WO2023246759A1 - 信道估计方法、设备及系统 - Google Patents

信道估计方法、设备及系统 Download PDF

Info

Publication number
WO2023246759A1
WO2023246759A1 PCT/CN2023/101319 CN2023101319W WO2023246759A1 WO 2023246759 A1 WO2023246759 A1 WO 2023246759A1 CN 2023101319 W CN2023101319 W CN 2023101319W WO 2023246759 A1 WO2023246759 A1 WO 2023246759A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
compensation
trs
compensation value
doppler
Prior art date
Application number
PCT/CN2023/101319
Other languages
English (en)
French (fr)
Inventor
吴钊
王岭
李翔
赵泽涵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023246759A1 publication Critical patent/WO2023246759A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application relates to the field of communications, and in particular to channel estimation methods, devices and systems.
  • Base stations use single frequency network (Single Frequency Network, SFN) networking to realize data transmission when UE moves at high speed in the community.
  • SFN Single Frequency Network
  • the logical cell where a base station is located contains multiple Transmission and Reception Points (TRPs). These TRPs can transmit the same pilot and data at the same time, which can help the base station expand the coverage of the cell and ensure the high-speed movement of UE. Therefore, in high-speed mobile scenarios, SFN networking applications are widely welcomed.
  • TRPs Transmission and Reception Points
  • This application provides a channel estimation method, equipment and system, which can accurately estimate channel characteristics and improve demodulation performance.
  • embodiments of the present application provide a channel estimation method, including: sending a first tracking reference signal (Tracking Reference Signal, TRS) through a reference TRP and a second TRS through a non-reference TRP; sending a solution through the reference TRP Demodulation Reference Signal (DMRS) and physical downlink shared channel (Physical Downlink Shared Channel, PDSCH); transmit the DMRS and PDSCH that complete pre-compensation according to the first pre-compensation value through the non-reference TRP; send a control message, so The control message indicates the first pre-compensation value, and the first pre-compensation value is associated with the second TRS.
  • TRS Track Reference Signal
  • TRS Track Reference Signal
  • TRS Track Reference Signal
  • DMRS Demodulation Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • the channel estimation method provided by the embodiments of this application can be applied in some scenarios where the UE moves quickly, or the base station coverage is large, and the UE switches quickly.
  • the base station can provide continuous services for UEs that move at high speed or switch with high frequency through SFN networking.
  • the SFN network includes multiple TRPs connected to a base station. These TRPs can transmit the same pilot and data to the UE at the same time.
  • the base station can send pilots and data to the UE through multiple TRPs, such as sending the TRS corresponding to each TRP.
  • the two TRPs can be regarded as a base TRP and a non-baseline TRP respectively.
  • the pilots and data sent by the non-baseline TRP can be the corresponding pilots and data sent by the base TRP.
  • the data is used as a baseline for pre-compensation.
  • the center frequency point of the base station is fc
  • the frequency offset between the baseline TRP estimate and the UE is fd1
  • the frequency offset between the non-baseline TRP estimate and the UE is fd2.
  • the base station can calculate a first pre-compensation value based on the reference TRP and the non-reference TRP.
  • the first pre-compensation value can be a frequency offset pre-compensation value, that is, the reference TRP estimates the frequency offset from the UE and the frequency offset between the non-reference TRP and the UE. deviation.
  • the base station can calculate a delay pre-compensation value based on the delay of the reference TRP and non-base TRP.
  • the first pre-compensation value can be the delay pre-compensation value, or the base station can calculate the frequency offset pre-compensation value and the time delay. Delay pre-compensation value, the first pre-compensation value may be a frequency offset pre-compensation value and a delay pre-compensation value.
  • the first pre-compensation value includes one or both of frequency offset pre-compensation and delay pre-compensation.
  • the base station completes pre-compensation for the DMRS and PDSCH to be sent by the non-reference TRP according to the first pre-compensation value.
  • a control message is sent to the UE to indicate the first pre-compensation value, so that the UE can process the received DMRS and PDSCH according to the first pre-compensation value, and thereby decode more accurate data.
  • the method further includes: notifying the UE to use the first TRS and the second TRS to receive the PDSCH, and the QCL type of the first TRS is the first QCL type, and the second TRS The QCL type of the TRS is the second QCL type.
  • the notification method includes but is not limited to using Radio Resource Control (RRC) signaling, Medium Access Control (MAC) control element, and downlink control. Message (Downlink Control Information, DCI) or their combination.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • DCI Downlink Control Information
  • the base station can configure a Transmission Configuration Indicator (TCI) state.
  • TCI state includes configuring the Quasi Co-Located (QCL) relationship between the DMRS to be sent and the TRS, such as configuring the first TRS and the second TRS.
  • QCL Quasi Co-Located
  • the TRS are quasi-co-located, and the QCL types of the first TRS and the second TRS are respectively configured, and the first TRS and the second TRS with QCL relationships are then activated to notify the UE to use the first TRS and the second TRS to receive the PDSCH.
  • the base station sends a MAC control element, and the MAC control element activates the first TRS and the second TRS, that is, activating the TCI state of the first TRS and the TCI state of the second TRS through the MAC control element, which is equivalent to informing the UE of the first TRS.
  • the TRS and the second TRS are quasi-co-located with the DMRS they receive, as well as the first QCL type and the second QCL type.
  • the base station sends a MAC control element, the MAC control element activates at least the first TRS and the second TRS, and then selects the first TRS and the second TRS from the TRS activated by the MAC control element through DCI, that is, the TCI field of the sent DCI, and notifies
  • DCI that is, the TCI field of the sent DCI
  • the first TRS, the second TRS and the received DMRS of the UE are quasi-co-located, and the UE can use the first TRS and the second TRS to receive the PDSCH.
  • the base station can also send RRC signaling to configure the first QCL type of the first TRS and configure the second QCL type of the second TRS to notify the UE to use the first TRS and the second TRS. Receive PDSCH.
  • the first QCL type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters
  • the second QCL The type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters.
  • QCL types A, B, C, and D are defined in the existing standards, namely QCL types A, B, C, and D.
  • QCL type A is: Doppler frequency shift, Doppler spread, average delay and delay spread
  • QCL type B is: Doppler frequency shift and Doppler spread
  • QCL type C is: average channel delay sum Doppler frequency shift
  • QCL type D is: space reception parameter.
  • the base station can configure one or more types of QCL for the UE, and can instruct the UE to discard the "Doppler frequency shift" and "Doppler extension" information in QCL type A.
  • the base station can configure the first QCL
  • the type is QCL type A
  • the second QCL type is ⁇ average delay, delay extension ⁇
  • the UE is notified of the first QCL type and the second QCL type.
  • the embodiment of this application can configure these four QCL types, but is not limited thereto.
  • the first QCL type includes Doppler frequency shift, the first pre-compensation value is a frequency offset pre-compensation value, and the pre-compensation is frequency offset pre-compensation; or, the The first QCL type includes average channel delay, the first pre-compensation value is a delay pre-compensation value, and the pre-compensation is delay pre-compensation; or the first QCL type includes Doppler frequency shift and average Channel delay, the first pre-compensation value is a frequency offset pre-compensation value and a delay pre-compensation value, and the pre-compensation is a frequency offset pre-compensation and a delay pre-compensation value.
  • the method further includes: obtaining a second pre-compensation value, and sending DMRS and PDSCH that are pre-compensated according to the second pre-compensation value through the non-reference TRP; if the second pre-compensation value is The absolute value of the difference between the compensation value and the first pre-compensation value is greater than a preset threshold, and the control message is sent.
  • the control message indicates the second pre-compensation value, and the second pre-compensation value is equal to the third pre-compensation value.
  • the two TRS are related.
  • the base station can issue a new MAC control element to indicate the new frequency offset pre-compensation value.
  • the base station can always estimate the frequency offset compensation value, which is recorded as the base station obtains the second pre-compensation value.
  • the base station again sends the DMRS and PDSCH that have been pre-compensated according to the second pre-compensation value through the non-reference TRP.
  • the second pre-compensation value matches the base station
  • the absolute value of the difference between the previously sent first pre-compensation values is greater than the preset threshold, that is, when it exceeds a threshold
  • the control message is re-sent to the UE indicating the second pre-compensation value.
  • the second pre-compensation value is associated with the second TRS. relationship, so that the UE performs channel estimation on the new target DMRS according to the second pre-compensation value, and then demodulates the target PDSCH.
  • the base station sends the DMRS and PDSCH that have been pre-compensated according to the first pre-compensation value through the non-reference TRP, and then indicates the first pre-compensation value to the UE through a control message, which can enable the UE to perform more accurate DMRS calculations through the first pre-compensation value.
  • Channel estimation and then solve the more accurate PDSCH.
  • embodiments of the present application provide a channel estimation method, including: receiving a first tracking reference signal TRS sent by a reference TRP and a second TRS sent by a non-reference TRP; receiving a demodulation reference signal DMRS sent by the reference TRP.
  • the correlation between the pre-compensation value and the second TRS is used to determine the first pre-compensation value; and the target DMRS is processed according to the received first TRS, the second TRS and the first pre-compensation value.
  • the pre-compensation value includes one or both of frequency offset pre-compensation and delay pre-compensation.
  • DMRS will have different degrees of frequency offset when sent to the UE through TRPs of different paths, when the UE receives it in the frequency domain, there will be a certain frequency offset between the target DMRS and the DMRS sent by the TRP, and the target PDSCH will also have a certain degree of frequency offset. frequency offset, therefore, The channel has Doppler spread, and the accuracy of channel estimation based on DMRS is not high. Similarly, since there will be varying degrees of delay when DMRS is sent to the UE through TRPs of different paths, when the UE receives it in the time domain, there will be a certain delay between the target DMRS and the DMRS sent by the TRP, and the target PDSCH will also exist.
  • the UE can perform channel estimation on the target DMRS and demodulate the target PDSCH according to the first pre-compensation value indicated by the control message to obtain a more accurate solution result.
  • the notification method includes but is not limited to using radio resource control RRC signaling, media access control layer MAC control element, downlink control information DCI, or a combination thereof;
  • the PDSCH is received using the first TRS and the second TRS according to the notification, and the QCL type of the first TRS is the first QCL type, and the QCL type of the second TRS is the second QCL type.
  • the first QCL type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters
  • the second QCL The type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters.
  • QCL types A, B, C, and D are defined in the existing standards, namely QCL types A, B, C, and D.
  • QCL type A is: Doppler frequency shift, Doppler spread, average delay and delay spread
  • QCL type B is: Doppler frequency shift and Doppler spread
  • QCL type C is: average channel delay sum Doppler frequency shift
  • QCL type D is: space reception parameter.
  • the base station can configure one or more types of QCL for the UE, and can instruct the UE to discard the "Doppler frequency shift" and "Doppler extension" information in QCL type A.
  • the embodiment of the present application can configure these four types of QCL type, but not limited to this.
  • the UE may determine whether the pre-compensation value is a frequency offset pre-compensation value, a delay pre-compensation value or both according to the content included in the received first QCL type. For example, the UE learns that the first QCL type is QCL type A, and the QCL type of TRS#2 is ⁇ average delay, delay spread ⁇ . The UE can determine that the pre-compensation value is the frequency offset pre-compensation value, and then use the frequency offset pre-compensation value to perform subsequent reception and calculation.
  • the first pre-compensation value is a frequency offset pre-compensation value
  • the pre-compensation is a frequency offset pre-compensation
  • performing channel estimation on the target DMRS according to the received first TRS, the second TRS and the first pre-compensation value, and demodulating the target PDSCH includes: obtaining the target PDSCH according to the first TRS estimation.
  • the first Doppler characteristic obtain the second Doppler characteristic according to the second TRS estimation, and perform frequency offset compensation on the second Doppler characteristic according to the first frequency offset pre-compensation value; according to the predetermined weighting
  • the rule performs a weighted summation of the first Doppler characteristic and the second Doppler characteristic of frequency offset compensation to obtain a weighted Doppler characteristic; according to the weighted Doppler characteristic, the target DMRS is Channel estimation, demodulation of the target PDSCH.
  • the UE receives the first TRS sent by the reference TRP and the second TRS sent by the non-reference TRP in different time domains and/or frequency domains, and estimates the Doppler characteristics of the first TRS and the second TRS respectively. Then based on the first pre-compensation value indicated by the base station, that is, the frequency offset pre-compensation value, frequency offset compensation is performed on the Doppler characteristics estimated by the second TRS, and the UE then receives power according to the reference signal of the first TRS and the second TRS (Reference Signal Receiving Power (RSRP) or Signal-to-Noise Ratio (SNR), the Doppler characteristics of the first TRS and the second TRS are weighted and summed to obtain the weighted Doppler characteristics. Finally, based on the weighted Doppler characteristics of the first TRS and the second TRS, the target DMRS channel is estimated, which is used to demodulate the target PDSCH to obtain PDSCH data.
  • RSRP Reference Signal Receiving
  • the first pre-compensation value is a frequency offset pre-compensation value
  • the pre-compensation is a frequency offset pre-compensation
  • performing channel estimation on the target DMRS according to the received first TRS, the second TRS and the first pre-compensation value, and demodulating the target PDSCH includes: obtaining the target PDSCH according to the first TRS estimation.
  • the first Doppler characteristic; frequency offset compensation is performed on the second TRS according to the first pre-compensation value, and the third Doppler characteristic is estimated according to the TRS after frequency offset compensation; and the third Doppler characteristic is obtained according to a predetermined weighting rule.
  • the first pre-compensation value is a delay pre-compensation value
  • the pre-compensation is delay pre-compensation
  • Performing channel estimation on the target DMRS according to the received first TRS, the second TRS and the first pre-compensation value, and demodulating the target PDSCH includes: obtaining the first TRS based on the first TRS estimation. A delay characteristic; obtaining a second delay characteristic according to the second TRS estimate, and performing delay compensation on the second delay characteristic according to the delay pre-compensation value; and performing delay compensation on the first delay characteristic according to a predetermined weighting rule.
  • the delay characteristics and the second delay characteristics of delay compensation are weighted and summed to obtain the weighted delay characteristics; according to the weighted delay characteristics, channel estimation is performed on the target DMRS and the target PDSCH is demodulated.
  • the first pre-compensation value is a delay pre-compensation value
  • the pre-compensation is delay pre-compensation
  • Performing channel estimation on the target DMRS according to the received first TRS, the second TRS and the first pre-compensation value, and demodulating the target PDSCH includes: obtaining the first TRS based on the first TRS estimation. A delay characteristic; performing delay compensation on the second TRS according to the delay pre-compensation value, and obtaining a third delay characteristic according to the TRS after delay compensation; and calculating the first delay according to a predetermined weighting rule.
  • a weighted summation of the characteristics and the third delay characteristic is performed to obtain a weighted delay characteristic; according to the weighted delay characteristic, channel estimation is performed on the target DMRS and the target PDSCH is demodulated.
  • the first pre-compensation value is a frequency offset pre-compensation value and a delay pre-compensation value.
  • the pre-compensation is frequency offset pre-compensation and delay pre-compensation
  • the channel estimation is performed on the target DMRS according to the received first TRS, the second TRS and the first pre-compensation value
  • Demodulating the target PDSCH includes: obtaining a first Doppler characteristic and a first delay characteristic according to the first TRS estimate; obtaining a second Doppler characteristic and a second delay characteristic according to the second TRS estimate, Perform frequency offset compensation on the second Doppler characteristic according to the frequency offset pre-compensation value, perform delay compensation on the second delay characteristic according to the delay pre-compensation value; perform delay compensation on the second Doppler characteristic according to a predetermined weighting rule.
  • the first Doppler characteristic and the second Doppler characteristic of frequency offset compensation are weighted and summed to obtain a weighted Doppler characteristic, and the first delay characteristic and the delay compensation characteristic are calculated according to a predetermined weighting rule.
  • the second delay characteristics are weighted and summed to obtain weighted delay characteristics; according to the weighted Doppler characteristics and the weighted delay characteristics, channel estimation is performed on the target DMRS and the target PDSCH is demodulated.
  • the first pre-compensation value is a frequency offset pre-compensation value and a delay pre-compensation value.
  • the pre-compensation is frequency offset pre-compensation and delay pre-compensation
  • the channel estimation is performed on the target DMRS according to the received first TRS, the second TRS and the first pre-compensation value
  • Demodulating the target PDSCH includes: obtaining a first Doppler characteristic and a first delay characteristic according to the first TRS estimation; performing frequency offset compensation on the second TRS according to the first pre-compensation value.
  • the TRS after bias compensation is estimated to obtain the third Doppler characteristic
  • the TRS of the non-reference TRP is delay compensated according to the delay pre-compensation value
  • the third delay characteristic is obtained according to the TRS after delay compensation
  • the first Doppler characteristic and the third Doppler characteristic are weighted and summed according to a predetermined weighting rule to obtain a weighted Doppler characteristic.
  • the first delay characteristic and the third delay characteristic are Perform weighted summation to obtain weighted delay characteristics; perform channel estimation on the target DMRS and demodulate the target PDSCH according to the weighted Doppler characteristics and the weighted delay characteristics.
  • the method further includes: receiving DMRS and PDSCH that are pre-compensated according to the second pre-compensation value sent by the non-reference TRP; and demodulating the received reference TRP send
  • the reference signal DMRS, the physical downlink shared channel PDSCH and the DMRS and PDSCH sent by the non-reference TRP that have been pre-compensated according to the second pre-compensation value are used to obtain the target DMRS and the target PDSCH; receive the control message, and according to the control
  • the correlation between the second pre-compensation value and the second TRS indicated by the message determines the second pre-compensation value, wherein the absolute difference between the second pre-compensation value and the first pre-compensation value is The value is greater than the preset threshold; perform channel estimation on the target DMRS according to the received first TRS, the second TRS and the second pre-compensation value, and demodulate the target PDSCH.
