WO2021159467A1 - 一种资源的配置方法及网络设备 - Google Patents

一种资源的配置方法及网络设备 Download PDF

Info

Publication number
WO2021159467A1
WO2021159467A1 PCT/CN2020/075264 CN2020075264W WO2021159467A1 WO 2021159467 A1 WO2021159467 A1 WO 2021159467A1 CN 2020075264 W CN2020075264 W CN 2020075264W WO 2021159467 A1 WO2021159467 A1 WO 2021159467A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
capability
resource
information
dci
Prior art date
Application number
PCT/CN2020/075264
Other languages
English (en)
French (fr)
Inventor
刘凤威
邱晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080096240.XA priority Critical patent/CN115066950A/zh
Priority to EP20918387.0A priority patent/EP4096318A4/en
Priority to PCT/CN2020/075264 priority patent/WO2021159467A1/zh
Publication of WO2021159467A1 publication Critical patent/WO2021159467A1/zh
Priority to US17/887,149 priority patent/US20220394737A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a resource configuration method and network equipment.
  • the base station establishes a connection with the core network through optical fiber.
  • the deployment cost of optical fiber is high.
  • a connection between a wireless relay node (RN) and the core network can be established through a wireless backhaul link.
  • RN wireless relay node
  • the RN establishes a wireless backhaul link with one or more upper-level nodes (may be called a parent BackHaul link). And, the RN establishes a wireless backhaul link (which may be referred to as a child BackHaul link) with one or more lower-level nodes.
  • the upper-level node of the RN may be a base station or another RN; the lower-level node of the RN may be a terminal or another RN.
  • 5G new radio is considering the introduction of an integrated access and backhaul (IAB) solution to further reduce deployment costs and increase deployment flexibility.
  • the integrated access and backhaul RN that is, the IAB node.
  • an IAB node establishes an upper-level backhaul link with an upper-level node, establishes a lower-level backhaul link with a lower-level node, and establishes an access link with a user equipment (UE).
  • UE user equipment
  • the IAB node may include two functional units: a mobile terminal (MT) and a distributed unit (DU).
  • the MT is used for the IAB node to communicate with the upper-level node
  • the DU is used for the IAB node to communicate with the lower-level node or UE.
  • the MT and the DU can use the backhaul link resources configured by the IAB node's access network equipment (such as the base station) for the IAB node to communicate with their superior or subordinate nodes.
  • resource multiplexing methods can include time division multiplexing, space division multiplexing, full duplex and so on.
  • the present application provides a resource configuration method and network equipment, which can perform targeted transmission resource configuration and instruction when the IAB node adopts a non-time division multiplexing resource multiplexing mode.
  • a resource configuration method includes: a first node sends first information and second information to a second node, the first information is used to indicate one or more of the mobile terminal MT of the first node.
  • the second information is used to indicate the resource reuse capabilities supported by one or more carriers of the MT and the resource reuse capabilities supported by one or more cells of the distributed unit DU of the first node.
  • resource multiplexing capabilities include capability 1, capability 2, capability 3, and capability 4, where capability 1 indicates that MT and DU can send signals at the same time, and capability 2 indicates that MT can send signals while said DU can receive signals, Capability 3 indicates that the DU can send signals while the MT is receiving signals, and capability 4 indicates that the MT and DU can receive signals at the same time.
  • the first node reports to the second node the resource reuse capability of the MT and DU of the IAB node, and the conditions that the resource reuse capability it supports need to meet.
  • the node's MT and DU capabilities combine transmission parameter requirements and other targeted transmission resource configuration and instructions. In turn, the resource utilization rate when the first node communicates is improved, and the communication efficiency is improved.
  • the resource configuration method provided in this application may further include: the first node receives first configuration information from the second node that is used to indicate the transmission resource of the MT; wherein the transmission resource of the MT is such that The MT of the first node supports one of the foregoing capability 1, capability 2, capability 3, or capability 4, and the transmission resources of the MT enable the MT of the first node to meet the requirements of the foregoing capability 1, capability 2, capability 3, or capability 4. conditions of.
  • the second node can configure and instruct transmission resources in a targeted manner according to the capabilities of the MT and DU of the IAB node in combination with transmission parameter requirements. In turn, the resource utilization rate when the first node communicates is improved, and the communication efficiency is improved.
  • the above-mentioned second information is used to indicate the conditions that the resource reuse capability supported by one or more carriers of the MT of the first node needs to be met, specifically including one or more of the following conditions : MT’s downlink received power needs to be set in a specific interval; MT’s downlink scheduling demodulation reference signal DMRS port maximum number; MT’s uplink scheduling DMRS port maximum number; MT’s uplink scheduling timing mode is set to specific Mode; Uplink transmit beam ID supported by MT; Downlink receive beam ID supported by MT.
  • the first node reports one or more MT transmission parameter requirements of the transmission power, DMRS port, timing mode, or beam by reporting the resource reuse capability supported by its MT carrier, so that the second node can be targeted to it. Perform transmission resource configuration and instructions.
  • the above-mentioned second information is also used to indicate the conditions that the resource reuse capability supported by the DU of the first node needs to be met, specifically including one or more of the following conditions: uplink reception of the DU The power needs to be set in a specific interval; the downlink transmit power of the DU needs to be set in a specific interval; the uplink reception timing mode of the DU is set to a specific mode; the downlink transmit beam ID supported by the DU; the uplink receive beam ID supported by the DU.
  • the first node reports one or more DU transmission parameter requirements of the transmission power, timing mode, or beam by reporting the resource reuse capability supported by its DU carrier, so that the second node can transmit resources to it in a targeted manner. Configuration and instructions.
  • the resource configuration method provided in this application may further include: the first node receives second configuration information from the second node, the second configuration information includes: the DU indicated by the downlink control information DCI Cell ID; the location of the DU cell resource availability information indicated by the DU cell ID in the DCI; the DU cell resource availability information indicated by the DU cell ID.
  • the second node indicates the availability of the DU cell resource of the first node, so that the first node can determine the availability of the MT carrier resource according to the DCI and the availability of the DU cell resource.
  • the foregoing second configuration information further includes: the MT carrier ID indicated by the DCI.
  • the second node facilitates the first node to perform resource availability analysis according to the MT carrier indicated by the second configuration information.
  • the resource configuration method provided in this application may further include: the first node receives DCI from the second node, and the DCI is used to indicate the available status of soft resources; the available status of soft resources includes available State 1 and Available State 2; among them, the above-mentioned available state 1 means that the second node will not use the first carrier of the MT for backhaul link scheduling, and the available state 2 means that the second node will use the first carrier of the MT for backhaul link Channel scheduling; the first carrier is any carrier of the MT.
  • the above-mentioned second node is an upper node or a donor node of the first node.
  • a resource configuration method includes: a second node receives first information and second information from the first node; the first information is used to indicate one or more of the mobile terminal MT of the first node The resource reuse capability supported by one or more cells of the distributed unit DU of each carrier and the first node; the second information is used to indicate the condition that the resource reuse capability supported by one or more carriers of the MT needs to be met;
  • the aforementioned resource multiplexing capabilities include capability 1, capability 2, capability 3, and capability 4.
  • Capability 1 indicates that MT and DU can send signals at the same time
  • capability 2 indicates that MT can send signals while DU can receive signals
  • capability 3 indicates that MT receives signals.
  • the DU can send signals
  • capability 4 indicates that the MT and DU can receive signals at the same time.
  • the first node reports to the second node the resource reuse capabilities of the MT and DU of the IAB node, and the conditions that the resource reuse capabilities supported by it need to meet.
  • the node's MT and DU capabilities combine transmission parameter requirements and other targeted transmission resource configuration and instructions. In turn, the resource utilization rate when the first node communicates is improved, and the communication efficiency is improved.
  • the resource configuration method provided in this application may further include: the second node sends first configuration information for indicating the transmission resource of the MT to the first node; wherein, the transmission resource of the MT Make the MT of the first node support one of the above-mentioned capability 1, capability 2, capability 3, or capability 4, and the transmission resources of the MT enable the MT of the first node to meet the above-mentioned capability 1, capability 2, capability 3, or capability 4. Required conditions.
  • the second node can configure and instruct transmission resources in a targeted manner according to the capabilities of the MT and DU of the IAB node in combination with transmission parameter requirements. In turn, the resource utilization rate when the first node communicates is improved, and the communication efficiency is improved.
  • the above-mentioned second information is used to indicate the conditions that the resource reuse capability supported by one or more carriers of the MT of the first node needs to be met, specifically including one or more of the following conditions : MT’s downlink received power needs to be set in a specific interval; MT’s downlink scheduling demodulation reference signal DMRS port maximum number; MT’s uplink scheduling DMRS port maximum number; MT’s uplink scheduling timing mode is set to specific Mode; Uplink transmit beam ID supported by MT; Downlink receive beam ID supported by MT.
  • the first node reports one or more MT transmission parameter requirements of the transmission power, DMRS port, timing mode, or beam by reporting the resource reuse capability supported by its MT carrier, so that the second node can be targeted to it. Perform transmission resource configuration and instructions.
  • the above-mentioned second information is also used to indicate the conditions that the resource reuse capability supported by the DU of the first node needs to be met, specifically including one or more of the following conditions: uplink reception of the DU The power needs to be set in a specific interval; the downlink transmit power of the DU needs to be set in a specific interval; the uplink reception timing mode of the DU is set to a specific mode; the downlink transmit beam ID supported by the DU; the uplink receive beam ID supported by the DU.
  • the first node reports one or more DU transmission parameter requirements of the transmission power, timing mode, or beam by reporting the resource reuse capability supported by its DU carrier, so that the second node can transmit resources to it in a targeted manner. Configuration and instructions.
  • the resource configuration method provided in this application may further include: the second node sends second configuration information to the first node, and the second configuration information includes: the DU cell indicated by the downlink control information DCI ID; the position in the DCI of the DU cell resource availability information indicated by the DU cell ID; the DU cell resource availability information indicated by the DU cell ID.
  • the second node indicates the availability of the DU cell resource of the first node, so that the first node can determine the availability of the MT carrier resource according to the DCI and the availability of the DU cell resource.
  • the foregoing second configuration information further includes: the MT carrier ID indicated by the DCI.
  • the second node facilitates the first node to perform resource availability analysis according to the MT carrier indicated by the second configuration information.
  • the resource configuration method provided by this application may further include: the second node sends to the first node a DCI for indicating the available state of the soft resource; the available state of the soft resource includes the available state 1. And available state 2; wherein, the available state 1 indicates that the second node will not use the first carrier of the MT for backhaul link scheduling, and the available state 2 indicates that the second node will use the first carrier of the MT for backhaul link Scheduling; the first carrier is any carrier of the MT.
  • the above-mentioned second node is an upper node or a donor node of the first node.
  • a resource configuration method includes: a first node receives second configuration information from a second node, the second configuration information includes: a DU cell ID indicated by downlink control information DCI; the above-mentioned DU The location of the DU cell resource availability information indicated by the cell ID in the DCI; the DU cell resource availability information indicated by the above DU cell ID.
  • the second node indicates the availability of the DU cell resource of the first node, so that the first node can determine the availability of the MT carrier resource according to the DCI and the availability of the DU cell resource.
  • the foregoing second configuration information further includes: the MT carrier ID indicated by the DCI.
  • the second node facilitates the first node to perform resource availability analysis according to the MT carrier indicated by the second configuration information.
  • the resource configuration method provided in this application may further include: the first node receives DCI from the second node, and the DCI is used to indicate the available status of soft resources; the available status of soft resources includes available State 1 and Available State 2; among them, the above-mentioned available state 1 indicates that the second node will not use the first carrier of the MT for backhaul link scheduling, and the available state 2 indicates that the second node will use the first carrier of the MT for backhaul link Channel scheduling; the first carrier is any carrier of the MT.
  • the above-mentioned second node is an upper node or a donor node of the first node.
  • a resource configuration method includes: a second node sends second configuration information to a first node, the second configuration information includes: a DU cell ID indicated by downlink control information DCI; the aforementioned DU cell The location of the DU cell resource availability information indicated by the ID in the DCI; the DU cell resource availability information indicated by the DU cell ID.
  • the second node indicates the availability of the DU cell resource of the first node, so that the first node can determine the availability of the MT carrier resource according to the DCI and the availability of the DU cell resource.
  • the foregoing second configuration information further includes: the MT carrier ID indicated by the DCI.
  • the second node facilitates the first node to perform resource availability analysis according to the MT carrier indicated by the second configuration information.
  • the resource configuration method provided by this application may further include: the second node sends to the first node a DCI for indicating the available state of the soft resource; the available state of the soft resource includes the available state 1. And available state 2; wherein, the available state 1 indicates that the second node will not use the first carrier of the MT for backhaul link scheduling, and the available state 2 indicates that the second node will use the first carrier of the MT for backhaul link Scheduling; the first carrier is any carrier of the MT.
  • the above-mentioned second node is an upper node or a donor node of the first node.
  • a first node in a fifth aspect, includes: a sending unit, configured to send first information and second information to a second node, the first information is used to indicate the status of a mobile terminal MT of the first node The resource reuse capability supported by one or more carriers and one or more cells of the distributed unit DU of the first node; the second information is used to indicate the resource reuse capability supported by one or more carriers of the MT Conditions that need to be met; where the aforementioned resource multiplexing capabilities include capability 1, capability 2, capability 3, and capability 4.
  • capability 1 indicates that MT and DU can send signals at the same time
  • capability 2 indicates that MT can send signals while said DU can
  • capability 3 indicates that MT can send signals while DU is receiving signals
  • capability 4 indicates that MT and DU can receive signals at the same time.
  • the first node reports to the second node the resource reuse capability of the MT and DU of the IAB node, and the conditions that the resource reuse capability supported by it needs to meet.
  • the node's MT and DU capabilities combine transmission parameter requirements and other targeted transmission resource configuration and instructions. In turn, the resource utilization rate when the first node communicates is improved, and the communication efficiency is improved.
  • the first node provided in this application further includes: a receiving unit, configured to receive first configuration information from the second node for indicating the transmission resource of the MT; wherein the transmission resource of the MT is such that The MT of the first node supports one of the foregoing capability 1, capability 2, capability 3, or capability 4, and the transmission resources of the MT enable the MT of the first node to meet the requirements of the foregoing capability 1, capability 2, capability 3, or capability 4. conditions of.
  • the second node can configure and instruct transmission resources in a targeted manner according to the capabilities of the MT and DU of the IAB node in combination with transmission parameter requirements. In turn, the resource utilization rate when the first node communicates is improved, and the communication efficiency is improved.
  • the above-mentioned second information is used to indicate the conditions that the resource reuse capability supported by one or more carriers of the MT of the first node needs to be met, specifically including one or more of the following conditions : MT’s downlink received power needs to be set in a specific interval; MT’s downlink scheduling demodulation reference signal DMRS port maximum number; MT’s uplink scheduling DMRS port maximum number; MT’s uplink scheduling timing mode is set to specific Mode; Uplink transmit beam ID supported by MT; Downlink receive beam ID supported by MT.
  • the first node reports one or more MT transmission parameter requirements of the transmission power, DMRS port, timing mode, or beam by reporting the resource reuse capability supported by its MT carrier, so that the second node can be targeted to it. Perform transmission resource configuration and instructions.
  • the above-mentioned second information is also used to indicate the conditions that the resource reuse capability supported by the DU of the first node needs to be met, specifically including one or more of the following conditions: uplink reception of the DU The power needs to be set in a specific interval; the downlink transmit power of the DU needs to be set in a specific interval; the uplink reception timing mode of the DU is set to a specific mode; the downlink transmit beam ID supported by the DU; the uplink receive beam ID supported by the DU.
  • the first node reports one or more DU transmission parameter requirements of the transmission power, timing mode, or beam by reporting the resource reuse capability supported by its DU carrier, so that the second node can transmit resources to it in a targeted manner. Configuration and instructions.
  • the receiving unit of the first node is further configured to receive second configuration information from the second node, where the second configuration information includes: the DU cell ID indicated by the downlink control information DCI; the aforementioned DU The location of the DU cell resource availability information indicated by the cell ID in the DCI; the DU cell resource availability information indicated by the above DU cell ID.
  • the second node indicates the availability of the DU cell resource of the first node, so that the first node can determine the availability of the MT carrier resource according to the DCI and the availability of the DU cell resource.
  • the foregoing second configuration information further includes: the MT carrier ID indicated by the DCI. By indicating the MT carrier corresponding to the DU cell in the second configuration information, the second node facilitates the first node to perform resource availability analysis according to the MT carrier indicated by the second configuration information.
  • the receiving unit of the first node is further configured to receive DCI from the second node, where the DCI is used to indicate the available state of the soft resource; the available state of the soft resource includes the available state 1 and the available state 2; Wherein, the above-mentioned available state 1 indicates that the second node will not use the first carrier of the MT for backhaul link scheduling, and the available state 2 indicates that the second node will use the first carrier of the MT for backhaul link scheduling;
  • the carrier is any carrier of the MT.
  • the above-mentioned second node is an upper node or a donor node of the first node.
  • a first node in a sixth aspect, includes: a receiving unit configured to receive second configuration information from a second node, where the second configuration information includes: DU cell ID indicated by downlink control information DCI The location of the DU cell resource availability information indicated by the DU cell ID in the DCI; the DU cell resource availability information indicated by the DU cell ID.
  • DCI downlink control information
  • the second node indicates the availability of the DU cell resource of the first node, so that the first node can determine the availability of the MT carrier resource according to the DCI and the availability of the DU cell resource.
  • the foregoing second configuration information further includes: the MT carrier ID indicated by the DCI.
  • the second node facilitates the first node to perform resource availability analysis according to the MT carrier indicated by the second configuration information.
  • the receiving unit of the first node is further configured to receive DCI from the second node, where the DCI is used to indicate the available state of the soft resource; the available state of the soft resource includes the available state 1 and the available state 2; Wherein, the above-mentioned available state 1 indicates that the second node will not use the first carrier of the MT for backhaul link scheduling, and the available state 2 indicates that the second node will use the first carrier of the MT for backhaul link scheduling;
  • the carrier is any carrier of the MT.
  • the above-mentioned second node is an upper node or a donor node of the first node.
  • a second node in a seventh aspect, includes: a receiving unit configured to receive first information and second information from a first node; the first information is used to indicate a mobile terminal MT of the first node The resource reuse capability supported by one or more carriers and one or more cells of the distributed unit DU of the first node; the second information is used to indicate that the resource reuse capability supported by one or more carriers of the MT needs to meet Conditions;
  • the aforementioned resource multiplexing capabilities include capability 1, capability 2, capability 3, and capability 4.
  • Capability 1 indicates that MT and DU can send signals at the same time
  • capability 2 indicates that MT can send signals while DU can receive signals
  • capability 3 indicates The DU can send signals while the MT is receiving signals
  • capability 4 indicates that the MT and DU can receive signals at the same time.
  • the first node reports to the second node the resource reuse capabilities of the MT and DU of the IAB node, and the conditions that the resource reuse capabilities supported by the first node need to meet.
  • the node's MT and DU capabilities combine transmission parameter requirements and other targeted transmission resource configuration and instructions. In turn, the resource utilization rate when the first node communicates is improved, and the communication efficiency is improved.
  • the second node provided in this application may further include: a sending unit, configured to send first configuration information used to indicate the transmission resource of the MT to the first node; wherein, the transmission of the MT
  • the resources enable the MT of the first node to support one of the foregoing capability 1, capability 2, capability 3, or capability 4, and the transmission resources of the MT enable the MT of the first node to satisfy the foregoing capability 1, capability 2, capability 3, or capability 4
  • the second node can configure and instruct transmission resources in a targeted manner according to the capabilities of the MT and DU of the IAB node in combination with transmission parameter requirements. In turn, the resource utilization rate when the first node communicates is improved, and the communication efficiency is improved.
  • the above-mentioned second information is used to indicate the conditions that the resource reuse capability supported by one or more carriers of the MT of the first node needs to be met, specifically including one or more of the following conditions : MT’s downlink received power needs to be set in a specific interval; MT’s downlink scheduling demodulation reference signal DMRS port maximum number; MT’s uplink scheduling DMRS port maximum number; MT’s uplink scheduling timing mode is set to specific Mode; Uplink transmit beam ID supported by MT; Downlink receive beam ID supported by MT.
  • the first node reports one or more MT transmission parameter requirements of the transmission power, DMRS port, timing mode, or beam by reporting the resource reuse capability supported by its MT carrier, so that the second node can be targeted to it. Perform transmission resource configuration and instructions.
  • the above-mentioned second information is also used to indicate the conditions that the resource reuse capability supported by the DU of the first node needs to be met, specifically including one or more of the following conditions: uplink reception of the DU The power needs to be set in a specific interval; the downlink transmit power of the DU needs to be set in a specific interval; the uplink reception timing mode of the DU is set to a specific mode; the downlink transmit beam ID supported by the DU; the uplink receive beam ID supported by the DU.
  • the first node reports one or more DU transmission parameter requirements of the transmission power, timing mode, or beam by reporting the resource reuse capability supported by its DU carrier, so that the second node can transmit resources to it in a targeted manner. Configuration and instructions.
  • the sending unit of the second node is further configured to send second configuration information to the first node, where the second configuration information includes: the DU cell ID indicated by the downlink control information DCI; the aforementioned DU cell The location of the DU cell resource availability information indicated by the ID in the DCI; the DU cell resource availability information indicated by the DU cell ID.
  • the second node indicates the availability of the DU cell resource of the first node, so that the first node can determine the availability of the MT carrier resource according to the DCI and the availability of the DU cell resource.
  • the foregoing second configuration information further includes: the MT carrier ID indicated by the DCI.
  • the second node facilitates the first node to perform resource availability analysis according to the MT carrier indicated by the second configuration information.
  • the sending unit of the second node is further configured to send DCI for indicating the available state of the soft resource to the first node;
  • the available state of the soft resource includes the available state 1 and the available state 2;
  • the available state 1 indicates that the second node will not use the first carrier of the MT for backhaul link scheduling
  • the available state 2 indicates that the second node will use the first carrier of the MT for backhaul link scheduling
  • a carrier is any carrier of the MT.
  • the above-mentioned second node is an upper node or a donor node of the first node.
