WO2023051755A1 - 一种资源配置方法及通信装置 - Google Patents

一种资源配置方法及通信装置 Download PDF

Info

Publication number
WO2023051755A1
WO2023051755A1 PCT/CN2022/123085 CN2022123085W WO2023051755A1 WO 2023051755 A1 WO2023051755 A1 WO 2023051755A1 CN 2022123085 W CN2022123085 W CN 2022123085W WO 2023051755 A1 WO2023051755 A1 WO 2023051755A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
node
relay node
psd
downlink
Prior art date
Application number
PCT/CN2022/123085
Other languages
English (en)
French (fr)
Inventor
袁世通
刘凤威
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051755A1 publication Critical patent/WO2023051755A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the technical field of mobile communication, and in particular to a resource allocation method and a communication device.
  • wireless relay nodes (relay nodes, RNs) are often used to establish connections with the core network through wireless backhaul links. communication transmission.
  • the present application provides a resource configuration method and a communication device, so that upper-level nodes can more flexibly and accurately configure the transmission power of beams, and effectively reduce communication interference.
  • a resource allocation method which can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the communication device to implement functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as an example of a relay node connected to at least one upper-level node.
  • the method includes:
  • the relay node acquires first information, where the first information includes at least one identifier of a beam used to send the first signal;
  • the relay node sends second information to the upper node according to the first information, the second information includes the corresponding relationship between the beam and the expected power spectral density PSD; the relay node receives from the upper node Third information sent by the node, where the third information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the first information is acquired by the relay node from the host node.
  • the corresponding relationship between the beam and the expected PSD includes: the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS, and the reference signal may be sent by the IAB MT.
  • SRS uplink sounding reference signal
  • the first signal further includes a downlink reference signal, such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • a downlink reference signal such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • the first signal may be sent by a DU in the relay node.
  • each of the beams corresponds to one or more desired PSD ranges.
  • each PSD range corresponds to multiple beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following:
  • the parameters in this application may be configured or indicated by a superior node or a donor base station.
  • One or more of the parameters may be configured as a parameter set, and each parameter set may be identified by an ID.
  • the IAB node can be configured with multiple parameter sets and corresponding IDs.
  • the upper node may indicate the currently applied parameter set ID through MAC-CE signaling or DCI signaling.
  • the relay node may also receive fourth information sent from the upper node, where the fourth information includes the restriction relationship between the uplink beam and the downlink beam; the relay node may use the beam During communication transmission, according to the fourth information, use of downlink beams corresponding to the beams is limited.
  • the downlink beam is a beam used by a DU in the relay node to communicate with a corresponding terminal.
  • the relay node may also obtain a first condition, where the first condition is used to indicate that the restriction on the downlink beam is stopped; when the relay node determines that the first condition is met, stop The downlink beam is limited.
  • the first condition includes that there is a second signal in the time slot, all downlink beam restrictions corresponding to the beam are canceled; or the first condition includes that there is a second signal in the first symbol in the time slot, Then cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the relay node may stop restricting the downlink beam corresponding to the cell that meets the second condition; or the The relay node may stop restricting the downlink beams corresponding to all cells in the first cell when determining that one cell in the first cell satisfies the first condition; wherein, in the first cell The corresponding downlink beams of all the cells are the same.
  • the resource type of the time slot is regarded as a Hard resource; or the first condition includes that there is a second signal in the first symbol in the time slot , cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the resources of the DU are configured as Hard resources, any cell of the IAB-DU can send and receive the IAB-DU on the resources without any restriction, and the restriction includes the restriction on the downlink beam.
  • a resource configuration method is provided, which can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the communication device to implement functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as an example of one upper node among multiple upper nodes connected to the relay node, for example, the first upper node.
  • the method includes:
  • the upper-level node sends first information to the relay node, where the first information includes at least one identifier of a beam used to send the first signal; the upper-level node receives second information from the relay node, and the second The information includes the corresponding relationship between the identifier of the beam and the expected power spectral density PSD; the upper node sends third information to the relay node according to the second information, and the third information is used to indicate the The relay node determines transmission power based on the beam transmission information.
  • the beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the corresponding relationship between the beam and the expected PSD includes: the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS, and the reference signal may be sent by the IAB MT.
  • SRS uplink sounding reference signal
  • the first signal further includes a downlink reference signal, such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • a downlink reference signal such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • the first signal may be sent by a DU in the relay node.
  • each of the beams corresponds to one or more desired PSD ranges; or each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following:
  • the parameters in this application may be configured or indicated by a superior node or a donor base station.
  • One or more of the parameters may be configured as a parameter set, and each parameter set may be identified by an ID.
  • the IAB node can be configured with multiple parameter sets and corresponding IDs.
  • the upper node may indicate the currently applied parameter set ID through MAC-CE signaling or DCI signaling.
  • the upper-level node may further send the fourth information to the relay node, where the fourth information includes a restriction relationship between an uplink beam and a downlink beam.
  • the first condition includes that there is a second signal in the time slot, all downlink beam restrictions corresponding to the beam are canceled; or the first condition includes that there is a second signal in the first symbol in the time slot, Then cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • a resource allocation method which can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the communication device to implement functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as an example of a relay node connected to at least one upper-level node.
  • the method includes:
  • the relay node receives the fourth information sent from the upper node, the fourth information includes the restriction relationship between the uplink beam and the downlink beam; when the relay node uses the first beam for communication transmission, according to the fourth information, the restriction Use the downlink beam corresponding to the first beam.
  • the first beam is a beam used by the MT in the relay node to communicate with the upper-level node.
  • the downlink beam is a beam used by a DU in the relay node to communicate with a corresponding terminal.
  • the relay node obtains a first condition, and the first condition is used to indicate to stop restricting the downlink beam; when the relay node determines that the first condition is met, stop the Downlink beam limitation.
  • the first condition is obtained by the relay node from the host node; or, the first condition is obtained by the relay node from the upper-level node.
  • the first condition includes that there is a second signal in the time slot, all downlink beam restrictions corresponding to the beam are canceled; or the first condition includes that there is a second signal in the first symbol in the time slot, Then cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the resource type of the time slot is regarded as a Hard resource; or the first condition includes that there is a second signal in the first symbol in the time slot , cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the resources of the DU are configured as Hard resources, any cell of the IAB-DU can send and receive the IAB-DU on the resources without any restriction, and the restriction includes the restriction on beams.
  • the relay node when determining that one of the first cells meets the first condition, may stop restricting the downlink beam corresponding to the cell that meets the second condition; or the When the relay node determines that one cell in the first cell satisfies the first condition, stop restricting the downlink beams corresponding to all cells in the first cell; wherein, in the first cell The downlink beams corresponding to all cells are the same.
  • the method further includes the relay node acquiring first information, where the first information includes at least one identifier of a beam used to transmit the first signal; and the relay node obtains first information according to the first information , send second information to the upper node, the second information includes the corresponding relationship between the beam and the expected power spectral density PSD; the relay node receives the third information sent from the upper node, the third The information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the first information is acquired by the relay node from the host node.
  • the corresponding relationship between the beam and the expected PSD includes the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS, and the reference signal may be sent by the IAB MT.
  • SRS uplink sounding reference signal
  • the first signal further includes a downlink reference signal, such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • a downlink reference signal such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • the first signal may be sent by a DU in the relay node.
  • each of the beams corresponds to one or more desired PSD ranges.
  • each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following:
  • the parameters in this application may be configured or indicated by a superior node or a donor base station.
  • One or more of the parameters may be configured as a parameter set, and each parameter set may be identified by an ID.