  • the target DMRS and the target PDSCH can be obtained as , replacing the target DMRS and target PDSCH obtained according to the previously received parameters with the target DMRS and target PDSCH obtained from the newly received parameters.
  • a base station including: a sending module, configured to send a first tracking reference signal TRS through a reference TRP and a second TRS through a non-reference TRP; the sending module is also configured to send a first tracking reference signal TRS through the reference TRP;
  • the base TRP sends the demodulation reference signal DMRS and the physical downlink shared channel PDSCH, and the non-base TRP sends the DMRS and PDSCH that are pre-compensated according to the first pre-compensation value;
  • the sending module is also used to send control messages, so The control message indicates the first pre-compensation value, and the first pre-compensation value is associated with the second TRS.
  • the pre-compensation value includes one or both of frequency offset pre-compensation and delay pre-compensation.
  • the base station further includes: a notification module, configured to notify the UE to use the first TRS and the second TRS to receive the PDSCH, and the QCL type of the first TRS is the first QCL type,
  • the QCL type of the second TRS is the second QCL type, and the notification method includes but is not limited to using radio resource control RRC signaling, media access control layer MAC control element, downlink control information DCI, or a combination thereof.
  • the first QCL type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters
  • the second QCL The type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters.
  • the first QCL type includes Doppler frequency shift, the first pre-compensation value is a frequency offset pre-compensation value, and the pre-compensation is frequency offset pre-compensation; or, the The first QCL type includes average channel delay, the first pre-compensation value is a delay pre-compensation value, and the pre-compensation is delay pre-compensation; or the first QCL type includes Doppler frequency shift and average Channel delay, the first pre-compensation value is a frequency offset pre-compensation value and a delay pre-compensation value, and the pre-compensation is a frequency offset pre-compensation and a delay pre-compensation value.
  • the processing module is configured to obtain a second pre-compensation value; the sending module is further configured to send the DMRS and DMRS that have been pre-compensated according to the second pre-compensation value through the non-reference TRP.
  • PDSCH if the absolute value of the difference between the second pre-compensation value and the first pre-compensation value is greater than a preset threshold, send the control message, where the control message indicates the second pre-compensation value, and the third The two pre-compensation values are associated with the second TRS.
  • embodiments of the present application provide a UE, including: a receiving module, configured to receive a first tracking reference signal TRS sent by a reference TRP and a second TRS sent by a non-reference TRP; the receiving module is also configured to receive The demodulation reference signal DMRS and the physical downlink shared channel PDSCH sent by the reference TRP and the DMRS and PDSCH sent by the non-reference TRP that are pre-compensated according to the first pre-compensation value are used to obtain the target DMRS and the target PDSCH; the receiving module , is also configured to receive a control message, and determine the first pre-compensation value according to the association between the first pre-compensation value and the second TRS indicated by the control message; a processing module, configured to determine the first pre-compensation value according to the received The first TRS, the second TRS and the first pre-compensation value perform channel estimation on the target DMRS and demodulate the target PDSCH.
  • a receiving module configured to receive
  • the pre-compensation value includes one or both of frequency offset pre-compensation and delay pre-compensation.
  • the receiving module is also used to receive notifications.
  • the notification methods include but are not limited to using radio resource control RRC signaling, media access control layer MAC control elements, and downlink control information DCI. Or a combination thereof; the processing module is specifically configured to use the first TRS and the second TRS to receive PDSCH according to the notification, and the QCL type of the first TRS is the first QCL type, and the third The QCL type of the second TRS is the second QCL type.
  • the first QCL type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters
  • the second QCL The type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters.
  • the processing module obtains the first Doppler characteristic according to the first TRS estimate; obtains the second Doppler characteristic according to the second TRS estimate, and performs pre-compensation on the first frequency offset value according to the second TRS estimate.
  • the second Doppler characteristic is subjected to frequency offset compensation; the first Doppler characteristic and the frequency offset compensated second Doppler characteristic are weighted and summed according to a predetermined weighting rule to obtain a weighted Doppler characteristic; According to the weighted Doppler characteristics, channel estimation is performed on the target DMRS and the target PDSCH is demodulated.
  • the processing module estimates the first Doppler characteristic based on the first TRS; performs frequency offset compensation on the second TRS based on the first pre-compensation value, and based on the frequency offset compensated TRS
  • the third Doppler characteristic is estimated and obtained; the first Doppler characteristic and the third Doppler characteristic are weighted and summed according to a predetermined weighting rule to obtain the weighted Doppler characteristic; according to the weighted Doppler characteristic Characteristics: perform channel estimation on the target DMRS and demodulate the target PDSCH.
  • the processing module estimates the first Doppler characteristic according to the first TRS; performs frequency offset compensation on the second TRS according to the first pre-compensation value, and estimates the TRS according to the frequency offset compensation Obtain the third Doppler characteristic; perform a weighted sum of the first Doppler characteristic and the third Doppler characteristic according to a predetermined weighting rule to obtain a weighted Doppler characteristic; according to the weighted Doppler characteristic , perform channel estimation on the target DMRS, and demodulate the target PDSCH.
  • the processing module obtains the first delay characteristic according to the first TRS estimate; obtains the second delay characteristic according to the second TRS estimate, and calculates the second delay characteristic according to the delay pre-compensation value. Characteristics are used to perform delay compensation; the first delay characteristic and the second delay characteristic of delay compensation are weighted and summed according to a predetermined weighting rule to obtain a weighted delay characteristic; according to the weighted delay characteristic,
  • the target DMRS performs channel estimation and demodulates the target PDSCH.
  • the first pre-compensation value is a frequency offset pre-compensation value and Delay pre-compensation value.
  • the pre-compensation is frequency offset pre-compensation and delay pre-compensation.
  • the processing module estimates the first delay characteristic according to the first TRS; and calculates the delay pre-compensation value based on the delay pre-compensation value.
  • the second TRS performs delay compensation, and the third delay characteristic is estimated based on the delay-compensated TRS; the first delay characteristic and the third delay characteristic are weighted and summed according to a predetermined weighting rule to obtain a weighted sum.
  • Delay characteristics According to the weighted delay characteristics, perform channel estimation on the target DMRS and demodulate the target PDSCH.
  • the processing module obtains the first Doppler characteristic and the first delay characteristic according to the first TRS estimate; according to the first TRS estimate
  • the second TRS estimates obtain the second Doppler characteristic and the second delay characteristic, perform frequency offset compensation on the second Doppler characteristic according to the frequency offset pre-compensation value, and perform frequency offset compensation on the second Doppler characteristic according to the delay pre-compensation value.
  • the second delay characteristic is used for delay compensation; the first Doppler characteristic and the second Doppler characteristic of frequency offset compensation are weighted and summed according to a predetermined weighting rule to obtain a weighted Doppler characteristic.
  • the weighting rule performs a weighted sum of the first delay characteristic and the second delay characteristic of delay compensation to obtain a weighted delay characteristic; according to the weighted Doppler characteristic and the weighted delay characteristic,
  • the target DMRS performs channel estimation and demodulates the target PDSCH.
  • the receiving module is also configured to receive the DMRS and PDSCH that are pre-compensated according to the second pre-compensation value and are sent by the non-reference TRP; the processing module is also configured to receive the DMRS and PDSCH according to the second pre-compensation value.
  • the received demodulation reference signal DMRS, physical downlink shared channel PDSCH sent by the reference TRP and the DMRS and PDSCH sent by the non-reference TRP that are pre-compensated according to the second pre-compensation value are used to obtain the target DMRS and target PDSCH.
  • the receiving module is further configured to receive the control message, and determine the second pre-compensation value according to the association between the second pre-compensation value indicated by the control message and the second TRS, wherein, The absolute value of the difference between the second pre-compensation value and the first pre-compensation value is greater than a preset threshold; the processing module is also configured to calculate the difference between the second pre-compensation value and the first pre-compensation value according to the received first TRS, second TRS and The second pre-compensation value performs channel estimation on the target DMRS and demodulates the target PDSCH.
  • embodiments of the present application provide a system, including: a base station as provided in the third aspect; and a UE as provided in the fourth aspect.
  • Figure 1 is a schematic diagram of a high-speed rail network provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a channel estimation method provided by an embodiment of the present application.
  • Figure 3 is a flow chart of another channel estimation method provided by an embodiment of the present application.
  • Figure 4 is a flow chart of another channel estimation method provided by an embodiment of the present application.
  • Figure 5 is a bit diagram of the pre-compensation value provided by the embodiment of the present application.
  • Figure 6 is a schematic bit diagram of another pre-compensation value provided by an embodiment of the present application.
  • Figure 7 is a bit diagram of another pre-compensation value provided by an embodiment of the present application.
  • Figure 8 is a base station provided by an embodiment of the present application.
  • Figure 9 is a user equipment provided by an embodiment of the present application.
  • Figure 10 is a system provided by an embodiment of the present application.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • first and second in the description and claims of the embodiments of this application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • UE can be deployed on land, including indoor or outdoor, large or small; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • UE can refer to a device that provides voice and/or data connectivity to users, a handheld device with wireless connection capabilities, or other processing devices connected to a wireless modem, such as mobile phones, tablets, etc.
  • Wearable devices with wireless communication functions such as smart watches), location trackers with positioning functions, computers with wireless transceiver functions, virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control Wireless devices in industrial control, wireless devices in self-driving, wireless devices in remote medical, wireless devices in smart grid, and transportation safety Wireless devices, wireless devices in smart cities, wireless devices in smart homes, etc. This application does not limit this.
  • SFN networking can be used to solve the problem of frequent cell switching that affects the continuity of communication services when the UE moves at high speed.
  • SFN networking means that a logical cell including a base station contains multiple physical cells. These physical cells are usually called TRPs. These TRPs can transmit the same pilots and data to each other at the same time with the UE. Since a base station has multiple SFNs, the TRP of each SFN can transmit pilots and data to and from the UE, which is equivalent to the transmission expanding the range of continuous services provided by the base station, that is, the logical cell.
  • Figure 1 is a schematic diagram of a high-speed rail network provided by an embodiment of the present application. As shown in Figure 1, based on the characteristics of SFN networking, in the Long Term Evolution (LTE) and New Radio (NR) high-speed rail In the network, SFN networking has been widely used.
  • LTE Long Term Evolution
  • NR New Radio
  • the disadvantage of SFN is that since pilots and data are transmitted to the UE through different TRPs, different TRP paths lead to large frequency offset differences.
  • the channel will have characteristics such as Doppler expansion and large delay expansion. These characteristics This will cause data and pilots to carry significant Inter-Carrier Interference (ICI) and Inter-Symbol Interference (ISI), thus affecting the accuracy of UE channel estimation.
  • ICI Inter-Carrier Interference
  • ISI Inter-Symbol Interference
  • embodiments of the present application provide a channel estimation method, which enables the UE to accurately perform channel estimation through the base station indicating a pre-compensation value to compensate for the channel estimation error, where the pre-compensation value is a frequency offset pre-compensation value.
  • the pre-compensation value is a frequency offset pre-compensation value.
  • the embodiment of this application takes as an example a scenario where the network system to which this method is applicable is a base station containing two TRPs and a UE.
  • the two TRPs include a reference TRP and a non-baseline TRP, and the pilot and data sent by the non-baseline TRP are Pre-compensation can be performed based on the corresponding pilot and data transmitted by the reference TRP.
  • the network system is an architecture that includes a baseline TRP and a non-baseline TRP. In a more general example, it can also be a first TRP and a second TRP, and the examples in this application are not used as examples in the system.
  • the benchmark includes a limit on the number of TRPs, base stations containing more TRPs, and scenarios in which channel estimation is performed using the method provided by this application are all within the scope of protection.
  • Figure 2 is a flow chart of a channel estimation method provided by an embodiment of the present application. As shown in Figure 2, the method includes:
  • the base station sends the first TRS through the reference TRP and the second TRS through the non-base TRP respectively.
  • the base station can include a base TRP and a non-base TRP. These two TRPs can jointly send pilots and data to the same UE in the form of SFN.
  • the TRS sent by the base TRP can be recorded as The first TRS
  • the TRS sent by the non-base TRP can be recorded as the second TRS. If the center frequency point of the base station is fc, the frequency offset between the base TRP estimate and the UE is fd1, and the frequency offset between the non-base TRP estimate and the UE is fd2.
  • the base station can determine a frequency offset pre-compensation value based on the reference TRP and non-reference TRP, that is, the reference TRP estimates the frequency offset from the UE and the frequency offset between the non-reference TRP and the UE.
  • the frequency offset ⁇ f fd1-fd2.
  • the base station can also estimate the delay of the base TRP and non-base TRP respectively through the uplink reference signal. Based on the delay difference between the base TRP and the non-base TRP, a delay pre-compensation value can be determined.
  • the base station can also combine the above frequencies.
  • the offset and delay determine a frequency offset pre-compensation value and delay pre-compensation value. In this example, each pre-compensation value determined by the base station can be recorded as the first pre-compensation value.
  • the base station configures a TCI state, which includes the QCL relationship between the DMRS and TRS to be sent.
  • the TCI state configures five TRSs, denoted as TRS1, TRS2, TRS3, TRS4, and TRS5, and also configures the base station to send
  • TRS1 and TRS2 are configured.
  • TRS1 is recorded as the first TRS sent by the base TRP
  • TRS2 is the second TRS sent by the non-base TRP.
  • the first The QCL type of TRS is recorded as the first QCL type type
  • the QCL type of the second TRS is recorded as the second QCL type. Therefore, the base station can activate the first TRS and the second TRS that have a QCL relationship through some methods to notify the UE to use the first TRS and the second TRS to receive the PDSCH.
  • the base station may send a MAC control element, and the MAC control element activates the first TRS and the second TRS, that is, activating the TCI state of the first TRS and the TCI state of the second TRS through the MAC control element, which is equivalent to informing the UE of the third TRS.
  • a TRS and a second TRS are quasi-co-located with the DMRS they receive, as well as a first QCL type and a second QCL type.
  • the base station can send a MAC control element, which activates at least the first TRS and the second TRS, and then selects the first TRS and the second TRS from the TRS activated by the MAC control element through DCI, that is, the TCI field of the sent DCI,
  • DCI that is, the TCI field of the sent DCI
  • the UE is informed that the first TRS, the second TRS and the received DMRS are quasi-co-located, and the UE can receive the PDSCH using the first TRS and the second TRS.
  • the UE may also be instructed that the QCL type of the first TRS is the first QCL type, and the QCL type of the second TRS is the second QCL type, where the first QCL type includes Doppler shift (Doppler shift), Doppler At least one of Doppler spread, average delay, delay spread, and spatial Rx parameter.
  • the second QCL type includes Doppler frequency shift, Doppler At least one of spread, average channel delay, delay spread and spatial reception parameters.
  • the base station may also send RRC signaling to configure the first QCL type of the first TRS and configure the second QCL type of the second TRS to notify the UE to use the first QCL type.
  • the TRS and the second TRS receive the PDSCH.
  • QCL types A, B, C, and D are defined in the existing standards, namely QCL types A, B, C, and D.
  • QCL type A is: Doppler frequency shift, Doppler spread, average delay and delay spread
  • QCL type B is: Doppler frequency shift and Doppler spread
  • QCL type C is: average channel delay sum Doppler frequency shift
  • QCL type D is: space reception parameter.
  • the base station can configure one or more types of QCL for the UE, and can instruct the UE to discard the "Doppler frequency shift" and "Doppler extension" information in QCL type A.
  • the base station can configure the first QCL
  • the type is QCL type A
  • the second QCL type is ⁇ average delay, delay spread ⁇ , and indicates the first QCL type and the second QCL type.
  • the embodiment of this application can configure these four QCL types, but is not limited thereto.
  • the first QCL type includes Doppler frequency shift, the first pre-compensation value is a frequency offset pre-compensation value, and the pre-compensation is frequency offset pre-compensation; or the first QCL type includes an average channel delay, and the first The pre-compensation value is the delay pre-compensation value, and the pre-compensation is the delay pre-compensation; or, the first QCL type includes Doppler frequency shift and average channel delay, and the first pre-compensation value is the frequency offset pre-compensation value and the delay Pre-compensation value, pre-compensation is frequency offset pre-compensation and delay pre-compensation.
  • the UE may determine that the pre-compensation is one or both of frequency offset pre-compensation or delay pre-compensation based on the type of the received first QCL, and then demodulate the PDSCH based on the compensation value corresponding to the compensation.
  • the base station sends DMRS and PDSCH through the reference TRP, and sends DMRS and PDSCH that have been precompensated according to the first precompensation value through the non-reference TRP.
  • the base station can send DMRS and PDSCH through the reference TRP and the non-reference TRP on the same time frequency or the same time frequency symbol, where the non-reference TRP pre-compensates the PDSCH and DMRS according to the first pre-compensation value before sending. . That is, the pre-compensated DMRS and PDSCH that will occur in non-base TRP are related to the second TRS. As shown in the above example, if TRS is sent and received in the frequency domain, the center frequency point of the base station is fc, and the frequency between the base TRP estimate and the UE is The deviation is fd1, and the frequency deviation between the non-reference TRP estimate and the UE is fd2.
  • the center frequency of the base station is fc
  • the frequency offset generated is about fd1
  • the received center frequency can be determined as fc+fd1.
  • the DMRS and PDSCH sent by the non-base TRP are When the UE receives, the frequency offset generated is about fd2, and the received center frequency should be fc+fd2.
  • the base station completes pre-compensation for DMRS and PDSCH through non-reference TRP, and then sends DMRS and PDSCH, which can make the center frequency offset of DMRS and PDSCH received by the UE the same or similar.
  • the data obtained when channel estimation of DMRS and decoding of PDSCH can be more accurate. accurate.
  • the base station sends a control message.
