal of the above-mentioned information may include, but is not limited to, the following manners: in the M DCIs among the N DCIs, the priority of the TRS associated with the delay and frequency offset information is higher than that of the other L The priority of the TRS associated with the delay and frequency offset information in each DCI is high. Therefore, in the M DCIs, the delay frequency offset information associated with the TRS may cover the delay frequency offset information associated with the TRS in the remaining L DCIs.
  • the manner in which the network device side informs the terminal of the above information may include, but is not limited to, the following manner: with additional M DCIs, the QCL information indicated by each DCI includes a TRS and the TRS is only associated with a time delay frequency biased information.
  • the priority of the TRS associated with the time delay and frequency offset information indicated by the M DCIs is higher than the priority of the TRS associated with the time-frequency extension information and the delay frequency offset information indicated by the N DCIs (or it is defined that only the associated time delay
  • the TRS of the frequency offset information may cover the TRS of the associated time-frequency extension information and the time-delay frequency offset information).
  • the TRS associated only with the time delay frequency offset information and the TRS associated with the time frequency extension information and the delay frequency offset information may be the same TRS, or may be different TRSs. It can be seen that in this embodiment, additional DCI can be used to indicate the delay frequency offset information, which is beneficial to improve the flexibility of indicating the delay frequency offset information.
  • the QCL information indicated by the M DCIs respectively includes a TRS and the TRS is associated with time-frequency extension information;
  • the QCL information indicated by each DCI in the remaining L DCIs includes a TRS and the TRS is associated Time-frequency spread information and time-delay frequency offset information.
  • the QCL information respectively indicated by the M DCIs also includes another TRS and the TRS is associated with the delay frequency offset information, but the TRS associated with the delay frequency offset information is associated with the delay frequency in the QCL information indicated by the remaining L DCIs
  • the TRS of partial information is the same TRS.
  • the terminal needs to distinguish DCIs of different TRPs.
  • the DCIs of different TRPs belong to different CORESET groups and have different CORESET group identifiers.
  • it is TRP1 and TRP2 that cooperate to transmit data for the terminal.
  • the DCI1 sent by TRP1 is associated with the CORESET group identification value of 0; the DCI2 sent by TRP2 is associated with the CORESET group identification value of 1, and when the TRS1 indicated by DCI1 is associated Frequency extension information and delay frequency offset information; TRS1 indicated by DCI2 is associated with time delay frequency offset information, and TRS2 indicated by DCI2 is associated with time-frequency extension information.
  • DCI2 can indicate TRS1 and its associated delay frequency offset information through the QCL indication information it carries, so that the terminal can know that the reference delay frequency offset information is determined according to TRS1, which is beneficial to TRP2 according to the reference delay frequency offset information.
  • the information compensates the sent DMRS and PDSCH to avoid that the signal delay or Doppler arriving at the terminal is different from the DMRS and PDSCH sent by TRP1, and the terminal can receive the DMRS and PDSCH with the correct reference delay and frequency offset information, thereby Improve multi-station transmission performance.
  • TRP1 and TRP2 are cooperatively transmitted as the same terminal.
  • the data is illustrated as an example.
  • N is equal to 2 and M is equal to 1.
  • the present application also defines an E-type QCL relationship (QCL Type E), and the channel large-scale parameters of the QCL Type E include Doppler spread and/or delay spread.
  • the above-mentioned time delay and frequency offset information can be represented by QCL type C, and the channel large-scale parameters of the QCL type C include average delay and/or Doppler shift.
  • the channel large-scale parameters of QCL Type E and QCL type C can affect the performance of channel estimation, for example, they can affect the frequency domain filter coefficients, time domain filter coefficients, etc. of channel estimation.
  • the terminal may determine the coefficients of the time domain filter and/or the frequency domain filter of the DMRS according to the QCL indication information described in this application. Therefore, the QCL indication method in the embodiment of the present application is conducive to improving the accuracy of channel estimation, which is described below in combination with actual scenarios.
  • the UE does not need to distinguish the DMRS and PDSCH sent by TRP1 and TRP2 respectively, and the DMRS ports corresponding to TRS1 sent by TRP1 and TRS2 sent by TRP2 are the same.
  • FIG. 7 is a schematic flowchart of a QCL indication method 1100 provided by an embodiment of the present application.
  • the QCL indication method 1100 may include, but is not limited to, the following steps:
  • TRP2 determine QCL indication information; QCL indication information is used to indicate that the delay spread of DMRS is associated with the delay spread of TRS1 and TRS2, and the Doppler shift of DMRS is associated with the Doppler shift of TRS1;
  • TRP2 sends QCL indication information
  • the UE receives the QCL indication information.
  • TRP2 and TRP1 negotiate frequency offset compensation rules, or multiple TRPs are controlled by a central node to negotiate delay compensation rules, and TRP2 determines the Doppler shift indicated by the QCL indication information according to the frequency offset compensation rules.
  • the signal transmission method 1100 using the QCL indication method 1100 may include, but is not limited to, the following steps:
  • the UE sends an uplink signal at the center frequency f UE , such as a sounding reference signal (SRS); assuming that the Doppler offset from TRP1 to the UE is f d1 , and the Doppler offset from TRP2 to the UE is f d2 , Then, the frequency from the SRS to TRP1 is f UE +f d1 ; the frequency from the SRS to TRP2 is f UE +f d2 ;
  • SRS sounding reference signal
  • the difference value ⁇ f fre2 is obtained by taking the same frequency of TRP1 and TRP2, and the center frequency point may be the same, both of which are obtained by taking the center frequency point fc as an example. If TRP1 and TRP2 have different frequencies, the center frequencies of TRP1 and TRP2 are not the same, that is, the transmission frequencies themselves are different between TRP1 and TRP2, and the ⁇ f fre2 compensated by TRP2 includes the Doppler transmitted over the air interface. In addition to the offset difference, it also includes the transmission frequency difference between TRP1 and TRP2. The following description takes the same frequency of TRP1 and TRP2 as an example.
  • TRP2 can determine that the Doppler shift of the DMRS needs to be indicated to be associated with the Doppler shift of TRS1 through the QCL indication information.
  • the QCL indication information indicates that the delay spread of DMRS is associated with the delay spread of TRS1 and TRS2.
  • TRP2 sends the QCL indication information
  • the UE can determine the delay spread and Doppler shift of the DMRS according to the QCL indication information.
  • the terminal determines that the Doppler shift of TRS1 is f d1
  • the Doppler shift of the DMRS is equal to the Doppler shift of the TRS1
  • the UE can determine that the receiving frequency of the DMRS is fc+f d1 .
  • TRP1 sends DMRS/PDSCH without compensation
  • TRP2 compensates for DMRS/PDSCH sending by ⁇ f fre2
  • the DMRS/PDSCH sent by TRP1 and TRP2 respectively reach the UE's receiving frequency is fc+f d1
  • it is consistent with the receiving frequency point determined by the UE according to the QCL indication information, thereby avoiding interference between carriers.
  • the UE determines the delay spread of the DMRS according to the QCL indication information, including: the UE fuses the delay spread of TRS1 and TRS2 to obtain the delay spread of the DMRS. Since the delay spread of DMRS takes into account the multipath delays from TRP1 to UE and TRP2 to UE, the accuracy of DMRS channel estimation using the delay spread of DMRS is higher.
  • TRP1 and TRP2 may also adopt other frequency offset compensation rules, and inform the terminal of the reference frequency offset corresponding to the frequency offset compensation rules through QCL indication information.
  • the terminal can be informed that the reference frequency offset is obtained based on the Doppler offset of TRS1 through the QCL indication information.
  • the QCL indication information can inform the terminal that the reference frequency offset is obtained based on the Doppler offset of TRS3, that is, TRS1 and TRS2 can provide delay extension, and TRS3 can provide Doppler offset.
  • TRS3 can provide Doppler offset.
  • the following describes a specific indication manner of the QCL indication information in the QCL indication method of the embodiment of the present application in conjunction with the indication manner of the above-mentioned QCL indication information.
  • the QCL indication information is used to indicate two TCI states, wherein the QCL information indicated by TCI state 1 includes TRS1, which is associated with delay spread and Doppler Offset; the QCL information indicated by TCI state 2 includes TRS2, which is associated with delay extension.
  • the Doppler offset of TRS1 can be used as the reference frequency offset, and TRS2 only provides multipath parameters such as delay spread. Furthermore, the terminal performs DMRS channel estimation based on the Doppler shift of TRS1 and the delay spread of TRS1 and TRS2.
  • the terminal determines the delay spread and Doppler shift of the DMRS according to the QCL information respectively indicated by the two TCI states configured for the DMRS, thereby helping to improve the multi-station transmission performance.
  • the difference from the previous embodiment is that the QCL information indicated by TCI state 1 includes TRS1 and TRS3, wherein TRS1 is associated with delay extension, and TRS3 is associated with Doppler shift;
  • the QCL information is the same as in the previous embodiment, including TRS2, which is associated with the delay extension. Because when TRS1 or TRS2 is associated with the Doppler offset, it means that the terminal can use the Doppler offset of TRP1 or TRP2 as the reference frequency offset. Therefore, in this embodiment, TRS3 is used to independently associate the Doppler offset, which is beneficial to the UE.
  • the notified reference frequency offset is not limited to the Doppler offset of one of the TRPs, which helps the network device side not only need to perform frequency offset compensation on TRP1 or TRP2 before sending, which improves the flexibility of the frequency offset compensation on the network device side.
  • TRS1 and TRS2 only provide multipath parameters, such as delay spread, while TRS3 provides the reference frequency offset, which is beneficial to the consistent transmission frequency of TRS1 and TRS2, and only provides multipath delay spread That’s enough;
  • TRP1 compensates the transmission frequency of TRS3 and sends it, so that the receiving frequency of the TRS3 received by the terminal is no longer limited to fc+f d1 , for example, it can be f c + ⁇ f+f d1 , which is beneficial for the terminal to use ⁇ f+f d1 is used as the reference frequency offset to receive the DMRS.
  • TRP1 and TRP2 can both perform frequency offset compensation and then transmit DMRS, thereby improving the flexibility of frequency offset compensation.
  • the QCL indication information is used to indicate two TCI states, as shown in FIG. 12 :
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with Doppler shift and delay spread;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with Doppler shift and delay spread.
  • the network device side also informs the UE of the following information: the Doppler shift indicated by TCI state 2 is unavailable, and the Doppler shift indicated by TCI state 1 is applicable to TCI state 2", or "the terminal is based on the following method 1 Or way 2 to know the Doppler shift that can be used”.
  • the priority of TRS1 associated with Doppler shift indicated by TCI state 1 is higher than that of TRS1 associated with Doppler shift indicated by TCI state 2, so the Doppler shift of TRS1 can cover TRS2
  • the Doppler offset of so that the terminal can use the Doppler offset of TRS1 as the reference frequency offset.
  • the QCL information indicated by the TCI state 1 also includes TRS3 and the TRS3 is associated with the Doppler shift, and only the TRS3 associated with the Doppler shift has a higher priority than TRS1 and TRS2, so the terminal can associate the TRS3 with the TRS3.
  • Doppler offset as the reference frequency offset the TCI state 1 can indicate two types of TRSs in QCL relationship, avoiding the use of additional TCI to indicate the reference frequency offset, thereby helping to save the signaling overhead required for the QCL indication information.
  • the QCL indication information is used to indicate three TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with Doppler shift and delay spread;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with Doppler shift and delay spread;
  • the QCL information indicated by the TCI state 3 includes TRS1 and the TRS1 is associated with the Doppler shift, or the QCL information indicated by the TCI state 3 includes TRS3 and the TRS3 is associated with the Doppler shift.
  • the network device side also informs the UE of the following information: the Doppler shift indicated by TCI state 1 and TCI state 2 is unavailable, and the Doppler shift indicated by TCI state 3 is applicable to TCI state 1 and TCI state 2" , or "The terminal can learn the available Doppler shift based on the following method 1 or method 2".
  • the priority of TRS1 associated with Doppler shift is higher than that of TRS2 associated with Doppler shift. Therefore, the Doppler shift of TRS1 can cover the Doppler shift of TRS2, so that the terminal can The Doppler offset of TRS1 is used as the reference frequency offset.
  • additional TCI is used to indicate the reference frequency offset, so as to improve the flexibility of the reference frequency offset indication.
  • the QCL indication information is used to indicate two TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with extended delay;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with a delay extension.
  • the reference frequency offset is indicated in the following manner:
  • the QCL information indicated by TCI state 1 also includes TRS1 and the TRS1 is associated with the Doppler offset. It can be seen that in this mode, TRS1 can be associated with two large-scale channel parameters, which is beneficial to inform the terminal to use the Doppler offset of TRS1. shift as the reference frequency offset.
  • the QCL information indicated by TCI state 1 also includes TRS3 and the TRS3 is associated with the Doppler offset. It can be seen that in this mode, the TCI state 1 can additionally indicate the TRS associated with the Doppler offset, thereby improving the reference frequency offset. Indicates flexibility.
  • the QCL indication information is used to indicate three TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with extended delay;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with extended delay;
  • the QCL information indicated by the TCI state 3 includes TRS1 and the TRS1 is associated with the Doppler shift, or the QCL information indicated by the TCI state 3 includes TRS3 and the TRS3 is associated with the Doppler shift.
  • this embodiment uses another TCI state to inform the terminal of the reference frequency offset, thereby improving the indication flexibility of the reference frequency offset.
  • the large-scale parameters of the channel associated with the TRS can be expressed in combination with QCL Type E and QCL Type C.
  • the channel large-scale parameters of the QCL Type E include delay spread; the channel large-scale parameters of the QCL Type C include Doppler shift.
  • the QCL indication information is used to indicate two TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type E;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with QCL Type E;
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type C; or (in mode 3) the QCL information indicated by TCI state 1 includes TRS3 and the TRS3 is associated with QCL Type C.
  • the QCL indication information is used to indicate three TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type E;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with QCL Type E;
  • the QCL information indicated by TCI state 3 includes TRS1 and the TRS1 is associated with QCL Type C; or (in mode 4) the QCL information indicated by TCI state 3 includes TRS3 and the TRS3 is associated with QCL Type C.
  • the QCL indication information may use one of the above two TCI states or an additional TCI state.
  • the QCL indication information may use one of the above two TCI states or an additional TCI state.
  • TRS and its associated spatial parameters it is beneficial to improve the multi-station transmission performance in combination with high-frequency communication scenarios in multi-station cooperation scenarios.
  • the related embodiment in which one TCI state or an additional TCI state in the two TCI states is used to indicate the TRS and its associated spatial parameters is similar to the way of indicating the time delay and frequency offset information in the embodiment, the difference lies in the The indicated parameters are different and will not be described in detail here.
  • the above-mentioned two TCI states or three TCI states may be located in the same TCI domain, or may be located in multiple TCI domains.
  • the above two TCI states or three TCI states may be transmitted by the same DCI, or by two DCIs or three DCIs.
  • DCIs may include but not limited to the following embodiments:
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with delay spread and Doppler shift:
  • the QCL information indicated by the DCI2 includes a TRS2 and the TRS2 is associated with a delay extension.
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with delay spread and Doppler shift:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with delay spread and Doppler shift.
  • the network device side also informs the UE of the following information: the Doppler shift indicated by DCI2 is unavailable, and the Doppler shift indicated by DCI1 is applicable to DCI2", or "the terminal learns the available Doppler based on the following methods. offset”.
  • the method is as follows: the priority of the TRS1 associated with the Doppler shift indicated by the DCI1 is higher than the priority of the TRS2 associated with the Doppler shift in the DCI2. Therefore, the Doppler shift associated with TRS1 can override the Doppler shift associated with TRS2.
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with delay spread and Doppler shift:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with delay spread and Doppler shift;
  • the QCL information indicated by DCI3 includes TRS3 and the TRS3 is associated with the Doppler shift, or the QCL information indicated by the DCI3 includes TRS1 and the TRS1 is associated with the Doppler shift.
  • the network device side also informs the UE of the following information: the Doppler offset indicated by DCI1 and DCI2 is unavailable, and the Doppler offset indicated by DCI3 is applicable to DCI1 and DCI2", or "The terminal is based on the following method 1 or method. 2 The available time delay and frequency offset information can be obtained.”
  • the priority of TRS3 associated with the Doppler shift indicated by DCI3 is higher than the priority of TRS1 indicated by DCI1 and the priority of TRS2 indicated by DCI2. Therefore, the Doppler offset associated with TRS3 can cover the time delay and frequency offset information associated with TRS1 and TRS2.
  • the priority of the Doppler shift associated with the TRS1 indicated by DCI3 is higher than the priority of the Doppler shift indicated by DCI1 and DCI2. Therefore, the Doppler shift associated with TRS1 indicated by DCI3 may cover the Doppler shift indicated by DCI1 and DCI2.
  • only the TRS associated with the Doppler shift and the TRS associated with the delay spread and the Doppler shift may be the same TRS, or may be different TRSs. It can be seen that in this embodiment, additional DCI can be used to indicate the Doppler shift, which is beneficial to improve the indication flexibility of the Doppler shift.
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with delay spread and Doppler shift:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with the delay extension, and TRS1, and the TRS1 is associated with the Doppler shift;
  • the terminal can determine the Doppler offset of TRS1 as the reference frequency offset according to the DCI1 and DCI2.
  • the delay spread of indicating DMRS is associated with the delay spread of TRS1 and TRS2, and the various embodiments in which the Doppler shift of DMRS is associated with the Doppler shift of TRS1.
  • some of the above-mentioned embodiments also describe that the delay spread of indicating DMRS is associated with the delay spread of TRS1 and TRS2, and that the Doppler shift of DMRS is associated with the Doppler shift of TRS3, so that the network device side is not limited to performing TRP1 or TRP2.
  • the DMRS is sent after frequency offset compensation.
  • the DMRS can be sent after frequency offset compensation is performed on both TRP1 and TRP2, and the terminal is notified of the reference frequency offset through TRS3.
  • FIG. 13 is a schematic flowchart of a QCL indication method 1200 provided by an embodiment of the present application.
  • the QCL indication method 1200 may include, but is not limited to, the following steps:
  • TRP2 determine the QCL indication information; the QCL indication information is used to indicate that the Doppler spread of DMRS is associated with the Doppler spread of TRS1 and TRS2, and the average delay of DMRS is associated with the average delay of TRS1;
  • TRP2 sends QCL indication information
  • the UE receives the QCL indication information.
  • TRP2 negotiates a delay compensation rule with TRP1, or is controlled by a central node to negotiate a delay compensation rule, and TRP2 determines the average delay indicated by the QCL indication information according to the delay compensation rule.
  • the signal transmission method 1200 using the QCL indication method 1200 may include, but is not limited to, the following steps:
  • the UE sends an uplink signal at the center frequency t UE , such as a sounding reference signal (SRS); assuming that the average delay from TRP1 to UE is t d1 , and the average delay from TRP2 to UE is t d2 , then, the SRS to TRP1
  • the time is t UE +t d1 ; the time from the SRS to TRP2 is t UE +t d2 ;
  • TRP2 may determine that the average delay of the DMRS needs to be indicated to be associated with the average delay of the TRS1 through the QCL indication information.
  • the QCL indication information indicates that the Doppler spread of DMRS is associated with the Doppler spread of TRS1 and TRS2.
  • TRP2 sends the QCL indication information, and after the UE receives the QCL indication information, the UE can determine the Doppler spread and average delay of the DMRS according to the QCL indication information.
  • the terminal determines that the average delay of TRS1 is t d1 .
  • the average delay of DMRS is equal to the average delay of TRS1, so the UE can determine that the receiving time of DMRS is tc+t d1 .
  • TRP1 sends DMRS/PDSCH without compensation
  • TRP2 sends DMRS/PDSCH compensation ⁇ t fre2
  • the receiving time of the DMRS/PDSCH sent by TRP1 and TRP2 respectively to the UE is tc+t d1 , and It is consistent with the receiving time determined by the UE according to the QCL indication information, thereby avoiding inter-symbol interference.
  • the UE determines the Doppler spread of the DMRS according to the QCL indication information, including: the UE fuses the Doppler spread of TRS1 and TRS2 to obtain the Doppler spread of the DMRS. Since the Doppler spread of DMRS takes into account the multipath Doppler from both TRP1 to UE and TRP2 to UE, the accuracy of DMRS channel estimation using the Doppler spread of DMRS is higher.
  • TRP1 and TRP2 may also adopt other delay compensation rules, and inform the terminal of the reference delay corresponding to the delay compensation rules through QCL indication information.
  • the terminal can be informed that the reference delay is obtained based on the average delay of TRS1 through the QCL indication information.
  • the QCL indication information can inform the terminal that the reference delay is obtained based on the average delay of TRS3, that is to say, TRS1 and TRS2 can provide Doppler spread, and TRS3 can provide average delay.
  • the following describes a specific indication manner of the QCL indication information in the QCL indication method according to the embodiment of the present application in conjunction with the indication manner of the above-mentioned QCL indication information.
  • the QCL indication information is used to indicate two TCI states, wherein the QCL information indicated by TCI state 1 includes TRS1, which is associated with Doppler spread and average time. extension; the QCL information indicated by TCI state 2 includes TRS2, which is associated with Doppler spread.
  • the average delay of TRS1 can be used as the reference delay, and TRS2 only provides multipath parameters such as Doppler spread. Furthermore, the terminal performs channel estimation of the DMRS based on the average delay of TRS1 and the Doppler spread of TRS1 and TRS2.
  • the terminal determines the Doppler spread and average delay of the DMRS according to the QCL information respectively indicated by the two TCI states configured for the DMRS, thereby helping to improve the multi-station transmission performance.
  • the difference from the previous embodiment is that the QCL information indicated by TCI state 1 includes TRS1 and TRS3, wherein TRS1 is associated with Doppler spread, and TRS3 is associated with average delay; the QCL indicated by TCI state 2
  • TRS1 is associated with Doppler spread
  • TRS3 is associated with average delay
  • TRS2 is associated with Doppler spread
  • TRS1 or TRS2 is associated with the average delay, it means that the terminal can use the average delay of TRP1 or TRP2 as the reference delay. Therefore, in this embodiment, the average delay is independently associated with TRS3, which is beneficial to the reference delay notified to the UE. It is not limited to the average delay of one of the TRPs, so that the network device side is not limited to performing delay compensation on TRP1 or TRP2 before sending, which improves the flexibility of the network device side delay compensation.
  • TRS1 and TRS2 only provide multipath parameters, such as Doppler spread, while TRS3 provides the reference delay, so that the transmission times of TRS1 and TRS2 can be consistent, and only multipath Doppler spread is provided That is: TRP1 compensates the sending time of TRS3 and sends it, so that the receiving time for the terminal to receive the TRS3 is no longer limited to tc+td1, for example, it can be tc+ ⁇ t+td1, which is beneficial for the terminal to use ⁇ t+td1 as the benchmark Delay, receive DMRS. In this way, both TRP1 and TRP2 can send DMRS after delay compensation, thereby improving the flexibility of delay compensation.
  • TRP1 compensates the sending time of TRS3 and sends it, so that the receiving time for the terminal to receive the TRS3 is no longer limited to tc+td1, for example, it can be tc+ ⁇ t+td1, which is beneficial for the terminal to use ⁇ t+td1 as the benchmark De
  • the QCL indication information is used to indicate two TCI states, as shown in Figure 17:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with Doppler spread and average delay;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with Doppler spread and average delay.
  • the network device side also informs the UE of the following information: the average delay indicated by TCI state 2 is unavailable, and the average delay indicated by TCI state 1 is applicable to TCI state 2", or "the terminal is informed based on the following method 1 or method 2. Average latency that can be used”.
  • the priority of the TRS1 associated with the average delay indicated by the TCI state 1 is higher than the priority of the TRS1 associated with the average delay indicated by the TCI state 2. Therefore, the average delay of TRS1 can cover the average delay of TRS2, so that The terminal may use the average delay of TRS1 as the reference delay.
  • the QCL information indicated by the TCI state 1 also includes TRS3 and the TRS3 is associated with the average delay, and only the TRS3 associated with the average delay has a higher priority than TRS1 and TRS2, so the terminal can use the average delay associated with TRS3 as the Baseline delay.
  • the TCI state 1 can indicate two types of TRSs in QCL relationship, avoiding the use of additional TCI to indicate the reference frequency offset, thereby helping to save the signaling overhead required for the QCL indication information.
  • the QCL indication information is used to indicate three TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with Doppler spread and average delay;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with Doppler spread and average delay;
  • the QCL information indicated by the TCI state 3 includes TRS1 and the TRS1 is associated with the average delay, or the QCL information indicated by the TCI state 3 includes TRS3 and the TRS3 is associated with the average delay.
  • the network device side also informs the UE of the following information: the average delay indicated by TCI state 1 and TCI state 2 is unavailable, and the average delay indicated by TCI state 3 is applicable to TCI state 1 and TCI state 2", or "The terminal Obtain the average delay that can be used based on the following method 1 or method 2".
  • Mode 1 The priority of TRS1 associated with the average delay is higher than the priority of TRS2 associated with the average delay. Therefore, the average delay of TRS1 can cover the average delay of TRS2, so that the terminal can use the average delay of TRS1 as a benchmark time delay.
  • an extra TCI is used to indicate the reference delay, which is beneficial to improve the flexibility of the reference delay indication.
  • the QCL indication information is used to indicate two TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with Doppler spread;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with Doppler spread.
  • the reference delay is indicated in the following manner:
  • the QCL information indicated by TCI state 1 also includes TRS1 and the TRS1 is associated with the average delay. It can be seen that in this mode, TRS1 can be associated with two large-scale parameters of the channel, which is beneficial to inform the terminal to use the average delay of TRS1 as the reference time. extension.
  • the QCL information indicated by TCI state 1 also includes TRS3 and the TRS3 is associated with the average delay. It can be seen that in this way, the TCI state 1 can additionally indicate the average delay associated with the TRS, thereby improving the indication flexibility of the reference delay.
  • the QCL indication information is used to indicate three TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with Doppler spread;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with Doppler spread;
  • the QCL information indicated by the TCI state 3 includes TRS1 and the TRS1 is associated with the average delay, or the QCL information indicated by the TCI state 3 includes TRS3 and the TRS3 is associated with the average delay.
  • this embodiment uses another TCI state to inform the terminal of the reference delay, thereby improving the indication flexibility of the reference delay.
  • the large-scale parameters of the channel associated with the TRS can be expressed in combination with QCL Type E and QCL Type C.
  • the large-scale parameters of the channel of the QCL Type E include Doppler spread
  • the large-scale parameters of the channel of the QCL Type C include the average delay.
  • the QCL indication information is used to indicate two TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type E;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with QCL Type E;
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type C; or (in mode 3) the QCL information indicated by TCI state 1 includes TRS3 and the TRS3 is associated with QCL Type C.
  • the QCL indication information is used to indicate three TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type E;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with QCL Type E;
  • the QCL information indicated by TCI state 3 includes TRS1 and the TRS1 is associated with QCL Type C; or (in mode 4) the QCL information indicated by TCI state 3 includes TRS3 and the TRS3 is associated with QCL Type C.
  • the QCL indication information indicates Doppler spread and average delay
  • the QCL indication information may use one of the above two TCI states or an additional TCI state to indicate TRS and Its associated spatial parameters are beneficial to improve the multi-station transmission performance in combination with high-frequency communication scenarios in multi-station cooperation scenarios.
  • the related implementation of using one TCI state or an additional TCI state in the two TCI states to indicate the TRS and its associated spatial parameters is similar to the way of indicating the average delay in the implementation, the difference lies in the indicated parameter. different, and will not be described in detail here.
  • the above-mentioned two TCI states or three TCI states may be located in the same TCI domain, or may be located in multiple TCI domains.
  • the above two TCI states or three TCI states may be transmitted by the same DCI, or by two DCIs or three DCIs.
  • DCIs may include but not limited to the following embodiments:
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with Doppler spread and average delay:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with the Doppler spread.
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with Doppler spread and average delay:
  • the QCL information indicated by DCI2 includes TRS2 and this TRS2 is associated with Doppler spread and average delay.
  • the network device side also informs the UE of the following information: the average delay indicated by DCI2 is unavailable, and the average delay indicated by DCI1 is applicable to DCI2", or "the terminal learns the average delay that can be used based on the following method”.
  • the method is: the priority of TRS1 associated with the average delay indicated by DCI1 is higher than the priority of TRS2 associated with the average delay in DCI2. Therefore, the average delay associated with TRS1 can override the average delay associated with TRS2.
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with Doppler spread and average delay:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with Doppler spread and average delay;
  • the QCL information indicated by DCI3 includes TRS3 and the TRS3 is associated with the average delay, or the QCL information indicated by the DCI3 includes TRS1 and the TRS1 is associated with the average delay.
  • the network device side also informs the UE of the following information: the average delay indicated by DCI1 and DCI2 is unavailable, and the average delay indicated by DCI3 is applicable to DCI1 and DCI2", or "The terminal obtains the available average delay based on the following method 1 or method 2. time delay”.
  • the priority of TRS3 associated with the average delay indicated by DCI3 is higher than the priority of TRS1 indicated by DCI1 and the priority of TRS2 indicated by DCI2. Therefore, the average delay associated with TRS3 can cover the average delay associated with TRS1 and TRS2.
  • the priority of the average delay associated with the TRS1 indicated by DCI3 is higher than the priority of the average delay indicated by DCI1 and DCI2. Therefore, the average delay associated with TRS1 indicated by DCI3 can cover the average delay indicated by DCI1 and DCI2.
  • only the TRS associated with the average delay and the TRS associated with the Doppler spread and the average delay can be the same TRS or different TRS. It can be seen that in this embodiment, additional DCI can be used to indicate the average delay, which is beneficial to improve the flexibility of indicating the reference delay.
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with Doppler spread and average delay:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with the Doppler spread, and TRS1, and the TRS1 is associated with the average delay;
  • the terminal can determine the average delay of TRS1 as the reference delay according to the DCI1 and DCI2.
  • the Doppler spread of indicating DMRS is associated with the Doppler spread of TRS1 and TRS2, and the various implementations in which the average delay of DMRS is associated with the average delay of TRS1.
  • some of the above-mentioned embodiments also describe that the Doppler spread of the DMRS is associated with the Doppler spread of TRS1 and TRS2, and the average delay of the DMRS is associated with the average delay of the TRS3, so that the network device side is not limited to performing operations on TRP1 or TRP2.
  • the DMRS is sent after delay compensation.
  • TRP1 and TRP2 can be both delayed and sent after the DMRS is compensated, and the terminal is notified of the reference delay through TRS3.
  • FIG. 18 is a schematic flowchart of a QCL indication method 1300 provided by an embodiment of the present application.
  • the QCL indication method 1300 may include, but is not limited to, the following steps:
  • the QCL indication information is used to indicate that the Doppler spread of DMRS is associated with the Doppler spread of TRS1 and TRS2, the delay spread of DMRS is associated with the delay spread of TRS1 and TRS2, and the Doppler shift of DMRS is associated with the Doppler spread of TRS1 shift is associated, and the average delay of DMRS is associated with the average delay of TRS1;
  • TRP2 sends QCL indication information
  • the UE receives the QCL indication information.
  • TRP2 and TRP1 negotiate time delay and frequency offset compensation rules, or are controlled by a certain central node to negotiate time delay compensation rules, and TRP2 determines the average delay and Doppler indicated by the QCL indication information according to the time delay and frequency offset compensation rules. shift.
  • the signal transmission method 1300 using the QCL indication method 1300 may include, but is not limited to, the following steps:
  • the UE sends an uplink signal at time t UE and the center frequency f UE , such as a sounding reference signal (SRS); it is assumed that the average delay from TRP1 to UE is t d1 , the Doppler offset is f d1 , and TRP2 to UE The average delay is t d2 and the Doppler shift is f d2 , then the time from the SRS to TRP1 is t UE +t d1 , and the frequency point is f UE +f d1 ; the time from the SRS to TRP2 is t UE + t d2 , the frequency point is f UE +f d2 ;
  • SRS sounding reference signal
  • TRP2 can determine that the average delay and Doppler shift of the DMRS need to be indicated by the QCL indication information to be associated with the average delay and Doppler shift of TRS1.
  • the QCL indication information indicates that the Doppler spread and delay spread of DMRS are associated with the Doppler spread and delay spread of TRS1 and TRS2.
  • TRP2 sends the QCL indication information, and after the UE receives the QCL indication information, the UE can determine the Doppler spread, delay spread, average delay, and Doppler shift of the DMRS according to the QCL indication information, as shown in Figure 20, the terminal determines the TRS1 The average delay is t d1 , and the Doppler shift is f d1 . According to the relationship between the average delay and Doppler shift of DMRS and the average delay and Doppler shift of TRS1, it is determined that the average delay of DMRS is equal to the average delay of TRS1, and the Doppler shift of DMRS is equal to the Doppler of TRS1.
  • TRP1 sends DMRS/PDSCH without compensation
  • TRP2 compensates DMRS/PDSCH by ⁇ t fre2 and ⁇ f fre2
  • the receiving time of DMRS/PDSCH sent by TRP1 and TRP2 respectively to the UE is tc+ t d1
  • the receiving frequency points are all fc+f d1 , and are consistent with the receiving time and receiving frequency points determined by the UE according to the QCL indication information, thereby avoiding inter-symbol and inter-carrier interference.
  • the UE determines the Doppler spread and delay spread of the DMRS according to the QCL indication information, including: the UE fuses the Doppler spread and delay spread of TRS1 and TRS2 to obtain the Doppler spread and delay spread of the DMRS. Since the Doppler spread and delay spread of DMRS take into account the multipath characteristics of TRP1 to UE and TRP2 to UE, the accuracy of DMRS channel estimation using Doppler spread and delay spread of DMRS is higher.
  • TRP1 and TRP2 may also adopt other delay and frequency offset compensation rules, and inform the terminal of the reference delay and reference frequency offset corresponding to the delay and frequency offset compensation rules through QCL indication information.
  • the terminal can be informed that the reference delay and the reference frequency offset are obtained based on the average delay and Doppler offset of TRS1 through the QCL indication information.
  • the QCL indication information can inform the terminal that the reference delay and reference frequency offset are obtained based on the average delay and Doppler shift of TRS3, that is to say, TRS1 and TRS2 can provide Doppler spread, delay Spread, TRS3 provides average delay, Doppler shift, for details, please refer to the following related implementations, which will not be described in detail here.
  • QCL Type E and QCL Type C can be combined to represent the large-scale parameters of the channel associated with the TRS.
  • the large-scale parameters of the channel of the QCL Type E include Doppler spread, delay spread;
  • the large-scale parameters of the channel of the QCL Type C include average delay, Doppler shift, and
  • the large-scale parameters of the QCL Type A channel include: Doppler spread, delay spread, average delay, Doppler shift.
  • the QCL indication information is used to indicate two TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1, which is associated with QCL Type A;
  • the QCL information indicated by TCI state 2 includes TRS2, which is associated with QCL Type E.
  • the average delay of TRS1 can be used as the reference delay
  • the Doppler offset of TRS1 can be used as the reference frequency offset
  • TRS2 only provides multipath parameters, such as delay spread and Doppler spread.
  • the terminal performs channel estimation of the DMRS based on the average delay and Doppler shift of the TRS1, and the Doppler spread and delay spread of the TRS1 and TRS2.
  • the terminal determines the Doppler spread, delay spread, average delay, and Doppler shift of the DMRS according to the QCL information respectively indicated by the two TCI states configured for the DMRS, thereby helping to improve the multi-station transmission performance.
  • the difference from the previous embodiment is that the QCL information indicated by TCI state 1 includes TRS1 and TRS3, wherein TRS1 is associated with QCL Type E, and TRS3 is associated with QCL Type C; the QCL information indicated by TCI state 2 Same as the previous embodiment, including TRS2, which is associated with QCL Type E.
  • TRS1 or TRS2 When TRS1 or TRS2 is associated with QCL Type C, it means that the terminal can use the average delay and Doppler shift of TRP1 or TRP2 as the reference delay and reference frequency offset. Therefore, in this embodiment, the average delay and Doppler shift are independently associated with TRS3, which is beneficial to
  • the reference delay and reference frequency offset notified to the UE are not limited to the average delay and Doppler shift of one of the TRPs, so that the network device side is not limited to performing delay and frequency offset compensation on the average delay and Doppler shift of TRP1 or TRP2. transmission, which improves the flexibility of delay and frequency offset compensation on the network device side.
  • TRS1 and TRS2 only provide multipath parameters, such as Doppler spread and delay spread, while TRS3 provides average delay and Doppler shift, which is beneficial to the consistent transmission time and frequency of TRS1 and TRS2.
  • Doppler spread and delay spread of multipath can be used; TRP1 compensates the sending time of TRS3 and sends it, so that the receiving time determined by the terminal according to TRS3 is no longer limited to t c + t d1 and the receiving frequency is no longer limited to f c + f d1 , for example, can be t c + ⁇ t+t d1 , f c + ⁇ f+f d1 , so that the terminal can use ⁇ t+t d1 as the reference time delay and ⁇ f+f d1 as the reference frequency offset, DMRS is received.
  • TRP1 and TRP2 can both perform time delay and frequency offset compensation and then send DMRS, thereby improving the flexibility of time delay and frequency offset compensation.
  • the QCL indication information is used to indicate two TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type A;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with QCL Type A.
  • the network device side also informs the UE of the following information: the average delay and Doppler shift indicated by TCI state 2 are unavailable, and the average delay and Doppler shift indicated by TCI state 1 are applicable to TCI state 2", or "The terminal is based on the following method 1. Or way 2 to know the available average delay and Doppler shift".
  • the priority of the TRS1 of the associated average delay and Doppler shift indicated by TCI state 1 is higher than the priority of the associated average delay and Doppler shift indicated by TCI state 2. Therefore, as shown in Figure 22, the average delay of TRS1 , Doppler shift can cover the average delay and Doppler shift of TRS2, so that the terminal can use the average delay and Doppler shift of TRS1 as the reference delay and reference frequency offset.
  • the QCL information indicated by the TCI state 1 also includes TRS3 and the TRS3 is associated with QCL Type C, and the priority of TRS3 associated with QCL Type C is higher than TRS1 and TRS2, so the terminal can associate the average delay and Doppler shift of TRS3 with As the reference time delay and reference frequency offset.
  • TCI state 1 can indicate two types of TRS with QCL relationship, avoiding using additional TCI to indicate the reference delay and reference frequency offset, thereby helping to save the signaling overhead required for the QCL indication information.
  • the QCL indication information is used to indicate three TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type A;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with QCL Type A;
  • the QCL information indicated by TCI state 3 includes TRS1 and the TRS1 is associated with QCL Type C, or the QCL information indicated by TCI state 3 includes TRS3 and the TRS3 is associated with QCL Type C.
  • the network device side also informs the UE of the following information: the QCL Type C indicated by TCI state 1 and TCI state 2 is unavailable, and the QCL Type C indicated by TCI state 3 is applicable to TCI state 1 and TCI state 2", or "the terminal Obtain available average delay and Doppler shift based on method 1 or method 2 below.