  • a second node in an eighth aspect, includes a sending unit configured to send second configuration information to a first node, where the second configuration information includes: a DU cell ID indicated by downlink control information DCI; The position in the DCI of the DU cell resource availability information indicated by the DU cell ID; the DU cell resource availability information indicated by the DU cell ID.
  • the second node indicates the availability of the DU cell resource of the first node, so that the first node can determine the availability of the MT carrier resource according to the DCI and the availability of the DU cell resource.
  • the foregoing second configuration information further includes: the MT carrier ID indicated by the DCI.
  • the second node facilitates the first node to perform resource availability analysis according to the MT carrier indicated by the second configuration information.
  • the sending unit of the second node is further configured to send DCI for indicating the available state of the soft resource to the first node; the available state of the soft resource includes the available state 1 and the available state 2; Wherein, the available state 1 indicates that the second node will not use the first carrier of the MT for backhaul link scheduling, and the available state 2 indicates that the second node will use the first carrier of the MT for backhaul link scheduling; the first carrier It is any carrier of the MT.
  • the above-mentioned second node is an upper node or a donor node of the first node.
  • a first node in a ninth aspect, includes: a memory for storing computer program code, the computer program code including instructions; a radio frequency circuit for sending and receiving wireless signals; a processor, By executing the foregoing instructions, the first node executes the resource configuration method in any possible implementation manner of the first aspect or the third aspect.
  • a second node includes: a memory for storing computer program code, the computer program code including instructions; a radio frequency circuit for transmitting and receiving wireless signals; a processor, By executing the foregoing instructions, the first node executes the resource configuration method in any possible implementation manner of the second aspect or the fourth aspect.
  • a communication system in an eleventh aspect, includes a first node in any possible implementation manner of the fifth, sixth, or ninth aspect, and the seventh, eighth, or third The second node in any possible implementation of the ten aspects.
  • the communication system is used to implement a resource configuration method in any possible implementation manner of the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • a computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions When executed by a processor, they can implement the first aspect, the second aspect, the third aspect, or the In the fourth aspect, a resource configuration method in any possible implementation manner.
  • a chip system in a thirteenth aspect, includes a processor and a memory, and instructions are stored in the memory; when the instructions are executed by the processor, the first aspect, the second aspect, and the The resource configuration method in any one of the possible implementation manners of the third aspect or the fourth aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • a computer program product which when running on a computer, enables the realization of resources in any one of the possible implementation manners of the first, second, third or fourth aspect Configuration method.
  • FIG. 1 is a schematic diagram of the structure of a communication system to which an embodiment of this application is applied;
  • Figure 2 is a schematic structural diagram of an integrated access and backhaul IAB system provided by an application embodiment
  • FIG. 3 is a schematic structural diagram of an IAB node provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of an access link and a backhaul link provided by an embodiment of this application;
  • 5 is an example diagram of downlink backhaul link resource allocation in an LTE relay system provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of resource attribute configuration in a time slot provided by an embodiment of the application.
  • FIG. 7 is an example diagram of MT resource and DU resource allocation in an NR relay system provided by an embodiment of this application.
  • FIG. 8 is an interaction diagram of a resource configuration method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of an example structure of MT and DU provided by an embodiment of this application.
  • FIG. 10 is an example diagram of a resource indication of an MT carrier provided by an embodiment of this application.
  • FIG. 11 is an interaction diagram of another resource configuration method provided by an embodiment of this application.
  • FIG. 12 is a structural block diagram of a network device (such as a first node or a second node) provided by an embodiment of this application;
  • FIG. 13 is a schematic structural diagram of a network device (such as a first node or a second node) provided by an embodiment of this application.
  • the communication systems to which the embodiments of this application can be applied include, but are not limited to: narrowband-internet of things (NB-IoT) systems, wireless local access network (WLAN) systems, long term evolution, LTE) systems, fifth generation mobile networks (5th generation wireless systems, or 5G) are also called new radio (NR) systems, or communication systems after 5G, such as 6G systems, device-to-device ( device to device, D2D) communication system, car networking, etc.
  • NB-IoT narrowband-internet of things
  • WLAN wireless local access network
  • LTE long term evolution
  • 5th generation wireless systems or 5G
  • 5G fifth generation mobile networks
  • 6G device-to-device ( device to device, D2D) communication system, car networking, etc.
  • IAB node IAB node
  • LTE Long term evolution
  • a system including IAB nodes is also called a relay system.
  • FIG. 2 shows a schematic structural diagram of an integrated access and backhaul IAB system to which an embodiment of the present application is applicable.
  • the integrated access and backhaul IAB system may include one or more IAB systems.
  • An IAB system includes at least one base station 200, one or more terminal devices (terminals) 201 served by the base station 200, one or more IAB nodes, and one or more terminal devices 211 served by the IAB node 210.
  • the base station 200 is called a donor next generation node B (DgNB), and the IAB node 210 is connected to the base station 200 through a wireless backhaul link 213.
  • the donor base station is also referred to as a donor node in this application, that is, a donor node.
  • the host node in the embodiment of the present application may be divided into a centralized unit (CU) and at least one distributed unit (DU).
  • the CU as a logical node in the 5G gNB, can be used to manage or control at least one DU, and it can also be referred to as a CU connected to at least one DU.
  • This structure can split the protocol layer of the wireless access network equipment in the communication system, in which part of the protocol layer functions are placed in the CU, and the remaining part of the protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the protocol layer of gNB includes the radio resource control (radio resource control, RRC) layer, the service data adaptation protocol (SDAP) layer, and the packet data aggregation protocol (packet data).
  • the convergence protocol (PDCP) layer the radio link control (RLC) layer, the media access control sublayer (media access control, MAC) layer, and the physical layer.
  • the CU may be used to implement the functions of the RRC layer, the SDAP layer, and the PDCP layer
  • the DU may be used to implement the functions of the RLC layer, the MAC layer, and the physical layer.
  • the embodiment of this application does not specifically limit the protocol stack included in the CU and DU.
  • CU and DU can be defined and connected by the F1AP interface protocol.
  • the base station in this application includes but is not limited to: evolved node B (evolved node base, eNB), radio network controller (RNC), node B (node B, NB), base station controller (base station controller) , BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home node B, HNB), baseband unit (BBU), eLTE (evolved LTE, eLTE) base station, NR base station (next generation node B, gNB), transmission and reception point (transmission and reception point, TRP), etc.
  • evolved node B evolved node base, eNB
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base transceiver station
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home node B, HNB
  • BBU baseband unit
  • eLTE e
  • Terminal equipment includes but is not limited to: user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, terminal, wireless communication equipment, user agent, Station (ST), cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) station, wireless local access network (WLAN) in wireless local area network (WLAN) Personal digital assistant (PDA), handheld devices with wireless communication functions, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in the future 5G network, and public Any one of terminal devices in a public land mobile network (PLMN) network.
  • PLMN public land mobile network
  • the IAB node is a specific name of the relay node, which does not limit the solution of the embodiment of this application.
  • the IAB node in this application may be one of the aforementioned base stations or terminal devices with a forwarding function, or may be an independent device form.
  • the IAB node of the present application may also be called a relay node (RN), a transmission and reception point (transmission and reception point), a relay transmission and reception point (relaying TRP), etc.
  • the integrated access and backhaul system may also include multiple other IAB nodes, such as IAB node 220 and IAB node 230.
  • the IAB node 220 is connected to the IAB node 210 via a wireless backhaul link 223 to connect to it.
  • the IAB node 230 is connected to the IAB node 210 through the wireless backhaul link 233 to access the network.
  • the IAB node 220 serves one or more terminal devices 221, and the IAB node 230 serves one or more terminal devices 231.
  • both the IAB node 210 and the IAB node 220 are connected to the network through a wireless backhaul link.
  • the wireless backhaul links are all viewed from the perspective of the relay node.
  • the wireless backhaul link 213 is the backhaul link of the IAB node 210
  • the wireless backhaul link 223 is the backhaul link of the IAB node 220.
  • an IAB node such as an IAB node 220
  • the relay node can be connected to the network via a multi-level wireless relay node.
  • IAB nodes can generally refer to any node or device with a relay function.
  • the use of IAB node and relay node in this application should be understood to have the same meaning.
  • Upper-level node The node that provides wireless backhaul link resources, such as the IAB node 210, is called the upper-level node of the IAB node 220. It should be understood that the upper-level node may be an IAB node, a donor base station (such as a donor node), or a network device, etc., which is not limited.
  • Subordinate nodes The nodes that use backhaul link resources to transmit data to the network or receive data from the network are called subordinate nodes.
  • the IAB node 220 is called the subordinate node of the IAB node 210
  • the terminal device 231 can It is called a lower-level node of the IAB node 230
  • the network is a core network or a network above other access networks, such as the Internet, a private network, and so on.
  • the access link refers to the wireless link used by a node (such as IAB node 210) and its lower-level nodes (such as terminal equipment 211) to communicate, including uplink transmission And downlink transmission link.
  • Uplink transmission on the access link is also referred to as uplink transmission on the access link, and downlink transmission is also referred to as downlink transmission on the access link.
  • the nodes include but are not limited to the aforementioned IAB nodes.
  • the backhaul link refers to the wireless link used by a node (such as IAB node 210) and its superior node (such as base station 210) to communicate, including uplink transmission and Downlink transmission link.
  • Uplink transmission on the backhaul link is also referred to as uplink transmission on the backhaul link, and downlink transmission is also referred to as downlink transmission on the backhaul link.
  • the nodes include but are not limited to the aforementioned IAB nodes.
  • the IAB node can generally be divided into two parts: a mobile terminal (MT) and a distributed unit (DU).
  • MT can be defined as a component similar to UE
  • DU can be defined as a component similar to a base station.
  • MT and DU are called functions (or modules) that reside on the IAB node.
  • MT is used for IAB node to communicate with upper-level nodes
  • DU is used for IAB node to communicate with lower-level nodes.
  • both the MT and DU of the IAB node have a complete transceiver unit, and there is an interface between the two.
  • MT and DU are logical modules. In practice, they can share some sub-modules, for example, they can share transceiver antennas, baseband processing units, etc., as shown in Figure 3.
  • the link between the MT in the IAB node and the upper-level node is called the parent BackHaul link
  • the link between the DU in the IAB node and its lower-level IAB node is called the lower-level backhaul link.
  • the child BackHaul link, and the link between the DU in the IAB node and the subordinate UE is called an access link.
  • the upper-level backhaul link includes the upper-level backhaul uplink (UL) and the upper-level backhaul downlink (downlink, DL).
  • the lower-level backhaul link includes the lower-level backhaul UL and the lower-level backhaul DL.
  • the access link includes access UL and access DL, as shown in Figure 4.
  • the link between the IAB node and the upper-level node is called the backhaul link
  • the link between the IAB node and the lower-level IAB node and/or the UE is collectively called the access link.
  • the lower-level node can be regarded as a terminal device of the upper-level node.
  • an IAB node is connected to an upper-level node.
  • an IAB node such as the IAB node 220, may have multiple upper-level nodes simultaneously providing services for an IAB node.
  • the IAB node 230 in FIG. 2 may also be connected to the IAB node 220 through the backhaul link 234, that is, both the IAB node 210 and the IAB node 220 are the upper nodes of the IAB node 230.
  • the names of the IAB node 210, the IAB node 220, and the IAB node 230 do not limit their names in the deployed scenario or network.
  • the name of the IAB node 210, the IAB node 220, or the IAB node 230 may be relaying TRP or RN.
  • the use of the IAB node in this application is only for the convenience of description.
  • the wireless link 202, the wireless link 212, the wireless link 222, the wireless link 232, the wireless link 213, the wireless link 223, the wireless link 233, and the wireless link 234 can be It is a two-way link, including uplink and downlink transmission links.
  • the wireless backhaul link 213, the wireless backhaul link 223, the wireless backhaul link 233, and the wireless backhaul link 234 can be used by the upper-level node to provide services for the lower-level node.
  • the upper-level node 200 provides a wireless backhaul service for the lower-level node 210.
  • downlink transmission refers to an upper-level node, such as node 200, transmitting information or data to a lower-level node, such as IAB node 210
  • uplink transmission refers to a lower-level node, such as IAB node 210
  • an upper-level node such as node 200, transmitting information or data.
  • the above-mentioned node is not limited to whether it is a network node or a terminal device.
  • a terminal device can act as a relay node to serve other terminal devices.
  • the wireless backhaul link can also be an access link in some scenarios.
  • the wireless backhaul link 223 can also be regarded as an access link for the IAB node 210, and the wireless backhaul link 213 is also the node 200.
  • Access link It should be understood that the foregoing upper-level node may be a base station or a relay node, and the lower-level node may be a relay node or a terminal device with a relay function. For example, in a D2D scenario, the lower-level node may also be a terminal device.
  • the IAB node can use the allocated backhaul link resources to communicate with the upper-level node or the lower-level node through the wireless backhaul link. More specifically, the MT can use the backhaul link resource allocated by the donor node for the MT to communicate with the upper-level node of the IAB node through the upper-level backhaul link. The DU can use the backhaul link resources allocated by the donor node for the DU to communicate with the subordinate nodes of the IAB node through the subordinate backhaul link.
  • the following takes the relay system of LTE and the relay system of NR as examples to introduce the conventional backhaul link resource allocation method:
  • the donor node allocates backhaul link resources to the relay node in units of subframes (1ms), and the allocation cycle is one Wireless frame (10ms). Specifically, the donor node designates some subframes as backhaul link subframes through RRC signaling. The number and location of backhaul link subframes can be reconfigured.
  • the relay node For a relay node in LTE, when a subframe is configured as a backhaul subframe, the relay node needs to monitor the relay physical downlink control channel (R-PDCCH) and/or in this subframe It receives the physical downlink share channel (PDSCH), so it cannot be sent on the access link.
  • R-PDCCH relay physical downlink control channel
  • PDSCH physical downlink share channel
  • FIG. 5 Take a specific example of downlink backhaul link resource allocation in an LTE relay system shown in FIG. 5 as an example. As shown in FIG. 5, subframes 2, 4, and 6 are configured as backhaul links, then Subframes 2, 4, and 6 are unavailable on the access link at the corresponding location. Therefore, the LTE relay is a semi-static time division multiplexing (TDM) resource allocation.
  • TDM time division multiplexing
  • the MT resource of the IAB node can be configured into three types: downlink (D), uplink (U), and flexible (F). These three types are also supported by existing terminal equipment, so they can be indicated by existing signaling. Different from the terminal equipment, the MT resource of the IAB node can support more time slot formats.
  • the DU resource of the IAB node can be configured into three types: downlink, uplink and flexible. Further, the downlink, uplink, and flexible resources of the DU can also be configured as hard (hard, H) resources, soft (soft, S) resources, and not available (NA) attributes. Among them, the NA resource of the DU indicates a resource that is always unavailable for the DU. The hard resource of the DU indicates the resource that is always available to the DU. The soft resource of the DU indicates whether the resource is available for the DU, and it depends on the instruction of the superior node.
  • the resource attribute configuration of the DU can be performed in each time slot by resource type. For example, in a time slot, if a DU resource is configured with multiple resource types (D/U/F), different resource types may have different attribute (H/S/NA) configurations. As shown in Figure 6, downlink resources, uplink resources, and flexible resources can all be configured as hard resources, soft resources, or not available.
  • the resource configuration of the MT and the resource configuration of the DU are performed independently.
  • the available resources and unavailable resources of the MT can be explicitly configured by the upper-level node through high-level signaling (such as RRC signaling).
  • the soft resources and hard resources of the DU can be explicitly configured by higher-level nodes through high-level signaling (such as RRC signaling) or interface messages (such as F1-AP interface messages or enhanced F1-AP interface messages).
  • the available and unavailable resources of the MT can also be implicitly deduced by the IAB node through the DU resource type, and the soft and hard resources of the DU can also be implicitly deduced by the IAB node through the resource configuration of the MT.
  • This application does not limit the available and unavailable resources of the MT, and how the soft and hard resources of the DU are obtained.
  • the DU resource attribute of the IAB node is explicitly configured by the donor node, and the availability of the MT resource is implicitly deduced by the IAB node and/or its superior node according to the DU resource attribute.
  • the resource allocation on the IAB node DU in the NR depends on the instructions of the host node and/or the superior node, and the DU resource is indicated by semi-static allocation plus dynamic indication. This resource allocation method is very different from the resource allocation method in the LTE system.
  • the MT of the IAB node is connected to the DU of the upper node, and the DU of the IAB node is connected to the MT of the lower node.
  • the IAB node can obtain the resource configuration of its MT resource and DU resource respectively.
  • three consecutive DU time slots are configured as NA, hard and soft respectively.
  • Three consecutive MT time slots are all configured as downlink. It should be understood that the above-mentioned related configuration can be obtained through explicit signaling or implicitly.
  • the IAB node and its superior node can infer the available resources of the MT of the IAB according to the DU resource configuration.
  • Table 1 is the resource configuration of the MT and DU in the time division multiplexing scenario under various possible resource type combinations.
  • Table 2 shows the resource configuration under various possible resource type combinations of MT and DU in a spatial division multiplexing (SDM) scenario.
  • SDM spatial division multiplexing
  • each flag indicates that the MT should transmit after being scheduled.
  • DU:Tx indicates that the DU may be transmitted.
  • MT:Rx means that the MT is capable of receiving (if there is a signal to receive).
  • DU:Rx indicates that the DU may schedule the uplink transmission of the lower node.
  • MT:Tx/Rx means that the MT should transmit or receive after being scheduled, but the transmission and reception do not occur at the same time.
  • DU:Tx/Rx means that the DU may transmit or receive the transmission of the lower node, but the transmission and reception do not occur at the same time.
  • IA means that the DU resource is explicitly or implicitly indicated as available.
  • INA means that the DU resource is explicitly or implicitly indicated as unavailable.
  • MT:NA means that the MT does not transmit and does not have to have receiving capabilities.
  • DU:NA means that the DU does not send and does not receive transmissions from lower-level nodes.
  • NR IAB In order to dynamically coordinate resources between the access link and the backhaul link, NR IAB will use two levels of resource indication.
  • the two-level resource indication means that the upper-level node configures soft resources and hard resources for the DU of the IAB node in an explicit or implicit manner.
  • the available status of the soft resource depends on the dynamic signaling indication of the upper-level node.
  • the upper-level node may indicate the availability of the DU soft resource of the IAB through DCI (such as DCI format 2-5).
  • DCI such as DCI format 2-5
  • the dynamic indication of soft resources can also be performed in a time slot by resource type, as shown in Table 3. Exemplarily, when the value is 3, it means that all uplink soft symbols and downlink soft symbols in the time slot are configured as available.
  • the upper-level node can configure the availability of soft resources in multiple time slots for the IAB node in one signaling.
  • time slots can be replaced with other time-domain resources, such as frames, subframes, and micro-frames. Time slots, symbols, etc.
  • the embodiment of the application provides a resource configuration method.
  • the upper-level node can be based on the actual capabilities of the relay node (such as the IAB node) (such as the MT carrier of the relay node and the resource reuse capacity actually supported by the DU cell) and parameter requirements. Configure the MT resource and/or DU resource for the relay node, so that the MT and DU of the relay node can communicate with the upper-level node or the lower-level node in a resource multiplexing mode that meets its capabilities.
  • resource multiplexing methods may include but are not limited to TDM, SDM, frequency division multiplexing (FDM) and full duplex (FD).
  • the resource configuration of the MT resource and the resource configuration of the DU resource may have a different correspondence relationship. For example, if the MT and DU support TDM, the MT and DU of the IAB node cannot be transmitted simultaneously; if the MT and DU support SDM or FDM, the DU can receive the signal while the MT is transmitting, or the DU can transmit while the MT is receiving the signal. Signal: If MT and DU support FD, MT and DU can transmit at the same time, and it is not limited to simultaneous reception or simultaneous transmission.
  • TDM means that MT and DU receive or send signals in different time domain resources.
  • the application of TDM to the MT and DU of the relay node in the embodiment of this application can be specifically embodied as: for the hard resource of the DU, the resource of the MT corresponding to the time slot is an unavailable resource, that is, the MT will not communicate with the upper node in the time slot. Communication; or, for unavailable resources of the MT, the resources of the DU corresponding to the time slot are hard resources. In this way, the transmission of MT and DU do not overlap each other on the time axis.
  • SDM means that MT and DU can transmit or receive simultaneously.
  • the application of SDM to the MT and DU of the relay node in the embodiment of this application can be specifically embodied as: when the DU is transmitting in the downlink, the MT may transmit in the corresponding resource; or, when the DU is receiving in the uplink, the MT may be Downlink reception is performed on the corresponding resource.
  • FD means that the MT and DU of the IAB node can transmit in the same direction.
  • the application of FD to the MT and DU of the relay node in the embodiment of this application can be specifically embodied as: when the DU is transmitting in the downlink, the MT may perform downlink reception on the corresponding resource; or, when the DU is receiving in the uplink, the MT may Uplink transmission is performed on the corresponding resource.
  • Non-time-division multiplexing may be divided into dynamic non-time-division multiplexing and semi-static (or fixed) non-time-division multiplexing.
  • dynamic non-time division multiplexing and semi-static (or fixed) non-time division multiplexing are different from dynamic non-time division multiplexing and semi-static (or fixed) non-time division multiplexing.
  • semi-static (or fixed) non-time division multiplexing can also be applied to the hard resources of the DU.
  • a time slot of the DU cell is configured as a downlink resource
  • the MT carrier corresponding to the time slot is configured as an uplink resource.
  • the first node will think that when the DU resource of the time slot is a hard resource, the second node will not schedule the uplink resource of the MT in the time slot; when the DU resource of the time slot is a soft resource , The first node can determine the appropriate DU downlink scheduling according to the uplink scheduling of the MT, thereby forming the simultaneous transmission of the MT and the DU.
  • the first node thinks that the second node may schedule the MT in this time slot, that is, the resource attribute of the DU does not affect the availability of the MT resource. In this case, even if the DU resource of the time slot is a hard resource, the second node may schedule the uplink resource of the MT in the time slot.
  • the resource configuration method provided by the embodiment of the present application may include the following steps S801 and S802:
  • the first node sends the first information and the second information to the second node.
  • the first information is used to indicate the resource reuse capability supported by one or more carriers (CC) of the MT of the first node and one or more cells (cells) of the DU of the first node.
  • the second information is used to indicate the condition that the resource reuse capability supported by one or more carriers of the MT needs to be met.
  • the second node receives the first information and the second information sent by the second node.
  • the first node may be a relay node.
  • the first node may be the IAB node shown in FIG. 1.
  • the first node may have the structure shown in FIG. 3. That is, the first node can be divided into two parts: MT and DU.
  • the second node is an upper node of the first node, a donor node or a parent node.
  • the MT and DU of the first node may have (or contain or exist or correspond to or cover) multiple subunits.
  • the DU of the first node may have multiple facing panels or sectors 1, 2 and 3, and different panels correspond to different cells, such as panels/sectors 1, 2 and 3 as shown in FIG. 1.
  • the DU of the IAB node includes two panels/sectors 1 and 2 with different orientations.
  • the MT of the first node may adopt a carrier aggregation technology; wherein, different carriers (CC) correspond to different cells (cells).
  • the MT of the first node may include different bandwidth parts (Bandwidth parts, BWP), etc.
  • the MT of the first node may be connected to different upper-level nodes, and the connection with different upper-level nodes may use different carrier groups.
  • the antenna panel 1 includes MT carrier 1, MT carrier 2, DU cell 1, and DU cell 2; antenna panel 2 includes DU cell 3 and DU cell 4.
  • the carrier of the MT may be called a serving cell.
  • the resource reuse capability supported by one or more carriers of the MT of the first node and one or more cells of the DU of the first node can be understood as the MT and DU of the first node in each Reuse of resources when transmitting signals on corresponding resources such as antenna panel/each carrier/each cell.