  • the control message indicates a first pre-compensation value, and the first pre-compensation value is associated with the TRS of the non-reference TRP.
  • the base station contains three TRPs, namely one reference TRP and two non-reference TRPs, each is recorded as the first non-reference TRP. TRP and the second non-base TRP.
  • TRP the center frequency point of the base station
  • the frequency offset between the base TRP estimate and the UE is fd1
  • the frequency offset between the first non-base TRP estimate and the UE is is fd2
  • the frequency offset between the second non-reference TRP estimate and the UE is fd3
  • the first pre-compensation value of the TRS of different non-base TRPs is different, that is, the first pre-compensation value is related to the TRS of the non-base TRP.
  • the embodiment of this application uses a reference TRP and a non-reference TRP as an example to illustrate the channel estimation method. In a system with multiple non-reference TRPs, the channel estimation method can be obtained by referring to this example, and will not be described in detail.
  • the base station in this embodiment of the present application sends DMRS and PDSCH that have completed pre-compensation according to the first pre-compensation value through non-reference TRP, and then indicates the first pre-compensation value to the UE through a control message, which enables the UE to use the first pre-compensation value to DMRS performs more accurate channel estimation, thereby solving more accurate PDSCH.
  • Figure 3 is a flow chart of another channel estimation method provided by an embodiment of the present application. As shown in Figure 3, the method includes:
  • the UE receives the first TRS sent by the reference TRP and the second TRS sent by the non-base TRP.
  • the UE in addition to receiving the first TRS sent by the reference TRP and the second TRS sent by the non-base TRP, the UE can also receive a notification from the base station.
  • the UE can determine the received first TRS and second TRS based on the notification from the base station. Quasi-co-located with DMRS, the first TRS and the second TRS can be used to receive PDSCH, and according to the notification, the UE can determine that the QCL type of the first TRS is the first QCL type, and the QCL type of the second TRS is the second QCL type. .
  • the QCL type of the first TRS is a first QCL type
  • the first QCL type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters.
  • the QCL type of the second TRS is a second QCL type, and the second QCL type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread, and spatial reception parameters.
  • the UE may receive a notification.
  • the notification method includes but is not limited to using RRC signaling, MAC control element, DCI or a combination thereof.
  • the UE determines the configuration message of the base station according to the notification and learns that the first TRS and the second TRS can be used.
  • the PDSCH is received, and the QCL type of the first TRS is the first QCL type, and the QCL type of the second TRS is the second QCL type.
  • QCL types A, B, C, and D are defined in the existing standards, namely QCL types A, B, C, and D.
  • QCL type A is: Doppler frequency shift, Doppler spread, average delay and delay spread
  • QCL type B is: Doppler frequency shift and Doppler spread
  • QCL type C is: average channel delay sum Doppler frequency shift
  • QCL type D is: space reception parameter.
  • the base station can configure one or more types of QCL for the UE, and can instruct the UE to discard the "Doppler frequency shift" and "Doppler extension" information in QCL type A.
  • the embodiment of this application configures these four types of QCL Examples of types, but not limited to these.
  • the UE may determine whether the pre-compensation value is a frequency offset pre-compensation value, a delay pre-compensation value or both according to the content included in the received first QCL type. For example, the UE learns that the first QCL type is QCL type A, and the QCL type of TRS#2 is ⁇ average delay, delay spread ⁇ . The UE can determine that the pre-compensation value is the frequency offset pre-compensation value, and then use the frequency offset pre-compensation value to perform subsequent reception and calculation.
  • the UE receives the DMRS and PDSCH sent by the reference TRP and the DMRS and PDSCH sent by the non-reference TRP that are pre-compensated according to the first pre-compensation value, and obtains the target DMRS and the target PDSCH.
  • DMRS will have different degrees of frequency offset when sent to the UE through TRPs of different paths, when the UE receives it, there will be a certain frequency offset between the target DMRS and the DMRS sent by the TRP, and the target PDSCH will also have a certain degree of frequency offset. Therefore, the channel has a Doppler spread, and the accuracy of channel estimation based on DMRS is not high. Similarly, since there will be varying degrees of delay when DMRS is sent to the UE through TRPs of different paths, when the UE receives it, there will be a certain delay between the target DMRS and the DMRS sent by the TRP, and the target PDSCH will also have a certain degree of delay.
  • the channel has a large delay spread, and the accuracy of channel estimation based on DMRS is not high. Therefore, the UE can perform channel estimation on the target DMRS and demodulate the target PDSCH according to the content of the first pre-compensation value indicated by the control message received in step S203, thereby obtaining a more accurate solution result.
  • the UE may determine to use the first TRS and the second TRS to receive the DMRS and the PDSCH respectively according to the notification received in the above example, and obtain the target DMRS and the target PDSCH.
  • the UE receives the control message, and determines the first pre-compensation value according to the correlation between the first pre-compensation value indicated by the control message and the TRS sent by the non-reference TRP.
  • the first pre-compensation value is one or both of the frequency offset pre-compensation value or the delay pre-compensation value, that is, the first pre-compensation value is the frequency offset pre-compensation value, then the UE can perform the frequency offset pre-compensation value in the frequency domain. Process the target DMRS and target PDSCH obtained after reception; the first pre-compensation value is the delay pre-compensation value, then the UE can process the target DMRS and target PDSCH obtained after reception in the time domain. Similarly, if the first pre-compensation value The compensation value is the frequency offset pre-compensation value and the delay pre-compensation value, then the UE can receive the Target DMRS and target PDSCH are processed.
  • the UE performs channel estimation on the target DMRS based on the received first TRS, second TRS and first pre-compensation value, and demodulates the target PDSCH.
  • the UE may adopt different methods according to different first QCL types and first pre-compensation values, perform channel estimation on the target DMRS according to the received first TRS and second TRS, and receive and demodulate the target PDSCH.
  • the first pre-compensation value is a frequency offset pre-compensation value
  • the pre-compensation is frequency offset pre-compensation
  • the UE can obtain the third TRS estimate based on the first TRS estimate.
  • a Doppler characteristic; the second Doppler characteristic is obtained according to the second TRS estimation, and frequency offset compensation is performed on the second Doppler characteristic according to the first frequency offset pre-compensation value; the first Doppler characteristic is calculated according to a predetermined weighting rule.
  • Characteristics and the second Doppler characteristic of frequency offset compensation are weighted and summed to obtain the weighted Doppler characteristics; finally, based on the weighted Doppler characteristics, the target DMRS is channel estimated and the target PDSCH is demodulated.
  • the UE receives the first TRS sent by the reference TRP and the second TRS sent by the non-reference TRP in different time domains and/or frequency domains, and estimates the Doppler characteristics of the first TRS and the second TRS respectively. Then based on the first pre-compensation value indicated by the base station, that is, the frequency offset pre-compensation value, frequency offset compensation is performed on the Doppler characteristics estimated by the second TRS. The UE then performs frequency offset compensation on the first TRS and the second TRS according to the RSRP or SNR of the second TRS. The weighted Doppler characteristics are obtained by the weighted sum of the Doppler characteristics of the TRS and the second TRS. Finally, based on the weighted Doppler characteristics of the first TRS and the second TRS, the target DMRS channel is estimated, which is used to demodulate the target PDSCH to obtain PDSCH data.
  • the UE may also estimate the first Doppler characteristics based on the first TRS and perform frequency offset on the second TRS based on the first pre-compensation value. Compensation, the third Doppler characteristic is obtained according to the TRS estimate after frequency offset compensation; the first Doppler characteristic and the third Doppler characteristic are weighted and summed according to the predetermined weighting rule to obtain the weighted Doppler characteristic; according to the weighted Doppler characteristics, channel estimation for target DMRS, and demodulation of target PDSCH.
  • the first pre-compensation value is the delay pre-compensation value
  • the pre-compensation is the delay pre-compensation.
  • the first delay characteristic is obtained by TRS estimation; the second delay characteristic is obtained according to the second TRS estimate, and delay compensation is performed on the second delay characteristic according to the delay pre-compensation value; the first delay characteristic and The second delay characteristics of the delay compensation are weighted and summed to obtain the weighted delay characteristics; based on the weighted delay characteristics, the target DMRS is channel estimated and the target PDSCH is demodulated.
  • the UE can also estimate the first delay characteristics based on the first TRS; perform delay compensation on the second TRS based on the delay pre-compensation value; and then perform delay compensation on the second TRS based on the delay compensation value.
  • the TRS is estimated to obtain the third delay characteristic; the first delay characteristic and the third delay characteristic are weighted and summed according to the predetermined weighting rule to obtain the weighted delay characteristic; according to the weighted delay characteristic, channel estimation is performed for the target DMRS, Demodulate the target PDSCH.
  • the UE determines that the received first QCL type includes Doppler frequency shift and average channel delay, the first pre-compensation value is the frequency offset pre-compensation value and the delay pre-compensation value, and the pre-compensation is the frequency offset pre-compensation and delay Pre-compensation, then the UE estimates the first Doppler characteristics and the first delay characteristics based on the TRS received in the time domain and frequency domain, that is, estimates based on the first TRS; estimates the second Doppler characteristics based on the second TRS and the second delay characteristic, frequency offset compensation is performed on the second Doppler characteristic according to the frequency offset pre-compensation value, and delay compensation is performed on the second delay characteristic according to the delay pre-compensation value; the first Doppler characteristic is performed according to the predetermined weighting rule.
  • the Puller characteristic and the second Doppler characteristic of the frequency offset compensation are weighted and summed to obtain the weighted Doppler characteristic, and the first delay characteristic and the second delay characteristic of the delay compensation are weighted and summed according to a predetermined weighting rule. , obtain the weighted delay characteristics; according to the weighted Doppler characteristics and the weighted delay characteristics, perform channel estimation on the target DMRS and demodulate the target PDSCH.
  • the compensated TRS is estimated to obtain the third delay characteristic; the first Doppler characteristic and the third Doppler characteristic are weighted and summed according to the predetermined weighting rule to obtain the weighted Doppler characteristic, and the first delay characteristic and the third Doppler characteristic are obtained.
  • the three delay characteristics are weighted and summed to obtain the weighted delay characteristics; based on the weighted Doppler characteristics and the weighted delay characteristics, the target DMRS is channel estimated and the target PDSCH is demodulated.
  • the UE in the embodiment of the present application performs more accurate channel estimation on DMRS through the first pre-compensation value indicated by the received base station, and then solves a more accurate PDSCH, which can effectively eliminate the different frequency offsets and/or when DMRS is transmitted from the base station to the UE. Or the error caused by the time delay in solving the PDSCH result.
  • FIG. 4 is a flow chart of another channel estimation method provided by an embodiment of the present application. As shown in Figure 4, the method includes:
  • TRP#1 and TRP#2 send TRS#1 and TRS#2 respectively.
  • the base station activates TRS#1 and TRS#2 at the same time through the MAC control element, and configures the QCL type of TRS#1 to type A and the QCL type of TRS#2.
  • the QCL type is ⁇ Doppler spread, delay spread ⁇ .
  • the base station sends pilot and data through the TRP connected to it, such as TRP#1 sends TRS#1, TRP#2 sends TRS#2, and according to the configuration message of the base station, the UE learns that the DMRS it receives is simultaneously with TRS#1 and TRS#2 have a QCL relationship, and the QCL type of TRS#1 is QCL type A, and the QCL type of TRS#2 is ⁇ average delay, delay spread ⁇ .
  • the configuration method can be that the base station configures TCI state #1 and TCI state #2 through high-level signaling parameters.
  • the TCI state #1 and TCI state #2 indicate that TRS #1 and DMRS are QCL, and TRS #2 and DMRS are QCL.
  • TRS#1 and TRS#2 are also QCL.
  • the QCL type of TCI state #1 and TCI state #2 is QCL type A
  • TRS #1 and TRS #2 are associated with TCI state #1 and TCI state #2 respectively.
  • the base station can configure one or more types of QCL for the UE, and can instruct the UE to discard the "Doppler frequency shift" and "Doppler extension" information in QCL type A, such as the base station's physical downlink control channel (Physical Downlink Control).
  • TRP#1 and TRP#2 may send PDSCH and DMRS on the same time-frequency resource or time-frequency symbols.
  • the DMRS of TRP#2 is exactly the same as the DMRS of TRP#1, and the PDSCH of TRP#2 is exactly the same as the PDSCH of TRP#1.
  • the frequency offset After pre-compensation the DMRS of TRP#2 and the DMRS of TRP#1 have a frequency offset equal to the frequency offset pre-compensation value. The same is true for the PDSCH of TRP#2 and the PDSCH of TRP#1.
  • Frequency offset pre-compensation When transmitted to the UE, due to the pre-compensation value, Frequency offset pre-compensation.
  • the PDSCH and DMRS received by the UE can use the frequency offset pre-compensation value to perform accurate channel estimation and PDSCH demodulation.
  • the base station issues MAC CE to indicate the frequency offset pre-compensation value of TRP#2, and the frequency offset pre-compensation value is the same as
  • Figure 5 is a schematic diagram of the bits of the pre-compensation value provided by the embodiment of the present application.
  • the frequency offset pre-compensation value is represented by a total of 6 bits, and the first bit is the frequency offset sign bit for Indicates the positive and negative value of the frequency offset compensation value.
  • the 2nd to 5th bits are the absolute value of the frequency offset and are used to indicate the numerical value of the frequency offset.
  • the unit of the frequency offset compensation value can be set to 56.45Hz, so that the representation range of the frequency offset pre-compensation value can be [-1750, 1750]Hz.
  • the content of this section of the MAC CE can be set to: the frequency offset pre-compensation value indicated by the MAC CE, and the latter of the two TCI states activated at the same time as the MAC control element of the PDCCH, that is, associated with TCI state #2.
  • the control message indicates the second pre-compensation value.
  • the second pre-compensation value is different from the second TRS.
  • There is an association relationship so that the UE determines to use the second pre-compensation value to perform channel estimation on the newly received DMRS according to the instructions of the received control message, and then demodulates the PDSCH.
  • the channel estimation and demodulation method refers to the above example. For example, Chapter When the absolute value of the difference between the second pre-compensation value and the first pre-compensation value previously sent by the base station is greater than 50 Hz or 100 Hz, the base station can re-send the control message to the UE.
  • the UE generally estimates the PDSCH channel by filtering and interpolating the DMRS demodulation reference signal pilot, that is, the UE estimates the large-scale characteristics of the channel, calculates the filter coefficient based on the large-scale characteristics of the channel, and filters and interpolates the DMRS pilot based on the filter coefficient. , and finally demodulates the PDSCH data.
  • the large-scale characteristics of the channel include Doppler frequency shift, Doppler spread, average delay, delay spread, spatial reception parameters, etc.
  • the UE needs to receive TRS#1 and TRS#2 on different frequency domain resources, estimate the Doppler characteristics of TRS#1 and TRS#2 respectively, and then estimate the Doppler characteristics of TRS#2 based on the frequency offset pre-compensation value indicated by the base station. Doppler characteristics for frequency offset compensation.
  • the first QCL type and the second QCL type configured by the base station are different from the above examples, and the channel estimation method is as follows:
  • the MAC CE of PDCCH activates TCI state #1 and TCI state #2 at the same time, or indicates TCI state #1 and TCI state #2 simultaneously through the TCI field of DCI.
  • the QCL parameter that can indicate TCI state #2 is ⁇ average delay, Delay extension ⁇ is not available.
  • TRP#1 and TRP#2 transmit PDSCH and DMRS at the same time, and TRP#2 performs delay pre-compensation on PDSCH and DMRS before transmission.
  • the base station sends a control message, such as MAC CE indicating the delay pre-compensation value of TRP#2, and the delay pre-compensation value is associated with TRS#2.
  • the specific value can be calculated by referring to the above example, and will not be elaborated here.
  • Figure 6 is a bit diagram of another pre-compensation value provided by the embodiment of the present application.
  • the delay pre-compensation value is represented by a total of 6 bits, and the first bit is the delay sign bit. , used to indicate the positive and negative of the delay compensation value.
  • the 2nd to 5th bits are the absolute value of the delay, used to represent the numerical value of the delay.
  • the unit of the delay pre-compensation value can be Set to 77.42ns, the range can be expressed as [-2400, 2400]ns.
  • the content of this section can be set to: the delay pre-compensation value indicated by the MAC CE, and the latter of the two TCI states activated at the same time as the MAC control element of the PDCCH, that is, associated with TCI state #2.
  • the UE performs PDSCH reception based on TRS#1, TRS#2 and the indicated delay pre-compensation value. That is, the UE receives TRS#1 and TRS#2 on different time domain and/or frequency domain resources, estimates the delay characteristics respectively, and then estimates the delay characteristics of TRS#2 based on the delay pre-compensation value indicated by the base station. After delay compensation is performed, the weighted delay characteristics can still be obtained by summing the compensated delay characteristics and the delay characteristics of TRS#1 in a weighted manner. In the same way, the delay characteristics of the DMRS of TRS#2 can also be compensated first, then the delay characteristics can be estimated, and finally the weighted summation can be performed. The UE performs DMRS channel estimation based on the weighted delay characteristics of TRS#1 and TRS#2, which is used to demodulate the received PDSCH.
  • frequency offset pre-compensation and delay pre-compensation can be performed simultaneously, so that the data obtained by demodulating the received PDSCH can be obtained with higher accuracy.
  • the base station can send TRS#1 and TRS#2 through TRP#1 and TRP#2 respectively, if the base station is configured with TCI state #1 and TCI state #2.
  • the QCL type of TCI state #1 and TCI state #2 is QCL type A.
  • TRS#1 and TRS#2 are associated with TCI state #1 and TCI state #2 respectively.
  • the MAC CE of PDCCH activates TCI state #1 and TCI state #2 at the same time.