  • the priority of TRS1 associated with QCL Type C is higher than that of TRS2 associated with QCL Type A. Therefore, the average delay and Doppler shift of TRS1 can cover the average delay and Doppler shift of TRS2, so that the terminal can use the average delay and Doppler shift of TRS1. delay and Doppler shift are used as reference delay and reference frequency offset.
  • the additional TCI is used to indicate the reference delay and the reference frequency offset, thereby helping to improve the flexibility of the reference delay and reference frequency offset indication.
  • the QCL indication information is used to indicate two TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type E;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with QCL Type E.
  • reference time delay and reference frequency offset are indicated in the following manner:
  • the QCL information indicated by TCI state 1 also includes TRS1 and the TRS1 is associated with QCL Type C. It can be seen that in this mode, TRS1 can be associated with two large-scale parameters of the channel, which is beneficial to inform the terminal to use the average delay and Doppler shift of TRS1 as the Reference time delay, reference frequency offset.
  • the QCL information indicated by TCI state 1 also includes TRS3 and the TRS3 is associated with QCL Type C. It can be seen that in this mode, TCI state 1 can additionally indicate that TRS3 is associated with QCL Type C, thereby improving the reference delay and reference frequency offset. Indicates flexibility. At this time, it is not necessary to adjust the reference delay and reference frequency offset to be the same as a certain TRP. For example, the base station can be adjusted to a certain compromise.
  • the QCL indication information is used to indicate three TCI states:
  • the QCL information indicated by TCI state 1 includes TRS1 and the TRS1 is associated with QCL Type E;
  • the QCL information indicated by TCI state 2 includes TRS2 and the TRS2 is associated with QCL Type E;
  • the QCL information indicated by TCI state 3 includes TRS1 and the TRS1 is associated with QCL Type C, or the QCL information indicated by TCI state 3 includes TRS3 and the TRS3 is associated with QCL Type C.
  • this embodiment uses another TCI state to inform the terminal of the reference delay and the reference frequency offset, thereby improving the indication flexibility of the reference delay and the reference frequency offset.
  • the QCL indication information indicates average delay, Doppler shift, Doppler spread and delay spread.
  • the QCL indication information may use one of the above two TCI states or an additional TCI state.
  • the TCI state is used to indicate the TRS and its associated spatial parameters, thereby helping to improve the multi-station transmission performance in the multi-station cooperation scenario combined with the high-frequency communication scenario.
  • the related implementation of using one of the two TCI states or an additional TCI state to indicate the TRS and its associated spatial parameters is similar to the way of indicating QCL Type C in the implementation, except that the indicated The parameters are different and will not be described in detail here.
  • the above-mentioned two TCI states or three TCI states may be located in the same TCI domain, or may be located in multiple TCI domains.
  • the above-mentioned two TCI states or three TCI states may be transmitted by the same DCI, or by two DCIs or three DCIs.
  • DCIs may include but not limited to the following embodiments:
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with QCL Type A:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with QCL Type E.
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with QCL Type A:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with QCL Type A.
  • the network device side also informs the UE of the following information: the average delay and Doppler shift indicated by DCI2 are unavailable, and the average delay and Doppler shift indicated by DCI1 are applicable to DCI2", or "The terminal learns the available average delay and Doppler shift based on the following methods. Doppler shift".
  • the method is: the priority of TRS1 associated with average delay and Doppler shift indicated by DCI1 is higher than the priority of TRS2 associated with average delay and Doppler shift in DCI2. Therefore, the average delay and Doppler shift associated with TRS1 can override the average delay and Doppler shift associated with TRS2.
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with QCL Type A:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with QCL Type A;
  • the QCL information indicated by DCI3 includes TRS3 and the TRS3 is associated with QCL Type C, or the QCL information indicated by DCI3 includes TRS1 and the TRS1 is associated with QCL Type C.
  • the network device side also informs the UE of the following information: the average delay and Doppler shift indicated by DCI1 and DCI2 are unavailable, and the average delay and Doppler shift indicated by DCI3 are applicable to DCI1 and DCI2", or "The terminal is based on the following method 1 or method. 2 Know the available average delay and Doppler shift".
  • the priority of TRS3 of the associated QCL Type C indicated by DCI3 is higher than the priority of TRS1 indicated by DCI1, and the priority of TRS2 indicated by DCI2. Therefore, the QCL Type C associated with TRS3 can cover the average delay and Doppler shift associated with TRS1 and TRS2.
  • the priority of the average delay associated with the TRS1 indicated by DCI3 is higher than the priority of the average delay indicated by DCI1 and DCI2. Therefore, the average delay associated with TRS1 indicated by DCI3 can cover the average delay indicated by DCI1 and DCI2.
  • the TRS associated with QCL Type C and the TRS associated with QCL Type A can be the same TRS or different TRS. It can be seen that in this embodiment, additional DCI can be used to indicate the average delay and Doppler shift, which is beneficial to improve the flexibility of indicating the reference delay.
  • the QCL information indicated by DCI1 includes TRS1 and the TRS1 is associated with QCL Type A:
  • the QCL information indicated by DCI2 includes TRS2 and the TRS2 is associated with QCL Type E and TRS1, and the TRS1 is associated with QCL Type C;
  • the terminal can determine the average delay and Doppler shift of TRS1 as the reference time delay and reference frequency offset according to the DCI1 and DCI2.
  • the QCL indication information indicates that the Doppler spread and delay spread of DMRS are associated with the Doppler spread and delay spread of TRS1 and TRS2, and the average delay and Doppler shift of DMRS are associated with the average delay and Doppler of TRS1.
  • the QCL indication information indicates that the Doppler spread and delay spread of DMRS are associated with the Doppler spread and delay spread of TRS1 and TRS2, and the average delay and Doppler shift of DMRS are associated with the average delay and Doppler of TRS1.
  • Various implementations associated with shift are associated with shift.
  • some of the above-mentioned embodiments also describe that the Doppler spread and delay spread of the DMRS are associated with the Doppler spread and delay spread of TRS1 and TRS2, and the average delay and Doppler shift of DMRS are associated with the average delay and Doppler shift of TRS3, thereby It is beneficial for the network device side to send DMRS after performing delay and frequency offset compensation on TRP1 or TRP2.
  • TRP1 and TRP2 can be compensated for delay and frequency offset before sending DMRS, and inform the terminal of the reference delay and reference frequency offset through TRS3. .
  • the above-mentioned QCL indication method 1400 to QCL indication method 1900 are different from the above-mentioned embodiments in that the delay spread and/or Doppler spread included in the time-frequency spread information, and the delay and frequency offset information included.
  • the included Doppler shifts and/or average delays are different, and will not be described in detail in this application.
  • This application describes the QCL indication method 2100 to the QCL indication method 2300 by taking the cooperation of TRP1 and TRP2 to transmit data for the same terminal as an example.
  • the QCL indication method 2100 to the QCL indication method 2300 correspond to the above-mentioned QCL indication method 1100 to the QCL indication method 1300 respectively, the difference is that in the QCL indication method 2100 to the QCL indication method 2300, the DMRS ports corresponding to TRS1 and TRS2 respectively Therefore, the time-frequency extension information of each DMRS is associated with the time-frequency extension information of the corresponding TRS, but the delay frequency offset information of each DMRS is associated with the delay frequency offset information of the same TRS.
  • the UE can distinguish the DMRS and PDSCH sent by TRP1 and TRP2 respectively, and the DMRS ports corresponding to TRS1 sent by TRP1 and TRS2 sent by TRP2 are different, and the DMRS corresponding to TRS1 is abbreviated as DMRS1.
  • the DMRS corresponding to TRS2 is abbreviated as DMRS2.
  • the QCL indication information is used to indicate that the delay spread of DMRS1 is associated with the TRS1 delay spread, the delay spread of DMRS2 is associated with the TRS2 delay spread, and the Doppler shifts of DMRS1 and DMRS2 are associated with the Doppler shifts of TRS1; TRP2 sends QCL Indication information; UE receives QCL indication information.
  • TRP2 negotiates frequency offset compensation rules with TRP1, or is controlled by a central node to negotiate delay compensation rules, and TRP2 determines the Doppler shift indicated by the QCL indication information according to the frequency offset compensation rules.
  • TRP2 determines the Doppler shift indicated by the QCL indication information according to the frequency offset compensation rules.
  • the receiving frequency points of the DMRS/PDSCH sent by TRP1 and TRP2 respectively to the UE are both fc+f d1 , and the UE and the UE are instructed according to the QCL.
  • the receiving frequency points determined by the information are consistent, thereby avoiding interference between carriers.
  • the UE determines the delay spread of DMRS1 and DRMS2 according to the QCL indication information, including: the UE obtains the delay spread of DMRS1 according to the delay spread of TRS1, and the UE obtains the delay spread of DMRS2 according to the delay spread of TRS2. Since the delay spread of each DMRS is obtained according to the delay spread of the corresponding TRS, the accuracy of the channel estimation of each DMRS is higher.
  • TRP1 and TRP2 may also adopt other frequency offset compensation rules, and inform the terminal of the reference frequency offset corresponding to the frequency offset compensation rules through QCL indication information.
  • the terminal can be informed that the reference frequency offset is obtained based on the Doppler offset of TRS1 through the QCL indication information.
  • the QCL indication information is used to indicate that the Doppler spread of DMRS1 is associated with the Doppler spread of TRS1, the Doppler spread of DMRS2 is associated with the Doppler spread of TRS2, and the average delay of DMRS1 and DMRS2 is associated with the average delay of TRS1 ;
  • RP2 sends QCL indication information;
  • UE receives QCL indication information.
  • TRP2 negotiates a delay compensation rule with TRP1, or is controlled by a central node to negotiate a delay compensation rule, and TRP2 determines the average delay indicated by the QCL indication information according to the delay compensation rule.
  • TRP2 determines the average delay indicated by the QCL indication information according to the delay compensation rule.
  • the time when the DMRS/PDSCH sent by TRP1 and TRP2 respectively reaches the UE is t UE + t d1 , and the UE determines the time according to the QCL indication information The time delay is consistent, thus avoiding the interference between symbols.
  • the UE determines the Doppler spread of DMRS1 and DRMS2 according to the QCL indication information, including: the UE obtains the Doppler spread of DMRS1 according to the Doppler spread of TRS1, and the UE obtains the Doppler spread of DMRS2 according to the Doppler spread of TRS2. Since the Doppler spread of each DMRS is obtained according to the Doppler spread of the corresponding TRS, the accuracy of the channel estimation of each DMRS is higher.
  • TRP1 and TRP2 may also adopt other delay compensation rules, and inform the terminal of the reference delay corresponding to the delay compensation rules through QCL indication information.
  • the terminal can be informed that the reference delay is obtained based on the average delay of TRS1 through the QCL indication information.
  • the QCL indication information 2200 can inform the terminal that the reference delay is obtained based on the average delay of TRS3, that is to say, TRS1 and TRS2 provide Doppler spread, TRS3 provides the average delay,
  • TRS3 provides the average delay
  • the QCL indication information is used to indicate that the Doppler spread of DMRS1 is associated with the Doppler spread of TRS1, the Doppler spread of DMRS2 is associated with the Doppler spread of TRS2, and the average delay of DMRS1 and DMRS2 is associated with the average delay of TRS1 ;
  • TRP2 sends QCL indication information;
  • UE receives QCL indication information.
  • TRP2 and TRP1 negotiate time delay and frequency offset compensation rules, or are controlled by a central node to negotiate time delay compensation rules, and TRP2 determines the average delay and Doppler indicated by the QCL indication information according to the time delay and frequency offset compensation rules. shift.
  • TRP2 determines the average delay and Doppler indicated by the QCL indication information according to the time delay and frequency offset compensation rules. shift.
  • the receiving time of the DMRS/PDSCH sent by TRP1 and TRP2 respectively to the UE is tc+t d1
  • the receiving frequency is fc+ f d1 , which is consistent with the receiving time and the receiving frequency determined by the UE according to the QCL indication information, thereby avoiding interference between symbols and between carriers.
  • the UE determines the Doppler spread and delay spread of DMRS1 and DRMS2 according to the QCL indication information, including: the UE obtains the Doppler spread and delay spread of DMRS1 according to the Doppler spread and delay spread of TRS1, and the UE obtains the Doppler spread and delay spread of DMRS1 according to the Doppler spread and delay spread of TRS2. Obtain the Doppler spread and delay spread of DMRS2. Since the Doppler spread and delay spread of each DMRS are obtained from the Doppler spread and delay spread of the corresponding TRS, the channel estimation accuracy of each DMRS is higher.
  • TRP1 and TRP2 may also adopt other frequency offset delay compensation rules, and inform the terminal of the reference frequency offset and reference delay corresponding to the frequency offset delay compensation rules through QCL indication information.
  • the terminal can be informed that the reference frequency offset and the reference time delay are obtained based on the average delay and Doppler shift of TRS1 through the QCL indication information.
  • the QCL indication information can inform the terminal that the reference frequency offset and reference delay are obtained based on TRS3 average delay and Doppler shift, that is, TRS1 and TRS2 provide Doppler spread and delay spread, and TRS3 provides are average delay and Doppler shift.
  • TRS3 average delay and Doppler shift
  • the above-mentioned QCL indication method 2400 to QCL indication method 2900 are different from the above-mentioned embodiments in that the delay spread and/or Doppler spread included in the time-frequency spread information, and the delay and frequency offset information included.
  • the included Doppler shifts and/or average delays are different, and will not be described in detail in this application.
  • the QCL indication method provided in this application takes into account the channel parameters such as Doppler spread, average delay, Doppler shift and average delay, which greatly affects the channel estimation of the terminal. filter coefficients, etc.
  • the scattering conditions from different TRPs to the terminal are different in this scenario, resulting in different frequency selection characteristics, different frequency domain expansion, and relative displacement. are different, resulting in different propagation delays.
  • the terminal is in a high-speed moving scenario.
  • the Doppler of the channels from multiple network devices to the terminal is different, and the time is different. delay is different. Therefore, using the QCL indication information of the present application to indicate the correlation between these channel parameters is beneficial to improve the accuracy of DMRS channel estimation and multi-station transmission performance.
  • the UE needs to use the covariance matrix R hh of the channel when performing channel estimation, wherein the covariance matrix R hh is based on
  • the channel statistics are obtained, for example, the distribution corresponding to the delay spread and/or the Doppler spread is calculated and obtained, and these parameters are obtained through the TRS.
  • the present application considers that the channels experienced by different DMRSs sent from different TRPs are different, and the above-mentioned covariance matrices R hh corresponding to different DMRSs are also different. Therefore, the present application adopts The respective corresponding TRSs obtain the above covariance matrix, and then perform channel estimation on DMRSs of different TRPs, which can improve the accuracy of channel estimation for each DMRS.
  • the application uses two time-frequency extension information to obtain the time-frequency extension information of the same DMRS, which covers the two TRPs
  • the channel parameters to the terminal can improve the channel estimation accuracy of the same DMRS.
  • the simulation schematic shown in Figure 23 Assuming that multiple TRSs correspond to different DMRS ports, that is, the delay spreads of DMRSs sent by different TRPs are obtained based on the delay spreads of corresponding TRSs as an example, the beneficial effects of the embodiments of the present application are described with reference to a schematic diagram of simulation.
  • the abscissa is the signal-to-noise ratio (SNR), and the ordinate is the normalized throughput.
  • the hypothetical scenarios corresponding to Curve 1 and Curve 2 are: the delay spread of TRS1 sent by TRP1 is 100ns, and the delay spread of TRS2 sent by TRP2 is 300ns; If the time delay extension of TRS1 is used to estimate the channel of DMRS1 sent by TRP1, and the time delay extension of TRS2 is used to estimate the channel of DMRS2 sent by TRP2, the performance shown in curve 1 in the simulation schematic diagram can be obtained; if the terminal uses TRS1 To adapt to TRP2, the delay spread of the two TRPs to the terminal is considered to be 100ns, and the delay spread of TRS1 is used to make a unified channel estimation for DMRS1 and DMRS2, then the curve 2 in the simulation schematic diagram can be obtained.
  • the terminal adopts the delay extension of the TRS indicated by the wrong TCI state, resulting in performance degradation. Therefore, the terminal can obtain performance improvement by using the manner of performing channel estimation by respectively utilizing the delay spread of the corresponding TRS in the embodiment of the present application.
  • the hypothetical scenarios corresponding to curve 3 and curve 4 are: the delay spread of TRS1 sent by TRP1 is 100ns, and the delay spread of TRS2 sent by TRP2 is 1000ns; If the time delay extension of TRS1 is used to estimate the channel of DMRS1 sent by TRP1, and the time delay extension of TRS2 is used to estimate the channel of DMRS2 sent by TRP2, the performance shown in curve 3 in the simulation schematic diagram can be obtained;
  • the delay expansion of TRS1 is adapted to TRP2, that is, the delay expansion of the two TRPs to the terminal is considered to be 100ns, and the delay expansion of TRS1 is used to make a unified channel estimation for DMRS1 and DMRS2, then the curve 4 in the simulation diagram can be obtained.
  • the terminal adopts the delay extension of the TRS indicated by the wrong TCI state, resulting in performance degradation. Therefore, the terminal can obtain performance improvement by using the manner of performing channel estimation by respectively utilizing the delay spread of the corresponding TRS in the embodiment of the present application.
  • the channel parameters between the TRP and the terminal are greatly different, so the performance improvement obtained by using the solution in the embodiment of the present application is also greater.
  • the receiving frequency point where the terminal receives the DMRS only performs frequency offset compensation on the sending frequency point fc according to the Doppler offset of TRS1, and uses frequency offset compensation in TRP2 to send the DMRS.
  • the terminal adopts the Doppler offset of the TRS2. offset to get the wrong reference frequency offset.
  • the abscissa is the signal-to-noise ratio (SNR), and the ordinate is the normalized throughput; the value after the frequency offset indicates that the terminal adopts The difference between the reference frequency offset and the actual reference frequency offset.
  • SNR signal-to-noise ratio
  • Curve 1-1 to Curve 1-3 represent the non-coherent joint transmission (NCJT) scenario, that is, the case where the DMRS ports corresponding to multiple TRSs are different, and the curve 1-1 represents the use of the QCL in the embodiment of the present application
  • the indication method uses the system performance corresponding to the correct reference frequency offset; the curves 1-2 represent the system performance corresponding to the case where the difference between the wrong reference frequency offset and the actual reference frequency offset is 200 Hz; the curves 1-3 represent The system performance corresponding to the case where the difference between the erroneous reference frequency offset and the actual reference frequency offset is 400 Hz. It can be seen that, the greater the difference between the wrong reference frequency offset used by the terminal and the actual reference frequency offset, the more performance will be degraded.
  • the curves 2-1 to 2-3 represent the single frequency network (single frequency network, SFN) scenario, that is, the situation where the DMRS ports corresponding to multiple TRSs are the same, and the curves 2-1 represent the use of
  • the QCL indication method in the embodiment of the present application utilizes the system performance corresponding to the correct reference frequency offset
  • the curve 2-2 represents the system corresponding to the case where the difference between the erroneous reference frequency offset and the actual reference frequency offset is 200 Hz Performance
  • Curves 2-3 represent the system performance corresponding to the case where the difference between the erroneous reference frequency offset and the actual reference frequency offset is 400 Hz.
  • the greater the difference between the wrong reference frequency offset adopted by the terminal and the actual reference frequency offset the more and more performance will be degraded.
  • the present application considers that in the QCL indication methods 1100 to 1900, the DMRS ports corresponding to multiple TCI states are the same, and the UE's processing is relatively complicated (for example, when the UE integrates multiple delay spreads, it is necessary to perform multiple TRS Therefore, this application takes the following various embodiments as examples to further limit the baseband processing capability required by the UE in this case, so as to reduce the processing burden of the UE, and take care of the processing of the UE by compromising ability to improve system performance.
  • the present application may limit the number of DMRS ports not to exceed a certain limit value, such as 1 or 2, and the limit value may be predefined by the protocol.
  • the present application may limit the number of TCI states corresponding to the same DMRS to not exceed a certain value, such as 2, 3, and so on.
  • the UE reports the corresponding capabilities, such as the UE reports the number of DMRS ports supported in this situation, the number of TCI states corresponding to the same DMRS, etc.; further, the UE can report the number of DMRS ports configured by the network device , the number of TCI states to determine the corresponding relationship between the TCI state and the DMRS port. For example, when the network device configures one DMRS port, the UE assumes that multiple TCI states correspond to the same one DMRS port; when the network device configures two DMRS ports, the UE assumes that the multiple TCI states correspond to two different DMRS ports respectively port.
  • the above embodiments can reduce the processing burden of the UE, and improve the system performance by taking care of the processing capability of the UE by compromising.
  • the multiple TCI states in the embodiments of the present application correspond to the same DMRS port, and refer to the DMRS ports in the same time-frequency resource.
  • the time-frequency resources here may refer to resources composed of the same physical resource block, precoding resource block group (PRG), time slot, and PDSCH allocation symbols.
  • PRG precoding resource block group
  • DMRS1 corresponds to TCI state 1 and TCI state 2 in both PRG1 and PRG2 of slot1.
  • the present application also provides a QCL indication method 3100.
  • the network device side does not perform pre-compensation, that is, the network device side does not perform delay and frequency offset compensation when sending DMRS and PDSCH , and the UE itself performs delay and frequency offset compensation.
  • the QCL indication method 3100 includes but is not limited to the following steps:
  • the terminal sends capability indication information, where the capability indication information is used to indicate that the UE supports the delay and/or frequency offset compensation capability based on multiple QCL information;
  • the network device receives the capability indication information
  • the network device sends QCL indication information to the terminal, where the QCL indication information is used to indicate that the time-frequency extension information and the time-delay frequency offset information of the DMRS are associated with the time-frequency extension information of the N TRSs;
  • the terminal receives the QCL indication information.
  • the terminal determines time-frequency extension information and time-delay frequency offset information of the DMRS according to the QCL indication information.
  • the terminal fuses the time-frequency extension information of N TRSs to obtain the time-frequency extension information of the DMRS. It can be seen that this embodiment takes into account the multipath characteristics of multiple TRSs, and further improves the accuracy of channel estimation when DMRS channel estimation is performed based on the obtained time-frequency spreading information of DMRSs.
  • the terminal may use the delay frequency offset information of the M TRSs to determine the delay frequency offset information of the DMRS. For example, the terminal can use the Doppler offset and/or the average delay of M TRSs among the N TRSs as the reference frequency offset and/or the reference delay to compensate the DMRS and PDSCH sent by the remaining L TRPs, Then, the DMRS and PDSCH are received respectively.
  • the QCL indication method 3100 can compensate the signal loss caused by the difference of the channel large-scale parameters of each TRP based on the determined reference frequency offset and/or reference delay by estimating the channel large-scale parameters of the N TRPs to the terminal.
  • N is equal to 2
  • M is equal to 1.
  • the UE does not need to distinguish the DMRS and PDSCH respectively sent by TRP1 and TRP2, and the TRS1 sent by TRP1 and the TRS2 sent by TRP2 respectively correspond to the same DMRS ports.
  • the QCL indication information is used to indicate that the average delay, Doppler shift, Doppler spread, and delay spread of the DMRS are associated with the average delay, Doppler shift, Doppler spread, and delay spread of TRS1 and TRS2.
  • the terminal can fuse the Doppler spread and delay spread of TRS1 and TRS2 to obtain the Doppler spread and delay spread of the DMRS; perform DMRS channel estimation based on the Doppler spread and delay spread of the DMRS, thereby improving the multi-station transmission performance.
  • the UE needs to distinguish the DMRS and PDSCH sent by TRP1 and TRP2 respectively, and the DMRS ports corresponding to TRS1 sent by TRP1 and TRS2 sent by TRP2 are different.
  • the QCL indication information is used to indicate that the average delay, Doppler shift, Doppler spread, and delay spread of DMRS1 are associated with the average delay, Doppler shift, Doppler spread, and delay spread of TRS1, and the average delay, Doppler shift, Doppler spread,
  • the delay spread is associated with the average delay, Doppler shift, Doppler spread, and delay spread of TRS2. Therefore, the terminal can obtain the Doppler spread and delay spread of DMRS1 according to the Doppler spread and delay spread of TRS1, and obtain the Doppler spread and delay spread of DMRS2 according to the Doppler spread and delay spread of TRS2, so as to perform channel estimation of DMRS1 and DMRS2 respectively.
  • the terminal also needs to perform power assumption on the DMRS for reception. For example, the terminal considers that the average gain (average gain) between DMRSs from the same TRP is the same.
  • the DMRS from the same TRP may be embodied as DMRS ports from the same code group, and may also be regarded as DMRS ports corresponding to the same QCL information.
  • the DMRS from the same TRP may still be on different time-frequency resources. For example, in different frequency-domain resources, the UE may consider the average gain between DMRSs in the frequency-domain resources corresponding to the same QCL information. )Are the same.
  • the terminal may consider that the average gain between DMRSs from different TRPs does not exceed a certain threshold.
  • the threshold may be the capability reported by the terminal. This means that although the powers of the received signals from multiple TRPs to the terminal are different, the difference should not exceed a certain threshold, so that the terminal may not be able to receive the signals of some TRPs at all, or the signal reception quality is very poor.
  • the terminal when the delay spreads of multiple TRSs indicated by multiple TCI states are associated with the delay spreads of the same DMRS, when the terminal uses formula (1) to calculate the covariance matrix, the power corresponding to the multiple TCI states needs to be used gain. For example, the terminal needs to perform weighted summation of the delay power spectra corresponding to multiple TCI states using power as a coefficient to obtain the delay spread of the DMRS. Optionally, the terminal may obtain the channel correlation by using the time delay power spectra corresponding to the multiple TCI states, and then perform a weighted summation of the respective channel correlations of the multiple TRPs to obtain the total channel channel correlation.
  • any one of the above-mentioned QCL indication method 1100 to QCL indication method 1900, or any one of the above-mentioned QCL indication method 2100 to QCL indication method 2900 can be applied to the physical downlink control channel (Physical downlink control channel, PDCCH). take over.
  • PDCCH Physical downlink control channel
  • the above-mentioned DMRS may be the DMRS in the PDCCH. It will not be described in detail here.
  • the present application also provides a signal transmission method 4000.
  • a terminal receives QCL indication information, and the association indicated by the QCL indication information is any one of the above-mentioned QCL indication methods 1100 to 1900
  • the class association, or the association indicated by the QCL indication information is any one of the above-mentioned QCL indication method 2100 to QCL indication method 2900; further, the terminal can send uplink signals according to the QCL indication information.
  • the terminal may send the uplink signal according to the QCL indication information, which may be: the terminal determines the reference frequency offset and/or the reference delay of the downlink transmission according to the QCL indication information; the terminal determines the reference frequency offset and/or the reference delay of the downlink transmission according to the reference information , determine the sending frequency and/or the sending time of the uplink transmission; the terminal sends the uplink signal according to the sending frequency and/or the sending time of the uplink transmission.
  • the QCL indication information may be: the terminal determines the reference frequency offset and/or the reference delay of the downlink transmission according to the QCL indication information; the terminal determines the reference frequency offset and/or the reference delay of the downlink transmission according to the reference information , determine the sending frequency and/or the sending time of the uplink transmission; the terminal sends the uplink signal according to the sending frequency and/or the sending time of the uplink transmission.
  • the QCL indication information in this embodiment may only include the above-mentioned QCL indication method 1100 to QCL indication method 1900 , and QCL indication method 2100 to QCL indication method 2900 , where the QCL indication information is important for Doppler frequency offset and/or The content of the average delay without considering the content of Doppler spread and delay spread.
  • the uplink and downlink transmissions are at the same frequency point, and the terminal determines the transmission frequency point of the uplink transmission according to the reference frequency offset of the downlink transmission, which may be: the terminal determines the receiving frequency point according to the reference frequency offset of the downlink transmission frequency point; and apply the receiving frequency point to the sending frequency point of the uplink transmission to send the uplink signal.
  • the uplink and downlink transmissions are not at the same frequency
  • the terminal determines the transmission frequency of the uplink transmission according to the reference frequency offset of the downlink transmission, which may be: the terminal determines according to the reference frequency offset of the downlink transmission.
  • Receiving frequency point then determine the sending frequency point of uplink transmission according to the difference between the receiving frequency point and the uplink and downlink frequency points, so as to send the uplink signal.
  • the difference between the uplink and downlink frequency points may be notified by the network device side.
  • the terminal determines the sending time of the uplink transmission according to the reference delay of the downlink transmission, which may be: the terminal determines the reception time according to the reference delay of the downlink transmission; and determines the uplink transmission according to the reception time and the timing advance (TA) send time to send the uplink signal.
  • the reference delay of the downlink transmission may be: the terminal determines the reception time according to the reference delay of the downlink transmission; and determines the uplink transmission according to the reception time and the timing advance (TA) send time to send the uplink signal.
  • TA timing advance
  • the terminal needs to add the corresponding TA and the adjustment amount of the reference delay to the downlink reception time to determine the transmission time of the signal sent in the uplink time unit.
  • the i-th frame of the downlink and the i-th frame of the uplink represent the relationship between the uplink and downlink time, and the i-th frame of the uplink needs to be received at the downlink time.
  • the adjustment amount of the sum of advance TA + reference delay based on Tc.
  • the uplink signal may include a physical uplink shared channel (PUSCH), a sounding reference signal (Sounding reference signal, SRS), a physical uplink control channel (Physical uplink control channel, PUCCH) or a physical random access channel (Physical random-access channel, PRACH), etc.
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • PUCCH Physical uplink control channel
  • PRACH physical random access channel
  • the terminal can obtain the transmission frequency or transmission time of the uplink signal in combination with the QCL indication information, so as to transmit the uplink signal, so that the channel large-scale parameters of the channels reaching multiple TRPs are the same, thereby avoiding the generation of carrier waves Interference, symbol interference, improve multi-station cooperative transmission performance.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of network devices, terminals, and interaction between network devices and terminals.
  • the network device and the terminal may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 27 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device 2700 shown in FIG. 27 may include a communication unit 2701 and a processing unit 2702 .
  • the communication unit 2701 may include a sending unit and a receiving unit, the sending unit is used to implement the sending function, the receiving unit is used to implement the receiving function, and the communication unit 2701 may implement the sending function and/or the receiving function.
  • the communication unit may also be described as a transceiving unit.
  • the communication apparatus 2700 may be a network device or a terminal device, or may be a device in a network device or a terminal device.
  • the communication apparatus 2700 includes a communication unit 2701 and a processing unit 2702, which can perform related operations of the terminal in the foregoing embodiments;
  • the communication unit 2701 is configured to receive quasi-co-located QCL indication information, wherein the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler of the DMRS
  • the spread is associated with the Doppler spread of the N TRSs
  • the average delay of the DMRS is associated with the average delay of the M TRSs
  • the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs
  • N is greater than or equal to 2
  • M is greater than or equal to 1.
  • the communication device 2700 tracks the Doppler spread and the delay spread between N network devices and the terminal through N TRSs, and uses the N Doppler spreads and delay spreads to merge to obtain
  • the Doppler extension and time delay extension of the DMRS are more in line with the multipath characteristics of N network devices respectively sending the same DMRS, which is beneficial to improve the channel estimation accuracy of the DMRS.
  • the communication apparatus 2700 is beneficial for network equipment to transmit DMRS and PDSCH using time delay and frequency offset compensation, so that the time delay and frequency offset of DMRS and PDSCH from different network equipment reaching the terminal are the same, and the terminal uses M TRSs
  • the average time delay and Doppler shift of the corresponding reference time delay and reference frequency offset can be determined to receive DMRS and PDSCH, so as to avoid the performance degradation caused by the terminal using the wrong reference time delay and reference frequency offset. Therefore, the communication device 2700 It is beneficial to improve the multi-station transmission performance.
  • the communication apparatus 2700 may also perform related operations of the terminal in any of the above method embodiments, which will not be described in detail here.
  • the communication apparatus 2700 includes a communication unit 2701 and a processing unit 2702, which can perform operations related to the network equipment in the foregoing embodiments;
  • the processing unit 2702 is configured to determine quasi-co-located QCL indication information, wherein the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler of the DMRS
  • the spread is associated with the Doppler spread of the N TRSs
  • the average delay of the DMRS is associated with the average delay of the M TRSs
  • the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs
  • N is greater than or equal to 2
  • M is greater than or equal to 1.
  • the communication unit 2701 is used for sending QCL indication information.
  • N TRSs are used to track the Doppler spread and delay spread between N network devices and the terminal, so that the terminal uses the N Doppler spread and delay spread to obtain the DMRS.
  • the Doppler spread and the delay spread of the DMRS are more in line with the multipath characteristics of the communication device 2700 and other network equipments to transmit the same DMRS, which is beneficial to improve the accuracy of the DMRS channel estimation by the terminal.
  • the frequency selection and delay characteristics are different, and the Doppler expansion in the frequency domain is time-consuming.
  • the delay spreads of different domains are different, so the communication device 2700 is beneficial for the terminal to obtain the Doppler spread and delay spread of the DMRS through the Doppler spread and delay spread of multiple TRSs, which is beneficial to improve the performance of the DMRS channel by the terminal in this scenario. Estimated accuracy.
  • the communication apparatus 2700 is beneficial to adopting time delay and frequency offset compensation to transmit DMRS and PDSCH, so that the time delay and frequency offset of DMRS and PDSCH from different network devices reaching the terminal are the same, and it is beneficial for the terminal to utilize M TRSs
  • the average time delay and Doppler shift of the corresponding reference time delay and reference frequency offset can be determined to receive DMRS and PDSCH, so as to avoid the performance degradation caused by the terminal using the wrong reference time delay and reference frequency offset. Therefore, the communication device 2700 It is beneficial to improve the multi-station transmission performance.
  • the communication apparatus 2700 may also perform operations related to the network device in any of the above method embodiments, which will not be described in detail here.
  • FIG. 28 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 2800 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the terminal device or network device to implement the above method, or a terminal device or a network device that supports the above method.
  • the communication device may be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • Communication apparatus 2800 may include one or more processors 2801.
  • the processor 2801 may be a general-purpose processor or a dedicated processor or the like.
  • the processor 2801 may be used to control a communication device (eg, terminal device or network device, etc.), execute a software program, and process data of the software program.
  • the communication apparatus 2800 may include one or more memories 2802, and instructions 2804 may be stored thereon, and the instructions may be executed on the processor 2801, so that the communication apparatus 2800 executes the methods described in the above method embodiments.
  • data may also be stored in the memory 2802 .
  • the processor 2801 and the memory 2802 can be provided separately or integrated together.
  • the communication apparatus 2800 may further include a transceiver 2805 and an antenna 2806 .
  • the transceiver 2805 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 2805 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication apparatus 2800 performs the related operations of the terminal equipment in the above method embodiments, and the transceiver 2805 may be used to perform the operation of S103 in FIG. 7 , the operation of S203 in FIG. 13 , and the operation of S303 in FIG. 18 .
  • the operations are the operations of S401 and S404 in FIG. 25 .
  • the communication apparatus 2800 performs the related operations of the network device in the foregoing method embodiments, and the processor 1101 may be configured to perform the operations of S101 and S102 in FIG. 7 , and the operations of S201 and S202 in FIG. 13 , The operations of S301 and S302 in FIG. 18 are the operations of S402 and S403 in FIG. 25 .
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 2801 may store an instruction 2803, and the instruction 2803 runs on the processor 2801, so that the communication apparatus 2800 can execute the method described in the above method embodiments.
  • the instructions 2803 may be hardened in the processor 2801, in which case the processor 2801 may be implemented by hardware.
  • the communication apparatus 2800 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • ICs integrated circuits
  • RFICs radio frequency integrated circuits
  • ASICs application specific integrated circuits
  • PCB printed circuit board
  • electronic equipment etc.
  • the communication apparatus described in the above embodiments may be network equipment or terminal equipment, but the scope of the communication apparatus described in this application is not limited thereto, and the structure of the communication apparatus may not be limited by FIG. 28 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • a set with one or more ICs may also include a storage component for storing data and instructions;
  • ASIC such as modem (Modem);
  • Receivers smart terminals, wireless devices, handsets, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.;
  • the communication device may be a chip or a chip system
  • the chip 2900 shown in FIG. 29 includes a processor 2901 and an interface 2902 .
  • the number of processors 2901 may be one or more, and the number of interfaces 2902 may be multiple.
  • the interface 2902 is used to receive quasi-co-located QCL indication information, where the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler spread of the DMRS is associated with the Doppler spread of the N TRSs, the average delay of the DMRS is associated with the average delay of the M TRSs, and the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs; N greater than or equal to 2, and M greater than or equal to 1.
  • the chip further includes a memory 2903 coupled with the processor 2901, and the memory 2903 is used for storing necessary program instructions and data of the terminal device.
  • the processor 2901 may be configured to determine the Doppler spread, delay spread, average delay and Doppler frequency offset of the DMRS according to the QCL indication information.
  • the processor 2901 is configured to determine quasi-co-located QCL indication information, wherein the QCL indication information is used to indicate that the delay spread of the demodulation reference signal DMRS is associated with the delay spread of the N tracking reference signals TRS, and the Doppler of the DMRS
  • the spread is associated with the Doppler spread of the N TRSs
  • the average delay of the DMRS is associated with the average delay of the M TRSs
  • the Doppler shift of the DMRS is associated with the Doppler shift of the M TRSs
  • N is greater than or equal to 2
  • M is greater than or equal to 1;
  • the interface 2902 is used for sending QCL indication information.
  • the present application further provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, implements the functions of any of the foregoing method embodiments.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)) )Wait.
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables can also be other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种准共址QCL指示方法及相关设备,可应用于多站协作传输中,该方法中,终端接收QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时频扩展信息与N个跟踪参考信号TRS(或该DMRS对应的TRS)的时频扩展信息相关联,以及DMRS的时延频偏信息与M个TRS的时延频偏信息相关联。该方法有利于网络设备侧对发送的DMRS进行时延补偿和/或频偏补偿后发送,以使来自多个网络设备的DMRS到达终端的信道大尺度信息相同,并且还有利于终端采用正确的基准时延和/或基准频偏接收DMRS,从而改善了多站传输性能。