  • the resource reuse capability supported by the MT and DU of the first node can also be understood as the combination of the MT and DU of the first node to transmit signals on the corresponding resources of each antenna panel/each carrier/each cell. Time reuse of resources.
  • the resource reuse capabilities supported by one or more MT carriers/serving cells of the first node and one or more cells of DU may include at least the following capabilities 1, capability 2, capability 3, capability 4, and capability 5.
  • Capability 1 No TDM for MT-TX/DU-TX. That is, capability 1 indicates that the MT and DU can send signals at the same time. Capability 1 can also be referred to as SDM transmission.
  • Capability 2 No TDM for MT-TX/DU-RX. That is, the capability 2 indicates that the DU can receive the signal while the MT sends the signal. Capability 2 can also be referred to as uplink full duplex.
  • Capability 3 No TDM for MT-RX/DU-TX. That is, capability 3 indicates that while the MT receives signals, the DU can send signals at the same time. Capability 3 can also be referred to as downlink full duplex.
  • Capability 4 No TDM for MT-RX/DU-RX. That is, capability 4 indicates that the MT and DU can receive signals at the same time. Capability 4 can also be referred to as SDM reception.
  • TDM TDM. That is, capability 5 indicates that MT and DU cannot perform simultaneous transmission s.
  • the conditions that need to be met are different for the different resource reuse capabilities supported by the MT carrier and the DU cell of the first node.
  • the MT carrier or DU cell of the first node supports a certain resource reuse capability, furthermore, only when the resources configured by the first node meet the corresponding conditions, can the first node use the first node completely in accordance with the corresponding reuse rules.
  • MT resource and/or DU resource allocated by the node Take MT and DU sending or receiving signals at the same time as an example.
  • a carrier of MT and a cell of DU have No TDM MT-RX/DU-RX or No TDM MT-TX/DU-TX time-division multiplexing
  • it does not necessarily mean that the combination of the MT carrier and the DU cell can perform SDM reception or transmission at any time.
  • the MT carrier is occupied by the backhaul link for transmission, the DU cell needs to perform access link transmission under certain conditions.
  • any MT carrier, DU cell, or combination of MT carrier and DU cell of the first node may have multiple resource reuse capabilities, that is, in the first information sent by the first node to the second node, the same DU cell ,
  • the same MT carrier or the combination of the same MT carrier and DU cell can support multiple resource reuse capabilities.
  • the second information may include one or more of the following conditions MT transmission parameter condition (a)-condition (f):
  • the MT of the first node has a desired downlink received power range.
  • the first node can use the SDM technology to simultaneously receive signals from the MT and DU.
  • the signal power difference between the MT and the DU may be relatively large, which causes the first node to be unable to smoothly receive one or more of the signals.
  • the first node when the first node reports its expected downlink received power range, one method is that the first node reports the difference between its expected downlink received power and a certain reference signal power.
  • the reference signal may include, but is not limited to, a synchronization signal (synchronization signal, SS)/physical broadcast channel (physical broadcast channel, PBCH) block (or called a synchronization signal block SSB) or a channel state information reference signal (channel state information). information-reference signal, CSI-RS) etc.
  • the second node After the second node receives the above-mentioned power difference information, the second node can implement the downlink received power required by the MT by adjusting the downlink power transmission power, etc., so that the first node can use the SDM technology to simultaneously receive the MT and DU signals.
  • the received power can be expressed by the energy per resource element (EPRE) of a channel such as PDSCH or a reference signal such as a demodulation reference signal (DMRS).
  • EPRE energy per resource element
  • DMRS demodulation reference signal
  • the first node can report to the second node the maximum number of downlink DMRS ports that the MT expects to be scheduled or configured, or the number of downlink DMRS ports that the DU needs to reserve.
  • the first node may report the maximum number of downlink DMRS code groups (CDM groups) that the MT expects to be scheduled or configured, or the number of downlink DMRS code groups (CDM groups) that the DU needs to reserve.
  • the physical uplink shared channel (PUSCH) sent by the MT may only occupy part of the DMRS port, which is used to achieve the DMRS orthogonalization of the MT and DU signals. . Therefore, in order for the MT to use the SDM technology to send signals, the first node can report to the second node the maximum number of uplink DMRS ports that the MT expects to be scheduled or configured, or the number of uplink DMRS ports that the DU needs to reserve.
  • PUSCH physical uplink shared channel
  • the first node may report to the second node the maximum number of uplink DMRS code groups (CDM groups) that the MT expects to be scheduled or configured, or the number of uplink DMRS code groups (CDM groups) that the DU needs to reserve.
  • CDM groups uplink DMRS code groups
  • the timing mode of the uplink scheduling of the MT is set to a specific mode.
  • MT needs to adopt a specific uplink timing mode to support SDM or FD.
  • MT can support multiple timing modes, including traditional uplink timing based on timing advance (TA), MT uplink timing mode that aligns DU downlink timing, and uplink timing based on TA and additional offset.
  • TA timing advance
  • the first node MT may need to adopt a specific timing. Therefore, the first node may report the required timing mode to the second node for the second node to configure the timing mode for it.
  • the first node can report to the second node the uplink transmit beam ID capable of time-division transmission.
  • the beam ID can be represented by the following parameters, such as sounding reference signal resource indicator (SRI) or spatial relationship information ( spatialRelationInfo).
  • SRI is used to indicate the resource number of an SRS, which means that the MT needs to use the same beam (or spatial filter) as the SRS for uplink transmission.
  • the spatial relationship information contains one or more uplink or downlink reference signal identifiers.
  • the MT or UE uses the configuration to determine the uplink transmission beam (or spatial filter).
  • the spatial relationship information includes a downlink reference signal
  • the UE or MT uses the spatial filter used to receive the downlink reference signal for uplink transmission
  • the spatial relationship information includes an uplink reference signal
  • the UE or MT uses the The spatial filter used for the uplink reference signal is used for uplink transmission.
  • the first node can report to the second node the downlink receive beam ID or TCI-state identification information capable of time-division transmission.
  • the received beam ID or TCI-state information may include a quasi co-located (QCL) identifier, and the quasi co-located identifier is generally a reference signal identifier.
  • the signals corresponding to the antenna ports with the QCL relationship may have the same or similar channel large-scale characteristic parameters (or called parameters).
  • the channel large-scale characteristic parameters (or called parameters) of one antenna port can be used to determine the channel large-scale characteristic parameters (or called parameters) of another antenna port that has a QCL relationship with the antenna port.
  • the two antenna ports have the same or similar channel large-scale characteristic parameters (or called parameters).
  • the channel large-scale characteristic parameter (or called parameter) difference between the two antenna ports is smaller than a certain threshold.
  • the large-scale characteristic parameters of the channel include one or more of the following parameters: delay spread, Doppler spread, Doppler shift, average gain, average delay or spatial reception parameters.
  • the second information may also include the following MT transmission parameter conditions (g):
  • g additional channel state information (channel state information, CSI) reporting or additional sounding reference signal (sounding reference signal, SRS) measurement.
  • channel state information channel state information, CSI
  • SRS sounding reference signal
  • the MT when the MT performs SDM reception or downlink FD time slots, the MT needs to report additional CSI for the second node to obtain downlink transmission channel state information. For example, it includes downlink transmission channel quality indicator, codebook indicator or rank indicator information, etc. Or, when the MT performs SDM transmission or uplink FD time slot, the MT needs to send a dedicated SRS for the second node to perform channel estimation. For example, it includes uplink channel frequency domain information and/or interference information.
  • the second information may also be used to indicate conditions that the resource reuse capability supported by the DU needs to be met.
  • the second information may also include one or more of the following DU transmission parameter condition (A)-condition (E):
  • the uplink received power of the DU needs to be set in a specific interval.
  • the downlink transmit power of the DU needs to be set in a specific interval.
  • the uplink receiving timing mode of the DU is set to a specific mode.
  • condition (A)/condition (B), condition (C), condition (D) and condition (E), please refer to the above condition (a), condition (d), condition (e) and condition (f) respectively ), I won’t go into details here.
  • the MT transmission parameter condition reported by the first node to the second node includes multiple of the above conditions (a)-condition (f)
  • the MT transmission parameter condition may include a combination of multiple conditions.
  • the MT transmission parameter condition may include ⁇ condition (a), condition (b) ⁇ , which means that the first node can realize a certain resource reuse capability when the condition (a) and the condition (b) are satisfied at the same time.
  • the MT transmission parameter conditions may include multiple sets of conditions.
  • MT transmission parameter conditions can include [ ⁇ condition (a), condition (b) ⁇ , condition (c)], which means that the first node satisfies condition (a) and condition (b) at the same time, or satisfies condition (c) Under the circumstances, a certain resource reuse capability can be realized.
  • condition (a) condition (b) ⁇ , condition (c)
  • the same combined reporting manner can also be used.
  • the first node may send the first information to the second node through the first signaling, and send the second information to the second node through the second signaling.
  • the first signaling may include the following information:
  • MutilpexingCapablity one or more of capability 1 to capability 5 (such as No TDM for MT-TX/DU-TX)
  • the second signaling may include the following information:
  • MutilpexingCapablity one or more of capability 1 to capability 5 (such as No TDM for MT-TX/DU-TX)
  • the first node may simultaneously send the first information and the second information to the second node through the first signaling.
  • the first signaling may include the following information:
  • MutilpexingCapablity one or more of capability 1 to capability 5 (such as No TDM for MT-TX/DU-TX)
  • the first node may send the first signaling to the donor node through the F1-AP interface, and the donor node forwards the first signaling to the upper node of the first node, that is, the second node.
  • the second signaling may be directly reported by the first node to the second node. For example, through interface signaling such as F1-AP, and air interface signaling such as RRC or MAC CE.
  • the second node sends first configuration information to the first node.
  • the first configuration information is used to indicate the transmission resources of the MT.
  • the first node receives the foregoing first configuration information from the second node.
  • the transmission resources of the MT can enable the first node to support one of the foregoing capabilities 1, capability 2, capability 3, or capability 4, and the transmission resources of the MT can enable the first node to satisfy the foregoing capabilities 1, capability 2, and capability 3. Or the conditions required for ability 4.
  • the first configuration information may also be used to indicate the transmission resource of the DU.
  • the transmission resource of the DU can enable the first node to support one of the foregoing capability 1, capability 2, capability 3, or capability 4, and the transmission resource of the DU can enable the first node to satisfy the foregoing capability 1, capability 2, and capability. 3 or ability 4 required conditions.
  • the second node may send the above to the first node through semi-static signaling (such as RRC signaling or MAC CE) or interface message (such as F1-AP or F1-AP interface message enhanced by the interface message).
  • semi-static signaling such as RRC signaling or MAC CE
  • interface message such as F1-AP or F1-AP interface message enhanced by the interface message.
  • the first configuration information The first node can learn the transmission resource of the MT of the first node through the first configuration information.
  • the first node may also send third information to the second node.
  • the third information is used to indicate whether the resource reuse capability supported by at least one of the one or more carriers of the MT of the first node and the one or more cells of the DU of the first node is a restricted resource reuse capability. .
  • the third information may be carried in the first information together with the first information and the second information.
  • the signaling is sent to the second node.
  • the third information when the first node sends the first information to the second node through the first signaling, and sends the second information to the second node through the second signaling, the third information may be the same as the first information. It is carried in the first signaling together, and may also be carried in the second signaling together with the second information and sent to the second node.
  • the order can include the following information:
  • RestricedCapability can be Yes or No. RestricedCapability is Yes, indicating that the "No TDM for MT-TX/DU-TX" resource reuse capability is a limited resource reuse capability, that is, it can be used only when the transmission parameters meet the corresponding conditions.
  • the second node may consider the corresponding conditions to configure a resource reuse mode for the first node and a transmission resource matching the resource reuse mode.
  • RestricedCapability is No, indicating that "No TDM for MT-TX/DU-TX" is an unrestricted resource reuse capability, and there are no special requirements for transmission parameters. In this case, the second node may directly allocate the resource multiplexing mode and the transmission resources matching the resource multiplexing mode to the first node.
  • the second node refers to the first information and the second information
  • the resource multiplexing mode and transmission resource configured for the first node can be exemplified as follows:
  • the second node can Configure one or more of TDM, dynamic SDM/FDM, semi-static SDM/FDM or FD for MT1, and configure MT1 with transmission resources that match the resource multiplexing mode.
  • the second node can configure MT1 with one or more of TDM, dynamic SDM/FDM or semi-static SDM/FDM, and configure and resource multiplexing mode for MT1 Matching transmission resources.
  • the second node may configure MT1 with one or more of TDM or dynamic SDM/FDM, and configure MT1 with transmission resources matching the resource multiplexing mode.
  • the second node may configure TDM for MT1 and configure transmission resources matching the resource multiplexing mode for MT1.
  • non-time division multiplexing capabilities such as SDM/FDM/FD, etc.
  • SDM/FDM/FD can be divided into dynamic non-time division multiplexing capabilities and semi-static (fixed) non-time division multiplexing capabilities. Therefore, in some embodiments, when the first node sends to the second node the resource reuse capabilities supported by the MT and DU of the first node, it may also report to the second node that each resource reuse capability is specifically dynamic.
  • the multiplexing capability is still semi-static (fixed) multiplexing capability.
  • the third information may also be used to indicate whether each resource multiplexing capability is specifically a dynamic multiplexing capability or a semi-static (fixed) multiplexing capability. Specifically, if the third information indicates that a certain resource reuse capability is a limited resource reuse capability, then the resource reuse capability can be considered as a dynamic reuse capability.
  • the first node can meet the transmission parameter requirements of the DU through parameter adjustment. For example, when MT resources are scheduled, the DU can adjust parameters such as uplink receiving power, downlink transmitting power, uplink receiving timing mode, downlink transmitting beam or uplink receiving beam by itself. In order to enable the DU to perform the above adjustment, the first node should know in advance whether the MT resource is occupied. Therefore, the aforementioned requirements for DU transmission parameter conditions can also be converted into requirements for MT resource configuration. Based on this, in some embodiments, the second information may also include the following DU transmission parameter conditions (h):
  • the MT transmission resource (advance) indication is used to indicate in advance the time-frequency resources occupied by MT transmission.
  • the first node can infer the resource occupation of the MT through the DCI of its DU by the second node.
  • the MT transmission resource (advanced) indication can be realized by the dynamic indication of the DU resource, so the condition (h) can also be the dynamic resource indication of the DU.
  • the second node can indicate the MT resource and/or DU resource of the first node through dynamic signaling (such as DCI).
  • DCI dynamic signaling
  • Availability For example, the second node may indicate the availability of MT resources by MT carrier through DCI, as shown in FIG. 10. Among them, the second node may indicate the availability of DU soft resources according to the indication manner shown in Table 3 above.
  • the second node may also indicate the availability of DU soft resources per DU cell through dynamic signaling (such as DCI), so that the first node infers the availability of resources of one or more MT carriers based on the dynamic signaling (such as DCI).
  • the resource configuration method provided in the embodiments of the present application may further include the following steps S1101 and S1102:
  • the first node receives second configuration information from the second node.
  • the second configuration information includes: the DU cell ID indicated by the downlink control information DCI, the location of the DU cell resource availability information in the DCI, and the DU cell resource availability information.
  • the second configuration information may include:
  • the resource availability information configured for the cell includes multiple values, where each value can be a combination of multiple values in Table 3 or Table 4/
  • the first node may infer the ID of the corresponding MT carrier according to the DU cell ID configured in the second configuration information.
  • the MT carrier may be an MT cell that only has TDM multiplexing capability with the DU cell.
  • the first node may also infer the ID of the corresponding MT carrier through other methods. For example, based on a mapping relationship preset locally on the first node.
  • the MT carrier is a carrier with the same ID as the DU cell.
  • the second configuration information may further include: the MT carrier ID indicated by the DCI.
  • the second configuration information may include:
  • ServingCellId represents the MT carrier ID (or MT's serving cell ID)/
  • the first node receives the DCI from the second node.
  • DCI is used to indicate the available status of soft resources.
  • the available state of soft resources includes available state 1 and available state 2.
  • DCI can specifically indicate soft resources as two different available states: available state 1 and available state 2.
  • the available status 1 indicates that the DU cell indicated by the DU cell ID does not need to consider the impact on the MT carrier (such as the first carrier) when determining the availability of the soft resource. That is to say, for the available state 1, the second node will not use the first carrier of the MT for backhaul link scheduling.
  • Available status 2 indicates that the DU cell indicated by the DU cell ID cannot affect the transmission or reception behavior or capability of the MT carrier (such as the first carrier) when determining the availability of the soft resource. That is to say, for the available state 2, the second node may use the first carrier of the MT for backhaul link scheduling.
  • the first carrier of the MT is the MT carrier indicated in the second configuration information, or the first carrier is the MT carrier that the first node can infer according to the DU cell ID configured in the second configuration information.
  • the DCI may include the indication information shown in Table 4 below:
  • the available state 2 may be the default state. That is, if the DCI does not indicate the available state 1, then the available state 2 is indicated.
  • the second node may also send indication information to the first node for indicating whether the first node interprets the DCI according to the rules in Table 3 or interprets the DCI according to the rules in Table 4. For example, if the above indication information is "0", it means that DCI needs to be interpreted according to the rules in Table 3; if the above indication information is "1", it means that DCI needs to be interpreted according to the rules in Table 4.
  • FIG. 11 is an example in which the second configuration information includes the DU cell ID indicated by the downlink control information DCI.
  • the second configuration information may not include the DU cell ID and only includes the MT indicated by the DCI. Carrier ID. Or, the first node may ignore the DU cell ID therein.
  • the resource availability information indicated by the DCI may be applicable to all DU cells, or any one or more DU cells.
  • the explanation of the above-mentioned available state is as follows:
  • Available status 1 means that all or any DU cell does not need to consider the impact on the MT carrier (such as the first carrier) when determining the availability of the soft resource. That is to say, for the available state 1, the second node will not use the first carrier of the MT for backhaul link scheduling.
  • Available status 2 means that all or any DU cell cannot affect the sending or receiving behavior or capability of the MT carrier (such as the first carrier) when determining the availability of the soft resource. That is to say, for the available state 2, the second node may use the first carrier of the MT for backhaul link scheduling.
  • the first carrier of the MT is the MT carrier indicated in the second configuration information.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the network devices include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the network devices such as the first node and the second node into functional modules.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the network device 1200 may be the first node or the second node in this application.
  • the network device 1200 may include a receiving unit 1210 and a sending unit 1220.
  • the sending unit 1220 is configured to support the first node to perform the above step S801, and/or other processes used in the technology described herein.
  • the receiving unit 1210 is configured to support the first node to perform the above steps S802, S1101 or S1102, and/or other processes used in the technology described herein.
  • the sending unit 1220 is used to support the second node to perform the above steps S802, S1101, or S1102, and/or other processes used in the technology described herein.
  • the receiving unit 1210 is configured to support the first node to perform the above step S801, and/or other processes used in the technology described herein.
  • the foregoing receiving unit 1210 and sending unit 1220 may include radio frequency circuits.
  • the network device (such as the first node or the second node) may receive and send wireless signals through a radio frequency circuit.
  • the radio frequency circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency circuit can also communicate with other devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to Global System for Mobile Communications, General Packet Radio Service, Code Division Multiple Access, Wideband Code Division Multiple Access, Long Term Evolution, Email, Short Message Service, etc.
  • the network device 1200 may further include a processing unit 1230.
  • the processing unit 1230 may be used to determine the resource multiplexing mode, determine the MT transmission parameter demand information, or analyze the availability of MT resources and/or DU resources, and/or use it in this context Other processes of the described technology.
  • the processing unit 1230 may be used for MT resource and/or DU resource allocation or configuration, and/or for other processes of the technology described herein.
  • the network device 1200 may correspond to the method of the first node or the second node in the foregoing method embodiment, for example, the method in FIG. 8 or FIG.
  • the foregoing and other management operations and/or functions are used to implement the corresponding steps of the method of the first node or the second node in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
  • details are not described here.
  • each module in the network device 1200 may be implemented in the form of software and/or hardware, which is not specifically limited.
  • the network device 1200 is presented in the form of functional modules.
  • the "module” herein may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the network device 1200 may adopt the form shown in FIG. 13.
  • the processing unit 1230 may be implemented by the processor 1310 shown in FIG. 13.
  • the receiving unit 1210 and the sending unit 1220 may be implemented by the transceiver 1320 shown in FIG. 13.
  • the processor is implemented by executing a computer program stored in the memory.
  • the functions and/or implementation process of the receiving unit 1210 and the sending unit 1220 may also be implemented by pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the computer device, such as the memory shown in FIG. 13 1330.
  • FIG. 13 shows a schematic structural diagram of a network device 1200 (such as a first node or a second node) according to an embodiment of the present application.
  • the network device 1200 includes a processor 1310 and a transceiver 1320.
  • the processor 1310 may be used to support the first node to determine the resource multiplexing mode, determine the MT transmission parameter demand information, or analyze the availability of MT resources and/or DU resources, And/or other processes used in the techniques described herein.
  • the transceiver 1320 may be used to support the first node to perform the above steps S801, S802, S1101 or S1102, and/or other processes used in the technology described herein.
  • the processor 1310 may be used to perform MT resource and/or DU resource allocation or configuration, and/or other processes used in the technology described herein.
  • the transceiver 1320 may be used to support the second node to perform the above steps S801, S802, S1101 or S1102, and/or other processes used in the technology described herein.
  • the network device 1200 further includes a memory 1330, and the memory 1330 may store the program code in the foregoing method embodiment, so that the processor 1310 can call it.
  • the network device 1200 includes the processor 1310, the memory 1330, and the transceiver 1320
  • the processor 1310, the memory 1330, and the transceiver 1320 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the processor 1310, the memory 1330, and the transceiver 1320 may be implemented by chips, and the processor 1310, the memory 1330, and the transceiver 1320 may be implemented on the same chip, or may be implemented on different chips. Or any combination of two functions can be implemented in one chip.
  • the memory 1330 may store program codes, and the processor 1310 calls the program codes stored in the memory 1330 to implement corresponding functions of the network device 1200.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, mobile hard disk, CD-ROM or any other form of storage known in the art Medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the detection device.
  • the processor and the storage medium may also exist as discrete components in the detection device.
  • the present application provides a communication system including a first node and a second node.
  • the communication system is used to implement the resource configuration method in any possible implementation manner provided in this application.
  • the present application provides a chip system, the chip system includes a processor, a memory, and instructions are stored in the memory; when the instructions are executed by the processor, any of the possible The resource configuration method in the implementation mode.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the disclosed user equipment and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源的配置方法及网络设备,涉及通信技术领域,可以在IAB节点采用非时分复用的资源复用方式时,有针对性地进行传输资源配置和指示。本申请通过由第一节点向第二节点上报IAB节点的MT和DU的资源复用能力,以及其支持的资源复用能力需要满足的条件,用于第二节点可以根据IAB节点的MT和DU的能力结合传输参数需求等针对性地进行传输资源配置和指示。进而提高第一节点进行通信时的资源利用率,以及提高通信效率。