  • the IAB node can be configured with multiple parameter sets and corresponding IDs.
  • the upper node may indicate the currently applied parameter set ID through MAC-CE signaling or DCI signaling.
  • a resource allocation method is provided, which can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as an example of one upper node among multiple upper nodes connected to the relay node, for example, the first upper node.
  • the method includes:
  • the upper node sends the fourth information to the relay node, where the fourth information includes a restriction relationship between an uplink beam and a downlink beam.
  • the upper-level node may also determine a first condition, and notify the relay node of the first condition; if the first condition includes a second signal in a time slot, cancel the beam Corresponding to all downlink beam restrictions; or the first condition includes the existence of a second signal in the first symbol in the time slot, then cancel the downlink beam restriction corresponding to the first symbol of the beam; the second signal includes SS /PBCH block, PDCCH common search space set, one or more of periodic CSI-RS.
  • the method further includes that the upper node may also send first information to the relay node, where the first information includes an identifier of at least one beam used to send the first signal;
  • the second information of the relay node the second information includes the corresponding relationship between the identifier of the beam and the expected power spectral density PSD;
  • the upper node sends the second information to the relay node according to the second information Three pieces of information, where the third information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the fourth information may be determined by the upper-level node according to the second information.
  • the beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the corresponding relationship between the beam and the expected PSD includes: the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS, and the reference signal may be sent by the IAB MT.
  • SRS uplink sounding reference signal
  • the first signal further includes a downlink reference signal, such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • a downlink reference signal such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • the first signal may be sent by a DU in the relay node.
  • each of the beams corresponds to one or more expected PSD ranges; or each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following: guard band settings between frequency bands during communication transmission, the size of the guard band, the number of guard symbols, undesired beam sets, the number of carrier frequency TRx, the middle
  • the expected downlink transmit power of the mobile terminal MT in the relay node the expected uplink transmit power PSD range of the MT, the maximum number of demodulation reference signal DMRS ports for the downlink scheduling of the MT, and the DMRS for uplink scheduling of the MT The maximum number of ports.
  • the parameters in this application may be configured or indicated by a superior node or a donor base station.
  • One or more of the parameters may be configured as a parameter set, and each parameter set may be identified by an ID.
  • the IAB node can be configured with multiple parameter sets and corresponding IDs.
  • the upper node may indicate the currently applied parameter set ID through MAC-CE signaling or DCI signaling.
  • an embodiment of the present application provides a communication device, which has a function of implementing the behavior in the method embodiment of the first aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a transceiver module and a processing module are included, wherein:
  • a communication module configured to acquire first information, where the first information includes at least one identifier of a beam used to transmit the first signal;
  • a processing module configured to send second information to a superior node according to the first information, where the second information includes a correspondence between the beam and an expected power spectral density PSD;
  • the communication module is further configured to receive third information sent from the upper node, where the third information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the corresponding relationship between the beam and the expected PSD includes: the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS, and the reference signal may be sent by the IAB MT.
  • SRS uplink sounding reference signal
  • the first signal further includes a downlink reference signal, such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • a downlink reference signal such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • the first signal may be sent by a DU in the relay node.
  • each of the beams corresponds to one or more expected PSD ranges; or each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following:
  • the communication module is further configured to receive fourth information sent from the upper node, where the fourth information includes a restriction relationship between an uplink beam and a downlink beam; the processing module is also configured to adopt the When the beam is used for communication transmission, the downlink beam corresponding to the beam is limited to be used according to the fourth information.
  • the downlink beam is a beam used by a DU in the relay node to communicate with a corresponding terminal.
  • the communication module is further configured to obtain a first condition, where the first condition is used to indicate that the restriction on the downlink beam is stopped; the processing module is further configured to determine that the first condition is satisfied condition, stop the downlink beam limitation.
  • the first condition includes that there is a second signal in the time slot, all downlink beam restrictions corresponding to the beam are canceled; or the first condition includes that there is a second signal in the first symbol in the time slot, Then cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the resource type of the time slot is regarded as a Hard resource; or the first condition includes that there is a second signal in the first symbol in the time slot , cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the resources of the DU are configured as Hard resources, any cell of the IAB-DU can send and receive the IAB-DU on the resources without any restriction, and the restriction includes the restriction on the downlink beam.
  • the processing module may be specifically configured to, when it is determined that a cell in the first cell satisfies the first condition, stop restricting the downlink beam corresponding to the cell that satisfies the second condition; Or when it is determined that one cell in the first cell satisfies the first condition, stop restricting the downlink beams corresponding to all cells in the first cell; wherein, all cells in the first cell The corresponding downlink beams are the same.
  • the embodiment of the present application provides another communication device, which has the function of implementing the behavior in the method embodiment of the second aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a transceiver module and a processing module are included, wherein:
  • a communication module configured to send first information to the relay node, where the first information includes at least one identifier of a beam used to send the first signal; receive second information from the relay node, the second information Including the corresponding relationship between the identification of the beam and the expected power spectral density PSD;
  • a processing module configured to send third information to the relay node according to the second information, where the third information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the corresponding relationship between the beam and the expected PSD includes: the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS, and the reference signal may be sent by the IAB MT.
  • SRS uplink sounding reference signal
  • the first signal further includes a downlink reference signal, such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • a downlink reference signal such as a channel state information reference signal CSI-RS and a synchronization signal SSB.
  • the first signal may be sent by a DU in the relay node.
  • each of the beams corresponds to one or more expected PSD ranges; or each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following: guard band settings between frequency bands during communication transmission, the size of the guard band, the number of guard symbols, undesired beam sets, the number of carrier frequency TRx, the middle
  • the expected downlink transmit power of the mobile terminal MT in the relay node the expected uplink transmit power PSD range of the MT, the maximum number of demodulation reference signal DMRS ports for the downlink scheduling of the MT, and the DMRS for uplink scheduling of the MT The maximum number of ports.
  • the parameters in this application may be configured or indicated by a superior node or a donor base station.
  • One or more of the parameters may be configured as a parameter set, and each parameter set may be identified by an ID.
  • the IAB node can be configured with multiple parameter sets and corresponding IDs.
  • the upper node may indicate the currently applied parameter set ID through MAC-CE signaling or DCI signaling.
  • the upper-level node may further send the fourth information to the relay node, where the fourth information includes a restriction relationship between an uplink beam and a downlink beam.
  • the first condition includes that there is a second signal in the time slot, all downlink beam restrictions corresponding to the beam are canceled; or the first condition includes that there is a second signal in the first symbol in the time slot, Then cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the resource type of the time slot is regarded as a Hard resource; or the first condition includes that there is a second signal in the first symbol in the time slot , cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the resources of the DU are configured as Hard resources, any cell of the IAB-DU can send and receive the IAB-DU on the resources without any restriction, and the restriction includes the restriction on beams.
  • the embodiment of the present application provides a communication device, and the communication device has a function of implementing the behavior in the method embodiment of the first aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a transceiver module and a processing module are included, wherein:
  • a communication module configured to receive fourth information sent from a superior node, where the fourth information includes a restriction relationship between an uplink beam and a downlink beam;
  • the processing module is configured to restrict use of the downlink beam corresponding to the first beam according to the fourth information when the first beam is used for communication transmission.
  • the first beam is a beam used by the MT in the relay node to communicate with the upper-level node.
  • the downlink beam is a beam used by a DU in the relay node to communicate with a corresponding terminal.
  • the relay node obtains a first condition, and the first condition is used to indicate to stop restricting the downlink beam; when the relay node determines that the first condition is met, stop the Downlink beam limitation.