Description

一种QCL指示方法及相关设备
本申请要求于2020年07月31日提交中国专利局、申请号为202010762047.7、申请名称为“一种QCL指示方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种QCL指示方法及相关设备。
背景技术
在目前的通信系统中,为了提高频谱利用率,网络中的多个小区可以部署在相同的频段,即同频部署。然而,终端在接收本小区的信号时,可能会受到本小区以外的邻区信号的干扰,导致信道状况较差、传输性能较低。为了解决在同频部署场景下的小区之间的干扰问题,协作多点传输技术(Coordinated Multi-Point,CoMP)可被广泛应用。
协作多点传输技术,是指多个传输接收点(transmission and reception point,TRP)可以互相协作为终端提供下行服务,或者互相协作接收终端的上行信号,从而可以有效地减少多个邻区信号对终端或TRP的干扰,以提高系统性能。然而,在实际应用场景中,由于各个TRP可能部署在不同的地理位置,各个TRP到终端的信道不一样,会导致不同的TRP到终端的信号所经历的信道特性不同,如信道大尺度特性时延和多普勒不同,从而会产生载波间干扰、符号间干扰等,影响协作传输的传输性能。
因此,针对协作多点传输场景,如何改善多站传输性能,为目前亟待解决的问题。
发明内容
本申请提供一种准共址QCL指示方法及相关设备,有利于改善多站传输性能。
第一方面,本申请提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
在多站协作传输中,N个TRS所对应的DMRS端口均相同,该方法有利于通过N个TRS跟踪N个网络设备与终端之间的信道的时延扩展,利用该N个时延扩展融合获得该DMRS的时延扩展,更符合N个网络设备分别发送同一DMRS的多径时延特性,有利于提高DMRS的信道估计准确度。
另外,该方法有利于N个网络设备中一些网络设备采用频偏补偿发送DMRS、物理下行共享信道PDSCH,从而使得来自不同网络设备的DMRS、PDSCH到达终端的信道的多普勒偏移相同,以及终端能够利用该M个TRS的多普勒偏移获得相对应的基准频偏以接收DMRS、PDSCH,有利于避免采用错误的基准频偏接收DMRS所导致的性能下降。因此,该方法有利于改善多站传输性能。
一种实施方式中,该方法还包括:终端根据N个TRS的时延扩展,确定DMRS的时延扩展,以及根据M个TRS的多普勒偏移,确定DMRS的多普勒偏移。可见,该实施方式所确定的DMRS的时延扩展是考虑了N个网络设备与终端之间的时延扩展,以及可准确获知DMRS的多普勒偏移,从而改善了多站传输性能。
该方面中,QCL指示信息可利用N个E类型QCL的TRS以及M个C类型QCL的TRS,表示上述关联关系,即DMRS的时延扩展与N个TRS的时延扩展相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联。其中,E类型的QCL的信道大尺度参数包括时延扩展,C类型的QCL的信道大尺度参数包括多普勒偏移。
其中,QCL指示信息用于指示N个传输配置指示TCI状态,每个TCI状态指示的QCL信息包括一TRS且该TRS关联E类型的QCL。另外,该M个C类型QCL的TRS是由其中M个TCI状态指示的,还可以是额外的M个TCI状态指示的,可将该实施方式分为两种情况,即实施方式1.1至实施方式1.2阐述。
实施方式1.1,QCL指示信息用于指示N个TCI状态,每个TCI状态指示的QCL信息包括一TRS,且该TRS关联E类型的QCL;另外,该N个TCI状态中的M个TCI状态中,每个TCI状态所指示的QCL信息还包括一TRS且该TRS关联C类型的QCL。
其中,E类型的QCL的TRS与C类型的QCL的TRS可为同一TRS,也可为不同的TRS。
可见,该实施方式中,部分TCI状态能够指示两种类型QCL关系的TRS,避免采用额外的TCI状态来指示C类型QCL关系的TRS,从而有利于节省QCL指示信息所需的信令开销。
实施方式1.2,QCL指示信息用于指示N个TCI状态外,还包括额外的M个TCI状态。N个TCI状态中每个TCI状态指示的QCL信息包括一TRS且该TRS关联E类型的QCL;M个TCI状态中每个TCI状态指示的QCL信息包括一TRS,该TRS关联C类型的QCL。
其中,E类型的QCL的TRS与C类型的QCL的TRS可为同一TRS,也可为不同的TRS。
可见,该实施方式中可采用额外的TCI状态来指示C类型QCL关系的TRS,有利于改善基准频偏的指示灵活性。
可选的,上述N个E类型的QCL的TRS以及M个C类型的QCL的TRS可采用多个TCI域指示,也可采用一个TCI域指示。或者,上述N个E类型的QCL的TRS以及M个C类型的QCL的TRS可采用一个TCI状态指示。
其中,上述N个E类型的QCL的TRS以及M个C类型的QCL的TRS采用多个TCI域指示的情况,可为:部分TCI域用于指示E类型的QCL的TRS对应的TCI状态,部分TCI域用于指示C类型的QCL的TRS对应的TCI状态。
可选的,该方面中,QCL指示信息除了指示上述两种关联关系外,还可以指示TRS的空间参数与DMRS的空间参数相关联。该QCL指示信息的指示方式可以包括:上述N个TCI状态中的部分TCI状态指示的QCL信息还包括D类型QCL的TRS;或者,该QCL指示信息中还包括其他TCI状态,所指示的QCL信息还包括关联D类型的QCL的TRS。其中,D类型的QCL的信道大尺度参数包括空间接收参数,可针对高频传输场景,该方法可提高多站传输性能。
第二方面,本申请提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
该方法与第一方面的不同之处在于,该方法中,N个网络设备分别发送的TRS所对应的DMRS端口不同。这样,终端获得上述QCL指示信息后,终端可根据每个TRS的时延扩展确定对应的DMRS时延扩展,即是利用对应TRS的时延扩展进行DMRS信道估计的,但每 个DMRS的多普勒偏移依旧同样是根据M个TRS的多普勒偏移获得的。也就是说,该方法中,每个DMRS的时延扩展可能不同,但每个DMRS的多普勒偏移是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的时延扩展进行信道估计更加准确。该方法有利于N个网络设备中一些网络设备采用频偏补偿发送DMRS、物理下行共享信道PDSCH,从而使得来自不同网络设备的DMRS、PDSCH到达终端的信道的多普勒偏移相同,以及终端能够利用该M个TRS的多普勒偏移获得相对应的基准频偏以接收DMRS、PDSCH,避免采用错误的基准频偏接收DMRS所导致的性能下降。因此,该方法有利于改善多站传输性能。
一种实施方式中,该方法还包括:终端根据每个TRS的时延扩展,确定对应的DMRS的时延扩展,以及根据M个TRS的多普勒偏移,确定每个DMRS的多普勒偏移。可见,该实施方式所确定的DMRS的时延扩展分别是考虑了对应的网络设备与终端之间的时延扩展,以及可对应确定DMRS的多普勒偏移,从而改善了多站传输性能。
该方面中,QCL指示信息可利用N个E类型QCL关系的TRS以及M个C类型QCL关系的TRS,表示上述关联关系,即DMRS的时延扩展与对应的TRS的时延扩展相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联。其中,E类型的QCL的信道大尺度参数包括时延扩展,C类型的QCL的信道大尺度参数包括多普勒偏移。其中,该方面中,不同TRS所对应的DMRS端口不同,即不同DMRS,但QCL指示信息指示TRS的方式与上述第一方面相同,具体可参见上述第一方面的实施方式,此处不再详述。
第三方面,本申请提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的多普勒扩展与N个跟踪参考信号TRS的多普勒扩展相关联,以及DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1。
该QCL指示方法适用于多站协作传输中,N个TRS对应的DMRS端口相同,即同一个DMRS的情况,该情况下,终端获得上述QCL指示信息后,可通过N个TRS跟踪N个网络设备与终端之间的多普勒扩展,利用该N个多普勒扩展融合获得该DMRS的多普勒扩展,更符合N个网络设备分别发送同一DMRS的多径多普勒特性,有利于提高DMRS的信道估计准确度。
另外,该方法有利于N个网络设备中一些网络设备采用时延补偿发送DMRS、物理下行共享信道PDSCH,从而使得来自不同网络设备的DMRS、PDSCH到达终端的时延相同,以及终端能够利用该M个TRS的平均时延获得相对应的基准时延以接收DMRS、PDSCH,有利于避免采用错误的基准时延接收DMRS所导致的性能下降。因此,该方法有利于改善多站传输性能。
一种实施方式中,该方法还包括:终端根据N个TRS的多普勒扩展,确定DMRS的多普勒扩展,以及根据M个TRS的平均时延,确定DMRS的平均时延。可见,该实施方式改善了多站传输性能。
另外,由于该方面的QCL指示方法中,终端获得上述QCL指示信息后,是对N个TRS的多普勒扩展进行融合获得DMRS的多普勒扩展,以及利用M个TRS的平均时延确定DMRS的平均时延的,故该方面的QCL指示信息的指示方式与上述第一方面实施方式的不同之处在于,E类型的QCL的信道大尺度参数包括多普勒扩展,C类型的QCL的信道大尺度参数包括平均时延,故该方面的QCL指示信息的指示方式不再详述。
第四方面,本申请提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的多普勒扩展与N个跟踪参考信号TRS中对应的TRS的多普勒扩展相关联,以及每个DMRS的平均时延与N个TRS中M个TRS的平均时延相关联;N大于或等于2,M大于或等于1。
可见,该方法与第三方面的不同之处在于,该方法中,终端获得上述QCL指示信息后,每个DMRS的多普勒扩展是利用对应TRS的多普勒扩展确定的,即是利用对应TRS的多普勒扩展进行DMR信道估计的,但每个DMRS的平均时延依旧同样是根据M个TRS的平均时延获得的。也就是说,该方法中,每个DMRS的多普勒扩展可能不同,但每个DMRS的平均时延是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的多普勒扩展进行信道估计更加准确。
该方法还能够基于统一的平均时延来接收DMRS和PDSCH,避免在网络设备进行时延补偿发送DMRS和PDSCH的情况,终端采用错误的基准时延所导致的传输性能下降的问题。因此,该方法有利于改善多站传输性能。
另外,由于该方面的QCL指示方法中,终端接收到上述QCL指示信息后,是利用N个TRS的多普勒扩展分别确定对应的DMRS的多普勒扩展,以及利用M个TRS的平均时延确定所有DMRS的多普勒偏移的,故该方面的QCL指示信息的指示方式与上述第二方面的QCL指示信息的指示方式的不同之处在于,E类型的QCL的信道大尺度参数包括多普勒扩展,C类型的QCL的信道大尺度参数包括平均时延。
一种实施方式中,该方法还包括:终端根据每个TRS的多普勒扩展确定对应的DMRS的多普勒扩展,根据M个TRS的平均时延确定每个述DMRS的平均时延。可见,该方法能够保证多站协作传输中的信道传输性能。
第五方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联,N大于或等于2,M大于或等于1。
在多站协作传输,N个网络设备分别发送的TRS所对应的DMRS端口均相同,终端获得上述QCL指示信息后,可通过N个TRS跟踪N个网络设备与终端之间的多普勒扩展、时延扩展,利用该N个多普勒扩展、时延扩展融合获得该DMRS的多普勒扩展、时延扩展,更符合N个网络设备分别发送同一DMRS的多径特性,有利于提高DMRS的信道估计准确度。
另外,该方法有利于网络设备采用时延频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延、频偏相同,并且终端利用M个TRS的平均时延、多普勒偏移可确定对应的基准时延、基准频偏接收DMRS、PDSCH,避免终端采用错误的基准时延、基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,终端根据N个TRS的时延扩展、多普勒扩展,确定DMRS的时延扩展、多普勒扩展,以及根据M个TRS的平均时延、多普勒偏移,确定DMRS的平均时延、多普勒偏移。从而,改善了多站传输性能。
可选的,QCL指示信息的指示方式,根据TRS关联的QCL关系的类型不同,可包括但不限于以下实施方式2.1至实施方式2.4。
实施方式2.1,QCL指示信息可利用M个A类型QCL的TRS以及L个E类型QCL的TRS,表示上述关联关系。其中,L大于或等于1,且L与M之和等于N。其中,E类型的QCL的信道大尺度参数包括时延扩展和多普勒扩展,A类型的QCL的信道大尺度参数包括平均时延、多普勒偏移、时延扩展和多普勒扩展。
该实施方式中,QCL指示信息用于指示N个TCI状态,其中M个TCI状态中每个TCI状态指示的QCL信息包括一TRS且该TRS关联A类型的QCL;其余L个TCI状态中每个TCI状态指示的QCL信息包括一TRS且该TRS关联E类型的QCL;且A类型的QCL中的平均时延和多普勒偏移适用于E类型的QCL的TRS对应的TCI状态。
可见,该实施方式有利于利用N个TCI状态所指示的TRS的时延扩展和多普勒扩展确定DMRS的时延扩展和多普勒扩展,有利于在N个网络设备发送TRS对应的DMRS端口相同的情况下,考虑到N个网络设备分别到终端的多径特性,从而改善DMRS信道估计的准确度。另外,有利于网络设备进行时延频偏补偿后发送DMRS和PDSCH的,终端可将M个TCI状态指示的TRS的多普勒偏移作为基准频偏,以及M个TCI状态指示的TRS的平均时延作为基准时延,避免终端采用错误的基准频偏和基准时延接收DMRS和PDSCH,从而改善了多站传输性能。
实施方式2.2,QCL指示信息可利用N个A类型QCL关系的TRS,表示上述关联关系。
该QCL指示信息用于指示N个TCI状态,每个TCI状态指示的QCL信息包括一TRS且该TRS关联A类型的QCL。其中,该N个TCI状态中L个TCI状态分别指示的TRS的多普勒偏移和平均时延不使用;且该N个TCI状态中M个TCI状态分别指示的TRS的多普勒偏移和平均时延适用于其余L个TCI状态。L大于或等于1,L与M之和等于N。
可选的,终端可通过信令通知或预定义的方式获知该L个TCI状态分别指示的TRS的多普勒偏移和平均时延不使用或不适用,且该M个TCI状态分别指示的TRS的多普勒偏移和平均时延适用于其余L个TCI状态。
可选的,终端可采用如下实施方式2.2.1至实施方式2.2.2获知,该M个TCI状态分别指示的TRS的多普勒偏移和平均时延适用于其余L个TCI状态。
实施方式2.2.1,该N个TCI状态中的M个TCI状态中,每个TCI状态所指示的QCL信息包括一TRS且该TRS关联C类型的QCL,且该C类型的QCL的优先级比A类型的QCL的优先级高(或定义C类型的QCL的TRS可覆盖A类型的QCL的TRS),由于C类型的QCL的信道大尺度参数包括多普勒偏移和平均时延,故该实施方式中A类型的QCL中的多普勒偏移和平均时延不使用或不适用,且使用C类型的QCL的TRS的多普勒偏移和平均时延。
其中,C类型的QCL的TRS与A类型的QCL的TRS可为同一TRS,也可为不同的TRS。
可见,该实施方式中,部分TCI状态能够指示两种类型QCL关系的TRS,避免采用额外的TCI状态来指示C类型QCL关系的TRS,从而有利于节省了QCL指示信息所需的信令开销。
实施方式2.2.2,QCL指示信息用于指示N个TCI状态外,还用于指示额外的M个TCI状态,该M个TCI状态中每个TCI状态指示的QCL信息包括一TRS且该TRS关联C类型的QCL,且该C类型的QCL的优先级比A类型的QCL的优先级高(或定义C类型的QCL 的TRS可覆盖A类型的QCL的TRS)。其中,C类型的QCL的TRS与A类型的QCL的TRS可为同一TRS,也可为不同的TRS。
可见,该实施方式中可采用额外的TCI状态来指示C类型QCL关系的TRS,有利于改善基准多普勒偏移的指示灵活性。
可见,该实施方式2.2有利于利用N个TCI状态所指示的TRS的时延扩展和多普勒扩展确定DMRS的时延扩展和多普勒扩展,从而有利于在N个网络设备发送TRS对应的DMRS端口相同的情况下,考虑到N个网络设备分别到终端的多径特性,从而改善DMRS信道估计的准确度。另外,有利于网络设备进行时延频偏补偿后发送DMRS和PDSCH,该方法通过M个TCI状态指示的TRS的多普勒偏移作为基准频偏,以及M个TCI状态指示的TRS的平均时延作为基准时延,避免终端采用错误的基准频偏和基准时延接收DMRS和PDSCH,从而改善了多站传输性能。
实施方式2.3,该QCL指示信息用于指示N个TCI状态,每个TCI状态指示的QCL信息包括一TRS且该TRS关联E类型的QCL;其中,M个TCI状态中每个TCI状态指示的QCL信息还包括一TRS且该TRS关联C类型的QCL,或者,该QCL指示信息还额外指示M个TCI状态,每个TCI状态指示的QCL信息包括一TRS且该TRS关联C类型的QCL。
其中,该E类型的QCL的信道大尺度参数包括时延扩展和多普勒扩展,C类型的QCL的信道大尺度参数包括多普勒偏移和平均时延。
另外,C类型的QCL的TRS与E类型的QCL的TRS可为同一TRS,也可为不同的TRS。
其中,N个TCI状态中的部分TCI状态能够指示两种类型QCL关系的TRS,避免采用额外的TCI状态来指示C类型QCL关系的TRS,从而有利于节省了QCL指示信息所需的信令开销。采用额外的TCI状态来指示C类型QCL关系的TRS,有利于改善基准多普勒偏移和基准时延的指示灵活性。
可选的,上述QCL指示信息中,各类型的QCL的TRS可采用多个TCI域指示,也可采用一个TCI域指示。或者,上述QCL指示信息中,上述各类型的QCL的TRS可采用一个TCI状态指示。
上述实施方式采用多个TCI域指示的情况,可包括:部分TCI域用于指示A类型的QCL的TRS对应的TCI状态,部分TCI域用于指示E类型的QCL的TRS对应的TCI状态。或者,部分TCI域用于指示E类型的QCL的TRS对应的TCI状态,部分TCI域用于指示C类型的QCL的TRS对应的TCI状态。或者,部分TCI域用于指示A类型的QCL的TRS对应的TCI状态,部分TCI域用于指示C类型的QCL的TRS对应的TCI状态。
可选的,该方面中,QCL指示信息除了指示上述信道大尺度参数的关联关系外,还可以指示TRS的空间参数与DMRS的空间参数相关联。该QCL指示信息的指示方式可以包括:上述N个TCI状态中的部分TCI状态还指示关联D类型QCL关系的TRS;或者,该QCL指示信息中还指示其他TCI状态,用于指示关联D类型的QCL的TRS。其中,D类型的QCL的信道大尺度参数包括空间接收参数,可针对高频传输场景,该方法可提高多站传输性能。
第六方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,每个DMRS的平均时延与M个TRS的平均时延相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
可见,该方法与上述第五方面的不同之处在于,该方法中,N个网络设备分别发送的TRS所对应的DMRS端口不同。这样,终端获得上述QCL指示信息后,终端可根据每个TRS的多普勒扩展、时延扩展确定对应DMRS的多普勒扩展、时延扩展,即是利用对应TRS的多普勒扩展、时延扩展进行DMRS信道估计的,但每个DMRS的多普勒偏移、平均时延依旧同样是根据M个TRS的多普勒偏移、平均时延获得的。
也就是说,该方法中,每个DMRS的多普勒扩展、时延扩展可能不同,但每个DMRS的多普勒偏移、平均时延是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的多普勒扩展、时延扩展进行信道估计更加准确。并且,该方法有利于网络设备采用时延频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延、频偏相同,并且终端利用M个TRS的平均时延、多普勒偏移可确定对应的基准时延、基准频偏接收DMRS、PDSCH,避免终端采用错误的基准时延、基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,该方法还包括:终端根据每个TRS的时延扩展、多普勒扩展确定对应的DMRS的时延扩展、多普勒扩展,以及根据M个TRS的平均时延、多普勒偏移确定每个DMRS的平均时延、多普勒偏移。可见,该实施方式所确定的DMRS的时延扩展、多普勒扩展分别是考虑了对应的网络设备与终端之间的时延扩展、多普勒扩展,以及可获知DMRS的平均时延、多普勒偏移,从而改善了多站传输性能。
该方面中,DMRS的时延扩展、多普勒扩展与对应的TRS的时延扩展、多普勒扩展相关联,以及DMRS的平均时延、多普勒偏移与M个TRS的平均时延、多普勒偏移相关联。即该方面与上述第五方面的不同之处在于,不同TRS所对应的DMRS端口不同,即不同DMRS,但QCL指示信息指示的指示方式与上述第五方面相同,具体可参见上述第五方面的实施方式,此处不再详述。
第七方面,本申请提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,以及DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1。
可见,该QCL指示方法适用于多站协作传输中,N个TRS对应的DMRS端口相同,即同一个DMRS的情况。在该情况下,终端接收到上述QCL指示信息后,可通过N个TRS跟踪N个网络设备与终端之间的时延扩展,利用该N个时延扩展融合获得该DMRS的时延扩展,更符合N个网络设备分别发送同一DMRS的多径时延特性,有利于提高DMRS的信道估计准确度。
该方法还有利于网络设备采用时延补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延相同,并且终端利用M个TRS的平均时延可确定对应的基准时延接收DMRS、PDSCH,避免终端采用错误的基准时延所导致的性能下降,因此,该方法有利于改善多站传输性能。
另外,由于该方面的QCL指示方法中,终端接收到上述QCL指示信息后,是对N个TRS的时延扩展进行融合获得DMRS的时延扩展,以及利用M个TRS的平均时延确定DMRS的平均时延的,故该方面的QCL指示信息的指示方式与上述第一方面实施方式1.1至1.2的不同之处在于,E类型的QCL的信道大尺度参数包括时延扩展,C类型的QCL的信道大尺度参数包括平均时延。
一种实施方式中,该方法还包括:终端根据N个TRS的时延扩展,确定DMRS的时延扩展,以及根据M个TRS的平均时延,确定DMRS的平均时延。可见,该实施方式改善了多站传输性能。
第八方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,以及每个DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1。
可见,该方法与第七方面的不同之处在于,该方法中,终端接收到上述QCL指示信息后,每个DMRS的时延扩展是利用对应TRS的时延扩展确定的,即是利用对应TRS的时延扩展进行DMR信道估计的,但每个DMRS的平均时延依旧同样是根据M个TRS的平均时延获得的。也就是说,该方法中,每个DMRS的时延扩展可能不同,但每个DMRS的平均时延是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的时延扩展进行信道估计更加准确。
该方法有利于网络设备采用时延补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延相同,并且终端利用M个TRS的平均时延可确定对应的基准时延接收DMRS、PDSCH,避免终端采用错误的基准时延所导致的性能下降,因此,该方法有利于改善多站传输性能。
另外,由于该方面的QCL指示方法中,终端接收到上述QCL指示信息后,是利用N个TRS的时延扩展分别确定对应的DMRS的时延扩展,以及利用M个TRS的平均时延确定所有DMRS的平均时延的,故该方面的QCL指示信息的指示方式与上述第二方面的QCL指示信息的指示方式的不同之处在于,E类型的QCL的信道大尺度参数包括时延扩展,C类型的QCL的信道大尺度参数包括平均时延。
一种实施方式中,该方法还包括:终端根据每个TRS的时延扩展确定对应的DMRS的时频扩展信息,根据M个TRS的平均时延确定每个DMRS的平均时延。可见,该方法能够保证多站协作传输中的信道传输性能。
第九方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的多普勒扩展与N个跟踪参考信号TRS的多普勒扩展相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
在多站协作传输中,N个网络设备分别发送的TRS所对应的DMRS端口均相同,终端接收到上述QCL指示信息后,可通过N个TRS跟踪N个网络设备与终端之间的多普勒扩展,利用该N个多普勒扩展融合获得该DMRS的多普勒扩展,更符合N个网络设备分别发送同一DMRS的多径多普勒特性,有利于提高DMRS的信道估计准确度。另外,该方法有利于网络设备采用频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的频偏相同,并且终端利用M个TRS的多普勒偏移可确定对应的基准频偏接收DMRS、PDSCH,避免终端采用错误的基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
另外,由于该方面的QCL指示方法中,终端接收到上述QCL指示信息后,是对N个TRS的多普勒扩展进行融合获得DMRS的多普勒扩展,以及利用M个TRS的多普勒偏移确定 DMRS的多普勒偏移,故该方面的QCL指示信息的指示方式与上述第一方面实施方式的不同之处在于,E类型的QCL的信道大尺度参数包括多普勒扩展,C类型的QCL的信道大尺度参数包括多普勒偏移。
一种实施方式中,该方法还包括:终端根据N个TRS的多普勒扩展,确定DMRS的多普勒扩展,以及根据M个TRS的多普勒偏移,确定DMRS的多普勒偏移。可见,该实施方式改善了多站传输性能。
第十方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
可见,该方法与第九方面的不同之处在于,该方法中,终端接收到上述QCL指示信息后,每个DMRS的多普勒扩展是利用对应TRS的多普勒扩展确定的,即是利用对应TRS的多普勒扩展进行DMRS信道估计的,但每个DMRS的多普勒偏移依旧同样是根据M个TRS的多普勒偏移获得的。也就是说,该方法中,每个DMRS的多普勒扩展可能不同,但每个DMRS的多普勒偏移是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的多普勒扩展进行信道估计更加准确。该方法还有利于网络设备采用频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的频偏相同,并且终端利用M个TRS的多普勒偏移可确定对应的基准频偏接收DMRS、PDSCH,避免终端采用错误的基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
另外,由于该方面的QCL指示方法中,终端接收到上述QCL指示信息后,是利用N个TRS的多普勒扩展分别确定对应的DMRS的多普勒扩展,以及利用M个TRS的多普勒偏移确定所有DMRS的多普勒偏移的,故该方面的QCL指示信息的指示方式与上述第二方面的QCL指示信息的指示方式的不同之处在于,E类型的QCL的信道大尺度参数包括多普勒扩展,C类型的QCL的信道大尺度参数包括多普勒偏移。
一种实施方式中,该方法还包括:终端根据每个TRS的多普勒扩展确定对应的DMRS的多普勒扩展,根据M个TRS的多普勒偏移确定每个DMRS的多普勒偏移。可见,该方法能够保证多站协作传输中的信道传输性能。
第十一方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,N大于或等于2,M大于或等于1。
在多站协作传输中,N个网络设备分别发送的TRS所对应的DMRS端口均相同,终端获得上述QCL指示信息后,可通过N个TRS跟踪N个网络设备与终端之间的多普勒扩展、时延扩展,利用该N个多普勒扩展、时延扩展融合获得该DMRS的多普勒扩展、时延扩展,更符合N个网络设备分别发送同一DMRS的多径特性,有利于提高DMRS的信道估计准确度。
另外,该方法有利于网络设备采用时延补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延相同,并且终端利用M个TRS的平均时延可确定对应的基准时延接收DMRS、PDSCH,避免终端采用错误的基准时延所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,终端根据N个TRS的时延扩展、多普勒扩展,确定DMRS的时延扩展、多普勒扩展,以及根据M个TRS的平均时延,确定DMRS的平均时延。从而,改善了多站传输性能。
可选的,QCL指示信息的指示方式,根据TRS关联的QCL关系的类型不同,可包括但不限于上述第一方面的实施方式1.1至实施方式1.2,但不同之处在于,该方面中,E类型的QCL的信道大尺度参数包括时延扩展和多普勒扩展,C类型的QCL的信道大尺度参数包括平均时延。
第十二方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,每个DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1。
可见,该方法与上述第十一方面的不同之处在于,该方法中,N个网络设备分别发送的TRS所对应的DMRS端口不同。这样,终端获得上述QCL指示信息后,终端可根据每个TRS的多普勒扩展、时延扩展确定DMRS对应的多普勒扩展、时延扩展,即是利用对应TRS的多普勒扩展、时延扩展进行DMRS信道估计的,但每个DMRS的平均时延依旧同样是根据M个TRS的平均时延获得的。
也就是说,该方法中,每个DMRS的多普勒扩展、时延扩展可能不同,但每个DMRS的平均时延是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的多普勒扩展、时延扩展进行信道估计更加准确。并且,该方法有利于网络设备采用时延补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延相同,并且终端利用M个TRS的平均时延可确定对应的基准时延接收DMRS、PDSCH,避免终端采用错误的基准时延所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,该方法还包括:终端根据每个TRS的时延扩展、多普勒扩展确定对应的DMRS的时延扩展、多普勒扩展,以及根据M个TRS的平均时延确定每个DMRS的平均时延。可见,该实施方式所确定的DMRS的时延扩展、多普勒扩展分别是考虑了对应的网络设备与终端之间的时延扩展、多普勒扩展,以及可获知DMRS的平均时延,从而改善了多站传输性能。
该方面中,DMRS的时延扩展、多普勒扩展与对应的TRS的时延扩展、多普勒扩展相关联,以及DMRS的平均时延与M个TRS的平均时延相关联。即该方面与上述第十一方面的不同之处在于,不同TRS所对应的DMRS端口不同,即不同DMRS,但QCL指示信息指示的指示方式与上述第十一方面相同,具体可参见上述第十一方面的实施方式,此处不再详述。
第十三方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
在多站协作传输中,N个网络设备分别发送的TRS所对应的DMRS端口均相同,终端获得上述QCL指示信息后,可通过N个TRS跟踪N个网络设备与终端之间的多普勒扩展、时 延扩展,利用该N个多普勒扩展、时延扩展融合获得该DMRS的多普勒扩展、时延扩展,更符合N个网络设备分别发送同一DMRS的多径特性,有利于提高DMRS的信道估计准确度。另外,该方法有利于网络设备采用频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的频偏相同,并且终端利用M个TRS的多普勒偏移可确定对应的基准频偏接收DMRS、PDSCH,避免终端采用错误的基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,终端根据N个TRS的时延扩展、多普勒扩展,确定DMRS的时延扩展、多普勒扩展,以及根据M个TRS的多普勒偏移,确定DMRS的多普勒偏移。从而,改善了多站传输性能。
可选的,QCL指示信息的指示方式,根据TRS关联的QCL关系的类型不同,可包括但不限于上述第一方面的实施方式,但不同之处在于,该方面中,E类型的QCL的信道大尺度参数包括时延扩展和多普勒扩展,C类型的QCL的信道大尺度参数包括多普勒偏移。
第十四方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
可见,该方法与上述第十三方面的不同之处在于,该方法中,N个网络设备分别发送的TRS所对应的DMRS端口不同。这样,终端获得上述QCL指示信息后,终端可根据每个TRS的多普勒扩展、时延扩展确定对应DMRS的多普勒扩展、时延扩展,即是利用对应TRS的多普勒扩展、时延扩展进行DMRS信道估计的,但每个DMRS的多普勒偏移依旧同样是根据M个TRS的多普勒偏移获得的。也就是说,该方法中,每个DMRS的多普勒扩展、时延扩展可能不同,但每个DMRS的多普勒偏移是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的多普勒扩展、时延扩展进行信道估计更加准确。
并且,该方法有利于网络设备采用频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的频偏相同,并且终端利用M个TRS的多普勒偏移可确定对应的基准频偏接收DMRS、PDSCH,避免终端采用错误的基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,该方法还包括:终端根据每个TRS的时延扩展、多普勒扩展确定对应的DMRS的时延扩展、多普勒扩展,以及根据M个TRS的多普勒偏移确定每个DMRS的多普勒偏移。可见,该实施方式所确定的DMRS的时延扩展、多普勒扩展分别是考虑了对应的网络设备与终端之间的时延扩展、多普勒扩展,以及可获知DMRS的多普勒偏移,从而改善了多站传输性能。
该方面中,DMRS的时延扩展、多普勒扩展与对应的TRS的时延扩展、多普勒扩展相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联。即该方面与上述第十三方面的不同之处在于,不同TRS所对应的DMRS端口不同,即不同DMRS,但QCL指示信息指示的指示方式与上述第十三方面相同,具体可参见上述第十三方面的实施方式,此处不再详述。
第十五方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
在多站协作传输中,N个网络设备分别发送的TRS所对应的DMRS端口均相同,终端获得上述QCL指示信息后,可通过N个TRS跟踪N个网络设备与终端之间的时延扩展,利用该N个时延扩展融合获得该DMRS的时延扩展,更符合N个网络设备分别发送同一DMRS的多径特性,有利于提高DMRS的信道估计准确度。
另外,该方法有利于网络设备采用时延频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延、频偏相同,并且终端利用M个TRS的平均时延、多普勒偏移可确定对应的基准时延、基准频偏接收DMRS、PDSCH,避免终端采用错误的基准时延、基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,终端根据N个TRS的时延扩展,确定DMRS的多普勒扩展,以及根据M个TRS的平均时延、多普勒偏移,确定DMRS的平均时延、多普勒偏移。从而,改善了多站传输性能。
可选的,QCL指示信息的指示方式,根据TRS关联的QCL关系的类型不同,可包括但不限于上述第一方面的实施方式,但不同之处在于,该方面中,E类型的QCL的信道大尺度参数包括时延扩展,C类型的QCL的信道大尺度参数包括平均时延、多普勒偏移。
第十六方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,每个DMRS的平均时延与M个TRS的平均时延相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
可见,该方法与上述第十五方面的不同之处在于,该方法中,N个网络设备分别发送的TRS所对应的DMRS端口不同。这样,终端获得上述QCL指示信息后,终端可根据每个DMRS的时延扩展确定对应TRS的时延扩展,即是利用对应TRS的时延扩展进行DMRS信道估计的,但每个DMRS的平均时延、多普勒偏移依旧同样是根据M个TRS的平均时延、多普勒偏移获得的。
也就是说,该方法中,每个DMRS的时延扩展可能不同,但每个DMRS的平均时延、多普勒偏移是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的时延扩展进行信道估计更加准确。并且,该方法有利于网络设备采用时延频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延、频偏相同,并且终端利用M个TRS的多普勒偏移可确定对应的基准时延、基准频偏接收DMRS、PDSCH,避免终端采用错误的基准时延、基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,该方法还包括:终端根据每个TRS的时延扩展确定对应的DMRS的时延扩展,以及根据M个TRS的平均时延、多普勒偏移确定每个DMRS的平均时延、多普勒偏移。可见,该实施方式所确定的DMRS的时延扩展、多普勒扩展分别是考虑了对应的网 络设备与终端之间的时延扩展,以及可获知DMRS的平均时延、多普勒偏移,从而改善了多站传输性能。
该方面中,DMRS的时延扩展与对应的TRS的时延扩展相关联,以及DMRS的平均时延、多普勒偏移与M个TRS的平均时延、多普勒偏移相关联。即该方面与上述第十五方面的不同之处在于,不同TRS所对应的DMRS端口不同,即不同DMRS,但QCL指示信息指示的指示方式与上述第十五方面相同,具体可参见上述第十五方面的实施方式,此处不再详述。