  • QCL parameters ⁇ Doppler shift, average delay ⁇ for TCI state #2 are not available.
  • TRP#1 and TRP#2 can send PDSCH and DMRS at the same time, where TRP#2 performs frequency offset pre-compensation and delay pre-compensation on PDSCH and DMRS before sending, and the control message sent by the base station indicates The frequency offset pre-compensation value and delay pre-compensation value of TRP#2 are notified to the UE and the frequency offset pre-compensation value and delay pre-compensation value are associated with TRS#2.
  • the first pre-compensation value occupies 12 bits.
  • Figure 7 shows another pre-compensation provided by the embodiment of the present application.
  • the bit diagram of the value is shown in Figure 7.
  • the 1st bit and the 7th bit are the sign bits
  • the 2nd to 6th bits and the 8th to 12th bits are the digital bits.
  • the first bit is the frequency offset sign bit, which is used to indicate the positive and negative frequency offset compensation value.
  • the second to fifth bits are the absolute value of the frequency offset, which is used to indicate the numerical value of the frequency offset.
  • the frequency offset compensation value can be The unit is set to 56.45Hz, so that the range of frequency offset pre-compensation value can be [-1750, 1750] Hz.
  • the 7th bit is the delay sign bit, which is used to indicate the positive and negative of the delay compensation value.
  • the 8th bit to The 12th bit is the absolute value of the delay, which is used to represent the value of the delay. It is different from the frequency offset pre-compensation value.
  • the unit of the delay pre-compensation value can be set to 77.42ns, which can represent the range [-2400, 2400]ns. .
  • Figure 7 is only an example.
  • the bits occupied by the frequency offset compensation value can be interchanged with the bits occupied by the delay compensation value, and is not limited to Figure 7 .
  • the UE performs PDSCH reception based on TRS#1, TRS#2 and the indicated frequency offset pre-compensation value and delay pre-compensation value.
  • the specific method can refer to the above example of separately calculating the frequency offset pre-compensation value and delay pre-compensation value. , which will not be described again.
  • the channel estimation method provided by the embodiments of this application can help the UE accurately estimate the Doppler characteristics and delay characteristics of the channel, thereby improving the demodulation performance of the UE's reception.
  • this application provides the method of sending pilots and data that have completed pre-compensation to the UE, and then notifying the UE of the pre-compensation value, so that the UE can accurately estimate the characteristics based on the obtained values, thereby improving the mediation of the UE's reception.
  • the performance method can also be applied to other multi-TRP transmission networks, such as Space Division Multiplexing (SDM) transmission, and is not limited to the examples in this application.
  • SDM Space Division Multiplexing
  • Figure 8 is a base station provided by an embodiment of the present application. As shown in Figure 8, the base station 1 includes: a sending module 10, a notification module 11 and a processing module 12.
  • the sending module 10 is configured to respectively send the first tracking reference signal TRS through the reference TRP and the second TRS through the non-reference TRP.
  • the transmitting module 10 is also configured to transmit the demodulation reference signal DMRS and the physical downlink shared channel PDSCH through the reference TRP, and transmit the DMRS and PDSCH that have been precompensated according to the first precompensation value through the non-reference TRP.
  • the pre-compensation value includes one or both of frequency offset pre-compensation and delay pre-compensation.
  • the sending module 10 is also configured to send a control message, the control message indicates the first pre-compensation value, and the first pre-compensation value is associated with the second TRS.
  • the notification module 11 is used to notify the UE to use the first TRS and the second TRS to receive the PDSCH, and the QCL type of the first TRS is the first QCL type, and the QCL type of the second TRS is the second QCL type.
  • the notification method includes But it is not limited to using radio resource control RRC signaling, media access control layer MAC control element, downlink control information DCI or their combination.
  • the first QCL type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters
  • the second QCL type includes Doppler frequency shift, Doppler At least one of spread, average channel delay, delay spread and spatial reception parameters.
  • the first QCL type includes Doppler frequency shift, the first pre-compensation value is a frequency offset pre-compensation value, and the pre-compensation is frequency offset pre-compensation; or the first QCL type includes an average channel delay, and the first The pre-compensation value is the delay pre-compensation value, and the pre-compensation is the delay pre-compensation; or, the first QCL type includes Doppler frequency shift and average channel delay, and the first pre-compensation value is the frequency offset pre-compensation value and the delay Pre-compensation value, pre-compensation is frequency offset pre-compensation and delay pre-compensation.
  • the base station will continuously obtain the second pre-compensation value, re-send the pilot and data compensated according to the second pre-compensation value to the UE, and when the value exceeds the preset threshold, re-send the control message indicating the second pre-compensation value
  • the processing module 12 is used to obtain the second pre-compensation value sending module 10, and is also used to send the DMRS and PDSCH that have completed pre-compensation according to the second pre-compensation value through the non-reference TRP. If the second pre-compensation value is different from the first pre-compensation value, If the absolute value of the difference between the values is greater than the preset threshold, a control message is sent. The control message indicates the second pre-compensation value, and the second pre-compensation value is associated with the second TRS.
  • Figure 9 is a user equipment provided by an embodiment of the present application.
  • the user equipment UE2 includes: a receiving module 20 and a processing module 21.
  • the receiving module 20 is configured to receive the first tracking reference signal TRS sent by the reference TRP and the second TRS sent by the non-reference TRP.
  • the receiving module 20 is also configured to receive the demodulation reference signal DMRS and the physical downlink shared channel PDSCH sent by the reference TRP and the DMRS and PDSCH sent by the non-reference TRP that are pre-compensated according to the first pre-compensation value, and obtain the target DMRS and the target PDSCH.
  • the pre-compensation value includes one or both of frequency offset pre-compensation and delay pre-compensation.
  • the receiving module 20 is also configured to receive a control message, and determine the first pre-compensation value according to the correlation between the first pre-compensation value and the second TRS indicated by the control message.
  • the processing module 21 is configured to perform channel estimation on the target DMRS according to the received first TRS, second TRS and first pre-compensation value, and demodulate the target PDSCH.
  • the receiving module 20 is also configured to receive notifications.
  • the notification methods include but are not limited to using radio resource control RRC signaling, media access control layer MAC control elements, downlink control information DCI, or a combination thereof.
  • the processing module 21 is specifically configured to use the first TRS and the second TRS to receive the PDSCH according to the notification, and the QCL type of the first TRS is the first QCL type, and the QCL type of the second TRS is the second QCL type.
  • the first QCL type includes at least one of Doppler frequency shift, Doppler spread, average channel delay, delay spread and spatial reception parameters
  • the second QCL type includes Doppler frequency shift, Doppler At least one of spread, average channel delay, delay spread and spatial reception parameters.
  • the processing module 21 estimates based on the first TRS The first Doppler characteristic; the second Doppler characteristic is estimated according to the second TRS, and the second Doppler characteristic is frequency offset compensated according to the first frequency offset pre-compensation value; the first Doppler characteristic is calculated according to the predetermined weighting rule.
  • the weighted Doppler characteristics and the second Doppler characteristics of frequency offset compensation are weighted and summed to obtain the weighted Doppler characteristics; based on the weighted Doppler characteristics, the target DMRS is channel estimated and the target PDSCH is demodulated.
  • the processing module 21 obtains the first Doppler frequency according to the first TRS estimate. Doppler characteristics; frequency offset compensation is performed on the second TRS based on the first pre-compensation value, and the third Doppler characteristics are estimated based on the TRS after frequency offset compensation; the first Doppler characteristics and the third Doppler characteristics are estimated according to the predetermined weighting rules. Perform a weighted summation of the Doppler characteristics to obtain the weighted Doppler characteristics; according to the weighted Doppler characteristics, perform channel estimation on the target DMRS and demodulate the target PDSCH.
  • the processing module 21 obtains the first Doppler according to the first TRS estimate. Characteristics; frequency offset compensation is performed on the second TRS according to the first pre-compensation value, and the third Doppler characteristic is estimated according to the TRS after frequency offset compensation; the first Doppler characteristic and the third Doppler characteristic are estimated according to the predetermined weighting rule. The characteristics are weighted and summed to obtain the weighted Doppler characteristics; based on the weighted Doppler characteristics, the target DMRS is channel estimated and the target PDSCH is demodulated.