  • the first condition is obtained by the relay node from the host node; or, the first condition is obtained by the relay node from the upper-level node.
  • the first condition includes that there is a second signal in the time slot, all downlink beam restrictions corresponding to the beam are canceled; or the first condition includes that there is a second signal in the first symbol in the time slot, Then cancel the downlink beam restriction corresponding to the beam in the first symbol;
  • the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the relay node when determining that one of the first cells meets the first condition, may stop restricting the downlink beam corresponding to the cell that meets the second condition; or the When the relay node determines that one cell in the first cell satisfies the first condition, stop restricting the downlink beams corresponding to all cells in the first cell; wherein, in the first cell The downlink beams corresponding to all cells are the same.
  • the method further includes the relay node acquiring first information, where the first information includes at least one identifier of a beam used to transmit the first signal; and the relay node obtains first information according to the first information , send second information to the upper node, the second information includes the corresponding relationship between the beam and the expected power spectral density PSD; the relay node receives the third information sent from the upper node, the third The information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the first information is acquired by the relay node from the host node.
  • the corresponding relationship between the beam and the expected PSD includes the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS.
  • each of the beams corresponds to one or more desired PSD ranges.
  • each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following:
  • the parameters in this application may be configured or indicated by a superior node or a donor base station.
  • One or more of the parameters may be configured as a parameter set, and each parameter set may be identified by an ID.
  • the IAB node can be configured with multiple parameter sets and corresponding IDs.
  • the upper node may indicate the currently applied parameter set ID through MAC-CE signaling or DCI signaling.
  • the embodiment of the present application provides another communication device, which has a function of implementing the behavior in the method embodiment of the second aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a transceiver module and a processing module are included, wherein:
  • a communication module configured to send the fourth information to the relay node, where the fourth information includes a restriction relationship between an uplink beam and a downlink beam.
  • the upper-level node may also determine a first condition, and notify the relay node of the first condition; if the first condition includes a second signal in a time slot, cancel the beam Corresponding to all downlink beam restrictions; or the first condition includes the existence of a second signal in the first symbol in the time slot, then cancel the downlink beam restriction corresponding to the first symbol of the beam; the second signal includes SS /PBCH block, PDCCH common search space set, one or more of periodic CSI-RS.
  • the method further includes that the upper node may also send first information to the relay node, where the first information includes an identifier of at least one beam used to send the first signal;
  • the second information of the relay node the second information includes the corresponding relationship between the identifier of the beam and the expected power spectral density PSD;
  • the upper node sends the second information to the relay node according to the second information Three pieces of information, where the third information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the fourth information may be determined by the upper-level node according to the second information.
  • the beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the corresponding relationship between the beam and the expected PSD includes: the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS.
  • each of the beams corresponds to one or more expected PSD ranges; or each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following: guard band settings between frequency bands during communication transmission, the size of the guard band, the number of guard symbols, undesired beam sets, the number of carrier frequency TRx, the middle
  • the expected downlink transmit power of the mobile terminal MT in the relay node the expected uplink transmit power PSD range of the MT, the maximum number of demodulation reference signal DMRS ports for the downlink scheduling of the MT, and the DMRS for uplink scheduling of the MT The maximum number of ports.
  • the parameters in this application may be configured or indicated by a superior node or a donor base station.
  • One or more of the parameters may be configured as a parameter set, and each parameter set may be identified by an ID.
  • the IAB node can be configured with multiple parameter sets and corresponding IDs.
  • the upper node may indicate the currently applied parameter set ID through MAC-CE signaling or DCI signaling.
  • a communication device includes a processor and a memory.
  • the memory is used to store calculation programs or instructions
  • the processor is coupled to the memory; when the processor executes the computer programs or instructions, the device is made to perform any method in the first aspect or the first aspect above; or the device is made to Execute the third aspect or any one method in the third aspect.
  • the communication device may be the first device, or a device capable of supporting the first device to implement the functions required by the method provided by the first aspect above, or a device capable of supporting the first device to implement the functions required by the method provided by the third aspect above, For example, system-on-a-chip.
  • the communication device may be a terminal device or a part of components (such as a chip) in the terminal device.
  • the involved terminal devices may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems.
  • the terminal can be a mobile station (Mobile Station, MS), a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (Personal Digital Assistant, referred to as: PDA) computer , tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (Machine Type Communication, MTC) terminal, etc.
  • PDA Personal Digital Assistant
  • a communication device includes a processor and a memory.
  • the memory is used to store calculation programs or instructions
  • the processor is coupled to the memory; when the processor executes the computer programs or instructions, the device is made to perform any method in the second aspect or the second aspect above; or the device is made to Executing the fourth aspect or any one of the methods in the fourth aspect.
  • the communication device may be a second device or a device capable of supporting the second device to implement the functions required by the method provided by the second aspect above, or a device capable of supporting the second device to implement the functions required by the method provided by the fourth aspect above, for example system on a chip.
  • the communication device may be a network device.
  • the network equipment in the embodiment of the present application may include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • the names of network devices may be different, such as GSM (Global System for Mobile Communication, Global System for Mobile Communication) or CDMA (Code Division Multiple Access, Code Division Multiple Access) network BTS (Base Transceiver Station, Base Transceiver Station), WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access, NB (NodeB), LTE (Long Term Evolution, Long Term Evolution, eNB or eNodeB ( Evolutional NodeB).
  • the network device can also be a wireless controller in a CRAN (Cloud Radio Access Network, Cloud Radio Access Network) scenario.
  • the network device may also be a base station device in a future 5G network or a network device in a future evolved PLMN network.
  • a network device can also be a wearable device or an in-vehicle device.
  • Network devices can also transmit and receive nodes (Transmission and Reception Point, TRP).
  • a terminal may include the device described in the fifth aspect or the seventh aspect.
  • the device may be smart home equipment, smart manufacturing equipment, smart transportation equipment, etc., such as vehicles, drones, unmanned transport vehicles, cars and vehicles, or robots.
  • the device may be a mouse, a keyboard, a wearable device, a TWS earphone, and the like.
  • the present application provides a chip, which is connected to a memory, and is used to read and execute computer programs or instructions stored in the memory, so as to realize the above-mentioned first aspect or any possible implementation of the first aspect
  • the method in; or to achieve the second aspect or the method in any possible implementation manner of the second aspect; or to achieve the above third aspect or the method in any possible implementation manner of the third aspect; Or to achieve the fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • a computer-readable storage medium In a thirteenth aspect, a computer-readable storage medium is provided. Computer programs or instructions are stored in the computer-readable storage medium. When the computer programs or instructions are executed by a device, the device executes the above-mentioned first aspect or the first aspect. A method in any possible implementation; or to achieve the above second aspect or any method in any possible implementation of the second aspect; or to achieve the above third aspect or any possible implementation of the third aspect A method in a manner; or a method in any possible implementation manner to achieve the above fourth aspect or the fourth aspect.
  • the present application provides a computer program product
  • the computer program product includes a computer program or an instruction
  • the device executes the above-mentioned first aspect or any possibility of the first aspect or in order to realize the method in any possible implementation manner of the second aspect or the second aspect above; or in any possible implementation manner in order to realize the above third aspect or the third aspect A method; or to achieve the fourth aspect or a method in any possible implementation manner of the fourth aspect.
