WO2018202188A1 - 一种通信方法、系统及相关设备 - Google Patents

一种通信方法、系统及相关设备 Download PDF

Info

Publication number
WO2018202188A1
WO2018202188A1 PCT/CN2018/085744 CN2018085744W WO2018202188A1 WO 2018202188 A1 WO2018202188 A1 WO 2018202188A1 CN 2018085744 W CN2018085744 W CN 2018085744W WO 2018202188 A1 WO2018202188 A1 WO 2018202188A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
qcl
base station
serving
antenna ports
Prior art date
Application number
PCT/CN2018/085744
Other languages
English (en)
French (fr)
Inventor
黄逸
任海豹
纪刘榴
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710941202.XA external-priority patent/CN108809600B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18794568.8A priority Critical patent/EP3573276B1/en
Publication of WO2018202188A1 publication Critical patent/WO2018202188A1/zh
Priority to US16/567,965 priority patent/US11190316B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of communications, and in particular, to a communication method, system, and related device.
  • Coordination Multiple Point (CoMP) transmission is a method proposed in Long Term Evolution (LTE) to solve the problem of inter-cell interference and improve the throughput of cell edge users.
  • the user equipment User Equipment, UE for short
  • PDCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Share Channel introduces the concept of Quasi-Co-Location (QCL) in the LTE system. If two antenna ports are considered to be QCL, then The channel large-scale information of one of the antenna ports can be inferred from the channel large-scale information of the other antenna port.
  • the UE may not assume that the channel large-scale information of one of the antenna ports can be inferred from the channel large-scale information of the other antenna port.
  • the channel large-scale information includes: channel average gain, Doppler spread, Doppler shift, average delay, delay spread. .
  • a single transmission point (Transmit-Receiving Point, TRP for short) will also be configured with a multi-panel large-scale antenna array structure, which will result in different antenna panels.
  • the large scale information of different beams is also different.
  • the base station uses one transmit beam to align the UE in the downlink, and the UE uses one receive beam to align with the base station to implement communication. Instead, the UE uses one transmit beam to align the base station on the uplink, and the base station uses one receive beam to align with the UE.
  • a beam management process is introduced in the 5G communication system.
  • the UE first fixes one receive beam, and after the base station scans at least one transmit beam by using the transmit pilot, the UE feeds back a strongest beam indication of the received signal.
  • the base station retransmits the pilot once using the beam fed back by the UE, and then the UE optimizes the receive beam through a beam scanning process.
  • the different signals use different logical antenna ports, for example, the channel state reference signal (CSI-RS) antenna port transmission.
  • CSI-RS channel state reference signal
  • CSI-RS CSI-RS
  • DMRS antenna port transmission demodulation reference signals DMRS
  • the channel large-scale information of the two antenna ports is QCL, it is considered to be used for transmitting the reference signal corresponding to one of the antenna ports.
  • the beam can also be used to transmit a reference signal corresponding to another antenna port.
  • the base station needs to transmit two pilots, and the UE also needs to feed back the strongest beam indication to determine the transmit beam and the receive beam.
  • the base station and the UE can also align a coarse beam first and then realign a thin beam in the coarse beam. The above process needs to be repeated twice, which consumes a large amount of pilot and feedback overhead.
  • the embodiment of the present application provides a communication method, system, and related device, by which the beam-management can be reduced by determining a QCL relationship between antenna ports of different serving cells serving the UE.
  • a first aspect of the embodiments of the present application provides a communication method, in which a serving cell group exists for a serving cell serving a UE, and the serving cell group may be a pre-defined packet according to a preset rule or a base station. Packets allocated to the serving cell of the UE. After the base station determines that there is a QCL relationship between the antenna ports of the two or more serving cells in the same serving cell group, the QCL relationship is passed through the QCL signaling manner. The UE is sent to the UE so that the UE can learn that the antenna ports of the two or more serving cells with the QCL relationship can use the same beam transmission reference signal.
  • the serving cell serving the UE since the serving cell serving the UE is pre-grouped, and the QCL relationship between the antenna ports of at least two serving cells in the same serving cell group is determined, when at least two are determined.
  • the QCL relationship between the antenna ports of the serving cells is indicated to the UE by the QCL indication signaling, so that the base station does not need to perform beam management on the beams corresponding to each serving cell, but only does not have the QCL.
  • the serving cell of the relationship performs beam management separately, and only one of the serving cells having the QCL relationship can perform beam management, which can reduce the pilot and feedback overhead of the beam management process.
  • the base station needs to send the information of the serving cell packet to the UE by using high layer signaling, so that the UE learns that the UE is served.
  • the information of the serving cell grouping so that when the subsequent base station notifies the QCL relationship, when the serving cell sends the reference signal, the selection range is narrowed.
  • the base station may directly define a QCL relationship between the antenna ports of the serving cell in the same serving cell group. In this manner, the base station determines the serving cell in the same serving cell group.
  • the QCL relationship between the antenna ports is used, the QCL indication is sent directly using the definition rule of the same serving cell group.
  • the specific process of the base station determining that the antenna ports of the at least two serving cells in the same serving cell group have a QCL relationship may be that the base station first transmits the measurement pilot to the UE through the beams of the at least two serving cells. Then, the base station receives the QCL determination indication or the beam ID sent by the UE, and then determines the QCL relationship between the antenna ports of the at least two serving cells according to the QCL determination indication or the beam ID.
  • the QCL determination indication or the beam ID corresponds to a beam having a target channel quality, and the beam of the target channel quality is a beam with a better channel quality determined by the UE, and the QCL determination indication is that the UE obtains at least two serving cells by estimation. Whether the beam satisfies the bit of the QCL relationship of the spatial feature parameter, and the base station can determine the QCL relationship between the antenna ports of the at least two serving cells through the bit, and enhance the achievability of the solution of the present application.
  • the specific process of the base station determining that the antenna ports of the at least two serving cells in the same serving cell group have a QCL relationship may be based on carrier frequency spacing or propagation of the carrier units corresponding to the at least two serving cells. Determining a QCL relationship between the antenna ports of the at least two serving cells, where the carrier frequency spacing is a carrier frequency spacing of each carrier unit forming a carrier aggregation, and each carrier unit is a serving cell, and carriers with similar carrier frequencies The units are considered to have similar beam space characteristics, ie, there is a QCL relationship between the antenna ports of the serving cell, and in addition, the carrier units of the same propagation path also have similar beam space characteristics.
  • the serving cell group is pre-defined by using a preset rule, for example, directly defined in the protocol, and the base station and the UE can know the situation of the serving cell group by using the protocol, and the predefined group of the preset rule.
  • the method is as follows: one is to divide the N serving cells corresponding to the UE into M serving cell groups, where N is greater than or equal to M, and the M and N are integers greater than or equal to 1;
  • the serving cell settings defining the same timing offset and the same timing reference cell are defined within the same timing offset packet TAG.
  • the base station does not need to send the packet information of the serving cell to the UE through the high-layer signaling, and the base station only needs to send the QCL indication, which can further reduce the signaling consumption.
  • a QCL relationship between antenna ports of a serving cell in a Timing advance group may be directly defined.
  • the base station can more quickly serve the antenna of the serving cell.
  • the QCL relationship between the ports is determined to further improve communication efficiency.
  • the antenna ports of at least two serving cells are the same with respect to the channel average gain, and the other is at least two.
  • the antenna port of the serving cell is identical with respect to at least one of the at least one spatial feature parameter, including an Angle of Arrival (AoA), an Angle of Departure (AoD), and an angle of arrival angle.
  • AoA Angle of Arrival
  • AoD Angle of Departure
  • Power azimuth/angular spectrum of Angle of Arrival (PAS of AoA), power azimuth/angular spectrum of angle of departure (PAS of AoD), receive antenna spatial correlation (Receiving Antenna Spatial) At least one of a Correlation, a Transmit Antenna Spatial Correlation, a receiving beamforming, a transmit beamforming, and a spatial filtering.
  • PAS of AoA Power azimuth/angular spectrum of Angle of Arrival
  • PAS of AoD power azimuth/angular spectrum of angle of departure
  • receive antenna spatial correlation (Receiving Antenna Spatial) At least one of a Correlation, a Transmit Antenna Spatial Correlation, a receiving beamforming, a transmit beamforming, and a spatial filtering.
  • the QCL relationship between the antenna ports of the at least two serving cells may also refer to the definition in LTE. If two antenna ports are considered to be QCL, the channel large-scale information of one antenna port can be from another antenna port. The channel is speculated from large-scale information. Among them, the channel large-scale information includes: channel average gain, Doppler spread, Doppler frequency offset, average delay, and delay spread.
  • the antenna port represents a time domain and a frequency domain resource corresponding to the reference signal
  • the reference signal includes at least: a channel state information-reference signal (CSI-RS), and a demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference signal (PTRS) (also called phase compensation reference signal (PCRS), or phase noise reference signal (referred to as phase noise reference signal)), sync block (synchronization signal block, SS block) (including one or more of a synchronization signal and a broadcast channel, the synchronization signal including one or more of a primary synchronization signal PSS and/or a secondary synchronization signal SSS).
  • CSI-RS channel state information-reference signal
  • DMRS demodulation reference signal
  • PTRS phase tracking reference signal
  • PCRS phase compensation reference signal
  • phase noise reference signal phase noise reference signal
  • sync block synchronization signal block, SS block
  • SS block including one or more of a synchronization signal and a broadcast channel, the synchronization signal including one or more
  • a second aspect of the embodiments of the present invention provides a communication method, in which a serving cell group exists for a serving cell serving a UE, and the serving cell group may be a pre-defined packet according to a preset rule or a base station.
  • the packet is allocated to the serving cell of the UE, and then, when the base station determines that there is a QCL relationship between the antenna ports of the serving cell of the different serving cell group, the QCL relationship is sent to the UE by means of QCL indication signaling.
  • the antenna port of the serving cell that enables the UE to learn different serving cell packets with QCL relationship can use the same beam transmission reference signal.
  • the serving cell serving the UE since the serving cell serving the UE is pre-processed, and the QCL relationship between the antenna ports of the serving cell of the different serving cell group is determined, when determining the different serving cell grouping If the antenna ports of the serving cell have a QCL relationship, the relationship is indicated to the UE by using the QCL indication signaling, so that the base station does not need to perform beam management on the beams corresponding to each serving cell, but only between the antenna ports.
  • the serving cell with the QCL relationship performs beam management separately, and only one of the serving cells having the QCL relationship between the antenna ports can perform beam management, which can reduce the pilot and feedback overhead of the beam management process.
  • the serving cell packet is a packet that is performed by the base station to be allocated to the serving cell of the UE
  • the base station needs to send the information of the serving cell packet to the UE by using high layer signaling, so that the UE learns that the UE is served.
  • the information of the serving cell grouping so that when the subsequent base station notifies the QCL relationship through the QCL indication signaling, the UE narrows the selection range when the reference signal is sent by the serving cell.
  • the base station may directly define a QCL relationship between the antenna ports of the serving cell of different serving cell groups. In this manner, the base station determines the antenna port of the serving cell of the different serving cell group. When the QCL relationship is between, the QCL indication is sent directly using the definition rule of the different serving cell group.
  • the specific process for the base station to determine the QCL relationship between the antenna ports of the serving cell of the different serving cell group may be that the base station first transmits the measurement pilot to the UE through the beam of the serving cell of the different serving cell group, and then The base station may receive the QCL determination indication or the beam ID sent by the UE, and then determine the QCL relationship between the antenna ports of the serving cell of the different serving cell group according to the QCL determination indication or the beam ID.
  • the QCL determination indication or the beam ID corresponds to a beam having a target channel quality, and the beam of the target channel quality is a beam with a better channel quality determined by the UE, and the QCL determination indication is a group of different serving cells that the UE obtains by estimation.
  • the base station can determine the QCL relationship between the antenna ports of the serving cell of different serving cell groups by using the bit, and enhance the achievability of the present application.
  • the specific process for the base station to determine the QCL relationship between the antenna ports of the serving cell of the different serving cell group may be the carrier frequency spacing of the carrier unit corresponding to the serving cell of the different serving cell group or the different service. Determining, by the propagation path of the carrier unit corresponding to the serving cell of the cell group, the QCL relationship between the antenna ports of the serving cell of the different serving cell group, where the carrier frequency spacing is the carrier frequency spacing of each carrier unit forming the carrier aggregation, each carrier The unit is a serving cell, and the carrier units with similar carrier frequencies are considered to have similar beam space characteristics, that is, the QC relationship between the antenna ports of the serving cell, and the carrier units of the same propagation path also have similar beam space characteristics.
  • the serving cell group is pre-defined by using a preset rule, for example, directly defined in the protocol, and the base station and the UE can know the situation of the serving cell group by using the protocol, and the predefined group of the preset rule.
  • the method is as follows: one is to divide the N serving cells corresponding to the UE into M serving cell groups, where N is greater than or equal to M, and the M and N are integers greater than or equal to 1;
  • the serving cell settings that use the same timing offset and the same timing reference cell are defined within different timing offset packets TAG.
  • the base station does not need to send the packet information of the serving cell to the UE through the high-layer signaling, and the base station only needs to send the QCL indication, which can further reduce the signaling consumption.
  • the QCL relationship between the antenna ports of the serving cell of different TAGs may also be directly defined.
  • the base station can determine the QCL relationship between the antenna ports of the serving cell more quickly, further improving communication. effectiveness.
  • the antenna ports of at least two serving cells are the same with respect to the channel average gain, and the other is at least two.
  • the antenna port of the serving cell is identical with respect to at least one of the at least one spatial characteristic parameter including AoA, AoD, PAS-of-AoA, PAS-of-AoD, spatial correlation of the receiving antenna, spatial correlation of the transmitting antenna And receiving at least one of a spatial beam, a transmission spatial beam, and a spatial filtering.
  • the QCL relationship between the antenna ports of the at least two serving cells may also refer to the definition in LTE. If two antenna ports are considered to be QCL, the channel large-scale information of one antenna port can be from another antenna port. The channel is speculated from large-scale information. Among them, the channel large-scale information includes: channel average gain, Doppler spread, Doppler frequency offset, average delay, and delay spread.
  • the antenna port represents a time domain and a frequency domain resource corresponding to the reference signal
  • the reference signal includes at least: a channel state information-reference signal (CSI-RS), and a demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference signal (PTRS) (also called phase compensation reference signal (PCRS), or phase noise reference signal (referred to as phase noise reference signal)), sync block (synchronization signal block, SS block) (including one or more of a synchronization signal and a broadcast channel, the synchronization signal including one or more of a primary synchronization signal PSS and/or a secondary synchronization signal SSS).
  • CSI-RS channel state information-reference signal
  • DMRS demodulation reference signal
  • PTRS phase tracking reference signal
  • PCRS phase compensation reference signal
  • phase noise reference signal phase noise reference signal
  • sync block synchronization signal block, SS block
  • SS block including one or more of a synchronization signal and a broadcast channel, the synchronization signal including one or more
  • the third aspect of the present application further provides a communication method, in which the UE receives the QCL indication signaling sent by the base station, where the QCL indication signaling indicates at least two services in the same serving cell group.
  • the antenna ports of the cell have a QCL relationship
  • the serving cell group has two modes, one of which is a packet obtained by the base station to group the serving cells allocated to the UE, and the other is a predefined according to a preset rule.
  • the UE determines, according to the QCL indication signaling, that at least two serving cells in the same serving cell group having a QCL relationship between antenna ports transmit the service by using the same receive beam receiving or transmitting beam.
  • the reference signal of the cell is a communication method, in which the UE receives the QCL indication signaling sent by the base station, where the QCL indication signaling indicates at least two services in the same serving cell group.
  • the antenna ports of the cell have a QCL relationship
  • the serving cell group has two modes, one of which is a packet obtained by the
  • the serving cell serving the UE is used for grouping, and the QCL relationship between the antenna ports of at least two cells in the serving cell group is determined, at least the QCL relationship between the antenna ports is performed.
  • the two serving cells are sent to the UE in the manner of QCL indication signaling, so that the UE does not need to cooperate with the base station to perform beam measurement on the beams of all corresponding serving cells, thereby reducing the pilot and feedback overhead of beam management.
  • the serving cell grouping is a TAG, the TAG packet being characterized in that the timing offset of the serving cell within the same TAG is the same as the timing reference cell. In this way, it is highly probable that the antenna ports of the serving cells allocated in the same TAG have a QCL relationship.
  • the process of the UE performing beam management with the base station is that the UE first receives the measurement pilot that is sent by the base station through the beams of the at least two serving cells, and then the UE determines the target according to the beams of the at least two serving cells.
  • the QCL of the channel quality determines the indication or the beam ID, and the QCL determines whether the UE determines whether the beam of the at least two serving cells satisfies the QCL relationship of the spatial feature parameter. That is, the UE can determine the QCL relationship between the antenna ports of the at least two serving cells by using the QCL determination indication or the beam ID by the QCL judgment indication or the beam ID of the beam having the target channel quality.
  • the UE receives the information of the serving cell packet sent by the base station through the high layer signaling, so as to learn the serving cell grouping. In the case, when the reference signal is transmitted through the serving cell, the selection range is narrowed.
  • a fourth aspect of the present application further provides a communication method, in which a UE receives a QCL indication signaling sent by a base station, where the QCL indication signaling indicates an antenna port of a serving cell of a different serving cell group.
  • the first one is a packet obtained by the base station to group the serving cells allocated to the UE, and the other is to perform a predefined group according to a preset rule;
  • the UE determines, according to the QCL indication signaling, that the reference signal of the serving cell is transmitted by using the same receive beam receiving or transmitting beam on the serving cell of the different serving cell group with a QCL relationship between the antenna ports.
  • the serving cell serving the UE is used for grouping, and the QCL relationship between the antenna ports of the two cells of different serving cell groups is determined, the serving cell having the QCL relationship between the antenna ports is used.
  • the UE is sent to the UE in the manner of the QCL indication signaling, so that the UE does not need to cooperate with the base station to perform beam measurement on the beams of all corresponding serving cells, thereby reducing pilot and feedback overhead of beam management.
  • the serving cell grouping is a TAG, the TAG packet being characterized in that the timing offset of the serving cell within the same TAG is the same as the timing reference cell.
  • the process of the UE performing beam management with the base station is that the UE first receives the measurement pilot sent by the base station through the beam of the serving cell of the different serving cell group, and then the UE will according to the two serving cells grouped by different serving cells.
  • the beam determines a QCL determination indication or a beam ID of the beam with the target channel quality, and the QCL determines whether the UE determines whether the beam of the serving cell of the different serving cell group meets the QCL relationship of the spatial feature parameter by the estimation. . That is, the UE can determine the QCL relationship between the antenna ports of the serving cell of the different serving cell group by using the QCL decision indication or the beam ID by feeding back the QCL judgment indicator or the beam ID of the beam having the target channel quality.
  • the UE receives the information of the serving cell packet sent by the base station through the high layer signaling, so as to learn the serving cell grouping. In the case, when the reference signal is transmitted through the serving cell, the selection range is narrowed.
  • a fifth aspect of the embodiments of the present application further provides a base station, including a processing module and a sending module;
  • the processing module is configured to send, by the sending module, the UE to indicate, when the base station determines that there is a quasi-co-located QCL relationship between antenna ports of at least two serving cells in the same serving cell group QCL indication signaling having a QCL relationship between antenna ports of at least two serving cells, the serving cell group being a packet predefined according to a preset rule or grouping a serving cell allocated to a user equipment UE by the base station get.
  • the serving cell packet is obtained by the base station to group the serving cell allocated to the user equipment UE, and the sending module is further configured to:
  • the processing module is specifically configured to:
  • the processing module is specifically configured to:
  • the processing module is further configured to:
  • N is greater than or equal to M
  • M and N are integers greater than or equal to 1;
  • the serving cell with the same timing offset and the same timing reference cell is set within the same timing offset packet TAG.
  • the QCL relationship between the antenna ports of the at least two serving cells is that the antenna ports of the at least two serving cells are identical with respect to at least one of a channel average gain or at least one spatial characteristic parameter
  • the space Characteristic parameters include reception angle of arrival AoA, transmission departure angle AoD, angle of arrival power spectrum PAS-of-AoA, departure angle power spectrum PAS-of-AoD, receive antenna spatial correlation, transmit antenna spatial correlation, receive spatial beam And transmitting at least one of the spatial beams.
  • the sixth aspect of the embodiments of the present application further provides a base station, including a processing module and a sending module;
  • the processing module is configured to: when the base station determines that the antenna ports of the serving cell of the different serving cell group have a QCL relationship, send, by the sending module, an antenna port that is used to indicate the serving cell of the different group
  • the QCL indication signaling with a QCL relationship is obtained by grouping the predefined cells according to a preset rule or grouping the serving cells allocated to the user equipment UE by the base station.
  • the serving cell packet is obtained by the base station to group the serving cell allocated to the UE, and the sending module is further configured to:
  • the processing module is specifically configured to:
  • the QCL Receiving, by the UE, a QCL determination indication or a beam ID of a beam having a target channel quality, the QCL determining, indicating, by the UE, whether the beam of the serving cell of the different packet that satisfies the QCL of the spatial characteristic parameter is obtained by the UE The judgment bit of the relationship;
  • the processing module is specifically configured to:
  • the processing module is further configured to:
  • N is greater than or equal to M
  • M and N are integers greater than or equal to 1;
  • the serving cell with the same timing offset and the same timing reference cell is set within the same timing offset packet TAG.
  • the antenna ports of the serving cells of different TAGs have a QCL relationship between them.
  • the QCL relationship between the antenna ports of the at least two serving cells is that the antenna ports of the at least two serving cells are identical with respect to at least one of a channel average gain or at least one spatial characteristic parameter
  • the space Characteristic parameters include reception angle of arrival AoA, transmission departure angle AoD, angle of arrival power spectrum PAS-of-AoA, departure angle power spectrum PAS-of-AoD, receive antenna spatial correlation, transmit antenna spatial correlation, receive spatial beam And transmitting at least one of the spatial beams.
  • the seventh aspect of the present application further provides a terminal, including a receiving module and a processing module;
  • the receiving module is configured to receive a quasi-co-located QCL indication signaling that is sent by the base station, where the QCL indication signaling is used to indicate that a QCL relationship exists between antenna ports of at least two serving cells in the same serving cell group, where the serving cell
  • the packet is a packet obtained by a base station by a base station to be allocated to a serving cell of the UE or a packet predefined according to a preset rule;
  • the processing module is configured to determine, according to the QCL indication signaling, at least two serving cells in the same serving cell group having a QCL relationship between antenna ports, using the same receive beam receiving or transmitting beam to transmit the Reference signal of the serving cell.
  • the serving cell packet is a timing offset packet TAG, and the timing offset of the serving cell within the same TAG is the same as the timing reference cell.
  • the receiving module is further configured to receive measurement pilots sent by the base station by using the beams of the at least two serving cells;
  • the processing module determines, according to the beams of the at least two serving cells, a QCL determination indication or a beam ID of a beam having a target channel quality, where the QCL determination indicates whether the beam of the at least two serving cells obtained by the UE is estimated a judgment bit that satisfies the QCL relationship of the spatial feature parameter;
  • the terminal further includes a sending module, configured to feed back the QCL determination indication or the beam ID to the base station.
  • the serving cell group is a packet obtained by a base station to be grouped by a serving cell allocated to the UE, and the receiving module is further configured to:
  • the eighth aspect of the present application further provides a terminal, including a receiving module and a processing module:
  • the receiving module is configured to receive quasi-co-located QCL indication signaling sent by the base station, where the QCL indication signaling is used to indicate that there is a QCL relationship between antenna ports of the serving cell between different serving cell groups, where the serving cell grouping a packet obtained by grouping a serving cell allocated to the UE by a base station or a predefined group according to a preset rule;
  • the processing module is configured to determine, according to the QCL indication signaling, a serving cell between the different serving cell groups having a QCL relationship between antenna ports, using the same receive beam receiving or transmitting beam to transmit the serving cell Reference signal.
  • the serving cell packet is a timing offset packet TAG, and the timing offset of the serving cell within the same TAG is the same as the timing reference cell.
  • the receiving module is further configured to receive a measurement pilot that is sent by the base station by using a beam of the serving cell of the different serving cell group;
  • a QCL determination indication or a beam ID of a beam having a target channel quality according to a beam of the serving cell of the different serving cell group where the QCL determination indication is that the UE obtains at least two serving cells by estimation Whether the beam satisfies the judgment bit of the QCL relationship of the spatial characteristic parameter;
  • the terminal further includes a sending module, configured to feed back the QCL determination indication or the beam ID to the base station.
  • the serving cell group is a packet obtained by the base station grouping the serving cell allocated to the UE, and the receiving module is further configured to:
  • a ninth aspect of the embodiments of the present application further provides a base station, where the base station includes a processor, a transceiver connected to the processor, and a memory, where the memory is used to store an instruction, where the processor is configured to execute the instruction to execute the application.
  • the communication method provided in the first aspect or any one of the implementations of the first aspect.
  • a tenth aspect of the embodiments of the present application further provides a base station, including: a processor, a transceiver connected to the processor, and a memory, where the memory is used to store an instruction, where the processor is configured to execute the instruction to execute the application.
  • the communication method provided in the second aspect or any one of the implementations of the second aspect.
  • An eleventh aspect of the embodiments of the present application further provides a terminal, where the terminal includes a processor, a transceiver connected to the processor, and a memory, where the memory is used to store an instruction, and the processor is configured to execute the instruction to execute the terminal.
  • a twelfth aspect of the embodiments of the present application further provides a terminal, where the terminal includes a processor, a transceiver connected to the processor, and a memory, where the memory is used to store an instruction, and the processor is configured to execute the instruction to execute the A communication method provided in the fourth aspect or any one of the implementations of the fourth aspect.
  • the thirteenth aspect of the present application further provides a communication system, which includes the base station provided in the ninth aspect of the embodiment of the present application and the terminal provided in the eleventh embodiment of the present application.
  • the communication system includes two base stations provided by the ninth aspect of the embodiments of the present application.
  • the fourteenth aspect of the present application further provides a communication system, which includes the base station provided in the tenth aspect of the embodiment of the present application and the terminal provided in the twelfth aspect of the embodiment of the present application.
  • the communication system includes two base stations provided by the tenth aspect of the embodiments of the present application.
  • the storage medium includes, but is not limited to, a flash memory, a hard disk drive (HDD), or a solid state drive (SSD).
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic diagram of a type of carrier aggregation
  • FIG. 2 is a schematic diagram of a base station communicating with a terminal through two beams
  • FIG. 3a is a diagram of an embodiment of a communication method according to an embodiment of the present application.
  • FIG. 3b is a diagram of an embodiment of a communication method according to an embodiment of the present application.
  • 4 is a schematic diagram of a subframe timing offset of an uplink and downlink subframe
  • FIG. 5 is a diagram of an embodiment of a communication method according to an embodiment of the present application.
  • FIG. 6 is a diagram of an embodiment of a base station according to an embodiment of the present application.
  • FIG. 7 is a diagram of an embodiment of a base station according to an embodiment of the present application.
  • FIG. 8 is a diagram of an embodiment of a terminal according to an embodiment of the present application.
  • FIG. 9 is a diagram of an embodiment of a terminal according to an embodiment of the present application.
  • FIG. 10 is a diagram of an embodiment of a base station according to an embodiment of the present application.
  • FIG. 11 is a diagram of an embodiment of a terminal in an embodiment of the present application.
  • FIG. 12a is a diagram of an embodiment of a communication system according to an embodiment of the present application.
  • Figure 12b is a diagram of one embodiment of a communication system in accordance with an embodiment of the present application.
  • An embodiment of the present application provides a communication method, system, and related device, by grouping a serving cell serving a UE, and passing a QCL relationship between antenna ports of at least a serving cell in a serving cell group through QCL indication signaling.
  • the UE is sent to the UE, so that the UE can perform transmission of the reference signal according to the QCL indication signaling, thereby reducing pilot and feedback overhead of beam management.
  • the system architecture mainly used in this application includes a base station and a terminal. Both the base station and the terminal can operate base stations and terminals on licensed or unlicensed bands.
  • one or more carriers, licensed bands and unlicensed bands for carrier aggregation may be included in the application, and may include one or more carrier and unlicensed bands included in the licensed band.
  • Carrier aggregation is performed on one or more carriers.
  • the cell mentioned may be a cell corresponding to the base station, and the cell may belong to the macro base station, or may belong to the base station corresponding to the small cell, where the small cell may include: a metro cell, a micro cell. Micro cell, Pico cell, Femto cell, etc.
  • small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a carrier in a wireless communication system multiple cells can work at the same frequency at the same time.
  • the concept of a carrier in a wireless communication system is equivalent to a cell.
  • the carrier identifier of the secondary carrier and the cell identifier (Cell ID) of the secondary cell working in the secondary carrier are carried in the same manner.
  • the carrier can be considered to be equivalent to the concept of a cell, for example, the terminal device accessing one carrier and accessing one cell are equivalent.
  • the carrier component (CC) and the serving cell appearing in the present application, there is a one-to-one correspondence between the CC and the serving cell.
  • the concept of the serving cell and the CC is not identical, but still has a one-to-one correspondence.
  • the physical characteristics of the CC are not the same as the concept of the carrier frequency, the propagation path, or the corresponding beam of the CC, such as the spacing of the two CCs and the respective propagation paths, or the beams corresponding to the CC.
  • the carrier unit CC may represent a component carrier in a carrier aggregation, or a bandwidth part (BWP).
  • the component carrier may be a continuous frequency domain resource in the cell transmission bandwidth, a non-contiguous frequency domain resource in the cell transmission bandwidth, and the like.