Description

一种资源的配置方法及网络设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种资源的配置方法及网络设备。
背景技术
随着移动通信技术的不断发展,频谱资源日趋紧张。为了提高频谱利用率,未来的基站部署将会更加密集。此外,密集部署还可以避免覆盖空洞的出现。在传统蜂窝网络架构下,基站通过光纤与核心网建立连接。然而在很多场景下,光纤的部署成本高昂。为了降低成本,可以通过无线回传链路建立无线中继节点(relay node,RN)与核心网之间的连接。
一般情况下,RN与一个或多个上级节点建立无线回传链路(可称为上级回传链路(parent BackHaul link))。以及,RN与一个或多个下级节点建立无线回传链路(可称为下级回传链路(child BackHaul link))。RN的上级节点可以是基站,也可以是另一个RN;RN的下级节点可以是终端,也可以是另一个RN。考虑到未来无线网络的高带宽,5G新空口(new radio,NR)考虑引入接入回传一体化(integrated access and backhaul,IAB)方案以进一步降低部署成本,提高部署灵活性,并由此引入一体化的接入和回传的RN,即IAB节点。如图1所示,IAB节点与上级节点建立上级回传链路,与下级节点建立下级回传链路,以及与用户设备(user equipment,UE)建立接入链路。
IAB节点可包括两部分功能单元:移动终端(mobile terminal,MT)和分布式单元(Distributed unit,DU)。其中,MT用于IAB节点与上级节点通信,而DU用于IAB节点与下级节点或者UE通信。MT与DU可以使用IAB节点的接入网设备(如基站)为该IAB节点配置的回传链路资源,与其上级节点或下级节点通信。通常,资源复用方式可以包括时分复用,空分复用,全双工等。但是,常规技术中尚无IAB节点的MT与DU之间的非时分资源复用方案。
发明内容
本申请提供一种资源的配置方法及网络设备,可以在IAB节点采用非时分复用的资源复用方式时,有针对性地进行传输资源配置和指示。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种资源的配置方法,该方法包括:第一节点向第二节点发送第一信息和第二信息,该第一信息用于指示第一节点的移动终端MT的一个或多个载波与所述第一节点的分布式单元DU的一个或多个小区所支持的资源复用能力;第二信息用于指示MT的一个或多个载波所支持的资源复用能力需要满足的条件;其中,上述资源复用能力包括能力1、能力2、能力3和能力4,其中,能力1指示MT和DU能够同时发送信号,能力2指示MT发送信号的同时所述DU能够接收信号,能力3指示MT接收信号的同时DU能够发送信号,能力4指示MT和DU能够同时接收信 号。
上述第一方面提供的技术方案,第一节点向第二节点上报IAB节点的MT和DU的资源复用能力,以及其支持的资源复用能力需要满足的条件,用于第二节点可以根据IAB节点的MT和DU的能力结合传输参数需求等针对性地进行传输资源配置和指示。进而提高第一节点进行通信时的资源利用率,以及提高通信效率。
在一种可能的实现方式中,本申请提供的资源的配置方法还可以包括:第一节点接收来自第二节点的用于指示MT的传输资源的第一配置信息;其中,MT的传输资源使得第一节点的MT支持上述能力1、能力2、能力3或能力4中的一种,并且,MT的传输资源使得第一节点的MT满足上述能力1、能力2、能力3或能力4所需的条件。第二节点可以根据IAB节点的MT和DU的能力结合传输参数需求等针对性地进行传输资源配置和指示。进而提高第一节点进行通信时的资源利用率,以及提高通信效率。
在一种可能的实现方式中,上述第二信息用于指示第一节点的MT的一个或多个载波所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:MT的下行接收功率需要被设置在特定区间;MT的下行调度的解调参考信号DMRS端口的最大数量;MT的上行调度的DMRS端口的最大数量;MT的上行调度的定时模式被设置为特定模式;MT支持的上行发送波束ID;MT支持的下行接收波束ID。第一节点通过上报其MT载波支持的资源复用能力对上述传输功率、DMRS端口、定时模式或波束等中的一个或多个MT传输参数需求的上报,便于第二节点对其有针对性地进行传输资源配置和指示。
在一种可能的实现方式中,上述第二信息还用于指示第一节点的DU所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:DU的上行接收功率需要被设置在特定区间;DU的下行发送功率需要被设置在特定区间;DU的上行接收定时模式被设置为特定模式;DU支持的下行发送波束ID;DU支持的上行接收波束ID。第一节点通过上报其DU载波支持的资源复用能力对上述传输功率、定时模式或波束等中的一个或多个DU传输参数需求的上报,便于第二节点对其有针对性地进行传输资源配置和指示。
在一种可能的实现方式中,本申请提供的资源的配置方法还可以包括:第一节点接收来自第二节点的第二配置信息,该第二配置信息包括:下行控制信息DCI所指示的DU小区ID;上述DU小区ID所指示的DU小区资源可用性信息在DCI中的位置;上述DU小区ID所指示的DU小区资源可用性信息。第二节点通过指示第一节点DU小区资源的可用性,便于第一节点根据DCI,以及DU小区资源的可用性,确定MT载波资源的可用性。
在一种可能的实现方式中,上述第二配置信息还包括:DCI所指示的MT载波ID。第二节点通过在第二配置信息中指示与DU小区对应的MT载波,便于第一节点根据第二配置信息指示的MT载波进行资源可用性分析。
在一种可能的实现方式中,本申请提供的资源的配置方法还可以包括:第一节点接收来自第二节点的DCI,该DCI用于指示soft资源的可用状态;soft资源的可用状态包括可用状态1和可用状态2;其中,上述可用状态1表示第二节点不会使用MT 的第一载波进行回传链路调度,可用状态2表示第二节点会使用MT的第一载波进行回传链路调度;第一载波是MT的任一个载波。通过增强的DCI指示不同的两种可用状态,可以更加灵活的进行资源可用性配置。
在一种可能的实现方式中,上述第二节点是第一节点的上级节点或donor节点。
第二方面,提供一种资源的配置方法,该方法包括:第二节点接收来自第一节点的第一信息和第二信息;第一信息用于指示第一节点的移动终端MT的一个或多个载波与第一节点的分布式单元DU的一个或多个小区所支持的资源复用能力;第二信息用于指示MT的一个或多个载波所支持的资源复用能力需要满足的条件;其中,上述资源复用能力包括能力1、能力2、能力3和能力4,能力1指示MT和DU能够同时发送信号,能力2指示MT发送信号的同时DU能够接收信号,能力3指示MT接收信号的同时DU能够发送信号,能力4指示MT和DU能够同时接收信号。
上述第二方面提供的技术方案,第一节点向第二节点上报IAB节点的MT和DU的资源复用能力,以及其支持的资源复用能力需要满足的条件,用于第二节点可以根据IAB节点的MT和DU的能力结合传输参数需求等针对性地进行传输资源配置和指示。进而提高第一节点进行通信时的资源利用率,以及提高通信效率。
在一种可能的实现方式中,本申请提供的资源的配置方法还可以包括:第二节点向第一节点发送用于指示所述MT的传输资源的第一配置信息;其中,MT的传输资源使得第一节点的MT支持上述能力1、能力2、能力3或能力4中的一种,并且,MT的传输资源使得第一节点的MT满足上述能力1、能力2、能力3或能力4所需的条件。第二节点可以根据IAB节点的MT和DU的能力结合传输参数需求等针对性地进行传输资源配置和指示。进而提高第一节点进行通信时的资源利用率,以及提高通信效率。
在一种可能的实现方式中,上述第二信息用于指示第一节点的MT的一个或多个载波所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:MT的下行接收功率需要被设置在特定区间;MT的下行调度的解调参考信号DMRS端口的最大数量;MT的上行调度的DMRS端口的最大数量;MT的上行调度的定时模式被设置为特定模式;MT支持的上行发送波束ID;MT支持的下行接收波束ID。第一节点通过上报其MT载波支持的资源复用能力对上述传输功率、DMRS端口、定时模式或波束等中的一个或多个MT传输参数需求的上报,便于第二节点对其有针对性地进行传输资源配置和指示。
在一种可能的实现方式中,上述第二信息还用于指示第一节点的DU所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:DU的上行接收功率需要被设置在特定区间;DU的下行发送功率需要被设置在特定区间;DU的上行接收定时模式被设置为特定模式;DU支持的下行发送波束ID;DU支持的上行接收波束ID。第一节点通过上报其DU载波支持的资源复用能力对上述传输功率、定时模式或波束等中的一个或多个DU传输参数需求的上报,便于第二节点对其有针对性地进行传输资源配置和指示。
在一种可能的实现方式中,本申请提供的资源的配置方法还可以包括:第二节点向第一节点发送第二配置信息,该第二配置信息包括:下行控制信息DCI所指示的 DU小区ID;上述DU小区ID所指示的DU小区资源可用性信息在DCI中的位置;上述DU小区ID所指示的DU小区资源可用性信息。第二节点通过指示第一节点DU小区资源的可用性,便于第一节点根据DCI,以及DU小区资源的可用性,确定MT载波资源的可用性。
在一种可能的实现方式中,上述第二配置信息还包括:DCI所指示的MT载波ID。第二节点通过在第二配置信息中指示与DU小区对应的MT载波,便于第一节点根据第二配置信息指示的MT载波进行资源可用性分析。
在一种可能的实现方式中,本申请提供的资源的配置方法还可以包括:第二节点向第一节点发送用于指示soft资源的可用状态的DCI;上述soft资源的可用状态包括可用状态1和可用状态2;其中,所述可用状态1表示第二节点不会使用MT的第一载波进行回传链路调度,可用状态2表示第二节点会使用MT的第一载波进行回传链路调度;所述第一载波是MT的任一个载波。通过增强的DCI指示不同的两种可用状态,可以更加灵活的进行资源可用性配置。
在一种可能的实现方式中,上述第二节点是第一节点的上级节点或donor节点。
第三方面,提供一种资源的配置方法,该方法包括:第一节点接收来自第二节点的第二配置信息,该第二配置信息包括:下行控制信息DCI所指示的DU小区ID;上述DU小区ID所指示的DU小区资源可用性信息在DCI中的位置;上述DU小区ID所指示的DU小区资源可用性信息。
上述第三方面提供的技术方案,第二节点通过指示第一节点DU小区资源的可用性,便于第一节点根据DCI,以及DU小区资源的可用性,确定MT载波资源的可用性。
在一种可能的实现方式中,上述第二配置信息还包括:DCI所指示的MT载波ID。第二节点通过在第二配置信息中指示与DU小区对应的MT载波,便于第一节点根据第二配置信息指示的MT载波进行资源可用性分析。
在一种可能的实现方式中,本申请提供的资源的配置方法还可以包括:第一节点接收来自第二节点的DCI,该DCI用于指示soft资源的可用状态;soft资源的可用状态包括可用状态1和可用状态2;其中,上述可用状态1表示第二节点不会使用MT的第一载波进行回传链路调度,可用状态2表示第二节点会使用MT的第一载波进行回传链路调度;第一载波是MT的任一个载波。通过增强的DCI指示不同的两种可用状态,可以更加灵活的进行资源可用性配置。
在一种可能的实现方式中,上述第二节点是第一节点的上级节点或donor节点。
第四方面,提供一种资源的配置方法,该方法包括:第二节点向第一节点发送第二配置信息,该第二配置信息包括:下行控制信息DCI所指示的DU小区ID;上述DU小区ID所指示的DU小区资源可用性信息在DCI中的位置;上述DU小区ID所指示的DU小区资源可用性信息。
上述第四方面提供的技术方案,第二节点通过指示第一节点DU小区资源的可用性,便于第一节点根据DCI,以及DU小区资源的可用性,确定MT载波资源的可用性。
在一种可能的实现方式中,上述第二配置信息还包括:DCI所指示的MT载波ID。 第二节点通过在第二配置信息中指示与DU小区对应的MT载波,便于第一节点根据第二配置信息指示的MT载波进行资源可用性分析。
在一种可能的实现方式中,本申请提供的资源的配置方法还可以包括:第二节点向第一节点发送用于指示soft资源的可用状态的DCI;上述soft资源的可用状态包括可用状态1和可用状态2;其中,所述可用状态1表示第二节点不会使用MT的第一载波进行回传链路调度,可用状态2表示第二节点会使用MT的第一载波进行回传链路调度;第一载波是所述MT的任一个载波。通过增强的DCI指示不同的两种可用状态,可以更加灵活的进行资源可用性配置。
在一种可能的实现方式中,上述第二节点是第一节点的上级节点或donor节点。
第五方面,提供一种第一节点,该第一节点包括:发送单元,用于向第二节点发送第一信息和第二信息,该第一信息用于指示第一节点的移动终端MT的一个或多个载波与所述第一节点的分布式单元DU的一个或多个小区所支持的资源复用能力;第二信息用于指示MT的一个或多个载波所支持的资源复用能力需要满足的条件;其中,上述资源复用能力包括能力1、能力2、能力3和能力4,其中,能力1指示MT和DU能够同时发送信号,能力2指示MT发送信号的同时所述DU能够接收信号,能力3指示MT接收信号的同时DU能够发送信号,能力4指示MT和DU能够同时接收信号。
上述第五方面提供的技术方案,第一节点向第二节点上报IAB节点的MT和DU的资源复用能力,以及其支持的资源复用能力需要满足的条件,用于第二节点可以根据IAB节点的MT和DU的能力结合传输参数需求等针对性地进行传输资源配置和指示。进而提高第一节点进行通信时的资源利用率,以及提高通信效率。
在一种可能的实现方式中,本申请提供的第一节点还包括:接收单元,用于接收来自第二节点的用于指示MT的传输资源的第一配置信息;其中,MT的传输资源使得第一节点的MT支持上述能力1、能力2、能力3或能力4中的一种,并且,MT的传输资源使得第一节点的MT满足上述能力1、能力2、能力3或能力4所需的条件。第二节点可以根据IAB节点的MT和DU的能力结合传输参数需求等针对性地进行传输资源配置和指示。进而提高第一节点进行通信时的资源利用率,以及提高通信效率。
在一种可能的实现方式中,上述第二信息用于指示第一节点的MT的一个或多个载波所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:MT的下行接收功率需要被设置在特定区间;MT的下行调度的解调参考信号DMRS端口的最大数量;MT的上行调度的DMRS端口的最大数量;MT的上行调度的定时模式被设置为特定模式;MT支持的上行发送波束ID;MT支持的下行接收波束ID。第一节点通过上报其MT载波支持的资源复用能力对上述传输功率、DMRS端口、定时模式或波束等中的一个或多个MT传输参数需求的上报,便于第二节点对其有针对性地进行传输资源配置和指示。
在一种可能的实现方式中,上述第二信息还用于指示第一节点的DU所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:DU的上行接收功率需要被设置在特定区间;DU的下行发送功率需要被设置在特定区间;DU的上行接收定时模式被设置为特定模式;DU支持的下行发送波束ID;DU支持的上行接收波 束ID。第一节点通过上报其DU载波支持的资源复用能力对上述传输功率、定时模式或波束等中的一个或多个DU传输参数需求的上报,便于第二节点对其有针对性地进行传输资源配置和指示。
在一种可能的实现方式中,第一节点的接收单元还用于,接收来自第二节点的第二配置信息,该第二配置信息包括:下行控制信息DCI所指示的DU小区ID;上述DU小区ID所指示的DU小区资源可用性信息在DCI中的位置;上述DU小区ID所指示的DU小区资源可用性信息。第二节点通过指示第一节点DU小区资源的可用性,便于第一节点根据DCI,以及DU小区资源的可用性,确定MT载波资源的可用性。在一种可能的实现方式中,上述第二配置信息还包括:DCI所指示的MT载波ID。第二节点通过在第二配置信息中指示与DU小区对应的MT载波,便于第一节点根据第二配置信息指示的MT载波进行资源可用性分析。
在一种可能的实现方式中,第一节点的接收单元还用于,接收来自第二节点的DCI,该DCI用于指示soft资源的可用状态;soft资源的可用状态包括可用状态1和可用状态2;其中,上述可用状态1表示第二节点不会使用MT的第一载波进行回传链路调度,可用状态2表示第二节点会使用MT的第一载波进行回传链路调度;第一载波是MT的任一个载波。通过增强的DCI指示不同的两种可用状态,可以更加灵活的进行资源可用性配置。
在一种可能的实现方式中,上述第二节点是第一节点的上级节点或donor节点。
第六方面,提供一种第一节点,该第一节点包括:接收单元,用于接收来自第二节点的第二配置信息,该第二配置信息包括:下行控制信息DCI所指示的DU小区ID;上述DU小区ID所指示的DU小区资源可用性信息在DCI中的位置;上述DU小区ID所指示的DU小区资源可用性信息。
上述第六方面提供的技术方案,第二节点通过指示第一节点DU小区资源的可用性,便于第一节点根据DCI,以及DU小区资源的可用性,确定MT载波资源的可用性。
在一种可能的实现方式中,上述第二配置信息还包括:DCI所指示的MT载波ID。第二节点通过在第二配置信息中指示与DU小区对应的MT载波,便于第一节点根据第二配置信息指示的MT载波进行资源可用性分析。
在一种可能的实现方式中,第一节点的接收单元还用于,接收来自第二节点的DCI,该DCI用于指示soft资源的可用状态;soft资源的可用状态包括可用状态1和可用状态2;其中,上述可用状态1表示第二节点不会使用MT的第一载波进行回传链路调度,可用状态2表示第二节点会使用MT的第一载波进行回传链路调度;第一载波是MT的任一个载波。通过增强的DCI指示不同的两种可用状态,可以更加灵活的进行资源可用性配置。
在一种可能的实现方式中,上述第二节点是第一节点的上级节点或donor节点。
第七方面,提供一种第二节点,该第二节点包括:接收单元,用于接收来自第一节点的第一信息和第二信息;第一信息用于指示第一节点的移动终端MT的一个或多个载波与第一节点的分布式单元DU的一个或多个小区所支持的资源复用能力;第二信息用于指示MT的一个或多个载波所支持的资源复用能力需要满足的条件;其中,上述 资源复用能力包括能力1、能力2、能力3和能力4,能力1指示MT和DU能够同时发送信号,能力2指示MT发送信号的同时DU能够接收信号,能力3指示MT接收信号的同时DU能够发送信号,能力4指示MT和DU能够同时接收信号。
上述第七方面提供的技术方案,第一节点向第二节点上报IAB节点的MT和DU的资源复用能力,以及其支持的资源复用能力需要满足的条件,用于第二节点可以根据IAB节点的MT和DU的能力结合传输参数需求等针对性地进行传输资源配置和指示。进而提高第一节点进行通信时的资源利用率,以及提高通信效率。
在一种可能的实现方式中,本申请提供的第二节点还可以包括:发送单元,用于向第一节点发送用于指示所述MT的传输资源的第一配置信息;其中,MT的传输资源使得第一节点的MT支持上述能力1、能力2、能力3或能力4中的一种,并且,MT的传输资源使得第一节点的MT满足上述能力1、能力2、能力3或能力4所需的条件。第二节点可以根据IAB节点的MT和DU的能力结合传输参数需求等针对性地进行传输资源配置和指示。进而提高第一节点进行通信时的资源利用率,以及提高通信效率。
在一种可能的实现方式中,上述第二信息用于指示第一节点的MT的一个或多个载波所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:MT的下行接收功率需要被设置在特定区间;MT的下行调度的解调参考信号DMRS端口的最大数量;MT的上行调度的DMRS端口的最大数量;MT的上行调度的定时模式被设置为特定模式;MT支持的上行发送波束ID;MT支持的下行接收波束ID。第一节点通过上报其MT载波支持的资源复用能力对上述传输功率、DMRS端口、定时模式或波束等中的一个或多个MT传输参数需求的上报,便于第二节点对其有针对性地进行传输资源配置和指示。
在一种可能的实现方式中,上述第二信息还用于指示第一节点的DU所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:DU的上行接收功率需要被设置在特定区间;DU的下行发送功率需要被设置在特定区间;DU的上行接收定时模式被设置为特定模式;DU支持的下行发送波束ID;DU支持的上行接收波束ID。第一节点通过上报其DU载波支持的资源复用能力对上述传输功率、定时模式或波束等中的一个或多个DU传输参数需求的上报,便于第二节点对其有针对性地进行传输资源配置和指示。
在一种可能的实现方式中,第二节点的发送单元还用于,向第一节点发送第二配置信息,该第二配置信息包括:下行控制信息DCI所指示的DU小区ID;上述DU小区ID所指示的DU小区资源可用性信息在DCI中的位置;上述DU小区ID所指示的DU小区资源可用性信息。第二节点通过指示第一节点DU小区资源的可用性,便于第一节点根据DCI,以及DU小区资源的可用性,确定MT载波资源的可用性。
在一种可能的实现方式中,上述第二配置信息还包括:DCI所指示的MT载波ID。第二节点通过在第二配置信息中指示与DU小区对应的MT载波,便于第一节点根据第二配置信息指示的MT载波进行资源可用性分析。
在一种可能的实现方式中,第二节点的发送单元还用于,向第一节点发送用于指示soft资源的可用状态的DCI;上述soft资源的可用状态包括可用状态1和可用状态 2;其中,所述可用状态1表示第二节点不会使用MT的第一载波进行回传链路调度,可用状态2表示第二节点会使用MT的第一载波进行回传链路调度;所述第一载波是MT的任一个载波。通过增强的DCI指示不同的两种可用状态,可以更加灵活的进行资源可用性配置。
在一种可能的实现方式中,上述第二节点是第一节点的上级节点或donor节点。
第八方面,提供一种第二节点,该第二节点包括:发送单元,用于向第一节点发送第二配置信息,该第二配置信息包括:下行控制信息DCI所指示的DU小区ID;上述DU小区ID所指示的DU小区资源可用性信息在DCI中的位置;上述DU小区ID所指示的DU小区资源可用性信息。
上述第八方面提供的技术方案,第二节点通过指示第一节点DU小区资源的可用性,便于第一节点根据DCI,以及DU小区资源的可用性,确定MT载波资源的可用性。
在一种可能的实现方式中,上述第二配置信息还包括:DCI所指示的MT载波ID。第二节点通过在第二配置信息中指示与DU小区对应的MT载波,便于第一节点根据第二配置信息指示的MT载波进行资源可用性分析。