第十七方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的多普勒扩展与N个跟踪参考信号TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
在多站协作传输中,N个网络设备分别发送的TRS所对应的DMRS端口均相同,终端获得上述QCL指示信息后,可通过N个TRS跟踪N个网络设备与终端之间的多普勒扩展,利用该N个多普勒扩展融合获得该DMRS的多普勒扩展,更符合N个网络设备分别发送同一DMRS的多径特性,有利于提高DMRS的信道估计准确度。另外,该方法有利于网络设备采用时延频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延、频偏相同,并且终端利用M个TRS的平均时延、多普勒偏移可确定对应的基准时延、基准频偏接收DMRS、PDSCH,避免终端采用错误的基准时延、基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,终端根据N个TRS的多普勒扩展,确定DMRS的多普勒扩展,以及根据M个TRS的平均时延、多普勒偏移,确定DMRS的平均时延、多普勒偏移。从而,改善了多站传输性能。
可选的,QCL指示信息的指示方式,根据TRS关联的QCL关系的类型不同,可包括但不限于上述第一方面的实施方式,但不同之处在于,该方面中,E类型的QCL的信道大尺度参数包括多普勒扩展,C类型的QCL的信道大尺度参数包括平均时延、多普勒偏移。
第十八方面,本申请还提供一种准共址QCL指示方法,该方法包括:终端接收准共址QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,每个DMRS的平均时延与M个TRS的平均时延相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
可见,该方法与上述第十五方面的不同之处在于,该方法中,N个网络设备分别发送的TRS所对应的DMRS端口不同。这样,终端获得上述QCL指示信息后,终端可根据每个DMRS的多普勒扩展确定对应TRS的多普勒扩展,即是利用对应TRS的多普勒扩展进行DMRS信道估计的,但每个DMRS的平均时延、多普勒偏移依旧同样是根据M个TRS的平均时延、多普勒偏移获得的。
也就是说,该方法中,每个DMRS的多普勒扩展可能不同,但每个DMRS的平均时延、多普勒偏移是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的多普勒扩展进行信道估计更加准确。并且,该方法有利于网络设备采用时延频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终 端的时延、频偏相同,并且终端利用M个TRS的多普勒偏移可确定对应的基准时延、基准频偏接收DMRS、PDSCH,避免终端采用错误的基准时延、基准频偏所导致的性能下降,因此,该方法有利于改善多站传输性能。
一种实施方式中,该方法还包括:终端根据每个TRS的多普勒扩展确定对应的DMRS的多普勒扩展,以及根据M个TRS的平均时延、多普勒偏移确定每个DMRS的平均时延、多普勒偏移。可见,该实施方式所确定的DMRS的多普勒扩展、多普勒扩展分别是考虑了对应的网络设备与终端之间的多普勒扩展,以及可获知DMRS的平均时延、多普勒偏移,从而改善了多站传输性能。
该方面中,DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,以及DMRS的平均时延、多普勒偏移与M个TRS的平均时延、多普勒偏移相关联。即该方面与上述第十七方面的不同之处在于,不同TRS所对应的DMRS端口不同,即不同DMRS,但QCL指示信息指示的指示方式与上述第十五方面相同,具体可参见上述第十五方面的实施方式,此处不再详述。
另外,第一方面至第十八方面的QCL指示方法是通过QCL指示信息指示N个TRS的时频扩展信息与一个或多个DMRS的时频扩展信息相关联,以及,M个TRS的时延频偏信息与各DMRS的时延频偏信息相关联的方式,有利于使得终端获知如何进行DMRS信道估计,以改善信道估计性能,并且告知终端所需采用的基准频偏和/或基准时延,以避免终端采用错误的基准频偏、基准时延接收DMRS,从而改善多站传输性能。因此,上述各QCL指示方法所要解决的问题相同,即改善多站传输性能,具有相应的特定技术特征,达到的效果均是改善了多站传输性能,因此,上述各方面的QCL指示方法属于同一个发明构思,符合单一性的要求。
第十九方面,本申请提供一种准共址QCL指示方法,该方法与上述第一方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第一方面改善多站传输性能,具体可参见上述第一方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第一方面的相关内容,此处不再详述。
第二十方面,本申请提供一种准共址QCL指示方法,该方法与上述第二方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定准共址QCL指示信息,该QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第二方面改善多站传输性能,具体可参见上述第二方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第二方面的相关内容,此处不再详述。
第二十一方面,本申请提供一种准共址QCL指示方法,该方法与上述第三方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定准共址QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的多普勒扩展与N个跟踪参考信号TRS的多普勒扩展相关联,以及DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第三方面改善多站传输性能,具体可参见上述第三方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第三方面的相关内容,此处不再详述。
第二十二方面,本申请提供一种准共址QCL指示方法,该方法与上述第四方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定准共址QCL指示信息,该QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的多普勒扩展与N个跟踪参考信号TRS中对应的TRS的多普勒扩展相关联,以及每个DMRS的平均时延与N个TRS中M个TRS的平均时延相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第四方面改善多站传输性能,具体可参见上述第四方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第四方面的相关内容,此处不再详述。
第二十三方面,本申请还提供一种准共址QCL指示方法,该方法与上述第五方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联,N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第五方面改善多站传输性能,具体可参见上述第五方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第五方面的相关内容,此处不再详述。
第二十四方面,本申请还提供一种准共址QCL指示方法,该方法与上述第六方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定准共址QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,每个DMRS的平均时延与M个TRS的平均时延相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第六方面改善多站传输性能,具体可参见上述第六方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第六方面的相关内容,此处不再详述。
第二十五方面,本申请提供一种准共址QCL指示方法,该方法与上述第七方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,以及DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第七方面改善多站传输性能,具体可参见上述第七方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第七方面的相关内容,此处不再详述。
第二十六方面,本申请还提供一种准共址QCL指示方法,该方法与上述第八方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定准共址QCL指示信息,该QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,以及每个DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第八方面改善多站传输性能,具体可参见上述第八方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第八方面的相关内容,此处不再详述。
第二十七方面,本申请还提供一种准共址QCL指示方法,该方法与上述第九方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的多普勒扩展与N个跟踪参考信号TRS的多普勒扩展相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第九方面改善多站传输性能,具体可参见上述第九方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第九方面的相关内容,此处不再详述。
第二十八方面,本申请还提供一种准共址QCL指示方法,该方法与上述第十方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息,该QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第十方面改善多站传输性能,具体可参见上述第十方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第十方面的相关内容,此处不再详述。
第二十九方面,本申请还提供一种准共址QCL指示方法,该方法与上述第十一方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第十一方面改善多站传输性能,具体可参见上述第十一方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第十一方面的相关内容,此处不再详述。
第三十方面,本申请还提供一种准共址QCL指示方法,该方法与上述第十二方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,每个DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第十二方面改善多站传输性能,具体可参见上述第三方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第十二方面的相关内容,此处不再详述。
第三十一方面,本申请还提供一种准共址QCL指示方法,该方法与上述第十三方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的多普勒偏移与M个TRS的多普勒偏移相关联,N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第十三方面改善多站传输性能,具体可参见上述第十三方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第十三方面的相关内容,此处不再详述。
第三十二方面,本申请还提供一种准共址QCL指示方法,该方法与上述第十四方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定准共址QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的 时延扩展相关联,每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第十四方面改善多站传输性能,具体可参见上述第三方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第十四方面的相关内容,此处不再详述。
第三十三方面,本申请还提供一种准共址QCL指示方法,该方法与上述第十五方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第十五方面改善多站传输性能,具体可参见上述第十五方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第十五方面的相关内容,此处不再详述。
第三十四方面,本申请还提供一种准共址QCL指示方法,该方法与上述第十六方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定准共址QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,每个DMRS的平均时延与M个TRS的平均时延相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第十六方面改善多站传输性能,具体可参见上述第十六方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第十六方面的相关内容,此处不再详述。
第三十五方面,本申请还提供一种准共址QCL指示方法,该方法与上述第十七方面相对应,是从网络设备的角度进行阐述的。该方法包括:网络设备确定QCL指示信息,该QCL指示信息用于指示解调参考信号DMRS的多普勒扩展与N个跟踪参考信号TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;网络设备发送该QCL指示信息。
该方面的QCL指示方法可如上述第十七方面改善多站传输性能,具体可参见上述第十七方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第十七方面的相关内容,此处不再详述。
第三十六方面,本申请还提供一种准共址QCL指示方法,该方法与上述第十八方面相对应,是从网络设备的角度进行阐述的。该方法包括:终端接收准共址QCL指示信息;QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,每个DMRS的平均时延与M个TRS的平均时延相关联,以及每个DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
该方面的QCL指示方法可如上述第十八方面改善多站传输性能,具体可参见上述第十八方面的分析,此处不再详述。
该方面中QCL指示信息的相关实施方式也可参见上述第十八方面的相关内容,此处不再详述。
另外,上述第十九方面至第三十六方面中的任一方面,网络设备还可以根据QCL指示信息接收上行信号。可见,该实施方式所接收的上行信号可以是终端基于QCL指示信息获得基准频偏和/或基准时延发送的,从而有利于使得终端发送的上行信号到达各TRP的时延相同,从而有利于改善多站传输性能。
第三十七方面,本申请还提供了一种终端,该终端具有实现上述第一方面至第十八方面中任一方面的方法示例中终端的部分或全部功能,比如终端的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该终端的结构中可包括处理单元和通信单元,处理单元被配置为支持终端执行上述方法中相应的功能。通信单元用于支持终端与其他设备之间的通信。终端还可以包括存储单元,存储单元用于与处理单元和发送单元耦合,其保存终端必要的程序指令和数据。
一种实施方式中,终端包括:
通信单元,用于接收准共址QCL指示信息,QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
可选的,该终端还包括处理单元,
处理单元,用于根据N个TRS的时延扩展、多普勒扩展,确定DMRS的时延扩展、多普勒扩展,以及根据M个TRS的平均时延、多普勒偏移,确定DMRS的平均时延、多普勒偏移。
可选的,该终端也可通过通信单元和/或处理单元,执行上述第一方面至第四方面、或第六方面至第十八方面的相关内容,不同之处在于QCL指示信息所指示的内容不同,此处不再详述。
作为示例,处理单元可以为处理器,通信单元可以为收发器,存储单元可以为存储器。
一种实施方式中,终端包括:
收发器,用于接收准共址QCL指示信息,QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
可选的,该终端还包括处理器,
处理器,用于根据N个TRS的时延扩展、多普勒扩展,确定DMRS的时延扩展、多普勒扩展,以及根据M个TRS的平均时延、多普勒偏移,确定DMRS的平均时延、多普勒偏移。
其他可选的实施方式中,该终端也可通过收发器和/或处理器,执行上述第一方面至第四方面、或第六方面至第十八方面的相关内容,不同之处在于QCL指示信息所指示的内容不同,此处不再详述。
第三十八方面,本申请还提供了一种网络设备。该网络设备具有实现上述第十九方面至第三十六方面任一方面的方法中网络设备的部分或全部功能。比如,网络设备的功能可具备本申请中网络设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该网络设备的结构中可包括处理单元和通信单元,通信单元被配置为支持网络设备执行上述方法中相应的功能。通信单元用于支持网络设备与其他设备之间的通信。网络设备还可以包括存储单元,存储单元用于与获取单元和发送单元耦合,其保存网络设备必要的程序指令和数据。
一种实施方式中,网络设备包括:
处理单元,用于确定准共址QCL指示信息,QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;
通信单元,用于发送QCL指示信息。
其他可选的实施方式中,该终端也可通过处理单元、通信单元,执行上述第十九方面至第二十二方面中任一方面、或第二十四方面至第三十六方面中任一方面的相关内容,不同之处在于QCL指示信息所指示的内容不同,此处不再详述。
作为示例,通信单元可以为收发器,处理单元可以为处理器。
一种实施方式中,网络设备包括:
处理器,用于确定准共址QCL指示信息,QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;
收发器,用于发送QCL指示信息。
其他可选的实施方式中,该网络设备也可通过处理器、收发器,执行上述第十九方面至第二十二方面中任一方面、或第二十四方面至第三十六方面中任一方面的相关内容,不同之处在于QCL指示信息所指示的内容不同,此处不再详述。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器 件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
第三十九方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收QCL指示信息可以理解为处理器输入QCL指示信息。又例如,发送QCL指示信息可以理解为处理器输出QCL指示信息。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第四十方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包括用于执行上述方法的第一方面至第十八方面中任一方面所涉及的程序。
第四十一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包括用于执行上述方法的第十九方面至第三十六方面中任一方面所涉及的程序。
第四十二方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第十八方面中任一方面的方法。
第四十三方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第十九方面至第三十六方面中任一方面的方法。
第四十四方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持终端实现第一方面至第十八方面中任一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,该芯片系统还包括存储器,存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第四十五方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持网络设备实现上述第十九方面至第三十六方面中任一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,该芯片系统还包括存储器,其中,存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第四十六方面,本申请还提供了一种通信系统,该系统包括上述方面的至少一个终端设备、至少一个网络设备。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与终端或网络设备进行交互的其他设备。
第四十七方面,本申请还提供一种通信装置,该通信装置包括处理器和存储器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述存储器中存储的计算机程序,当所述计算机程序被执行时,使得所述通信装置实现如上述第一方面至第十八方面任一方面所述的方法,或如第十九方面至第三十六方面任一方面所述的方法。可选的,该存储器可位于所述通信装置之外。
附图说明
图1是一种邻区干扰的场景示意图;
图2是一种采用DCS/DPS技术的场景示意图;
图3是一种采用CB/CS技术的场景示意图;
图4是一种采用JT技术的场景示意图;
图5是一种多个TRP的架构示意图;
图6是一种TRP1和TRP2分别与UE之间的信道的多普勒偏移的示意图;
图7是本申请实施例提供的一种QCL指示方法1100的流程示意图;
图8是本申请实施例提供的一种信号传输方法1100的示意图;
图9是本申请实施例提供的一种DMRS的时延扩展确定方法的示意图;
图10是本申请实施例提供的一种TRP1和TRP2协作传输的示意图;
图11是本申请实施例提供的另一种TRP1和TRP2协作传输的示意图;
图12是本申请实施例提供的又一种TRP1和TRP2协作传输的示意图;
图13是本申请实施例提供的一种QCL指示方法1200的流程示意图;
图14是本申请实施例提供的一种信号传输方法1200的示意图;
图15是本申请实施例提供的一种DMRS的多普勒扩展确定方法的示意图;
图16是本申请实施例提供的一种采用QCL指示方法1200的TRP1和TRP2协作传输的示意图;
图17是本申请实施例提供的另一种采用QCL指示方法1200的TRP1和TRP2协作传输的示意图;
图18是本申请实施例提供的一种QCL指示方法1300的流程示意图;
图19是本申请实施例提供的一种信号传输方法1300的流程示意图;
图20是本申请实施例提供的一种采用QCL指示方法1300的TRP1和TRP2协作传输的示意图;
图21是本申请实施例提供的另一种采用QCL指示方法1300的TRP1和TRP2协作传输的示意图;
图22是本申请实施例提供的又一种采用QCL指示方法1300的TRP1和TRP2协作传输的示意图;
图23是本申请实施例提供的一种性能提升的仿真示意图;
图24是本申请实施例提供的另一种性能提升的仿真示意图;
图25是本申请实施例提供的一种QCL指示方法3100的流程示意图;
图26是本申请实施例提供的一种上行信号的发送时间的示意图;
图27是本申请实施例提供的一种通信装置的结构示意图;
图28是本申请实施例提供的另一种通信装置的结构示意图;
图29是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例中的技术方案进行清楚、完整的描述。
为了更好的理解本申请实施例提供的准共址(Quasi Co-Location,QCL)指示方法,首先对本申请实施例适用的通信系统进行描述。
本申请的技术方案可应用于各种通信系统中。例如,全球移动通信系统、LTE频分双工系统、LTE时分双工系统、通用移动通信系统、4G系统,以及随着通信技术的不断发展,本申请的技术方案还可用于后续演进的通信系统,如5G系统、未来通信系统等等。
本申请实施例中的通信系统可通过协作多点传输(Coordinated Multi-Point,CoMP)技术为同一终端提供下行服务,或者接收同一终端的上行信号,从而解决终端在多个小区之间受到的干扰。其中,协作多点传输技术也可称为多站协作传输。
例如,如图1所示,虚线表示邻区对终端的干扰,实线表示本小区的有用信号,可见,处于小区边缘的用户设备(user equipment,UE),接收本小区的有用信号时会受到邻区的干扰。为了解决该干扰问题,一种场景,CoMP技术可采用动态点选择/动态小区选择(dynamic cell selection/dynamic point selection,DCS/DPS),即网络侧动态选择更好的传输接入点(transmission access point,TRP),为UE服务。DCS/DPS中,每个UE的TRP是动态选择的,如图2所示,与图1相比,针对UE2,TRP1的信号强于TRP2的信号时,UE2的TRP可动态的从TRP2切换为TRP1,以保证UE2是在更强的小区信号下,而让较弱的小区信号成为干扰,从而利用两个小区之间TRP到UE的信道的差异,提高UE的信号信干噪比。
另一种场景,CoMP技术可采用波束赋形/协作调度(coordinated beamforming/coordinated scheduling,CB/CS)技术,为UE服务。该CB/CS技术中,UE所在小区的邻区可对发送信号进行调整,如图3所示,与图1相比,图3中UE1至UE4的虚线对应的信号进行调整,避免在强干扰方向给UE发送信号,从而减少邻区对UE的干扰水平。
又一种场景,CoMP技术可采用联合传输(joint transmission,JT)技术为UE服务。JT技术中,多个TRP联合给UE发送数据,如图4所示,UE2可由TRP1和TRP2联合为其发送数据,UE3可由TRP2、TRP3和TRP4联合为其发送数据,这样,UE2和UE3可接收到多份有用数据,提高了传输的速率。
在JT技术中,多个TRP联合给UE传输数据,可以包括但不限于以下方案:方案1,多个TRP传输一样的数据信号给UE,UE不区分数据来自哪个TRP,如单频网(single frequency network,SFN)场景、离散多点(distributed multi point,DMP)传输场景、联合多点联合传输(joint multi point joint transmission,JMP JT)场景等中,多个TRP可传输一样的数据信号给UE,UE不区分数据信号来自哪个TRP;方案2,多个TRP传输不同的数据给UE,UE可区分数据来自哪个TRP,如非相干联合传输(non-coherent joint transmission,NCJT)场景中,多个TRP传输不同的数据信号给UE,UE可区分来自各TRP的数据信号。另外,多站协作传输中,不同TRP可基于相同的解调参考信号(demodulation reference signal,DMRS)端口,或不同的DMRS端口传输数据。不同TRP基于不同的DMRS端口传输数据,即不同TRP的传输数据对应了不同的DMRS端口,这样,UE也可区分出不同的DMRS端口,获得不同TRP到UE的信道估计结果。
本申请实施例可应用于独立组网,即未来网络中部署的新的基站、回程链路以及核心网等通信系统中,也可应用非独立组网等各种通信系统中。
例如,本申请实施例可用于第五代(5th generation,5G)系统,也可以称为新空口(new radio,NR)系统,或者第六代(6th generation,6G)系统或未来的其他通信系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统、长期演进(long term evolution,LTE)系统等等。
本申请实施例中,网络设备可为具有无线收发功能的设备或可设置于该设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等;还可以为5G、6G甚至7G系统中使用的设备,如NR系统中的gNB,或传输点(TRP或TP),5G系统中的网络设备的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit),或微微网络设备(Picocell),或毫微微网络设备(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)。
本申请实施例中,终端设备可包括但不限于:用户设备(user equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、用户代理或用户装置等。再比如,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
本申请实施例中,图1至图4所示的多个TRP在物理上实质可以是一组天线。比如,如图5所示,一个基站的基带处理单元在一个地理位置,该基带处理单元可连接多个地理位置 的射频处理单元,从基带处理单元到射频处理单元之间的距离可以有百米远,可利用光线连接,因此,基带处理单元与射频处理单元之间的传输时间较短,传输容量较大。这样,基带处理单元在处理好基带信号后,如生成了控制信道的信号,可传输到多个传输接收点,由各传输接收点分别将各自的控制信道发送出来。因此,本申请实施例的协作传输的多个TRP或多个网络设备,可属于同一基站的不同射频处理单元或属于不同基站,其中,TRP和网络设备间可以互相替换,示例性的,TRP1可以用第一网络设备替换,TRP2可以用第二网络设备替换,本申请不做限定。
为了便于理解本申请公开的实施例,作以下两点说明。
(1)本申请公开的实施例中场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
(2)本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
为便于理解本申请实施例,对一些概念进行阐述。
1、准共址(Quasi Co-Location,QCL)关系
两个天线端口之间具有QCL关系,是指一个天线端口的信道大尺度参数可以通过另一个天线端口得到的信道大尺度参数推导出。或者,如果两个天线端口具有QCL关系,那么一个端口传送一个信号的信道大尺度特性可以从另一个端口传送一个信号的信道大尺度特性推断出来,也可简称为两个信号之间具有QCL关系。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。
QCL关系中,被引用的信号可以是源信号、源参考信号或参考参考信号,另一信号可称为目标信号、目标参考信号。
本申请的,信号1与信号2之间具有QCL关系,也是指信号1所对应的天线端口与信号2所对应的天线端口具有QCL关系。因此本申请中为了简洁阐述,主要以信号之间具有QCL关系的方式、或信号的信道参数之间相关联的方式进行阐述。
其中,源信号,例如但不限于,可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、同步信号块(synchronization signal block,SSB)、同步信号物理广播信道块(synchronization signal physical broadcast channel block,SSPBCHB)、主同步信号(primary synchronization signal,PSS)、或辅同步信号(secondary synchronization signal,SSS)、下行控制信道(physical downlink control channel,PDCCH)等。若终端被配置的CSI-RS用于进行时域跟踪(time tracking)和/或频域跟踪(frequency tracking)时,该用于跟踪的CSI-RS可简称为跟踪参考信号(tracking reference signal,TRS)。
目标信号,例如但不限于,可以是DMRS、CSI-RS,还可以是单边链路(Sidelink)的信号等。其中,DMRS可以是物理下行控制信道(physical downlink control channel,PDCCH)或物理下行共享信道(physical downlink share channel,PDSCH)中的,该DMRS用于进行信道估计,以利用信道估计结果对PDCCH或PDSCH进行解调。
具有QCL关系的目标信号和源信号可属于同一类型的不同索引的信号,或属于不同类型的信号。例如,源信号和目标信号均可以是CSI-RS,但索引不同。再例如,源信号是CSI-RS,目标信号是DMRS。
信号的信道大尺度参数可以包括以下一项或多项:平均增益(average gain)、平均时延(average delay)、时延扩展(delay spread)、多普勒偏移(Doppler shift)、多普勒扩展(Doppler spread)、空间参数(spatial parameter)。
其中,空间参数可以包括以下一项或多项参数:入射角(angle of arrival,AoA)、主(Dominant)入射角AoA、平均入射角、入射角的功率角度谱(power angular spectrum,PAS)、发射角(angle of departure,AOD)、主发射角(Dominant AoD)、平均发射角(average AoD)、到达角(angle of arrival,AOA)、主到达角(Dominant AoA)、平均到达角(average AoA)、信道相关矩阵、到达角的功率角度扩展谱、出发角的功率角度扩展谱、发射信道相关性、接收信道相关性、发射波束成型、接收波束成型、空间信道相关性、空间滤波器、空间滤波参数、空间接收参数(spatial Rx parameters)等。
目前标准定义了四种类型的QCL关系,不同类型的QCL关系的信道大尺度参数也不同,例如:
A类型的QCL关系(QCL Type A):Doppler shift,Doppler spread,average delay,delay spread;
B类型的QCL关系(QCL Type B):Doppler shift,Doppler spread;
C类型的QCL关系(QCL Type C):average delay,Doppler shift;
D类型的QCL关系(QCL Type D):Spatial Rx parameter。
其中,Doppler shift可译为多普勒偏移、多普勒频移或多普勒频偏。
具有QCL关系的源信号和目标信号,两者的信道大尺度参数包括的参数是相同的。例如,若源信号与目标信号具有QCL Type A,则表示可利用源信号的Doppler shift,Doppler spread,average delay,delay spread,推导获得目标信号的Doppler shift,Doppler spread,average delay,delay spread。
2、传输配置指示(transmission configuration indication,TCI)
TCI域为下行控制信息(downlink control information,DCI)中用于指示PDSCH或PDCCH中的DMRS的准共址(quasi co location,QCL)的字段,或用于为PDSCH或PDCCH中的DMRS与一个或多个下行参考信号之间配置QCL关系,可以理解为此次PDSCH或PDCCH传输过程的信道特性。从而,终端能够基于该TCI域指示的TCI状态,获知所接收到的PDSCH的DMRS的信道大尺度参数,进而基于信道估计,解调出PDSCH。
可选的,TCI状态也可以不通过DCI指示,如可以通过RRC配置,或MAC CE指示,或MAC CE和DCI联合确定等方式得到。或者,本文一些实施例的QCL指示信息所指示的源信号与目标信号之间的QCL关系、信道参数也可通过预定义的方式得到,例如,预定义与目标信号具有QCL关系的源信号、信道参数,而不需要指明与目标信号具有QCL关系的源信号、信道参数属于某个TCI状态。
需要注意的是,本申请实施例的QCL指示信息可用于但不限于指示多个TCI状态,在某些实施例中,该QCL指示信息还可指示其他参数信息,具体可参见后续实施例的相关内容。可选的,上述TCI域用于配置PDSCH或PDCCH中的DMRS与一个或多个下行参考信号之间的QCL关系中,一个或多个下行参考信号及其关联的一个或多个类型的QCL关系可概述 为QCL配置信息,不同TCI状态可关联或对应不同的QCL配置信息。可选的,一个QCL配置信息也可称为一个QCL信息或一个QCL假设。
其中,该下行参考信号可以为上述的源信号,此处不再详述。
在多站协作传输中,不同TRP所处的地理位置不同,每个TRP与终端之间信道的TCI状态也不同。本申请实施例中,一次传输包括多个PDSCH的并行传输,因此,网络设备需要为终端配置该多个PDSCH的TCI状态,即该多个TCI状态可由来自一个TRP的一个DCI中的同一个TCI域指示,也可由多个TCI域指示;或者,该多个TCI状态可由来自不同TRP的多个DCI传输。也就是说,对于终端而言,不同TRP在协作传输PDSCH的过程中具有不同的TCI状态(state)。其中,TCI状态可简称为TCI。
3、TRS对应的DMRS端口
如上述方案1或方案2的场景,不同TRP的传输数据对应的DMRS端口可以相同或不同,相应的,不同TRP的TCI状态指示的源信号,如TRS,分别对应的DMRS端口也可相同或不同。即若不同TRP的传输数据对应的DMRS端口相同,则不同TCI状态分别指示的TRS对应的DMRS端口也相同;若不同TRP的传输数据对应的DMRS端口不同,则不同TCI状态分别指示的TRS对应的DMRS端口也不同。