  • the bandwidth of the at least one component carrier may be divided into one or more bandwidth part (BWP) (or may be referred to as a carrier bandwidth part, CBWP), where each BWP corresponds to at least one frequency domain consecutively.
  • BWP bandwidth part
  • CBWP carrier bandwidth part
  • Physical resource block (RB) Physical resource block
  • Different BWPs may have the same frame structure parameter or have different frame structure parameters, and the frame structure parameters include at least one of a subcarrier interval, a slot configuration parameter, a cyclic prefix CP length, and a transmission time interval TTI.
  • the method for the serving cell grouping in the present invention can be applied to the grouping of the carrier, and can also be applied to the packet of the bandwidth part.
  • the QCL indication method between different serving cells can be applied to the QCL indication between the antenna ports of different carriers. It can be applied to QCL indications between antenna ports of different bandwidth parts.
  • the time length of one radio frame is 10 ms
  • the time length of one subframe is 1 ms
  • one radio frame includes 10 subframes.
  • NCP Normal Cyclic Prefix
  • ECP Extended Cyclic Prefix
  • one ECP subframe includes 12 OFDM symbols or 2 slots; the OFDM symbol is numbered from 0 to 11, and the 0th to the 5th The OFDM symbols are odd slots, and the sixth to eleventh OFDM symbols are even slots.
  • the smallest unit is the subcarrier. From the time-frequency two-dimensional joint view, the minimum unit is the resource element (Resource Element, RE) for the resource used for one antenna port transmission.
  • RE Resource Element
  • One RE includes one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • a Resource-Element Group may contain an integer number of REs, for example, one REG may contain 4 or 16 REs.
  • a physical resource block (PRB) includes one time slot in the time domain, 12 subcarriers in the frequency domain, and one PRB pair in one subframe.
  • a Resource Block Group (RBG) may contain an integer number of PRBs. For example, one RBG may contain one, two, three, four or other integer number of PRBs.
  • the antenna ports corresponding to a serving cell are generally classified into four types, and the first type is a cell-specific reference signal (CRS), and the second type is a multimedia. Broadcasting multicast service ingle frequency network (MBSFN) reference signals (MBSFN reference signals), and UE-specific reference signals (UE-specific reference signals), also called demodulation reference signals (Demodulation) Reference signals (DMRS), the fourth category is Positioning reference signals.
  • MCSFN cell-specific reference signal
  • UE-specific reference signals also called demodulation reference signals (Demodulation) Reference signals
  • DMRS demodulation reference signals
  • Positioning reference signals Among them, a reference signal is transmitted on each antenna port.
  • An antenna port is a logical port used for transmission, which can correspond to one or more actual physical antennas. The definition of the antenna port is defined from the perspective of the receiver, that is, if the receiver needs to distinguish the spatial difference of resources, it is necessary to define multiple antenna ports.
  • the reference signal corresponding to an antenna port received by the UE defines a corresponding antenna port.
  • this reference signal may be a composite of signals transmitted by multiple physical antennas.
  • CRS supports one, two, and four antenna port configurations.
  • the base station may configure a cell-specific antenna port, and the number of dedicated antenna ports of the cell may be 1, 2, or 4.
  • the base station configures antenna port 0 for the cell user; when the number of cell-specific antenna ports is 2, the base station configures antenna port 0 and antenna port 1 for the cell user; When the number of antenna ports is 4, the base station configures antenna port 0, antenna port 1, antenna port 2, and antenna port 3 for the cell user.
  • the base station configures the CRS on the resource block according to the common reference signal pattern of the configured cell-specific antenna port and the predefined corresponding cell-specific antenna port, and transmits the resource block carrying the CRS to the cell user.
  • the cell-specific downlink reference signal in the first class can perform downlink channel quality measurement.
  • downlink channel estimation the downlink channel estimation is mainly used for coherent detection and demodulation at the UE end.
  • the base station may be an LTE system, an NR system, or an evolved base station (Evolved Node B, referred to as an eNB or an e-NodeB) macro base station in an Authorized Auxiliary Access Long-term Evolution (LAA-LTE) system.
  • a micro base station also referred to as a "small base station”
  • AP access point
  • TP transmission point
  • gNodeB new generation Node B
  • the terminal may be referred to as a UE, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), an intelligent terminal, etc., and the terminal device may be connected to one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal device may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., and the terminal device may also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device and a future NR network. Terminal devices in which they exchange voice or data with a wireless access network.
  • the terminal device may further include a relay relay, and the data communication between the base station and the base station may be regarded as a terminal device, which will be introduced in a general sense in the present application.
  • the QCL parameters are based on the requirements of the 5G beam management technology, and are introduced to characterize the spatial characteristics of the parameters, such as AoA, PAS of AoA, AoD, PAS of AoD, receive antenna spatial correlation, transmit antenna Spatial correlation, receive spatial beam and transmit spatial beam, etc.
  • the physical meaning of the receive spatial beam and the transmit spatial beam may be: a receive/transmit vector weight corresponding to the receive/transmit spatial beam, the vector weighted on the receive/transmit antenna array, or the beam index corresponding to the receive/transmit beam, beam Power, arrival delay, etc., parameters that characterize the beam characteristics.
  • AoA represents an angle of arrival of the electromagnetic beam when the antenna array receives the spatial wireless electromagnetic beam.
  • AoD represents the exit angle of the electromagnetic beam when the antenna array transmits the spatial wireless electromagnetic beam.
  • PAS-of-AoA represents the angular spectrum of the radiated power of the electromagnetic beam when the antenna array receives the spatial wireless electromagnetic beam.
  • the angular spectrum represents the variation of the signal power with the receiving angle, that is, the distribution of the signal power in the spatial dimension.
  • PAS-of-AoD indicates the angular spectrum of the radiated power of the electromagnetic beam when the antenna array receives the spatial wireless electromagnetic beam.
  • the angular spectrum indicates the variation of the signal power with the transmission angle, that is, the distribution of the signal power in the spatial dimension. .
  • Receive antenna spatial correlation represents the spatial correlation between the antenna elements that make up the receive antenna array, which can be characterized using the receive antenna spatial correlation matrix.
  • the spatial correlation of the transmit antennas indicating the spatial correlation between the antenna elements that make up the transmit antenna array, can be characterized using the transmit antenna spatial correlation matrix.
  • the spatial beam of the transmitting space indicates the spatial wireless electromagnetic beam transmitted by the antenna array, and may be represented by a beam ID, a CSI-RS resource ID, or the like, or any parameter value capable of characterizing the receiving beam of the receiving end, for example, a weight corresponding to the receiving beam.
  • the receiving spatial beam indicates the spatial wireless electromagnetic beam received by the antenna array, and may be represented by a beam ID, a CSI-RS resource ID, or the like, or any parameter value capable of characterizing the receiving beam of the receiving end, for example, a weight corresponding to the receiving beam.
  • the spatial filter may represent a transmit/receive filter formed by weighting weights on the transmit/receive antenna array.
  • the QCL relationship between the antenna ports of the at least two serving cells may also refer to the definition in LTE. If two antenna ports are considered to be QCL, the channel large-scale information of one antenna port can be from another antenna port. The channel is speculated from large-scale information. Among them, the channel large-scale information includes: channel average gain, Doppler spread, Doppler frequency offset, average delay, and delay spread.
  • the channel spatial characteristic parameter of one of the antenna ports can be inferred from the channel spatial characteristic parameter of the other antenna port, and It is indicated that the UE/base station receives the reference signals through the two antenna ports using the same receive beam, or the UE/base station transmits the reference signal through the two antenna ports using the same transmit beam.
  • Carrier Aggregation (CA) technology can aggregate multiple CCs into one wider spectrum, and also aggregate some discontinuous spectrum fragments together, which can well satisfy LTE and LTE-A. System spectrum compatibility requirements not only accelerate the standardization process, but also maximize the use of existing LTE equipment and spectrum resources.
  • FIG. 1 is a schematic diagram of a type of carrier aggregation.
  • the figure includes three types, namely, scenario (a), scenario (b), and scenario (c), which respectively have carrier frequency A and carrier frequency B, where , scenario (a) and scenario (b), consecutive CCs on the same carrier frequency A, can be considered to have similar propagation characteristics of the corresponding wireless channel (with similar propagation delay, propagation path and beam gain, etc.) And the same RF link can be used to transmit/receive the beam. In this case, it can be assumed that the transmit and receive beams on different CCs have similar characteristics.
  • FIG. 2 is a schematic diagram of a base station communicating with a terminal through two beams, where a frequency point of the first carrier unit is f1, and a frequency point of the second carrier unit is f2, as shown in FIG. If the frequency points f1 and f2 are far apart, the channel characteristics between the first carrier unit and the second carrier unit may be very different, so the direction of the optimal beam is also different.
  • the large-scale information has a QCL relationship.
  • the dotted line indicates the receiving/transmitting beam of the UE
  • the solid line indicates the transmitting/receiving beam of the base station.
  • the beam indicated by the base station and the f1 of the UE forms a beam pair
  • the beam indicated by f2 forms another beam pair.
  • the beam management of each CC is independent, so that it is only possible to determine whether there is a QCL relationship between multiple antenna ports of one CC, and it is not possible to obtain a QCL relationship between antenna ports of each serving cell.
  • the second mode is that the antenna ports of all CCs have a QCL relationship with respect to the spatial feature parameters, but in this manner, the antenna ports of the CCs with distant frequency points do not have a QCL relationship with respect to the spatial feature parameters, that is, their The beam characteristics are not the same. If there is no QCL relationship between the antenna ports of CC1 and CC2, but the base station indicates that the UE has a QCL relationship between the antenna ports of CC2 and CC1, the transmit and receive beam pairs used on CC2 will be inaccurate. .
  • FIG. 3a is a diagram of an embodiment of a communication method according to an embodiment of the present application
  • FIG. 3b is a diagram of an embodiment of a communication method according to an embodiment of the present application.
  • the base station communicates with the terminal through three CCs, which are divided into CC2 as the padding area, CC1 above the padding area, and CC3 below the padding area. It can be seen that the beam characteristics of CC1 and CC2 are similar, such as The propagation direction is the same, and the carrier frequency spacing is not much different.
  • the antenna ports of CC1 and CC2 have a QCL relationship, so that the base station can indicate the UE's transmit and receive beams in CC2 and the transmit and receive beams of CC1 through QCL indication signaling.
  • the base station sends, to the UE, QCL indication signaling for indicating a QCL relationship between antenna ports of at least two serving cells; the UE determines, according to the QCL indication signaling, that there is an antenna port between QCL relationship.
  • the method shown in Figure 3b can include:
  • the base station determines that there is a QCL relationship between antenna ports of at least two serving cells in the same serving cell group, the base station sends, to the UE, a QCL for indicating a QCL relationship between antenna ports of the at least two serving cells. Indication signaling.
  • step 401 can also be replaced by the following method:
  • the base station sends, to the UE, QCL indication signaling for indicating a QCL relationship between the antenna ports of the at least two serving cells, the serving cells may belong to the same serving cell group, or belong to different serving cell groups, where each serving cell A packet contains one or more serving cells.
  • the base station sends high layer signaling (RRC signaling or MAC signaling) or physical layer signaling to the UE, and is used to indicate the DMRS/CSI-RS of one or more serving cells and the CSI-RS/SS of a reference serving cell.
  • -block has a QCL relationship.
  • the service cell grouping has two different manners.
  • the first one is to perform a predefined group according to a preset rule, such as directly arranging the predefined grouping manner in a communication protocol between the base station and the UE;
  • the base station obtains a serving cell allocated to the user equipment UE.
  • the base station sends the information of the serving cell group to the UE by using the high layer signaling or the physical layer signaling.
  • the serving cell grouping is a packet that is performed by the base station to be allocated to the serving cell of the UE
  • the base station needs to send the information of the serving cell group to the UE through high layer signaling, so that the UE learns the service serving the UE.
  • the information of the cell grouping so that when the subsequent base station notifies the QCL relationship, when the reference signal is transmitted by the serving cell, the selection range is narrowed.
  • the QCL relationship between the antenna ports of the serving cell in the same serving cell group may be further defined.
  • the base station determines the antenna port of the serving cell in the same serving cell group.
  • the QCL indication is sent directly using the definition rule of the same serving cell group.
  • the antenna ports of these CCs may be considered to have a QCL relationship with respect to one or more of the QCL parameters, and in the case of carrier aggregation.
  • the CCs are not continuous or far apart, and it is considered that the antenna ports of these CCs do not have a QCL relationship with respect to the QCL parameters. Therefore, if the serving cell is grouped into a QCL relationship between the antenna ports of the serving cell in the same serving cell group, one way is to group the CC according to the carrier frequency spacing, and further, the path delay of the corresponding beam is different.
  • the receiving power is also different, and the CC grouping can also be performed according to the pointer timing relationship between different CCs.
  • all the CCs of one UE are divided into one primary cell (PCell) and a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • Each CC corresponds to one PCell or SCell
  • the eNB has an RRC connection between the base station and the UE.
  • FIG. 4 is Schematic diagram of subframe timing offset of uplink and downlink subframes.
  • the upper subframe is a downlink subframe, and the lower is an uplink subframe.
  • the NTA indicates a subframe timing offset
  • the base station is required to notify the UE by using high layer signaling, such as a medium access control-control cell (Medium Access Control- Control Element, MAC-CE) or Radio Resource Control (RRC), etc.
  • NTA_offset represents an additional offset of time division duplexing relative to the uplink subframe timing of the frequency division duplex system
  • TS represents the system sampling clock.
  • the cells serving the UE can be grouped according to this rule, that is, the base station sets the CCs having the same timing offset NTA to be within one TAG by estimating the relationship between the timing advances of different CCs in advance.
  • the serving cell in the same TAG uses the same timing offset and the same timing reference cell.
  • the TAG information may be determined by the base station in addition to the base station and the UE, and then passed through the upper layer.
  • the signaling sends the information of the TAG to the UE.
  • the method for directly dividing the N serving cells into the M group in the foregoing first serving cell grouping manner may specifically directly group CC1, CC2, CC3, ..., CCn, for example, directly in order.
  • the serving cell packet includes a CC, for example, the serving cell group includes 3 CCs, the serving cell group 1 includes CC1, CC2, and CC3, and the serving cell group 2 includes CC4, CC5, and CC6, etc., and the grouping manner can be directly defined by a protocol. In this manner, the base station does not need to send the information of the serving cell group to the UE through the high layer signaling.
  • the base station also needs to notify the UE of the information of the serving cell group by using the high layer signaling.
  • the method for calculating the NTA may be: calculating, by the base station, a propagation path of different CCs in advance, or calculating a carrier frequency spacing between CCs in the carrier aggregation, and then dividing the CCs with the same NTA into the same TAG.
  • the base station can configure multiple TAGs for the UE through high layer signaling. For example, when the base station indicates that the UE adds an SCell through the high-layer signaling, it adds a TAG identifier to the SCell to identify which TAG the SCell belongs to.
  • a TAG contains a PCell
  • the TAG can be called a primary TAG (pTAG); if the primary cell is not included, the TAG is called a secondary TAG (sTAG). Both pTAG and sTAG can contain one or more SCells.
  • the UE considers the CCs in one TAG to have the same subframe timing offset and the same timing reference cell.
  • the serving cell may also be grouped according to the following manner: the base station performs grouping according to the numerology adopted by the serving cell. For example, a serving cell having the same numerology is divided into one serving cell group, or a serving cell having a plurality of numerogy is divided into one serving cell group.
  • the manner of grouping can be fixed or configured through higher layer signaling.
  • the subcarrier spacing configuration parameters can be 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz.
  • the base station may divide the serving cells with the subcarrier spacing of 15 kHz, 30 kHz, and 60 kHz into one group, and divide the serving cells with the subcarrier spacing of 120 kHz, 240 kHz, and 480 kHz into another group.
  • the base station informs the UE through which the serving cells of the numerology are in the same serving cell group by using high layer signaling (for example, RRC signaling or MAC-CE), or the base station notifies the UE at least through high layer signaling (for example, RRC signaling or MAC-CE).
  • a serving cell group contains at least one serving cell of a numerology.
  • a serving cell with the same numerology can also be divided into a plurality of different serving cell packets.
  • each serving cell packet includes at least one serving cell.
  • the above-mentioned serving cell grouping may be predefined.
  • the number of serving cell packets may be predetermined, or/and the number of serving cells within each serving cell packet, or/and the identification or configuration parameters of the BWP/CC within each packet; or the base station may pass a high layer letter
  • the information that groups the serving cell is configured to the user.
  • the information of the serving cell packet may be information indicating a serving cell included in at least one serving cell packet, or/the number of serving cell packets, or/and the number of serving cells in each serving cell packet, in the form of a bitmap, Or / and the identity or configuration parameters of one or more serving cells within each packet, or / and the serving cell group in which one or more serving cells are located. ).
  • the base station configures, by using the high layer signaling, which serving cell group the one or more serving cells belong to (for example, may indicate an identifier of the serving cell group), and/or indicates a QCL parameter corresponding to the serving cell group (eg, average time) At least one of delay, delay spread, Doppler spread, Doppler shift, average channel gain, and airspace parameters, or / and antenna ports of different serving cells corresponding to QCL relationships, or antenna port combinations, or Different types of reference signals (eg, information indicating between CSI-RS and DMRS, or between SS block and DMRS, or between SS block and CSI-RS, or QCL relationship between CSI-RS and CSI-RS).
  • Table 1 gives an example:
  • the different grouping methods are described above.
  • the QCL relationship between the antenna ports of at least two serving cells in the same group is described below.
  • the first method for determining the QCL is to directly determine that there are QCL relationships between antenna ports of at least two serving cells in the same serving cell group.
  • the base station can directly determine at least two of the same serving cell group according to the identification manner.
  • the QCL relationship between the antenna ports of the serving cell and generates a corresponding QCL indication to be sent to the UE.
  • the second method for determining the QCL is that the base station sends the measurement pilot through the beam of the serving cell, and the two serving cells of the same serving cell group are used for description.
  • the QCL between the antenna ports of the two or more serving cells can be deduced by analogy. .
  • the base station first transmits measurement measurement pilots to the UE through the beams of the two serving cells in the same serving cell group, and after receiving the measurement pilot, the UE first determines the target channel quality according to the beams of the two cells.
  • the QCL determines the indication or the beam ID.
  • the base station tests the beams in all directions for the measurement pilots received on the two CCs, and selects the beam ID or the QCL indication with good channel quality among the beams to be sent to the base station.
  • the base station is enabled to determine, according to the beam ID or the QCL indication, whether there is a QCL relationship between antenna ports of the serving cell corresponding to the two CCs.
  • the QCL determination indication refers to a determination bit of whether the UE transmits or receives a transmit/receive beam on the two CCs that satisfy the spatial parameter QCL.
  • the beam ID or the QCL of the UE indicates that the QCL relationship between the antenna ports of the serving cell corresponding to the two CCs in the same TAG can be fed back, and the antenna port of the serving cell corresponding to the CC of different TAGs can be fed back.
  • the relationship between QCL That is, in the embodiment of the present application, not only the QCL relationship between the antenna ports of the serving cell in the same TAG but also the QCL relationship between the antenna ports of the serving cells of different TAGs can be determined. After the judgment is completed, the QCL relationship is sent to the UE through the QCL indication signaling, and the judgment of the same TAG and different TAGs can further reduce the pilot and feedback overhead of the beam management.
  • the QCL relationship between the antenna ports of the serving cells of different TAGs may be determined, and the QCL relationship between the antenna ports of the two serving cells in the same TAG may not be determined, and the same can be performed.
  • the pilot and feedback overhead of beam management is reduced to some extent.
  • a third mode is that the base station determines, according to a carrier frequency spacing or a propagation path of the carrier unit corresponding to the at least two serving cells, that the antenna ports of the at least two serving cells have a QCL relationship.
  • This method is also used to group TAGs. When judging the QCL relationship in this way, one of the carrier frequency spacing and the propagation path may be used for judging, or the two may be combined and judged. In the judgment method of the carrier frequency spacing, if the carrier frequencies of the two CCs in the same serving cell group are small, it can be considered that the spatial characteristics of the antenna ports of the serving cells corresponding to the two CCs are the same.
  • the antenna ports of the serving cells corresponding to the two CCs have a QCL relationship.
  • the NTAs of the two CCs are basically the same under the same propagation path, and the same transmission direction beam can be used in the same propagation path. Therefore, the antennas of the serving cells corresponding to the two CCs can be identified. There is a QCL relationship between the ports.
  • the UE receives the quasi-co-located QCL indication signaling sent by the base station.
  • the base station After completing the generation of the QCL indication signaling, the base station sends the QCL indication signaling to the UE, and the UE also receives the QCL indication signaling, and the QCL indication signaling can be learned in the same serving cell group. Whether there is a QCL relationship between antenna ports of at least two serving cells, or whether there is a QCL relationship between antenna ports of serving cells of different serving cell groups. Of course, when the QCL indication signaling indicates that both situations are present, the UE also performs the transmission of the reference signal according to two situations.
  • the QCL indication signaling may be sent by using the high layer signaling, or may be sent by using the physical layer signaling, or by combining the high layer signaling and the RRC signaling.
  • the antenna port (eg, CSI-RS, or DMRS) on the at least one serving cell and the antennas on the at least one serving cell in the same serving cell group or/and other serving cell group may be indicated in the QCL indication signaling.
  • the set of ports, and/or which QCL parameters have a QCL relationship eg, spatial feature parameters for the SS block, Doppler spread, average delay has a QCL relationship, and spatial parameters for the CSI-RS have a QCL relationship).
  • the UE determines, according to the QCL indication signaling, that at least two serving cells in the same serving cell group that have a QCL relationship between antenna ports, use the same receive beam receiving or transmitting beam to transmit the serving cell. Reference signal.
  • the protocol has a QCL relationship between antenna ports of at least two serving cells of the same TAG, and the antenna ports of the serving cells of different TAGs do not have a QCL relationship, the UE understands the same TAG.
  • the same receiving beam can be used on the serving cell to receive the antenna port signal. Therefore, the beam management process of the base station and the UE only needs to be performed on the CC corresponding to one of the serving cells, thereby saving beam scanning pilots on other CCs. Overhead and beam feedback overhead.
  • the UE after receiving the QCL indication signaling indicated by the base station, the UE understands that the base station transmit beam of the CSI-RS on the CC2 is also used to transmit the CSI-RS (or DMRS) on the CC1, thereby using the receive with the CC2.
  • the same receiving beam of the CSI-RS port of the beam management receives the antenna port signal on the CC1, so that the beam management process on the CC2 can be omitted, which saves the pilot overhead and beam feedback overhead of the beam management.
  • the serving cell serving the UE is pre-processed with the serving cell, and the QCL relationship between the antenna ports of at least two serving cells in the same serving cell group is determined.
  • the QCL relationship is indicated to the UE by using QCL indication signaling, so that the base station does not need to perform beam management on the beams corresponding to each serving cell, but only It is necessary to separately perform beam management on the serving cells that do not have a QCL relationship between the antenna ports, and only perform beam management on one of the serving cells having QCL relationships between the antenna ports, which can reduce the pilot and feedback of the beam management process. Overhead.
  • steps 401 to 403 in the embodiment shown in FIG. The QCL relationship between the antenna ports of the serving cells of different serving cell groups is determined and utilized. For example, for different TAGs, after the initial access of the UE, the base station can perform independent beam management on different TAGs, and the beam management process and the aforementioned QCL relationship between the antenna ports of at least two serving cells are determined. The second mode of the mode is similar. After the base station transmits different beams by measuring the pilot, the UE feeds back the beam ID/QCL with good channel quality to the base station.
  • the base station determines whether there is a QCL relationship between the antenna ports of the serving cells of different TAGs by comparing the beam ID/QCL judgment indicators fed back on different TAGs, and then the base station can select the QCL between the antenna ports of the serving cells grouped by different serving cells.
  • the relationship is sent to the UE in the manner indicated by the QCL, so that the UE can determine the reference signal of the serving cell by using the same receive beam receiving or transmitting beam on the serving cell of the different serving cell group with the QCL relationship between the antenna ports. .
  • Step 401 of the embodiment shown in FIG. 4 may be changed in this example to when the base station determines that there is a QCL relationship between antenna ports of the serving cell of different serving cell groups, the base station sends the UE to indicate the difference.
  • the base station For this step, there are two types of the same serving cell group, which are similar to the two types of serving cell grouping in the embodiment shown in FIG. However, when performing the serving cell grouping, it is not preferred to consider whether there is a QCL relationship between the antenna ports of the serving cell in the same serving cell group. In addition, if the second serving cell grouping method is used, and the base station performs the grouping of the serving cell, the base station also needs to send the information of the serving cell group by using the high layer signaling. In addition, two ways for determining the QCL relationship in this step are the same as those in the embodiment shown in FIG. 4, which are the second QCL relationship determination manner and the third QCL relationship determination manner in the embodiment shown in FIG. 4, respectively. .
  • the antenna ports of different predefined cell groups may have a QCL relationship, instead of the first QCL relationship determination method in the embodiment shown in FIG.
  • the predefined antenna ports of the same serving cell group have a QCL relationship.
  • the step 402 of the embodiment shown in FIG. 4 may be unchanged in this example, but the content of the received QCL indication signaling may change, that is, the QCL indication signaling is used to indicate the antenna ports of the serving cell of different serving cell groups. Has a QCL relationship.
  • Step 403 of the embodiment shown in FIG. 4 may be changed in this example to the UE determining, according to the QCL indication signaling, the same receiving beam reception or the serving cell of the different serving cell group having a QCL relationship between the antenna ports.
  • the transmit beam transmits a reference signal of the serving cell.
  • the protocol pre-defines the QCL relationship between the antenna ports of the serving cells of different TAGs
  • the UE will understand that the same receiving beam can be used on the CCs in different TAGs.
  • the receiving antenna port signal is used, so the beam management process of the base station and the UE only needs to be performed on one of the CCs, thereby saving beam scanning pilot overhead and beam feedback overhead on other CCs.
  • the UE in addition to determining and utilizing only the QCL relationship between antenna ports on at least two serving cells within the same serving cell group, or only for services in different serving cell groups
  • the QCL relationship between the antenna ports on the cell is determined and utilized; the QCL relationship between the antenna ports on the at least two serving cells in the same serving cell group and the serving cells in different serving cell groups can also be simultaneously
  • the QCL relationship between the upper antenna ports is determined and utilized, thereby further saving beam management pilot overhead and beam feedback overhead.
  • PSCell refers to the existence of two carrier groups (Carrier Group, CG for short) in the dual connectivity technology. Each CG is connected to different base stations, one of which is called Primary CG and the other is called Secondary CG. Primary CG and Secondary CG. There is one PCell in each, and the PCell in the Secondary CG is called PSCell. It can be seen that in this case, two base stations are actually included, and each UE can be connected to two base stations through the dual connectivity technology.
  • Carrier Group Carrier Group
  • CG Carrier Group
  • the base station may notify the UE of all the SCells in the same pTAG by using the high layer signaling.
  • Antenna ports (or DMRS antenna ports for data demodulation) within CSI-RS resources measured by beam management or channel state information and CSI-RS resources for beam management or channel state information measurement within PCell or PSCell
  • the internal antenna ports have a QCL relationship with respect to the channel average gain or at least one spatial characteristic parameter.
  • the UE After receiving the QCL indication signaling, the UE uses the receive beam of the CSI-RS on the PCell or PSCell to receive CSI-RS (or DMRS) on other SCells in the same pTAG, so that the beam management process on other SCells can be performed. Omitted, saving beam scanning pilot overhead and beam feedback overhead.
  • the UE may be notified by the QCL indication that all SCells in the same pTAG are used for beam management or channel state information.
  • the gain or at least one spatial feature parameter has a QCL relationship.
  • the UE After receiving the high-level signaling, the UE understands that the base station transmit beam of the CSI-RS on the PCell is also used to send CSI-RS (or DMRS) on other SCells in the same pTAG, so as to use PCell or PSCell on other SCells.
  • the receiving beam of the upper CSI-RS receives CSI-RS (or DMRS) on other SCells in the same pTAG, so that the beam management process on other SCells can be omitted, saving beam scanning pilot overhead and beam feedback overhead.
  • the base station needs to determine which of the serving cells in a pTAG have a QCL relationship, and notify the UE which SCells in the pTAG through high layer signaling (such as RRC or MAC-CE) or physical layer signaling (DCI).
  • High layer signaling such as RRC or MAC-CE
  • DCI physical layer signaling
  • the antenna ports have a QCL relationship with respect to the channel average gain or at least one spatial characteristic parameter.
  • the format of the high layer signaling/physical layer signaling may be a bit bitmap, and the number of bits is equal to the number of SCells in the pTAG. Specifically, if the number of serving cells in a pTAG is 4, then 1001 represents that the antenna ports on the first and fourth SCells have a QCL relationship with the antenna ports on the PCell. Alternatively, a message may be added to the high-level signaling of each SCell in the TAG to describe the QCL relationship between the SCell and the antenna port of the PCell.
  • SCell C serving cell or SCell C
  • the base station may notify the UE that all SCells in the same sTAG are used for beam management or channel state through higher layer signaling.
  • the antenna port (or DMRS port for data demodulation) in the CSI-RS resource of the information measurement is QCL-related, or all SCell and serving cell or SCell C in the same sTAG is used for beam management or channel state information measurement.
  • the antenna ports of the CSI-RS resources have a QCL relationship with respect to at least one of the spatial characteristic parameters or the channel average gain.
  • the UE After receiving the high-level signaling, the UE uses the receiving beam of the CSI-RS on the serving cell or SCell C to receive CSI-RS (or DMRS) on other SCells in the same pTAG, so that the beam management process on other SCells is Can be omitted, saving beam scanning pilot overhead and beam feedback overhead.
  • the base station may notify the UE of all SCells in the same sTAG for beam management or channel state information by using high layer signaling.
  • the antenna port in the measured CSI-RS resource (or the DMRS port used for data demodulation) is QCL-related, or all SCell and serving cell or SCell C in the same sTAG is used for beam management or channel state information.
  • the antenna ports of the measured CSI-RS resources have a QCL relationship with respect to at least one of the spatial characteristic parameters or the channel average gain.
  • the UE After receiving the high layer signaling, the UE understands that the base station transmit beam of the CSI-RS on the serving cell or SCell C is also used to send CSI-RS (or DMRS) on other SCells in the same sTAG, so as to be used on other SCells. Receiving CSI-RS (or DMRS) on other SCells in the same pTAG with the receiving beam of the CSI-RS on the serving cell or SCell C, so that the beam management process on other SCells can be omitted, saving beam scanning pilot overhead and Beam feedback overhead.
  • CSI-RS or DMRS
  • the base station can separately configure whether the antenna ports of the SCells have QCL relationships, and send them to the higher layer signaling or physical layer signaling.
  • UE User Equipment
  • the base station passes the high layer signaling At least one parameter indicating one or more reference SCells, such as the number of SCells, the ID of the SCell, the antenna port information on the SCell, and the corresponding QCL parameter information, and the like.
  • the UE After the base station determines the QCL relationship between the antenna ports of a serving cell in a pTAG or sTAG, the UE notifies the UE which CSI-RS resources for beam management or channel state information measurement in the SCell through high layer signaling or physical layer signaling.
  • One or channel average gain has a QCL relationship.