  • the processing module 21 estimates the first delay characteristic according to the first TRS ; Obtain the second delay characteristic according to the second TRS estimate, and perform delay compensation on the second delay characteristic according to the delay pre-compensation value; and perform delay compensation on the first delay characteristic and the second delay compensation according to a predetermined weighting rule The characteristics are weighted and summed to obtain the weighted delay characteristics; based on the weighted delay characteristics, the target DMRS is channel estimated and the target PDSCH is demodulated.
  • the processing module 21 estimates the first delay characteristic according to the first TRS; performs delay compensation on the second TRS according to the delay pre-compensation value, and estimates the third delay characteristic according to the TRS after delay compensation;
  • the first delay characteristic and the third delay characteristic are weighted and summed according to the predetermined weighting rule to obtain the weighted delay characteristic; according to the weighted delay characteristic, channel estimation is performed on the target DMRS and the target PDSCH is demodulated.
  • the processing module 21 obtains the first Doppler characteristic and the first delay characteristic according to the first TRS estimate; obtains the second Doppler characteristic and the second delay characteristic according to the second TRS estimate, and obtains the second Doppler characteristic and the second delay characteristic according to the frequency offset prediction.
  • the compensation value performs frequency offset compensation on the second Doppler characteristic, and the second delay characteristic is performed on delay compensation according to the delay pre-compensation value; and the first Doppler characteristic and the second frequency offset compensation are performed according to a predetermined weighting rule.
  • a weighted summation of the Puller characteristics is performed to obtain a weighted Doppler characteristic.
  • the first delay characteristic and the second delay characteristic of the delay compensation are weighted and summed according to a predetermined weighting rule to obtain a weighted delay characteristic; according to the weighted Doppler characteristic ler characteristics and weighted delay characteristics, perform channel estimation on the target DMRS, and demodulate the target PDSCH.
  • the receiving module 20 is also used to receive the DMRS and PDSCH that are pre-compensated according to the second pre-compensation value sent by the non-reference TRP; the processing module 21 is also used to receive the demodulation reference signal DMRS and physical downlink sent according to the received reference TRP.
  • the DMRS and PDSCH that are pre-compensated according to the second pre-compensation value sent by the shared channel PDSCH and the non-reference TRP are used to obtain the target DMRS and the target PDSCH; the receiving module 20 is also used to receive the control message and perform the second pre-compensation according to the control message indication.
  • the correlation relationship between the second TRS value and the second TRS determines the second pre-compensation value, wherein the absolute value of the difference between the second pre-compensation value and the first pre-compensation value is greater than the preset threshold; the processing module 21 is also used to determine the second pre-compensation value according to the received first pre-compensation value.
  • the first TRS, the second TRS and the second pre-compensation value perform channel estimation on the target DMRS and demodulate the target PDSCH.
  • Figure 10 is a system provided by an embodiment of the present application.
  • the system includes the base station 1 in the above example. and user equipment 2, can use the channel estimation method provided by the embodiment of the present application to perform channel estimation and obtain more accurate data.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信道估计方法、设备及系统,该方法包括:分别通过基准发送接收点TRP发送第一跟踪参考信号TRS和非基准TRP发送第二TRS;通过所述基准TRP发送解调参考信号DMRS和物理下行共享信道PDSCH;通过所述非基准TRP发送根据第一预补偿值完成预补偿的DMRS和PDSCH;发送控制消息,所述控制消息指示所述第一预补偿值,所述第一预补偿值与所述第二TRS有关联关系。能够准确估计信道的特性,提高解调性能。

Description

信道估计方法、设备及系统
本申请要求于2022年6月24日提交中国专利局、申请号为202210721956.5、申请名称为“信道估计方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及信道估计方法、设备及系统。
背景技术
随着科技进步,用户设备(User Equipment,UE)高速移动的场景应用越来越广泛,基站通过单频网(Single Frequency Network,SFN)组网来实现小区内UE高速移动时的数据传输,SFN是指一个基站所在的逻辑小区内包含多个发送接收点(Transmission and Reception Point,TRP),这些TRP可以同时传输相同的导频和数据,能够帮助基站扩大小区覆盖范围,能够保障UE高速移动场景下服务的连续性,因此在高速移动的场景中,SFN组网应用受到广泛欢迎。
但是由于同时传输相同的导频和数据的TRP位置不同,对于接收不同TRP发送数据的UE来说,信道估计的精度会受到影响,从而影响解调性能。
发明内容
本申请提供了一种信道估计方法、设备及系统,能够准确估计信道的特性,提高解调性能。
第一方面,本申请实施例提供一种信道估计方法,包括:分别通过基准TRP发送第一跟踪参考信号(Tracking Reference Signal,TRS)和非基准TRP发送第二TRS;通过所述基准TRP发送解调参考信号(Demodulation Reference Signal,DMRS)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH);通过所述非基准TRP发送根据第一预补偿值完成预补偿的DMRS和PDSCH;发送控制消息,所述控制消息指示所述第一预补偿值,所述第一预补偿值与所述第二TRS有关联关系。
本申请实施例提供的信道估计方法,可以适用在一些UE移动速度较快,或者基站覆盖范围较大、UE切换较快的场景中。这种情况下,基站可以通过SFN组网为高速移动或者高频切换的UE提供连续的服务。SFN组网包含有与一个基站相连接的多个TRP,这些TRP可以同时与UE相互传输相同的导频和数据。
基站可以通过多个TRP向UE发送导频和数据,如发送每个TRP对应的TRS。以该基站对应的两个TRP来说,可以将两个TRP分别视为一个基准TRP和一个非基准TRP,其中,非基准TRP发送的导频和数据可以以基准TRP的发送的相应导频和数据为基准进行预补偿,如,基站的中心频点为fc,基准TRP估计与UE之间的频偏为fd1,非基准TRP估计与UE之间的频偏为fd2。基站基于基准TRP和非基准TRP可以计算出一个第一预补偿值,该第一预补偿值可以是频偏预补偿值,即基准TRP估计出与UE的频偏和非基准TRP与UE的频偏差。同理,基站基于基准TRP和非基准TRP的时延可以计算出一个时延预补偿值,该第一预补偿值可以是时延预补偿值,或者基站可以计算出频偏预补偿值和时延预补偿值,该第一预补偿值可以是频偏预补偿值和时延预补偿值。
在一种可能的实现方式中,所述第一预补偿值包括频偏预补偿和时延预补偿中的一种或两种。基站根据第一预补偿值,对非基准TRP要发送的DMRS和PDSCH完成预补偿。并向UE发送控制消息,来指示该第一预补偿值,以使得UE能够根据第一预补偿值对接收到的DMRS和PDSCH进行处理,进而解出更准确的数据。
在一种可能的实现方式中,该方法还包括:通知UE使用所述第一TRS和所述第二TRS接收PDSCH,且所述第一TRS的QCL类型为第一QCL类型,所述第二TRS的QCL类型为第二QCL类型,所述通知方式包括但不限于使用无线资源控制(Radio Resource Control,RRC)信令、媒体介入控制层(Medium Access Control,MAC)控制元素、下行链路控制消息(Downlink Control Information,DCI)或者它们的组合。
如,基站可以配置传输配置指示(Transmission configuration Indicator,TCI)状态,该TCI状态包括配置要发送的DMRS与TRS的准共址(Quasi Co-Located,QCL)关系,如配置第一TRS和第二TRS准共址,且分别配置第一TRS和第二TRS的QCL类型,再激活有QCL关系的第一TRS和第二TRS,以通知UE使用该第一TRS和所述第二TRS接收PDSCH。
在一些实例中,基站发送MAC控制元素,由MAC控制元素激活第一TRS和第二TRS,即通过MAC控制元素激活第一TRS的TCI状态和第二TRS的TCI状态,相当于通知UE第一TRS和第二TRS与其接收的DMRS准共址,以及第一QCL类型和第二QCL类型。或,基站发送MAC控制元素,MAC控制元素至少激活第一TRS和第二TRS,再通过DCI从MAC控制元素激活的TRS中选择第一TRS和第二TRS,即发送的DCI的TCI字段,通知UE第一TRS、第二TRS和接收到的DMRS准共址,UE可以使用第一TRS和第二TRS接收PDSCH。基站除了通过TCI配置,还可以通过发送RRC信令,由RRC信令配置第一TRS的第一QCL类型,和配置第二TRS的第二QCL类型,以通知UE使用第一TRS和第二TRS接收PDSCH。
在一种可能的实现方式中,所述第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种,所述第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
现有标准中定义了四种的QCL类型,分别是QCL类型A、B、C、D。QCL类型A为:多普勒频移、多普勒扩展、平均时延和时延扩展;QCL类型B为:多普勒频移和多普勒扩展;QCL类型C为:平均信道时延和多普勒频移;QCL类型D为:空间接收参数。基站可以给UE配置一种或多种类型的QCL,并且可指示UE丢弃QCL类型A中的“多普勒频移”和“多普勒扩展”信息,举例来说,基站可以配置第一QCL类型为QCL类型A,第二QCL类型为{平均时延,时延扩展},并通知UE该第一QCL类型和第二QCL类型。本申请实施例可以配置这四种QCL类型,但不限于此。
在一种可能的实现方式中,所述第一QCL类型包括多普勒频移,所述第一预补偿值为频偏预补偿值,所述预补偿为频偏预补偿;或,所述第一QCL类型包括平均信道时延,所述第一预补偿值为时延预补偿值,所述预补偿为时延预补偿;或,所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿。
在一种可能的实现方式中,该方法还包括:得到第二预补偿值,通过所述非基准TRP发送根据所述第二预补偿值完成预补偿的DMRS和PDSCH;若所述第二预补偿值与所述第一预补偿值之差的绝对值大于预设阈值,发送所述控制消息,所述控制消息指示所述第二预补偿值,所述第二预补偿值与所述第二TRS有关联关系。
如,当频偏预补偿值发生变化,基站可以下发新的MAC控制元素指示新的频偏预补偿值。如,基站可以一直估算频偏补偿值,记作基站得到第二预补偿值,基站再次通过非基准TRP发送根据第二预补偿值完成预补偿的DMRS和PDSCH,当第二预补偿值与基站之前发送的第一预补偿值之差的绝对值大于预设阈值,即超过一个门限时,重新向UE发送控制消息,指示第二预补偿值,该第二预补偿值与第二TRS有关联关系,使得UE根据第二预补偿值对新的目标DMRS进行信道估计,再解调目标PDSCH。
基站通过非基准TRP发送根据第一预补偿值完成预补偿的DMRS和PDSCH,再通过控制消息向UE指示该第一预补偿值,能够使得UE通过该第一预补偿值对DMRS进行更加准确的信道估计,进而解出更加准确的PDSCH。
第二方面,本申请实施例提供一种信道估计方法,包括:接收基准TRP发送的第一跟踪参考信号TRS和非基准TRP发送的第二TRS;接收所述基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和所述非基准TRP发送的根据第一预补偿值完成预补偿的DMRS、PDSCH,得到目标DMRS和目标PDSCH;接收控制消息,根据所述控制消息指示的所述第一预补偿值与所述第二TRS的关联关系,确定所述第一预补偿值;根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,所述预补偿值包括频偏预补偿和时延预补偿中的一种或两种。
由于DMRS通过不同径的TRP发送给UE时会有不同程度的频偏,UE在频域上接收时,得到的目标DMRS与TRP发出的DMRS存在一定的频偏,目标PDSCH也会存在一定程度上的频偏,因此, 信道带有大多普勒扩展,基于DMRS进行信道估计的精度不高。同理,由于DMRS通过不同径的TRP发送给UE时会有不同程度的时延,UE在时域上接收时,得到的目标DMRS与TRP发出的DMRS存在一定的时延,目标PDSCH也会存在一定程度上的时延,因此,信道带有大时延扩展,基于DMRS进行信道估计的精度不高。因此UE可以根据控制消息指示的第一预补偿值,对目标DMRS进行信道估计,解调目标PDSCH,来得到精度较高的解算结果。
在一种可能的实现方式中,还包括:接收通知,所述通知方式包括但不限于使用无线资源控制RRC信令、媒体介入控制层MAC控制元素、下行链路控制信息DCI或者它们的组合;根据所述通知使用所述第一TRS和所述第二TRS接收PDSCH,且所述第一TRS的QCL类型为第一QCL类型,所述第二TRS的QCL类型为第二QCL类型。
在一种可能的实现方式中,所述第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种,所述第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
现有标准中定义了四种的QCL类型,分别是QCL类型A、B、C、D。QCL类型A为:多普勒频移、多普勒扩展、平均时延和时延扩展;QCL类型B为:多普勒频移和多普勒扩展;QCL类型C为:平均信道时延和多普勒频移;QCL类型D为:空间接收参数。基站可以给UE配置一种或多种类型的QCL,并且可指示UE丢弃QCL类型A中的“多普勒频移”和“多普勒扩展”信息,本申请实施例可以配置这四种QCL类型,但不限于此。UE可以根据接收到的第一QCL类型包括的内容,确定预补偿值是频偏预补偿值、时延预补偿值还是两者皆有。举例来说,UE获知第一QCL类型为QCL类型A,TRS#2的QCL类型为{平均时延,时延扩展}。UE可以确定预补偿值是频偏预补偿值,进而通过该频偏预补偿值进行后续的接收和解算。
在一种可能的实现方式中,若确定接收到的所述第一QCL类型包括多普勒频移,所述第一预补偿值为频偏预补偿值,所述预补偿为频偏预补偿,所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:根据所述第一TRS估计得到第一多普勒特性;根据所述第二TRS估计得到第二多普勒特性,并根据所述第一频偏预补偿值对所述第二多普勒特性进行频偏补偿;根据预定加权规则对所述第一多普勒特性和频偏补偿的所述第二多普勒特性进行加权求和,得到加权多普勒特性;根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
如,UE在不同的时域和/或频域上接收基准TRP发送的第一TRS和非基准TRP发送的第二TRS,对第一TRS和第二TRS分别估计多普勒特性。再基于基站指示的第一预补偿值即频偏预补偿值,对第二TRS所估计的多普勒特性进行频偏补偿,UE再按照第一TRS和第二TRS的参考信号接收功率(Reference Signal Receiving Power,RSRP)或者信噪比(Signal-to-Noise Ratio,SNR),对第一TRS和第二TRS的多普勒特性加权求和,得到加权多普勒特性。最后基于第一TRS和第二TRS的加权多普勒特性,进行目标DMRS信道估计,用于对目标PDSCH做解调,得到PDSCH的数据。
在一种可能的实现方式中,若确定接收到的所述第一QCL类型包括多普勒频移,所述第一预补偿值为频偏预补偿值,所述预补偿为频偏预补偿,所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:根据所述第一TRS估计得到所述第一多普勒特性;根据所述第一预补偿值对所述第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性;根据预定加权规则对所述第一多普勒特性和所述第三多普勒特性进行加权求和,得到加权多普勒特性;根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,若确定接收到的所述第一QCL类型包括平均信道时延,所述第一预补偿值为时延预补偿值,所述预补偿为时延预补偿,所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:根据所述第一TRS估计得到第一时延特性;根据所述第二TRS估计得到第二时延特性,并根据所述时延预补偿值对所述第二时延特性进行时延补偿;根据预定加权规则对所述第一时延特性和时延补偿的所述第二时延特性进行加权求和,得到加权时延特性;根据所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,若确定接收到的所述第一QCL类型包括平均信道时延,所述第一预补偿值为时延预补偿值,所述预补偿为时延预补偿,所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:根据所述第一TRS估计得到第一时延特性;根据所述时延预补偿值对所述第二TRS进行时延补偿,根据时延补偿后的TRS估计得到第三时延特性;根据预定加权规则对所述第一时延特性和所述第三时延特性进行加权求和,得到加权时延特性;根据所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,若确定接收到的所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿,所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:根据所述第一TRS估计得到第一多普勒特性和第一时延特性;根据所述第二TRS估计得到第二多普勒特性和第二时延特性,根据所述频偏预补偿值对所述第二多普勒特性进行频偏补偿,根据所述时延预补偿值对所述第二时延特性进行时延补偿;根据预定加权规则对所述第一多普勒特性和频偏补偿的所述第二多普勒特性进行加权求和,得到加权多普勒特性,根据预定加权规则对所述第一时延特性和时延补偿的所述第二时延特性进行加权求和,得到加权时延特性;根据所述加权多普勒特性和所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,若确定接收到的所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿,所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:根据所述第一TRS估计得到第一多普勒特性和第一时延特性;根据所述第一预补偿值对所述第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性,根据所述时延预补偿值对所述非基准TRP的TRS进行时延补偿,根据时延补偿后的TRS估计得到第三时延特性;根据预定加权规则对所述第一多普勒特性和所述第三多普勒特性进行加权求和,得到加权多普勒特性,对所述第一时延特性和所述第三时延特性进行加权求和,得到加权时延特性;根据所述加权多普勒特性和所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,该方法还包括:接收所述非基准TRP发送的根据所述第二预补偿值完成预补偿的DMRS和PDSCH;根据接收到的所述基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和所述非基准TRP发送的根据所述第二预补偿值完成预补偿的DMRS和PDSCH,得到目标DMRS和目标PDSCH;接收所述控制消息,根据所述控制消息指示的所述第二预补偿值与所述第二TRS的关联关系,确定所述第二预补偿值,其中,所述第二预补偿值与所述第一预补偿值之差的绝对值大于预设阈值;根据接收的所述第一TRS、所述第二TRS和所述第二预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH。