如上,多站协作传输中,不同TRP部署在不同的地理位置,到达终端的信道也不一样,进而这些信道的信道大尺度参数也不同,会导致不同TRP的传输信号到终端的时延不同以及不同TRP的传输信号到终端之间的多普勒不同。其中,时延不同是由于不同TRP的时钟精度、时钟校准误差以及到达终端的距离不同造成的传输时延不同造成的,而信号的时延不同,会导致协作传输的PDSCH会产生时域上的干扰、符号间的干扰、载波间的干扰等。多普勒不同是由于不同TRP与终端之间的相对运动的角度不同造成的,而这种不同的多普勒会造成信号具有不同的频偏,进而产生载波干扰。
请参见图6,图6一种是TRP1和TRP2分别与UE之间的信道的多普勒偏移的示意图。图6中设备数量和形态用于举例并不构成对本申请实施例的限定,图6以TRP1、TRP2协作为一个终端传输数据为例。其中,TRP1、TRP2部署在不同的地理位置,TRP1和TRP2可在各自的中心频点发送TRS1和TRS2。若TRP1与TRP2不同频,则TRP1与TRP2的中心频点不相同;若TRP1与TRP2同频,则中心频点可相同,如图6以中心频点fc为例。其中:
TRP1以中心频点fc发送TRS1,TRP2以中心频点fc发送TRS2;
由于TRP1、TRP2到达终端的信道不一样所引起的多普勒不同,故TRP1发送的TRS1到达终端的多普勒频偏是f d1,TRP2发送的TRS2到达终端的多普勒频偏是f d2
假设采用一个DCI传输TRP1和TRP2的TCI状态,其中,TCI状态1对应TRS1,TCI状态2对应TRS2;终端基于TRS1的信道大尺度参数推导出对应的DMRS的接收频点是f c+f d1,终端基于TRS2的信道大尺度参数推导出对应的DMRS的接收频点是f c+f d2
可见,TRP1和TRP2分别传输的DMRS、PDSCH的接收频点不同,导致到达终端的DMRS、PDSCH出现载波间的干扰,造成多站传输性能损失。
本申请提供一种QCL指示方法1100,该方法可适用于多站协作传输中,该方法中,终端可接收QCL指示信息,该QCL指示信息可用于指示DMRS的时延扩展与N个TRS的时延扩展相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
可见,该方法有利于使得N个TRS对应的DMRS端口相同的场景,DMRS的时延扩展基于N个TRS的时延扩展获得,从而融合了不同TRP到终端的多径时延特性,有利于改善DMRS信道估计的准确度;以及,有利于网络设备采用频偏补偿的方式发送DMRS使得来自不同TRP的DMRS的频偏一致,避免产生载波干扰,并将补偿后的基准频偏通过M个TRS的多普勒偏移告知终端,避免终端采用错误的基准频偏接收补偿后的DMRS。因此,该方法能够改善多站传输性能。
本申请提供另一种QCL指示方法1200,该方法可适用于多站协作传输中,该方法中,终端可接收QCL指示信息,该QCL指示信息可用于指示DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,以及DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1。
可见,该方法有利于使得N个TRS对应的DMRS端口相同的场景,DMRS的多普勒扩展基于N个TRS的多普勒扩展获得,从而融合了不同TRP到终端的不同多普勒特性,有利于改善DMRS信道估计的准确度;以及,有利于网络设备采用时延补偿的方式发送DMRS使得来自不同TRP的DMRS的时延一致,避免产生符号间的干扰,并将补偿后的基准时延通过M个TRS的平均时延告知终端,避免终端采用错误的基准时延接收DMRS。因此,该方法能够改善多站传输性能。
本申请提供又一种QCL指示方法1300,该方法可适用于多站协作传输中,该方法中,终端可接收QCL指示信息,该QCL指示信息可用于指示DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的时延扩展与N个TRS的时延扩展相关联,DMRS的多普勒偏移与M个TRS的多普勒偏移相关联,以及DMRS的平均时延与M个TRS的平均时延相关联;N大于或等于2,M大于或等于1。
可见,该方法有利于使得N个TRS对应的DMRS端口相同的场景,DMRS的多普勒扩展基于N个TRS的多普勒扩展获得,DMRS的时延扩展基于N个TRS的时延扩展获得,从而融合了不同TRP到终端的多径特性,有利于改善DMRS信道估计的准确度;以及,有利于网络设备采用频偏时延补偿的方式发送DMRS使得来自不同TRP的DMRS的频偏、时延一致,避免产生符号间干扰、载波间干扰,并将补偿后的基准时延、基准频偏通过M个TRS的平均时延、多普勒偏移告知终端,避免终端采用错误的基准时延、基准频偏接收DMRS。因此,该方法能够改善多站传输性能。
另外,本申请还提供QCL指示方法1400至QCL指示方法1800,与上述方法的不同之处在于,QCL指示信息所指示的时频扩展信息、时延频偏信息不同。其中,时频扩展信息可包括时延扩展和/或多普勒扩展;时延频偏信息可包括平均时延和/或多普勒偏移。因此,除了上述QCL指示信息指示时延扩展和多普勒偏移的方法、QCL指示信息指示多普勒扩展和平均时延的方法、以及QCL指示信息指示多普勒扩展、时延扩展、平均时延、多普勒偏移的方法外:
QCL指示方法1400,该QCL指示信息用于指示DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的时延扩展与N个TRS的时延扩展相关联,DMRS的多普勒偏移与M个TRS的多普勒偏移相关联。
QCL指示方法1500,该QCL指示信息可用于指示DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的时延扩展与N个TRS的时延扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联。
QCL指示方法1600,该QCL指示信息可用于指示DMRS的多普勒扩展与N个TRS的 多普勒扩展相关联,DMRS的多普勒偏移与M个TRS的多普勒偏移相关联,以及DMRS的平均时延与M个TRS的平均时延相关联。
QCL指示方法1700,该QCL指示信息可用于指示DMRS的时延扩展与N个TRS的时延扩展相关联,DMRS的多普勒偏移与M个TRS的多普勒偏移相关联,以及DMRS的平均时延与M个TRS的平均时延相关联。
QCL指示方法1800,该QCL指示信息可用于指示DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的多普勒偏移与M个TRS的多普勒偏移相关联。
QCL指示方法1900,该QCL指示信息可用于指示DMRS的时延扩展与N个TRS的时延扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联。
本申请实施例中,DMRS的时延扩展与N个TRS的时延扩展相关联,还可表述为:DMRS与N个TRS具有QCL关系,该QCL关系对应的信道大尺度参数包括时延扩展;或者,DMRS与N个TRS在时延扩展上满足QCL关系。这样,DMRS的时延扩展可基于N个TRS的时延扩展获得。
本申请实施例中,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,还可表述为:DMRS与N个TRS具有QCL关系,该QCL关系对应的信道大尺度参数包括多普勒扩展;或者,DMRS与N个TRS在多普勒扩展上满足QCL关系。这样,DMRS的多普勒扩展可基于N个TRS的多普勒扩展获得。
本申请实施例中,DMRS的平均时延与M个TRS的平均时延相关联,还可表述为:DMRS与M个TRS具有QCL关系,该QCL关系对应的信道大尺度参数包括平均时延;或者,DMRS与M个TRS在平均时延上满足QCL关系。这样,DMRS的平均时延可基于M个TRS的平均时延获得。
本申请实施例中,DMRS的多普勒偏移与M个TRS的多普勒偏移相关联,还可表述为:DMRS与M个TRS具有QCL关系,该QCL关系对应的信道大尺度参数包括多普勒偏移;或者,DMRS与M个TRS在多普勒偏移上满足QCL关系。这样,DMRS的多普勒偏移可基于M个TRS的多普勒偏移获得。
其中,M个TRS可以是N个TRS中的部分TRS,也可以是额外的M个TRS。
本申请还提供了一种QCL指示方法2100至QCL指示方法2900,其中,QCL指示方法2100至QCL指示方法2900,分别与上述QCL指示方法1100至QCL指示方法1900相对应,不同之处在于,上述QCL指示方法1100至QCL指示方法1900可适用于N个TRP协作传输场景中N个TRS对应的DMRS端口相同的情况,QCL指示方法2100至QCL指示方法2900可适用于N个TRP协作传输场景中N个TRS对应的DMRS端口不同的情况。
其中,QCL指示方法2100与QCL指示方法1100相对应,与QCL指示方法1100的不同之处在于,每个DMRS的时延扩展是基于对应的TRS的时延扩展获得的,各DMRS的多普勒偏移是基于M个TRS的多普勒偏移获得的。该方法2100中,每个DMRS的时延扩展可能不同,但每个DMRS的多普勒偏移是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的时延扩展进行信道估计更加准确。该方法还能够基于统一的基准频偏来接收DMRS和PDSCH,避免在网络设备进行频偏补偿发送DMRS和PDSCH的情况,终端采用错误的基准频偏所导致的传输性能下降的问题。因此,该方法有利于改善多站传输性能。
QCL指示方法2200与QCL指示方法1200相对应,与QCL指示方法1200的不同之处在于,每个DMRS的多普勒扩展是基于对应的TRS的多普勒扩展获得的,各DMRS的平均 时延是基于M个TRS的平均时延获得的。该方法中,每个DMRS的时延扩展可能不同,但每个DMRS的平均时延是相同的,这样,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的多普勒扩展进行信道估计更加准确。该方法还能够基于统一的平均时延来接收DMRS和PDSCH,避免在网络设备进行时延补偿发送DMRS和PDSCH的情况,终端采用错误的基准时延所导致的传输性能下降的问题。因此,该方法有利于改善多站传输性能。
QCL指示方法2300与QCL指示方法1300相对应,与QCL指示方法1200的不同之处在于,每个DMRS的时延扩展是基于对应的TRS的时延扩展获得的,每个DMRS的多普勒扩展是基于对应的TRS的多普勒扩展获得的,各DMRS的多普勒偏移是基于M个TRS的多普勒偏移获得的,各DMRS的平均时延是基于M个TRS的平均时延获得的。该方法中,每个DMRS的时延扩展、多普勒扩展可能不同,在各TRS对应的DMRS端口不同的情况下,采用各自对应的TRS的时延扩展、多普勒扩展进行信道估计更加准确。该方法还能够基于统一的平均时延、多普勒偏移来接收DMRS和PDSCH,避免在网络设备进行时延频频偏补偿发送DMRS和PDSCH的情况,终端采用错误的基准时延、基准频偏所导致的传输性能下降的问题。因此,该方法有利于改善多站传输性能。
关于QCL指示方法2400至QCL指示方法2900的相关内容以及有益效果分析,可参见上述描述,此处不再详述。
另外,本申请实施例中,N个TRP可对应N个TCI状态,每个TCI状态所指示的QCL信息中TRS关联的QCL关系在不同的QCL指示方法中可能不同。本申请实施例中的M个TRS可以是该N个TCI状态中M个TCI状态所指示的QCL信息中的另一个TRS或同一个TRS。或者,本申请实施例中的M个TRS是由不同于上述N个TCI状态,而是由额外M个TCI状态所指示的上述N个TRS中的部分TRS,或额外的TRS,本申请不做限定。
一种情况,N个TRS关联的是时频扩展信息,如时延扩展和/或多普勒扩展;M个TRS关联的是时延频偏信息,如平均时延和/或多普勒偏移,因此,QCL指示信息的指示方式可包括但不限于以下几种实施方式:
实施方式1.1,QCL指示信息用于指示N个TCI状态,其中M个TCI状态中每个TCI状态指示的QCL信息包括的TRS关联时频扩展信息和时延频偏信息;其余L个TCI状态中每个TCI状态指示的QCL信息包括一个TRS,且该TRS关联时频扩展信息。L大于或等于1,L与M之和等于N。
若关联时延频偏信息的M个TRS是关联时频扩展信息的N个TRS中的部分TRS,则该M个TCI状态中每个TCI状态指示的QCL信息包括一TRS以及该TRS关联时频扩展信息和时延频偏信息,其余L个TCI状态中每个TCI状态指示的QCL信息中,TRS可仅关联时频扩展信息。
若关联时延频偏信息的M个TRS不是关联时频扩展信息的N个TRS中的部分TRS,则该M个TCI状态中每个TCI状态指示的QCL信息包括两个TRS,其中一个TRS关联时频扩展信息,另一个TRS关联时延频偏信息。其余L个TCI状态中每个TCI状态指示的QCL信息中,TRS可仅关联时频扩展信息,L大于或等于1,L与M之和等于N。
实施方式1.2,QCL指示信息用于指示N个TCI状态,每个TCI状态所分别指示的QCL信息包括一TRS且该TRS关联时频扩展信息和时延频偏信息。并且,网络设备侧还告知终端以下信息:L个TCI状态指示的时延频偏信息不可用,且M个TCI状态指示的时延频偏信息适用于其余L个TCI状态。L大于或等于1,L与M之和等于N。
该实施方式1.2.1中,网络设备侧告知终端上述信息的方式,可以包括但不限于以下方式: N个TCI状态中的M个TCI状态中,关联时延频偏信息的TRS的优先级比其余L个TCI状态中关联时延频偏信息的TRS的优先级高。因此,该M个TCI状态中,TRS关联的时延频偏信息可以覆盖其余L个TCI状态中TRS关联的时延频偏信息。
其中,同一个TCI状态所指示的QCL信息中,关联时延频偏信息的TRS可与关联时频扩展信息和时延频偏信息的TRS属于同一TRS,也可属于不同的TRS。
可见,该实施方式1.2中,部分TCI状态能够指示两种类型QCL关系的TRS,避免采用额外的TCI来指示不同类型QCL关系的TRS,从而有利于节省了QCL指示信息所需的信令开销。
实施方式1.2.2,网络设备侧告知终端上述信息的方式,可以包括但不限于以下方式:QCL指示信息用于指示N个TCI状态外,还用于指示额外的M个TCI状态,该M个TCI状态中每个TCI状态所指示的QCL信息包括一TRS且该TRS仅关联时延频偏信息。并且,该M个TCI状态中关联时延频偏信息的TRS的优先级比上述N个TCI状态中关联时频扩展信息和时延频偏信息的TRS的优先级高(或定义仅关联时延频偏信息的TRS可覆盖关联时频扩展信息和时延频偏信息的TRS)。
其中,仅关联时延频偏信息的TRS与关联时频扩展信息和时延频偏信息的TRS可为同一TRS,也可为不同的TRS。可见,该实施方式中可采用额外的TCI来指示时延频偏信息,有利于改善时延频偏信息的指示灵活性。
实施方式1.3,QCL指示信息用于指示N个TCI状态,每个TCI状态所分别指示的QCL信息包括一TRS且该TRS关联时频扩展信息。其中,M个TCI状态中每个TCI状态还用于指示一TRS且该TRS关联时延频偏信息,或者,该QCL指示信息还额外指示M个TCI状态,每个TCI状态用于指示一TRS且该TRS关联时延频偏信息。也就是说,该实施方式1.3可包括但不限于实施方式1.3.1和实施方式1.3.2。
实施方式1.3.1中,QCL指示信息用于指示N个TCI状态,每个TCI状态分别指示的QCL信息包括一TRS且该TRS关联时频扩展信息;另外,其中M个TCI状态中,每个TCI状态指示的QCL信息还包括一TRS且该TRS关联时延频偏信息。
实施方式1.3.2中,QCL指示信息用于指示N个TCI状态,每个TCI状态分别指示的QCL信息包括一TRS且该TRS关联时频扩展信息;另外,QCL指示信息还用于指示另外的M个TCI状态,每个TCI状态指示的QCL信息包括一TRS且该TRS关联时延频偏信息。
该实施方式1.3中,该M个TCI状态指示的关联时延频偏信息的TRS与关联时频扩展信息的TRS可以是同一个TRS,也可以是不同的TRS。该M个TCI状态指示的TRS可以由协作传输的N个网络设备中的网络设备发送,但同一网络设备发送多个TRS时,该多个TRS的发送频点可能不同,具体与网络设备通过该M个TRS告知终端的基准时延或基准频偏的大小有关。
另外,除了上述实施方式1.1-实施方式1.3中,QCL指示信息指示时频扩展信息、时延频偏信息外,针对高频通信场景,本申请实施例中的QCL指示信息可采用N个TCI状态中的部分TCI状态或额外的TCI状态来指示TRS及其关联的空间参数,从而有利于改善多站协作场景中,结合高频通信场景的多站传输性能。其中,采用N个TCI状态中的部分TCI状态或额外的TCI状态来指示TRS及其关联的空间参数的相关实施方式,与实施方式1.1-实施方式1.3中指示时延频偏信息的方式类似,不同之处在于所指示的参数不同,此处不再详述。
另外,本申请实施例中,上述N个TCI状态,或者N个TCI状态以及M个TCI状态,可位于同一个TCI域中,也可位于多个TCI域中。上述N个TCI状态,或者N个TCI状态 以及M个TCI状态,可由同一个DCI传输,也可由多个DCI传输。
若有多个DCI来指示上述各种QCL指示信息所指示的关联关系,则可包括但不限于以下实施方式:
实施方式2.1,N个DCI中,M个DCI分别指示的QCL信息包括一TRS且该TRS关联时频扩展信息和时延频偏信息,其余L个DCI分别指示的QCL信息包括一个TRS且该TRS关联时频扩展信息。L大于或等于1,L与M之和等于N。
实施方式2.2,N个DCI所分别指示的QCL信息包括一TRS且该TRS关联时频扩展信息和时延频偏信息。并且,“网络设备侧还告知终端以下信息:L个DCI所分别指示的时延频偏信息不可用,且M个DCI所分别指示的时延频偏信息适用于其余L个DCI。L大于或等于1,L与M之和等于N”,或者“终端基于实施方式2.2.1或实施方式2.2.2可获知能够使用的时延频偏信息”。
该实施方式2.2.1中,网络设备侧告知终端上述信息的方式,可以包括但不限于以下方式:N个DCI中的M个DCI中,关联时延频偏信息的TRS的优先级比其余L个DCI中关联时延频偏信息的TRS的优先级高。因此,该M个DCI中,TRS关联的时延频偏信息可以覆盖其余L个DCI中TRS关联的时延频偏信息。
实施方式2.2.2,网络设备侧告知终端上述信息的方式,可以包括但不限于以下方式:由额外的M个DCI,每个DCI所指示的QCL信息包括一TRS且该TRS仅关联时延频偏信息。并且,该M个DCI指示的关联时延频偏信息的TRS的优先级比上述N个DCI指示的关联时频扩展信息和时延频偏信息的TRS的优先级高(或定义仅关联时延频偏信息的TRS可覆盖关联时频扩展信息和时延频偏信息的TRS)。
其中,仅关联时延频偏信息的TRS与关联时频扩展信息和时延频偏信息的TRS可为同一TRS,也可为不同的TRS。可见,该实施方式中可采用额外的DCI来指示时延频偏信息,有利于改善时延频偏信息的指示灵活性。
实施方式2.3,N个DCI中,M个DCI分别指示的QCL信息中包括一TRS且该TRS关联时频扩展信息;其余L个DCI中每个DCI指示的QCL信息中包括一TRS且该TRS关联时频扩展信息和时延频偏信息。
另外,该M个DCI分别指示的QCL信息还包括另一TRS且该TRS关联时延频偏信息,但是该关联时延频偏信息的TRS与其余L个DCI指示的QCL信息中关联时延频偏信息的TRS是同一个TRS。
另外,在多DCI的情况下,终端需要区分不同TRP的DCI,该情况中,不同TRP的DCI属于不同的CORESET组,有不同的CORESET组标识。例如,以实施方式2.3为例,协作为终端传输数据的是TRP1和TRP2,TRP1发送的DCI1关联CORESET组标识值0;TRP2发送的DCI2关联CORESET组标识值1,并且,DCI1指示的TRS1关联时频扩展信息和时延频偏信息;DCI2指示的TRS1关联时延频偏信息,该DCI2指示的TRS2关联时频扩展信息。可见,DCI2可通过携带的QCL指示信息来指示TRS1及其关联时延频偏信息,从而使得终端能够获知基准时延频偏信息是根据TRS1确定的,进而有利于TRP2根据该基准时延频偏信息对发送的DMRS和PDSCH进行补偿,避免与TRP1发送的DMRS和PDSCH,到达终端的信号时延或多普勒不同,并且终端可采用正确的基准时延频偏信息接收该DMRS和PDSCH,从而改善多站传输性能。
为了便于理解上述各QCL指示方法以及各实施方式的内容,以下对QCL指示方法1100 至QCL指示方法1900,以及QCL指示方法2100至QCL指示方法2900进行阐述时,以TRP1和TRP2协作为同一终端传输数据为例进行阐述。相应的,N等于2,M等于1。
另外,为便于阐述上述时频扩展信息,本申请还定义了一种E类型的QCL关系(QCL Type E),该QCL Type E的信道大尺度参数包括Doppler spread和/或delay spread。另外,上述时延频偏信息可用QCL type C表示,该QCL type C的信道大尺度参数包括average delay和/或Doppler shift。其中,QCL Type E、QCL type C的信道大尺度参数可以影响信道估计的性能,比如,它们可以影响信道估计的频域滤波系数、时域滤波系数等。也就是说,终端可根据本申请所述的QCL指示信息确定DMRS的时域滤波器和/或频域滤波器的系数。因此,本申请实施例中的QCL指示方法有利于改善信道估计的准确度,以下结合实际场景进行阐述。
其中,假设该QCL指示方法1100至QCL指示方法1300中,UE不需要区分TRP1和TRP2分别发送的DMRS和PDSCH,TRP1发送的TRS1与TRP2发送的TRS2分别对应的DMRS端口相同。
请参阅图7,图7是本申请实施例提供的一种QCL指示方法1100的流程示意图。该QCL指示方法1100可包括但不限于以下步骤:
S101、TRP2确定QCL指示信息;QCL指示信息用于指示DMRS的delay spread与TRS1、TRS2的delay spread相关联,以及DMRS的Doppler shift与TRS1的Doppler shift相关联;
S102、TRP2发送QCL指示信息;
S103、UE接收QCL指示信息。
一种实施方式中,TRP2与TRP1协商频偏补偿规则,或者多个TRP由某个中心节点控制来协商时延补偿规则,TRP2根据该频偏补偿规则确定QCL指示信息指示的Doppler shift。例如,如图8所示,采用该QCL指示方法1100的信号传输方法1100可包括但不限于以下步骤:
UE以中心频点f UE发送上行信号,如探测参考信号(sounding reference signal,SRS);假设TRP1到UE的多普勒偏移是f d1,TRP2到UE的多普勒偏移是f d2,那么,该SRS到TRP1的频点是f UE+f d1;该SRS到TRP2的频点是f UE+f d2
TRP1与TRP2之间交互SRS的接收频点,确定以f d1为基准,对TRP2发送的DMRS和PDSCH补偿一个差值△f fre2=f d1-f d2,而TRP1发送的DMRS和PDSCH不做补偿。
其中,该差值△f fre2是以TRP1与TRP2同频,中心频点可相同,均为中心频点fc为例获得的。若TRP1与TRP2不同频,则TRP1与TRP2的中心频点不相同,即TRP1与TRP2之间的发送频点本身就有差别,则该TRP2所补偿的△f fre2除了包括空口传播的多普勒偏移差值外,还包括TRP1与TRP2之间的发送频点差值。以下以TRP1与TRP2同频为例进行阐述。
这样,TRP2可确定需通过QCL指示信息指示DMRS的Doppler shift与TRS1的Doppler shift相关联。另外,由于UE不需要区分TRP1和TRP2分别发送的DMRS和PDSCH,故确定QCL指示信息指示DMRS的delay spread与TRS1和TRS2的delay spread相关联。
可见,TRP2发送该QCL指示信息,UE接收到该QCL指示信息之后,UE可根据该QCL指示信息确定DMRS的delay spread、Doppler shift,如图8所示,终端确定TRS1的Doppler shift为f d1,并根据DMRS的Doppler shift与TRS1的Doppler shift相关联,确定DMRS的Doppler shift等于TRS1的Doppler shift,故UE可确定DMRS的接收频点为fc+f d1。可见,如图8所示,TRP1发送DMRS/PDSCH没有补偿,TRP2对DMRS/PDSCH补偿△f fre2发送,故TRP1、TRP2分别发送的DMRS/PDSCH到达UE的接收频点均是fc+f d1,且与UE根据QCL指示信息确定的接收频点相一致,从而避免了载波间的干扰。
另外,如图9所示,UE根据该QCL指示信息确定DMRS的delay spread,包括:UE融合TRS1和TRS2的delay spread,获得DMRS的delay spread。由于DMRS的delay spread兼顾了TRP1到UE以及TRP2到UE两者的多径时延,因此,利用DMRS的delay spread进行DMRS信道估计的准确度更高。
可见,采用图8、图9所示的QCL指示方法有利于改善多站传输性能。
可选的,TRP1和TRP2也可以采用其他的频偏补偿规则,并通过QCL指示信息告知终端该频偏补偿规则对应的基准频偏。如图8所示的实施例中,通过QCL指示信息可告知终端基准频偏是基于TRS1的多普勒偏移获得的。
可选的,在一些实施方式中,通过QCL指示信息可告知终端基准频偏是基于TRS3的多普勒偏移获得的,也即是说,TRS1和TRS2可提供时延扩展,TRS3提供多普勒偏移,具体可参见下述的相关实施方式,此处不作详述。
以下结合上述QCL指示信息的指示方式,阐述本申请实施例的QCL指示方法中,QCL指示信息的具体指示方式。
一种实施方式,与实施方式1.1相对应,该实施方式中,QCL指示信息用于指示2个TCI状态,其中,TCI状态1指示的QCL信息包括TRS1,该TRS1关联时延扩展和多普勒偏移;TCI状态2指示的QCL信息包括TRS2,该TRS2关联时延扩展。
如图10所示,TRS1的多普勒偏移可作为基准频偏,TRS2仅提供多径参数,如时延扩展。进而,终端基于该TRS1的多普勒偏移,以及TRS1、TRS2的时延扩展,进行DMRS的信道估计。
可见,该实施方式中,终端根据为DMRS配置的两个TCI状态所分别指示的QCL信息,确定DMRS的时延扩展和多普勒偏移,从而有利于改善多站传输性能。
另一种实施方式中,与上一实施方式不同之处在于,TCI状态1指示的QCL信息包括TRS1和TRS3,其中,TRS1关联时延扩展,TRS3关联多普勒偏移;TCI状态2指示的QCL信息与上一实施方式相同,包括TRS2,该TRS2关联时延扩展。由于TRS1或TRS2关联多普勒偏移时,表示终端可利用TRP1或TRP2的多普勒偏移作为基准频偏,因此,该实施方式通过TRS3来单独关联多普勒偏移,有利于向UE通知的基准频偏,不限于其中一个TRP的多普勒偏移,进而有利于网络设备侧不必仅限于对TRP1或TRP2进行频偏补偿后发送,改善了网络设备侧频偏补偿的灵活性。
如图11所示,TRS1和TRS2仅提供多径参数,如时延扩展,而由TRS3来提供基准频偏,从而有利于TRS1和TRS2的发送频点可一致,仅提供多径的时延扩展即可;TRP1对TRS3的发送频点进行补偿后发送,使得终端接收该TRS3的接收频点不再局限于fc+f d1,例如可以是f c+△f+f d1,从而有利于终端以△f+f d1作为基准频偏,对DMRS进行接收。这样,TRP1和TRP2可均进行频偏补偿后发送DMRS,从而改善了频偏补偿的灵活性。
又一种实施方式,与上述实施方式1.2中的实施方式1.2.1相对应,QCL指示信息用于指示2个TCI状态,如图12所示:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联多普勒偏移和时延扩展;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联多普勒偏移和时延扩展。
并且,“网络设备侧还告知UE以下信息:TCI状态2指示的多普勒偏移不可用,且TCI状态1指示的多普勒偏移适用于TCI状态2”,或者“终端基于如下方式1或方式2可获知能够使用的多普勒偏移”。
方式1,TCI状态1指示的关联多普勒偏移的TRS1的优先级比TCI状态2指示的关联多 普勒偏移的TRS1的优先级高,因此,TRS1的多普勒偏移可覆盖TRS2的多普勒偏移,使得终端可将TRS1的多普勒偏移作为基准频偏。
方式2,该TCI状态1指示的QCL信息还包括TRS3且该TRS3关联多普勒偏移,且仅关联多普勒偏移的TRS3的优先级高于TRS1和TRS2,故终端可将TRS3关联的多普勒偏移作为基准频偏。该实施方式中,TCI状态1能够指示两种类型QCL关系的TRS,避免采用额外的TCI来指示基准频偏,从而有利于节省QCL指示信息所需的信令开销。
又一种实施方式,与上述实施方式1.2中的实施方式1.2.2相对应,QCL指示信息用于指示3个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联多普勒偏移和时延扩展;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联多普勒偏移和时延扩展;
TCI状态3指示的QCL信息包括TRS1且该TRS1关联多普勒偏移,或者,TCI状态3指示的QCL信息包括TRS3且该TRS3关联多普勒偏移。
并且,“网络设备侧还告知UE以下信息:TCI状态1、TCI状态2指示的多普勒偏移不可用,且TCI状态3指示的多普勒偏移适用于TCI状态1、TCI状态2”,或者“终端基于如下方式1或方式2可获知能够使用的多普勒偏移”。
方式1,关联多普勒偏移的TRS1的优先级比关联多普勒偏移的TRS2的优先级高,因此,TRS1的多普勒偏移可覆盖TRS2的多普勒偏移,使得终端可将TRS1的多普勒偏移作为基准频偏。
方式2,仅关联多普勒偏移的TRS3的优先级高于TRS1和TRS2,故终端可将TRS3关联的多普勒偏移作为基准频偏。
该实施方式采用额外的TCI来指示基准频偏,从而有利于改善基准频偏指示的灵活性。
又一种实施方式,与上述实施方式1.3中的实施方式1.3.1相对应,QCL指示信息用于指示2个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联时延扩展;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联时延扩展。
另外,该实施方式中,基准频偏通过以下方式指示:
方式1,TCI状态1指示的QCL信息还包括TRS1且该TRS1关联多普勒偏移,可见,该方式中,TRS1可关联两种信道大尺度参数,有利于告知终端采用TRS1的多普勒偏移作为基准频偏。
方式2,TCI状态1指示的QCL信息还包括TRS3且该TRS3关联多普勒偏移,可见,该方式中,TCI状态1可额外指示TRS关联多普勒偏移,从而改善了基准频偏的指示灵活性。
又一种实施方式,与上述实施方式1.3中的实施方式1.3.2相对应,QCL指示信息用于指示3个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联时延扩展;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联时延扩展;
TCI状态3指示的QCL信息包括TRS1且该TRS1关联多普勒偏移,或者,TCI状态3指示的QCL信息包括TRS3且该TRS3关联多普勒偏移。
可见,该实施方式采用另外的TCI状态告知终端基准频偏,从而改善了基准频偏的指示灵活性。
另外,上述各实施方式中,可结合QCL Type E、QCL Type C表示TRS关联的信道大尺度参数。其中,该QCL Type E的信道大尺度参数包括delay spread;该QCL Type C的信道 大尺度参数包括Doppler shift。
例如,与上述实施方式1.3中的实施方式1.3.1对应的实施方式中,QCL指示信息用于指示2个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type E;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联QCL Type E;
并且,(方式1中)TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type C;或者(方式3中)TCI状态1指示的QCL信息包括TRS3且该TRS3关联QCL Type C。
再例如,与实施方式1.3中的实施方式1.3.2对应的实施方式中,QCL指示信息用于指示3个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type E;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联QCL Type E;
并且,(方式2中)TCI状态3指示的QCL信息包括TRS1且该TRS1关联QCL Type C;或者(方式4中)TCI状态3指示的QCL信息包括TRS3且该TRS3关联QCL Type C。
另外,除了上述实施方式中,QCL指示信息指示时延扩展和多普勒偏移外,针对高频通信场景,该QCL指示信息可采用上述2个TCI状态中的一个TCI状态或额外的TCI状态来指示TRS及其关联的空间参数,从而有利于改善多站协作场景中,结合高频通信场景的多站传输性能。其中,采用2个TCI状态中的一个TCI状态或额外的TCI状态来指示TRS及其关联的空间参数的相关实施方式,与实施方式中指示时延频偏信息的方式类似,不同之处在于所指示的参数不同,此处不再详述。
另外,本申请实施例中,上述2个TCI状态,或者3个TCI状态,可位于同一个TCI域中,也可位于多个TCI域中。上述2个TCI状态,或者3个TCI状态可由同一个DCI传输,也可由2个DCI或3个DCI传输。
若有多个DCI来指示上述各种QCL指示信息所指示的关联关系,则可包括但不限于以下实施方式:
一种实施方式中,与上述实施方式2.1相对应,2个DCI中:
DCI1指示的QCL信息包括TRS1且该TRS1关联时延扩展和多普勒偏移:
DCI2指示的QCL信息包括TRS2且该TRS2关联时延扩展。
另一种实施方式中,与上述实施方式2.2中的实施方式2.2.1相对应,2个DCI中:
DCI1指示的QCL信息包括TRS1且该TRS1关联时延扩展和多普勒偏移:
DCI2指示的QCL信息包括TRS2且该TRS2关联时延扩展和多普勒偏移。
并且,“网络设备侧还告知UE以下信息:DCI2指示的多普勒偏移不可用,且DCI1指示的多普勒偏移适用于DCI2”,或者“终端基于如下方式获知能够使用的多普勒偏移”。
该方式为:DCI1指示的关联多普勒偏移的TRS1的优先级比DCI2中关联多普勒偏移的TRS2的优先级高。因此,TRS1关联的多普勒偏移可以覆盖TRS2关联的多普勒偏移。
又一种实施方式中,与上述实施方式2.2中的实施方式2.2.2相对应,3个DCI中:
DCI1指示的QCL信息包括TRS1且该TRS1关联时延扩展和多普勒偏移:
DCI2指示的QCL信息包括TRS2且该TRS2关联时延扩展和多普勒偏移;
DCI3指示的QCL信息包括TRS3且该TRS3关联多普勒偏移,或者,DCI3指示的QCL信息包括TRS1且该TRS1关联多普勒偏移。
并且,“网络设备侧还告知UE以下信息:DCI1、DCI2指示的多普勒偏移不可用,且DCI3指示的多普勒偏移适用于DCI1、DCI2”,或者“终端基于如下方式1或方式2可获知能够使用 的时延频偏信息”。
方式1,DCI3指示的关联多普勒偏移的TRS3的优先级比DCI1指示的TRS1、DCI2指示TRS2的优先级高。因此,TRS3关联的多普勒偏移可以覆盖TRS1、TRS2关联的时延频偏信息。
方式2,DCI3指示的TRS1关联的多普勒偏移的优先级比DCI1、DCI2指示的多普勒偏移优先级高。因此,DCI3指示的TRS1关联的多普勒偏移可以覆盖DCI1、DCI2指示的多普勒偏移。
可见,该实施方式中,仅关联多普勒偏移的TRS与关联时延扩展和多普勒偏移的TRS可为同一TRS,也可为不同的TRS。可见,该实施方式中可采用额外的DCI来指示多普勒偏移,有利于改善多普勒偏移的指示灵活性。
又一种实施方式中,与上述实施方式2.3相对应,2个DCI中:
DCI1指示的QCL信息中包括TRS1且该TRS1关联时延扩展和多普勒偏移:
DCI2指示的QCL信息中包括TRS2且该TRS2关联时延扩展,以及TRS1,且该TRS1关联多普勒偏移;
可见,该实施方式中,终端根据该DCI1和DCI2,可确定出TRS1的多普勒偏移作为基准频偏。
可见,上述阐述了该QCL指示方法中,指示DMRS的delay spread与TRS1、TRS2的delay spread相关联,以及DMRS的Doppler shift与TRS1的Doppler shift相关联的各种实施方式。另外,上述一些实施方式还阐述了指示DMRS的delay spread与TRS1、TRS2的delay spread相关联,以及DMRS的Doppler shift与TRS3的Doppler shift相关联,从而有利于网络设备侧不限于对TRP1或TRP2进行频偏补偿后发送DMRS,如可对TRP1、TRP2均进行频偏补偿后发送DMRS,并通过TRS3告知终端基准频偏。
请参阅图13,图13是本申请实施例提供的一种QCL指示方法1200的流程示意图。该QCL指示方法1200可包括但不限于以下步骤:
S201、TRP2确定QCL指示信息;QCL指示信息用于指示DMRS的Doppler spread与TRS1、TRS2的Doppler spread相关联,以及DMRS的average delay与TRS1的average delay相关联;
S202、TRP2发送QCL指示信息;
S203、UE接收QCL指示信息。
一种实施方式中,TRP2与TRP1协商时延补偿规则,或者由某个中心节点控制来协商时延补偿规则,TRP2根据该时延补偿规则确定QCL指示信息指示的average delay。例如,如图14所示,采用该QCL指示方法1200的信号传输方法1200可包括但不限于以下步骤:
UE以中心频点t UE发送上行信号,如探测参考信号(sounding reference signal,SRS);假设TRP1到UE的average delay是t d1,TRP2到UE的average delay是t d2,那么,该SRS到TRP1的时间是t UE+t d1;该SRS到TRP2的时间是t UE+t d2
TRP1与TRP2之间交互SRS的接收时间,确定以t d1为基准,对TRP2发送的DMRS和PDSCH补偿一个差值△t fre2=t d1-t d2,而TRP1发送的DMRS和PDSCH不做时延补偿。
这样,TRP2可确定需通过QCL指示信息指示DMRS的average delay与TRS1的average delay相关联。另外,由于UE不需要区分TRP1和TRP2分别发送的DMRS和PDSCH,故确定QCL指示信息指示DMRS的Doppler spread与TRS1和TRS2的Doppler spread相关联。