  • the base station notifies the UE of the antenna port in the CSI-RS resource for CSI measurement in each SCell and one reference serving cell or SCell in the SCell C1, SCell C2, and SCell C3 through high layer signaling or physical layer signaling.
  • At least one of the spatial characteristic parameters or the channel average gain between the antenna ports of the CSI-RS resources measured by the CSI has a QCL relationship.
  • Table 2 shows that the physical layer signaling of each CC has a QCL relationship between the antenna port of the CC corresponding serving cell and the antenna port on the reference SCell.
  • FIG. 5 is a diagram of an embodiment of a communication method according to an embodiment of the present application.
  • a base station directly groups all serving cells serving the UE, and indicates to the UE by the high layer signaling.
  • the packet information is sent to the UE by the QCL indication signaling, and the QCL relationship between the antenna ports of the serving cell in the same serving cell group is sent to the UE.
  • the communication method may include:
  • the base station determines, according to the carrier frequency spacing and the propagation path of the CC corresponding to all the serving cells configured for the same UE, whether there is a QCL relationship between the antenna parameters of the serving cell serving the UE.
  • the base station may further determine, according to the numerology information or the TA information of the different serving cell, whether the antenna ports of the serving cell serving the UE have a QCL relationship with respect to the spatial feature parameter.
  • the manner in which the QCL relationship is determined by the carrier frequency spacing and the propagation path in this step is similar to the third method for determining the QCL relationship in the embodiment shown in FIG. 3b, and details are not described herein.
  • the UE may feed back the capability of the serving cell group to assist the determination of the base station grouping.
  • a UE may have multiple radio frequency RF receive/transmit links for signal reception/transmission on different serving cells.
  • the serving cells on different RF links may not have a QCL relationship and therefore belong to different serving cell groups.
  • the base station can perform independent beam management on different serving cells, that is, after the base station transmits pilot measurement beams by using different serving cells, the UE feeds back the beam ID with better channel quality.
  • the QCL determines the indication to the base station.
  • the base station determines whether there is a QCL relationship between antenna ports of different serving cells by comparing the beam ID/QCL judgment indications fed back on different serving cells.
  • the QCL judgment indication in this embodiment refers to whether the transmit beam or the receive beam on the two serving cells that the UE obtains by the UE satisfies the judgment bit of the spatial parameter QCL.
  • the QCL determination indication may indicate at least one of the following: information of the number of serving cell groups supported by the UE, the number of serving cells supported in at least one packet, the ID or configuration parameter of at least one serving cell group, and at least one service.
  • the ID or configuration parameter of the serving cell in the cell group, the reference signal receiving power (RSRP), the average delay, and the time of the at least one antenna port (for example, the antenna port of the CSI-RS) on the at least one serving cell At least one of information such as extension, Doppler spread, Doppler shift, and the like.
  • the QCL determination indication includes which serving cell packet the serving cell/BWP/CC of the UE belongs to (for example, reporting the ID of the serving cell packet to which the BWP/CC belongs).
  • the base station triggers feedback of the QCL judgment indication by using high layer signaling (such as RRC signaling or MAC-CE) or physical layer signaling, or the base station triggers the UE to feed back the QCL judgment indication in at least one of the following situations:
  • high layer signaling such as RRC signaling or MAC-CE
  • physical layer signaling or the base station triggers the UE to feed back the QCL judgment indication in at least one of the following situations:
  • At least one serving cell is activated, or added, or configured, or deactivated, or deleted;
  • At least one numerology of the serving cell is activated, added, or configured, or deactivated, or deleted;
  • the first timer expires or has timed out, and the channel condition measured by the UE is found to be abrupt (such as beam failure or beam quality/RSRP below the threshold).
  • the duration of the first timer is a default value, or is triggered by RRC layer signaling or by MAC layer signaling.
  • the timing of the second timer is exceeded.
  • the duration of the second timer is a default value, or is triggered by RRC layer signaling or by MAC layer signaling.
  • the base station sets a serving cell having a QCL relationship between the antenna ports in the same serving cell sub-packet.
  • the serving cells can be divided into m serving cells according to the QCL relationship determined in step 501.
  • a packet (CC subgroup, CSG for short) or a serving cell group the base station may send information of the m serving cell sub-packets or the serving cell group to the UE by using high-layer signaling.
  • the information of the serving cell packet may be at least one of the following information in the form of a bitmap: information of the serving cell included in the at least one serving cell packet, the number of serving cell packets, and the number of BWP/CCs in each serving cell group.
  • the base station may indicate the manner of the packet by using the high layer signaling, for example, the signaling is set to “mode 1” to notify the UE that the serving cell group is grouped according to a predefined manner (for example, according to the TAG, or will have the same).
  • the serving cell of the numerology is divided into a serving cell packet, and the signaling is set to "mode 2" to inform the UE that the base station informs the serving cell packet through high layer signaling or physical layer signaling, or/and needs UE feedback.
  • QCL judgment indication for example, the signaling is set to “mode 1” to notify the UE that the serving cell group is grouped according to a predefined manner (for example, according to the TAG, or will have the same.
  • the QCL relationship between the antenna ports of the serving cell of the same CSG may be predefined, that is, the antenna ports of all the serving cells in a CSG are defined in advance with respect to at least one of the spatial characteristic parameters or the channel average gain has a QCL relationship. It is of course also possible to pre-define at least one of the spatial characteristic parameters between the antenna ports of the serving cells of different CSGs or the channel average gain does not have a QCL relationship. Then, the base station can indicate the QCL relationship between the antenna ports of the serving cell in the same CSG through the high layer signaling, and the QCL relationship between the antenna ports of the serving cells in different CSGs when different CSGs are defined. .
  • a reference serving cell or SCell can be recorded as SCell C1, and when there are multiple reference serving cells or SCells, such as m, respectively, it is recorded as SCell C1, SCell C2, SCell C3, ... SCell Cm.
  • the number of reference serving cells or SCells may be predefined by a protocol or determined by the base station to indicate the UE by higher layer signaling.
  • the reference base station or the SCell is a set serving cell for reference, and the base station may determine a QCL relationship between each serving cell in the CSG and an antenna port of the reference serving cell or the SCell, and when there is a QCL relationship.
  • the signaling is sent to the UE through the QCL indication signaling.
  • the above method may further comprise the following steps.
  • the base station sends, to the UE, QCL indication signaling for indicating a QCL relationship between antenna ports of at least two serving cells, the serving cells may belong to the same serving cell group, or belong to different serving cell groups, where each The serving cell packet contains at least one serving cell.
  • the base station sends high layer signaling (RRC or MAC signaling) or physical layer signaling to the UE, and is used to indicate the DMRS/CSI-RS of one or more serving cells and the CSI-RS/SS-block of a reference serving cell.
  • RRC radio resource control
  • the protocol may pre-define the other serving cell in the same CSG except the reference serving cell or SCell and the antenna port of the reference serving cell or SCell. At least one of the spatial feature parameters or the channel average gain has a QCL relationship.
  • the base station indicates the M group parameters by using the high layer signaling, where each group of parameters includes antenna port information from the serving cell 1, the serving cell 2, the serving cell 3, the serving cell m, for example, the serving cell 1, the serving cell 2, and the service.
  • Cell 3 ... CSI-RS resource configuration information between the serving cell m, and the like.
  • the base station may indicate, by higher layer signaling, the CSI-RS antenna port (or DMRS for data demodulation) of the serving cell for beam management or CSI measurement.
  • the CSI-RS antenna port or DMRS for data demodulation
  • At least one of the spatial characteristic parameters or the channel average gain of the CSI-RS antenna port for beam management or CSI measurement of one of the serving cell 1, the serving cell 2, the serving cell 3, the serving cell m, and the serving cell m Has a QCL relationship.
  • the base station on each serving cell can tell the UE through the physical layer signaling (DCI) which antenna port of the serving cell has a QCL relationship with the reference serving cell or the antenna port on the SCell.
  • the format of the DCI can be as shown in Table 3 below.
  • the foregoing method may further include the following steps: the base station notifies the UE that the antenna port on the one or more serving cells and the antenna port on the reference serving cell have a QCL relationship by using high layer signaling or physical layer signaling.
  • one or more reference SCells (which may be referred to as SCell C1 or SCell C1, SCell C2, SCell C3, ...) are optional in the embodiment of the present invention; optionally, the base station indicates one or more SCells through high layer signaling. At least one parameter, such as the number of SCells, the ID of the SCell, the antenna port information on the SCell, and the corresponding QCL parameter information.
  • the base station may notify the UE of the CSI-RS antenna port (or the DMRS port for data demodulation) and the SCell C1 (or SCell C1, SCell C2) on at least one of the one or more serving cell groups through physical layer signaling.
  • the CSI-RS antenna port (or the time-frequency resource corresponding to the SS block) in one of the SCell C3s has a QCL relationship.
  • the base station configures one or more serving cell packets (denoted as CSG1 or CSG1, CSG2, ...) through higher layer signaling, or configures at least one serving cell through higher layer signaling.
  • the at least one serving cell may be in the same serving cell packet or in a different serving cell grouping.
  • the base station informs the UE CSG1 or the antenna ports on the CSG1, CSG2, ... and the antenna port on which reference SCell through the physical layer signaling indication field as shown in Table 4 with a QCL relationship.
  • the process defined above can be implemented by the base station instructing the UE.
  • the serving cell serving the UE performs QCL relationship between the antenna ports of all the serving cells according to the carrier frequency spacing and the known propagation path, and then has the antenna port between the antenna ports.
  • the serving cell of the QCL relationship is divided into the serving cell sub-packets, and then one or more reference serving cells or SCells are selected from each serving cell sub-packet, and one or more reference serving cells or SCells are beam-managed.
  • the QCL indication is used to indicate to the UE according to the QCL relationship and the beam information, so that the base station does not need to perform beam management on the beam corresponding to each serving cell, but only needs to serve the serving cell without the QCL relationship.
  • Perform beam management, for only one of the service cells with QCL relationship Line beam management is sufficient to reduce the pilot and feedback overhead of the beam management process.
  • the serving cell grouping and the QCL indicating method for the spatial domain parameter are exemplified, the service of at least one large-scale information in the average delay, the delay spread, the Doppler spread, and the Doppler shift is also performed. Cell grouping and QCL indication methods are also applicable.
  • FIG. 6 is a diagram of an embodiment of a base station according to an embodiment of the present disclosure, where the base station may include a processing module 601 and a sending module 602, where
  • the processing module 601 is configured to: when the base station determines that the antenna ports of the at least two serving cells in the same serving cell group have a QCL relationship, send, by the sending module 602, the at least two A QCL indication signaling having a QCL relationship between the antenna ports of the serving cell, the serving cell group being a packet predefined according to a preset rule or being grouped by the base station to a serving cell allocated to the user equipment UE.
  • the serving cell group there are two different ways for the serving cell group.
  • the first one is to pre-define the packet according to the preset rule, such as directly arranging the predefined packet mode in the communication protocol between the base station and the UE; It is obtained by the base station grouping the serving cells allocated to the user equipment UE. Both methods of grouping have been explained in the embodiment shown in Fig. 3b for the description in step 401, and are not described herein again.
  • the antenna ports of the serving cell corresponding to the CCs may be considered to have a QCL relationship with respect to one or more of the QCL parameters. If the CCs in the carrier aggregation are not continuous or are far apart, it is considered that the antenna ports of the serving cells corresponding to the CCs do not have a QCL relationship with respect to the QCL parameters. Therefore, if the serving cell is grouped into a QCL relationship between the antenna ports of the serving cell in the same serving cell group, one way is to group the CC according to the carrier frequency spacing, and further, the path delay of the corresponding beam is different. The receiving power is also different, and the CC grouping can also be performed according to the pointer timing relationship between different CCs.
  • the serving cell group is obtained by the base station to group the serving cell that is allocated to the UE, and the sending module 602 is further configured to:
  • the base station sends the information of the serving cell group to the UE by using the high layer signaling, which is similar to the description of step 401 in the embodiment shown in FIG. 3b. Narration.
  • the antenna ports of the serving cell in the same serving cell group have a QCL relationship.
  • the QCL relationship setting is set on the basis of the second serving cell grouping manner in the embodiment shown in FIG. 3b, and the determining manner of the QCL relationship may be the same as the first determining the QCL manner in the embodiment shown in FIG. 3b. Similar, it will not be repeated here.
  • processing module 601 is specifically configured to:
  • the mode is similar to the method for determining the QCL by using the beam of the serving cell to transmit the measurement pilot in the embodiment shown in FIG. 3b.
  • the base station receives the beam ID or QCL judgment indication sent by the UE. According to the beam ID or the QCL judgment indication, the QCL relationship can be determined, and details are not described herein again.
  • the method can also determine the QCL relationship between the antenna ports of the serving cell of different serving cell groups, so that the beam ID or QCL indication of the UE can be fed back to the two serving cells in the same TAG.
  • the QCL relationship between the antenna ports can also feed back the QCL relationship between the antenna ports of the serving cells of different TAGs. That is, in the embodiment of the present application, not only the QCL relationship between the antenna ports of the serving cell in the same TAG but also the QCL relationship between the antenna ports of the serving cells of different TAGs can be determined.
  • the QCL relationship is sent to the UE through the QCL indication signaling, and the judgment of the same TAG and different TAGs can further reduce the pilot and feedback overhead of the beam management.
  • the QCL relationship between the antenna ports of the serving cells of different TAGs may be determined, and the QCL relationship of the antenna ports on the two serving cells in the same TAG may not be determined, and the same can be The pilot and feedback overhead of beam management is reduced to some extent.
  • processing module 601 is specifically configured to:
  • the manner of determining the QCL relationship may be similar to the manner of determining the QCL in the third embodiment shown in FIG. 3b, and details are not described herein again.
  • processing module 601 is further configured to:
  • N is greater than or equal to M
  • M and N are integers greater than or equal to 1;
  • the serving cell with the same timing offset and the same timing reference cell is set within the same timing offset packet TAG.
  • the two methods for dividing the serving cell group are pre-defined packets according to a preset rule.
  • the first predefined manner is to divide the N serving cells into M groups, which may be CC1, CC2, CC3.. .... CCn directly performs grouping, for example, each serving cell group contains a CC directly in order, for example, the serving cell group includes 3 CCs, the serving cell group 1 includes CC1, CC2, and CC3, and the serving cell group 2 includes CC4, CC5, and CC6, etc.
  • this grouping mode can be directly defined by a protocol. In this mode, the base station does not need to send the information of the serving cell group to the UE through the high layer signaling.
  • the base station also needs to pass the upper layer.
  • the signaling notifies the UE of the information of the serving cell group.
  • the second pre-defined manner is to divide the serving cell with the same timing offset and the same timing reference cell into the same TAG. For the specific division process of this mode, refer to the first serving cell in the embodiment shown in FIG. 3b. The description of the grouping method will not be repeated here.
  • the antenna ports of the serving cell in the TAG have a QCL relationship.
  • the QCL relationship setting is set on the basis of the first type of serving cell allocation manner, and the determining manner of the QCL relationship may be similar to the first method for determining the QCL in the embodiment shown in FIG. 3b, and details are not described herein again. .
  • different antenna ports of the serving cell of the TAG do not have a QCL relationship.
  • the QCL relationship setting is set on the basis of the first type of serving cell allocation manner, and the determining manner of the QCL relationship may be similar to the first method for determining the QCL in the embodiment shown in FIG. 3b, and details are not described herein again. .
  • the QCL relationship between the antenna ports of the at least two serving cells is that the antenna ports of the at least two serving cells are the same with respect to at least one of a channel average gain or at least one spatial feature parameter.
  • the characteristic parameters include at least one of AoA, AoD, PAS-of-AoA, PAS-of-AoD, receive antenna spatial correlation, transmit antenna spatial correlation, receive spatial beam, and transmit spatial beam.
  • FIG. 7 is a block diagram of a base station according to an embodiment of the present application, where the base station includes a processing module 701 and a sending module 702.
  • the processing module 701 is configured to: when the base station determines that the antenna ports of the serving cell of the different serving cell group have a QCL relationship, send, by the sending module 702, the QCL that is used to indicate that the antenna port of the serving cell of the different group has a QCL relationship.
  • the serving cell group is a packet that is predefined according to a preset rule or is obtained by the base station to group the serving cell allocated to the user equipment UE.
  • the difference between the present embodiment and the base station in the embodiment shown in FIG. 6 is that the QCL relationship between the antenna ports of the serving cell of different serving cell groups is determined, and the QCL indication signaling is adopted.
  • the QCL relationship is indicated to the UE.
  • the serving cell group there are two different ways for the serving cell group. The first one is to pre-define the packet according to the preset rule, such as directly arranging the predefined packet mode in the communication protocol between the base station and the UE;
  • the serving cell allocated to the user equipment UE is obtained by the base station. Both methods of grouping have been explained in the embodiment shown in Fig. 3b for the description in step 401, and are not described herein again.
  • the serving cell group is obtained by grouping, by the base station, a serving cell that is allocated to the UE, where the sending module is further configured to:
  • the base station sends the information of the serving cell group to the UE by using the high layer signaling, which is similar to the description of step 401 in the embodiment shown in FIG. 3b. Narration.
  • the antenna ports of the serving cell in different serving cell groups have a QCL relationship.
  • the QCL relationship setting is set on the basis of the second serving cell grouping manner in the embodiment shown in FIG. 3b, and the determining manner of the QCL relationship may be the same as the first determining the QCL manner in the embodiment shown in FIG. 3b.
  • the setting manner is different from the embodiment shown in FIG. 6: the QCL relationship is set between the antenna ports of the serving cell in the same serving cell group, and the antenna ports of the serving cells in different serving cell groups are set. Have a QCL relationship.
  • processing module 701 is specifically configured to:
  • the QCL Receiving, by the UE, a QCL determination indication or a beam ID of a beam having a target channel quality, the QCL determining, indicating, by the UE, whether the beam of the serving cell of the different packet that satisfies the QCL of the spatial characteristic parameter is obtained by the UE The judgment bit of the relationship;
  • the mode is similar to the method for determining the QCL by using the beam of the serving cell to transmit the measurement pilot in the embodiment shown in FIG. 3b.
  • the base station receives the beam ID or QCL judgment indication sent by the UE.
  • the QCL relationship between the antenna ports in the same serving cell group is determined according to the beam ID or the QCL determination indication.
  • the judgment is based on the beam ID or the QCL determination indication. QCL relationship between antenna ports of serving cells grouped by different serving cells.
  • processing module 701 is specifically configured to:
  • the manner of determining the QCL relationship may be similar to the manner of determining the QCL in the third embodiment shown in FIG. 3b. Different from the carrier frequency spacing or the propagation path in the embodiment shown in FIG. In the present embodiment, the QCL relationship between the antenna ports of the serving cells of different serving cell groups is determined according to the carrier frequency spacing or the propagation path.
  • processing module 701 is further configured to:
  • N is greater than or equal to M
  • M and N are integers greater than or equal to 1;
  • the serving cell with the same timing offset and the same timing reference cell is set within the same timing offset packet TAG.
  • the two methods for dividing the serving cell group are pre-defined packets according to a preset rule.
  • the first predefined manner is to divide the N serving cells into M groups, which may be CC1, CC2, and CC3. Across CCn directly performs grouping, for example, each serving cell group contains a CC directly in order, for example, the serving cell group includes 3 CCs, the serving cell group 1 includes CC1, CC2, and CC3, and the serving cell group 2 includes CC4.
  • the packet mode can be directly defined by the protocol. In this mode, the base station does not need to send the information of the serving cell packet to the UE through the high layer signaling.
  • the base station notifies the UE of the information of the serving cell group by using the high layer signaling.
  • the second pre-defined manner is to divide the serving cell with the same timing offset and the same timing reference cell into the same TAG. For the specific division process of this mode, refer to the first serving cell in the embodiment shown in FIG. 3b. The description of the grouping method will not be repeated here.
  • the antenna ports of the serving cells of different TAGs have a QCL relationship.
  • the QCL relationship setting is set on the basis of the first type of serving cell allocation manner, and the determining manner of the QCL relationship may be similar to the manner of determining the QCL in the first embodiment shown in FIG. 3b, and the difference is that the implementation is different.
  • the QCL relationship between the antenna ports of the serving cell of different serving cell groups is determined, and details are not described herein again.
  • the QCL relationship between the antenna ports of the at least two serving cells is that the antenna ports of the at least two serving cells are identical with respect to at least one of a channel average gain or at least one spatial feature parameter, the spatial characteristic parameter At least one of AoA, AoD, AS-of-AoA, PAS-of-AoD, receive antenna spatial correlation, transmit antenna spatial correlation, receive spatial beam, and transmit spatial beam.
  • FIG. 8 is a block diagram of a terminal in the embodiment of the present application, where the terminal includes a receiving module 801. And processing module 802;
  • the receiving module 801 is configured to receive QCL indication signaling that is sent by the base station, where the QCL indication signaling is used to indicate that there is a QCL relationship between antenna ports of at least two serving cells in the same serving cell group, where the serving cell group is a packet obtained by grouping a serving cell allocated to the UE by the base station or a predefined group according to a preset rule;
  • the processing module 802 is configured to determine, according to the QCL indication signaling, at least two serving cells in the same serving cell group having a QCL relationship between antenna ports, using the same receive beam receiving or transmitting beam to transmit the service.
  • the reference signal of the cell is configured to determine, according to the QCL indication signaling, at least two serving cells in the same serving cell group having a QCL relationship between antenna ports, using the same receive beam receiving or transmitting beam to transmit the service.
  • the reference signal of the cell is configured to determine, according to the QCL indication signaling, at least two serving cells in the same serving cell group having a QCL relationship between antenna ports, using the same receive beam receiving or transmitting beam to transmit the service.
  • the QCL indication signaling received by the receiving module 801 is used to indicate that there is a QCL relationship between antenna ports of at least two serving cells in the same serving cell group, wherein there are two different manners, the first type The packet is pre-defined according to the preset rule, such as directly pre-defining the predefined packet mode in the communication protocol between the base station and the UE; the second is that the base station groups the serving cell allocated to the user equipment UE to obtain . Both methods of grouping have been explained in the embodiment shown in Fig. 3b for the description in step 401, and are not described herein again.
  • the processing module 802 determines, according to the QCL indication signaling, that at least two serving cells in the same serving cell group having a QCL relationship between antenna ports transmit the serving cell by using the same receive beam receiving or transmitting beam.
  • the process of the reference signal is illustrated in the four examples (1), (2), (3), and (4) of the embodiment shown in FIG. 3b, and details are not described herein again.
  • the serving cell group is a TAG
  • a timing offset of the serving cell in the same TAG is the same as a timing reference cell.
  • the manner of the TAG is that the serving cell with the same timing offset and the same timing reference cell is in the same TAG.
  • For the specific division process of this mode refer to the first serving cell in the embodiment shown in FIG. 3b. The description of the grouping method will not be repeated here.
  • the receiving module 801 is further configured to receive measurement pilots that are sent by the base station by using the beams of the at least two serving cells.
  • the processing module 802 determines, according to the beams of the at least two serving cells, a QCL determination indication or a beam ID of the beam with the target channel quality, where the QCL determination indicates whether the beam of the at least two serving cells obtained by the UE by using the estimation is satisfied. a judgment bit of a QCL relationship of a spatial feature parameter;
  • the terminal further includes a sending module 803, configured to feed back the QCL determination indication or the beam ID to the base station.
  • the receiving module 801, the processing module 802, and the sending module 803 can cooperate with the base station to complete beam management, and the manner of determining the QCL relationship is the same as the method for transmitting the measurement pilot by using the beam of the serving cell in the embodiment shown in FIG. 3b.
  • the manner of determining the QCL is similar.
  • the base station receives the beam ID or the QCL judgment indication sent by the UE, and can determine the QCL relationship according to the beam ID or the QCL judgment indication, and details are not described herein again.
  • the serving cell group is a packet obtained by the base station by the base station to be allocated to the serving cell of the UE, and the receiving module is further configured to:
  • the base station sends the information of the serving cell group to the UE in a manner of high-layer signaling, and of course, the serving cell grouping is performed in a predefined manner. Information can also be delivered using high-level signaling.
  • FIG. 9 is a diagram of an embodiment of a terminal according to an embodiment of the present application.
  • the terminal includes a receiving module 901 and a processing module 902;
  • the receiving module 901 is configured to receive a quasi-co-located QCL indication signaling sent by the base station, where the QCL indication signaling is used to indicate that there is a QCL relationship between antenna ports of the serving cell between different serving cell groups, where the serving cell group is a packet obtained by grouping a serving cell allocated to the UE by the base station or a predefined group according to a preset rule;
  • the processing module 902 is configured to determine, according to the illustrated QCL indication signaling, a serving cell between the different serving cell groups having a QCL relationship between antenna ports, using the same receive beam receiving or transmitting beam to transmit the serving cell. Reference signal.
  • the QCL indication signaling received by the receiving module 801 is used to indicate a QCL relationship between antenna ports of a serving cell of different serving cell groups, wherein there are two different manners, and the first one is according to a preset.
  • the rule performs a predefined grouping, such as directly arranging the predefined grouping mode in the communication protocol between the base station and the UE; the second is obtained by the base station grouping the serving cells allocated to the user equipment UE. Both methods of grouping have been explained in the embodiment shown in Fig. 3b for the description in step 401, and are not described herein again.
  • the processing module 802 determines, according to the QCL indication signaling, that at least two serving cells in the same serving cell group having a QCL relationship between antenna ports transmit the serving cell by using the same receive beam receiving or transmitting beam.
  • the process of the reference signal is illustrated in the four examples (1), (2), (3), and (4) of the embodiment shown in FIG. 3b, and details are not described herein again.
  • the serving cell group is a timing offset packet TAG, and the timing offset of the serving cell in the same TAG is the same as the timing reference cell.
  • the manner of the TAG is that the serving cell with the same timing offset and the same timing reference cell is in the same TAG.
  • For the specific division process of this mode refer to the first serving cell in the embodiment shown in FIG. 3b. The description of the grouping method will not be repeated here.
  • the receiving module 901 is further configured to receive a measurement pilot that is sent by the base station by using a beam of the serving cell of the different serving cell group;
  • the processing module 902 determines, according to the beam of the serving cell of the different serving cell group, a QCL determination indication or a beam ID of the beam with the target channel quality, where the QCL determination indicates that the UE passes the estimated beam of at least two serving cells. Whether the judgment bit of the QCL relationship of the spatial feature parameter is satisfied;
  • the terminal further includes a sending module 903, configured to feed back the QCL determination indication or the beam ID to the base station.
  • the receiving module 901, the processing module 902, and the sending module 903 can cooperate with the base station to complete beam management, and the manner of determining the QCL relationship is the same as the method for transmitting the measurement pilot by using the beam of the serving cell in the second embodiment shown in FIG. 3b.
  • the manner of determining the QCL is similar.
  • the base station receives the beam ID or the QCL judgment indication sent by the UE, and can determine the QCL relationship according to the beam ID or the QCL judgment indication, and details are not described herein again. It should be noted that, in this manner, the QCL relationship between the antenna ports of the serving cell in the same serving cell group determined by the embodiment shown in FIG. 8 according to the beam ID or the QCL determination indication is determined in this embodiment. Is the QCL relationship between the antenna ports of the serving cells of different serving cell groups.
  • the serving cell group is a packet obtained by the base station to be grouped by the serving cell allocated by the base station, and the receiving module is further configured to:
  • the base station sends the information of the serving cell group to the UE in a manner of high-layer signaling, and of course, the serving cell grouping is performed in a predefined manner. Information can also be delivered using high-level signaling.
  • FIG. 10 is a diagram of an embodiment of a base station according to an embodiment of the present application, where the base station 10 may include at least one processor 1001 that is connected to the bus. At least one transceiver 1002 and memory 1003, the base station involved in the embodiments of the present application may have more or less components than those shown in FIG. 10, may combine two or more components, or may have different component configurations. Or, the various components can be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the processor 1001 can implement the function of the processing module 601 of the base station in the embodiment shown in FIG. 6, and the transceiver 1002 can implement the embodiment in the embodiment shown in FIG.
  • the function of the transmitting module 602 of the base station, the memory 1003 has a plurality of structures for storing program instructions, and the processor 1001 is configured to execute the instructions in the memory 1003 to implement the communication method in the embodiment of FIG. 3b.
  • the processor 1001 can implement the function of the processing module 701 of the base station in the embodiment shown in FIG. 7, and the transceiver 1002 can implement the embodiment in the embodiment shown in FIG.
  • the function of the transmitting module 702 of the base station, the memory 1003 has a plurality of structures for storing program instructions, and the processor 1001 is configured to execute the instructions in the memory 1003 to implement the communication method in the embodiment of FIG. 3b.
  • FIG. 11 is a diagram of an embodiment of a terminal in the embodiment of the present application, where the terminal 11 may include at least one processor 1101 connected to the bus. At least one transceiver 1102 and memory 1103, the base station involved in the embodiments of the present application may have more or less components than those shown in FIG. 11, may combine two or more components, or may have different component configurations. Or, the various components can be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the processor 1101 can implement the function of the processing module 802 of the base station in the embodiment shown in FIG. 8, and the transceiver 1102 can implement the embodiment in the embodiment shown in FIG.
  • the processor 1101 can implement the function of the processing module 902 of the base station in the embodiment shown in FIG. 9, and the transceiver 1102 can implement the embodiment shown in FIG.
  • FIG. 12a is an implementation of the communication system according to the embodiment of the present application.
  • FIG. 12b is a diagram showing an embodiment of a communication system according to an embodiment of the present application.
  • the communication system 12 includes one or two base stations in the embodiment shown in FIG. 10 and at least one terminal in the embodiment shown in FIG.
  • the one or both of the base stations in the embodiment shown in FIG. 10 are communicatively coupled to the terminal end in the embodiment shown in FIG.
  • FIG. 12a includes a base station in the embodiment shown in FIG. 10 and a terminal in the embodiment shown in FIG.
  • Fig. 12b includes two base stations in the embodiment shown in Fig. 10 and a terminal in the embodiment shown in Fig. 11, which are respectively connected to two base stations. Both the base station and the terminal shown in Fig. 12a and Fig. 12b can cooperate with the communication method of the embodiment shown in Fig. 3b.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,具体涉及一种通信方法、系统及相关设备。该通信方法包括,当基站确定同一服务小区分组内的至少两个服务小区的天线端口之间具有QCL关系时,基站向UE发送用于指示所述至少两个服务小区的天线端口之间具有QCL关系的QCL指示信令,服务小区分组为按照预设规则进行预定义的分组或者由基站将分配给用户设备UE的服务小区进行分组得到。本申请实施例中通过确定同一服务小区分组的服务小区的天线端口之间的QCL关系,并将该QCL关系通过QCL指示信令指示给UE,从而使得基站无需对每个服务小区对应的波束均进行波束管理,而仅需对天线端口之间不具有QCL关系的服务小区分别进行波束管理,能够减小波束管理过程的导频和反馈开销。