  • FIG. 1 is a schematic structural diagram of an IAB system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an IAB node provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a backhaul link and an access link provided in an embodiment of the present application
  • FIG. 4 is a schematic diagram of IAB node communication provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a network architecture of an available communication system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of indicating available resources for the IAB node for two upper-level nodes of the IAB node provided by the embodiment of the present application;
  • FIG. 7 is a schematic flowchart of the first resource allocation method provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the association between the first beam and PSD provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the association between the second beam and PSD provided by the embodiment of the present application.
  • FIG. 10 is a schematic flow chart of a second resource configuration method provided by the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a third resource allocation method provided by the embodiment of the present application.
  • FIG. 12 is a first structural schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a second structure of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a third structure of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a fourth structure of a communication device provided by an embodiment of the present application.
  • a beam is a communication resource.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beam forming technology may be a beam forming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be transmitted through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can correspond to one or more antenna ports, which are used to transmit data channels, control channels and sounding signals, etc.
  • the transmitting beam may refer to the distribution of signal strength formed in different directions in space after the signal is transmitted by the antenna; the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the signal When using low-frequency or mid-frequency bands, the signal can be sent omnidirectionally or through a wide angle.
  • an antenna array composed of many antenna elements can be arranged at the transmitting end and the receiving end, and the transmitting end sends signals with a certain beamforming weight, so that The transmitted signal forms a spatially directional beam.
  • using an antenna array at the receiving end to receive with a certain beamforming weight can improve the receiving power of the signal at the receiving end and combat path loss.
  • TCI state ID or SRI is generally used to identify the beam.
  • a reference signal resource identifier or a synchronization signal index is also used to indirectly represent a beam.
  • QCL is used to indicate that multiple resources have one or more identical or similar communication features.
  • the same or similar communication configurations can be used.
  • the large-scale properties of the channel transmitting a symbol on one port can be inferred from the large-scale properties of the channel transmitting a symbol on the other port.
  • the large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler frequency shift, average gain, receiving parameters, terminal equipment receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver The spatial correlation of the antenna, the main angle of arrival (angel-of-arrival, AoA), the average angle of arrival, the extension of AoA, etc.
  • the parity indication may be used to indicate whether at least two groups of antenna ports have a QCL relationship.
  • using the co-location indication to indicate whether at least two groups of antenna ports have a QCL relationship can be understood as: the co-location indication is used to indicate whether the channel state information reference signal (CSI RS) sent by at least two groups of antenna ports comes from the same transmission point, or whether the co-positioning The indication is used to indicate whether the channel state information reference signal (CSI RS) sent by at least two groups of antenna ports is from the same beam group.
  • CSI RS channel state information reference signal
  • Transmission configuration indicator (transmission configuration indicator, TCI):
  • the TCI is a field used in downlink control information (downlink control information, DCI) to indicate the QCL relationship of the physical downlink shared channel (physical downlink shared channel, PDSCH) antenna port.
  • DCI downlink control information
  • the TCI can be configured by a higher layer, such as a radio resource control (radio resource control, RRC) layer.
  • RRC radio resource control
  • the TCI may be called a TCI state (TCI-state), and the TCI-state is an information structure, which includes beam-related information.
  • TCI-state TCI state
  • MAC-CE medium (medium) access control (medium access control, MAC) control element (control element, CE)
  • MAC-CE may be sent by the base station to activate one or more TCI-states.
  • the base station may further send downlink control information (downlink control information, DCI) indicating one of multiple activated TCI-states.
  • DCI downlink control information
  • TCI-state can be used to configure the QCL relationship between one or two downlink reference signals and the demodulation reference signal (demodulation reference signal, DMRS) of PDSCH .
  • a TCI can include one or two QCL relationships. Since QCL can represent a certain consistency relationship between the signal/channel that the terminal device is currently receiving (or sending) and a previously known reference signal, if there is a QCL relationship, the terminal device can inherit the previously received (or sent) ) parameters of a certain reference signal to receive (or send) an upcoming signal/channel.
  • the TCI-state When applied, if the TCI-state contains information identified as QCL Type-D, the TCI-state can be used to indicate the beam. If the TCI-state contains information identifying QCL Type-A, QCL Type-B or QCL Type-C, the TCI-state can be used to indicate time domain and frequency domain offset information (excluding air domain information), It is generally used to assist terminal equipment in data reception and demodulation. During implementation, it can be considered that when two TCI state configurations use the same QCL Type-D source reference signal, then the two TCI states have a QCL relationship, or it can be considered that the same beam is used.
  • uplink communication includes the transmission of uplink physical channels and uplink signals.
  • the uplink physical channels include random access channel (random access channel, PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
  • Uplink signals include channel sounding signal SRS, uplink Control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal PUSCH-DMRS, uplink phase noise tracking signal (PTRS), uplink positioning signal (uplink positioning RS) and so on.
  • Downlink communication includes the transmission of downlink physical channels and downlink signals.
  • the downlink physical channels include broadcast channel (physical broadcast channel, PBCH), downlink control channel (physical downlink control channel, PDCCH), downlink data channel (physical downlink shared channel, PDSCH), etc.
  • downlink signals include primary synchronization signal (primary synchronization signal , referred to as PSS)/secondary synchronization signal (secondary synchronization signal, SSS), downlink control channel demodulation reference signal PDCCH-DMRS, downlink data channel demodulation reference signal PDSCH-DMRS, phase noise tracking signal PTRS, channel state information reference signal ( channel status information reference signal, CSI-RS), cell signal (Cell reference signal, CRS) (NR does not have), fine synchronization signal (time/frequency tracking reference signal, TRS) (LTE does not), LTE/NR positioning signal (positioning RS) and so on.
  • primary synchronization signal primary synchronization signal
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PDCCH-DMRS downlink control channel demodulation reference signal
  • the relay node can establish a wireless backhaul link with one or more upper-level nodes, and access the core network through the upper-level nodes.
  • the upper-level node can control the relay node to a certain extent (for example, data scheduling, timing modulation, power control, etc.) through various signaling.
  • the relay node can establish a connection with one or more lower-level nodes and provide services for one or more lower-level nodes.
  • the upper node of the relay node may be a base station or another relay node.
  • a subordinate node of a relay node may be a terminal or another relay node.
  • an upper-level node may also be called an upstream node, and a lower-level node may also be called a downstream node.
  • In-band relays generally have half-duplex constraints, that is, when a relay node receives a downlink signal sent by its superior node, it cannot send a downlink signal to its subordinate node, and when the relay node receives an uplink signal sent by its subordinate node Cannot send uplink signal to its superior node.
  • the in-band relay scheme of the new generation wireless communication system (new radio, NR) is called IAB, and correspondingly, the relay node is called an IAB node (IAB node).
  • FIG. 1 shows an IAB system.
  • An IAB node (which can be regarded as a wireless backhaul device) provides a terminal with wireless access and wireless backhaul of access services.
  • the IAB donor node (IAB host node, which can be considered as the host base station) provides the wireless backhaul function to the IAB node, and provides the interface between the terminal and the core network.
  • the IAB node is connected to the IAB donor node through a wireless backhaul link, so that the terminal served by the IAB node is connected to the core network.
  • the network architecture may not be limited to include terminal-side equipment, wireless backhaul equipment and host base station.
  • the network architecture may also include core network equipment or equipment for carrying virtualized network functions, etc., which are obvious to those skilled in the art, and will not be described in detail here.
  • the network architecture does not limit the number of terminal-side devices, wireless backhaul devices, and host base stations , for example, may also include multiple terminal-side devices, multiple wireless backhaul devices, multiple donor base stations, and the like.
  • the wireless backhaul device is an IAB node as an example.