由于所述第二预补偿值与所述第一预补偿值之差的绝对值大于预设阈值,可以确定目标DMRS和目标PDSCH已经达到了需要更新的条件,因此得到目标DMRS和目标PDSCH可以是,用新接收到的参数得到的目标DMRS和目标PDSCH替换根据之前接收到的参数得到的目标DMRS和目标PDSCH。
第三方面,本申请实施例提供一种基站,包括:发送模块,用于分别通过基准TRP发送第一跟踪参考信号TRS和非基准TRP发送第二TRS;所述发送模块,还用于通过所述基准TRP发送解调参考信号DMRS和物理下行共享信道PDSCH,通过所述非基准TRP发送根据第一预补偿值完成预补偿的DMRS和PDSCH;所述发送模块,还用于发送控制消息,所述控制消息指示所述第一预补偿值,所述第一预补偿值与所述第二TRS有关联关系。
在一种可能的实现方式中,所述预补偿值包括频偏预补偿和时延预补偿中的一种或两种。
在一种可能的实现方式中,基站还包括:通知模块,用于通知UE使用所述第一TRS和所述第二TRS接收PDSCH,且所述第一TRS的QCL类型为第一QCL类型,所述第二TRS的QCL类型为第二QCL类型,所述通知方式包括但不限于使用无线资源控制RRC信令、媒体介入控制层MAC控制元素、下行链路控制信息DCI或者它们的组合。
在一种可能的实现方式中,所述第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种,所述第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
在一种可能的实现方式中,所述第一QCL类型包括多普勒频移,所述第一预补偿值为频偏预补偿值,所述预补偿为频偏预补偿;或,所述第一QCL类型包括平均信道时延,所述第一预补偿值为时延预补偿值,所述预补偿为时延预补偿;或,所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿。
在一种可能的实现方式中,处理模块,用于得到第二预补偿值;所述发送模块,还用于通过所述非基准TRP发送根据所述第二预补偿值完成预补偿的DMRS和PDSCH,若所述第二预补偿值与所述第一预补偿值之差的绝对值大于预设阈值,发送所述控制消息,所述控制消息指示所述第二预补偿值,所述第二预补偿值与所述第二TRS有关联关系。
第四方面,本申请实施例提供一种UE,包括:接收模块,用于接收基准TRP发送的第一跟踪参考信号TRS和非基准TRP发送的第二TRS;所述接收模块,还用于接收所述基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和所述非基准TRP发送的根据第一预补偿值完成预补偿的DMRS、PDSCH,得到目标DMRS和目标PDSCH;所述接收模块,还用于接收控制消息,根据所述控制消息指示的所述第一预补偿值与所述第二TRS的关联关系,确定所述第一预补偿值;处理模块,用于根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,所述预补偿值包括频偏预补偿和时延预补偿中的一种或两种。
在一种可能的实现方式中,所述接收模块,还用于接收通知,所述通知方式包括但不限于使用无线资源控制RRC信令、媒体介入控制层MAC控制元素、下行链路控制信息DCI或者它们的组合;所述处理模块,具体用于根据所述通知使用所述第一TRS和所述第二TRS接收PDSCH,且所述第一TRS的QCL类型为第一QCL类型,所述第二TRS的QCL类型为第二QCL类型。
在一种可能的实现方式中,所述第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种,所述第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
在一种可能的实现方式中,若所述接收模块确定接收到的所述第一QCL类型包括多普勒频移,所述预补偿值为频偏预补偿值,所述预补偿为频偏预补偿,所述处理模块根据所述第一TRS估计得到第一多普勒特性;根据所述第二TRS估计得到第二多普勒特性,并根据所述第一频偏预补偿值对所述第二多普勒特性进行频偏补偿;根据预定加权规则对所述第一多普勒特性和频偏补偿的所述第二多普勒特性进行加权求和,得到加权多普勒特性;根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,若所述接收模块确定接收到的所述第一QCL类型包括多普勒频移,所述预补偿值为频偏预补偿值,所述预补偿为频偏预补偿,所述处理模块根据所述第一TRS估计得到所述第一多普勒特性;根据所述第一预补偿值对所述第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性;根据预定加权规则对所述第一多普勒特性和所述第三多普勒特性进行加权求和,得到加权多普勒特性;根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,若所述接收模块确定接收到的所述第一QCL类型包括平均信道时延,所述预补偿值为时延预补偿值,所述预补偿为时延预补偿,所述处理模块根据所述第一TRS估计得到所述第一多普勒特性;根据所述第一预补偿值对所述第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性;根据预定加权规则对所述第一多普勒特性和所述第三多普勒特性进行加权求和,得到加权多普勒特性;根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,若所述接收模块确定接收到的所述第一QCL类型包括平均信道时延,所述预补偿值为时延预补偿值,所述预补偿为时延预补偿,所述处理模块根据所述第一TRS估计得到第一时延特性;根据所述第二TRS估计得到第二时延特性,并根据所述时延预补偿值对所述第二时延特性进行时延补偿;根据预定加权规则对所述第一时延特性和时延补偿的所述第二时延特性进行加权求和,得到加权时延特性;根据所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,若所述接收模块确定接收到的所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿,所述处理模块根据所述第一TRS估计得到第一时延特性;根据所述时延预补偿值对所述第二TRS进行时延补偿,根据时延补偿后的TRS估计得到第三时延特性;根据预定加权规则对所述第一时延特性和所述第三时延特性进行加权求和,得到加权时延特性;根据所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,若所述接收模块确定接收到的所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿,所述处理模块根据所述第一TRS估计得到第一多普勒特性和第一时延特性;根据所述第二TRS估计得到第二多普勒特性和第二时延特性,根据所述频偏预补偿值对所述第二多普勒特性进行频偏补偿,根据所述时延预补偿值对所述第二时延特性进行时延补偿;根据预定加权规则对所述第一多普勒特性和频偏补偿的所述第二多普勒特性进行加权求和,得到加权多普勒特性,根据预定加权规则对所述第一时延特性和时延补偿的所述第二时延特性进行加权求和,得到加权时延特性;根据所述加权多普勒特性和所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
在一种可能的实现方式中,所述接收模块,还用于接收所述非基准TRP发送的根据所述第二预补偿值完成预补偿的DMRS和PDSCH;所述处理模块,还用于根据接收到的所述基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和所述非基准TRP发送的根据所述第二预补偿值完成预补偿的DMRS和PDSCH,得到目标DMRS和目标PDSCH;所述接收模块,还用于接收所述控制消息,根据所述控制消息指示的所述第二预补偿值与所述第二TRS的关联关系,确定所述第二预补偿值,其中,所述第二预补偿值与所述第一预补偿值之差的绝对值大于预设阈值;所述处理模块,还用于根据接收的所述第一TRS、所述第二TRS和所述第二预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH。
第五方面,本申请实施例提供一种系统,包括:如第三方面提供的基站;如第四方面提供的UE。
应当理解的是,本申请的第三方面与本申请的第一方面的技术方案一致,第二方面与本申请的第四方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为本申请实施例提供的一种高铁网络示意图;
图2为本申请实施例提供的一种信道估计方法流程图;
图3为本申请实施例提供的另一种信道估计方法流程图;
图4为本申请实施例提供的另一种信道估计方法流程图;
图5为本申请实施例提供的预补偿值的比特位示意图;
图6为本申请实施例提供的另一种预补偿值的比特位示意图;
图7为本申请实施例提供的另一种预补偿值的比特位示意图;
图8为本申请实施例提供的基站;
图9为本申请实施例提供的用户设备;
图10为本申请实施例提供的系统。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
UE可以部署在陆地上,包括室内或室外、大型或小微型;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。UE可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等,如手机(mobile phone)、平板电脑(pad)、具备无线通讯功能的可穿戴设备(如智能手表)、具有定位功能的位置追踪器、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、无人驾驶(self driving)中的无线设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备、智慧家庭(smart home)中的无线设备等,本申请对此不作限定。
在一些UE移动速度较快,或者基站覆盖范围较大,UE切换较快的场景中,可以通过SFN组网解决UE高速移动场景下,需要频繁切换小区而影响通信服务连续性的问题。SFN组网是指包括一个基站的逻辑小区内包含有多个物理小区,这些物理小区通常称为TRP,这些TRP可以同时与UE相互传输相同的导频和数据。由于一个基站拥有多个SFN,每个SFN的TRP都可以与UE相互传输导频和数据,相当于传输扩大了基站,即逻辑小区提供连续服务的范围。图1为本申请实施例提供的一种高铁网络示意图,如图1所示,基于SFN组网的这种特性,在长期演进(Long Term Evolution,LTE)和新空口(New Radio,NR)高铁网络中,SFN组网得到了广泛的应用。
但是SFN的缺点是,由于通过不同TRP与UE传输导频和数据,TRP径不同导致频偏差异较大,对于UE来说,信道会具有大多普勒扩展和大时延扩展等特点,这些特点会导致数据和导频携带明显的载波间串扰(Inter-Carrier Interference,ICI)和符号间串扰(Inter-Symbol Interference,ISI),进而影响UE进行信道估计的精确度。
为了解决这个问题,本申请实施例提供了一种信道估计方法,该方法通过基站指示用以补偿该信道估计误差的预补偿值使得UE能够精确进行信道估计,其中,预补偿值是频偏预补偿和时延预补偿中的一种或两种。本申请实施例以该方法适用的网络系统为包含两个TRP的基站和一个UE的场景举例说明,其中,两个TRP包括一个基准TRP和一个非基准TRP,非基准TRP发送的导频和数据可以以基准TRP的发送的相应导频和数据为基准进行预补偿。应理解,网络系统为包含一个基准TRP和一个非基准TRP的架构是一种实施方式,更一般的一个示例中,也可以是第一TRP和第二TRP,且本申请的举例不作为系统中基准包含TRP个数的限制,包含更多TRP的基站,使用本申请提供的方法进行信道估计的场景均在保护范围之内。
图2为本申请实施例提供的一种信道估计方法流程图,如图2所示,该方法包括:
S101、基站分别通过基准TRP发送第一TRS和非基准TRP发送第二TRS。
需要说明的是,基站可以包含一个基准TRP和一个非基准TRP,这两个TRP可以以SFN的形式联合向同一个UE发送导频和数据,如本例中,基准TRP发送的TRS可以记作第一TRS,非基准TRP发送的TRS可以记作第二TRS。如果基站的中心频点为fc,基准TRP估计与UE之间的频偏为fd1,非基准TRP估计与UE之间的频偏为fd2。基站基于基准TRP和非基准TRP可以确定一个频偏预补偿值,即基准TRP估计出与UE的频偏和非基准TRP与UE的频偏差,一个实施方式中,频偏差δf=fd1-fd2。同理,基站还可以通过上行参考信号分别估计出基准TRP和非基准TRP的时延,基于基准TRP和非基准TRP的时延差可以确定出一个时延预补偿值,基站还可以综合上述频偏和时延确定一个频偏预补偿值和时延预补偿值。本例中,基站确定的各预补偿值均可以记作第一预补偿值。
进一步地,基站配置TCI状态,该TCI状态包括要发送的DMRS和TRS的QCL关系,如,TCI状态配置了五个TRS,记作TRS1、TRS2、TRS3、TRS4和TRS5,还配置了基站要发送的DMRS与其中的TRS1和TRS2有QCL关系,且配置TRS1和TRS2的QCL类型,其中,以TRS1记作基准TRP发送的第一TRS,TRS2为非基准TRP发送的第二TRS为例,第一TRS的QCL类型记作第一QCL类 型,第二TRS的QCL类型记作第二QCL类型。因此,基站可以通过一些方式激活有QCL关系的第一TRS和第二TRS,以通知UE使用该第一TRS和所述第二TRS接收PDSCH。
在一些实例中,基站可以发送MAC控制元素,由MAC控制元素激活第一TRS和第二TRS,即通过MAC控制元素激活第一TRS的TCI状态和第二TRS的TCI状态,相当于通知UE第一TRS和第二TRS与其接收的DMRS准共址,以及第一QCL类型和第二QCL类型。
或,基站可以发送MAC控制元素,MAC控制元素至少激活第一TRS和第二TRS,再通过DCI从MAC控制元素激活的TRS中选择第一TRS和第二TRS,即发送的DCI的TCI字段,通知UE第一TRS、第二TRS和接收到的DMRS准共址,UE可以使用第一TRS和第二TRS接收PDSCH。同时,还可以指示UE第一TRS的QCL类型是第一QCL类型,第二TRS的QCL类型是第二QCL类型,其中,第一QCL类型包括多普勒频移(Doppler shift)、多普勒扩展(Doppler spread)、平均时延(average delay)、时延扩展(delay spread)、空间接收参数(spatial Rx parameter)中的至少一种,第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
在一些实例中,基站除了通过TCI配置,还可以通过发送RRC信令,由RRC信令配置第一TRS的第一QCL类型,和配置第二TRS的第二QCL类型,以通知UE使用第一TRS和第二TRS接收PDSCH。
现有标准中定义了四种的QCL类型,分别是QCL类型A、B、C、D。QCL类型A为:多普勒频移、多普勒扩展、平均时延和时延扩展;QCL类型B为:多普勒频移和多普勒扩展;QCL类型C为:平均信道时延和多普勒频移;QCL类型D为:空间接收参数。基站可以给UE配置一种或多种类型的QCL,并且可指示UE丢弃QCL类型A中的“多普勒频移”和“多普勒扩展”信息,举例来说,基站可以配置第一QCL类型为QCL类型A,第二QCL类型为{平均时延,时延扩展},并指示该第一QCL类型和第二QCL类型。本申请实施例可以配置这四种QCL类型,但不限于此。
在一些实例中,第一QCL类型包括多普勒频移,第一预补偿值为频偏预补偿值,预补偿为频偏预补偿;或,第一QCL类型包括平均信道时延,第一预补偿值为时延预补偿值,预补偿为时延预补偿;或,第一QCL类型包括多普勒频移和平均信道时延,第一预补偿值为频偏预补偿值和时延预补偿值,预补偿为频偏预补偿和时延预补偿。UE可以根据接收到的第一QCL的类型,确定预补偿是频偏预补偿或时延预补偿中的一种或两种,进而根据该补偿对应的补偿值解调PDSCH。
S102、基站通过基准TRP发送DMRS和PDSCH,通过非基准TRP发送根据第一预补偿值完成预补偿的DMRS和PDSCH。
进一步地,基站可以在相同的时频或同一个时频符号上通过基准TRP和非基准TRP发送DMRS和PDSCH,其中非基准TRP在发送前根据第一预补偿值对PDSCH和DMRS进行了预补偿。即非基准TRP要发生的完成预补偿的DMRS和PDSCH与第二TRS有关,如上例所示,如果在频域上收发TRS,基站的中心频点为fc,基准TRP估计与UE之间的频偏为fd1,非基准TRP估计与UE之间的频偏为fd2。基站基于基准TRP和非基准TRP可以计算出一个频偏预补偿值,即基准TRP估计出与UE的频偏和非基准TRP与UE的频偏差,记作δf=fd1-fd2,该以第一预补偿值与第二TRS有关联关系,可以是频偏预补偿值即δf=fd1-fd2,非基准TRP对PDSCH和DMRS按照所计算的δf=fd1-fd2进行频偏预补偿,这样一来,由于基站的中心频率为fc,基准TRP发送的DMRS和PDSCH被UE接收时,产生的频偏约为fd1,接收到的中心频率可以确定为fc+fd1,非基准TRP发送的DMRS和PDSCH被UE接收时,产生的频偏约为fd2,接收到的中心频率本应为fc+fd2,但非基准TRP发送前,根据δf=fd1-fd2对DMRS和PDSCH进行了预补偿,因此,接收到的中心频率可以确定为fc+fd1。基站通过非基准TRP对DMRS和PDSCH完成预补偿,再发送DMRS和PDSCH,可以使得UE接收到的DMRS和PDSCH中心频偏相同或相近,对DMRS进行信道估计和对PDSCH解码时得到的数据才能更加精确。
S103、基站发送控制消息。
该控制消息指示第一预补偿值,第一预补偿值与非基准TRP的TRS有关联关系。仍然以第一预补偿值为上例的频偏预补偿来举例,该第一预补偿值为δf=fd1-fd2,其中δf是基站通过非基准TRP发送TRS时计算出的频偏预补偿值,因此,第一预补偿值与第二TRS有关联关系。
进一步地,如果基站包含三个TRP,即一个基准TRP和两个非基准TRP,分别记作第一非基准 TRP和第二非基准TRP,如果在频域上收发TRS,基站的中心频点为fc,基准TRP估计与UE之间的频偏为fd1,第一非基准TRP估计与UE之间的频偏为fd2,第二非基准TRP估计与UE之间的频偏为fd3,那么第一非基准TRP发送TRS时,基站计算出的频偏预补偿值应该为δf=fd1-fd2,第二非基准TRP发送TRS时,频偏预补偿值应该为δf=fd1-fd3。从该例可以看出,对不同非基准TRP的TRS的第一预补偿值不同,即第一预补偿值与非基准TRP的TRS有关联关系。本申请实施例以一个基准TRP和一个非基准TRP举例说明信道估计方法,多个非基准TRP的系统中,信道估计方法均可以参照此举例得到,不再展开详述。
本申请实施例的基站通过非基准TRP发送根据第一预补偿值完成预补偿的DMRS和PDSCH,再通过控制消息向UE指示该第一预补偿值,能够使得UE通过该第一预补偿值对DMRS进行更加准确的信道估计,进而解出更加准确的PDSCH。
图3为本申请实施例提供的另一种信道估计方法流程图,如图3所示,该方法包括:
S201、UE接收基准TRP发送的第一TRS和非基准TRP发送的第二TRS。
在一些实例中,UE除了接收基准TRP发送的第一TRS和非基准TRP发送的第二TRS,还能接收到基站的通知,UE根据基站的通知能够确定接收到的第一TRS、第二TRS和DMRS准共址,可以使用该第一TRS和第二TRS接收PDSCH,且根据该通知,UE可以确定第一TRS的QCL类型为第一QCL类型,第二TRS的QCL类型为第二QCL类型。其中,第一TRS的QCL类型为第一QCL类型,第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。第二TRS的QCL类型为第二QCL类型,第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
举例来说,UE可以接收通知,该通知方式包括但不限于使用RRC信令、MAC控制元素、DCI或者它们的组合,UE根据通知确定基站的配置消息,获知可以使用第一TRS和第二TRS接收PDSCH,且第一TRS的QCL类型为第一QCL类型,第二TRS的QCL类型为第二QCL类型。
现有标准中定义了四种的QCL类型,分别是QCL类型A、B、C、D。QCL类型A为:多普勒频移、多普勒扩展、平均时延和时延扩展;QCL类型B为:多普勒频移和多普勒扩展;QCL类型C为:平均信道时延和多普勒频移;QCL类型D为:空间接收参数。基站可以给UE配置一种或多种类型的QCL,并且可指示UE丢弃QCL类型A中的“多普勒频移”和“多普勒扩展”信息,本申请实施例以配置这四种QCL类型举例,但不限于此。UE可以根据接收到的第一QCL类型包括的内容,确定预补偿值是频偏预补偿值、时延预补偿值还是两者皆有。举例来说,UE获知第一QCL类型为QCL类型A,TRS#2的QCL类型为{平均时延,时延扩展}。UE可以确定预补偿值是频偏预补偿值,进而通过该频偏预补偿值进行后续的接收和解算。
S202、UE接收基准TRP发送DMRS、PDSCH和非基准TRP发送根据第一预补偿值完成预补偿的DMRS、PDSCH,得到目标DMRS和目标PDSCH。
由于DMRS通过不同径的TRP发送给UE时会有不同程度的频偏,UE接收时,得到的目标DMRS与TRP发出的DMRS存在一定的频偏,目标PDSCH也会存在一定程度上的频偏,因此,信道带有大多普勒扩展,基于DMRS进行信道估计的精度不高。同理,由于DMRS通过不同径的TRP发送给UE时会有不同程度的时延,UE接收时,得到的目标DMRS与TRP发出的DMRS存在一定的时延,目标PDSCH也会存在一定程度上的时延,因此,信道带有大时延扩展,基于DMRS进行信道估计的精度不高。因此UE可以根据步骤S203中接收到的控制消息指示的第一预补偿值的内容,对目标DMRS进行信道估计,解调目标PDSCH,从而得到精度较高的解算结果。
进一步地,UE可以根据上例中接收到的通知,确定分别使用第一TRS和第二TRS接收DMRS和PDSCH,得到目标DMRS和目标PDSCH。
S203、UE接收控制消息,根据控制消息指示的第一预补偿值与非基准TRP发送的TRS的关联关系,确定第一预补偿值。
举例来说,第一预补偿值是频偏预补偿值或时延预补偿值中的一种或两种,即,第一预补偿值是频偏预补偿值,那么UE可以对频域上接收后得到的目标DMRS和目标PDSCH进行处理;第一预补偿值是时延预补偿值,那么UE可以对时域上接收后得到的目标DMRS和目标PDSCH进行处理,同理,如果第一预补偿值是频偏预补偿值和时延预补偿值,那么UE可以对频域和时域上接收后得到的 目标DMRS和目标PDSCH进行处理。
S204、UE根据接收的第一TRS、第二TRS和第一预补偿值对目标DMRS进行信道估计,解调目标PDSCH。
UE可以根据不同的第一QCL类型和第一预补偿值采用不同的方法,根据接收的第一TRS、第二TRS对目标DMRS进行信道估计,接收并解调目标PDSCH。