Description

一种通信方法、系统及相关设备
本申请要求于2017年05月05日提交中国专利局、申请号为201710313437.4、申请名称为“一种通信方法、系统及相关设备”的中国专利申请和于2017年10月11日提交中国专利局、申请号为201710941202.X、申请名称为“一种通信方法、系统及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体涉及一种通信方法、系统及相关设备。
背景技术
协作多点(Coordination Multiple Point,简称CoMP)传输是长期演进(Long Term Evolution,简称LTE)中提出的一种用于解决小区间干扰问题并提升小区边缘用户吞吐量的方法。为了支持CoMP,也就是用户设备(User equipment,简称UE)可以从服务网络设备接收物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)、从服务网络设备或协作网络侧设备或(两边同时)接收物理下行共享信道(Physical Downlink Share Channel,简称PDSCH),在LTE系统中引入了天线端口准共址(Quasi-Co-Location,简称QCL)的概念,如果两个天线端口被认为是QCL的,那么其中一个天线端口的信道大尺度信息能够从另一个天线端口的信道大尺度信息中推测而来。相反地,如果两个天线端口被指示是非QCL的,那么UE不可以假设其中一个天线端口的信道大尺度信息可以从另一个天线端口的信道大尺度信息推测而来。其中,信道大尺度信息包括:信道平均增益(average gain),多普勒扩展(Doppler spread),多普勒频偏(Doppler shift),平均时延(average delay),时延扩展(delay spread)。
在第5代(5th Generation,简称5G)通信系统中,单一传输点(Transmit-Receiving Point,简称TRP)也将配置多面板的大规模天线阵列结构,这种结构会导致不同的天线面板形成的不同的波束的大尺度信息也是不同的。基站在下行使用一个发射波束对准UE,UE使用一个接收波束对准基站以实现通信。反之UE在上行使用一个发射波束对准基站,基站使用一个接收波束对准UE。为了实现基站和UE之间的波束对准,5G通信系统中引入了波束管理的过程。例如,UE先固定一个接收波束,基站通过发射导频扫描至少一个发射波束后,UE反馈一个接收信号最强的波束指示。基站使用UE反馈的波束再发射一次导频,然后UE再通过一个波束扫描的过程优化接收波束。其中,基站在通过波束向UE下发或者UE通过波束向基站上传时,不同的信号会采用不同的逻辑天线端口,例如信道状态参考信号(Channel State Information Reference Signal,简称CSI-RS)天线端口传输CSI-RS,DMRS天线端口传输解调参考信号(Demodulation reference signals,简称DMRS)等,当两个天线端口的信道大尺度信息是QCL的,则认为用于传输对应其中一个天线端口的参考信号的波束也能用于传输对应另一个天线端口的参考信号。
可见在波束管理过程中,基站需要发射两次导频,并且UE还需要反馈最强的波束指示才能确定出发射波束和接收波束。此外,基站和UE还可以先对准一个粗波束,然后在粗波束中再对准一个细波束,那么上述过程需要重复两次,会消耗大量的导频和反馈开销。
发明内容
本申请实施例提供了一种通信方法、系统及相关设备,通过该通信方法、系统或相关设备能够通过对服务于UE的不同的服务小区的天线端口之间的QCL关系进行确定从而减少波束管理中导频资源开销和信令开销。
本申请实施例的第一方面提供一种通信方法,在该方法中对于服务于UE的服务小区会有服务小区分组,该服务小区分组可以是按照预设规则进行预先定义的分组或者是由基站对分配给UE的服务小区进行的分组,之后,当基站确定同一服务小区分组内的两个以上的服务小区的天线端口之间具有QCL关系时,会将该QCL关系通过QCL指示信令的方式下发给UE,使得UE获知具有QCL关系的两个以上的服务小区的天线端口可采用相同的波束传输参考信号。
可以看出,上述方法中,由于将服务于UE的服务小区预先进行了服务小区分组,并且对同一服务小区组内至少两个服务小区的天线端口之间的QCL关系进行确定,当确定至少两个服务小区的天线端口之间具有QCL关系,则将该QCL关系通过QCL指示信令指示给UE,从而使得基站无需对每个服务小区对应的波束均进行波束管理,而仅需对不具有QCL关系的服务小区分别进行波束管理,对于具有QCL关系的服务小区仅对其中一个进行波束管理即可,能够减小波束管理过程的导频和反馈开销。
在一些实施例中,若服务小区分组是由基站将分配给UE的服务小区进行的分组,则需要基站将该服务小区分组的信息通过高层信令发送至UE,以使得UE获知服务该UE的服务小区分组的信息,从而在后续基站通知QCL关系时,通过服务小区发送参考信号时,缩小选取范围。
在一些实施例中,基站在完成服务小区分组后,可以直接定义同一服务小区分组内的服务小区的天线端口之间具有QCL关系,此方式下,基站在确定同一服务小区分组内的服务小区的天线端口之间的QCL关系时,会直接采用该同一服务小区分组的定义规则发送QCL指示。
在一些实施例中,基站确定同一服务小区分组内至少两个服务小区的天线端口之间具有QCL关系的具体过程可以是,首先由基站通过至少两个服务小区的波束发送测量导频至UE,接着基站会接收到UE发送的QCL判断指示或者波束ID,而后会根据该QCL判断指示或者所述波束ID确定所述至少两个服务小区的天线端口之间的具有QCL关系。其中,该QCL判断指示或者波束ID对应具有目标信道质量的波束,该目标信道质量的波束即UE确定出的信道质量较好的波束,该QCL判断指示为UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的比特位,基站通过此比特位便能判断至少两个服务小区的天线端口之间的QCL关系,增强本申请方案的可实现性。
在一些实施例中,基站确定同一服务小区分组内至少两个服务小区的天线端口之间具有QCL关系的具体过程可以是,根据所述至少两个服务小区对应的载波单元的载频间距或者传播路径来确定所述至少两个服务小区的天线端口之间的QCL关系,该载频间距即形成载波聚合的各载波单元的载频间距,每个载波单元即一个服务小区,载频相近的载波单元被认为具有相似的波束空间特征,即服务小区的天线端口之间具有QCL关系,此外,相同的传播路径的载波单元也具有相似的波束空间特征。
在一些实施例中,会预先对服务小区分组采用预设规则进行预定义,例如直接定义到协议中,基站和UE采用该协议即可知道服务小区分组的情况,预设规则的预定义的分组有如下方式,其一是将对应所述UE的N个服务小区划分为M个的服务小区分组,所述N大于等于M,所述M和N均为大于等于1的整数;其二是预定义使用相同的定时偏移量和相同的定时参考小区的服务 小区设置在同一定时偏移分组TAG内。采用此预定义方式,无需基站将服务小区的分组信息通过高层信令下发给UE,此时基站仅需下发QCL指示即可,可进一步减小信令的消耗。
在一些实施例中,还可直接定义一个定时偏移分组(Timing advance group,简称TAG)内的服务小区的天线端口之间具有QCL关系,此情形下,基站能够更快速的对服务小区的天线端口之间的QCL关系进行确定,进一步提高通信效率。
在一些实施例中,至少两个服务小区的天线端口之间具有QCL关系有两种情况,一种是至少两个服务小区的天线端口关于信道平均增益是相同的,另外一种是至少两个服务小区的天线端口关于至少一个空间特征参数中至少一个是相同的,该空间特征参数包括接收到达角(Angle of Arrival,简称AoA)、发送离开角(Angle of Departure,简称AoD)、到达角角度功率谱(power azimuth/angular spectrum of Angle of Arrival,简称PAS of AoA)、离开角角度功率谱(power azimuth/angular spectrum of angle of departure,简称PAS of AoD)、接收天线空间相关性(Receiving Antenna Spatial Correlation)、发射天线空间相关性(Transmit Antenna Spatial Correlation)、接收空间波束(receiving beamforming)、发射空间波束(transmit beamforming)、空间滤波器(Spatial filtering)之中的至少一个。
或者,至少两个服务小区的天线端口之间具有QCL关系还可以参考LTE中的定义,如果两个天线端口被认为是QCL的,那么其中一个天线端口的信道大尺度信息能够从另一个天线端口的信道大尺度信息中推测而来。其中,信道大尺度信息包括:信道平均增益,多普勒扩展,多普勒频偏,平均时延,时延扩展。所述天线端口表示参考信号对应的时域和频域资源,所述参考信号至少包括:信道状态信息参考信号(channel state information-reference signal,CSI-RS),解调参考信号(demodulation reference signal,DMRS),相位跟踪参考信号(phase tracking reference signal,PTRS)(也可称为相位补偿参考信号(phase compensation reference signal,PCRS),或,相位噪声参考信号(简称相噪参考信号)),同步块(synchronization signal block,SS block)(包括同步信号和广播信道中的一个或多个,同步信号包括主同步信号PSS和/或从同步信号SSS)中一个或多个。
本发明实施例第二方面该提供一种通信方法,在该方法中对于服务于UE的服务小区会有服务小区分组,该服务小区分组可以是按照预设规则进行预先定义的分组或者是由基站对分配给UE的服务小区进行的分组,之后,当基站确定不同服务小区分组的服务小区的天线端口之间具有QCL关系时,会将该QCL关系通过QCL指示信令的方式下发给UE,使得UE获知具有QCL关系的不同服务小区分组的服务小区的天线端口可采用相同的波束传输参考信号。
可以看出,上述方法中,由于将服务于UE的服务小区预先进行了服务小区分组,并且对不同服务小区分组的服务小区的天线端口之间的QCL关系进行确定,当确定不同服务小区分组的服务小区的天线端口之间具有QCL关系,则将该关系通过QCL指示信令指示给UE,从而使得基站无需对每个服务小区对应的波束均进行波束管理,而仅需对天线端口之间不具有QCL关系的服务小区分别进行波束管理,对于天线端口之间具有QCL关系的服务小区仅对其中一个进行波束管理即可,能够减小波束管理过程的导频和反馈开销。
在一些实施例中,若服务小区分组是由基站将分配给UE的服务小区进行的分组,则需要基站将该服务小区分组的信息通过高层信令发送至UE,以使得UE获知服务该UE的服务小区分组的信息,从而在后续基站通过QCL指示信令通知QCL关系时,UE通过服务小区发送参考信号时,缩小选取范围。
在一些实施例中,基站在完成服务小区分组后,可以直接定义不同服务小区分组的服务小区的天线端口之间具有QCL关系,此方式下,基站在确定不同服务小区分组的服务小区的天线端口之间的QCL关系时,会直接采用该不同服务小区分组的定义规则发送QCL指示。
在一些实施例中,基站确定不同服务小区分组的服务小区的天线端口之间具有QCL关系的具体过程可以是,首先由基站通过不同服务小区分组的服务小区的波束发送测量导频至UE,接着基站会接收到UE发送的QCL判断指示或者波束ID,而后会根据该QCL判断指示或者所述波束ID确定不同服务小区分组的服务小区的天线端口之间的具有QCL关系。其中,该QCL判断指示或者波束ID对应具有目标信道质量的波束,该目标信道质量的波束即UE确定出的信道质量较好的波束,该QCL判断指示为UE通过估算得到的不同服务小区分组的服务小区的波束是否满足空间特征参数的QCL关系的比特位,基站通过此比特位便能判断不同服务小区分组的服务小区的天线端口之间的QCL关系,增强本申请方案的可实现性。
在一些实施例中,基站确定不同服务小区分组的服务小区的天线端口之间具有QCL关系的具体过程可以是,根据不同服务小区分组的服务小区对应的载波单元的载频间距或者所述不同服务小区分组的服务小区对应的载波单元的传播路径来确定不同服务小区分组的服务小区的天线端口之间的QCL关系,该载频间距即形成载波聚合的各载波单元的载频间距,每个载波单元即一个服务小区,载频相近的载波单元被认为具有相似的波束空间特征,即服务小区的天线端口之间具有QCL关系,此外,相同的传播路径的载波单元也具有相似的波束空间特征。
在一些实施例中,会预先对服务小区分组采用预设规则进行预定义,例如直接定义到协议中,基站和UE采用该协议即可知道服务小区分组的情况,预设规则的预定义的分组有如下方式,其一是将对应所述UE的N个服务小区划分为M个的服务小区分组,所述N大于等于M,所述M和N均为大于等于1的整数;其二是预定义使用相同的定时偏移量和相同的定时参考小区的服务小区设置在不同定时偏移分组TAG内。采用此预定义方式,无需基站将服务小区的分组信息通过高层信令下发给UE,此时基站仅需下发QCL指示即可,可进一步减小信令的消耗。
在一些实施例中,还可直接定义不同TAG的服务小区的天线端口之间具有QCL关系,此情形下,基站能够更快速的对服务小区的天线端口之间的QCL关系进行确定,进一步提高通信效率。
在一些实施例中,至少两个服务小区的天线端口之间具有QCL关系有两种情况,一种是至少两个服务小区的天线端口关于信道平均增益是相同的,另外一种是至少两个服务小区的天线端口关于至少一个空间特征参数中至少一个是相同的,该空间特征参数包括AoA、AoD、PAS-of-AoA、PAS-of-AoD、接收天线空间相关性、发射天线空间相关性、接收空间波束、发射空间波束、空间滤波器(Spatial filtering)之中的至少一个。
或者,至少两个服务小区的天线端口之间具有QCL关系还可以参考LTE中的定义,如果两个天线端口被认为是QCL的,那么其中一个天线端口的信道大尺度信息能够从另一个天线端口的信道大尺度信息中推测而来。其中,信道大尺度信息包括:信道平均增益,多普勒扩展,多普勒频偏,平均时延,时延扩展。所述天线端口表示参考信号对应的时域和频域资源,所述参考信号至少包括:信道状态信息参考信号(channel state information-reference signal,CSI-RS),解调参考信号(demodulation reference signal,DMRS),相位跟踪参考信号(phase tracking reference signal,PTRS)(也可称为相位补偿参考信号(phase compensation reference signal,PCRS),或,相位噪声参考信号(简称相噪参考信号)),同步块(synchronization signal block,SS block)(包括同步信号和广播信道中的一个或多个,同步信号包括主同步信号PSS和/或从同步信号SSS)中一个 或多个。本申请实施例第三方面还提供一种通信方法,该方法中,UE会接收到基站下发的QCL指示信令,该QCL指示信令中会指示出同一服务小区分组内的至少两个服务小区的天线端口之间具有QCL关系,该服务小区分组具有两种方式,其一是由基站将将分配给所述UE的服务小区进行分组得到的分组,其二是按照预设规则进行预定义的分组;接着UE会根据该QCL指示信令确定在天线端口之间具有QCL关系的所述同一服务小区分组内的至少两个服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号。
可以看出,由于采用了对服务于UE的服务小区进行分组,并且对服务小区分组内的至少两个小区的天线端口之间的QCL关系进行了判断,将天线端口之间具有QCL关系的至少两个服务小区通过QCL指示信令的方式发送给UE,使得UE不需要配合基站对所有对应服务小区的波束进行波束测量,从而减少波束管理的导频和反馈开销。
在一些实施例中,服务小区分组为TAG,该TAG分组的特点在于同一TAG内的服务小区的定时偏移量和定时参考小区相同。采用此方式分配在同一TAG内的服务小区的天线端口之间具有QCL关系的可能性较大。
在一些实施例中,UE配合基站进行波束管理的过程为,UE首先接收基站通过至少两个服务小区的波束发送的测量导频,接着UE会根据所述至少两个服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位。即该UE能够通过反馈具有目标信道质量的波束的QCL判断指示或者波束ID,使得基站通过该QCL判断指示或者波束ID确定出该至少两个服务小区的天线端口之间的QCL关系。
在一些实施例中,若服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组,UE会接收到基站通过高层信令下发的服务小区分组的信息,从而获知服务小区分组的情况,进而在通过服务小区发送参考信号时,缩小选取范围。
本申请实施例第四方面还提供一种通信方法,该方法中,UE会接收到基站下发的QCL指示信令,该QCL指示信令中会指示出不同服务小区分组的服务小区的天线端口之间具有QCL关系,该服务小区分组具有两种方式,其一是由基站将将分配给所述UE的服务小区进行分组得到的分组,其二是按照预设规则进行预定义的分组;接着UE会根据该QCL指示信令确定在天线端口之间具有QCL关系的所述不同服务小区分组的服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号。
可以看出,由于采用了对服务于UE的服务小区进行分组,并且对不同服务小区分组的两个小区的天线端口之间的QCL关系进行了判断,将天线端口之间具有QCL关系的服务小区通过QCL指示信令的方式发送给UE,使得UE不需要配合基站对所有对应服务小区的波束进行波束测量,从而减少波束管理的导频和反馈开销。
在一些实施例中,服务小区分组为TAG,该TAG分组的特点在于同一TAG内的服务小区的定时偏移量和定时参考小区相同。
在一些实施例中,UE配合基站进行波束管理的过程为,UE首先接收基站通过不同服务小区分组的服务小区的波束发送的测量导频,接着UE会根据不同服务小区分组的两个服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的不同服务小区分组的服务小区的波束是否满足空间特征参数的QCL关系的判断比特位。即该UE能够通过反馈具有目标信道质量的波束的QCL判断指示或者波束ID,使得基站通 过该QCL判断指示或者波束ID确定出该不同服务小区分组的服务小区的天线端口之间的QCL关系。
在一些实施例中,若服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组,UE会接收到基站通过高层信令下发的服务小区分组的信息,从而获知服务小区分组的情况,进而在通过服务小区发送参考信号时,缩小选取范围。
本申请实施例第五方面还提供一种基站,包括处理模块和发送模块;
所述处理模块用于当所述基站确定同一服务小区分组内的至少两个服务小区的天线端口之间具有准共址QCL关系时,通过所述发送模块向所述UE发送用于指示所述至少两个服务小区的天线端口之间具有QCL关系的QCL指示信令,所述服务小区分组为按照预设规则进行预定义的分组或者由所述基站将分配给用户设备UE的服务小区进行分组得到。
在一些实施例中,服务小区分组由所述基站将分配给用户设备UE的服务小区进行分组得到,所述发送模块还用于:
通过高层信令向所述UE下发所述服务小区分组的信息。
在一些实施例中,同一服务小区分组内的服务小区的天线端口之间具有QCL关系。
在一些实施例中,处理模块具体用于:
通过至少两个服务小区的波束发送测量导频至所述UE;
接收由所述UE确定的具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
根据接收的所述QCL判断指示或者所述波束ID确定所述至少两个服务小区的天线端口之间的具有QCL关系。
在一些实施例中,处理模块具体用于:
根据所述至少两个服务小区对应的载波单元的载频间距或者传播路径确定所述至少两个服务小区的天线端口之间具有QCL关系。
在一些实施例中,处理模块还用于:
将对应所述UE的N个服务小区划分为M个的服务小区分组,所述N大于等于M,所述M和N均为大于等于1的整数;或,
将使用相同的定时偏移量和相同的定时参考小区的服务小区设置在同一定时偏移分组TAG内。
在一些实施例中,一个TAG内的服务小区的天线端口之间具有QCL关系。
在一些实施例中,不同的TAG的服务小区的天线端口之间不具有QCL关系。
在一些实施例中,至少两个服务小区的天线端口之间具有QCL关系为所述至少两个服务小区的天线端口关于信道平均增益或者至少一个空间特征参数中至少一个是相同的,所述空间特征参数包括接收到达角AoA、发送离开角AoD、到达角角度功率谱PAS-of-AoA、离开角角度功率谱PAS-of-AoD、接收天线空间相关性、发射天线空间相关性、接收空间波束、发射空间波束之中的至少一个。
本申请实施例第六方面还提供一种基站,包括处理模块和发送模块;
所述处理模块用于当所述基站确定不同服务小区分组的服务小区的天线端口之间具有QCL关系时,通过所述发送模块向UE发送用于指示所述不同分组的服务小区的天线端口之间具有 QCL关系的QCL指示信令,所述服务小区分组为按照预设规则进行预定义的分组或者由所述基站将分配给用户设备UE的服务小区进行分组得到。
在一些实施例中,服务小区分组由所述基站将分配给UE的服务小区进行分组得到,所述发送模块还用于:
通过高层信令向所述UE下发所述服务小区分组的信息。
在一些实施例中,不同的服务小区分组内的服务小区的天线端口之间具有QCL关系。
在一些实施例中,处理模块具体用于:
通过所述不同分组的服务小区的波束发送测量导频至所述UE;
接收由所述UE确定的具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的所述不同分组的服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
根据所述QCL判断指示或者所述波束ID确定不同的服务小区的天线端口之间的QCL关系。
在一些实施例中,处理模块具体用于:
根据所述不同服务小区分组的服务小区对应的载波单元的载频间距或传播路径确定所述不同分组的服务小区的天线端口之间具有QCL关系。
在一些实施例中,处理模块还用于:
将对应所述UE的N个服务小区划分为M个的服务小区分组,所述N大于等于M,所述M和N均为大于等于1的整数;或,
将使用相同的定时偏移量和相同的定时参考小区的服务小区设置在同一定时偏移分组TAG内。
在一些实施例中,不同TAG的服务小区的天线端口之间具有QCL关系。
在一些实施例中,至少两个服务小区的天线端口之间具有QCL关系为所述至少两个服务小区的天线端口关于信道平均增益或者至少一个空间特征参数中至少一个是相同的,所述空间特征参数包括接收到达角AoA、发送离开角AoD、到达角角度功率谱PAS-of-AoA、离开角角度功率谱PAS-of-AoD、接收天线空间相关性、发射天线空间相关性、接收空间波束、发射空间波束之中的至少一个。
本申请第七方面还提供一种终端,包括接收模块和处理模块;
接收模块用于接收基站下发的准共址QCL指示信令,所述QCL指示信令用于指示同一服务小区分组内的至少两个服务小区的天线端口之间具有QCL关系,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组或按照预设规则进行预定义的分组;
所述处理模块用于根据所述QCL指示信令确定在天线端口之间具有QCL关系的所述同一服务小区分组内的至少两个服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号。
在一些实施例中,服务小区分组为定时偏移分组TAG,同一TAG内的服务小区的定时偏移量和定时参考小区相同。
在一些实施例中,接收模块还用于接收基站通过所述至少两个服务小区的波束发送的测量导频;
所述处理模块根据所述至少两个服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满 足空间特征参数的QCL关系的判断比特位;
所述终端还包括发送模块,用于将所述QCL判断指示或者所述波束ID反馈至所述基站。
在一些实施例中,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组,所述接收模块还用于:
接收所述基站通过高层信令下发的服务小区分组的信息。
本申请第八方面还提供一种终端,包括接收模块和处理模块:
所述接收模块用于接收基站下发的准共址QCL指示信令,所述QCL指示信令用于指示不同服务小区分组间的服务小区的天线端口之间具有QCL关系,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组或按照预设规则进行预定义的分组;
所述处理模块用于根据所述QCL指示信令确定在天线端口之间具有QCL关系的所述不同服务小区分组间的服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的的参考信号。
在一些实施例中,服务小区分组为定时偏移分组TAG,同一TAG内的服务小区的定时偏移量和定时参考小区相同。
在一些实施例中,接收模块还用于接收基站通过所述不同服务小区分组的服务小区的波束发送的测量导频;
所述处理模块根据所述不同服务小区分组的服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
所述终端还包括发送模块,用于将所述QCL判断指示或者所述波束ID反馈至所述基站。
在一些实施例中,服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组,所述接收模块还用于:
接收所述基站通过高层信令下发的服务小区分组的信息。
本申请实施例第九方面还提供一种基站,该基站包括处理器、与所述处理器连接的收发器以及存储器,该存储器用于存储指令,该处理器用于执行所述指令以执行本申请第一方面或第一方面的任一种实现方式中提供的通信方法。
本申请实施例第十方面还提供一种基站,该基站包括处理器、与所述处理器连接的收发器以及存储器,该存储器用于存储指令,该处理器用于执行所述指令以执行本申请第二方面或第二方面的任一种实现方式中提供的通信方法。
本申请实施例第十一方面还提供一种终端,该终端包括处理器、与所述处理器连接的收发器以及存储器,该存储器用于存储指令,该处理器用于执行所述指令以执行本申请第三方面或第三方面的任一种实现方式中提供的通信方法。
本申请实施例第十二方面还提供一种终端,该终端包括处理器、与所述处理器连接的收发器以及存储器,该存储器用于存储指令,该处理器用于执行所述指令以执行本申请第四方面或第四方面的任一种实现方式中提供的通信方法。
本申请第十三方面还提供一种通信系统,该通信系统包括本申请实施例第九方面提供的基站和本申请实施例第十一方面提供的终端。
在一些实施例中,该通信系统中包含两个本申请实施例第九方面提供的基站。
本申请第十四方面还提供一种通信系统,该通信系统包括本申请实施例第十方面提供的基站 和本申请实施例第十二方面提供的终端。
在一些实施例中,该通信系统中包含两个本申请实施例第十方面提供的基站。
本申请又一方面提供了一种计算机可读存储介质,该存储介质中存储了程序代码,该程序代码被基站运行时,使得计算机执行上述各方面所述的方法。该存储介质包括但不限于快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid state drive,简称SSD)。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为载波聚合的类型示意图;