可见,TRP2发送该QCL指示信息,UE接收到该QCL指示信息之后,UE可根据该QCL指示信息确定DMRS的Doppler spread、average delay,如图14所示,终端确定TRS1的average delay为t d1,并根据DMRS的average delay与TRS1的average delay关联,确定DMRS的average delay等于TRS1的average delay,故UE可确定DMRS的接收时间为tc+t d1。可见,如图14所示,TRP1发送DMRS/PDSCH没有补偿,TRP2对DMRS/PDSCH补偿△t fre2发送,故TRP1、TRP2分别发送的DMRS/PDSCH到达UE的接收时间均是tc+t d1,且与UE根据QCL指示信息确定的接收时间相一致,从而避免了符号间的干扰。
另外,如图15所示,UE根据该QCL指示信息确定DMRS的Doppler spread,包括:UE融合TRS1和TRS2的Doppler spread,获得DMRS的Doppler spread。由于DMRS的Doppler spread兼顾了TRP1到UE以及TRP2到UE两者的多径多普勒,因此,利用DMRS的Doppler spread进行DMRS信道估计的准确度更高。
可见,采用图13所示的QCL指示方法有利于改善多站传输性能。
可选的,TRP1和TRP2也可以采用其他的时延补偿规则,并通过QCL指示信息告知终端该时延补偿规则对应的基准时延。如图14所示的实施例中,通过QCL指示信息可告知终端基准时延是基于TRS1的平均时延获得的。
可选的,在一些实施方式中,通过QCL指示信息可告知终端基准时延是基于TRS3的平均时延获得的,也即是说,TRS1和TRS2可提供Doppler spread,TRS3提供average delay,具体可参见下述的相关实施方式,此处不作详述。
以下结合上述QCL指示信息的指示方式,阐述本申请实施例的QCL指示方法中,QCL指示信息的具体指示方式。
一种实施方式,与实施方式1.1相对应,该实施方式中,QCL指示信息用于指示2个TCI状态,其中,TCI状态1指示的QCL信息包括TRS1,该TRS1关联多普勒扩展和平均时延;TCI状态2指示的QCL信息包括TRS2,该TRS2关联多普勒扩展。
如图16所示,TRS1的平均时延可作为基准时延,TRS2仅提供多径参数,如多普勒扩展。进而,终端基于该TRS1的平均时延,以及TRS1、TRS2的多普勒扩展,进行DMRS的信道估计。
可见,该实施方式中,终端根据为DMRS配置的两个TCI状态所分别指示的QCL信息,确定DMRS的多普勒扩展和平均时延,从而有利于改善多站传输性能。
另一种实施方式中,与上一实施方式不同之处在于,TCI状态1指示的QCL信息包括TRS1和TRS3,其中,TRS1关联多普勒扩展,TRS3关联平均时延;TCI状态2指示的QCL信息与上一实施方式相同,包括TRS2,该TRS2关联多普勒扩展。
由于TRS1或TRS2关联平均时延时,表示终端可利用TRP1或TRP2的平均时延作为基准时延,因此,该实施方式通过TRS3来单独关联平均时延,有利于向UE通知的基准时延,不限于其中一个TRP的平均时延,进而有利于网络设备侧不必仅限于对TRP1或TRP2进行时延补偿后发送,改善了网络设备侧时延补偿的灵活性。
如图17示,TRS1和TRS2仅提供多径参数,如多普勒扩展,而由TRS3来提供基准时延,从而有利于TRS1和TRS2的发送时间可一致,仅提供多径的多普勒扩展即可;TRP1对TRS3的发送时间进行补偿后发送,使得终端接收该TRS3的接收时间不再局限于tc+td1,例如可以是tc+△t+td1,从而有利于终端以△t+td1作为基准时延,对DMRS进行接收。这样,TRP1和TRP2可均进行时延补偿后发送DMRS,从而改善了时延补偿的灵活性。
又一种实施方式,与上述实施方式1.2中的实施方式1.2.1相对应,QCL指示信息用于指 示2个TCI状态,如图17所示:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联多普勒扩展和平均时延;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联多普勒扩展和平均时延。
并且,“网络设备侧还告知UE以下信息:TCI状态2指示的平均时延不可用,且TCI状态1指示的平均时延适用于TCI状态2”,或者“终端基于如下方式1或方式2获知能够使用的平均时延”。
方式1,TCI状态1指示的关联平均时延的TRS1的优先级比TCI状态2指示的关联平均时延的TRS1的优先级高,因此,TRS1的平均时延可覆盖TRS2的平均时延,使得终端可将TRS1的平均时延作为基准时延。
方式2,该TCI状态1指示的QCL信息还包括TRS3且该TRS3关联平均时延,且仅关联平均时延的TRS3的优先级高于TRS1和TRS2,故终端可将TRS3关联的平均时延作为基准时延。该实施方式中,TCI状态1能够指示两种类型QCL关系的TRS,避免采用额外的TCI来指示基准频偏,从而有利于节省QCL指示信息所需的信令开销。
又一种实施方式,与上述实施方式1.2中的实施方式1.2.2相对应,QCL指示信息用于指示3个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联多普勒扩展和平均时延;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联多普勒扩展和平均时延;
TCI状态3指示的QCL信息包括TRS1且该TRS1关联平均时延,或者,TCI状态3指示的QCL信息包括TRS3且该TRS3关联平均时延。
并且,“网络设备侧还告知UE以下信息:TCI状态1、TCI状态2指示的平均时延不可用,且TCI状态3指示的平均时延适用于TCI状态1、TCI状态2”,或者“终端基于如下方式1或方式2获知能够使用的平均时延”。
方式1,关联平均时延的TRS1的优先级比关联平均时延的TRS2的优先级高,因此,TRS1的平均时延可覆盖TRS2的平均时延,使得终端可将TRS1的平均时延作为基准时延。
方式2,仅关联平均时延的TRS3的优先级高于TRS1和TRS2,故终端可将TRS3关联的平均时延作为基准时延。
该实施方式采用额外的TCI来指示基准时延,从而有利于改善基准时延指示的灵活性。
又一种实施方式,与上述实施方式1.3中的实施方式1.3.1相对应,QCL指示信息用于指示2个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联多普勒扩展;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联多普勒扩展。
另外,该实施方式中,基准时延通过以下方式指示:
方式1,TCI状态1指示的QCL信息还包括TRS1且该TRS1关联平均时延,可见,该方式中,TRS1可关联两种信道大尺度参数,有利于告知终端采用TRS1的平均时延作为基准时延。
方式2,TCI状态1指示的QCL信息还包括TRS3且该TRS3关联平均时延,可见,该方式中,TCI状态1可额外指示TRS关联平均时延,从而改善了基准时延的指示灵活性。
又一种实施方式,与上述实施方式1.3中的实施方式1.3.2相对应,QCL指示信息用于指示3个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联多普勒扩展;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联多普勒扩展;
TCI状态3指示的QCL信息包括TRS1且该TRS1关联平均时延,或者,TCI状态3指示的QCL信息包括TRS3且该TRS3关联平均时延。
可见,该实施方式采用另外的TCI状态告知终端基准时延,从而改善了基准时延的指示灵活性。
另外,上述各实施方式中,可结合QCL Type E、QCL Type C表示TRS关联的信道大尺度参数。其中,该QCL Type E的信道大尺度参数包括Doppler spread;该QCL Type C的信道大尺度参数包括average delay。
例如,与上述实施方式1.3中的实施方式1.3.1对应的实施方式中,QCL指示信息用于指示2个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type E;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联QCL Type E;
并且,(方式1中)TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type C;或者(方式3中)TCI状态1指示的QCL信息包括TRS3且该TRS3关联QCL Type C。
再例如,与实施方式1.3中的实施方式1.3.2对应的实施方式中,QCL指示信息用于指示3个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type E;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联QCL Type E;
并且,(方式2中)TCI状态3指示的QCL信息包括TRS1且该TRS1关联QCL Type C;或者(方式4中)TCI状态3指示的QCL信息包括TRS3且该TRS3关联QCL Type C。
另外,除了上述实施方式中,QCL指示信息指示Doppler spread和average delay外,针对高频通信场景,该QCL指示信息可采用上述2个TCI状态中的一个TCI状态或额外的TCI状态来指示TRS及其关联的空间参数,从而有利于改善多站协作场景中,结合高频通信场景的多站传输性能。其中,采用2个TCI状态中的一个TCI状态或额外的TCI状态来指示TRS及其关联的空间参数的相关实施方式,与实施方式中指示average delay的方式类似,不同之处在于所指示的参数不同,此处不再详述。
另外,本申请实施例中,上述2个TCI状态,或者3个TCI状态,可位于同一个TCI域中,也可位于多个TCI域中。上述2个TCI状态,或者3个TCI状态可由同一个DCI传输,也可由2个DCI或3个DCI传输。
若有多个DCI来指示上述各种QCL指示信息所指示的关联关系,则可包括但不限于以下实施方式:
一种实施方式中,与上述实施方式2.1相对应,2个DCI中:
DCI1指示的QCL信息包括TRS1且该TRS1关联Doppler spread和average delay:
DCI2指示的QCL信息包括TRS2且该TRS2关联Doppler spread。
另一种实施方式中,与上述实施方式2.2中的实施方式2.2.1相对应,2个DCI中:
DCI1指示的QCL信息包括TRS1且该TRS1关联Doppler spread和average delay:
DCI2指示的QCL信息包括TRS2且该TRS2关联Doppler spread和average delay。
并且,“网络设备侧还告知UE以下信息:DCI2指示的average delay不可用,且DCI1指示的average delay适用于DCI2”,或者“终端基于如下方式获知能够使用的平均时延”。
该方式是:DCI1指示的关联average delay的TRS1的优先级比DCI2中关联average delay的TRS2的优先级高。因此,TRS1关联的average delay可以覆盖TRS2关联的average delay。
又一种实施方式中,与上述实施方式2.2中的实施方式2.2.2相对应,3个DCI中:
DCI1指示的QCL信息包括TRS1且该TRS1关联Doppler spread和average delay:
DCI2指示的QCL信息包括TRS2且该TRS2关联Doppler spread和average delay;
DCI3指示的QCL信息包括TRS3且该TRS3关联average delay,或者,DCI3指示的QCL信息包括TRS1且该TRS1关联average delay。
并且,“网络设备侧还告知UE以下信息:DCI1、DCI2指示的average delay不可用,且DCI3指示的average delay适用于DCI1、DCI2”,或者“终端基于如下方式1或方式2获知能够使用的平均时延”。
方式1,DCI3指示的关联average delay的TRS3的优先级比DCI1指示的TRS1、DCI2指示TRS2的优先级高。因此,TRS3关联的average delay可以覆盖TRS1、TRS2关联的average delay。
方式2,DCI3指示的TRS1关联的average delay的优先级比DCI1、DCI2指示的average delay优先级高。因此,DCI3指示的TRS1关联的average delay可以覆盖DCI1、DCI2指示的average delay。
可见,该实施方式中,仅关联average delay的TRS与关联Doppler spread和average delay的TRS可为同一TRS,也可为不同的TRS。可见,该实施方式中可采用额外的DCI来指示average delay,有利于改善基准时延的指示灵活性。
又一种实施方式中,与上述实施方式2.3相对应,2个DCI中:
DCI1指示的QCL信息中包括TRS1且该TRS1关联Doppler spread和average delay:
DCI2指示的QCL信息中包括TRS2且该TRS2关联Doppler spread,以及TRS1,且该TRS1关联average delay;
可见,该实施方式中,终端根据该DCI1和DCI2,可确定出TRS1的average delay作为基准时延。
可见,上述阐述了该QCL指示方法中,指示DMRS的Doppler spread与TRS1、TRS2的Doppler spread相关联,以及DMRS的average delay与TRS1的average delay相关联的各种实施方式。另外,上述一些实施方式还阐述了指示DMRS的Doppler spread与TRS1、TRS2的Doppler spread相关联,以及DMRS的average delay与TRS3的average delay相关联,从而有利于网络设备侧不限于对TRP1或TRP2进行时延补偿后发送DMRS,如可对TRP1、TRP2均进行时延补偿后发送DMRS,并通过TRS3告知终端基准时延。
请参阅图18,图18是本申请实施例提供的一种QCL指示方法1300的流程示意图。该QCL指示方法1300可包括但不限于以下步骤:
S301、TRP2确定QCL指示信息;QCL指示信息用于指示DMRS的Doppler spread与TRS1、TRS2的Doppler spread相关联,DMRS的delay spread与TRS1、TRS2的delay spread相关联,DMRS的Doppler shift与TRS1的Doppler shift相关联,以及DMRS的average delay与TRS1的average delay相关联;
S302、TRP2发送QCL指示信息;
S303、UE接收QCL指示信息。
一种实施方式中,TRP2与TRP1协商时延频偏补偿规则,或者由某个中心节点控制来协商时延补偿规则,TRP2根据该时延频偏补偿规则确定QCL指示信息指示的average delay、Doppler shift。例如,如图19所示,采用该QCL指示方法1300的信号传输方法1300可包括但不限于以下步骤:
UE以时间t UE、中心频点f UE发送上行信号,如探测参考信号(sounding reference signal,SRS);假设TRP1到UE的average delay是t d1、多普勒偏移是f d1,TRP2到UE的average delay是t d2、多普勒偏移是f d2,那么,该SRS到TRP1的时间是t UE+t d1、频点是f UE+f d1;该SRS到TRP2的时间是t UE+t d2、频点是f UE+f d2
TRP1与TRP2之间交互SRS的接收时间、频点,确定以t d1、f d1为基准,对TRP2发送的DMRS和PDSCH补偿一个差值△t fre2=t d1-t d2、△f fre2=f d1-f d2,而TRP1发送的DMRS和PDSCH不做时延频偏补偿。
这样,TRP2可确定需通过QCL指示信息指示DMRS的average delay、Doppler shift与TRS1的average delay、Doppler shift相关联。另外,由于UE不需要区分TRP1和TRP2分别发送的DMRS和PDSCH,故确定QCL指示信息指示DMRS的Doppler spread、delay spread与TRS1和TRS2的Doppler spread、delay spread相关联。
可见,TRP2发送该QCL指示信息,UE接收到该QCL指示信息之后,UE可根据该QCL指示信息确定DMRS的Doppler spread、delay spread、average delay、Doppler shift,如图20所示,终端确定TRS1的average delay为t d1、Doppler shift为f d1,并根据DMRS的average delay、Doppler shift与TRS1的average delay、Doppler shift关联,确定DMRS的average delay等于TRS1的average delay,DMRS的Doppler shift等于TRS1的Doppler shift,故UE可确定DMRS的接收时间为tc+t d1、接收频点是fc+f d1。可见,如图19所示,TRP1发送DMRS/PDSCH没有补偿,TRP2对DMRS/PDSCH补偿△t fre2、△f fre2发送,故TRP1、TRP2分别发送的DMRS/PDSCH到达UE的接收时间均是tc+t d1,接收频点均是fc+f d1,且与UE根据QCL指示信息确定的接收时间、接收频点相一致,从而避免了符号间以及载波间的干扰。
另外,如图9和图15所示,UE根据该QCL指示信息确定DMRS的Doppler spread、delay spread,包括:UE融合TRS1和TRS2的Doppler spread、delay spread,获得DMRS的Doppler spread、delay spread。由于DMRS的Doppler spread、delay spread兼顾了TRP1到UE以及TRP2到UE两者的多径特性,因此,利用DMRS的Doppler spread、delay spread进行DMRS信道估计的准确度更高。
可见,采用图18所示的QCL指示方法有利于改善多站传输性能。
可选的,TRP1和TRP2也可以采用其他的时延频偏补偿规则,并通过QCL指示信息告知终端该时延频偏补偿规则对应的基准时延、基准频偏。如图18所示的实施例中,通过QCL指示信息可告知终端基准时延、基准频偏是基于TRS1的平均时延、多普勒偏移获得的。
可选的,在一些实施方式中,通过QCL指示信息可告知终端基准时延、基准频偏是基于TRS3的average delay、Doppler shift获得的,也即是说,TRS1和TRS2可提供Doppler spread、delay spread,TRS3提供average delay、Doppler shift,具体可参见下述的相关实施方式,此处不作详述。
以下结合上述QCL指示信息的指示方式,阐述本申请实施例的QCL指示方法中,QCL指示信息的具体指示方式。其中,可结合QCL Type E、QCL Type C表示TRS关联的信道大尺度参数。其中,该QCL Type E的信道大尺度参数包括Doppler spread、delay spread;该QCL Type C的信道大尺度参数包括average delay、Doppler shift,QCL Type A的信道大尺度参数包括:Doppler spread、delay spread、average delay、Doppler shift。
一种实施方式,与实施方式1.1相对应,该实施方式中,QCL指示信息用于指示2个TCI状态:
TCI状态1指示的QCL信息包括TRS1,该TRS1关联QCL Type A;
TCI状态2指示的QCL信息包括TRS2,该TRS2关联QCL Type E。
如图20所示,TRS1的平均时延可作为基准时延,TRS1的多普勒偏移作为基准频偏,TRS2仅提供多径参数,如时延扩展、多普勒扩展。进而,终端基于该TRS1的average delay、Doppler shift,以及TRS1、TRS2的Doppler spread、delay spread,进行DMRS的信道估计。
可见,该实施方式中,终端根据为DMRS配置的两个TCI状态所分别指示的QCL信息,确定DMRS的Doppler spread、delay spread、average delay、Doppler shift,从而有利于改善多站传输性能。
另一种实施方式中,与上一实施方式不同之处在于,TCI状态1指示的QCL信息包括TRS1和TRS3,其中,TRS1关联QCL Type E,TRS3关联QCL Type C;TCI状态2指示的QCL信息与上一实施方式相同,包括TRS2,该TRS2关联QCL Type E。
由于TRS1或TRS2关联QCL Type C时,表示终端可利用TRP1或TRP2的average delay、Doppler shift作为基准时延、基准频偏,因此,该实施方式通过TRS3来单独关联average delay、Doppler shift,有利于向UE通知的基准时延、基准频偏,不限于其中一个TRP的average delay、Doppler shift,进而有利于网络设备侧不必仅限于对TRP1或TRP2的average delay、Doppler shift进行时延频偏补偿后发送,改善了网络设备侧时延频偏补偿的灵活性。
如图21所示,TRS1和TRS2仅提供多径参数,如Doppler spread、delay spread,而由TRS3来提供average delay、Doppler shift,从而有利于TRS1和TRS2的发送时间、频点可一致,仅提供多径的Doppler spread、delay spread即可;TRP1对TRS3的发送时间进行补偿后发送,使得终端根据TRS3确定的接收时间不再局限于t c+t d1以及接收频点不再局限于f c+f d1,例如可以是t c+△t+t d1、f c+△f+f d1,从而有利于终端以△t+t d1作为基准时延以及以△f+f d1为基准频偏,对DMRS进行接收。这样,TRP1和TRP2可均进行时延频偏补偿后发送DMRS,从而改善了时延频偏补偿的灵活性。
又一种实施方式,与上述实施方式1.2中的实施方式1.2.1相对应,QCL指示信息用于指示2个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type A;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联QCL Type A。
并且,“网络设备侧还告知UE以下信息:TCI状态2指示的average delay、Doppler shift不可用,且TCI状态1指示的average delay、Doppler shift适用于TCI状态2”,或者“终端基于如下方式1或方式2获知能够使用的average delay、Doppler shift”。
方式1,TCI状态1指示的关联average delay、Doppler shift的TRS1的优先级比TCI状态2指示的关联average delay、Doppler shift的TRS1的优先级高,因此,如图22所示,TRS1的average delay、Doppler shift可覆盖TRS2的average delay、Doppler shift,使得终端可将TRS1的average delay、Doppler shift作为基准时延、基准频偏。
方式2,该TCI状态1指示的QCL信息还包括TRS3且该TRS3关联QCL Type C,且关联QCL Type C的TRS3的优先级高于TRS1和TRS2,故终端可将TRS3关联的average delay、Doppler shift作为基准时延、基准频偏。该实施方式中,TCI状态1能够指示两种类型QCL关系的TRS,避免采用额外的TCI来指示基准时延、基准频偏,从而有利于节省QCL指示信息所需的信令开销。
又一种实施方式,与上述实施方式1.2中的实施方式1.2.2相对应,QCL指示信息用于指示3个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type A;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联QCL Type A;
TCI状态3指示的QCL信息包括TRS1且该TRS1关联QCL Type C,或者,TCI状态3指示的QCL信息包括TRS3且该TRS3关联QCL Type C。
并且,“网络设备侧还告知UE以下信息:TCI状态1、TCI状态2指示的QCL Type C不可用,且TCI状态3指示的QCL Type C适用于TCI状态1、TCI状态2”,或者“终端基于如下方式1或方式2获知能够使用的average delay、Doppler shift”。
方式1,关联QCL Type C的TRS1的优先级比关联QCL Type A的TRS2的优先级高,因此,TRS1的average delay、Doppler shift可覆盖TRS2的average delay、Doppler shift,使得终端可将TRS1的average delay、Doppler shift作为基准时延、基准频偏。
方式2,仅关联QCL Type C的TRS3的优先级高于TRS1和TRS2,故终端可将TRS3关联的average delay、Doppler shift作为基准时延、基准频偏。
该实施方式采用额外的TCI来指示基准时延、基准频偏,从而有利于改善基准时延、基准频偏指示的灵活性。
又一种实施方式,与上述实施方式1.3中的实施方式1.3.1相对应,QCL指示信息用于指示2个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type E;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联QCL Type E。
另外,该实施方式中,基准时延、基准频偏通过以下方式指示:
方式1,TCI状态1指示的QCL信息还包括TRS1且该TRS1关联QCL Type C,可见,该方式中,TRS1可关联两种信道大尺度参数,有利于告知终端采用TRS1的average delay、Doppler shift作为基准时延、基准频偏。
方式2,TCI状态1指示的QCL信息还包括TRS3且该TRS3关联QCL Type C,可见,该方式中,TCI状态1可额外指示TRS3关联QCL Type C,从而改善了基准时延、基准频偏的指示灵活性。这时不需要将基准时延、基准频偏一定要调整到和某个TRP相同,比如基站可以调整到某个折中量。
又一种实施方式,与上述实施方式1.3中的实施方式1.3.2相对应,QCL指示信息用于指示3个TCI状态:
TCI状态1指示的QCL信息包括TRS1且该TRS1关联QCL Type E;
TCI状态2指示的QCL信息包括TRS2且该TRS2关联QCL Type E;
TCI状态3指示的QCL信息包括TRS1且该TRS1关联QCL Type C,或者,TCI状态3指示的QCL信息包括TRS3且该TRS3关联QCL Type C。
可见,该实施方式采用另外的TCI状态告知终端基准时延、基准频偏,从而改善了基准时延、基准频偏的指示灵活性。
另外,除了上述实施方式中,QCL指示信息指示average delay、Doppler shift、Doppler spread和delay spread外,针对高频通信场景,该QCL指示信息可采用上述2个TCI状态中的一个TCI状态或额外的TCI状态来指示TRS及其关联的空间参数,从而有利于改善多站协作场景中,结合高频通信场景的多站传输性能。其中,采用2个TCI状态中的一个TCI状态或额外的TCI状态来指示TRS及其关联的空间参数的相关实施方式,与实施方式中指示QCL Type C的方式类似,不同之处在于所指示的参数不同,此处不再详述。
另外,本申请实施例中,上述2个TCI状态,或者3个TCI状态,可位于同一个TCI域中,也可位于多个TCI域中。上述2个TCI状态,或者3个TCI状态可由同一个DCI传输, 也可由2个DCI或3个DCI传输。
若有多个DCI来指示上述各种QCL指示信息所指示的关联关系,则可包括但不限于以下实施方式:
一种实施方式中,与上述实施方式2.1相对应,2个DCI中:
DCI1指示的QCL信息包括TRS1且该TRS1关联QCL Type A:
DCI2指示的QCL信息包括TRS2且该TRS2关联QCL Type E。
且告诉UE使用DCI1里指示的average delay、Doppler shift。
另一种实施方式中,与上述实施方式2.2中的实施方式2.2.1相对应,2个DCI中:
DCI1指示的QCL信息包括TRS1且该TRS1关联QCL Type A:
DCI2指示的QCL信息包括TRS2且该TRS2关联QCL Type A。
并且,“网络设备侧还告知UE以下信息:DCI2指示的average delay、Doppler shift不可用,和DCI1指示的average delay、Doppler shift适用于DCI2”,或者“终端基于如下方式获知能够使用的average delay、Doppler shift”。
该方式为:DCI1指示的关联average delay、Doppler shift的TRS1的优先级比DCI2中关联average delay、Doppler shift的TRS2的优先级高。因此,TRS1关联的average delay、Doppler shift可以覆盖TRS2关联的average delay、Doppler shift。
又一种实施方式中,与上述实施方式2.2中的实施方式2.2.2相对应,3个DCI中:
DCI1指示的QCL信息包括TRS1且该TRS1关联QCL Type A:
DCI2指示的QCL信息包括TRS2且该TRS2关联QCL Type A;
DCI3指示的QCL信息包括TRS3且该TRS3关联QCL Type C,或者,DCI3指示的QCL信息包括TRS1且该TRS1关联QCL Type C。
并且,“网络设备侧还告知UE以下信息:DCI1、DCI2指示的average delay、Doppler shift不可用,且DCI3指示的average delay、Doppler shift适用于DCI1、DCI2”,或者“终端基于如下方式1或方式2获知能够使用的average delay、Doppler shift”。
方式1,DCI3指示的关联QCL Type C的TRS3的优先级比DCI1指示的TRS1、DCI2指示TRS2的优先级高。因此,TRS3关联的QCL Type C可以覆盖TRS1、TRS2关联的average delay、Doppler shift。
方式2,DCI3指示的TRS1关联的average delay的优先级比DCI1、DCI2指示的average delay优先级高。因此,DCI3指示的TRS1关联的average delay可以覆盖DCI1、DCI2指示的average delay。
可见,该实施方式中,关联QCL Type C的TRS与关联QCL Type A的TRS可为同一TRS,也可为不同的TRS。可见,该实施方式中可采用额外的DCI来指示average delay、Doppler shift,有利于改善基准时延的指示灵活性。
又一种实施方式中,与上述实施方式2.3相对应,2个DCI中:
DCI1指示的QCL信息中包括TRS1且该TRS1关联QCL Type A:
DCI2指示的QCL信息中包括TRS2且该TRS2关联QCL Type E以及TRS1,且该TRS1关联QCL Type C;
可见,该实施方式中,终端根据该DCI1和DCI2,可确定出TRS1的average delay、Doppler shift作为基准时延、基准频偏。
可见,上述阐述了该QCL指示方法中,QCL指示信息指示DMRS的Doppler spread、delay spread与TRS1、TRS2的Doppler spread、delay spread相关联,以及DMRS的average delay、 Doppler shift与TRS1的average delay、Doppler shift相关联的各种实施方式。另外,上述一些实施方式还阐述了指示DMRS的Doppler spread、delay spread与TRS1、TRS2的Doppler spread、delay spread相关联,以及DMRS的average delay、Doppler shift与TRS3的average delay、Doppler shift相关联,从而有利于网络设备侧不限于对TRP1或TRP2进行时延频偏补偿后发送DMRS,如可对TRP1、TRP2均进行时延频偏补偿后发送DMRS,并通过TRS3告知终端基准时延、基准频偏。
可选的,上述QCL指示方法1400至QCL指示方法1900,与上述实施例的不同之处在于,时频扩展信息中包括的时延扩展和/或多普勒扩展,以及时延频偏信息中包括的多普勒偏移和/或平均时延不同,本申请不再详述。
本申请以TRP1和TRP2协作为同一终端传输数据为例,阐述QCL指示方法2100至QCL指示方法2300。如上,QCL指示方法2100至QCL指示方法2300分别与上述QCL指示方法1100至QCL指示方法1300相对应,不同之处在于,QCL指示方法2100至QCL指示方法2300中,TRS1与TRS2分别对应的DMRS端口不同,因此,每个DMRS的时频扩展信息与对应的TRS的时频扩展信息相关联,但每个DMRS的时延频偏信息关联同一TRS的时延频偏信息。
该QCL指示方法2100至QCL指示方法2300中,UE可以区分TRP1和TRP2分别发送的DMRS和PDSCH,TRP1发送的TRS1与TRP2发送的TRS2分别对应的DMRS端口不同,将TRS1对应的DMRS简称为DMRS1,将TRS2对应的DMRS简称为DMRS2。
QCL指示方法2100中,QCL指示信息用于指示DMRS1的delay spread与TRS1delay spread相关联,DMRS2的delay spread与TRS2delay spread相关联,以及DMRS1、DMRS2的Doppler shift与TRS1的Doppler shift相关联;TRP2发送QCL指示信息;UE接收QCL指示信息。
一种实施方式中,TRP2与TRP1协商频偏补偿规则,或者由某个中心节点控制来协商时延补偿规则,TRP2根据该频偏补偿规则确定QCL指示信息指示的Doppler shift。具体的,该实施方式可参见上述图8的相关内容,可见,该实施方式中,TRP1、TRP2分别发送的DMRS/PDSCH到达UE的接收频点均是fc+f d1,且与UE根据QCL指示信息确定的接收频点相一致,从而避免了载波间的干扰。
另外,UE根据该QCL指示信息确定DMRS1、DRMS2的delay spread,包括:UE根据TRS1的delay spread,获得DMRS1的delay spread,UE根据TRS2的delay spread,获得DMRS2的delay spread。由于每个DMRS的delay spread是根据对应TRS的时延扩展获得的,因此,每个DMRS信道估计的准确度更高。
可见,采用该QCL指示方法2100也有利于改善多站传输性能。
可选的,TRP1和TRP2也可以采用其他的频偏补偿规则,并通过QCL指示信息告知终端该频偏补偿规则对应的基准频偏。如图8所示的实施例中,通过QCL指示信息可告知终端基准频偏是基于TRS1的多普勒偏移获得的。
本申请实施例的QCL指示方法2100中,QCL指示信息的具体指示方式可参见上述QCL指示方法1100中的相关实施方式,此处不再详述。
QCL指示方法2200中,QCL指示信息用于指示DMRS1的Doppler spread与TRS1的Doppler spread相关联,DMRS2的Doppler spread与TRS2的Doppler spread相关联,以及DMRS1、DMRS2的average delay与TRS1的average delay相关联;RP2发送QCL指示信息; UE接收QCL指示信息。
一种实施方式中,TRP2与TRP1协商时延补偿规则,或者由某个中心节点控制来协商时延补偿规则,TRP2根据该时延补偿规则确定QCL指示信息指示的average delay。具体的,该实施方式可参见上述图15的相关内容,可见,该实施方式中,TRP1、TRP2分别发送的DMRS/PDSCH到达UE的时间是t UE+t d1,且与UE根据QCL指示信息确定的时延相一致,从而避免了符号间的干扰。
另外,UE根据该QCL指示信息确定DMRS1、DRMS2的Doppler spread,包括:UE根据TRS1的Doppler spread,获得DMRS1的Doppler spread,UE根据TRS2的Doppler spread,获得DMRS2的Doppler spread。由于每个DMRS的Doppler spread是根据对应TRS的Doppler spread获得的,因此,每个DMRS信道估计的准确度更高。
可见,采用该QCL指示方法2200也有利于改善多站传输性能。
可选的,TRP1和TRP2也可以采用其他的时延补偿规则,并通过QCL指示信息告知终端该时延补偿规则对应的基准时延。如图15所示的实施例中,通过QCL指示信息可告知终端基准时延是基于TRS1的average delay获得的。
本申请实施例的QCL指示方法2200中,QCL指示信息的具体指示方式可参见上述QCL指示方法1200中的相关实施方式,此处不再详述。
在一些实施方式中,通过QCL指示信息2200可告知终端基准时延是基于TRS3的average delay获得的,也即是说,TRS1和TRS2提供的是多普勒扩展,TRS3提供的是平均时延,具体可参见上述QCL指示方法1200中的相关实施方式,此处不再详述。
QCL指示方法2300中,QCL指示信息用于指示DMRS1的Doppler spread与TRS1的Doppler spread相关联,DMRS2的Doppler spread与TRS2的Doppler spread相关联,以及DMRS1、DMRS2的average delay与TRS1的average delay相关联;TRP2发送QCL指示信息;UE接收QCL指示信息。