  • a donor node refers to a node that can access the core network through this node, or a network device of the wireless access network, such as an anchor base station (or the above-mentioned host base station, host node), through which the anchor base station Can access the network.
  • the anchor base station is responsible for data processing at the packet data convergence protocol (PDCP) layer, or is responsible for receiving data from the core network and forwarding it to the relay node, or receiving data from the relay node and forwarding it to the core network.
  • Donor nodes can generally be connected to the network through wired methods, such as optical fiber cables.
  • a network device may be called a base station, and may also be called a radio access network (radio access network, RAN) node (or device).
  • the network device may be a next-generation Node B (next-generation Node B, gNB), a transmission reception point (transmission reception point, TRP), an evolved Node B (evolved Node B, eNB), a radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B , HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • the name of the network device in the embodiment of the present application may be a relay node (RN), a relay transmission and reception point (rTRP), an IAB node (IAB node), etc.; the upper node of the relay node may be gNB (including gNB-DU, gNB-CU, etc.), or another relay node.
  • RN relay node
  • rTRP relay transmission and reception point
  • IAB node IAB node
  • the upper node of the relay node may be gNB (including gNB-DU, gNB-CU, etc.), or another relay node.
  • the network device in this embodiment of the application can be divided into a centralized unit (centralized unit, CU) and at least one distributed unit (distributed unit, DU).
  • CU and DU are relative terms, and a CU can be used to manage or control at least one DU, and it can also be called that the CU is connected to at least one DU.
  • This structure can disassemble the protocol layers of the network equipment in the communication system. Some of the protocol layers are placed in the CU for centralized control, and the remaining part or all of the protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the protocol layer of gNB includes radio resource control (radio resource control, RRC) layer, service data adaptation protocol (service data adaptation protocol, SDAP) layer, packet data convergence protocol (packet data convergence protocol, PDCP) layer, radio link control (radio link control, RLC) layer, media access control sublayer (media access control, MAC) layer and physical layer (physical layer, PHY).
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • media access control sublayer media access control
  • MAC media access control
  • PHY physical layer
  • the CU and DU can be physically connected through optical fibers, and logically there is a specially defined F1 interface for communication between CU and DU.
  • the CU is mainly responsible for radio resource control and configuration, inter-cell mobility management, bearer management, etc.; the DU is mainly responsible for scheduling, physical signal generation and transmission.
  • the CU sends the configuration to the DU (similar to the downlink transmission direction) as an example.
  • the F1-AP data packet generated by the CU is encapsulated into an IP packet and transmitted between air interface multi-hop nodes.
  • the data packet After the data packet arrives at the target IAB node, after being processed by the target IAB MT adaptation layer, the data packet is transferred to the local IAB DU module for processing, and finally the F1-AP data packet is parsed at the DU.
  • the embodiment of the present application does not specifically limit the protocol stack included in the CU and DU.
  • FIG. 2 shows a schematic structural diagram of an IAB node.
  • the IAB node in NR can be divided into two parts: mobile terminal (mobile termination, MT) and DU.
  • MT can also be understood as a component similar to a terminal in an IAB node.
  • DU is relative to the centralized unit (centralized unit, CU) function of the network device. Therefore, it can also be considered that the IAB node includes an MT function and a DU function.
  • the MT function is referred to as MT
  • the DU function is referred to as DU. Since the MT functions similarly to an ordinary terminal, it can be understood that the MT is used for communication between the IAB node and the upper node (parent node).
  • DU is relative to the centralized unit (centralized unit, CU) function of network equipment, and DU is used for communication between IAB nodes and subordinate nodes (child nodes).
  • the upper-level nodes may be base stations or other IAB nodes
  • the lower-level nodes may be terminals or other IAB nodes.
  • the link between the MT and the upper-level node is called the parent BackHaul link
  • the link between the DU and the lower-level IAB node is called the child BackHaul link
  • the link between the DU and the subordinate terminal Links are called access links.
  • the lower-level backhaul link is also called an access link, wherein the upper-level backhaul link includes an upper-level backhaul uplink (uplink, UL) and an upper-level backhaul downlink (downlink, DL). ), the lower-level backhaul link includes lower-level backhaul UL and lower-level backhaul DL, and the access link includes access UL and access DL, as shown in FIG. 3 .
  • the network device may include an MT function and a DU function. That is, the IAB node communicates with the upper-level node through the MT.
  • the DU is the base station functional module of the IAB node, which is used to realize the functions of the RLC layer, the MAC layer, and the physical layer. It is mainly responsible for scheduling, physical signal generation and transmission, that is, the IAB node communicates with the The lower-level nodes communicate with the terminal, as shown in Figure 4.
  • Both the MT and DU of the IAB node have a complete transceiver module, and there is an interface between them.
  • the MT and DU are logical modules. In practice, they can share some submodules, such as the common transceiver antenna and baseband processing module, as shown in Figure 4.
  • the access link and the backhaul link are time-division multiplexed (time-division multiplexing, TDM), space division multiplexing (space division multiplexing, SDM) ) or frequency-division multiplexing (frequency-division multiplexing, FDM) to multiplex resources.
  • TDM time-division multiplexing
  • SDM space division multiplexing
  • FDM frequency-division multiplexing
  • the TDM mode is when the backhaul link and the access link work at different times; at the same time, the access link and the backhaul link only receive or send, so the work of the backhaul link and the access link
  • the mode is SDM mode; at the same time, the access link or the backhaul link is both receiving and sending, so the working mode of the backhaul link and the access link is full-duplex mode.
  • full-duplex transmission requires additional consideration of the impact of its own sending signal on its own receiving signal, the full-duplex mode has higher hardware requirements.
  • the IAB node needs to switch between sending and receiving of the backhaul link and access link.
  • the backhaul and the access link are switched without interval, that is, when the symbols of the access link and the symbols of the backhaul link are continuous, the IAB node has a higher resource utilization rate.
  • the IAB node due to various factors such as the switching time of the power amplifier, the transmission distance, and non-ideal synchronization, the backhaul link and the access link cannot be switched without intervals. At this time, the IAB node needs to determine the available/unavailable symbol sets of the backhaul link and the access link.
  • MT resources and DU resources can be configured.
  • MT resources can be configured into three types: downlink (D), uplink (U), and flexible (Flexible, F).
  • Downlink means that resources are used for downlink transmission
  • uplink means that resources are used for uplink transmission
  • flexible means that the transmission direction of MT depends on further instructions from upper-level nodes (generally, dynamic instructions through physical layer signaling).
  • DU resources can also be configured as uplink, downlink, and flexible, representing three transmission directions.
  • the uplink resources, downlink resources and flexible resources of the DU resources can be further divided into two types: hard and soft.
  • DU hard resource means the resource that DU is always available;
  • DU soft resource means whether DU can use this resource, depending on the instruction of the upper node.
  • DU also has an unavailable (NA, Not Available) resource type, which means that the DU can never use the resource.
  • the resource configuration of the IAB node can be determined according to the MT resource configuration and the DU resource configuration.
  • the resource type of the DU and the corresponding transmission direction can be transferred between the CU and the DU through F1-AP interface signaling.
  • "GNB-DU RESOURCE CONFIGURATION” includes "gNB-DU Cell Resource Configuratio" to realize the specific configuration of DU resources.
  • "DUF Slot Configuratio ltem” in “gNB-DU Cell Resource Configuratio” is used to configure the transmission direction of DU, including uplink, downlink and flexible.
  • the "HSNA Slot Configuratio list” related configuration in “gNB-DU Cell Resource Configuratio” is used to configure the attributes of DU resources (hard, soft, not available).