在一种可能的实现方式中,第二节点的发送单元还用于,向第一节点发送用于指示soft资源的可用状态的DCI;上述soft资源的可用状态包括可用状态1和可用状态2;其中,所述可用状态1表示第二节点不会使用MT的第一载波进行回传链路调度,可用状态2表示第二节点会使用MT的第一载波进行回传链路调度;第一载波是所述MT的任一个载波。通过增强的DCI指示不同的两种可用状态,可以更加灵活的进行资源可用性配置。
在一种可能的实现方式中,上述第二节点是第一节点的上级节点或donor节点。
第九方面,提供一种第一节点,该第一节点包括:存储器,用于存储计算机程序代码,该计算机程序代码包括指令;射频电路,用于进行无线信号的发送和接收;处理器,用于执行上述指令,使得第一节点执行第一方面或第三方面任一种可能的实现方式中的资源的配置方法。
第十方面,提供一种第二节点,该第二节点包括:存储器,用于存储计算机程序代码,该计算机程序代码包括指令;射频电路,用于进行无线信号的发送和接收;处理器,用于执行上述指令,使得第一节点执行第二方面或第四方面任一种可能的实现方式中的资源的配置方法。
第十一方面,提供一种通信系统,该通信系统包括第五方面、第六方面或第九方面中任一种可能的实现方式中的第一节点,以及第七方面、第八方面或第十方面中任一种可能的实现方式中的第二节点。该通信系统用于实现如第一方面、第二方面、第三方面或第四方面中任一种可能的实现方式中的资源的配置方法。
第十二方面,提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机执行指令,该计算机执行指令被处理器执行时实现如第一方面、第二方面、第三方面或第四方面中任一种可能的实现方式中的资源的配置方法。
第十三方面,提供一种提供一种芯片系统,该芯片系统包括处理器、存储器,存储器中存储有指令;所述指令被所述处理器执行时,实现如第一方面、第二方面、第 三方面或第四方面中任一种可能的实现方式中的资源的配置方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,提供一种计算机程序产品,当其在计算机上运行时,使得实现如第一方面、第二方面、第三方面或第四方面中任一种可能的实现方式中的资源的配置方法。
附图说明
图1为本申请实施例所适用的通信系统的结构示意图;
图2为申请实施例提供的一种一体化的接入和回传IAB系统的结构示意图;
图3为本申请实施例提供的一种IAB节点的结构示意图;
图4为本申请实施例提供的一种接入链路和回传链路的示意图;
图5为本申请实施例提供的一种LTE的中继系统中下行回传链路资源分配示例图;
图6为本申请实施例提供的一种时隙内资源属性配置示意图;
图7为本申请实施例提供的一种NR的中继系统中MT资源与DU资源分配示例图;
图8为本申请实施例提供的一种资源的配置方法交互图;
图9为本申请实施例提供的一种MT和DU结构示例示意图;
图10为本申请实施例提供的一种MT载波的资源指示示例图;
图11为本申请实施例提供的另一种资源的配置方法交互图;
图12为本申请实施例提供的一种网络设备(如第一节点或第二节点)的结构框图;
图13为本申请实施例提供的一种网络设备(如第一节点或第二节点)的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以适用的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、长期演进(long term evolution,LTE)系统、第五代移动通信(5th generation mobile networks or 5th generation wireless systems,5G)也称为新空口(new radio,NR)系统、或者5G之后的通信系统,例如6G系统、设备到设备(device to device,D2D)通信系统、车联网等。
以5G通信系统为例,考虑到未来无线网络的高带宽,5G新空口(new radio,NR)考虑引入接入回传一体化(integrated access and backhaul,IAB)方案以进一步降低部署成本,提高部署灵活性,并由此引入一体化的接入和回传的中继,本申请将支持一体化的接入和回传的中继节点称为IAB节点(IAB node)以区分长期演进(long term evolution,LTE)的中继,包含IAB节点的系统又称为中继系统。
请参考图2,图2示出了本申请实施例所适用的一种一体化的接入和回传IAB系统的结构示意图。如图2所示,一体化的接入和回传IAB系统可以包括一个或多个IAB系统。一个IAB系统至少包括一个基站200,及基站200所服务的一个或多个终端设备(terminal)201,一个或多个IAB节点,及该IAB节点210所服务的一个或多个终端设备211。通常,基站200被称为宿主基站(donor next generation node B,DgNB), IAB节点210通过无线回传链路213连接到基站200。宿主基站在本申请中也称为宿主节点,即,donor节点。
示例性的,本申请实施例中的宿主节点可以划分为集中单元(central unit,CU)和至少一个分布单元(distributed unit,DU)。其中,CU作为5G gNB中的逻辑节点,可以用于管理或者控制至少一个DU,也可以称之为CU与至少一个DU连接。这种结构可以将通信系统中无线接入网设备的协议层分割(split),其中部分协议层功能放在CU,剩下部分协议层功能分布在DU中,由CU集中控制DU。以无线接入网设备为gNB为例,gNB的协议层包括无线资源控制(radio resource control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体访问控制子层(media access control,MAC)层和物理层。其中,示例性的,CU可以用于实现RRC层、SDAP层和PDCP层的功能,DU可以用于实现RLC层、MAC层和物理层的功能。本申请实施例不对CU、DU包括的协议栈做具体限定。CU与DU之间可以由F1AP接口协议来定义和连接。
本申请中的基站包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、eLTE(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)、传输接收点(transmission and reception point,TRP)等。终端设备包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。
需要注意的是,在本申请中,IAB节点是中继节点的特定的名称,不对本申请实施例的方案构成限定。本申请中的IAB节点可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。例如,本申请的IAB节点也可以被称为中继节点(relay node,RN)、传输接收点(transmission and reception point)、中继发送接收点(relaying TRP)等。
如图2所示,一体化的接入和回传系统还可以包括多个其他IAB节点,例如IAB节点220和IAB节点230,IAB节点220通过无线回传链路223连接到IAB节点210以接入到网络,IAB节点230通过无线回传链路233连接到IAB节点210以接入到网络。IAB节点220为一个或多个终端设备221服务,IAB节点230为一个或多个终端设备231服务。图2中,IAB节点210和IAB节点220都通过无线回传链路连接到网络。
在本申请中,无线回传链路都是从中继节点的角度来看的,比如无线回传链路213是IAB节点210的回传链路,无线回传链路223是IAB节点220的回传链路。如图2所示,一个IAB节点,如IAB节点220,可以通过无线回传链路,如无线回传链路223,连接另一IAB节点210,从而连接到网络。而且,中继节点可以经过多级无线中继节点连接到网络。应理解,本申请中用IAB节点仅仅出于描述的需要,并不表示本申请的方案仅用于NR的场景,在本申请中,IAB节点可以泛指任何具有中继功能的节点或设备,本申请中的IAB节点和中继节点的使用应理解具有相同的含义。
为便于理解,以下对本申请可能出现的概念和术语进行解释。
1、上级节点:把提供无线回传链路资源的节点,如IAB节点210,称为IAB节点220的上级节点。应理解,上级节点可以是IAB节点,宿主基站(比如donor节点),或者网络设备等,对此不作限定。
2、下级节点:把使用回传链路资源向网络进行数据传输,或者接收来自网络的数据的节点称为下级节点,如,IAB节点220则称为IAB节点210的下级节点,终端设备231可以称为IAB节点230的下级节点,网络为核心网或者其他接入网之上的网络,如因特网,专网等。
3、接入链路(access link):接入链路是指某个节点(如IAB节点210)和它的下级节点(如终端设备211)进行通信时所使用的无线链路,包括上行传输和下行传输的链路。接入链路上的上行传输也被称为接入链路的上行传输,下行传输也被称为接入链路的下行传输。其中的节点包括但不限于前述IAB节点。
4、回传链路(backhaul link):回传链路是指某个节点(如IAB节点210)和它的上级节点(如基站210)进行通信时所使用的无线链路,包括上行传输和下行传输的链路。回传链路上的上行传输也被称为回传链路的上行传输,下行传输也被称为回传链路的下行传输。其中的节点包括但不限于前述IAB节点。
在本申请中,IAB节点通常可以分为移动终端(mobile terminal,MT)和分布式单元(distributed unit,DU)两个部分。其中,MT可以被定义为类似UE的一个组件;DU可以被定义为类似基站的一个组件。在IAB中,MT和DU被称为驻留在IAB节点上的功能(或模块)。MT用于IAB节点与上级节点通信,而DU用于IAB节点与下级节点通信。
在本申请中,IAB节点的MT与DU均具有完整的收发单元,且两者之间具有接口。但应注意,MT与DU为逻辑模块,在实际中,两者可以共享部分子模块,例如可共用收发天线,基带处理单元等,如图3所示。
如图1所示,IAB节点中的MT与上级节点的链路被称为上级回传链路(parent BackHaul link),IAB节点中的DU与其下级IAB节点之间的链路被称为下级回传链路(child BackHaul link),而IAB节点中的DU与下属UE之间的链路被称为接入链路(access link)。其中,上级回传链路包括上级回传上行链路(uplink,UL)以及上级回传下行链路(downlink,DL)。下级回传链路包括下级回传UL和下级回传DL。接入链路包括接入UL和接入DL,如图4所示。在本申请中,为描述方便,IAB节点与上级节点的链路被称为回传链路,IAB节点与下级IAB节点和/或UE的链路被统称为接入链路。
通常,下级节点可以被看作是上级节点的一个终端设备。应理解,图2所示的一体化接入和回传系统中,一个IAB节点连接一个上级节点。但是在未来的中继系统中,为了提高无线回传链路的可靠性,一个IAB节点,如IAB节点220,可以有多个上级节点同时为一个IAB节点提供服务。例如,图2中的IAB节点230还可以通过回传链路234连接到IAB节点220,即,IAB节点210和IAB节点220都为IAB节点230的上级节点。需要说明的是,在本申请中,IAB节点210、IAB节点220和IAB节点230的名称并不限制其在所部署的场景或网络中的名称。例如,IAB节点210、IAB节点220或IAB节点230的名称可以是relaying TRP或RN等。本申请使用IAB节点仅是方便描述的需要。
需要说明的是,在图2中,无线链路202、无线链路212、无线链路222、无线链路232、无线链路213、无线链路223、无线链路233和无线链路234可以是双向链路,包括上行和下行传输链路。特别地,无线回传链路213、无线回传链路223、无线回传链路233和无线回传链路234可以用于上级节点为下级节点提供服务。例如,上级节点200为下级节点210提供无线回传服务。应理解,回传链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。下行传输是指上级节点,如节点200,向下级节点,如IAB节点210传输信息或数据,上行传输是指下级节点,如IAB节点210,向上级节点,如节点200传输信息或数据。上述节点不限于是网络节点还是终端设备。例如,在终端直通(Device to Device,D2D)场景下,终端设备可以充当中继节点为其他终端设备服务。无线回传链路在某些场景下又可以是接入链路,如无线回传链路223对IAB节点210来说也可以被视作接入链路,无线回传链路213也是节点200的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端设备,如D2D场景下,下级节点也可以是终端设备。
可以理解,IAB节点可以使用被分配的回传链路资源通过无线回传链路与上级节点或者下级节点。更为具体的,MT可以使用donor节点为MT分配的回传链路资源通过上级回传链路与IAB节点的上级节点通信。DU可以使用donor节点为DU分配的回传链路资源通过下级回传链路与IAB节点的下级节点通信。
以下以LTE的中继系统和NR的中继系统为例介绍常规的回传链路资源分配方法:
以LTE的中继系统中的回传链路资源分配为例,在LTE的中继系统中,donor节点以子帧(1ms)为单位为中继节点分配回传链路资源,分配周期为一个无线帧(10ms)。具体地,donor节点通过RRC信令将部分子帧指定为回传链路子帧。回传链路子帧的数量和位置可被重配。
对于LTE中的中继节点,当某个子帧被配置为回传子帧时,中继节点需要在此子帧监测中继物理下行控制信道(relay physical downlink control channel,R-PDCCH)和/或接收物理下行共享信道(physical downlink share channel,PDSCH),因此无法在接入链路进行发送。以图5所示的一种LTE的中继系统中下行回传链路资源分配的具体示例为例,如图5所示,子帧2、4、和6被配置为回传链路,则对应位置的接入链路上子帧2、4和6不可用。因此,LTE的中继为半静态的时分复用(time division multiplexing,TDM)资源分配。
以NR的中继系统中的回传链路资源分配为例,IAB节点的MT资源可以被配置为下行(downlink,D),上行(uplink,U)和灵活(Flexible,F)三种类型。这三种类型也是现有终端设备所支持的,因此可用现有信令指示。与终端设备不同的是,IAB节点的MT资源可以支持更多的时隙格式。
IAB节点的DU资源可以被配置为下行,上行和灵活三种类型。进一步地,DU的下行,上行,灵活三种类型的资源还可以被配置为硬(hard,H)资源、软(soft,S)资源和不可用(not available,NA)三种属性。其中,DU的NA资源,表示DU始终不可用的资源。DU的hard资源,表示DU始终可用的资源。DU的soft资源,表示DU是否可用该资源,需要依赖于上级节点的指示。
在本申请中,DU的资源属性配置可以在每个时隙内逐资源类型进行。例如,在一个时隙内,若DU资源被配置了多种资源类型(D/U/F),则不同的资源类型可具有不同的属性(H/S/NA)配置。如图6所示,downlink资源、uplink资源和flexible资源均可以被配置为hard资源、soft资源或not available三种属性。
在NR的中继系统中,MT的资源配置与DU的资源配置独立进行。具体地,MT的可用资源和不可用资源可以由上级节点通过高层信令(如RRC信令)显式配置。DU的软资源和硬资源可以由上级节点通过高层信令(例如RRC信令)或接口消息(例如F1-AP接口消息或增强的F1-AP接口消息)显式配置。或者,MT的可用资源和不可用资源也可以由IAB节点通过DU资源类型隐式推导得出,DU的软资源和硬资源也可以由IAB节点通过MT的资源配置隐式推导得出。本申请不限定MT的可用资源和不可用资源,以及DU的软资源和硬资源是通过何种方式得到的。示例性地,在NR R16的协议中,IAB节点的DU资源属性由donor节点显式配置,而MT资源的可用性由IAB节点和/或其上级节点根据DU资源属性隐式推导得出。
由上可见,NR中IAB节点DU上的资源分配依赖于宿主节点和/或上级节点的指示,通过半静态分配加动态指示的方式来进行DU资源的指示。这种资源分配方式和LTE系统中资源分配方法有很大的不同。
以图7所示的NR的中继系统中MT资源与DU资源分配示例为例,IAB节点的MT与上级节点的DU相连接,而IAB节点的DU与下级节点的MT相连接,在经过半静态(例如,通过RRC信令和/或F1-AP接口信令)的资源配置以后,IAB节点可以分别得到其MT资源和DU资源的资源配置。如图7所示,三个连续的DU时隙分别被配置为NA,hard和soft。三个连续的MT时隙均被配置为downlink。应理解,上述相关配置可以通过显式信令获得,也可以通过隐式的方式获得。IAB节点和其上级节点可以根据DU资源配置推断出IAB的MT的可用资源。
示例性的,结合图7以及下面的表1可以看出,对于IAB节点,其DU的hard资源第1时隙对应的DU资源所对应的MT资源为不可用。
具体地,IAB节点的MT以及其对应的DU可能的行为如下面的两张表所示,其中表1为时分复用场景下的MT以及DU的各种可能的资源类型组合下的资源配置情况。表2为空分复用(spatial division multiplexing,SDM)场景下的MT以及DU的各种可能的资源类型组合下的资源配置情况。 表1
Figure PCTCN2020075264-appb-000001
表2
Figure PCTCN2020075264-appb-000002
Figure PCTCN2020075264-appb-000003
在上述表1和表2中,各标识的含义如下:“MT:Tx”表示MT在被调度后应进行传输。“DU:Tx”表示DU可能进行传输。“MT:Rx”表示MT有能力进行接收(如果有信 号需要接收)。“DU:Rx”表示DU可能调度下级节点的上行传输。“MT:Tx/Rx”表示MT在被调度后应传输或接收,但传输和接收不同时发生。“DU:Tx/Rx”表示DU可能进行传输或接收下级节点的传输,但传输和接收不同时发生。“IA”表示DU资源被显式或隐式的指示为可用。“INA”表示DU资源被显式或隐式的指示为不可用。“MT:NA”表示MT不进行发送且不必具有接收能力。“DU:NA”表示DU不进行发送且不接收下级节点的传输。
为了在接入链路和回传链路之间动态协调资源,NR IAB将使用两级资源指示。具体地,两级资源指示是指,上级节点通过显式或隐式的方式为IAB节点的DU配置soft资源和hard资源。而soft资源的可用状态,则依赖于上级节点的动态信令指示。
在一些实施例中,上级节点可以通过DCI(如DCI format 2_5)指示IAB的DU soft资源的可用性。其中,soft资源的动态指示也可以在一个时隙内逐资源类型进行,如表3所示。示例性地,当取值为3时,表示该时隙内所有的上行soft符号和下行soft符号均被配置为可用。
可选地,上级节点可以在一个信令中为IAB节点配置多个时隙内soft资源的可用性。
表3
取值 指示内容
0 没有soft符号被指示为可用
1 仅下行soft符号可用
2 仅上行soft符号可用
3 上下行soft符号均可用
4 只有Flexible符号可用
5 只有downlink符号和Flexible符号可用
6 只有uplink符号和Flexible符号可用
7 downlink符号、uplink符号和Flexible符号均可用
需要说明的是,本申请实施例中仅以时隙为例介绍资源分配,但并不对本申请实施例构成限定,实际上时隙可以替换为其他时域资源,比如,帧、子帧、微时隙、符号等等。
本申请实施例提供一种资源的配置方法,上级节点可以根据中继节点(如IAB节点)的实际能力(如中继节点的MT载波和DU小区实际所支持的资源复用能力)和参数需求为中继节点配置MT资源和/或DU资源,使得中继节点的MT和DU可以以符合其能力的资源复用方式与上级节点或下级节点通信。
在本申请实施例中,资源复用方式可以包括但不限于TDM,SDM,频分复用(frequency division multiplexing,FDM)和全双工(full duplex,FD)。在中继节点的MT载波和DU小区实际所支持的资源复用能力不同的情况下,MT资源的资源配置与DU资源的资源配置可具备不同的对应关系。例如,若MT和DU支持TDM,则IAB节点的MT和DU不能进行同时传输;若MT和DU支持SDM或FDM,则MT发送信号的同时DU能够接收信号,或者MT接收信号的同时DU能够发送信号;若MT和DU支持FD,则MT与DU能够同时传输,且不限制为同时接收或同时发送。
其中,TDM是指MT与DU在不同的时域资源进行信号的接收或发送。TDM应用到本申请实施例中中继节点的MT和DU具体可以体现为:对于DU的硬资源,对应时隙的MT的资源为不可用资源,即MT不会在该时隙与上级节点进行通信;或者,对于MT的不可用资源,对应时隙的DU的资源为硬资源。通过这样的方式,使得MT与DU的传输在时间轴上互不重叠。
SDM是指MT与DU可以进行同时的发送或接收。SDM应用到本申请实施例中中继节点的MT和DU具体可以体现为:当DU在进行下行发送时,MT可能在对应的资源进行上行发送;或者,当DU在进行上行接收时,MT可能在对应的资源进行下行接收。
FD是指IAB节点的MT与DU可以进行同方向的传输。FD应用到本申请实施例中中继节点的MT和DU具体可以体现为:当DU在进行下行发送时,MT可能在对应的资源进行下行接收;或者,当DU在进行上行接收时,MT可能在对应的资源进行上行发送。
SDM和FD均为非时分复用。进一步地,非时分复用可能分为动态非时分复用和半静态(或固定)非时分复用。动态非时分复用与半静态(或固定)非时分复用的区别在于:动态非时分复用仅适用于DU的soft资源。而半静态(或固定)的非时分复用还可以适用于DU的hard资源。以MT和DU采用SDM方式同时发送为例,假设DU小区的一个时隙被配置为下行资源,而对应时隙的MT载波被配置上行资源。对于动态非时分复用,第一节点会认为当该时隙的DU资源是hard资源时,第二节点不会在该时隙调度MT的上行资源;当该时隙的DU资源为soft资源时,第一节点可根据MT的上行调度确定适当的DU下行调度,从而形成MT与DU的同时发送。而对于半静态(或固定)非时分复用来说,第一节点认为第二节点可能在此时隙调度MT,即DU的资源属性不影响MT资源的可用性。在这种情况下,即使该时隙的DU资源是hard资源,第二节点也可能在该时隙调度MT的上行资源。
以下结合附图对本申请实施例提供的资源的配置方法进行具体介绍:
如图8所示,本申请实施例提供的资源的配置方法可以包括以下步骤S801和S802:
S801、第一节点向第二节点发送第一信息和第二信息。第一信息用于指示第一节点的MT的一个或多个载波(CC)与第一节点的DU的一个或多个小区(cell)所支持的资源复用能力。第二信息用于指示MT的一个或多个载波所支持的资源复用能力需要满足的条件。
对应的,第二节点接收第二节点发送的第一信息和第二信息。
在本申请实施例中,第一节点可以是中继节点。示例性的,第一节点可以是图1中所示的IAB节点。该第一节点可以具有图3所示的结构。即第一节点可以分为MT和DU两个部分。第二节点为第一节点的上级节点,donor节点或者父节点(parent node)。
其中,第一节点的MT和DU可以具有(或者包含或者存在或者对应或者覆盖)多个子单元。例如,第一节点的DU可以具有多个朝向的面板或扇区1,2和3,不同的面板对应不同的小区(cell),如图1所示的面板/扇区1,2和3。又如图9中的(a)所示,IAB节点的DU包括两个不同朝向的面板/扇区1和2。或者,第一节点的MT可以采用载波聚合技术;其中,不同的载波(CC)对应不同的小区(cell)。或者, 第一节点的MT可以包括不同的部分带宽(Bandwidth part,BWP)等。或者,第一节点的MT可以与不同的上级节点连接,与不同上级节点的连接可以采用不同的载波组。如图9中的(b)所示,天线面板1包括MT载波1、MT载波2、DU小区1和DU小区2;天线面板2包括DU小区3和DU小区4。应理解,在协议中,MT的载波可以被称为服务小区(serving cell)。
在本申请实施例中,第一节点的MT的一个或多个载波与第一节点的DU的一个或多个小区所支持的资源复用能力可以理解为第一节点的MT和DU分别在各个天线面板/各个载波/各个小区等对应的资源上传输信号时对资源的复用。
在一些实施例中,第一节点的MT和DU所支持的资源复用能力还可以理解为第一节点的MT与DU的组合在各个天线面板/各个载波/各个小区等对应的资源上传输信号时对资源的复用。
其中,第一节点的一个或多个MT载波/服务小区和DU的一个或多个小区所支持的资源复用能力至少可以包括以下能力1、能力2、能力3、能力4和能力5:
能力1:No TDM for MT-TX/DU-TX。即能力1指示MT和DU能够同时发送信号。能力1也可被称为SDM发送。
能力2:No TDM for MT-TX/DU-RX。即能力2指示MT发送信号的同时DU能够接收信号。能力2也可被称为上行全双工。
能力3:No TDM for MT-RX/DU-TX。即能力3指示MT接收信号的同时DU能够发送信号。能力3也可被称为下行全双工。
能力4:No TDM for MT-RX/DU-RX。即能力4指示MT和DU能够同时接收信号。能力4也可被称为SDM接收。
能力5:TDM。即能力5指示MT和DU不能进行同时传输s。
需要说明的是,对于第一节点的MT载波和DU小区所支持的不同资源复用能力,需要满足的条件不同。在第一节点的MT载波或DU小区支持某一资源复用能力时,进一步的,只有在第一节点被配置的资源满足对应条件时,第一节点才能完全按照对应的复用规则使用第一节点被分配的MT资源和/或DU资源。以MT与DU同时发送信号或接收信号为例进行说明,当MT的一个载波和DU的一个小区具有No TDM MT-RX/DU-RX或No TDM MT-TX/DU-TX的非时分复用能力时,并不一定表示此MT载波和DU小区的组合在任何时候都可以进行SDM接收或发送。当MT载波被回传链路占用进行传输时,DU小区需要在一定的条件下才能进行接入链路传输。
应理解,第一节点的任一MT载波,DU小区,或者MT载波和DU小区的组合可具有多种资源复用能力,即第一节点向第二节点发送的第一信息中,同一DU小区,同一MT载波,或者同一MT载波和DU小区的组合可以支持多种资源复用能力。
在一些实施例中,第二信息可以包括以下条件MT传输参数条件(a)-条件(f)中的一项或多项:
条件(a)、MT的下行接收功率需要被设置在特定区间。
例如,若MT需要使用SDM技术接收信号,则MT的下行信号功率需要在一定范围内,以避免空分接收功率差过大影响性能。此时,第一节点的MT具有一个期望的下行接收功率范围,当第一节点的MT接收到的功率在期望范围内时,第一节点可以 使用SDM技术同时进行MT和DU的信号接收。而当MT的接收功率超出期望范围时,MT与DU的信号功率差可能较大,从而造成第一节点无法顺利的接收其中的一路或多路信号。
在本申请实施例中,第一节点上报其期望的下行接收功率范围时,一种方法是第一节点上报其期望的下行接收功率与某个参考信号功率的差值。其中,参考信号可以包括但不限于同步信号(synchronization signal,SS)/物理广播信道(physical broadcast channel,PBCH)块(block)(或者称作同步信号块SSB)或信道状态信息参考信号(channel state information-reference signal,CSI-RS)等。在第二节点接收到上述功率差信息后,第二节点可以通过调节下行功率发射功率等方法实现MT要求的下行接收功率,使得第一节点可以使用SDM技术同时进行MT和DU的信号接收。在协议中,接收功率可以用PDSCH等信道或解调参考信号(demodulation reference signal,DMRS)等参考信号的每资源单元能量(energy per resource element,EPRE)表示。
条件(b)、MT的下行调度的DMRS端口的最大数量。
例如,若MT需要使用SDM技术接收信号,则MT接收的PDSCH可能仅能占用部分DMRS端口,用于实现MT和DU接收信号的DMRS正交化。因此,要想MT使用SDM技术接收信号,则第一节点可以向第二节点上报MT所期望被调度或配置的下行最大DMRS端口数目,或者DU需要预留的下行DMRS端口数目。可选的,第一节点可上报MT所期望被调度或配置的下行最大DMRS码分组(CDM group)数目,或者DU需要预留的下行DMRS码分组(CDM group)数目。
条件(c)、MT的上行调度的DMRS端口的最大数量。
例如,若MT需要使用SDM技术发送信号,则MT发送的物理上行链路共享信道(physical uplink shared channel,PUSCH)可能仅能占用部分DMRS端口,用于实现MT和DU发送信号的DMRS正交化。因此,要想MT使用SDM技术发送信号,第一节点可以向第二节点上报MT所期望被调度或配置的上行最大DMRS端口数目,或者DU需要预留的上行DMRS端口数目。可选地,第一节点可以向第二节点上报MT所期望被调度或配置的上行最大DMRS码分组(CDM group)数目,或者DU需要预留的上行DMRS码分组(CDM group)数目。
条件(d)、MT的上行调度的定时模式被设置为特定模式。
例如,MT需采用特定的上行定时模式来支持SDM或FD。常规的,MT可支持多种定时模式,包括传统的基于定时提前(timing advance,TA)的上行定时,对齐DU下行定时的MT上行定时模式,基于TA与额外偏移量的上行定时等。为了进行SDM或FD,第一节点MT可能需要采用一种特定的定时,因此第一节点可以将需要的定时模式上报给第二节点,用于第二节点为其进行定时模式配置。
条件(e)、MT支持的上行发送波束ID。
例如,若MT需要使用SDM技术发送信号,则MT发送所采用的上行波束应在一定范围内选择,避免过强干扰。因此,第一节点可以向第二节点上报能进行非时分传输的上行发送波束ID,波束ID可以采用如下参数表示,如探测参考信号资源指示(sounding reference signal resource indicator,SRI)或空间关系信息(spatialRelationInfo)的标识。SRI用来指示一个SRS的资源编号,表示MT需要采用与此SRS相同的波束 (或空间滤波器)进行上行发送。空间关系信息中包含了一个或多个上行或下行参考信号标识。当MT或UE的上行信号发送被配置了空间关系信息后,MT或UE采用该配置确定上行发送波束(或空间滤波器)。示例性地,当空间关系信息中包含下行参考信号时,UE或MT采用接收此下行参考信号所使用空间滤波器进行上行发送;当空间关系信息中包含上行参考信号时,UE或MT采用发送此上行参考信号所使用空间滤波器进行上行发送。
条件(f)、MT支持的下行接收波束标识或传输配置指示状态(transmission configuration indicator state,TCI-state)标识。
例如,若MT需要使用SDM技术接收信号,则MT接收的下行波束应在一定范围内选择,避免过强干扰。因此,第一节点可以向第二节点上报能进行非时分传输的下行接收波束ID或TCI-state标识信息。接收波束ID或TCI-state信息中可能包括准共址信息(quasi co-located,QCL)标识,准共址标识一般为参考信号标识。具有QCL关系的天线端口对应的信号中可以具有相同的或相近的信道大尺度特性参数(或称为参数)。或者,一个天线端口的信道大尺度特性参数(或称为参数),可以用于确定与该天线端口具有QCL关系的另一个天线端口的信道大尺度特性参数(或称为参数)。或者,两个天线端口具有相同的或相似的信道大尺度特性参数(或称为参数)。或者,两个天线端口间的信道大尺度特性参数(或称为参数)差小于某阈值。信道大尺度特性参数包括以下参数中的一个或多个:时延扩展,多普勒扩展,多普勒频移,平均增益,平均时延或空间接收参数。
在一些实施例中,第二信息还可以包括以下MT传输参数条件(g):
条件(g)、额外的信道状态信息(channel state information,CSI)上报或额外的探测参考信号(sounding reference signal,SRS)测量。
通常,在MT进行SDM接收或者下行FD的时隙,MT需要上报额外的CSI用于第二节点得到下行传输信道状态信息。例如包括下行传输的信道质量指示,码本指示或秩指示信息等。或者,在MT进行SDM发送或上行FD的时隙,MT需要发送专用的SRS用于第二节点进行信道估计。例如包括上行信道频域信息和/或干扰信息等。
也就是说,只有在MT传输参数条件满足一定的取值或取值范围,第一节点的MT与DU之间的某一资源复用能力才能够真正被使用。
在另一些实施例中,第二信息还可以用于指示DU所支持的资源复用能力需要满足的条件。其中,第二信息还可以包括以下DU传输参数条件(A)-条件(E)中的一项或多项:
条件(A)、DU的上行接收功率需要被设置在特定区间。
条件(B)、DU的下行发送功率需要被设置在特定区间。
条件(C)、DU的上行接收定时模式被设置为特定模式。
条件(D)、DU支持的下行发送波束ID。
条件(E)、DU支持的上行接收波束ID。
也就是说,只有在DU传输参数条件满足一定的取值或取值范围,第一节点的MT与DU的某一资源复用能力才能够真正被使用。关于条件(A)/条件(B)、条件(C)、条件(D)和条件(E)的描述,可以分别参考上述条件(a)、条件(d)、条件(e) 和条件(f)的介绍,这里不做赘述。
需要说明的是,在第一节点向第二节点上报的MT传输参数条件包括以上条件(a)-条件(f)中的多项时,MT传输参数条件可以包括多个条件的组合。例如,MT传输参数条件可以包括{条件(a),条件(b)},表示第一节点在同时满足条件(a)和条件(b)的情况下可实现某种资源复用能力。或者,MT传输参数条件可以包括多组条件。例如,MT传输参数条件可以包括[{条件(a),条件(b)},条件(c)],表示第一节点在同时满足条件(a)和条件(b),或者满足条件(c)的情况下可实现某种资源复用能力。对于第一节点向第二节点上报多个DU传输参数条件时,也可采用同样的组合上报方式。
在一些实施例中,第一节点可以通过第一信令向第二节点发送第一信息,通过第二信令向第二节点发送第二信息。示例性的,第一信令可以包括以下信息:
{
MT servingCellId:#n
DU cell id:#m
MutilpexingCapablity:能力1至能力5中的一项或多项(如No TDM for MT-TX/DU-TX)
}。
第二信令可以包括以下信息:
{
MT servingCellId:#n
DU cell id:#m
MutilpexingCapablity:能力1至能力5中的一项或多项(如No TDM for MT-TX/DU-TX)
条件组合1:
{
上述条件a-g中的一项或多项
}
条件组合2:
{
上述条件a-g中的一项或多项
}
….
}。
在另一些实施例中,第一节点可以通过第一信令向第二节点同时发送第一信息和第二信息。示例性的,第一信令可以包括以下信息:
{
MT servingCellId:#n
DU cell id:#m
MutilpexingCapablity:能力1至能力5中的一项或多项(如No TDM for  MT-TX/DU-TX)
条件组合1:
{
上述条件a-g中的一项或多项
}
条件组合2:
{
上述条件a-g中的一项或多项
}
….
}。
在一些实施例中,第一节点可以通过F1-AP接口向donor节点发送第一信令,由donor节点将第一信令转发至第一节点的上级节点,即第二节点。第二信令可以由第一节点直接上报至第二节点。例如,通过F1-AP等接口信令,RRC或MAC CE等空口信令。
S802、第二节点向第一节点发送第一配置信息。第一配置信息用于指示MT的传输资源。
对应的,第一节点接收来自第二节点的上述第一配置信息。
其中,MT的传输资源能够使得第一节点支持上述能力1、能力2、能力3或能力4中的一种,并且,MT的传输资源能够使得第一节点满足上述能力1、能力2、能力3或能力4所需的条件。
在一些实施例中,在第二信息指示DU所支持的资源复用能力需要满足的条件时,第一配置信息还可以用于指示DU的传输资源。其中,该DU的传输资源能够使得第一节点支持上述能力1、能力2、能力3或能力4中的一种,并且,DU的传输资源能够使得第一节点满足上述能力1、能力2、能力3或能力4所需的条件。
在本申请实施例中,第二节点可以通过半静态信令(比如RRC信令或MAC CE)或者接口消息(例如F1-AP或接口消息增强的F1-AP接口消息)向第一节点发送上述第一配置信息。第一节点通过第一配置信息,可以获知第一节点的MT的传输资源。
在一些实施例中,第一节点还可以向第二节点发送第三信息。其中,第三信息用于指示第一节点的MT的一个或多个载波与第一节点的DU的一个或多个小区中的至少一个支持的资源复用能力是否为受限的资源复用能力。
在一些实施例中,在第一节点通过第一信令向第二节点发送第一信息和第二信息的情况下,第三信息可以与第一信息和第二信息一起,被携带在第一信令中发送给第二节点。
在另一些实施例中,在第一节点通过第一信令向第二节点发送第一信息,通过第二信令向第二节点发送第二信息的情况下,第三信息可以与第一信息一起被携带在第一信令中,也可以与第二信息一起被携带在第二信令中发送给第二节点。
以第一节点通过第一信令向第二节点发送第一信息,通过第二信令向第二节点发送第二信息,且第三信息被携带在第一信令中为例,第一信令可以包括以下信息:
{
MT servingCellId:#n
DU cell id:#m
MutilpexingCapablity:No TDM for MT-TX/DU-TX
RestricedCapability:{Yes/No}
}。
其中,RestricedCapability可以是Yes,也可以是No。RestricedCapability为Yes说明“No TDM for MT-TX/DU-TX”资源复用能力为受限的资源复用能力,即需要在传输参数满足对应条件时才能被使用。在这种情况下,第二节点可以考虑对应的条件,为第一节点配置资源复用方式,以及与该资源复用方式匹配的传输资源。RestricedCapability为No说明“No TDM for MT-TX/DU-TX”为非受限的资源复用能力,对于传输参数没有特殊要求。在这种情况下,第二节点可以直接为第一节点分配资源复用方式,以及与该资源复用方式匹配的传输资源。
其中,第二节点参考第一信息和第二信息,为第一节点配置的资源复用方式和传输资源可以如下示例:
当第一信息指示第一节点的某一MT(如MT1)支持FD(这里,若MT1支持全双工复用,可以默认MT1也可支持其余所有的资源复用类型)时,第二节点可以为MT1配置TDM,动态SDM/FDM,半静态SDM/FDM或FD中的一种或多种,以及为MT1配置与资源复用方式相匹配的传输资源。
当第一信息指示MT1支持半静态SDM/FDM时,第二节点可以为MT1配置TDM,动态SDM/FDM或半静态SDM/FDM中的一种或多种,以及为MT1配置与资源复用方式相匹配的传输资源。
当第一信息指示MT1支持动态SDM/FDM时,第二节点可以为MT1配置TDM或动态SDM/FDM中的一种或多种,以及为MT1配置与资源复用方式相匹配的传输资源。
当第一信息指示MT1支持TDM时,第二节点可以为MT1配置TDM,以及为MT1配置与资源复用方式相匹配的传输资源。
进一步的,如上文所示,对于非时分复用能力,如SDM/FDM/FD等,可以分为动态非时分复用能力和半静态(固定)非时分复用能力。因此,在一些实施例中,第一节点在向第二节点发送第一节点的MT和DU所支持的资源复用能力时,还可以向第二节点上报每一种资源复用能力具体为动态复用能力还是半静态(固定)复用能力。
在一种可能的实现方式中,第三信息也可以用于指示每一种资源复用能力具体为动态复用能力还是半静态(固定)复用能力。具体的,若第三信息指示某一种资源复用能力为受限的资源复用能力,则可以认为该资源复用能力为动态复用能力。
一般情况下,第一节点可通过参数调整来满足DU的传输参数需求。例如,当MT资源被调度时,DU可以自行调整上行接收功率,下行发送功率,上行接收定时模式,下行发送波束或上行接收波束等参数。为了使得DU可以进行上述调节,第一节点应提前获知MT资源是否被占用。因此,上述对于DU传输参数条件的需求还可转换为对MT资源配置的需求。基于此,在一些实施例中,第二信息还可以包括以下DU传 输参数条件(h):
条件(h)、MT传输资源(提前)指示。
具体的,MT传输资源(提前)指示用于提前指示MT传输所占用的时频资源。在一种可能的实现方式中,第一节点可以通过第二节点对其DU的DCI来推断MT的资源占用情况。
在协议中,MT传输资源(提前)指示可通过DU资源的动态指示来实现,因此条件(h)也可以为DU的动态资源指示。
在本申请实施例中,对于动态非时分复用能力(如动态SDM/FDM/FD等),第二节点可以通过动态信令(如DCI)指示第一节点的MT资源和/或DU资源的可用性。例如,第二节点可以通过DCI逐MT载波指示MT资源的可用性,如图10所示。其中,第二节点可以根据上文中表3所示的指示方式指示DU soft资源的可用性。
或者,第二节点也可以通过动态信令(如DCI)逐DU小区指示DU soft资源的可用性,以便第一节点根据动态信令(如DCI)推断得到一个或多个MT载波的资源的可用性。基于此,如图11所示,在一些实施例中,本申请实施例提供的资源的配置方法还可以包括以下步骤S1101和S1102:
S1101、第一节点接收来自第二节点的第二配置信息。第二配置信息包括:下行控制信息DCI所指示的DU小区ID,DU小区资源可用性信息在DCI中的位置,以及DU小区资源可用性信息。
示例性的,第二配置信息可以包括:
Availability Indication DCI configuration:
{
iabDuCellId-AI;/表示该字段所指示的DU小区ID/
positionInDCI-AI;/该字段在DCI中的位置/
availabilityCombinations;/该小区被配置的资源可用性信息,包含多个取值,其中每个取值可以由表3或表4中的多个取值组合而成/
}。
在本申请实施例中,第一节点可以根据第二配置信息中配置的DU小区ID推测得到对应的MT载波的ID。例如,MT载波可以是与DU小区仅具有TDM复用能力的MT小区。或者,第一节点还可以通过其他方式推测得到对应的MT载波的ID。例如,根据于预先设置在第一节点本地的映射关系等。或者,MT载波为与DU小区具有相同ID的载波。
或者,为了进一步指示与DU小区对应的MT载波,在一些实施例中,第二配置信息还可以包括:DCI所指示的MT载波ID。
示例性的,第二配置信息可以包括:
Availability Indication DCI configuration:
{
iabDuCellId-AI;/表示该字段所指示的DU小区ID/
ServingCellId;/表示MT载波ID(或MT的服务小区ID)/
positionInDCI-AI;/该字段在DCI中的位置/
availabilityCombinations;/该小区被配置的资源可用性信息/
}。
S1102、第一节点接收来自第二节点的DCI。DCI用于指示soft资源的可用状态。
其中,soft资源的可用状态包括可用状态1和可用状态2。
在该实施例中,与表3不同的是,DCI可以将soft资源具体指示为两种不同的可用状态:可用状态1和可用状态2。
其中,可用状态1表示DU小区ID所指示的DU小区在确定该soft资源的可用性时,不用考虑对MT载波(如第一载波)的影响。也就是说,对于可用状态1,第二节点不会使用MT的第一载波进行回传链路调度。可用状态2表示DU小区ID所指示的DU小区在确定该soft资源的可用性时,不能影响MT载波(如第一载波)的发送或接收行为或能力。也就是说,对于可用状态2,第二节点可能会使用MT的第一载波进行回传链路调度。其中,MT的第一载波是第二配置信息中指示的MT载波,或者第一载波是第一节点可以根据第二配置信息中配置的DU小区ID推测得到对应的MT载波。
示例性的,DCI可以包括以下表4所示的指示信息:
表4
Figure PCTCN2020075264-appb-000004
在本申请实施例中,可用状态2可以是默认状态。也就是说,若DCI未指示可用状态1时,则指示可用状态2。
进一步的,在一些实施例中,第二节点还可以向第一节点发送指示信息,用于指示第一节点根据表3的规则解读DCI还是根据表4的规则解读DCI。例如,若上述指示信息为“0”,则表示需要按照表3的规则解读DCI;若上述指示信息为“1”,则表示需要按照表4的规则解读DCI。
需要说明的是,图11是以第二配置信息包括下行控制信息DCI所指示的DU小区ID为例的,事实上,第二配置信息还可以不包括DU小区ID,仅包括DCI所指示的MT载波ID。或者,第一节点可忽略其中的DU小区ID。在这种情况下,DCI指示的资源可用信息可以适用于所有DU小区,或者任意一个或多个DU小区。
示例性地,当第二配置信息仅包括MT载波或服务小区ID时,或者当第一节点忽 略上述DU小区ID时,对于上述可用状态的解释如下:
可用状态1表示所有或任一DU小区在确定该soft资源的可用性时,不用考虑对MT载波(如第一载波)的影响。也就是说,对于可用状态1,第二节点不会使用MT的第一载波进行回传链路调度。可用状态2表示所有或任一DU小区在确定该soft资源的可用性时,不能影响MT载波(如第一载波)的发送或接收行为或能力。也就是说,对于可用状态2,第二节点可能会使用MT的第一载波进行回传链路调度。其中,MT的第一载波是第二配置信息中指示的MT载波。