图2是基站通过两个波束与终端通信的示意图;
图3a是本申请实施例的通信方法的一个实施例图;
图3b是本申请实施例的通信方法的一个实施例图;
图4是上下行子帧的子帧定时偏移示意图;
图5是本申请实施例的通信方法的一个实施例图;
图6是本申请实施例的基站的一个实施例图;
图7是本申请实施例的基站的一个实施例图;
图8是本申请实施例的终端的一个实施例图;
图9是本申请实施例的终端的一个实施例图;
图10是本申请实施例的基站的一个实施例图;
图11是本申请实施例的终端的一个实施例图;
图12a是本申请实施例的通信系统的一个实施例图;
图12b是本申请实施例的通信系统的一个实施例图。
具体实施方式
本申请实施例提供了一种通信方法、系统及相关设备,通过对服务于UE的服务小区进行分组,并将服务小区分组内的至少服务小区的天线端口之间的QCL关系通过QCL指示信令发送给UE,使得UE能够根据该QCL指示信令进行参考信号的传输,从而减小波束管理的导频和反馈开销。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请主要应用的系统架构包括基站和终端。基站和终端均可以工作在许可频段或免许可频段上的基站和终端。无论是许可频段,还是免许可频段,在本申请中,都可以包括一个或多个载 波,许可频段和非许可频段进行载波聚合,可以包括许可频段包括的一个或多个载波与非许可频段包括的一个或多个载波进行载波聚合。在本申请中,提到的小区可以是基站对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。无线通信系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为无线通信系统中的载波与小区的概念等同。例如在载波聚合场景下,当为终端设备配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Identification,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如终端设备接入一个载波和接入一个小区是等同的。
需要说明的是,对于本申请中出现的的载波单元(component carrier,简称CC)与服务小区,CC与服务小区之间是一一对应的关系。在本申请中描述二者的逻辑概念时,可视为等同的,在需要描述CC的物理特性时,该服务小区与CC的概念不等同,但是仍然具有一一对应的关系。CC的物理特性如描述CC的载频、传播路径或者对应的波束,如两个CC的间距和各自的传播路径,亦或是CC对应的波束等场景下,CC与服务小区的概念不等同。
载波单元CC可以表示载波聚合中的成员载波,或者带宽部分(bandwidth part,BWP)。成员载波可以是小区传输带宽中一段连续的频域资源、小区传输带宽中一段非连续的频域资源等。可以将至少一个成员载波的带宽划分为一个或多个带宽部分(bandwidth part,BWP)(或者可以称为载波带宽部分,carrier bandwidth part,CBWP),其中每个BWP对应至少一个频域上连续的物理资源块(resource block,RB)。不同的BWP可以具有相同的帧结构参数(numerology),或者具有不同的帧结构参数,帧结构参数包括子载波间隔、时隙配置参数、循环前缀CP长度、传输时间间隔TTI中的至少一项。本发明中针对服务小区分组的方法,可以适用于载波的分组,也可以适用于带宽部分的分组,不同服务小区之间的QCL指示方法可以适用于不同载波的天线端口之间的QCL指示,也可以适用于不同带宽部分的天线端口之间的QCL指示。
可以理解的是,在LTE或LTE-A系统中,从时间维度上来看,一个无线帧的时间长度为10ms,一个子帧的时间长度为1ms,一个无线帧包含10个子帧。具体有两种子帧格式:一种是正常循环前缀(Normal Cyclic Prefix,简称NCP)子帧格式,一个NCP子帧包括14个OFDM符号或2个时隙;将OFDM符号从0开始标号至13,第0号至第6号OFDM符号为奇数时隙,第7号至第13号OFDM符号为偶数时隙。另一种是长循环前缀(Extended Cyclic Prefix,ECP)子帧格式,一个ECP子帧包括12个OFDM符号或2个时隙;将OFDM符号从0开始标号至11,第0号至第5号OFDM符号为奇数时隙,第6号至第11号OFDM符号为偶数时隙。
从频率维度上来看,最小单位是子载波。从时频二维联合来看,对于一个天线端口传输使用的资源,最小单位是资源单位(Resource Element,RE),一个RE在时域上包含一个OFDM符号,在频域上包含一个子载波。资源单元组(Resource-Element Group,REG)可以包含整数个RE,例如,一个REG可以包含4个或16个RE。一个物理资源块(Physical Resource Block,PRB)在时域上包含一个时隙,在频域上包含12个子载波;一个子帧中包含一个PRB对(PRB pair)。资源块组(Resource Block Group,RBG)可以包含整数个PRB,例如,一个RBG可以包含1个,2个,3个,4个或其他整数个PRB。
需要说明的是,一个服务小区对应的天线端口一般来说有多种,可以分为四类,第一类是小区专用的参考信号(Cell-specific reference signals,简称CRS),第二类是多媒体广播多播单频网 (Multimedia Broadcast multicast service ingle Frequency Network,简称MBSFN)参考信号(MBSFN reference signals),第三类是UE专用的参考信号(UE-specific reference signals)也称解调参考信号(Demodulation reference signals,简称DMRS),第四类是定位参考信号(Positioning reference signals)。其中,每一个天线端口上都传输一个参考信号。天线端口是指用于传输的逻辑端口,它可以对应一个或多个实际的物理天线。天线端口的定义是从接收机的角度来定义的,即如果接收机需要区分资源在空间上的差别,就需要定义多个天线端口。对于UE来说,其接收到的某天线端口对应的参考信号就定义了相应的天线端口。尽管此参考信号可能是由多个物理天线传输的信号复合而成。在LTE中,CRS支持1个、2个、4个三种天线端口配置,对应的端口号分别是:p=0,p={0,1},p={0,1,2,3}。举例来说,基站可以配置小区专用天线端口(Cell-specific antenna port),该小区专用天线端口的个数可以为1,2,或4。当小区专用天线端口的个数为1时,基站为小区用户配置的天线端口0;当小区专用天线端口的个数为2时,基站为小区用户配置天线端口0和天线端口1;当小区专用天线端口的个数为4时,基站为小区用户配置天线端口0、天线端口1、天线端口2和天线端口3。基站根据配置的小区专用天线端口和预定义的对应小区专用天线端口的公共参考信号图案在资源块上配置CRS,并向小区用户传输承载该CRS的资源块。而在LTE或LTE-A中,MBSFN参考信号只在天线端口p=4中传输。而在LTE或LTE-A中,UE专用的参考信号或DMRS可以在天线端口p=5,p=7,p=8,或p={7,8}中传输。而定位参考信号只在天线端口p=6中传输。其中,第一类中的小区专用的下行参考信号可以进行下行信道质量测量。以及下行信道估计,下行信道估计主要用于UE端的相干检测和解调。
基站可以是LTE系统、NR系统或者授权辅助接入长期演进(Authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(Evolutional Node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(Access Point,AP)、传输站点(Transmission Point,TP)或gNodeB(new generation Node B,新一代基站)等。
终端可称之为UE、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、智能终端等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信。例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置以及未来NR网络中的终端设备,它们与无线接入网交换语音或数据。对终端设备的说明:本申请中,终端设备还可以包括中继Relay,和基站可以进行数据通信的都可以看为终端设备,本申请中将以一般意义上的UE来介绍。
关于QCL参数,是基于5G波束管理技术的需要,而被引入的表征空间特征的参数,该参数有很多种,例如AoA、PAS of AoA、AoD、PAS of AoD、接收天线空间相关性、发射天线空间相关性、接收空间波束和发射空间波束等。其中接收空间波束和发射空间波束的物理含义可以指:接收/发射空间波束对应的接收/发射矢量权值,该矢量加权在接收/发射天线阵列上,或者接收/发射波束对应的波束索引,波束功率,到达时延等能够表征波束特征的参数。
其中,AoA表示天线阵列接收空间无线电磁波束时,该电磁波束的到达角度。
AoD表示天线阵列发射空间无线电磁波束时,该电磁波束的离开角度。
PAS-of-AoA表示天线阵列接收空间无线电磁波束时,该电磁波束的辐射功率的角谱,该角谱表示信号功率随着接收角度的变化情况,即信号功率在空间维度内的分布状况。
PAS-of-AoD:表示天线阵列接收空间无线电磁波束时,该电磁波束的辐射功率的角谱,该角 谱表示信号功率随着发射角度的变化情况,即信号功率在空间维度内的分布状况。
接收天线空间相关性表示组成接收天线阵列的天线振子之间的空间相关性,可以使用接收天线空间相关矩阵来刻画。
发射天线空间相关性,表示组成发射天线阵列的天线振子之间的空间相关性,可以使用发射天线空间相关矩阵来刻画。
发射空间波束表示天线阵列发射的空间无线电磁波束,可以用波束ID,CSI-RS资源ID等表示,或者是任意一种能表征接收端接收波束的参数值,例如接收波束对应的权值。
接收空间波束表示天线阵列接收的空间无线电磁波束,可以用波束ID,CSI-RS资源ID等表示,或者是任意一种能表征接收端接收波束的参数值,例如接收波束对应的权值。
空间滤波器可以表示发射/接收天线阵列上的加权权值所构成的发射/接收滤波器。或者,至少两个服务小区的天线端口之间具有QCL关系还可以参考LTE中的定义,如果两个天线端口被认为是QCL的,那么其中一个天线端口的信道大尺度信息能够从另一个天线端口的信道大尺度信息中推测而来。其中,信道大尺度信息包括:信道平均增益,多普勒扩展,多普勒频偏,平均时延,时延扩展。
此外,如果基站指示UE两个天线端口关于某一表征波束空间特征的大尺度信息QCL,那么其中一个天线端口的信道空间特征参数能够从另一个天线端口的信道空间特征参数中推测而来,并且表明,UE/基站使用相同的接收波束接收通过这两个天线端口的参考信号,或者UE/基站使用相同的发射波束发射通过这两个天线端口参考信号。另外,在载波聚合(Carrier Aggregation,简称CA)技术可以将多个CC聚合成一个更宽的频谱,同时也可以把一些不连续的频谱碎片聚合到一起,能很好地满足LTE、LTE-A系统频谱兼容性的要求,不仅能加速标准化进程,还能最大限度地利用现有LTE设备和频谱资源。请参阅图1,图1为载波聚合的类型示意图,该图中包含三种类型,即场景(a)、场景(b)和场景(c),均分别有载频A和载频B,其中,场景(a)和场景(b),在同一载频A上连续的几个CC,可以认为其对应的无线信道的传播特性类似(具有类似的传播时延,传播路径及波束增益等),并且可以用相同的射频链路发送/接收波束,此时可以假设不同CC上的收发波束具有类似的特性;而对于场景(c),如果聚合的CC不是连续的或者载频间隔较远,其对应的无线信道传播特性有很大差别,例如两个CC分别在载频A和载频B上,并且可能需要使用不同的射频链路发送/接收波束(通道时延、波束增益不同),此时很难假设不同CC上的收发波束具有类似的特性。
举例来说,请参阅图2,图2是基站通过两个波束与终端通信的示意图,其中,第一载波单元的频率点为f1,第二载波单元的频率点为f2,图2所示中,频率点f1和f2如果间隔较远,第一载波单元和第二载波单元之间的信道特性会相差很大,因此最优波束的方向也不同,此时无法假设两者关于表征波束空间特征的大尺度信息具有QCL关系。其中,虚线表示UE的接收/发射波束,实线表示基站的发射/接收波束。基站和UE的f1指示的波束形成了一个波束对(beam pair),f2指示的波束形成了另一个波束对。
目前一种方式对于各个CC的波束管理是各自独立的,从而仅能确定出一个CC的多个天线端口之间是否具有QCL关系,而不能得到各个服务小区的天线端口之间不具有QCL关系,然而由于在各个CC均进行独立的波束管理的过程,因此,需要消耗较多的导频资源开销和信令开销。第二中方式是对所有的CC的天线端口关于空间特征参数具有QCL关系,但是这种方式中,频点间隔较远的CC的天线端口之间关于空间特征参数不具有QCL关系,即它们的波束特性并不相同, 如果CC1和CC2的天线端口之间不具有QCL关系,但基站指示了UE在CC2与CC1的天线端口之间具有QCL关系,那么会使得CC2上使用的收发波束对不准确。
有鉴于此,本申请实施例提供一种通信方法来解决上述需要消耗较多的导频资源开销和信令开销或者QCL指示不准确的问题。具体请参与图3a和图3b,图3a是本申请实施例的通信方法的一个实施例图,图3b是本申请实施例的通信方法的一个实施例图。图3a中,基站与终端之间通过三个CC进行通信,分为为填充区域的CC2,填充区域上方的CC1,以及填充区域下方的CC3,可以看出,CC1和CC2的波束特性类似,如传播方向相同,载频间距相差也不大,因此CC1和CC2的天线端口之间具有QCL关系,从而基站可通过QCL指示信令来指示UE在CC2的发射和接收波束与CC1的发射和接收波束是相同的。图3b所示方法中,基站向所述UE发送用于指示至少两个服务小区的天线端口之间具有QCL关系的QCL指示信令;UE根据所述QCL指示信令确定在天线端口之间具有QCL关系。图3b所示方法可包括:
401、当基站确定同一服务小区分组内的至少两个服务小区的天线端口之间具有QCL关系时,基站向所述UE发送用于指示至少两个服务小区的天线端口之间具有QCL关系的QCL指示信令。
可选的,步骤401还可以替换成以下方式:
基站向UE发送用于指示至少两个服务小区的天线端口之间具有QCL关系的QCL指示信令,这些服务小区可以属于同一个服务小区分组,或者属于不同的服务小区分组,其中每个服务小区分组包含一个或者多个服务小区。例如,基站发送高层信令(RRC信令或者MAC信令)或者物理层信令给UE,用于指示一个或者多个服务小区的DMRS/CSI-RS与一个参考服务小区的CSI-RS/SS-block具有QCL关系。
其中,服务小区分组有两种不同的方式,第一种是按照预设规则进行预定义的分组,如直接将该预定义的分组方式约定在基站与UE的通信协议中;第二种是由所述基站将分配给用户设备UE的服务小区进行分组得到。
可选的,若是第二种情况下,基站会通过高层信令或者物理层信令向所述UE下发所述服务小区分组的信息。在此情形下,若服务小区分组是由基站将分配给UE的服务小区进行的分组,则需要基站将该服务小区分组的信息通过高层信令发送至UE,以使得UE获知服务该UE的服务小区分组的信息,从而在后续基站通知QCL关系时,通过服务小区发送参考信号时,缩小选取范围。
此外,在此情形的基础上,还可进一步定义同一服务小区分组内的服务小区的天线端口之间具有QCL关系,此方式下,基站在确定同一服务小区分组内的服务小区的天线端口之间的QCL关系时,会直接采用该同一服务小区分组的定义规则发送QCL指示。
需要说明的是,由于在载波聚合中,如果CC是连续的或者距离较近,则可认为这些CC的天线端口之间关于QCL参数之中的一个或者多个具有QCL关系,而若是载波聚合中的CC之间不是连续的或者距离较远,则认为这些CC的天线端口之间关于QCL参数不具有QCL关系。因此若将服务小区分组为同一服务小区分组内的服务小区的天线端口之间具有QCL关系时,一种方式是可以根据载频间距对CC进行分组,此外,不同的波束对应的路径传输时延、接收功率也不尽相同,也可以根据不同CC之间的指针定时关系进行CC分组。
需要说明的是,在载波聚合中,一个UE的所有CC被划分成一个主小区(Primary cell,简称PCell)和多个辅小区(Secondary cell,简称SCell)。其中,每个CC对应一个PCell或者SCell,并且PCell上基站和UE之间具有RRC连接。
可选的,第一种服务小区分组方式之中除了直接将N个服务小区划分为M组的方式之外,还具有另外一种预定义的方式,下面对该方式中的此种情况进行说明。由于不同UE到基站之间不同波束路径的传播时延不同,UE的上行子帧发送的时间相对于下行子帧有一个定时提前(Timing advance,简称TA),具体可参阅图4,图4是上下行子帧的子帧定时偏移示意图。其中上方子帧为下行子帧,下方为上行子帧,其中NTA表示子帧定时偏移,需要基站通过高层信令告知UE,该高层信令例如媒体访问控制-控制信元(Medium Access Control-Control Element,MAC-CE)或无线资源控制(Radio resource control,RRC)等,NTA_offset表示时分双工相对于频分双工系统上行子帧定时的额外偏移量,TS表示系统采样时钟。基于此特点,可以按照此规则将服务于UE的小区进行分组,即基站通过预先估算不同CC的定时提前量之间的关系,将具有相同定时偏移量NTA的CC设置成在一个TAG内。其中,同一TAG内的服务小区使用相同的定时偏移量和相同的定时参考小区,当然,该TAG的信息除了预先定义给基站和UE之外,还可以先由基站确定该TAG,然后通过高层信令将该TAG的信息发送给UE。
其中,上述第一种服务小区分组方式中,直接将N个服务小区划分为M组的方式具体可以是将CC1、CC2、CC3......CCn直接进行分组,例如直接按照顺序每个服务小区分组包含a个CC,例如服务小区分组包括3个CC,服务小区分组1包括CC1、CC2和CC3,服务小区分组2包括CC4、CC5和CC6等,这种分组方式可以直接采用协议进行定义,此方式下,无需基站通过高层信令向UE下发服务小区分组的信息,当然,若不采用协议进行定义,则同样需要由基站通过高层信令将该服务小区分组的信息通知给UE。可选的,计算NTA的方式可以是根据基站预先获取不同CC的传播路径或者是对载波聚合中的CC之间的载频间距进行计算,然后将具有相同NTA的CC划分到同一TAG内。当然,基站可以通过高层信令为UE配置多个TAG。例如基站通过高层信令指示UE添加一个SCell时,会同时给这个SCell添加一个TAG标识,标识该SCell具体属于哪一个TAG内。
需要说明的是,一个TAG中如果包含PCell那么这个TAG可以称为一个主TAG(Primary TAG,简称pTAG);如果不包含Primary cell,那么这个TAG称为一个辅TAG(Secondary TAG,简称sTAG)。pTAG和sTAG都可以包含一个或多个SCell。UE对一个TAG中的CC认为具有相同的子帧定时偏移和相同的定时参考小区。
可选的,还可以按照如下方式对服务小区进行分组:即基站根据服务小区采用的numerology进行分组。例如将具有相同numerology的服务小区划分为一个服务小区分组,或者将具有多个numerogy的服务小区划分为一个服务小区分组。分组的方式可以是固定的,或者是通过高层信令配置的。例如,子载波间隔配置参数可以有15kHz,30kHz,60kHz,120kHz,240kHz,480kHz。作为一个例子,基站可以将子载波间隔15kHz,30kHz,60kHz的服务小区分为一组,将子载波间隔120kHz,240kHz,480kHz的服务小区分为另一组。或者基站通过高层信令(例如RRC信令或者MAC-CE)通知UE哪些numerology的服务小区在相同的服务小区分组中,或者基站通过高层信令(例如RRC信令或者MAC-CE)通知UE至少一个服务小区分组中包含至少一种numerology的服务小区。具有相同numerology的服务小区也可以划分在多个不同的服务小区分组中。在上述的根据TAG或者numerology进行的服务小区分组方法中,每个服务小区分组包含至少一个服务小区。上述服务小区分组可以是预先定义的。例如,可以预先规定服务小区分组的个数,或者/和每个服务小区分组内服务小区的个数,或者/和每个分组内的BWP/CC的标识或配置参数;或者基站可以通过高层信令将服务小区分组的信息配置给用户。例如,服务小区分组的信息可以是 bitmap的形式表征至少一个服务小区分组包含的服务小区的信息,或/和服务小区分组的个数,或/和每个服务小区分组内服务小区的个数,或/和每个分组内的一个或者多个服务小区的标识或配置参数,或/和一个或者多个服务小区所在的服务小区分组。)。
可选的,基站通过高层信令配置一个或者多个服务小区属于哪个服务小区分组(例如可以指示所属服务小区分组的标识),和/或指示该服务小区分组所对应的QCL参数(如平均时延、时延扩展、多普勒扩展、多普勒频移、平均信道增益和空域参数中的至少一个),或/和QCL关系所对应的不同服务小区的天线端口,或者天线端口组合,或者不同类型参考信号(例如指示CSI-RS和DMRS之间的,或者SS block和DMRS之间,或者SS block和CSI-RS之间,或者CSI-RS和CSI-RS之间QCL关系)的信息。表1给出了一个示例:
表1
分组编号 分组内小区ID 分组对应的QCL参数
分组1 服务小区ID 1,服务小区ID2 空域参数
分组2 服务小区ID 3,服务小区ID4,服务小区ID5 空域参数
分组3 服务小区ID 6 平均时延,多普勒扩展
上面对不同分组方式进行分组进行了介绍,下面对同一分组内的至少两个服务小区的天线端口之间的QCL关系进行说明。本申请实施例中至少具有三种确定同一分组内的至少两个服务小区的天线端口之间的QCL关系的方式,下面进行说明。
第一种确定QCL的方式,即直接认定同一服务小区分组内的至少两个服务小区的天线端口之间具有QCL关系,此时基站直接按照此认定方式便可确定同一服务小区分组内的至少两个服务小区的天线端口之间的QCL关系,并生成相应的QCL指示发送给UE。
第二种确定QCL的方式是基站通过服务小区的波束发送测量导频的方式,以同一服务小区分组的两个服务小区进行说明,两个以上的服务小区的天线端口之间的QCL可以此类推。在此方式下,基站首先通过同一服务小区分组内的两个服务小区的波束发送测量导频至UE,而UE接收到该测量导频后,首先根据两个小区的波束确定具有目标信道质量的QCL判断指示或者波束ID,具体的,基站针对两个CC上接收的测量导频均会对各个方向的波束进行测试,选择这些波束中信道质量较好的波束ID或者QCL指示判断发送给基站,使得基站能够根据该波束ID或者QCL指示判断确定出两个CC对应的服务小区的天线端口之间是否具有QCL关系。
其中,该QCL判断指示指的是UE通过估算得到的两个CC上的发射/接收波束是否满足空间参数QCL的判断比特位。
需要说明的是,UE的波束ID或者QCL指示判断除了能够反馈同一TAG内的两个CC对应的服务小区的天线端口之间的QCL关系,还可以反馈不同TAG的CC对应的服务小区的天线端口之间的QCL关系。即本申请实施例中不仅能够对同一TAG内的服务小区的天线端口之间的QCL关系进行判断,还能够对不同TAG的服务小区的天线端口之间的QCL关系进行判断。在完成判断后会QCL关系通过QCL指示信令发送给UE,对同一TAG和不同TAG的判断能够进一步减小波束管理的导频和反馈开销。当然,本申请实施例中也可以只对不同TAG的服务小区的天线端口之间的QCL关系进行判断,而不对同一TAG内的两个服务小区的天线端口之间的QCL关系进行判断,同样能够在一定程度上减小波束管理的导频和反馈开销。
第三种方式是基站根据所述至少两个服务小区对应的载波单元的载频间距或者传播路径确定所述至少两个服务小区的天线端口之间具有QCL关系。此方式同样还用于对TAG分组,在采用此方式判断QCL关系时,可以采用载频间距和传播路径中的一种进行判断,也可以将两种进行结合判断。其中,采用载频间距的判断方式中,如果同一服务小区分组内的两个CC的载频间距较小,则可以认为两个CC对应的服务小区的天线端口之间关于一些空间特征参数是相同的,因此,可以认定两个CC对应的服务小区的天线端口之间具有QCL关系。而采用传播路径进行判断时,由于相同的传播路径下,两个CC的NTA基本是相同的,并且传播路径相同即可以采用相同发射方向的波束,因此可以认定两个CC对应的服务小区的天线端口之间具有QCL关系。
402、UE接收基站下发的准共址QCL指示信令。
基站在完成QCL指示信令的生成后,便会将该QCL指示信令下发给UE,而UE也会接收到该QCL指示信令,通过该QCL指示信令能够获知到同一服务小区分组内的至少两个服务小区的天线端口之间是否具有QCL关系,或者是不同服务小区分组的服务小区的天线端口之间是否具有QCL关系。当然,在QCL指示信令指示两种情形都具有时,UE也会按照两种情形进行参考信号的发送。QCL指示信令可以是通过高层信令下发,也可以通过物理层信令下发,或者通过高层信令和RRC信令结合的方式进行发送。
可选的,QCL指示信令中可以指示至少一个服务小区上的天线端口(例如CSI-RS,或者DMRS)与相同服务小区分组或/和其它服务小区分组中的至少一个服务小区上的哪些天线端口集合,和/或哪些QCL参数具有QCL关系(例如关于SS block的空间特征参数,多普勒扩展,平均时延具有QCL关系,关于CSI-RS的空域参数具有QCL关系)。
403、UE根据所述QCL指示信令确定在天线端口之间具有QCL关系的所述同一服务小区分组内的至少两个服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号。
其中,如果协议预先定义了同一TAG的至少两个服务小区的天线端口之间具有QCL关系,而不同TAG的服务小区的天线端口之间不具有QCL关系,那么UE就会理解同一个TAG里的服务小区上可以使用相同的接收波束来进行接收天线端口信号,因此基站和UE的波束管理过程只需要在其中一个服务小区对应的CC上进行即可,从而节省了其它CC上的波束扫描导频开销和波束反馈开销。
举例来说,UE接收到基站指示的QCL指示信令之后,就会理解CC2上CSI-RS的基站发射波束也用于发送CC1上的CSI-RS(或者DMRS),从而使用与CC2上接收用于波束管理的CSI-RS端口相同的接收波束来接收CC1上的天线端口信号,从而CC2上的波束管理过程就可以省略,节省了波束管理的导频开销和波束反馈开销。
可以看出,通过图4所示实施例的方法,将服务于UE的服务小区预先进行了服务小区分组,并且对同一服务小区组内至少两个服务小区的天线端口之间的QCL关系进行确定,当确定至少两个服务小区的天线端口之间具有QCL关系,则将该QCL关系通过QCL指示信令指示给UE,从而使得基站无需对每个服务小区对应的波束均进行波束管理,而仅需对天线端口之间不具有QCL关系的服务小区分别进行波束管理,对于天线端口之间具有QCL关系的服务小区仅对其中一个进行波束管理即可,能够减小波束管理过程的导频和反馈开销。