在一些实例中,若确定接收到的第一QCL类型包括多普勒频移,第一预补偿值为频偏预补偿值,预补偿为频偏预补偿,UE可以根据第一TRS估计得到第一多普勒特性;根据第二TRS估计得到第二多普勒特性,并根据第一频偏预补偿值对第二多普勒特性进行频偏补偿;根据预定加权规则对第一多普勒特性和频偏补偿的第二多普勒特性进行加权求和,得到加权多普勒特性;最后根据加权多普勒特性,对目标DMRS进行信道估计,解调目标PDSCH。
如,UE在不同的时域和/或频域上接收基准TRP发送的第一TRS和非基准TRP发送的第二TRS,对第一TRS和第二TRS分别估计多普勒特性。再基于基站指示的第一预补偿值即频偏预补偿值,对第二TRS所估计的多普勒特性进行频偏补偿,UE再按照第一TRS和第二TRS的RSRP或者SNR对第一TRS和第二TRS的多普勒特性加权求和,得到加权多普勒特性。最后基于第一TRS和第二TRS的加权多普勒特性,进行目标DMRS信道估计,用于对目标PDSCH做解调,得到PDSCH的数据。
需要说明的是,估计多普勒特性和进行频偏补偿没有顺序的限定,也可以是UE根据第一TRS估计得到第一多普勒特性;根据第一预补偿值对第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性;根据预定加权规则对第一多普勒特性和第三多普勒特性进行加权求和,得到加权多普勒特性;根据加权多普勒特性,对目标DMRS进行信道估计,解调目标PDSCH。
若UE确定接收到的第一QCL类型包括平均信道时延,第一预补偿值为时延预补偿值,预补偿为时延预补偿,UE根据时域上接收到的TRS,即根据第一TRS估计得到第一时延特性;根据第二TRS估计得到第二时延特性,并根据时延预补偿值对第二时延特性进行时延补偿;根据预定加权规则对第一时延特性和时延补偿的第二时延特性进行加权求和,得到加权时延特性;根据加权时延特性,对目标DMRS进行信道估计,解调目标PDSCH。
估计时延特性和进行时延补偿没有顺序的限定,也可以是UE根据第一TRS估计得到第一时延特性;根据时延预补偿值对第二TRS进行时延补偿,根据时延补偿后的TRS估计得到第三时延特性;根据预定加权规则对第一时延特性和第三时延特性进行加权求和,得到加权时延特性;根据加权时延特性,对目标DMRS进行信道估计,解调目标PDSCH。
若UE确定接收到的第一QCL类型包括多普勒频移和平均信道时延,第一预补偿值为频偏预补偿值和时延预补偿值,预补偿为频偏预补偿和时延预补偿,那么UE根据在时域和频域上接收到的TRS,即根据第一TRS估计得到第一多普勒特性和第一时延特性;根据第二TRS估计得到第二多普勒特性和第二时延特性,根据频偏预补偿值对第二多普勒特性进行频偏补偿,根据时延预补偿值对第二时延特性进行时延补偿;根据预定加权规则对第一多普勒特性和频偏补偿的第二多普勒特性进行加权求和,得到加权多普勒特性,根据预定加权规则对第一时延特性和时延补偿的第二时延特性进行加权求和,得到加权时延特性;根据加权多普勒特性和加权时延特性,对目标DMRS进行信道估计,解调目标PDSCH。
估计多普勒特性和进行频偏补偿没有顺序的限定,估计时延特性和进行时延补偿也没有顺序的限定,UE可以根据第一TRS估计得到第一多普勒特性和第一时延特性;根据第一预补偿值对第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性,根据时延预补偿值对第二TRS进行时延补偿,根据时延补偿后的TRS估计得到第三时延特性;根据预定加权规则对第一多普勒特性和第三多普勒特性进行加权求和,得到加权多普勒特性,对第一时延特性和第三时延特性进行加权求和,得到加权时延特性;根据加权多普勒特性和加权时延特性,对目标DMRS进行信道估计,解调目标PDSCH。
本申请实施例的UE通过接收到的基站指示的第一预补偿值对DMRS进行更加准确的信道估计,进而解出更加准确的PDSCH,能够有效消除DMRS从基站传输到UE时不同频偏和/或时延对解算PDSCH结果造成的误差。
在一些实例中,本申请实施例可以应用于一种TRP的通信系统中,该系统可以配置为一个基站对 应两个TRP,这两个TRP可以在相同的时频资源上,或者时频符号上发送联合发送导频和数据,系统中还包括一个UE,可以接收来自这两个TRP的导频和数据,下例仅以两个TRP分别为TRP#1和TRP#2举例进行说明,TRP的数量可从两个拓展为多个,只需将其中一个TRP作为基准,其他非基准TRP根据本例中TRP#2的方法进行预补偿,使得UE可以根据预补偿值接收和解调接收到的导频和数据。图4为本申请实施例提供的另一种信道估计方法流程图,如图4所示,该方法包括:
S301、TRP#1和TRP#2分别发送TRS#1和TRS#2,基站通过MAC控制元素同时激活TRS#1和TRS#2,并配置TRS#1的QCL类型为类型A,TRS#2的QCL类型为{多普勒扩展,时延扩展}。
需要说明的是,基站通过与它连接的TRP发送导频和数据,如TRP#1发送TRS#1,TRP#2发送和TRS#2,根据基站的配置消息,UE获知其接收的DMRS同时与TRS#1和TRS#2有QCL关系,并且TRS#1的QCL类型为QCL类型A,TRS#2的QCL类型为{平均时延,时延扩展}。配置方式可以为基站通过高层信令参数配置了TCI状态#1和TCI状态#2,该TCI状态#1和TCI状态#2表示TRS#1和DMRS是QCL的,TRS#2和DMRS是QCL的,且,TRS#1和TRS#2也是QCL的。且,TCI状态#1和TCI状态#2的QCL类型为QCL类型A,TRS#1和TRS#2分别与TCI状态#1和TCI状态#2关联。基站可以给UE配置一个或多种类型的QCL,并且可指示UE丢弃QCL类型A中的“多普勒频移”和“多普勒扩展”信息,如基站的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的MAC控制元素(MAC CE)可以同时激活TCI状态#1和TCI状态#2,来通知UE,第一QCL状态为TCI状态#1,第二QCL状态为TCI状态#2的QCL参数{多普勒频移,多普勒扩展}不可用。或者基站也可以通过DCI的TCI字段同时指示TCI状态#1和TCI状态#2,通知UE,第一QCL状态为TCI状态#1,第二QCL状态为TCI状态#2的QCL参数{多普勒频移,多普勒扩展}不可用。再或者,基站可以通过发送RRC信令,通知UE上述信息。
S302、TRP#1和TRP#2发送PDSCH和DMRS,其中,TRP#2在发送前对PDSCH和DMRS进行了频偏预补偿。
在一些实例中,TRP#1和TRP#2可以在相同的时频资源上,或者时频符号上发送PDSCH和DMRS。
本例以TRS#1的QCL类型为QCL类型A,TRS#2的QCL类型为{平均时延,时延扩展}为例,第一QCL类型包括多普勒频移,第一预补偿值为频偏预补偿值,预补偿为频偏预补偿,因此,在TRP#2发送PDSCH和DMRS之前,根据频偏预补偿值对PDSCH和DMRS进行了频偏预补偿。指的说明的是,由于SFN网络的传输特性,在频偏预补偿之前,TRP#2的DMRS和TRP#1的DMRS完全相同,TRP#2的PDSCH和TRP#1的PDSCH完全相同,频偏预补偿后,TRP#2的DMRS和TRP#1的DMRS存在一个频偏预补偿值大小的频偏,TRP#2的PDSCH和TRP#1的PDSCH亦然,传输到UE时,由于预先进行了频偏预补偿,UE接收到的PDSCH和DMRS可以通过该频偏预补偿值,进行准确的信道估计和PDSCH解调。
S303、基站下发MAC CE,指示TRP#2的频偏预补偿值,且该频偏预补偿值与
TRS#2关联。
本例以基站下发MAC CE进行通知为例进行说明,通知的其他方式如通过RRC信令、DCI通知等可以参照此步骤进行,在此不再展开描述。频偏补偿值可以参考上例中计算的第二TRP的频偏而得出的δf=fd1-fd2。
举例来说,图5为本申请实施例提供的预补偿值的比特位示意图,如图5所示,该频偏预补偿值一共用6比特表示,第1比特为频偏符号位,用于表示频偏补偿值的正负,第2比特至第5比特为频偏绝对值,用来表示频偏的数值。可以将该频偏补偿值的单位设置为56.45Hz,这样频偏预补偿值的表示范围可以取[-1750,1750]Hz。可以将该MAC CE的此段内容设定为:MAC CE所指示的频偏预补偿值,与PDCCH的MAC控制元素同时激活的2个TCI状态的后者,即与TCI状态#2关联。
在一些实例中,当频偏预补偿值发生变化,基站可以下发新的MAC CE指示新的频偏预补偿值。如,基站可以一直估算频偏补偿值,记作基站得到第二预补偿值,基站通过非基准TRP发送根据第二预补偿值完成预补偿的DMRS和PDSCH,当第二预补偿值与基站之前发送的第一预补偿值之差的绝对值大于预设阈值,即超过一个门限时,基站重新向UE发送控制消息,控制消息指示第二预补偿值,该第二预补偿值与第二TRS有关联关系,使得UE根据接收到的控制消息的指示,确定使用第二预补偿值对新接收的DMRS进行信道估计,再解调PDSCH,信道估计和解调方法参照上例。举例来说,第 二预补偿值与基站之前发送的第一预补偿值之差的绝对值大于五十赫兹或一百赫兹时,基站可以重新向UE发送控制消息。
S304、UE基于TRS#1、TRS#2和所指示的频偏预补偿值,进行PDSCH接收。
UE一般通过对DMRS解调参考信号导频进行滤波和插值,估计出PDSCH的信道,即UE估计信道大尺度特性,基于信道大尺度特性计算滤波系数,基于滤波系数对DMRS导频进行滤波和插值,最后解调出PDSCH的数据。其中,信道大尺度特性包括多普勒频移、多普勒扩展、平均时延、时延扩展、空间接收参数等。
由于基站通过不同TRP发送的DMRS和PDSCH频偏不同,UE接收到的PDSCH不能完全叠加重合,相当于对于UE来说,接收到的PDSCH信道被改变了。因此,UE需要在不同频域资源上接收TRS#1和TRS#2,分别估计TRS#1和TRS#2多普勒特性,再基于基站指示的频偏预补偿值,对TRS#2所估计的多普勒特性进行频偏补偿。举例来说,UE可以按照TRS#1和TRS#2的RSRP参考信号接收功率或者SNR信噪比对TRS#1和TRS#2的多普勒特性加权求和,得到加权多普勒特性。在一些实例中,可以先对对TRS#2的多普勒特性进行估算,再进行频偏补偿最后进行加权求和。最后,UE基于TRS#1和TRS#2的加权多普勒特性,进行DMRS信道估计,用于对接收的PDSCH做解调,这样一来得到PDSCH数据更加精准。
在一些实例中,基站配置的第一QCL类型和第二QCL类型与上述举例不同,信道估计方法如下:
TRP#1和TRP#2分别发送TRS#1和TRS#2,根据基站的配置消息,UE获知DMRS同时与TRS#1和TRS#2有QCL关系,并且TRS#1的QCL类型为QCL类型A,TRS#2的QCL类型为{多普勒频移,多普勒扩展}。举例来说,可以是基站通过高层信令参数配置了TCI状态#1和TCI状态#2,TCI状态#1和TCI状态#2的QCL类型为QCL类型A。且TRS#1和TRS#2分别与TCI状态#1和TCI状态#2关联。PDCCH的MAC CE同时激活TCI状态#1和TCI状态#2,或者通过DCI的TCI字段同时指示TCI状态#1和TCI状态#2,如可以指示TCI状态#2的QCL参数为{平均时延,时延扩展}不可用。TRP#1和TRP#2同时发送PDSCH和DMRS,其中,TRP#2在发送前对PDSCH和DMRS进行了时延预补偿。基站发送控制消息,如MAC CE指示TRP#2的时延预补偿值,且该时延预补偿值与TRS#2关联,具体数值可参照上例计算,在此不再展开。
举例来说,图6为本申请实施例提供的另一种预补偿值的比特位示意图,如图6所示,该时延预补偿值一共用6比特表示,第1比特为时延符号位,用于表示时延补偿值的正负,第2比特至第5比特为时延绝对值,用来表示时延的数值,与频偏预补偿值不同,可以将时延预补偿值的单位设定为77.42ns,可表示范围[-2400,2400]ns。可以将此段内容设定为:MAC CE所指示的时延预补偿值,与PDCCH的MAC控制元素同时激活的2个TCI状态的后者,即与TCI状态#2关联。
在一些实例中,当时延预补偿值发生变化,基站可以下发新的MAC CE指示新的时延预补偿值,更新方法可以参照上述频偏预补偿值发生变化的示例类推得到,在此不再赘述。
在本例中,UE基于TRS#1、TRS#2和所指示的时延预补偿值,进行PDSCH接收。即UE在不同的时域和/或频域资源上接收TRS#1和TRS#2,分别估计时延特性,再基于基站指示的时延预补偿值,对TRS#2所估计的时延特性进行时延补偿,依然可以对补偿后的时延特性和TRS#1的时延特性加权求和,得到加权时延特性。同理,也可以先对TRS#2的DMRS进行时延特性的补偿,再进行时延特性估计,最后加权求和。UE基于TRS#1和TRS#2的加权时延特性,进行DMRS信道估计,用于对接收的PDSCH做解调。
在一些实例中,可以同时进行频偏预补偿和时延预补偿,这样得到对接收的PDSCH做解调得到的数据准确性更高。基站可以通过TRP#1和TRP#2分别发送TRS#1和TRS#2,如基站配置了TCI状态#1和TCI状态#2。TCI状态#1和TCI状态#2的QCL类型为QCL类型A。TRS#1和TRS#2分别与TCI状态#1和TCI状态#2关联。PDCCH的MAC CE同时激活TCI状态#1和TCI状态#2。TCI状态#2的QCL参数{多普勒频移,平均时延}不可用。在这种情况下,TRP#1和TRP#2可以同时发送PDSCH和DMRS,其中TRP#2在发送前对PDSCH和DMRS进行了频偏预补偿和时延预补偿,且基站发送的控制消息指示TRP#2的频偏预补偿值和时延预补偿值,并告知UE且该频偏预补偿值和时延预补偿值均与TRS#2关联。
与上述举例不同的是,该第一预补偿值占有12个比特,图7为本申请实施例提供的另一种预补偿 值的比特位示意图,如图7所示,如,第1比特位为和第7比特位为符号位,第2比特位至第6比特位、第8比特位至第12比特位为数字位。其中,第1比特为频偏符号位,用于表示频偏补偿值的正负,第2比特至第5比特为频偏绝对值,用来表示频偏的数值,可以将该频偏补偿值的单位设置为56.45Hz,这样频偏预补偿值的表示范围可以取[-1750,1750]Hz,第7比特为时延符号位,用于表示时延补偿值的正负,第8比特至第12比特为时延绝对值,用来表示时延的数值,与频偏预补偿值不同,可以将时延预补偿值的单位设定为77.42ns,可表示范围[-2400,2400]ns。图7仅为一种示例,频偏补偿值占有的比特位可以与时延补偿值占有的比特位互换,不以图7为限定。
UE基于TRS#1、TRS#2和所指示的频偏预补偿值和时延预补偿值,进行PDSCH接收,具体的方法可以参照上述频偏预补偿值和时延预补偿值单独计算的举例,再此不再赘述。
本申请实施例提供的信道估计方法,能够帮助UE准确估计信道的多普勒特性和时延特性,从而提高UE接收的解调性能。除了上述举例外,本申请提供的向UE发送已经完成预补偿的导频和数据,再通知UE预补偿值,以使得UE能够根据获取的各项数值准确进行特性估计,进而提高UE接收的调解性能的方法,还可应用到其他多TRP传输网络中,如空分复用(Space Division Multiplexing,SDM)传输中,不以本申请的举例为限定。
图8为本申请实施例提供的基站,如图8所示,基站1包括:发送模块10、通知模块11和处理模块12。
发送模块10,用于分别通过基准TRP发送第一跟踪参考信号TRS和非基准TRP发送第二TRS。
发送模块10,还用于通过基准TRP发送解调参考信号DMRS和物理下行共享信道PDSCH,通过非基准TRP发送根据第一预补偿值完成预补偿的DMRS和PDSCH。
其中,预补偿值包括频偏预补偿和时延预补偿中的一种或两种。
发送模块10,还用于发送控制消息,控制消息指示第一预补偿值,第一预补偿值与第二TRS有关联关系。
进一步地,通知模块11,用于通知UE使用第一TRS和第二TRS接收PDSCH,且第一TRS的QCL类型为第一QCL类型,第二TRS的QCL类型为第二QCL类型,通知方式包括但不限于使用无线资源控制RRC信令、媒体介入控制层MAC控制元素、下行链路控制信息DCI或者它们的组合。
其中,第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种,第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
在一些实例中,第一QCL类型包括多普勒频移,第一预补偿值为频偏预补偿值,预补偿为频偏预补偿;或,第一QCL类型包括平均信道时延,第一预补偿值为时延预补偿值,预补偿为时延预补偿;或,第一QCL类型包括多普勒频移和平均信道时延,第一预补偿值为频偏预补偿值和时延预补偿值,预补偿为频偏预补偿和时延预补偿。
进一步地,基站会不断得到第二预补偿值,重新向UE发送根据第二预补偿值补偿的导频和数据,当该值超过预设阈值时,重新发送控制消息指示第二预补偿值,如处理模块12,用于得到第二预补偿值发送模块10,还用于通过非基准TRP发送根据第二预补偿值完成预补偿的DMRS和PDSCH,若第二预补偿值与第一预补偿值之差的绝对值大于预设阈值,发送控制消息,控制消息指示第二预补偿值,第二预补偿值与第二TRS有关联关系。
图9为本申请实施例提供的用户设备,如图9所示,用户设备UE 2,包括:接收模块20和处理模块21。
接收模块20,用于接收基准TRP发送的第一跟踪参考信号TRS和非基准TRP发送的第二TRS。
接收模块20,还用于接收基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和非基准TRP发送的根据第一预补偿值完成预补偿的DMRS、PDSCH,得到目标DMRS和目标PDSCH。
其中,预补偿值包括频偏预补偿和时延预补偿中的一种或两种。
接收模块20,还用于接收控制消息,根据控制消息指示的第一预补偿值与第二TRS的关联关系,确定第一预补偿值。
处理模块21,用于根据接收的第一TRS、第二TRS和第一预补偿值对目标DMRS进行信道估计,解调目标PDSCH。
在一些实例中,接收模块20,还用于接收通知,通知方式包括但不限于使用无线资源控制RRC信令、媒体介入控制层MAC控制元素、下行链路控制信息DCI或者它们的组合。处理模块21,具体用于根据通知使用第一TRS和第二TRS接收PDSCH,且第一TRS的QCL类型为第一QCL类型,第二TRS的QCL类型为第二QCL类型。
其中,第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种,第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
举例来说,若接收模块20确定接收到的第一QCL类型包括多普勒频移,预补偿值为频偏预补偿值,预补偿为频偏预补偿,处理模块21根据第一TRS估计得到第一多普勒特性;根据第二TRS估计得到第二多普勒特性,并根据第一频偏预补偿值对第二多普勒特性进行频偏补偿;根据预定加权规则对第一多普勒特性和频偏补偿的第二多普勒特性进行加权求和,得到加权多普勒特性;根据加权多普勒特性,对目标DMRS进行信道估计,解调目标PDSCH。
若接收模块20确定接收到的第一QCL类型包括多普勒频移,预补偿值为频偏预补偿值,预补偿为频偏预补偿,处理模块21根据第一TRS估计得到第一多普勒特性;根据第一预补偿值对第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性;根据预定加权规则对第一多普勒特性和第三多普勒特性进行加权求和,得到加权多普勒特性;根据加权多普勒特性,对目标DMRS进行信道估计,解调目标PDSCH。
若接收模块20确定接收到的第一QCL类型包括平均信道时延,预补偿值为时延预补偿值,预补偿为时延预补偿,处理模块21根据第一TRS估计得到第一多普勒特性;根据第一预补偿值对第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性;根据预定加权规则对第一多普勒特性和第三多普勒特性进行加权求和,得到加权多普勒特性;根据加权多普勒特性,对目标DMRS进行信道估计,解调目标PDSCH。
若接收模块20确定接收到的第一QCL类型包括平均信道时延,预补偿值为时延预补偿值,预补偿为时延预补偿,处理模块21根据第一TRS估计得到第一时延特性;根据第二TRS估计得到第二时延特性,并根据时延预补偿值对第二时延特性进行时延补偿;根据预定加权规则对第一时延特性和时延补偿的第二时延特性进行加权求和,得到加权时延特性;根据加权时延特性,对目标DMRS进行信道估计,解调目标PDSCH。
若接收模块20确定接收到的第一QCL类型包括多普勒频移和平均信道时延,第一预补偿值为频偏预补偿值和时延预补偿值,预补偿为频偏预补偿和时延预补偿,处理模块21根据第一TRS估计得到第一时延特性;根据时延预补偿值对第二TRS进行时延补偿,根据时延补偿后的TRS估计得到第三时延特性;根据预定加权规则对第一时延特性和第三时延特性进行加权求和,得到加权时延特性;根据加权时延特性,对目标DMRS进行信道估计,解调目标PDSCH。
若接收模块20确定接收到的第一QCL类型包括多普勒频移和平均信道时延,第一预补偿值为频偏预补偿值和时延预补偿值,预补偿为频偏预补偿和时延预补偿,处理模块21根据第一TRS估计得到第一多普勒特性和第一时延特性;根据第二TRS估计得到第二多普勒特性和第二时延特性,根据频偏预补偿值对第二多普勒特性进行频偏补偿,根据时延预补偿值对第二时延特性进行时延补偿;根据预定加权规则对第一多普勒特性和频偏补偿的第二多普勒特性进行加权求和,得到加权多普勒特性,根据预定加权规则对第一时延特性和时延补偿的第二时延特性进行加权求和,得到加权时延特性;根据加权多普勒特性和加权时延特性,对目标DMRS进行信道估计,解调目标PDSCH。
接收模块20,还用于接收非基准TRP发送的根据第二预补偿值完成预补偿的DMRS和PDSCH;处理模块21,还用于根据接收到的基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和非基准TRP发送的根据第二预补偿值完成预补偿的DMRS和PDSCH,得到目标DMRS和目标PDSCH;接收模块20,还用于接收控制消息,根据控制消息指示的第二预补偿值与第二TRS的关联关系,确定第二预补偿值,其中,第二预补偿值与第一预补偿值之差的绝对值大于预设阈值;处理模块21,还用于根据接收的第一TRS、第二TRS和第二预补偿值对目标DMRS进行信道估计,解调目标PDSCH。
本申请实施例提供一种系统,图10为本申请实施例提供的系统,该系统包括上述示例中的基站1 和用户设备2,能够使用本申请实施例提供的信道估计方法进行信道估计,得到更加精确的数据。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种信道估计方法,其特征在于,包括:
    分别通过基准发送接收点TRP发送第一跟踪参考信号TRS和非基准TRP发送第二TRS;
    通过所述基准TRP发送解调参考信号DMRS和物理下行共享信道PDSCH;
    通过所述非基准TRP发送根据第一预补偿值完成预补偿的DMRS和PDSCH;
    发送控制消息,所述控制消息指示所述第一预补偿值,所述第一预补偿值与所述第二TRS有关联关系。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一预补偿值包括频偏预补偿和时延预补偿中的一种或两种。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    通知UE使用所述第一TRS和所述第二TRS接收PDSCH,且所述第一TRS的QCL类型为第一QCL类型,所述第二TRS的QCL类型为第二QCL类型,所述通知方式包括但不限于使用无线资源控制RRC信令、媒体介入控制层MAC控制元素、下行链路控制信息DCI或者它们的组合。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种,所述第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一QCL类型包括多普勒频移,所述第一预补偿值为频偏预补偿值,所述预补偿为频偏预补偿;
    或,所述第一QCL类型包括平均信道时延,所述第一预补偿值为时延预补偿值,所述预补偿为时延预补偿;
    或,所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,还包括:
    得到第二预补偿值;
    通过所述非基准TRP发送根据所述第二预补偿值完成预补偿的DMRS和PDSCH;
    若所述第二预补偿值与所述第一预补偿值之差的绝对值大于预设阈值,发送所述控制消息,所述控制消息指示所述第二预补偿值,所述第二预补偿值与所述第二TRS有关联关系。