  • the upper node can indicate by sending DCI 2_5.
  • multiple superior nodes of the IAB node can respectively indicate the schedulable DU soft resources.
  • the upper-level node 1 and the upper-level node 2 respectively obtain the soft resources of multiple cells on the DU in the IAB node, and the upper-level node 1 and the upper-level node 2 indicate which specific cells among the multiple cells on the DU based on DCI 2_5 Which soft resources are available.
  • DUs can be sent or received, or both, in the symbol, respectively.
  • the DU can only be sent or received in the symbol, either send or receive.
  • the MT of IAB does not send or receive in the symbol; another example, the MT of IAB receives or sends in the symbol, but it will not change the transmission or reception of the DU of IAB in the symbol; another example, the MT of IAB detects DCI 2_5, and indicates that DU soft resources are available. It should be understood that when a symbol is configured to be unavailable, then IAB DUs are neither sent nor received for that symbol.
  • FIG. 5 it is a schematic diagram of a network architecture of dual connections of IAB nodes.
  • the dual connectivity of the IAB node means that there are two nodes providing wireless backhaul link resources for the IAB node, that is, the IAB node has two upper-level nodes.
  • FIG. 5 takes two upper-level nodes as an upper-level node 1 and a higher-level node 2 as an example.
  • the upper-level node in FIG. 5 may be other IAB nodes, a donor node, or a common base station.
  • the upper-level node may also include the MT function and the DU function. If the upper-level node is a donor node, then the upper-level node may also include a CU function and a DU function.
  • multiple upper-level nodes can respectively indicate the schedulable DU soft resources, that is, multiple upper-level nodes independently control the schedulable DU soft resources.
  • DU soft resources for instructions.
  • Multiple upper-level nodes can schedule IAB nodes on the same resource or different resources, but multiple upper-level nodes do not know which schedulable DU soft resources to indicate to each other, which will lead to inefficient DU soft resource partitioning.
  • multiple upper-level nodes schedule IAB on different multiple DU soft resources, and multiple DU soft resources have no overlap (no intersection), then the actual resources available for IAB-DU will be very limited, which will reduce the spectrum of IAB nodes efficiency, and even cause data congestion at the IAB node.
  • FIG. 6 is a schematic diagram of two upper-level nodes of the IAB node indicating available resources for the IAB node.
  • schedulable resources are 1 hard resource, 2 soft resources, 2 hard resources, 4 soft resources and 1 hard resource from left to right.
  • "S" indicates soft resources
  • "H” indicates hard resources.
  • all soft resources on the DU of the IAB node have at least one upper node that does not indicate whether it is available.
  • the two soft resources on the left can be called soft resources 1
  • the four soft resources on the right can be called soft resources 2.
  • upper-level node 1 may indicate that soft resource 1 is available, but not indicate whether soft resource 2 is available; upper-level node 2 may not indicate whether soft resource 1 is available, but indicate that soft resource 2 is available. That is, all Soft resources of the IAB node have at least one upper-level node that does not indicate availability, that is, the available soft resources indicated by the upper-level node 1 and the available soft resources indicated by the upper-level node 2 have no intersection or little intersection. In this case, the IAB node The remaining available soft resources of the DU are less, which is likely to cause data congestion at the IAB node.
  • resources among multiple upper-level nodes can be coordinated.
  • multiple upper-level nodes use overlapping resources to schedule IAB nodes if possible, so that more resources are actually available for IAB- DU resources, try to improve the spectrum efficiency of IAB nodes, and avoid data congestion at IAB nodes.
  • an embodiment of the present application provides a resource configuration method for an IAB node.
  • the host node configures one or more resource sets with different priorities, and informs multiple upper-level nodes of the IAB node.
  • Each upper-level node may preferentially select a higher-priority resource scheduling IAB node for transmission according to the priority of each resource set. Since the resources with lower priority are not indicated firstly, the resources with lower priority can be used as subsequent available resources of the IAB node, that is, there are more available resources for the DU of the IAB node, which can minimize the phenomenon of data congestion.
  • the communication method provided in the embodiment of the present application may be applied to a communication system with dual connectivity of relay nodes, as shown in FIG. 5 .
  • FIG. 5 is only an exemplary illustration, and does not specifically limit the numbers of terminal devices and relay nodes included in the wireless communication system.
  • a relay node is generally called an RN.
  • relay nodes are generally called IAB nodes.
  • a relay node may also be called a relay device, or a relay transmission and reception point (rTRP), and the upper node of the relay node may be a network device (including a DU of the network device, Or include the CU of the network device, etc.).
  • the use of the IAB node in the embodiment of the present application is only for the purpose of description, and does not mean that the solution in the embodiment of the present application is only used in the NR scenario.
  • the IAB node can generally refer to any Functional nodes or devices, the use of IAB nodes and relay nodes in the implementation of this application should be understood to have the same meaning.
  • the terminal involved in the embodiment of this application is an entity on the user side for receiving or transmitting signals.
  • a terminal may be a device that provides voice and/or data connectivity to a user, for example, a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle-to-everything (V2X) Terminal equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal) , user agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • personal communication service personal communication service, PCS
  • PCS personal communication service
  • cordless telephone session initiation protocol (session initiation protocol, SIP) telephone
  • wireless local loop wireless local loop
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices or smart wearable devices. shoes etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminals described above if located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal equipment, and the vehicle-mounted terminal equipment is also called an on-board unit (OBU). .
  • the terminal in the embodiment of the present application may also be a vehicle.
  • the terminal in this embodiment of the present application may also be an Internet of Things terminal, such as a smart home appliance, such as a smart water meter or a smart electricity meter, or a drive test device.
  • the road test equipment here may include smart street lights, roadside smart cameras, etc.
  • FIG. 7 is a flow chart of the resource configuration method provided by the embodiment of the present application.
  • this method is applied to the communication system shown in FIG. 5 .
  • the method may be executed by three communication devices, such as a first communication device, a second communication device and a third communication device.
  • the method is executed by the IAB node, the host node and the upper node as an example, that is, the first communication device is the IAB node, the second communication device is the upper node, and the third communication device is the host node as an example.
  • the upper-level node may be a base station, or other IAB nodes.
  • the upper-level node is a base station as an example.
  • the base station may be a base station having a function of a host node.
  • the embodiment of the present application only uses the communication system in FIG. 5 as an example, and is not limited to this scenario.
  • the host node refers to the host base station to which the IAB node is currently connected.
  • the upper node refers to the base station or other IAB nodes to which the IAB node is currently connected.
  • the relay node acquires first information.
  • the first information includes at least one identifier of an uplink beam used to send the first signal.
  • the first signal includes SRS. It can be understood that the uplink beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the first signal may also include CSI-RS and SSB.
  • the relay node uses the beam that sends the downlink signal itself as the beam identifier of the first signal.
  • the beam is the beam sent by the DU in the relay node, but it can be measured and Identify and identify.
  • the following uses an example in which the first signal is an SRS and the beam is an uplink beam to be described.
  • the first information is obtained by the relay node from a Donor.
  • the Donor configures SRS resources for the relay node
  • the beam used by the relay node to send the SRS signal using the SRS1 resource configuration is beam 1
  • the beam used by the relay node to send the SRS signal using the SRS2 resource configuration is beam 2
  • the beam used by the relay node to send the SRS signal using the SRS3 resource configuration is beam 1.
  • the beam is beam 3. Therefore, the first information may include a correspondence between SRSs and beam identifiers.
  • the first information may include the correspondence in Table 1 below.