需要说明的是,图4所示实施例中的步骤401至至403除了对同一服务小区分组内的至少两个服务小区上的天线端口之间的QCL关系进行确定和利用之外,还可以对不同服务小区分组的服务小区的天线端口之间的QCL关系进行确定和利用。举例来说,对于不同的TAG,在UE初始接 入后,基站可以在不同的TAG上做独立的波束管理,该波束管理过程与前述对于至少两个服务小区的天线端口之间的QCL关系判断方式中的第二中判断方式类似,即基站通过测量导频发射不同的波束之后,UE反馈信道质量较好的波束ID/QCL判断指示给基站。基站通过比较不同TAG上反馈的波束ID/QCL判断指示确定不同TAG的服务小区的天线端口之间是否具有QCL关系,接着,基站便可将不同服务小区分组的服务小区的天线端口之间的QCL关系以QCL指示的方式发送给UE,以使得UE能够确定在天线端口之间具有QCL关系的不同服务小区分组的服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号。
具体来说,与步骤401至步骤403类似,当变为对不同服务小区的服务小区的天线端口之间的QCL关系确定和利用时;
图4所示实施例的步骤401在本例中可变为当所述基站确定不同服务小区分组的服务小区的天线端口之间具有QCL关系时,所述基站向UE发送用于指示所述不同分组的服务小区的天线端口之间具有QCL关系的QCL指示信令。
对于该步骤来说,同样的服务小区分组有两种,与图4所示实施例中的两种服务小区分组方式类似。但是在进行服务小区分组时,并不会优先考虑同一服务小区分组内的服务小区的天线端口之间是否具有QCL关系。此外,若是采用第二种服务小区分组方式,由基站进行服务小区的分组的情况下,同样需要基站通过高层信令下发服务小区分组的信息。此外,该步骤中用于判断QCL关系的方式有两种与图4所示实施例中相同,分别为图4所示实施例中的第二种QCL关系确定方式和第三种QCL关系确定方式。而对于第一种QCL关系确定方式,该步骤中,可以是预先定义的不同服务小区分组的天线端口之间具有QCL关系,而非图4所示实施例中的第一种QCL关系确定方式采用的预定义同一服务小区分组的天线端口之间具有QCL关系。
图4所示实施例的步骤402在本例中可不变,但是接收的QCL指示信令的内容会发生变化,即该QCL指示信令用于指示不同服务小区分组的服务小区的天线端口之间具有QCL关系。
图4所示实施例的步骤403在本例中可变为UE根据QCL指示信令确定在天线端口之间具有QCL关系的所述不同服务小区分组的服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的的参考信号。与图4所示实施例的步骤403的说明类似,如果协议预先定义了不同TAG的服务小区的天线端口之间具有QCL关系,那么UE就会理解不同TAG里的CC上可以使用相同的接收波束来进行接收天线端口信号,因此基站和UE的波束管理过程只需要在其中一个CC上进行即可,从而节省了其它CC上的波束扫描导频开销和波束反馈开销。
此外,对于服务于UE的服务小区来说,除了仅对同一服务小区组内的至少两个服务小区上的天线端口之间的QCL关系进行确定和利用,或者仅对不同服务小区组内的服务小区上的天线端口之间的QCL关系进行确定和利用之外;还可以同时对同一服务小区组内的至少两个服务小区上的天线端口之间的QCL关系以及不同服务小区组内的服务小区上的天线端口之间的QCL关系均进行确定和和利用,从而能够进一步节省波束管理的导频开销和波束反馈开销。
下面以几个实际的例子对本申请实施例的上述分组方式以及QCL指示进行说明。
(1)在pTAG内所有SCell跟PCell或PSCell的天线端口之间有QCL关系。
其中,PSCell指的是双连接技术中存在两个载波组(Carrier Group,简称CG),每个CG连接在不同的基站上,其中一个叫Primary CG,另一个叫Secondary CG.Primary CG和Secondary CG中各有一个PCell,其中Secondary CG中的PCell被称为PSCell。可见,此情形中实际包含两个基站,每个UE均可通过该双连接技术连接到两个基站上。
本例中,如果基站判断一个pTAG内的至少两个服务小区的天线端口关于空间特征参数中的至少一个或者信道平均增益是相同的,那么基站可以通过高层信令通知UE同一pTAG内所有SCell用于波束管理或信道状态信息测量的CSI-RS资源内的天线端口(或者用于数据解调的DMRS天线端口)和与PCell或PSCell内的用于波束管理或信道状态信息测量的CSI-RS资源内的天线端口之间关于信道平均增益或者至少一个空间特征参数具有QCL关系。UE接收到该QCL指示信令之后,就会使用PCell或PSCell上CSI-RS的接收波束来接收同一pTAG内其他SCell上的CSI-RS(或者DMRS),从而其他SCell上的波束管理过程就可以省略,节省了波束扫描导频开销和波束反馈开销。
如果基站判断一个pTAG中的服务小区的天线端口关于空间特征参数中的至少一个或者信道平均增益是相同的,那么可以通过QCL指示信令通知UE同一pTAG内所有SCell用于波束管理或信道状态信息测量的CSI-RS资源内的天线端口(或者用于数据解调的DMRS端口)和与PCell或PSCell内的用于波束管理或信道状态信息测量的CSI-RS资源的天线端口之间关于信道平均增益或者至少一个空间特征参数具有QCL关系。UE接收到该高层信令之后,就会理解PCell上CSI-RS的基站发射波束也用于发送同一pTAG内其他SCell上的CSI-RS(或者DMRS),从而在其他SCell上使用与PCell或PSCell上CSI-RS的接收波束来接收同一pTAG内其他SCell上的CSI-RS(或者DMRS),从而其他SCell上的波束管理过程就可以省略,节省了波束扫描导频开销和波束反馈开销。
(2)在pTAG内的每个SCell与PCell或PSCell的天线端口之间可能具有QCL关系,基站单独配置UE的每一个SCell和PCell的天线端口之间是否具有QCL关系,并通过高层信令或者物理层信令将该pTAG内的每个SCell与PCell或PSCell的天线端口之间的QCL关系下发给UE。
本例中,与(1)相同。唯一的区别是基站需要判断一个pTAG中的哪些服务小区的天线端口之间具有QCL关系,通过高层信令(如RRC或者MAC-CE)或者物理层信令(DCI)通知UE该pTAG内哪些SCell用于波束管理或信道状态信息测量的CSI-RS资源内的天线端口(或者用于数据解调的DMRS端口)和PCell或PSCell内的用于波束管理或信道状态信息测量的CSI-RS资源的天线端口之间关于信道平均增益或者至少一个空间特征参数具有QCL关系。例如,高层信令/物理层信令的格式可以是一个比特位图(bitmap),比特位数与pTAG内的SCell个数相等。具体地说,如果一个pTAG内的服务小区个数为4,那么1001代表第一个和第四个SCell上的天线端口和PCell上的天线端口具有QCL关系。或者,也可以在TAG中添加每个SCell的高层信令中添加一条信息描述该SCell和PCell的天线端口之间的QCL关系。
(3)在同一个sTAG内的SCell的天线端口之间有QCL关系。
本例中,sTAG中没有PCell,对应于每个sTAG,可以定义一个参考SCell,
(可以称为serving cell或者SCell C);
如果基站判断一个sTAG中的服务小区上的天线端口关于空间特征参数中的至少一个或者信道平均增益是相同的,那么基站可以通过高层信令通知UE同一sTAG内所有SCell用于波束管理或信道状态信息测量的CSI-RS资源内的天线端口(或者用于数据解调的DMRS端口)是具有QCL关系的,或者同一sTAG内所有SCell和serving cell或SCell C的用于波束管理或信道状态信息测量的CSI-RS资源的天线端口之间关于空间特征参数中的至少一个或者信道平均增益具有QCL关系。UE接收到该高层信令之后,就会使用serving cell或SCell C上CSI-RS的接收波束来接收同一pTAG内其他SCell上的CSI-RS(或者DMRS),从而其他SCell上的波束管理过程就可以省略, 节省了波束扫描导频开销和波束反馈开销。
如果基站判断一个sTAG中的服务小区的天线端口关于空间特征参数中的至少一个或者信道平均增益是相同的,那么基站可以通过高层信令通知UE同一sTAG内所有SCell用于波束管理或信道状态信息测量的CSI-RS资源内的天线端口(或者用于数据解调的DMRS端口)之间是具有QCL关系的,或者同一sTAG内所有SCell和serving cell或SCell C的用于波束管理或信道状态信息测量的CSI-RS资源的天线端口之间关于空间特征参数中的至少一个或者信道平均增益具有QCL关系。UE接收到该高层信令之后,就会理解serving cell或SCell C上CSI-RS的基站发射波束也用于发送同一sTAG内其他SCell上的CSI-RS(或者DMRS),从而在其他SCell上使用与serving cell或SCell C上CSI-RS的接收波束来接收同一pTAG内其他SCell上的CSI-RS(或者DMRS),从而其它SCell上的波束管理过程就可以省略,节省了波束扫描导频开销和波束反馈开销。
(4)在同一个pTAg或者sTAG内的SCell的天线端口之间可能具有QCL关系,基站可以单独配置SCell的天线端口之间是否具有QCL关系,并通过高层信令或物理层信令下发给UE。
本例中,与(3)相同。唯一的区别是对应于每个sTAG或者pTAG,定义一个或者多个参考SCell(可以记为serving cell或SCell C1或者SCell C1,SCell C2,SCell C3,…);可选的,基站通过高层信令指示一个或多个参考SCell的至少一个参数,例如SCell的个数,SCell的ID,SCell上的天线端口信息以及相对应的QCL参数信息等。基站判断了一个pTAG或者sTAG中的哪些服务小区的天线端口之间具有QCL关系后,通过高层信令或物理层信令通知UE哪些SCell内用于波束管理或信道状态信息测量的CSI-RS资源内的天线端口(或者用于数据解调的DMRS端口)和ID为serving cell或SCell C1中用于波束管理或信道状态信息测量的CSI-RS资源的天线端口之间关于空间特征参数中的至少一个或者信道平均增益具有QCL关系。或者,基站通过高层信令或物理层信令通知UE每一个SCell内用于CSI测量的CSI-RS资源内的天线端口和SCell C1、SCell C2和SCell C3之中一个参考serving cell或SCell中用于CSI测量的CSI-RS资源的天线端口之间关于空间特征参数中的至少一个或者信道平均增益具有QCL关系。例如,下表2为每个CC的物理层信令告诉UE本CC对应服务小区的天线端口与哪个参考SCell上的天线端口之间具有QCL关系。
表2
Figure PCTCN2018085744-appb-000001
上面以根据TAG或根据numberology进行分组为例对本申请实施例中对于同一TAG或者不同TAG的服务小区的天线端口之间的QCL关系的确定进行了说明,下面对非TAG方式分组的情况下,同一服务小区分组或者不同服务小区分组的服务小区的天线端口之间的QCL关系。请参阅图5,图5是本申请实施例的通信方法的一个实施例图,该实施例中,基站直接将服务于UE的所有服务小区进行分组,并通过高层信令指示给UE该服务小区分组的信息,而后再通过QCL指示信令将同一服务小区分组内的服务小区的天线端口之间的QCL关系发送给UE,该通信方法可包括:
501、基站根据为同一UE配置的所有服务小区对应的CC的载频间距和传播路径判断服务于UE的服务小区的天线端口之间是否关于空间特征参数具有QCL关系。
可选的,步骤501中,基站还可以根据不同服务小区的numerology信息或者TA信息判断服务于UE的服务小区的天线端口之间是否关于空间特征参数具有QCL关系。
其中,该步骤中通过载频间距和传播路径判断QCL关系的方式与图3b所示实施例中第三种判断QCL关系的方式类似,此处不在赘述。
可选的,本发明实施例中,UE可以反馈其服务小区分组的能力用于辅助基站分组的决定。例如,UE可能会具有多个射频RF接收/发射链路,用于不同的服务小区上的信号接收/发送。不同RF链路上的服务小区上可能不具有QCL关系,因此属于不同的服务小区分组。
可选的,在UE初始接入基站后,基站可以在不同的服务小区上做独立的波束管理,即基站通过不同服务小区的波束发射测量导频之后,UE反馈信道质量较好的波束ID/QCL判断指示给基站。基站通过比较不同服务小区上反馈的波束ID/QCL判断指示确定不同的服务小区的天线端口之间是否具有QCL关系。其中,本实施例中的QCL判断指示指的是UE通过估算得到的两个服务小区上的发射波束或接收波束是否满足空间参数QCL的判断比特位。例如,QCL判断指示可以指示以下信息至少之一:UE支持的服务小区分组个数的信息,至少一个分组中支持的服务小区的个数,至少一个服务小区分组的ID或者配置参数,至少一个服务小区分组中的服务小区的ID或者配置参数,至少一个服务小区上的至少一个天线端口(例如CSI-RS的天线端口)的参考信号接收功率(Reference Signal Receiving Power,RSRP)、平均时延、时延扩展、多普勒扩展、多普勒频移等信息中的至少一个。或者,QCL判断指示中包含该UE的服务小区/BWP/CC属于哪个服务小区分组(例如,上报BWP/CC所属服务小区分组的ID)。
可选的,基站通过高层信令(例如RRC信令或者MAC-CE)或者物理层信令触发QCL判断指示的反馈或者基站在至少以下一种情况下触发UE反馈QCL判断指示:
至少一个服务小区被激活,或增加,或配置,或者被去激活,或者删除;
服务小区的至少一个numerology被激活,或新增,或配置,或者被去激活,或者删除;
3)第一定时器超时或已经超时,并且UE端测量得到的信道条件发现突变(如波束失败(beam failure)或者波束质量/RSRP低于门限值)。第一定时器的时长为缺省值,或者,由RRC层信令或者由MAC层信令触发。
4)超过第二定时器的定时时长。第二定时器的时长为缺省值,或者,由RRC层信令或者由MAC层信令触发。
502、基站将具有天线端口之间具有QCL关系的服务小区设置在同一服务小区子分组内。
其中,若是服务小区的数量有n个,分别标记为服务小区1、服务小区2、服务小区3……服务小区n,可以按照步骤501确定的QCL关系将这些服务小区划分成m个服务小区子分组(CC  subgroup,简称CSG)或者服务小区分组,基站可以通过高层信令将m个服务小区子分组或者服务小区分组的信息发送给UE。例如,服务小区分组的信息可以是bitmap的形式表征以下信息的至少一个:至少一个服务小区分组包含的服务小区的信息,服务小区分组的个数,每个服务小区分组内BWP/CC的个数,每个分组内的一个或者多个BWP/CC的标识或配置参数,一个或者多个BWP/CC所在的服务小区分组。
可选的,基站可以通过高层信令指示分组的方式,例如,该信令设置成“模式1”可以告知UE服务小区分组是按照预定义的方式(例如是根据TAG进行分组,或者将具有相同numerology的服务小区划分在一个服务小区分组内),该信令设置成“模式2”可以告知UE基站在会通过高层信令或物理层信令通知服务小区分组的信息,或/和需要UE反馈QCL判断指示。
同一CSG的服务小区的天线端口之间具有QCL关系,该QCL关系可以预先定义,即预先定义一个CSG内的所有服务小区的天线端口关于空间特征参数中的至少一个或者信道平均增益具有QCL关系,当然还可以预先定义不同CSG的服务小区的天线端口之间关于空间特征参数中的至少一个或者信道平均增益不具有QCL关系。接着基站便可以通过高层信令指示UE同一CSG内的服务小区的天线端口之间的QCL关系,以及在定义了不同CSG时,将不同CSG内的的服务小区的天线端口之间不具有QCL关系。
503、确定同一个CSG其中一个或者多个参考serving cell或SCell,并对一个或者多个参考serving cell或SCell进行波束管理,根据波束管理确定参考serving cell或SCell上的波束信息。
其中,一个参考serving cell或SCell可记为SCell C1,而具有多个参考serving cell或SCell时,如m个,则分别记为SCell C1,SCell C2,SCell C3,…SCell Cm。关于参考serving cell或SCell的数量可以通过协议预先定义或者基站确定后通过高层信令指示UE。
504、根据参考serving cell或SCell的波束信息确定同一个CSG除参考serving cell或SCell之外的服务小区的波束信息。
其中,由于参考serving cell或SCell是设定的用于参考的服务小区,基站可以将CSG内各服务小区与参考serving cell或SCell的天线端口之间的QCL关系进行判断,并在具有QCL关系时通过QCL指示信令下发给UE。
上述方法还可以包含以下步骤。基站向所述UE发送用于指示至少两个服务小区的天线端口之间具有QCL关系的QCL指示信令,这些服务小区可以属于同一个服务小区分组,或者属于不同的服务小区分组,其中每个服务小区分组至少包含一个服务小区。例如,基站发送高层信令(RRC或者MAC信令)或者物理层信令给UE,用于指示一个或者多个服务小区的DMRS/CSI-RS与一个参考服务小区的CSI-RS/SS-block具有QCL关系。QCL指示信令可以是通过高层信令下发,也可以通过物理层信令下发,或者通过高层信令和RRC信令结合的方式进行发送。
举例来说,如果同一个CSG内仅有一个参考serving cell或SCell时,协议可以预先定义同一CSG内除该参考serving cell或SCell之外的其它服务小区与该参考serving cell或SCell的天线端口之间关于空间特征参数中的至少一个或者信道平均增益具有QCL关系。
或者,基站通过高层信令指示M组参数,每组参数中包含来自于服务小区1、服务小区2、服务小区3……服务小区m的天线端口信息,例如服务小区1、服务小区2、服务小区3……服务小区m之间的CSI-RS资源配置信息等。
同一CSG内除该参考serving cell或SCell之外的其它服务小区,基站可以通过高层信令指示该服务小区的用于波束管理或CSI测量的CSI-RS天线端口(或者用于数据解调的DMRS天线端 口)与服务小区1、服务小区2、服务小区3……服务小区m之中的一个的用于波束管理或CSI测量的CSI-RS天线端口关于空间特征参数中的至少一个或者信道平均增益具有QCL关系。例如,每个服务小区上基站可以通过物理层信令(DCI)告诉UE该服务小区的天线端口与哪个参考serving cell或SCell上的天线端口有QCL关系,DCI的格式可以如下表3所示。
表3
Figure PCTCN2018085744-appb-000002
上述方法还可以包含以下步骤:基站通过高层信令或物理层信令通知UE一个或者多个服务小区上的天线端口和参考服务小区上的天线端口具有QCL关系。
本发明实施例中可选的,定义一个或者多个参考SCell(可以记为SCell C1或者SCell C1,SCell C2,SCell C3,…);可选的,基站通过高层信令指示一个或多个SCell的至少一个参数,例如SCell的个数,SCell的ID,SCell上的天线端口信息以及相对应的QCL参数信息等。基站可以通过物理层信令通知UE一个或多个服务小区分组中的至少一个服务小区上的CSI-RS天线端口(或者用于数据解调的DMRS端口)和SCell C1(或者SCell C1,SCell C2,SCell C3中的一个)中CSI-RS天线端口(或者SS block对应的时频资源)之间具有QCL关系。例如,基站通过高层信令配置一个或多个服务小区分组(记为CSG1或者CSG1,CSG2,…),或者通过高层信令配置至少一个服务小区。所述至少一个服务小区可以在相同的服务小区分组中,或者在不同的服务小区分组中。物理层信令中可以存在一个或多个指示域,用于指示上述高层信令配置的一个或多个服务小区分组与哪一个参考SCell上的天线端口具有QCL关系,或者用于指示上述高层信令配置的至少一个服务小区与哪一个参考SCell上的天线端口具有QCL关系。例如,基站通过如表4所示的物理层信令指示域通知UE CSG1或者CSG1,CSG2,…上的天线端口与哪个参考SCell上的天线端口之间具有QCL关系。上述定义的过程可以通过基站指示UE来实现。
表4
Figure PCTCN2018085744-appb-000003
Figure PCTCN2018085744-appb-000004
可以看出,由于将服务于UE的服务小区按照载频间距和已知的传播路径进行了所有服务小区之的天线端口之间是否关于空间特征参数具有QCL关系,接着再将天线端口之间具有QCL关系的服务小区分在服务小区子分组内,接着再从每个服务小区子分组内选出一个或者多个参考serving cell或SCell,并对一个或者多个参考serving cell或SCell进行波束管理,根据波束管理确定参考参考serving cell或SCell上的波束信息,最后便能够根据参考serving cell或SCell的波束信息确定同一个CSG除参考serving cell或SCell之外的服务小区的波束信息,在确定了所有波束信息后,便按照QCL关系和该波束信息采用QCL指示信令指示给UE,从而使得基站无需对每个服务小区对应的波束均进行波束管理,而仅需对不具有QCL关系的服务小区分别进行波束管理,对于具有QCL关系的服务小区仅对其中一个进行波束管理即可,能够减小波束管理过程的导频和反馈开销。
上述实施例中虽然是针对空域参数的服务小区分组以及QCL指示方法进行举例,但也对平均时延、时延扩展、多普勒扩展、多普勒频移中的至少一个大尺度信息的服务小区分组以及QCL指示方法也适用。
上面针对本申请实施例的通信方法进行了介绍,后文简要给出实现上述方法的装置实施例。其中技术实现细节、技术效果等可参考前述方法实施例,后文不再赘述。下面对本申请实施例的基站进行介绍。请参阅图6,图6是本申请实施例的基站的一个实施例图,该基站可包括处理模块601和发送模块602,其中,
该处理模块601用于当所述基站确定同一服务小区分组内的至少两个服务小区的天线端口之间具有QCL关系时,通过该发送模块602向所述UE发送用于指示所述至少两个服务小区的天线端口之间具有QCL关系的QCL指示信令,所述服务小区分组为按照预设规则进行预定义的分组或者由所述基站将分配给用户设备UE的服务小区进行分组得到。
可以看出,服务小区分组有两种不同的方式,第一种是按照预设规则进行预定义的分组,如直接将该预定义的分组方式约定在基站与UE的通信协议中;第二种是由所述基站将分配给用户设备UE的服务小区进行分组得到。两种分组方式均已在图3b所示实施例中的针对步骤401中的说明已解释,此处不再赘述。
需要说明的是,由于在载波聚合中,如果CC是连续的或者距离较近,则可认为这些CC对应的服务小区的天线端口之间关于QCL参数之中的一个或者多个具有QCL关系,而若是载波聚合中的CC之间不是连续的或者距离较远,则认为这些CC对应的服务小区的天线端口之间关于QCL参数不具有QCL关系。因此若将服务小区分组为同一服务小区分组内的服务小区的天线端口之间具有QCL关系时,一种方式是可以根据载频间距对CC进行分组,此外,不同的波束对应的路径 传输时延、接收功率也不尽相同,也可以根据不同CC之间的指针定时关系进行CC分组。
可选的,服务小区分组由所述基站将分配给UE的服务小区进行分组得到,所述发送模块602还用于:
通过高层信令向所述UE下发所述服务小区分组的信息。
其中,若是第二种情况下,基站会通过高层信令向所述UE下发所述服务小区分组的信息,该方式与图3b所示实施例中针对步骤401的说明类似,此处不再赘述。
可选的,同一服务小区分组内的服务小区的天线端口之间具有QCL关系。
其中,此QCL关系设置是图3b所示实施例中在第二种服务小区分组方式的基础上设置的,该QCL关系的确定方式可以与图3b所示实施例中第一种确定QCL的方式类似,此处不再赘述。
可选的,所述处理模块601具体用于:
通过至少两个服务小区的波束发送测量导频至所述UE;
接收由所述UE确定的具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
根据接收的所述QCL判断指示或者所述波束ID确定所述至少两个服务小区的天线端口之间的具有QCL关系。
其中,此可选方式与图3b所示实施例中第二种通过服务小区的波束发送测量导频的方式确定QCL的方式类似,该方式中基站会接收到UE发送的波束ID或者QCL判断指示,根据此波束ID或者QCL判断指示便可判断QCL关系,此处不再赘述。
需要说明的是,该方式也能够对不同服务小区组的服务小区的天线端口之间的QCL关系进行确定,从而使得UE的波束ID或者QCL指示判断除了能够反馈同一TAG内的两个服务小区的天线端口之间的QCL关系,还可以反馈不同TAG的服务小区的天线端口之间的QCL关系。即本申请实施例中不仅能够对同一TAG内的服务小区的天线端口之间的QCL关系进行判断,还能够对不同TAG的服务小区的天线端口之间的QCL关系进行判断。在完成判断后会将QCL关系通过QCL指示信令发送给UE,对同一TAG和不同TAG的判断能够进一步减小波束管理的导频和反馈开销。当然,本申请实施例中也可以只对不同TAG的服务小区的天线端口之间的QCL关系进行判断,而不对同一TAG内的两个服务小区上的天线端口的QCL关系进行判断,同样能够在一定程度上减小波束管理的导频和反馈开销。
可选的,所述处理模块601具体用于:
根据所述至少两个服务小区对应的载波单元的载频间距或者传播路径确定所述至少两个服务小区的天线端口之间具有QCL关系。
其中,该QCL关系的确定方式可以与图3b所示实施例中第三种确定QCL的方式类似,此处不再赘述。
可选的,处理模块601还用于:
将对应所述UE的N个服务小区划分为M个的服务小区分组,所述N大于等于M,所述M和N均为大于等于1的整数;或,
将使用相同的定时偏移量和相同的定时参考小区的服务小区设置在同一定时偏移分组TAG内。
其中,此两种划分服务小区组的方式均为按照预设规则预定义分组的方式,第一种预定义方 式即接将N个服务小区划分为M组,可以是将CC1、CC2、CC3‥‥‥CCn直接进行分组,例如直接按照顺序每个服务小区分组包含a个CC,例如服务小区分组包括3个CC,服务小区分组1包括CC1、CC2和CC3,服务小区分组2包括CC4、CC5和CC6等,这种分组方式可以直接采用协议进行定义,此方式下,无需基站通过高层信令向UE下发服务小区分组的信息,当然,若不采用协议进行定义,则同样需要由基站通过高层信令将该服务小区分组的信息通知给UE。第二种预定义方式即将具有相同定时偏移量和相同的定时参考小区的服务小区分在同一个TAG内,此方式的具体划分过程可以参见图3b所示实施例中对第一种服务小区分组方式的说明,此处不再赘述。
可选的,一个所述TAG内的服务小区的天线端口之间具有QCL关系。
其中,此QCL关系设置是在第一种服务小区分配方式的基础上设置的,该QCL关系的确定方式可以与图3b所示实施例中第一种确定QCL的方式类似,此处不再赘述。
可选的,不同的所述TAG的服务小区的天线端口之间不具有QCL关系。
其中,此QCL关系设置是在第一种服务小区分配方式的基础上进设置的,该QCL关系的确定方式可以与图3b所示实施例中第一种确定QCL的方式类似,此处不再赘述。
可选的,所述至少两个服务小区的天线端口之间具有QCL关系为所述至少两个服务小区的天线端口关于信道平均增益或者至少一个空间特征参数中至少一个是相同的,所述空间特征参数包括AoA、AoD、PAS-of-AoA、PAS-of-AoD、接收天线空间相关性、发射天线空间相关性、接收空间波束、发射空间波束之中的至少一个。