一种实施方式中,TRP2与TRP1协商时延频偏补偿规则,或者由某个中心节点控制来协商时延补偿规则,TRP2根据该时延频偏补偿规则确定QCL指示信息指示的average delay、Doppler shift。具体的,该实施方式可参见上述图20的相关内容,可见,该实施方式中,TRP1、TRP2分别发送的DMRS/PDSCH到达UE的接收时间均是tc+t d1,接收频点均是fc+f d1,且与UE根据QCL指示信息确定的接收时间、接收频点相一致,从而避免了符号间以及载波间的干扰。
另外,UE根据该QCL指示信息确定DMRS1、DRMS2的Doppler spread、delay spread,包括:UE根据TRS1的Doppler spread、delay spread,获得DMRS1的Doppler spread、delay spread,UE根据TRS2的Doppler spread、delay spread,获得DMRS2的Doppler spread、delay spread。由于每个DMRS的Doppler spread、delay spread是根据对应TRS的Doppler spread、delay spread获得的,因此,每个DMRS信道估计的准确度更高。
可见,采用该QCL指示方法2300也有利于改善多站传输性能。
可选的,TRP1和TRP2也可以采用其他的频偏时延补偿规则,并通过QCL指示信息告知终端该频偏时延补偿规则对应的基准频偏、基准时延。如图20所示的实施例中,通过QCL指示信息可告知终端基准频偏、基准时延是基于TRS1的average delay、Doppler shift获得的。
本申请实施例的QCL指示方法2200中,QCL指示信息的具体指示方式可参见上述QCL指示方法1200中的相关实施方式,此处不再详述。
在一些实施方式中,通过QCL指示信息可告知终端基准频偏、基准时延是基于 TRS3average delay、Doppler shift获得的,也即是说,TRS1和TRS2提供的是Doppler spread、delay spread,TRS3提供的是average delay、Doppler shift,具体可参见上述QCL指示方法1300中的相关实施方式,此处不再详述。
可选的,上述QCL指示方法2400至QCL指示方法2900,与上述实施例的不同之处在于,时频扩展信息中包括的时延扩展和/或多普勒扩展,以及时延频偏信息中包括的多普勒偏移和/或平均时延不同,本申请不再详述。
另外,本申请提供的QCL指示方法考虑到了Doppler spread、average delay、Doppler shift以及average delay这些信道参数,对终端的信道估计影响很大,比如,它们可以影响信道估计的频域滤波系数、时域滤波系数等。再例如,终端所处散射环境比较复杂的场景,如高铁中的隧道场景等,该场景中不同TRP到终端的散射条件不同,导致了频选特性不同,频域的扩展不同也不同,相对位移不同,进而引起传播时延也不同。又例如,终端处于高速移动的场景,该场景中由于终端移动速度高,且终端和不同网络设备之间的相对方向不同,导致了多个网络设备分别到终端的信道的多普勒不同、时延不同。因此,采用本申请的QCL指示信息来指示这些信道参数之间的关联关系,有利于改善DMRS信道估计的准确度和多站传输性能。
比如,在经典算法如线性最小均方误差(linear minimum mean-square error,LMMSE)算法中,UE进行信道估计时需要用到信道的协方差矩阵R hh,其中,该协方差矩阵R hh是根据信道统计量获得的,例如,时延扩展和/或多普勒扩展分别对应的分布计算获得的,而这些参数是通过TRS获得的。
另外,针对多个TRS对应的DMRS端口不同的情况,本申请考虑到不同DMRS从不同的TRP发送出来所经历的信道不同,不同DMRS对应的上述协方差矩阵R hh也不同,所以,本申请采用各自对应的TRS获得上述协方差矩阵,进而对不同TRP的DMRS进行信道估计,能够改善各个DMRS信道估计的准确度。
针对多个TRS对应的DMRS端口相同的情况,本申请考虑到每个TRP在相同的DMRS端口上发送的DMRS所经历的信道不同,如h=h1+h2。例如,不同TRP的信道之间的相关性很低的情况,可采用如下公式计算协方差矩阵R hh
Figure PCTCN2021109944-appb-000001
可见,计算该协方差矩阵R hh时需要考虑两个TRP到终端的信道特征,以进行信道估计,因此,本申请利用两个时频扩展信息获得相同DMRS的时频扩展信息涵盖了两个TRP到终端的信道参数,从而能够改善同一个DMRS的信道估计准确度。
例如,请参阅图23所示的仿真示意图。假设多个TRS对应不同的DMRS端口,即不同TRP发送的DMRS的时延扩展是基于对应的TRS的时延扩展获得的为例,结合仿真示意图阐述本申请实施例的有益效果。该仿真示意图中,横坐标是信噪比(signal-to-noise ratio,SNR),纵坐标是归一化的吞吐量。
其中,曲线1和曲线2对应的假设场景是:TRP1发送的TRS1的时延扩展是100ns,TRP2发送的TRS2的时延扩展是300ns;这样,若终端采用本申请实施例中针对DMRS端口不同的情况,利用TRS1的时延扩展对TRP1发送的DMRS1进行信道估计,利用TRS2的时延扩展对TRP2发送的DMRS2进行信道估计,则可获得该仿真示意图中曲线1所示的性能;若终端利用TRS1的时延扩展来适应于TRP2,即认为两个TRP到终端的时延扩展均是100ns, 采用TRS1的时延扩展对DMRS1和DMRS2做统一的信道估计,则可获得该仿真示意图中曲线2所示的性能,可见,终端采用了错误的TCI状态所指示的TRS的时延扩展导致性能下降。因此,终端采用本申请实施例中分别利用对应的TRS的时延扩展进行信道估计的方式能够获得性能提升。
再例如,曲线3和曲线4对应的假设场景是:TRP1发送的TRS1的时延扩展是100ns,TRP2发送的TRS2的时延扩展是1000ns;这样,若终端采用本申请实施例中针对DMRS端口不同的情况,利用TRS1的时延扩展对TRP1发送的DMRS1进行信道估计,利用TRS2的时延扩展对TRP2发送的DMRS2进行信道估计,则可获得该仿真示意图中曲线3所示的性能;若终端利用TRS1的时延扩展来适应于TRP2,即认为两个TRP到终端的时延扩展均是100ns,采用TRS1的时延扩展对DMRS1和DMRS2做统一的信道估计,则可获得该仿真示意图中曲线4所示的性能,可见,终端采用了错误的TCI状态所指示的TRS的时延扩展导致性能下降。因此,终端采用本申请实施例中分别利用对应的TRS的时延扩展进行信道估计的方式能够获得性能提升。并且,曲线3、曲线4的假设场景中TRP到终端之间的信道参数差异大,故采用本申请实施例中方案获得的性能提升也更大。
再例如,以多普勒频偏为例,如上,终端接收DMRS的接收频点仅根据TRS1的多普勒偏移,对发送频点fc进行频偏补偿,在TRP2采用了频偏补偿发送DMRS的情况下,有利于终端获得正确的基准频偏f d1。与目前对不同的DMRS假设采用不同的频偏补偿相比,由于终端获知的TRS2的多普勒偏移并不是TRP2发送DMRS的多普勒偏移,因此终端采用该采用该TRS2的多普勒偏移获得错误的基准频偏。
如图24所示的仿真图中,横坐标是信噪比(signal-to-noise ratio,SNR),纵坐标是归一化的吞吐量;频率差值(Frequency offset)后的数值表示终端采用的基准频偏与实际的基准频偏之间的差值。曲线1-1至曲线1-3表示非相干联合传输(non-coherent joint transmission,NCJT)场景,即多个TRS对应的DMRS端口不同的情况,曲线1-1表示采用本申请实施例中的QCL指示方法利用正确的基准频偏对应的系统性能;曲线1-2表示采用错误的基准频偏与实际的基准频偏之间的差值为200Hz的情况所对应的系统性能;曲线1-3表示采用错误的基准频偏与实际的基准频偏之间的差值为400Hz的情况所对应的系统性能。可见,终端采用错误的基准频偏与实际的基准频偏之间的差值越大,性能也会越来越下降。
再如图24所示的仿真图,曲线2-1至曲线2-3表示单频网(single frequency network,SFN)场景,即多个TRS对应的DMRS端口相同的情况,曲线2-1表示采用本申请实施例中的QCL指示方法利用正确的基准频偏对应的系统性能;曲线2-2表示采用错误的基准频偏与实际的基准频偏之间的差值为200Hz的情况所对应的系统性能;曲线2-3表示采用错误的基准频偏与实际的基准频偏之间的差值为400Hz的情况所对应的系统性能。同样,终端采用错误的基准频偏与实际的基准频偏之间的差值越大,性能也会越来越下降。
另外,本申请考虑到QCL指示方法1100至1900中,多个TCI状态对应的DMRS端口相同的情况,UE的处理比较复杂(如UE将多个时延扩展进行融合时,需要进行多个TRS的时延功率谱积分的加权合并),因此,本申请以如下多种实施方式为例,进一步限制该情况下UE所需要的基带处理能力,以减轻UE的处理负担,通过折中照顾UE的处理能力,提高系统性能。
一种实施方式,在多个TCI状态对应相同DMRS端口的情况,本申请可限定DMRS端口的数量不超过某个限定值,如1或2,该限定值可以是协议预定义的。
另一种实施方式,在多个TCI状态对应相同DMRS端口的情况,本申请可限定对应相同DMRS的TCI状态的个数不超过某个值,如2、3等。
又一种实施方式,UE上报相应的能力,如UE上报该情况下支持的DMRS端口的数量、对应相同DMRS的TCI状态的个数等;进一步的,UE可以根据网络设备配置的DMRS端口的数量、TCI状态的个数来确定TCI状态与DMRS端口的对应关系。比如说,当网络设备配置1个DMRS端口,UE假设多个TCI状态对应该相同的1个DMRS端口;当网络设备配置2个DMRS端口,UE假设多个TCI状态分别对应该两个不同的DMRS端口。
可见,上述各实施方式能够减轻UE的处理负担,通过折中照顾UE的处理能力,提高系统性能。
另外,本申请实施例中的多个TCI状态对应相同的DMRS端口,是指在相同时频资源的DMRS端口。这里的时频资源可以指的是相同的物理资源块、预编码资源组(Precoding resource block group,PRG)、时隙以及PDSCH的分配符号等组成的资源。比如,DMRS1在slot1的PRG1和PRG2内都对应的是TCI状态1和TCI状态2。
为了改善多站传输性能,本申请还提供了QCL指示方法3100,该QCL指示方法3100中,网络设备侧不进行预补偿,即网络设备侧在发送DMRS、PDSCH时不进行时延、频偏补偿,而由UE自身进行时延、频偏补偿。具体的,如图25所示,该QCL指示方法3100包括但不限于以下步骤:
S401、终端发送能力指示信息,该能力指示信息用于指示该UE支持基于多个QCL信息的时延和/或频偏补偿能力;
S402、网络设备接收该能力指示信息;
S403、网络设备向终端发送QCL指示信息,该QCL指示信息用于指示DMRS的时频扩展信息、时延频偏信息与N个TRS的时频扩展信息相关联;
S404、终端接收该QCL指示信息。
进一步的,该终端根据该QCL指示信息,确定DMRS的时频扩展信息、时延频偏信息。
一种实施方式中,终端将N个TRS的时频扩展信息进行融合,获得DMRS的时频扩展信息。可见,该实施方式考虑了多个TRS的多径特性,进而基于获得的DMRS的时频扩展信息进行DMRS信道估计时,能够改善信道估计的准确度。
一种实施方式中,终端可利用M个TRS的时延频偏信息,确定DMRS的时延频偏信息。例如,终端可将N个TRS中其中M个TRS的多普勒偏移和/或平均时延,作为基准频偏和/或基准时延,对其余L个TRP发送的DMRS、PDSCH进行补偿,再分别进行DMRS、PDSCH的接收。
可见,该QCL指示方法3100可通过估计N个TRP到终端的信道大尺度参数,进而基于确定的基准频偏和/或基准时延补偿各TRP的信道大尺度参数不同所造成的信号损失。
以TRP1和TRP2协作为同一终端传输数据为例,即N等于2,M等于1。UE不需要区分TRP1和TRP2分别发送的DMRS和PDSCH,TRP1发送的TRS1与TRP2发送的TRS2分别对应的DMRS端口相同。其中,该QCL指示信息用于指示DMRS的average delay、Doppler shift、Doppler spread、delay spread与TRS1、TRS2的average delay、Doppler shift、Doppler spread、delay spread相关联。因此,终端可将TRS1、TRS2的Doppler spread、delay spread进行融合,获得DMRS的Doppler spread、delay spread;基于该DMRS的Doppler spread、delay spread进行DMRS信道估计,从而改善多站传输性能。再例如,UE需要区分TRP1和TRP2分别发 送的DMRS和PDSCH,TRP1发送的TRS1与TRP2发送的TRS2分别对应的DMRS端口不同。其中,该QCL指示信息用于指示DMRS1的average delay、Doppler shift、Doppler spread、delay spread与TRS1的average delay、Doppler shift、Doppler spread、delay spread相关联,DMRS2的average delay、Doppler shift、Doppler spread、delay spread与TRS2的average delay、Doppler shift、Doppler spread、delay spread相关联。因此,终端可根据TRS1的Doppler spread、delay spread,获得DMRS1的Doppler spread、delay spread,根据TRS2的Doppler spread、delay spread,获得DMRS2的Doppler spread、delay spread,以分别进行DMRS1和DMRS2的信道估计。并将TRS1的average delay、Doppler shift作为基准时延和基准频偏,对DMRS2的接收时间和接收频点进行补偿,或者将TRS2的average delay、Doppler shift作为基准时延和基准频偏,对DMRS1的接收时间和接收频点进行补偿,从而使得DMRS1与DMRS2的接收时间和接收频点相同,补偿了TRP1与TRP2的信道大尺度参数不同造成的信号损失,从而改善多站传输性能。
若多个TRP发送功率不同,本申请中,终端还需要对DMRS进行功率假设来进行接收。如终端认为来自相同TRP的DMRS之间的平均增益(average gain)是相同的。其中,来自相同TRP的DMRS可以体现为是来自相同码分组的DMRS端口,还可以是认为对应了相同QCL信息的DMRS端口。其中,来自相同TRP的DMRS,可能还在不同的时频资源上,如在不同的频域资源,则UE可以认为对应了相同QCL信息的频域资源内的DMRS之间的平均增益(average gain)是相同的。
进一步的,终端可以认为,来自不同TRP的DMRS之间的平均增益不超过某个门限。该门限可以是终端上报的能力。这表示,虽然多个TRP到终端的接收信号的功率不同,但是这个差异应当不超过某个门限导致终端可能完全无法收到某些TRP的信号,或者信号的接收质量很差。
比如说,多个TCI状态指示的多个TRS的时延扩展与相同DMRS的时延扩展相关联的情况,终端利用公式(1)计算协方差矩阵时,需要用到多个TCI状态对应的功率增益。比如,终端需将多个TCI状态对应的时延功率谱以功率为系数进行加权求和,以获得该DMRS的时延扩展。可选的,终端可利用多个TCI状态对应的时延功率谱获得信道相关性,进而将多个TRP分别的信道相关性进行一个加权求和,获得总的信道的信道相关性。
另外,上述QCL指示方法1100至QCL指示方法1900中的任一方法,或上述QCL指示方法2100至QCL指示方法2900中的任一方法可应用于物理下行控制信道(Physical downlink control channel,PDCCH)的接收。这样,上述的DMRS可为PDCCH中的DMRS。此处不再详述。
另外,本申请还提供一种信号传输方法4000,该信号传输方法4000中,终端接收QCL指示信息,该QCL指示信息所指示的关联关系为上述QCL指示方法1100至QCL指示方法1900中的任一类关联关系,或该QCL指示信息所指示的关联关系为上述QCL指示方法2100至QCL指示方法2900中的任一类关联关系;进而,终端可根据该QCL指示信息发送上行信号。
其中,终端可根据该QCL指示信息发送上行信号,可以为:终端根据QCL指示信息,确定下行传输的基准频偏和/或基准时延;终端根据下行传输的基准频偏和/或基准时延,确定上行传输的发送频点和/或发送时间;终端根据上行传输的发送频点和/或发送时间,发送上行信号。
可选的,该实施方式中的QCL指示信息可仅包括上述QCL指示方法1100至QCL指示方法1900、以及QCL指示方法2100至QCL指示方法2900中,QCL指示信息对多普勒频偏和/或平均时延的相关内容,而无需考虑多普勒扩展和时延扩展的相关内容。
一种实施方式中,在TDD的情况下,上下行传输在同一频点,终端根据下行传输的基准频偏,确定上行传输的发送频点,可以为:终端根据下行传输的基准频偏确定接收频点;并将该接收频点应用于上行传输的发送频点,以发送上行信号。
另一种实施方式中,在FDD的情况下,上下行传输不在同一频点,终端根据下行传输的基准频偏,确定上行传输的发送频点,可以为:终端根据下行传输的基准频偏确定接收频点;再根据该接收频点和上下行频点之间的差值确定上行传输的发送频点,以发送上行信号。其中,上下行频点之间的差值可以是网络设备侧通知的。
其中,终端根据下行传输的基准时延,确定上行传输的发送时间,可以为:终端根据下行传输的基准时延确定接收时间;并根据该接收时间和定时提前(timing advance,TA)确定上行传输的发送时间,以发送上行信号。
也就是说,对于一个时间单元,终端需要在下行的接收时间上添加对应的TA和基准时延的调整量,来确定在上行时间单元内发送信号的发送时间。例如,请参阅图26,如图26所示,下行链路的第i帧与上行链路的第i帧表示的就是上下行时间的关系,上行链路的第i帧需要在下行的接收时间Tc的基础上提前TA+基准时延之和的调整量。
本申请中,上行信号可以包括物理上行共享信道(Physical uplink shared channel,PUSCH)、探测参考信号(Sounding reference signal,SRS)、物理上行控制信道(Physical uplink control channel,PUCCH)或物理随机接入信道(Physical random-access channel,PRACH)等。
可见,该信号传输方法4000中,终端可结合QCL指示信息,获得上行信号的发送频点或发送时间,以发送上行信号,使得到达多个TRP的信道的信道大尺度参数相同,从而避免产生载波干扰、符号干扰,改善多站协作传输性能。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图27,为本申请实施例提供的一种通信装置的结构示意图。图27所示的通信装置2700可包括通信单元2701和处理单元2702。通信单元2701可包括发送单元和接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,通信单元2701可以实现发送功能和/或接收功能。通信单元也可以描述为收发单元。
通信装置2700可以是网络设备或终端设备,也可以是网络设备或终端设备中的装置。
一种实施方式中,通信装置2700包括通信单元2701和处理单元2702,可以执行上述各实施例中终端的相关操作;
通信单元2701,用于接收准共址QCL指示信息,其中,QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联,N大于或等于2,M大于或等于1。可见,在多站协作传输中,该通信装置2700通过N个TRS跟踪N个网络设备与终端之 间的多普勒扩展、时延扩展,利用该N个多普勒扩展、时延扩展融合获得该DMRS的多普勒扩展、时延扩展,更符合N个网络设备分别发送同一DMRS的多径特性,有利于提高DMRS的信道估计准确度。
另外,该通信装置2700有利于网络设备采用时延频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延、频偏相同,并且终端利用M个TRS的平均时延、多普勒偏移可确定对应的基准时延、基准频偏接收DMRS、PDSCH,避免终端采用错误的基准时延、基准频偏所导致的性能下降,因此,该通信装置2700有利于改善多站传输性能。
其中,上述各实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
另外,该通信装置2700还可执行上述方法实施例中任一方法中终端的相关操作,此处不再详述。
另一种实施方式中,通信装置2700包括通信单元2701和处理单元2702,可以执行上述各实施例中网络设备的相关操作;
处理单元2702,用于确定准共址QCL指示信息,其中,QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
通信单元2701,用于发送QCL指示信息。
可见,在多站协作传输中,通过N个TRS跟踪N个网络设备与终端之间的多普勒扩展、时延扩展,使得终端利用该N个多普勒扩展、时延扩展融合获得该DMRS的多普勒扩展、时延扩展,更符合通信装置2700与其他网络设备协作发送同一DMRS的多径特性,有利于提高终端进行DMRS信道估计的准确度。
针对终端散射环境比较复杂的场景,如高铁中的隧道场景等,由于该场景中不同网络设备到终端的散射条件不同,导致了频选、时延特性不同,频域的多普勒扩展以及时域的时延扩展不同,因此该通信装置2700有利于终端通过多个TRS的多普勒扩展、时延扩展获得DMRS的多普勒扩展、时延扩展,有利于提高该场景中终端进行DMRS信道估计的准确度。
另外,该通信装置2700有利于采用时延频偏补偿发送DMRS、物理下行共享信道PDSCH,使得来自不同网络设备的DMRS、PDSCH到达终端的时延、频偏相同,并且有利于终端利用M个TRS的平均时延、多普勒偏移可确定对应的基准时延、基准频偏接收DMRS、PDSCH,避免终端采用错误的基准时延、基准频偏所导致的性能下降,因此,该通信装置2700有利于改善多站传输性能。
其中,上述各实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
另外,该通信装置2700还可执行上述方法实施例中任一方法中网络设备的相关操作,此处不再详述。
请参阅图28,图28是本申请实施例提供的另一种通信装置的结构示意图。通信装置2800可以是网络设备,也可以是终端设备,也可以是支持终端设备或网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备或网络设备实现上述方法的芯片、芯片系统、或处理器等。该通信装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置2800可以包括一个或多个处理器2801。其中,处理器2801可以是通用处理器或者专用处理器等。处理器2801可以用于对通信装置(如,终端设备或网络设备等)进行控制,执行软件程序,处理软件程序的数据。
可选的,通信装置2800中可以包括一个或多个存储器2802,其上可以存有指令2804,该指令可在处理器2801上被运行,使得该通信装置2800执行上述方法实施例中描述的方法。可选的,存储器2802中还可以存储有数据。处理器2801和存储器2802可以单独设置,也可以集成在一起。
可选的,通信装置2800还可以包括收发器2805、天线2806。该收发器2805可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器2805可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
一种可选的实施方式中,通信装置2800执行上述方法实施例中终端设备的相关操作,收发器2805可用于执行图7中的S103的操作,图13中S203的操作,图18中S303的操作,图25中S401、S404的操作。
另一种可选的实施方式中,通信装置2800执行上述方法实施例中网络设备的相关操作,处理器1101可用于执行图7中的S101、S102的操作,图13中S201、S202的操作,图18中S301、S302的操作,图25中S402、S403的操作。
其中,通信装置其他的相关内容可参见上述方法实施例的相关内容的相关操作。此处不再详述。
在另一种可能的设计中,该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,可选的,处理器2801可以存有指令2803,指令2803在处理器2801上运行,可使得通信装置2800执行上述方法实施例中描述的方法。指令2803可能固化在处理器2801中,该种情况下,处理器2801可能由硬件实现。
在又一种可能的设计中,通信装置2800可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
以上实施例描述中的通信装置可以是网络设备或终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图28的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图29所示的芯片的结构示意图。图29所示的芯片2900包括处理器2901和接口2902。其中,处理器2901的数量可以是一个或多个,接口2902的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口2902,用于接收准共址QCL指示信息,其中,QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1。
可选的,芯片还包括与处理器2901耦合的存储器2903,存储器2903用于存储终端设备必要的程序指令和数据。
可选的,该处理器2901可用于根据QCL指示信息,确定DMRS的多普勒扩展、时延扩展、平均时延和多普勒频偏。
其他可选的实施方式可参见上述方法实施例的相关内容,此处不再详述。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
处理器2901,用于确定准共址QCL指示信息,其中,QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,DMRS的多普勒扩展与N个TRS的多普勒扩展相关联,DMRS的平均时延与M个TRS的平均时延相关联,以及DMRS的多普勒偏移与M个TRS的多普勒偏移相关联;N大于或等于2,M大于或等于1;
接口2902,用于发送QCL指示信息。
其中,其他可选的实施方式的相关内容可参见上述方法实施例的相关内容,此处不再详述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现该功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、 硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种准共址QCL指示方法,其特征在于,应用于多站协作传输中,所述方法包括:
    终端接收QCL指示信息,所述QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,所述DMRS的多普勒扩展与所述N个TRS的多普勒扩展相关联,所述DMRS的平均时延与M个TRS的平均时延相关联,以及所述DMRS的多普勒偏移与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述N个TRS的时延扩展、多普勒扩展,确定所述DMRS的时延扩展、多普勒扩展,以及根据所述M个TRS的平均时延、多普勒偏移,确定所述DMRS的平均时延、多普勒偏移。
  3. 一种准共址QCL指示方法,其特征在于,应用于多站协作传输中,所述方法包括:
    终端接收QCL指示信息;所述QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,所述每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,以及所述每个DMRS的平均时延均与M个TRS的平均时延相关联,所述每个DMRS的多普勒偏移均与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端根据每个所述TRS的时延扩展、多普勒扩展,确定对应的DMRS的时延扩展、多普勒扩展,根据所述M个TRS的平均时延、多普勒偏移,确定所述每个DMRS的平均时延、多普勒偏移。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述QCL指示信息,发送上行信号。
  6. 一种准共址QCL指示方法,其特征在于,应用于多站协作传输中,所述方法包括:
    网络设备确定QCL指示信息,所述QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,所述DMRS的多普勒扩展与所述N个TRS的多普勒扩展相关联,所述DMRS的平均时延与M个TRS的平均时延相关联,以及所述DMRS的多普勒偏移与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1;
    所述网络设备发送所述QCL指示信息。
  7. 一种准共址QCL指示方法,其特征在于,应用于多站协作传输中,所述方法包括:
    网络设备确定准共址QCL指示信息,所述QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,所述每个DMRS的多普 勒扩展与对应的TRS的多普勒扩展相关联,所述每个DMRS的平均时延均与M个TRS的平均时延相关联,以及所述每个DMRS的多普勒偏移均与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1;
    所述网络设备发送所述QCL指示信息。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述QCL指示信息,接收上行信号。
  9. 一种终端,其特征在于,应用于多站协作传输中,所述终端包括:
    通信单元,用于接收准共址QCL指示信息,所述QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,所述DMRS的多普勒扩展与所述N个TRS的多普勒扩展相关联,所述DMRS的平均时延与M个TRS的平均时延相关联,以及所述DMRS的多普勒偏移与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1。
  10. 根据权利要求9所述的终端,其特征在于,所述终端还包括:
    处理单元,用于根据所述N个TRS的时延扩展、多普勒扩展,确定所述DMRS的时延扩展、多普勒扩展,以及根据所述M个TRS的平均时延、多普勒偏移,确定所述DMRS的平均时延、多普勒偏移。
  11. 一种终端,其特征在于,应用于多站协作传输中,所述终端包括:
    通信单元,用于接收准共址QCL指示信息;所述QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,所述每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,以及所述每个DMRS的平均时延均与M个TRS的平均时延相关联,所述每个DMRS的多普勒偏移均与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1。
  12. 根据权利要求11所述的终端,其特征在于,所述终端还包括:
    处理单元,用于根据每个所述TRS的时延扩展、多普勒扩展确定对应的DMRS的时延扩展、多普勒扩展,根据所述M个TRS的平均时延、多普勒偏移确定所述每个DMRS的平均时延、多普勒偏移。
  13. 根据权利要求9至12任一项所述的终端,其特征在于,
    所述通信单元,还用于根据所述QCL指示信息,发送上行信号。
  14. 一种网络设备,其特征在于,应用于多站协作传输中,所述网络设备包括:
    处理单元,用于确定准共址QCL指示信息,所述QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,所述DMRS的多普勒扩展与所述N个TRS的多普勒扩展相关联,所述DMRS的平均时延与M个TRS的平均时延相关联,以及所述DMRS的多普勒偏移与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1;
    通信单元,用于发送所述QCL指示信息。
  15. 一种网络设备,其特征在于,应用于多站协作传输中,所述网络设备包括:
    处理单元,用于确定准共址QCL指示信息,所述QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,所述每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,所述每个DMRS的平均时延均与M个TRS的平均时延相关联,以及所述每个DMRS的多普勒偏移均与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1;
    通信单元,用于发送所述QCL指示信息。
  16. 根据权利要求14或15所述的网络设备,其特征在于,
    所述通信单元,还用于根据所述QCL指示信息,接收上行信号。
  17. 根据权利要求9至13任一项所述的终端,其特征在于,
    所述处理单元为处理器;所述通信单元为收发器。
  18. 根据权利要求14至16任一项所述的网络设备,其特征在于,
    所述处理单元为处理器;所述收发单元为收发器。
  19. 一种芯片系统,其特征在于,包括至少一个处理器和接口;
    所述接口,用于接收准共址QCL指示信息,所述QCL指示信息用于指示解调参考信号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,所述DMRS的多普勒扩展与所述N个TRS的多普勒扩展相关联,所述DMRS的平均时延与M个TRS的平均时延相关联,以及所述DMRS的多普勒偏移与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1;
    所述处理器,用于根据所述N个TRS的时延扩展、多普勒扩展,确定所述DMRS的时延扩展、多普勒扩展,以及根据所述M个TRS的平均时延、多普勒偏移,确定所述DMRS的平均时延、多普勒偏移。
  20. 一种芯片系统,其特征在于,包括至少一个处理器和接口;
    所述接口,用于接收准共址QCL指示信息;所述QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,所述每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,以及所述每个DMRS的平均时延均与M个TRS的平均时延相关联,所述每个DMRS的多普勒偏移均与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1;
    所述处理器,用于根据每个所述TRS的时延扩展、多普勒扩展确定对应的DMRS的时延扩展、多普勒扩展,根据所述M个TRS的平均时延、多普勒偏移确定所述每个DMRS的平均时延、多普勒偏移。
  21. 一种芯片系统,其特征在于,包括至少一个处理器和接口;
    所述处理器,用于确定准共址QCL指示信息,所述QCL指示信息用于指示解调参考信 号DMRS的时延扩展与N个跟踪参考信号TRS的时延扩展相关联,所述DMRS的多普勒扩展与所述N个TRS的多普勒扩展相关联,所述DMRS的平均时延与M个TRS的平均时延相关联,以及所述DMRS的多普勒偏移与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1;
    所述接口,用于发送所述QCL指示信息。
  22. 一种芯片系统,其特征在于,包括至少一个处理器和接口;
    所述处理器,用于确定准共址QCL指示信息,所述QCL指示信息用于指示N个解调参考信号DMRS中每个DMRS的时延扩展与对应的TRS的时延扩展相关联,所述每个DMRS的多普勒扩展与对应的TRS的多普勒扩展相关联,所述每个DMRS的平均时延均与M个TRS的平均时延相关联,以及所述每个DMRS的多普勒偏移均与所述M个TRS的多普勒偏移相关联;所述N大于或等于2,所述M大于或等于1;
    所述接口,用于发送所述QCL指示信息。
  23. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,当所述计算机程序被执行时,使得所述通信装置实现如权利要求1-5任一项所述的方法,或如权利要求6至8任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-5任一项所述的方法,或如权利要求6至8任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-5任一项所述的方法,或如权利要求6至8任一项所述的方法。
PCT/CN2021/109944 2020-07-31 2021-07-31 一种qcl指示方法及相关设备 WO2022022732A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21850028.8A EP4181447A4 (en) 2020-07-31 2021-07-31 QCL INDICATION METHOD AND ASSOCIATED DEVICE
US18/161,776 US20230308242A1 (en) 2020-07-31 2023-01-30 Qcl indication method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010762047.7A CN114070503A (zh) 2020-07-31 2020-07-31 一种qcl指示方法及相关设备
CN202010762047.7 2020-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/161,776 Continuation US20230308242A1 (en) 2020-07-31 2023-01-30 Qcl indication method and related device