应理解,本申请实施例的各个方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解的是,网络设备(如第一节点和第二节点等)为了实现上述任一个实施例的功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以对第一节点和第二节点等网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,如图12所示,为本申请实施例提供的一种网络设备的结构框图。该网络设备1200可以是本申请中的第一节点或第二节点。该网络设备1200可以包括接收单元1210和发送单元1220。
其中,在网络设备1200是第一节点的情况下,发送单元1220用于支持第一节点执行上述步骤S801,和/或用于本文所描述的技术的其他过程。接收单元1210用于支持第一节点执行上述步骤S802、S1101或S1102,和/或用于本文所描述的技术的其他过程。在网络设备1200是第二节点的情况下,发送单元1220用于支持第二节点执行上述步骤S802、S1101或S1102,和/或用于本文所描述的技术的其他过程。接收单元1210用于支持第一节点执行上述步骤S801,和/或用于本文所描述的技术的其他过程。
需要说明的是,上述接收单元1210和发送单元1220可以包括射频电路。具体的,网络设备(如第一节点或第二节点)可以通过射频电路进行无线信号的接收和发送。通常,射频电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频电路还可以通过无线通信和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服 务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
在一种可选的实现方式中,如图12所示,网络设备1200还可以包括处理单元1230。在网络设备1200是第一节点的情况下,处理单元1230可以用于进行资源复用方式确定,MT传输参数需求信息确定,或MT资源和/或DU资源可用行分析,和/或用于本文所描述的技术的其他过程。在网络设备1200是第二节点的情况下,处理单元1230可以用于进行MT资源和/或DU资源分配或配置,和/或用于本文所描述的技术的其他过程。
应理解,根据本申请实施例的网络设备1200可对应于前述方法实施例中第一节点或第二节点的方法,比如,图8或图11中的方法,并且网络设备1200中的各个模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中第一节点或第二节点的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,网络设备1200中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,网络设备1200是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到网络设备1200可以采用图13所示的形式。处理单元1230可以通过图13所示的处理器1310实现。接收单元1210和发送单元1220可以通过图13所示的收发器1320来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当网络设备1200是芯片时,那么接收单元1210和发送单元1220的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,如图13所的存储器1330。
图13示出了根据本申请实施例的网络设备1200(如第一节点或第二节点)的结构示意图。如图13所示,所述网络设备1200包括:处理器1310和收发器1320。
其中,在网络设备1200是第一节点的情况下,处理器1310可以用于支持第一节点进行资源复用方式确定,MT传输参数需求信息确定,或MT资源和/或DU资源可用行分析,和/或用于本文所描述的技术的其他过程。收发器1320可以用于支持第一节点执行上述步骤S801、S802、S1101或S1102,和/或用于本文所描述的技术的其他过程。在网络设备1200是第二节点的情况下,处理器1310可以用于进行MT资源和/或DU资源分配或配置,和/或用于本文所描述的技术的其他过程。收发器1320可以用于支持第二节点执行上述步骤S801、S802、S1101或S1102,和/或用于本文所描述的技术的其他过程。
可选地,网络设备1200还包括存储器1330,存储器1330中可以存储上述方法实施例中的程序代码,以便于处理器1310调用。
具体地,若网络设备1200包括处理器1310、存储器1330和收发器1320,则处理器1310、存储器1330和收发器1320之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1310、存储器1330和收发器1320可以通过芯片实现,处理器1310、存储器1330和收发器1320可以是在同一个芯片中实现, 也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器1330可以存储程序代码,处理器1310调用存储器1330存储的程序代码,以实现网络设备1200的相应功能。
在一种可选的方式中,当使用软件实现数据传输时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地实现本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
结合本申请实施例所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于探测装置中。当然,处理器和存储介质也可以作为分立组件存在于探测装置中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在一种可选的方式中,本申请提供一种通信系统,该通信系统包括第一节点和第二节点。该通信系统用于实现本申请提供的任一种可能的实现方式中的资源的配置方法。
在一种可选的方式中,本申请提供一种芯片系统,该芯片系统包括处理器、存储器,存储器中存储有指令;当指令被处理器执行时,实现本申请提供的任一种可能的实现方式中的资源的配置方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在本申请所提供的几个实施例中,应该理解到,所揭露的用户设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一 些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种资源的配置方法,其特征在于,所述方法包括:
    第一节点向第二节点发送第一信息和第二信息,所述第一信息用于指示所述第一节点的移动终端MT的一个或多个载波与所述第一节点的分布式单元DU的一个或多个小区所支持的资源复用能力;所述第二信息用于指示所述MT的一个或多个载波所支持的资源复用能力需要满足的条件;
    其中,所述资源复用能力包括能力1、能力2、能力3和能力4,所述能力1指示所述MT和所述DU能够同时发送信号,所述能力2指示所述MT发送信号的同时所述DU能够接收信号,所述能力3指示所述MT接收信号的同时所述DU能够发送信号,所述能力4指示所述MT和所述DU能够同时接收信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述第二节点的第一配置信息,所述第一配置信息用于指示所述MT的传输资源;
    其中,所述MT的传输资源使得所述MT支持所述能力1、能力2、能力3或能力4中的一种,并且,所述MT的传输资源使得所述MT满足所述能力1、所述能力2、所述能力3或所述能力4所需的条件。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二信息用于指示所述MT的一个或多个载波所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:
    所述MT的下行接收功率需要被设置在特定区间;
    所述MT的下行调度的解调参考信号DMRS端口的最大数量;
    所述MT的上行调度的DMRS端口的最大数量;
    所述MT的上行调度的定时模式被设置为特定模式;
    所述MT支持的上行发送波束ID;
    所述MT支持的下行接收波束ID。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第二信息还用于指示所述DU所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:
    所述DU的上行接收功率需要被设置在特定区间;
    所述DU的下行发送功率需要被设置在特定区间;
    所述DU的上行接收定时模式被设置为特定模式;
    所述DU支持的下行发送波束ID;
    所述DU支持的上行接收波束ID。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述第二节点的第二配置信息,所述第二配置信息包括:
    下行控制信息DCI所指示的DU小区ID;
    所述DU小区资源可用性信息在DCI中的位置;
    所述DU小区资源可用性信息。
  6. 根据权利要求5所述的方法,其特征在于,所述第二配置信息还包括:所述 DCI所指示的MT载波ID。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述第二节点的DCI,所述DCI用于指示soft资源的可用状态;所述soft资源的可用状态包括可用状态1和可用状态2;
    其中,所述可用状态1表示所述第二节点不会使用所述MT的第一载波进行回传链路调度,所述可用状态2表示所述第二节点会使用所述MT的第一载波进行回传链路调度;所述第一载波是所述MT的任一个载波。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第二节点是所述第一节点的上级节点或donor节点。
  9. 一种资源的配置方法,其特征在于,所述方法包括:
    第二节点接收来自第一节点的第一信息和第二信息;所述第一信息用于指示所述第一节点的移动终端MT的一个或多个载波与所述第一节点的分布式单元DU的一个或多个小区所支持的资源复用能力;所述第二信息用于指示所述MT的一个或多个载波所支持的资源复用能力需要满足的条件;
    其中,所述资源复用能力包括能力1、能力2、能力3和能力4,所述能力1指示所述MT和所述DU能够同时发送信号,所述能力2指示所述MT发送信号的同时所述DU能够接收信号,所述能力3指示所述MT接收信号的同时所述DU能够发送信号,所述能力4指示所述MT和所述DU能够同时接收信号。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送第一配置信息,所述第一配置信息用于指示所述MT的传输资源;
    其中,所述MT的传输资源使得所述MT支持所述能力1、能力2、能力3或能力4中的一种,并且,所述MT的传输资源使得所述MT满足所述能力1、所述能力2、所述能力3或所述能力4所需的条件。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第二信息用于指示所述MT的一个或多个载波所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:
    所述MT的下行接收功率需要被设置在特定区间;
    所述MT的下行调度的解调参考信号DMRS端口的最大数量;
    所述MT的上行调度的DMRS端口的最大数量;
    所述MT的上行调度的定时模式被设置为特定模式;
    所述MT支持的上行发送波束ID;
    所述MT支持的下行接收波束ID。
  12. 根据权利要求9-11中任一项所述的方法,其特征在于,所述第二信息还用于指示所述DU所支持的资源复用能力需要满足的条件,具体包括以下条件中的一项或多项:
    所述DU的上行接收功率需要被设置在特定区间;
    所述DU的下行发送功率需要被设置在特定区间;
    所述DU的上行接收定时模式被设置为特定模式;
    所述DU支持的下行发送波束ID;
    所述DU支持的上行接收波束ID。
  13. 根据权利要求9-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送第二配置信息,所述第二配置信息包括:
    下行控制信息DCI所指示的DU小区ID;
    所述DU小区资源可用性信息在DCI中的位置;
    所述DU小区资源可用性信息。
  14. 根据权利要求13所述的方法,其特征在于,所述第二配置信息还包括:所述DCI所指示的MT载波ID。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送DCI,所述DCI用于指示soft资源的可用状态;所述soft资源的可用状态包括可用状态1和可用状态2;
    其中,所述可用状态1表示所述第二节点不会使用所述MT的第一载波进行回传链路调度,所述可用状态2表示所述第二节点会使用所述MT的第一载波进行回传链路调度;所述第一载波是所述MT的任一个载波。
  16. 根据权利要求9-15中任一项所述的方法,其特征在于,所述第二节点是所述第一节点的上级节点或donor节点。
  17. 一种资源的配置方法,其特征在于,所述方法包括:
    第一节点接收来自第二节点的第二配置信息,所述第二配置信息包括:
    下行控制信息DCI所指示的DU小区ID;
    所述DU小区资源可用性信息在DCI中的位置;
    所述DU小区资源可用性信息。
  18. 根据权利要求17所述的方法,其特征在于,所述第二配置信息还包括:所述DCI所指示的移动终端MT载波ID。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述第二节点的DCI,所述DCI用于指示soft资源的可用状态;所述soft资源的可用状态包括可用状态1和可用状态2;
    其中,所述可用状态1表示所述第二节点不会使用所述MT的第一载波进行回传链路调度,所述可用状态2表示所述第二节点会使用所述MT的第一载波进行回传链路调度;所述第一载波是所述MT的任一个载波。
  20. 根据权利要求17-19中任一项所述的方法,其特征在于,所述第二节点是所述第一节点的上级节点或donor节点。
  21. 一种资源的配置方法,其特征在于,所述方法包括:
    第二节点向第一节点发送第二配置信息,所述第二配置信息包括:
    下行控制信息DCI所指示的DU小区ID;
    所述DU小区资源可用性信息在DCI中的位置;
    所述DU小区资源可用性信息。
  22. 根据权利要求21所述的方法,其特征在于,所述第二配置信息还包括:所述DCI所指示的移动终端MT载波ID。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述第二节点向第一节点发送DCI,所述DCI用于指示soft资源的可用状态;所述soft资源的可用状态包括可用状态1和可用状态2;
    其中,所述可用状态1表示所述第二节点不会使用所述MT的第一载波进行回传链路调度,所述可用状态2表示所述第二节点会使用所述MT的第一载波进行回传链路调度;所述第一载波是所述MT的任一个载波。
  24. 根据权利要求21-23中任一项所述的方法,其特征在于,所述第二节点是所述第一节点的上级节点或donor节点。
  25. 一种第一节点,其特征在于,所述第一节点包括:
    发送单元,用于向第二节点发送第一信息和第二信息,所述第一信息用于指示所述第一节点的移动终端MT的一个或多个载波与所述第一节点的分布式单元DU的一个或多个小区所支持的资源复用能力;所述第二信息用于指示所述MT的一个或多个载波所支持的资源复用能力需要满足的条件;
    其中,所述资源复用能力包括能力1、能力2、能力3和能力4,所述能力1指示所述MT和所述DU能够同时发送信号,所述能力2指示所述MT发送信号的同时所述DU能够接收信号,所述能力3指示所述MT接收信号的同时所述DU能够发送信号,所述能力4指示所述MT和所述DU能够同时接收信号。
  26. 根据权利要求25所述的第一节点,其特征在于,所述第一节点还包括:
    接收单元,用于接收来自所述第二节点的第一配置信息,所述第一配置信息用于指示所述MT的传输资源;
    其中,所述MT的传输资源使得所述MT支持所述能力1、能力2、能力3或能力4中的一种,并且,所述MT的传输资源使得所述MT满足所述能力1、所述能力2、所述能力3或所述能力4所需的条件。
  27. 根据权利要求26所述的第一节点,其特征在于,所述发送单元和所述接收单元还用于实现如权利要求权利要求2-8中任一项所述的资源的配置方法。
  28. 一种第一节点,其特征在于,所述第一节点包括:
    接收单元,用于接收来自第二节点的第二配置信息,所述第二配置信息包括:
    下行控制信息DCI所指示的DU小区ID;
    所述DU小区资源可用性信息在DCI中的位置;
    所述DU小区资源可用性信息。
  29. 根据权利要求28所述的第一节点,其特征在于,所述接收单元还用于实现如权利要求权利要求18-20中任一项所述的资源的配置方法。
  30. 一种第二节点,其特征在于,所述第二节点包括:
    接收单元,用于接收来自第一节点的第一信息和第二信息;所述第一信息用于指示所述第一节点的移动终端MT的一个或多个载波与所述第一节点的分布式单元DU的一个或多个小区所支持的资源复用能力;所述第二信息用于指示所述MT的一个或多个载波所支持的资源复用能力需要满足的条件;
    其中,所述资源复用能力包括能力1、能力2、能力3和能力4,所述能力1指示所述MT和所述DU能够同时发送信号,所述能力2指示所述MT发送信号的同时所 述DU能够接收信号,所述能力3指示所述MT接收信号的同时所述DU能够发送信号,所述能力4指示所述MT和所述DU能够同时接收信号。
  31. 根据权利要求30所述的第二节点,其特征在于,所述第二节点还包括:
    发送单元,用于向所述第一节点发送第一配置信息,所述第一配置信息用于指示所述MT的传输资源;
    其中,所述MT的传输资源使得所述MT支持所述能力1、能力2、能力3或能力4中的一种,并且,所述MT的传输资源使得所述MT满足所述能力1、所述能力2、所述能力3或所述能力4所需的条件。
  32. 根据权利要求31所述的第二节点,其特征在于,所述接收单元和所述发送单元还用于如权利要求权利要求11-16中任一项所述的资源的配置方法。
  33. 一种第二节点,其特征在于,所述第二节点包括:
    发送单元,用于向第一节点发送第二配置信息,所述第二配置信息包括:
    下行控制信息DCI所指示的DU小区ID;
    所述DU小区资源可用性信息在DCI中的位置;
    所述DU小区资源可用性信息。
  34. 根据权利要求33所述的第二节点,其特征在于,所述所述发送单元还用于如权利要求权利要求22-24中任一项所述的资源的配置方法。
  35. 一种第一节点,其特征在于,所述第一节点包括:存储器,用于存储计算机程序代码,所述计算机程序代码包括指令;
    射频电路,用于进行无线信号的发送和接收;
    处理器,用于执行所述指令,使得所述第一节点执行如权利要求1-8或者17-20中任一项所述的资源的配置方法。
  36. 一种第二节点,其特征在于,所述第二节点包括:存储器,用于存储计算机程序代码,所述计算机程序代码包括指令;
    射频电路,用于进行无线信号的发送和接收;
    处理器,用于执行所述指令,使得所述第二节点执行如权利要求9-16或者21-24中任一项所述的资源的配置方法。
  37. 一种通信系统,其特征在于,所述通信系统包括权利要求25-29或35任一项中的第一节点和权利要求30-34或36任一项中的第二节点。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机执行指令,所述计算机执行指令被处理电路执行时实现如权利要求1-8、9-16、17-20或21-24中任一项所述的资源的配置方法。
  39. 一种芯片系统,其特征在于,所述芯片系统包括处理电路、存储介质,所述存储介质中存储有指令;所述指令被所述处理电路执行时,实现如权利要求1-8、9-16、17-20或21-24中任一项所述的资源的配置方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括程序指令,所述程序指令被执行时,以实现如权利要求1-8、9-16、17-20或21-24中任一项所述的资源的配置方法。
PCT/CN2020/075264 2020-02-14 2020-02-14 一种资源的配置方法及网络设备 WO2021159467A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080096240.XA CN115066950A (zh) 2020-02-14 2020-02-14 一种资源的配置方法及网络设备
EP20918387.0A EP4096318A4 (en) 2020-02-14 2020-02-14 RESOURCE CONFIGURATION METHOD AND NETWORK DEVICE
PCT/CN2020/075264 WO2021159467A1 (zh) 2020-02-14 2020-02-14 一种资源的配置方法及网络设备
US17/887,149 US20220394737A1 (en) 2020-02-14 2022-08-12 Resource configuration method and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075264 WO2021159467A1 (zh) 2020-02-14 2020-02-14 一种资源的配置方法及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/887,149 Continuation US20220394737A1 (en) 2020-02-14 2022-08-12 Resource configuration method and network device