  • the identifier of the SRS resource is sometimes called SRI (SRS resource indicator).
  • the first information may also include the association relationship between the first signal and the configuration situation, so that the relay node can determine the first signal according to the association relationship between the first signal and the configuration situation.
  • the transmission configuration of the corresponding beam; or, the first information may also include the association relationship between the beam and the configuration situation, so that the relay node can determine the transmission configuration 0 of the beam according to the association relationship between the beam and the configuration situation.
  • the configuration situation in this embodiment of the present application is determined according to the setting of at least one configuration parameter by the host node.
  • the configuration parameter includes one or more of the following information:
  • guard bands between frequency bands during communication transmission which can indicate whether a guard band is required when the MT and DU of the relay node perform frequency division multiplexing.
  • guard band size indicating the size of the frequency domain resources reserved between the frequency domain resources used by the MT and the DU when the access and backhaul of the relay node are frequency division multiplexed. Resources are not used by MT or DU.
  • the size of the guard band may be represented by the number of physical resource blocks (PRB, physical resource block).
  • PRB physical resource block
  • An undesired beam set indicating that the relay node performs space division between the MT and the DU.
  • the number of carrier frequency TRx indicating the number of ports that the relay node can use for access or backhaul communication when the relay node is in space division multiplexing or frequency division multiplexing.
  • the setting of the downlink receiving power interval of the mobile terminal MT in the relay node indicating the range or adjustment amount of the downlink sending power expected by the MT when the relay node is performing space division reception, for example, in the downlink transmission of the current upper node Based on the power of the signal, reduce it by X dB.
  • the parent base station of the donor base station or the upper node of the relay node may use signaling to configure multiple sets of configuration parameters, and each set of configuration parameters includes one or more of the above information.
  • Each group of parameters can be identified by an ID, as shown in the following structure:
  • the above parameters may also be reported by the relay node to the upper-level node or the Donor node, that is, the upper-level node or the Donor node configures the relay node after reporting the desired parameters of the relay node.
  • the upper node of the relay node may further indicate a parameter set ID through DCI signaling or MAC-CE signaling, which is used to indicate the effective parameter set of the relay node. After the indicated parameter set takes effect, the relay node performs space division transmission on the preconfigured space division transmission time resource according to the parameters indicated by the parameter set.
  • the relay node determines second information according to the first information.
  • the second information includes a correspondence between the uplink beam and the expected PSD.
  • the PSD refers to the PSD range of the uplink transmission signal, referred to as PSD.
  • the content of the second information includes various forms, and is not limited to the following types:
  • the uplink beam included in the second information in the embodiment of the present application corresponds to a PSD.
  • the corresponding relationship between the uplink beam and the PSD may specifically be associated according to an actual situation.
  • the uplink beams indicated in the first information received by the relay node include uplink beams 1-4.
  • the relay node determines the corresponding expected PSD for each uplink beam respectively.
  • the expected PSD determined by the relay node for uplink beam 1 is PSD1
  • the expected PSD determined by the relay node for uplink beam 2 is PSD2
  • the expected PSD determined by the relay node for uplink beam 3 is PSD2.
  • the expected PSD of is PSD2
  • the expected PSD determined by the relay node for the uplink beam 4 is PSD3. Therefore, the content of the second information sent by the relay node to the upper node may be the content shown in FIG. 8( a ).
  • the expected PSD determined by the relay node for uplink beam 1 is PSD1
  • the expected PSD determined by the relay node for uplink beam 2 is PSD2
  • the expected PSD determined by the relay node for uplink beam 3 is PSD2.
  • the determined expected PSD is PSD1
  • the expected PSD determined by the relay node for the uplink beam 4 is PSD2. Therefore, the content of the second information sent by the relay node to the upper node may be the content shown in FIG. 8( b ).
  • the correspondence in the second information in the embodiment of the present application may be the information of the beam and the PSD associated with the beam, or the information of the PSD and the PSD associated with the PSD.
  • the beam information can be expressed in various forms, which are not limited here.
  • one or more beams in the uplink beams included in the second information may correspond to multiple PSDs.
  • the corresponding relationship between the uplink beam and the PSD may specifically be associated according to an actual situation.
  • corresponding expected PSDs can be set based on different configurations of a beam, so that the upper-level node can set the transmit power of the beam according to different configurations of the beam.
  • the parameter configuration includes but not limited to the state of frequency division and the size of the guard band in the example;
  • the expression form of the expected PSD range includes but not limited to the situation in the example, and can also include only the lower limit, or both the upper limit and The lower limit;
  • the range of the PSD can also be reflected as the nominal power P0 and or the offset value of the uplink transmission.
  • the uplink beams indicated in the first information received by the relay node include uplink beams 1-2.
  • the relay node respectively determines the corresponding expected PSD for each uplink beam based on configuration situations 1-3.
  • the expected PSD determined by the relay node for uplink beam 1 is PSD1
  • the expected PSD determined by the relay node for uplink beam 1 is PSD3
  • the expected PSD determined by the relay node for uplink beam 1 is PSD2.
  • the expected PSD determined by the relay node for uplink beam 2 is PSD4; when the configuration of uplink beam 2 is configuration situation 2, the expected PSD determined by the relay node for uplink beam 2 is PSD4.
  • the PSD is PSD3, and when the configuration situation of the uplink beam 2 is the configuration situation 3, the expected PSD determined by the relay node for the uplink beam 2 is PSD1. Therefore, the content of the second information sent by the relay node to the upper node may be the content shown in FIG. 9( a ).
  • the expected PSD determined by the relay node for uplink beam 1 in configuration situation 1 is PSD1
  • the expected PSD determined for uplink beam 1 in configuration situation 2 is PSD2
  • the expected PSD for uplink beam 1 in configuration situation 2 is PSD2.
  • the desired PSD determined for beam 1 in configuration case 3 is PSD3.
  • the expected PSD determined by the relay node for uplink beam 2 in configuration case 1 is PSD3, the expected PSD determined for uplink beam 2 in configuration case 2 is PSD1, and the expected PSD determined for uplink beam 2 in configuration case 3 is PSD2. Therefore, the content of the second information sent by the relay node to the upper node may also be the content shown in FIG. 9( b ).
  • the correspondence in the second information in the embodiment of the present application may be beam, configuration information and PSD information associated with the beam, or may be PSD, configuration information
  • the information of the beam associated with the PSD can be expressed in various forms, which are not limited here.
  • the parameter set used for configuring the uplink beam included in the second information in the embodiment of the present application may correspond to one or more PSDs.
  • the content 3 can be understood as the configuration parameters can also be directly combined with the beam, for example, the upper node of the donor base station or the relay node can use signaling to configure multiple sets of parameter sets for a certain beam, and each set of parameter sets includes the above representation configuration One or more of information 1 to information 8 of the parameter.
  • each set of parameter sets may be identified by an ID.
  • the structure of the parameter set is as follows:
  • corresponding expected PSD ranges can be set based on different parameter sets, so that the upper-level node can set the transmit power of the beam according to different configurations of the beam.
  • the second information sent by the relay node to the upper node indicates the corresponding relationship between the parameter set and the expected PSD, that is, the contents of the above Table 3 Therefore, when the upper node determines that the beam 1 is configured using the parameter set 2, according to the content of Table 3, it can be known that the corresponding uplink PSD upper limit is 15dBm. Therefore, based on the PSD (that is, the upper limit of the uplink PSD is 15 dBm), the corresponding transmit power of the beam 1 under the condition that the parameter set 2 is used for configuration can be determined.
  • the corresponding relationship between the parameter set and the PSD range may be specifically associated according to actual conditions.