其中,上述参数在前述方案已进行说明,此处不再赘述。
上面本申请实施例的基站的一种情况进行了介绍,下面对本申请实施例的基站的另一种情况进行介绍。请参阅图7,图7是本申请实施例的基站的一个实施例图,该基站包括处理模块701和发送模块702;
处理模块701用于当基站确定不同服务小区分组的服务小区的天线端口之间具有QCL关系时,通过发送模块702向UE发送用于指示所述不同分组的服务小区的天线端口具有QCL关系的QCL指示信令,服务小区分组为按照预设规则进行预定义的分组或者由所述基站将分配给用户设备UE的服务小区进行分组得到。
可以看出,本实施例与图6所示实施例所述的基站的不同之处在于,是对不同服务小区分组的服务小区的天线端口之间的QCL关系进行确定,并通过QCL指示信令向UE指示该QCL关系。同样的,服务小区分组有两种不同的方式,第一种是按照预设规则进行预定义的分组,如直接将该预定义的分组方式约定在基站与UE的通信协议中;第二种是由所述基站将分配给用户设备UE的服务小区进行分组得到。两种分组方式均已在图3b所示实施例中的针对步骤401中的说明已解释,此处不再赘述。
可选的,所述服务小区分组由所述基站将分配给UE的服务小区进行分组得到,所述发送模块还用于:
通过高层信令向所述UE下发所述服务小区分组的信息。
其中,若是第二种情况下,基站会通过高层信令向所述UE下发所述服务小区分组的信息,该方式与图3b所示实施例中针对步骤401的说明类似,此处不再赘述。
可选的,不同的服务小区分组内的服务小区的天线端口之间具有QCL关系。
其中,此QCL关系设置是图3b所示实施例中在第二种服务小区分组方式的基础上设置的,该QCL关系的确定方式可以与图3b所示实施例中第一种确定QCL的方式类似,该设置方式不同 于图6所示实施例中将同一服务小区分组内的服务小区的天线端口之间设置有QCL关系,而是将不同服务小区分组内的服务小区的天线端口之间设置有QCL关系。
可选的,所述处理模块701具体用于:
通过所述不同分组的服务小区的波束发送测量导频至所述UE;
接收由所述UE确定的具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的所述不同分组的服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
根据所述QCL判断指示或者所述波束ID确定不同的服务小区的天线端口之间的QCL关系。
其中,此可选方式与图3b所示实施例中第二种通过服务小区的波束发送测量导频的方式确定QCL的方式类似,该方式中基站会接收到UE发送的波束ID或者QCL判断指示,不同于图6所示实施例中根据此波束ID或者QCL判断指示判断的是同一服务小区分组内的天线端口之间的QCL关系,本实施例中根据此波束ID或者QCL判断指示判断的是不同服务小区分组的服务小区的天线端口之间的QCL关系。
可选的,处理模块701具体用于:
根据所述不同服务小区分组的服务小区对应的载波单元的载频间距或传播路径确定所述不同分组的服务小区的天线端口之间具有QCL关系。
其中,该QCL关系的确定方式可以与图3b所示实施例中第三种确定QCL的方式类似,不同于图6所示实施例中根据载频间距或者传播路径判断的是同一服务小区分组内的天线端口之间的QCL关系,本实施例中根据此根据载频间距或者传播路径判断判断的是不同服务小区分组的服务小区的天线端口之间的QCL关系。
可选的,所述处理模块701还用于:
将对应所述UE的N个服务小区划分为M个的服务小区分组,所述N大于等于M,所述M和N均为大于等于1的整数;或,
将使用相同的定时偏移量和相同的定时参考小区的服务小区设置在同一定时偏移分组TAG内。
其中,此两种划分服务小区组的方式均为按照预设规则预定义分组的方式,第一种预定义方式即接将N个服务小区划分为M组,可以是将CC1、CC2、CC3......CCn直接进行分组,例如直接按照顺序每个服务小区分组包含a个CC,例如服务小区分组包括3个CC,服务小区分组1包括CC1、CC2和CC3,服务小区分组2包括CC4、CC5和CC6等,这种分组方式可以直接采用协议进行定义,此方式下,无需基站通过高层信令向UE下发服务小区分组的信息,当然,若不采用协议进行定义,则同样需要由基站通过高层信令将该服务小区分组的信息通知给UE。第二种预定义方式即将具有相同定时偏移量和相同的定时参考小区的服务小区分在同一个TAG内,此方式的具体划分过程可以参见图3b所示实施例中对第一种服务小区分组方式的说明,此处不再赘述。
可选的,不同TAG的服务小区的天线端口之间具有QCL关系。
其中,此QCL关系设置是在第一种服务小区分配方式的基础上设置的,该QCL关系的确定方式可以与图3b所示实施例中第一种确定QCL的方式类似,不同的是本实施例中是对不同服务小区组的服务小区的天线端口之间的QCL关系进行确定,此处不再赘述。
可选的,至少两个服务小区的天线端口之间具有QCL关系为所述至少两个服务小区的天线端口关于信道平均增益或者至少一个空间特征参数中至少一个是相同的,所述空间特征参数包括 AoA、AoD、AS-of-AoA、PAS-of-AoD、接收天线空间相关性、发射天线空间相关性、接收空间波束、发射空间波束之中的至少一个。
其中,上述参数在前述方案已进行说明,此处不再赘述。
上面对本申请实施例的两种基站分别进行了介绍,下面对本申请实施例的终端进行介绍,请参阅图8,图8是本申请实施例的终端的一个实施例图,该终端包括接收模块801和处理模块802;
接收模块801用于接收基站下发的QCL指示信令,所述QCL指示信令用于指示同一服务小区分组内的至少两个服务小区的天线端口之间具有QCL关系,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组或按照预设规则进行预定义的分组;
处理模块802用于根据所述QCL指示信令确定在天线端口之间具有QCL关系的所述同一服务小区分组内的至少两个服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号。
可以看出,该接收模块801接收的QCL指示信令是用于指示同一服务小区分组内的至少两个服务小区的天线端口之间具有QCL关系,其中,有两种不同的方式,第一种是按照预设规则进行预定义的分组,如直接将该预定义的分组方式约定在基站与UE的通信协议中;第二种是由所述基站将分配给用户设备UE的服务小区进行分组得到。两种分组方式均已在图3b所示实施例中的针对步骤401中的说明已解释,此处不再赘述。
此外,关于处理模块802根据QCL指示信令确定在天线端口之间具有QCL关系的所述同一服务小区分组内的至少两个服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号的过程在针对图3b所示实施例的(1)、(2)、(3)和(4)四个例子中均以说明,此处不再赘述。
可选的,所述服务小区分组为TAG,同一TAG内的服务小区的定时偏移量和定时参考小区相同。
其中,该TAG的方式即将具有相同定时偏移量和相同的定时参考小区的服务小区分在同一个TAG内,此方式的具体划分过程可以参见图3b所示实施例中对第一种服务小区分组方式的说明,此处不再赘述。
可选的,所述接收模块801还用于接收基站通过所述至少两个服务小区的波束发送的测量导频;
处理模块802根据所述至少两个服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
所述终端还包括发送模块803,用于将所述QCL判断指示或者所述波束ID反馈至所述基站。
其中,该接收模块801、处理模块802和发送模块803能够配合基站完成波束管理,该QCL关系的确定方式与与图3b所示实施例中第二种通过服务小区的波束发送测量导频的方式确定QCL的方式类似,该方式中基站会接收到UE发送的波束ID或者QCL判断指示,根据此波束ID或者QCL判断指示便可判断QCL关系,此处不再赘述。
可选的,服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组,所述接收模块还用于:
接收所述基站通过高层信令下发的服务小区分组的信息。
其中,若是服务小区分组是由基站将服务于UE的服务小区进行的分组,则基站会将该服务 小区分组的信息通过高层信令的方式下发给UE,当然预定义方式进行服务小区分组的信息也能够采用高层信令下发。
上面对本申请实施例的终端的一种情绪进行了介绍,下面对本申请实施例的终端的另一种情形进行介绍,请参阅图9,图9是本申请实施例的终端的一个实施例图,该终端包括接收模块901和处理模块902;
接收模块901用于接收基站下发的准共址QCL指示信令,所述QCL指示信令用于指示不同服务小区分组间的服务小区的天线端口之间具有QCL关系,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组或按照预设规则进行预定义的分组;
处理模块902用于根据所示QCL指示信令确定在天线端口之间具有QCL关系的所述不同服务小区分组间的服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的的参考信号。
可以看出,该接收模块801接收的QCL指示信令是用于指示不同服务小区分组的服务小区的天线端口之间具有QCL关系,其中,有两种不同的方式,第一种是按照预设规则进行预定义的分组,如直接将该预定义的分组方式约定在基站与UE的通信协议中;第二种是由所述基站将分配给用户设备UE的服务小区进行分组得到。两种分组方式均已在图3b所示实施例中的针对步骤401中的说明已解释,此处不再赘述。
此外,关于处理模块802根据QCL指示信令确定在天线端口之间具有QCL关系的所述同一服务小区分组内的至少两个服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号的过程在针对图3b所示实施例的(1)、(2)、(3)和(4)四个例子中均以说明,此处不再赘述。
可选的,所述服务小区分组为定时偏移分组TAG,同一TAG内的服务小区的定时偏移量和定时参考小区相同。
其中,该TAG的方式即将具有相同定时偏移量和相同的定时参考小区的服务小区分在同一个TAG内,此方式的具体划分过程可以参见图3b所示实施例中对第一种服务小区分组方式的说明,此处不再赘述。
可选的,接收模块901还用于接收基站通过所述不同服务小区分组的服务小区的波束发送的测量导频;
处理模块902根据所述不同服务小区分组的服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
终端还包括发送模块903,用于将所述QCL判断指示或者所述波束ID反馈至所述基站。
其中,该接收模块901、处理模块902和发送模块903能够配合基站完成波束管理,该QCL关系的确定方式与与图3b所示实施例中第二种通过服务小区的波束发送测量导频的方式确定QCL的方式类似,该方式中基站会接收到UE发送的波束ID或者QCL判断指示,根据此波束ID或者QCL判断指示便可判断QCL关系,此处不再赘述。需要说明的是,此方式中不同于图8所示实施例根据此波束ID或者QCL判断指示判断的是同一服务小区分组内的服务小区的天线端口之间的QCL关系,本实施例中判断的是不同服务小区分组的服务小区的天线端口之间的QCL关系。
可选的,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组,所述 接收模块还用于:
接收所述基站通过高层信令下发的服务小区分组的信息。
其中,若是服务小区分组是由基站将服务于UE的服务小区进行的分组,则基站会将该服务小区分组的信息通过高层信令的方式下发给UE,当然预定义方式进行服务小区分组的信息也能够采用高层信令下发。
下面对本申请实施例中基站的结构进行描述,请参阅图10,图10是本申请实施例的基站的一个实施例图,其中,基站10可包括均与总线相连接的至少一个处理器1001、至少一个收发器1002和存储器1003,本申请实施例涉及的基站可以具有比图10所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
具体的,对于图6所示的实施例来说,该处理器1001能实现图6所示实施例中的基站的处理模块601的功能,该收发器1002能实现图6所示实施例中的基站的发送模块602的功能,该存储器1003有多种结构,用于存储程序指令,处理器1001用于执行所述存储器1003中的指令以实现图3b所述实施例中的通信方法。
具体的,对于图7所示的实施例来说,该处理器1001能实现图7所示实施例中的基站的处理模块701的功能,该收发器1002能实现图7所示实施例中的基站的发送模块702的功能,该存储器1003有多种结构,用于存储程序指令,处理器1001用于执行所述存储器1003中的指令以实现图3b所述实施例中的通信方法。
下面对本申请实施例中终端的结构进行描述,请参阅图11,图11是本申请实施例的终端的一个实施例图,其中,终端11可包括均与总线相连接的至少一个处理器1101、至少一个收发器1102和存储器1103,本申请实施例涉及的基站可以具有比图11所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
具体的,对于图8所示的实施例来说,该处理器1101能实现图8所示实施例中的基站的处理模块802的功能,该收发器1102能实现图8所示实施例中的基站的接收模块801和发送模块803的功能,该存储器1103有多种结构,用于存储程序指令,处理器1101用于执行所述存储器1103中的指令以实现图3b所述实施例中的通信方法。
具体的,对于图9所示的实施例来说,该处理器1101能实现图9所示实施例中的基站的处理模块902的功能,该收发器1102能实现图9所示实施例中的基站的接收模块901和发送模块903的功能,该存储器1103有多种结构,用于存储程序指令,处理器1101用于执行所述存储器1103中的指令以实现图3b所述实施例中的通信方法。
上面对本申请实施例的两种基站和两种终端分别进行了介绍,下面对本申请实施例的通信系统进行介绍,请参阅图12a和图12b,图12a是本申请实施例的通信系统的一个实施例图,图12b是本申请实施例的通信系统的一个实施例图,该通信系统12包括一个或者两个图10所示实施例中的基站以及至少一个图11所示实施例中的终端,该一个或两个图10所示实施例中的基站均与图11所示实施例中的终端端通信连接。具体的,图12a中包括一个图10所示实施例中的基站以及一个图11所示实施例中的终端,该基站与该终端之间通信连接。图12b中包括两个图10所示实施例中的基站以及一个图11所示实施例中的终端,该终端分别连接到两个基站上。不论是图12a还是图12b中所示的基站与终端,均能够配合执行图3b所示实施例的通信方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    当所述基站确定同一服务小区分组内的至少两个服务小区的天线端口之间具有准共址QCL关系时,所述基站向所述UE发送用于指示所述至少两个服务小区的天线端口之间具有QCL关系的QCL指示信令,所述服务小区分组为按照预设规则进行预定义的分组或者由所述基站将分配给用户设备UE的服务小区进行分组得到。
  2. 根据权利要求1所述的通信方法,其特征在于,所述服务小区分组由所述基站将分配给用户设备UE的服务小区进行分组得到,所述方法还包括:
    所述基站通过高层信令向所述UE下发所述服务小区分组的信息。
  3. 根据权利要求2所述的通信方法,其特征在于,同一服务小区分组内的服务小区的天线端口之间具有QCL关系。
  4. 根据权利要求1或2所述的通信方法,其特征在于,所述基站确定同一服务小区分组内至少两个服务小区的天线端口之间具有QCL关系包括:
    所述基站通过至少两个服务小区的波束发送测量导频至所述UE;
    所述基站接收由所述UE确定的具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
    所述基站根据接收的所述QCL判断指示或者所述波束ID确定所述至少两个服务小区的天线端口之间的具有QCL关系。
  5. 一种通信方法,其特征在于,包括:
    当所述基站确定不同服务小区分组的服务小区的天线端口之间具有QCL关系时,所述基站向UE发送用于指示所述不同分组的服务小区的天线端口具有QCL关系的QCL指示信令,所述服务小区分组为按照预设规则进行预定义的分组或者由所述基站将分配给用户设备UE的服务小区进行分组得到。
  6. 根据权利要求5所述的通信方法,其特征在于,所述服务小区分组由所述基站将分配给用户设备UE的服务小区进行分组得到,所述方法还包括:
    所述基站通过高层信令向所述UE下发所述服务小区分组的信息。
  7. 根据权利要求6所述的通信方法,其特征在于,不同的服务小区分组内的服务小区的天线端口之间具有QCL关系。
  8. 根据权利要求6或7所述的通信方法,其特征在于,所述基站确定所述不同服务小区分组的服务小区的天线端口之间具有QCL关系包括:
    所述基站通过所述不同分组的服务小区的波束发送测量导频至所述UE;
    所述基站接收由所述UE确定的具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的所述不同分组的服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
    所述基站根据所述QCL判断指示或者所述波束ID确定不同的服务小区的天线端口之间的QCL关系。
  9. 一种通信方法,其特征在于,包括:
    用户设备UE接收基站下发的准共址QCL指示信令,所述QCL指示信令用于指示同一服务 小区分组内的至少两个服务小区的天线端口之间具有QCL关系,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组或按照预设规则进行预定义的分组;
    所述UE根据所述QCL指示信令确定在天线端口之间具有QCL关系的所述同一服务小区分组内的至少两个服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号。
  10. 根据权利要求9所述的通信方法,其特征在于,所述服务小区分组为定时偏移分组TAG,同一TAG内的服务小区的定时偏移量和定时参考小区相同。
  11. 根据权利要求9或10所述的通信方法,其特征在于,所述方法还包括:
    所述UE接收基站通过所述至少两个服务小区的波束发送的测量导频;
    所述UE根据所述至少两个服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位。
  12. 根据权利要求9至11中任一项所述的通信方法,其特征在于,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组,所述方法还包括:
    所述UE接收所述基站通过高层信令下发的服务小区分组的信息。
  13. 一种通信方法,其特征在于,包括:
    用户设备UE接收基站下发的准共址QCL指示信令,所述QCL指示信令用于指示不同服务小区分组的服务小区的天线端口之间具有QCL关系,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组或按照预设规则进行预定义的分组;
    所述UE根据所述QCL指示信令确定在天线端口之间具有QCL关系的所述不同服务小区分组的服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的的参考信号。
  14. 根据权利要求13所述的通信方法,其特征在于,所述服务小区分组为定时偏移分组TAG,同一TAG内的服务小区的定时偏移量和定时参考小区相同。
  15. 根据权利要求13或14所述的通信方法,其特征在于,所述方法还包括:
    所述UE接收基站通过所述不同服务小区分组的服务小区的波束发送的测量导频;
    所述UE根据所述不同服务小区分组的服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位。
  16. 根据权利要求13至15中任一项所述的通信方法,其特征在于,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组,所述方法还包括:
    所述UE接收所述基站通过高层信令下发的服务小区分组的信息。
  17. 一种基站,其特征在于,所述包括处理模块和发送模块;
    所述处理模块用于当所述基站确定同一服务小区分组内的至少两个服务小区的天线端口之间具有准共址QCL关系时,通过所述发送模块向所述UE发送用于指示所述至少两个服务小区的天线端口之间具有QCL关系的QCL指示信令,所述服务小区分组为按照预设规则进行预定义的分组或者由所述基站将分配给用户设备UE的服务小区进行分组得到。
  18. 根据权利要求17所述的基站,其特征在于,所述服务小区分组由所述基站将分配给用户设备UE的服务小区进行分组得到,所述发送模块还用于:
    通过高层信令向所述UE下发所述服务小区分组的信息。
  19. 根据权利要求18所述的基站,其特征在于,同一服务小区分组内的服务小区的天线端口 之间具有QCL关系。
  20. 根据权利要求17或18所述的基站,其特征在于,所述处理模块具体用于:
    通过至少两个服务小区的波束发送测量导频至所述UE;
    接收由所述UE确定的具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
    根据接收的所述QCL判断指示或者所述波束ID确定所述至少两个服务小区的天线端口之间的具有QCL关系。
  21. 一种基站,其特征在于,包括处理模块和发送模块;
    所述处理模块用于当所述基站确定不同服务小区分组的服务小区的天线端口之间具有QCL关系时,通过所述发送模块向UE发送用于指示所述不同分组的服务小区的天线端口之间具有QCL关系的QCL指示信令,所述服务小区分组为按照预设规则进行预定义的分组或者由所述基站将分配给用户设备UE的服务小区进行分组得到。
  22. 根据权利要求21所述的基站,其特征在于,所述服务小区分组由所述基站将分配给UE的服务小区进行分组得到,所述发送模块还用于:
    通过高层信令向所述UE下发所述服务小区分组的信息。
  23. 根据权利要求21所述的基站,其特征在于,不同的服务小区分组内的服务小区的天线端口之间具有QCL关系。
  24. 根据权利要求21或22所述的基站,其特征在于,所述处理模块具体用于:
    通过所述不同分组的服务小区的波束发送测量导频至所述UE;
    接收由所述UE确定的具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的所述不同分组的服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
    根据所述QCL判断指示或者所述波束ID确定不同的服务小区的天线端口之间的QCL关系。
  25. 一种终端,其特征在于,包括接收模块和处理模块;
    所述接收模块用于接收基站下发的准共址QCL指示信令,所述QCL指示信令用于指示同一服务小区分组内的至少两个服务小区的天线端口之间具有QCL关系,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组或按照预设规则进行预定义的分组;
    所述处理模块用于根据所述QCL指示信令确定在天线端口之间具有QCL关系的所述同一服务小区分组内的至少两个服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的参考信号。
  26. 根据权利要求25所述的终端,其特征在于,所述服务小区分组为定时偏移分组TAG,同一TAG内的服务小区的定时偏移量和定时参考小区相同。
  27. 根据权利要求25或26所述的终端,其特征在于,所述接收模块还用于接收基站通过所述至少两个服务小区的波束发送的测量导频;
    所述处理模块根据所述至少两个服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
    所述终端还包括发送模块,用于将所述QCL判断指示或者所述波束ID反馈至所述基站。
  28. 一种终端,其特征在于,包括接收模块和处理模块:
    所述接收模块用于接收基站下发的准共址QCL指示信令,所述QCL指示信令用于指示不同服务小区分组间的服务小区的天线端口之间具有QCL关系,所述服务小区分组为基站将分配给所述UE的服务小区进行分组得到的分组或按照预设规则进行预定义的分组;
    所述处理模块用于根据所述QCL指示信令确定在天线端口之间具有QCL关系的所述不同服务小区分组间的服务小区上,采用相同的接收波束接收或发射波束发射所述服务小区的的参考信号。
  29. 根据权利要求28所述的终端,其特征在于,所述服务小区分组为定时偏移分组TAG,同一TAG内的服务小区的定时偏移量和定时参考小区相同。
  30. 根据权利要求28或29所述的终端,其特征在于,所述接收模块还用于接收基站通过所述不同服务小区分组的服务小区的波束发送的测量导频;
    所述处理模块根据所述不同服务小区分组的服务小区的波束确定具有目标信道质量的波束的QCL判断指示或者波束ID,所述QCL判断指示为所述UE通过估算得到的至少两个服务小区的波束是否满足空间特征参数的QCL关系的判断比特位;
    所述终端还包括发送模块,用于将所述QCL判断指示或者所述波束ID反馈至所述基站。
  31. 一种计算机可读存储介质,包含指令,当其在计算机上运行时,使得计算机执行如权利要求1-16任一项所涉及的方法。
  32. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-16任一项所涉及的方法。
PCT/CN2018/085744 2017-05-05 2018-05-05 一种通信方法、系统及相关设备 WO2018202188A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18794568.8A EP3573276B1 (en) 2017-05-05 2018-05-05 Base station method, base station apparatus and computer-readable storage medium for determining a quasi-co-location relationship
US16/567,965 US11190316B2 (en) 2017-05-05 2019-09-11 Communications method and system, and related device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710313437.4 2017-05-05
CN201710313437 2017-05-05
CN201710941202.XA CN108809600B (zh) 2017-05-05 2017-10-11 一种通信方法、系统及相关设备
CN201710941202.X 2017-10-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/567,965 Continuation US11190316B2 (en) 2017-05-05 2019-09-11 Communications method and system, and related device