Publications (1)

Publication Number Publication Date
WO2021159467A1 true WO2021159467A1 (zh) 2021-08-19

Family

ID=77291335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075264 WO2021159467A1 (zh) 2020-02-14 2020-02-14 一种资源的配置方法及网络设备

Country Status (4)

Country Link
US (1) US20220394737A1 (zh)
EP (1) EP4096318A4 (zh)
CN (1) CN115066950A (zh)
WO (1) WO2021159467A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023030231A1 (zh) * 2021-09-03 2023-03-09 维沃移动通信有限公司 下行链路发送功率控制方法及装置
WO2023051755A1 (zh) * 2021-09-30 2023-04-06 华为技术有限公司 一种资源配置方法及通信装置
WO2023082459A1 (zh) * 2021-11-10 2023-05-19 中国信息通信研究院 一种全双工中继定时方法和设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11968018B2 (en) * 2021-03-09 2024-04-23 Qualcomm Incorporated Uplink control communications for spatial division multiplexing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190650A1 (en) * 2018-03-26 2019-10-03 Qualcomm Incorporated Backpressure signaling for wireless communications
CN110740021A (zh) * 2018-07-20 2020-01-31 中国移动通信有限公司研究院 一种资源配置和确定方法、第一节点及第二节点
CN110753397A (zh) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 基于IAB node能力进行资源分配的方法、装置、节点、介质
WO2020032594A1 (ko) * 2018-08-07 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 노드의 동작 방법 및 상기 방법을 이용하는 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190650A1 (en) * 2018-03-26 2019-10-03 Qualcomm Incorporated Backpressure signaling for wireless communications
CN110740021A (zh) * 2018-07-20 2020-01-31 中国移动通信有限公司研究院 一种资源配置和确定方法、第一节点及第二节点
CN110753397A (zh) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 基于IAB node能力进行资源分配的方法、装置、节点、介质
WO2020032594A1 (ko) * 2018-08-07 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 노드의 동작 방법 및 상기 방법을 이용하는 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4096318A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023030231A1 (zh) * 2021-09-03 2023-03-09 维沃移动通信有限公司 下行链路发送功率控制方法及装置
WO2023051755A1 (zh) * 2021-09-30 2023-04-06 华为技术有限公司 一种资源配置方法及通信装置
WO2023082459A1 (zh) * 2021-11-10 2023-05-19 中国信息通信研究院 一种全双工中继定时方法和设备

Also Published As

Publication number Publication date
EP4096318A1 (en) 2022-11-30
EP4096318A4 (en) 2023-01-25
CN115066950A (zh) 2022-09-16
US20220394737A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2021159467A1 (zh) 一种资源的配置方法及网络设备
WO2020134944A1 (zh) 干扰测量的方法和通信装置
WO2020143829A1 (zh) 发送和接收指示的方法和装置
WO2021233206A1 (zh) 参数确定方法及装置
WO2020221321A1 (zh) 通信方法以及通信装置
WO2021062918A1 (zh) 一种资源的动态指示方法及装置
WO2021063372A1 (zh) 一种资源确定方法及装置
WO2021233217A1 (zh) 能力信息上报方法及其装置
US20220312459A1 (en) Enhanced Configured Grants
US20220394679A1 (en) Resource configuration method and apparatus
WO2020187115A1 (zh) 指示资源的方法和装置
WO2018202188A1 (zh) 一种通信方法、系统及相关设备
WO2021142802A1 (zh) 一种上行控制信息的传输方法及装置
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2022151404A1 (zh) 基于接入回传一体化的通信方法及装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
US20220304011A1 (en) Control Signaling for Physical Control Channel Reliability Enhancement
US20220304042A1 (en) Enhanced Configured Grants
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
WO2021062892A1 (zh) 一种资源的动态指示方法及装置
US20220174498A1 (en) Resource indication method and apparatus
WO2024067617A1 (zh) 资源配置的方法及装置
US20240089057A1 (en) Information processing method, device, terminal and network device
WO2024032230A1 (zh) 下行控制信道传输方法、装置及系统
WO2023051755A1 (zh) 一种资源配置方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020918387

Country of ref document: EP

Effective date: 20220822

NENP Non-entry into the national phase

Ref country code: DE