  7. 一种信道估计方法,其特征在于,包括:
    接收基准发送接收点TRP发送的第一跟踪参考信号TRS和非基准TRP发送的第二TRS;
    接收所述基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和所述非基准TRP发送的根据第一预补偿值完成预补偿的DMRS、PDSCH,得到目标DMRS和目标PDSCH;
    接收控制消息,根据所述控制消息指示的所述第一预补偿值与所述第二TRS的关联关系,确定所述第一预补偿值;
    根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  8. 根据权利要求7所述的方法,其特征在于,
    所述预补偿值包括频偏预补偿和时延预补偿中的一种或两种。
  9. 根据权利要求7所述的方法,其特征在于,还包括:
    接收通知,所述通知方式包括但不限于使用无线资源控制RRC信令、媒体介入控制层MAC控制元素、下行链路控制信息DCI或者它们的组合;
    根据所述通知使用所述第一TRS和所述第二TRS接收PDSCH,且所述第一TRS的QCL类型为第一QCL类型,所述第二TRS的QCL类型为第二QCL类型。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种,所述第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参 数中的至少一种。
  11. 根据权利要求10所述的方法,其特征在于,
    若确定接收到的所述第一QCL类型包括多普勒频移,所述第一预补偿值为频偏预补偿值,所述预补偿为频偏预补偿,
    所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:
    根据所述第一TRS估计得到第一多普勒特性;
    根据所述第二TRS估计得到第二多普勒特性,并根据所述第一频偏预补偿值对所述第二多普勒特性进行频偏补偿;
    根据预定加权规则对所述第一多普勒特性和频偏补偿的所述第二多普勒特性进行加权求和,得到加权多普勒特性;
    根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  12. 根据权利要求10所述的方法,其特征在于,
    若确定接收到的所述第一QCL类型包括多普勒频移,所述第一预补偿值为频偏预补偿值,所述预补偿为频偏预补偿,
    所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:
    根据所述第一TRS估计得到所述第一多普勒特性;
    根据所述第一预补偿值对所述第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性;
    根据预定加权规则对所述第一多普勒特性和所述第三多普勒特性进行加权求和,得到加权多普勒特性;
    根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  13. 根据权利要求10所述的方法,其特征在于,
    若确定接收到的所述第一QCL类型包括平均信道时延,所述第一预补偿值为时延预补偿值,所述预补偿为时延预补偿,
    所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:
    根据所述第一TRS估计得到第一时延特性;
    根据所述第二TRS估计得到第二时延特性,并根据所述时延预补偿值对所述第二时延特性进行时延补偿;
    根据预定加权规则对所述第一时延特性和时延补偿的所述第二时延特性进行加权求和,得到加权时延特性;
    根据所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  14. 根据权利要求10所述的方法,其特征在于,
    若确定接收到的所述第一QCL类型包括平均信道时延,所述第一预补偿值为时延预补偿值,所述预补偿为时延预补偿,
    所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:
    根据所述第一TRS估计得到第一时延特性;
    根据所述时延预补偿值对所述第二TRS进行时延补偿,根据时延补偿后的TRS估计得到第三时延特性;
    根据预定加权规则对所述第一时延特性和所述第三时延特性进行加权求和,得到加权时延特性;
    根据所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  15. 根据权利要求10所述的方法,其特征在于,
    若确定接收到的所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿,
    所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:
    根据所述第一TRS估计得到第一多普勒特性和第一时延特性;
    根据所述第二TRS估计得到第二多普勒特性和第二时延特性,根据所述频偏预补偿值对所述第二多普勒特性进行频偏补偿,根据所述时延预补偿值对所述第二时延特性进行时延补偿;
    根据预定加权规则对所述第一多普勒特性和频偏补偿的所述第二多普勒特性进行加权求和,得到加权多普勒特性,根据预定加权规则对所述第一时延特性和时延补偿的所述第二时延特性进行加权求和,得到加权时延特性;
    根据所述加权多普勒特性和所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  16. 根据权利要求10所述的方法,其特征在于,
    若确定接收到的所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿,
    所述根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH包括:
    根据所述第一TRS估计得到第一多普勒特性和第一时延特性;
    根据所述第一预补偿值对所述第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性,根据所述时延预补偿值对所述非基准TRP的TRS进行时延补偿,根据时延补偿后的TRS估计得到第三时延特性;
    根据预定加权规则对所述第一多普勒特性和所述第三多普勒特性进行加权求和,得到加权多普勒特性,对所述第一时延特性和所述第三时延特性进行加权求和,得到加权时延特性;
    根据所述加权多普勒特性和所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  17. 根据权利要求7至16任一项所述的方法,其特征在于,还包括:
    接收所述非基准TRP发送的根据所述第二预补偿值完成预补偿的DMRS和PDSCH;
    根据接收到的所述基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和所述非基准TRP发送的根据所述第二预补偿值完成预补偿的DMRS和PDSCH,得到目标DMRS和目标PDSCH;
    接收所述控制消息,根据所述控制消息指示的所述第二预补偿值与所述第二TRS的关联关系,确定所述第二预补偿值,其中,所述第二预补偿值与所述第一预补偿值之差的绝对值大于预设阈值;
    根据接收的所述第一TRS、所述第二TRS和所述第二预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  18. 一种基站,其特征在于,包括:
    发送模块,用于分别通过基准发送接收点TRP发送第一跟踪参考信号TRS和非基准TRP发送第二TRS;
    所述发送模块,还用于通过所述基准TRP发送解调参考信号DMRS和物理下行共享信道PDSCH,通过所述非基准TRP发送根据第一预补偿值完成预补偿的DMRS和PDSCH;
    所述发送模块,还用于发送控制消息,所述控制消息指示所述第一预补偿值,所述第一预补偿值与所述第二TRS有关联关系。
  19. 根据权利要求18所述的基站,其特征在于,
    所述预补偿值包括频偏预补偿和时延预补偿中的一种或两种。
  20. 根据权利要求18所述的基站,其特征在于,还包括:
    通知模块,用于通知UE使用所述第一TRS和所述第二TRS接收PDSCH,且所述第一TRS的QCL类型为第一QCL类型,所述第二TRS的QCL类型为第二QCL类型,所述通知方式包括但不限于使用无线资源控制RRC信令、媒体介入控制层MAC控制元素、下行链路控制信息DCI或者它们的组合。
  21. 根据权利要求20所述的基站,其特征在于,
    所述第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的 至少一种,所述第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
  22. 根据权利要求21所述的基站,其特征在于,
    所述第一QCL类型包括多普勒频移,所述第一预补偿值为频偏预补偿值,所述预补偿为频偏预补偿;
    或,所述第一QCL类型包括平均信道时延,所述第一预补偿值为时延预补偿值,所述预补偿为时延预补偿;
    或,所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿。
  23. 根据权利要求18至22任一项所述的基站,其特征在于,还包括:
    处理模块,用于得到第二预补偿值;
    所述发送模块,还用于通过所述非基准TRP发送根据所述第二预补偿值完成预补偿的DMRS和PDSCH,若所述第二预补偿值与所述第一预补偿值之差的绝对值大于预设阈值,发送所述控制消息,所述控制消息指示所述第二预补偿值,所述第二预补偿值与所述第二TRS有关联关系。
  24. 一种用户设备UE,其特征在于,包括:
    接收模块,用于接收基准发送接收点TRP发送的第一跟踪参考信号TRS和非基准TRP发送的第二TRS;
    所述接收模块,还用于接收所述基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和所述非基准TRP发送的根据第一预补偿值完成预补偿的DMRS、PDSCH,得到目标DMRS和目标PDSCH;
    所述接收模块,还用于接收控制消息,根据所述控制消息指示的所述第一预补偿值与所述第二TRS的关联关系,确定所述第一预补偿值;
    处理模块,用于根据接收的所述第一TRS、所述第二TRS和所述第一预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  25. 根据权利要求24所述的UE,其特征在于,
    所述预补偿值包括频偏预补偿和时延预补偿中的一种或两种。
  26. 根据权利要求24所述的UE,其特征在于,
    所述接收模块,还用于接收通知,所述通知方式包括但不限于使用无线资源控制RRC信令、媒体介入控制层MAC控制元素、下行链路控制信息DCI或者它们的组合;
    所述处理模块,具体用于根据所述通知使用所述第一TRS和所述第二TRS接收PDSCH,且所述第一TRS的QCL类型为第一QCL类型,所述第二TRS的QCL类型为第二QCL类型。
  27. 根据权利要求26所述的UE,其特征在于,
    所述第一QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种,所述第二QCL类型包括多普勒频移、多普勒扩展、平均信道时延、时延扩展和空间接收参数中的至少一种。
  28. 根据权利要求27所述的UE,其特征在于,
    若所述接收模块确定接收到的所述第一QCL类型包括多普勒频移,所述预补偿值为频偏预补偿值,所述预补偿为频偏预补偿,所述处理模块根据所述第一TRS估计得到第一多普勒特性;根据所述第二TRS估计得到第二多普勒特性,并根据所述第一频偏预补偿值对所述第二多普勒特性进行频偏补偿;根据预定加权规则对所述第一多普勒特性和频偏补偿的所述第二多普勒特性进行加权求和,得到加权多普勒特性;根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  29. 根据权利要求27所述的UE,其特征在于,
    若所述接收模块确定接收到的所述第一QCL类型包括多普勒频移,所述预补偿值为频偏预补偿值,所述预补偿为频偏预补偿,所述处理模块根据所述第一TRS估计得到所述第一多普勒特性;根据所述第一预补偿值对所述第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性;根据预定加权规则对所述第一多普勒特性和所述第三多普勒特性进行加权求和,得到加权多普勒特性;根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  30. 根据权利要求27所述的UE,其特征在于,
    若所述接收模块确定接收到的所述第一QCL类型包括平均信道时延,所述预补偿值为时延预补偿值,所述预补偿为时延预补偿,所述处理模块根据所述第一TRS估计得到所述第一多普勒特性;根据所述第一预补偿值对所述第二TRS进行频偏补偿,根据频偏补偿后的TRS估计得到第三多普勒特性;根据预定加权规则对所述第一多普勒特性和所述第三多普勒特性进行加权求和,得到加权多普勒特性;根据所述加权多普勒特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  31. 根据权利要求27所述的UE,其特征在于,
    若所述接收模块确定接收到的所述第一QCL类型包括平均信道时延,所述预补偿值为时延预补偿值,所述预补偿为时延预补偿,所述处理模块根据所述第一TRS估计得到第一时延特性;根据所述第二TRS估计得到第二时延特性,并根据所述时延预补偿值对所述第二时延特性进行时延补偿;根据预定加权规则对所述第一时延特性和时延补偿的所述第二时延特性进行加权求和,得到加权时延特性;根据所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  32. 根据权利要求27所述的UE,其特征在于,
    若所述接收模块确定接收到的所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿,所述处理模块根据所述第一TRS估计得到第一时延特性;根据所述时延预补偿值对所述第二TRS进行时延补偿,根据时延补偿后的TRS估计得到第三时延特性;根据预定加权规则对所述第一时延特性和所述第三时延特性进行加权求和,得到加权时延特性;根据所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  33. 根据权利要求27所述的UE,其特征在于,
    若所述接收模块确定接收到的所述第一QCL类型包括多普勒频移和平均信道时延,所述第一预补偿值为频偏预补偿值和时延预补偿值,所述预补偿为频偏预补偿和时延预补偿,所述处理模块根据所述第一TRS估计得到第一多普勒特性和第一时延特性;根据所述第二TRS估计得到第二多普勒特性和第二时延特性,根据所述频偏预补偿值对所述第二多普勒特性进行频偏补偿,根据所述时延预补偿值对所述第二时延特性进行时延补偿;根据预定加权规则对所述第一多普勒特性和频偏补偿的所述第二多普勒特性进行加权求和,得到加权多普勒特性,根据预定加权规则对所述第一时延特性和时延补偿的所述第二时延特性进行加权求和,得到加权时延特性;根据所述加权多普勒特性和所述加权时延特性,对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  34. 根据权利要求24至33任一项所述的UE,其特征在于,
    所述接收模块,还用于接收所述非基准TRP发送的根据所述第二预补偿值完成预补偿的DMRS和PDSCH;
    所述处理模块,还用于根据接收到的所述基准TRP发送的解调参考信号DMRS、物理下行共享信道PDSCH和所述非基准TRP发送的根据所述第二预补偿值完成预补偿的DMRS和PDSCH,得到目标DMRS和目标PDSCH;
    所述接收模块,还用于接收所述控制消息,根据所述控制消息指示的所述第二预补偿值与所述第二TRS的关联关系,确定所述第二预补偿值,其中,所述第二预补偿值与所述第一预补偿值之差的绝对值大于预设阈值;
    所述处理模块,还用于根据接收的所述第一TRS、所述第二TRS和所述第二预补偿值对所述目标DMRS进行信道估计,解调所述目标PDSCH。
  35. 一种系统,其特征在于,包括:
    如权利要求18至23任一项所述的基站;
    如权利要求24至34任一项所述的用户设备UE。
PCT/CN2023/101319 2022-06-24 2023-06-20 信道估计方法、设备及系统 WO2023246759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210721956.5 2022-06-24
CN202210721956.5A CN117319144A (zh) 2022-06-24 2022-06-24 信道估计方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2023246759A1 true WO2023246759A1 (zh) 2023-12-28

Family

ID=89260941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101319 WO2023246759A1 (zh) 2022-06-24 2023-06-20 信道估计方法、设备及系统

Country Status (2)

Country Link
CN (1) CN117319144A (zh)
WO (1) WO2023246759A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320685A1 (en) * 2020-04-10 2021-10-14 Qualcomm Incorporated Frequency pre-compensation for high-speed train single frequency networks
WO2022022732A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 一种qcl指示方法及相关设备
US20220116256A1 (en) * 2020-10-09 2022-04-14 Samsung Electronics Co., Ltd. Enhancements to support hst-sfn deployment scenario
CN114500185A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 信道估计方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320685A1 (en) * 2020-04-10 2021-10-14 Qualcomm Incorporated Frequency pre-compensation for high-speed train single frequency networks
WO2022022732A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 一种qcl指示方法及相关设备
US20220116256A1 (en) * 2020-10-09 2022-04-14 Samsung Electronics Co., Ltd. Enhancements to support hst-sfn deployment scenario
CN114500185A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 信道估计方法、装置及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on enhancements on HST-SFN deployment", 3GPP TSG RAN WG1 #102-E, R1-2005687, 8 August 2020 (2020-08-08), XP051917662 *
HUAWEI, HISILICON: "Enhancements on Multi-TRP for high speed train in Rel-17", 3GPP TSG RAN WG1 MEETING #102-E, R1-2006394, 8 August 2020 (2020-08-08), XP051918006 *

Also Published As

Publication number Publication date
CN117319144A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US11632211B2 (en) Method and apparatus for muting signaling in a wireless communication network
US11336423B2 (en) Timing synchronization for downlink (DL) transmissions in coordinated multipoint (CoMP) systems
US20220191080A1 (en) Wireless communications device, infrastructure equipment and methods
CN108809595B (zh) 一种参考信号通知方法及其装置
CN107005498B (zh) 信道估计方法、基站、用户设备和系统
CN104094646A (zh) 协调多点无线通信系统中的上行链路功率控制
RU2656234C1 (ru) СИНХРОНИЗАЦИЯ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ДЛЯ НИСХОДЯЩЕЙ (DL) ПЕРЕДАЧИ В СКООРДИНИРОВАННЫХ МНОГОТОЧЕЧНЫХ (CoMP) СИСТЕМАХ
WO2016141529A1 (zh) 一种数据传输设备、方法及系统
JP2018537923A (ja) 複数のトーンホッピング距離をもつ狭帯域prach
WO2016145620A1 (zh) 数据解调方法、装置和系统
WO2018127071A1 (zh) 一种发送参考信号的方法和通信设备
JP2014072580A (ja) 受信機および受信品質測定方法
CN113541906A (zh) 方法和装置
CN118157727A (zh) 一种参考信号通知方法及其装置
WO2021159258A1 (zh) 一种数据传输方法及装置
WO2013169986A2 (en) Signaling scheme for coordinated transmissions
WO2014011323A2 (en) Enhancing coordinated multi-point processing transmission through resource element muting
WO2023246759A1 (zh) 信道估计方法、设备及系统
JP2014072784A (ja) 受信装置及び受信方法
JP7244160B2 (ja) 情報送信方法、チャネル推定方法、基地局、ユーザ機器、システム、およびプログラム
WO2021160075A1 (zh) 载频跟踪方法、信号传输方法及相关装置
WO2021160074A1 (zh) 信号解调方法、信号传输方法及相关装置
Kim et al. A novel receiver for reliable IoT communications based on ZigBee under frequency-selective indoor environments
CN106411431B (zh) 一种用于确定信道地理类型的方法和装置
JP2020519087A (ja) 参照信号の伝送方法、端末及びネットワーク機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826406

Country of ref document: EP

Kind code of ref document: A1