Publications (1)

Publication Number Publication Date
WO2018202188A1 true WO2018202188A1 (zh) 2018-11-08

Family

ID=64016885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085744 WO2018202188A1 (zh) 2017-05-05 2018-05-05 一种通信方法、系统及相关设备

Country Status (1)

Country Link
WO (1) WO2018202188A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101921A1 (en) * 2018-11-12 2020-05-22 Qualcomm Incorporated Spatial quasi co-location conflict handling
CN111372308A (zh) * 2018-12-25 2020-07-03 华为技术有限公司 一种通信方法及装置
US10833753B2 (en) 2018-03-30 2020-11-10 Ofinno, Llc Radio beam failure recovery procedure timing
CN113647127A (zh) * 2019-04-30 2021-11-12 富士通株式会社 基于ssb的测量方法及装置
CN114041321A (zh) * 2019-09-30 2022-02-11 华为技术有限公司 一种波束失败检测方法及装置
CN115443709A (zh) * 2020-06-28 2022-12-06 Oppo广东移动通信有限公司 通信方法及终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945539A (zh) * 2013-01-18 2014-07-23 华为终端有限公司 一种增强物理下行控制信道的传输方法和装置及通信系统
CN104106223A (zh) * 2012-02-11 2014-10-15 Lg电子株式会社 报告信道状态信息的方法、其支持方法及所述方法的设备
US20150215856A1 (en) * 2014-01-24 2015-07-30 Electronics And Telecommunications Research Institute Method and apparatus for measuring radio resource management, and method and apparatus for signalling signal to measure radio resource management
CN104937869A (zh) * 2013-01-25 2015-09-23 Lg电子株式会社 用于在支持载波聚合的无线接入系统中的无线电资源测量的方法及支持其的设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104106223A (zh) * 2012-02-11 2014-10-15 Lg电子株式会社 报告信道状态信息的方法、其支持方法及所述方法的设备
CN103945539A (zh) * 2013-01-18 2014-07-23 华为终端有限公司 一种增强物理下行控制信道的传输方法和装置及通信系统
CN104937869A (zh) * 2013-01-25 2015-09-23 Lg电子株式会社 用于在支持载波聚合的无线接入系统中的无线电资源测量的方法及支持其的设备
US20150215856A1 (en) * 2014-01-24 2015-07-30 Electronics And Telecommunications Research Institute Method and apparatus for measuring radio resource management, and method and apparatus for signalling signal to measure radio resource management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573276A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362727B2 (en) 2018-03-30 2022-06-14 Ofinno, Llc Restarting a bandwidth part inactivity timer of a wireless device
US11888575B2 (en) 2018-03-30 2024-01-30 Ofinno, Llc Control of BWP inactivity timer for primary cell based on deactivation timer of secondary cell
US10833753B2 (en) 2018-03-30 2020-11-10 Ofinno, Llc Radio beam failure recovery procedure timing
US11025331B2 (en) 2018-03-30 2021-06-01 Ofinno, Llc Timing in beam failure recovery procedure
US11611387B2 (en) 2018-03-30 2023-03-21 Ofinno, Llc Restarting primary cell bandwidth part inactivity timer based on expiration of secondary cell deactivation timer
CN113039741A (zh) * 2018-11-12 2021-06-25 高通股份有限公司 空间准共址冲突处理
US11051276B2 (en) 2018-11-12 2021-06-29 Qualcomm Incorporated Spatial quasi co-location conflict handling
WO2020101921A1 (en) * 2018-11-12 2020-05-22 Qualcomm Incorporated Spatial quasi co-location conflict handling
CN113039741B (zh) * 2018-11-12 2024-05-31 高通股份有限公司 空间准共址冲突处理
US11770806B2 (en) 2018-11-12 2023-09-26 Qualcomm Incorporated Spatial quasi co-location conflict handling
CN111372308A (zh) * 2018-12-25 2020-07-03 华为技术有限公司 一种通信方法及装置
CN111372308B (zh) * 2018-12-25 2021-08-20 华为技术有限公司 一种通信方法及装置
CN113647127A (zh) * 2019-04-30 2021-11-12 富士通株式会社 基于ssb的测量方法及装置
CN114041321A (zh) * 2019-09-30 2022-02-11 华为技术有限公司 一种波束失败检测方法及装置
CN115443709A (zh) * 2020-06-28 2022-12-06 Oppo广东移动通信有限公司 通信方法及终端设备

Similar Documents

Publication Publication Date Title
CN108809600B (zh) 一种通信方法、系统及相关设备
TWI784851B (zh) 根據訊框結構的實體通道配置
JP7144118B2 (ja) 信号送受信方法および通信機器
TWI796465B (zh) 用於干擾管理的增強型rrm/csi 量測
KR102184060B1 (ko) 페이즈 추적 참조 신호들에 대한 주파수 도메인 패턴들을 선택 또는 송신하기 위한 시스템들 및 방법들
US20220006680A1 (en) Method and apparatus for configuring demodulation reference signal position in wireless cellular communication system
EP2807763B1 (en) Method and apparatus for providing data service using broadcasting signal
WO2018202188A1 (zh) 一种通信方法、系统及相关设备
WO2019170106A1 (zh) 一种功率控制方法及设备
CN104205689B (zh) 增强物理下行链路控制信道(ePDCCH)小区间干扰协调(ICIC)
RU2507688C2 (ru) Обратная связь о качестве канала в системах с многими несущими
US12096464B2 (en) Methods and apparatus for interference reduction and coordination
CN110915175B (zh) 发送装置、接收装置以及无线通信方法
US9204400B2 (en) Method and device for resource configuration
JP7013382B2 (ja) 端末、無線通信方法、基地局及びシステム
EP2658141A1 (en) Method, communication device and computer program of configuring CSI-RS for coordinated multiple point interference measurement
TW201808039A (zh) 經由同步通道和廣播通道的資源選擇來傳送假設
WO2020140877A1 (zh) 无线网络通信方法和终端设备
EP3186994B1 (en) Wireless communication apparatuses and methods for managing resource for interference coordination therein
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2021203275A1 (en) Method and apparatus for parameter setting
CN111034140B (zh) 终端、基站、无线通信方法以及系统
CN114830553A (zh) 使用相位连续性的基于组的波束报告
TW202126088A (zh) 針對配置的路徑損耗參考信號和啟用的路徑損耗參考信號的ue能力報告
TW202329727A (zh) 無線感測頻寬聚合

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018794568

Country of ref document: EP

Effective date: 20190821

NENP Non-entry into the national phase

Ref country code: DE