Publications (1)

Publication Number Publication Date
WO2022022732A1 true WO2022022732A1 (zh) 2022-02-03

Family

ID=80037684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109944 WO2022022732A1 (zh) 2020-07-31 2021-07-31 一种qcl指示方法及相关设备

Country Status (4)

Country Link
US (1) US20230308242A1 (zh)
EP (1) EP4181447A4 (zh)
CN (1) CN114070503A (zh)
WO (1) WO2022022732A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198805A1 (en) * 2022-04-13 2023-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Nodes and methods for transmission of downlink radio signals in a distributed multiple input multiple output system
WO2023246759A1 (zh) * 2022-06-24 2023-12-28 华为技术有限公司 信道估计方法、设备及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115733591A (zh) * 2021-08-30 2023-03-03 华为技术有限公司 基于多站协作的下行传输方法和相关装置
WO2023236223A1 (zh) * 2022-06-10 2023-12-14 北京小米移动软件有限公司 一种传输配置指示状态的指示方法及装置
CN117676793A (zh) * 2022-08-22 2024-03-08 华为技术有限公司 一种通信方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130279437A1 (en) * 2012-04-19 2013-10-24 Samsung Electronics Co., Ltd. Quasi co-location identification of reference symbol ports for coordinated multi-point communication systems
US20180227929A1 (en) * 2017-02-03 2018-08-09 Samsung Electronics Co., Ltd. Method for controlling wireless communication in beamforming-based cellular system
CN109565432A (zh) * 2017-01-06 2019-04-02 Lg 电子株式会社 无线通信系统中接收参考信号的方法及其装置
CN110291744A (zh) * 2017-02-16 2019-09-27 高通股份有限公司 确定在平滑预编码下的dmrs平均延迟和延迟扩展

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130279437A1 (en) * 2012-04-19 2013-10-24 Samsung Electronics Co., Ltd. Quasi co-location identification of reference symbol ports for coordinated multi-point communication systems
CN109565432A (zh) * 2017-01-06 2019-04-02 Lg 电子株式会社 无线通信系统中接收参考信号的方法及其装置
US20180227929A1 (en) * 2017-02-03 2018-08-09 Samsung Electronics Co., Ltd. Method for controlling wireless communication in beamforming-based cellular system
CN110291744A (zh) * 2017-02-16 2019-09-27 高通股份有限公司 确定在平滑预编码下的dmrs平均延迟和延迟扩展

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Multi-TRP and multi-panel transmission", 3GPP DRAFT; R1-1716345 MULTI-TRP AND MULTI-PANEL TRANSMISSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 12 September 2017 (2017-09-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051329934 *
HUAWEI, HISILICON: "Reference Signal for fine time and frequency tracking", 3GPP DRAFT; R1-1715475, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 11 September 2017 (2017-09-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051329258 *
See also references of EP4181447A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198805A1 (en) * 2022-04-13 2023-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Nodes and methods for transmission of downlink radio signals in a distributed multiple input multiple output system
WO2023246759A1 (zh) * 2022-06-24 2023-12-28 华为技术有限公司 信道估计方法、设备及系统

Also Published As

Publication number Publication date
EP4181447A1 (en) 2023-05-17
CN114070503A (zh) 2022-02-18
EP4181447A4 (en) 2024-01-03
US20230308242A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2022022732A1 (zh) 一种qcl指示方法及相关设备
CN111511010B (zh) 发送和接收指示的方法和装置
JP6374510B2 (ja) チャネル状態情報参照信号を構成するための方法、および基地局
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2018228532A1 (zh) 通信方法、终端及网络设备
JP2022552296A (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
US9432159B2 (en) Method, apparatus and computer program for providing sounding reference signals for coordinated multipoint transmissions
CN109155693B (zh) 低复杂度多配置csi报告
CN108462552A (zh) 一种多码字传输方法及装置
US10206201B2 (en) Method and apparatus for transmitting and/or receiving reference signals
US20220248358A1 (en) Multi-transmit-receive point transmission for ultra reliable low latency communication
US20150381388A1 (en) Channel estimation in wireless communications
WO2021063372A1 (zh) 一种资源确定方法及装置
US11109287B2 (en) Apparatus and method for measurement configuration in wireless communication system
US20230262493A1 (en) Cli measurement enabled with aoa estimation
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2018171783A1 (zh) 信号传输方法、装置及系统
CN114499786A (zh) 一种信号传输方法及装置
WO2021062689A1 (zh) 一种上行传输的方法及装置
CN110830202B (zh) 通信方法、装置和通信系统
WO2020200032A1 (zh) 通信处理方法和装置
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024109710A1 (zh) 信息传输方法、装置及系统
WO2023216166A1 (zh) 相干带宽的测量方法和装置
EP4346114A1 (en) User equipment and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021850028

Country of ref document: EP

Effective date: 20230213

NENP Non-entry into the national phase

Ref country code: DE