  • the parameter set configured in the embodiment of the present application may not include the beam identifier, or may not include the uplink power PSD range, or may not include the beam identifier and the uplink power PSD range.
  • the upper-level node of the relay node in the embodiment of the present application may further indicate an association relationship between a parameter set and a beam identifier and/or a power PSD range through DCI signaling or MAC-CE signaling.
  • the upper node sends MAC-CE signaling, as shown in Table 4 below:
  • one row in the above Table 4 may be an 8-bit sequence length in the MAC-CE signaling.
  • the content included in the MAC-CE is exemplified. According to Table 4, it should be understood that the content included in the MAC-CE may be more than this.
  • the above method can also be implemented by not dynamically indicating the beam ID or the uplink power PSD range, but dynamically indicating other parameters in the parameter set that are not pre-configured.
  • the beam ID or PSD range can be used as the configuration Part of the parameters are pre-configured, and the specific parameters (parameter combinations) are determined through the dynamic instruction of the upper-level node, which will not be repeated here.
  • the relay node sends the second information to the upper node.
  • the upper-level node acquires the second information.
  • the upper node determines third information according to the second information, where the third information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the transmission information may include control channel data, data channel data, and SRS, for example, using the beam to transmit data or SRS based on the transmission power corresponding to the beam indicated by the third information.
  • the upper node sends third information to the relay node.
  • the relay node receives the third information.
  • the superior node can more flexibly and accurately configure the transmit power of the beam, effectively reducing communication interference.
  • the upper node in the embodiment of the present application can also indicate the restriction relationship between the uplink beam and the downlink beam to the relay node, so that when the upper node adopts the uplink beam When the beams are used for transmission, only the corresponding downlink transmission beams need to be restricted, and all downlink beams do not need to be restricted, which effectively reduces the impact on communication transmission of the downlink beams.
  • the upper-level node determines fourth information, where the fourth information includes a restriction relationship between an uplink beam and a downlink beam.
  • the upper-level node may determine the fourth information after receiving the second information sent from the relay node in the foregoing embodiment.
  • the fourth information may be determined by the upper-level node according to the received second information.
  • the upper node sends the fourth information to the relay node.
  • the fourth information may be carried in the third information in the foregoing embodiment, or may be sent separately, and the sending method and sending timing are not limited in this embodiment of the present application.
  • the relay node receives the fourth information.
  • Identification of uplink beams Identification of downlink beams Uplink Beam 1 Downlink beams 1, 5, 4 Uplink Beam 2 Downlink Beam 2, 3 Uplink Beam 3 Downlink beams 4, 6
  • the downlink beams include downlink beams 1-10 at this time.
  • the relay node may select downlink beams 1, 5, and 4 from downlink beams 1-10 according to the content in Table 2 above for restriction.
  • the embodiment of the present application may also determine the downlink beams that need to be limited based on the correspondence between the parameter configuration set and the downlink beams that need to be limited.
  • the fourth information includes the restriction relationship between the parameter configuration set and the downlink beam as shown in Table 6 below:
  • parameter set identifier Restricted downlink beam identification parameter set 1 Downlink beams 1, 5, 4 parameter set 2 Downlink Beam 2, 3 parameter set 3 Downlink beams 4, 6
  • the relay node determines that the uplink beams to be applied are configured using parameter set 1, the relay node determines to restrict the downlink beams 1, 5, and 4 according to the content in Table 5 above.
  • the relay node may also determine that the first When a condition is met, the restriction on the downlink beam is stopped.
  • the relay node judges whether the first condition is satisfied, if yes, execute S1102, and if not, execute S1100.
  • the first condition may be obtained by the relay node from the host node; or, the first condition is obtained by the relay node from the upper-level node; or the first condition is a pre-protocol Defined.
  • the first condition includes that there is a second signal in the time slot, then cancel all downlink beam restrictions corresponding to the beam; or if the first condition includes that there is a second signal in the first symbol in the time slot, then canceling the downlink beam restriction corresponding to the beam in the first symbol;
  • the resource type of the time slot is regarded as a Hard resource; or if the first condition includes that there is a second signal in the first symbol in the time slot, then cancel The beam is limited to a downlink beam corresponding to the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the resources of the DU are configured as Hard resources, any cell of the IAB-DU can send and receive the IAB-DU on the resources without any restriction, and the restriction includes the restriction on beams.
  • the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the relay node stops restricting the downlink beam.
  • the relay node when determining that one of the first cells satisfies the first condition, may stop restricting the downlink beam corresponding to the cell that satisfies the second condition; or the middle When the relay node determines that one of the first cells satisfies the first condition, it stops restricting the downlink beams corresponding to all the cells in the first cell; wherein, all of the first cells The downlink beams corresponding to the cells are the same.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the IAB node, the host node, and the upper-level node, and the interaction between the IAB node, the host node, and the upper-level node.
  • the IAB node, the host node, and the upper-level node may include a hardware structure and/or a software module, and realize it in the form of a hardware structure, a software module, or a hardware structure plus a software module the above functions.
  • FIG. 12 is a schematic block diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device 1200 may correspondingly implement the functions or steps implemented by the relay node or the upper-level node in the foregoing method embodiments.
  • the communication device may include a processing module 1210 and a transceiver module 1220 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the processing module 1210 and the transceiver module 1220 may be coupled to the storage unit, for example, the processing module 1210 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • Each of the above units can be set independently, or can be partially or fully integrated.
  • the communication device 1200 can correspondingly implement the behavior and function of the relay node in the foregoing method embodiments.
  • the communication device 1200 may be a relay node, or may be a component (such as a chip or a circuit) applied in the relay node.
  • the transceiver module 1220 may be used to perform all the receiving or sending operations performed by the relay node in the embodiment shown in FIG. 7, such as S701, S702, and S704 in the embodiment shown in FIG. Other procedures for the techniques described.
  • the transceiver module 1220 may include an independent sending module and a receiving module, wherein the sending module is used to perform all sending operations performed by the relay node in the embodiment shown in FIG.
  • the receiving module is used to perform the implementation shown in FIG. 7 All receive operations performed by relay nodes in this example.
  • the processing module 1210 is configured to execute all operations performed by the relay node in the embodiment shown in FIG. 7 except the transceiving operation, and/or other processes for supporting the technology described herein.
  • the transceiver module 1220 is used to obtain first information, and the first information includes at least one identifier of a beam used to send the first signal; the processing module 1210 is used to send the upper node Sending second information, the second information includes the correspondence between the beam and the expected power spectral density PSD; the transceiver module 1220 is used to receive third information sent from the upper node, the third information includes indicating the The transmitting power of the relay node transmitting information based on the beam.
  • the beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the correspondence between the beam and the expected PSD includes: the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS.
  • each of the beams corresponds to one or more desired PSD ranges; or each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following:
  • the transceiver module 1220 is also configured to:
  • the fourth information includes a restriction relationship between an uplink beam and a downlink beam
  • the processing module 1210 is also used for:
  • the downlink beam is a beam used by a DU in the relay node to communicate with a corresponding terminal.
  • the transceiver module 1220 is also configured to:
  • the processing module 1210 is also used for:
  • the first condition includes the existence of the second signal in the time slot, all downlink beam restrictions corresponding to the beam are canceled; or the first condition includes the existence of the first symbol in the time slot
  • the second signal is to cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • processing module 1210 may be specifically configured to:
  • the transceiver module 1220 is used to receive the fourth information sent from the upper node, the fourth information includes the restriction relationship between the uplink beam and the downlink beam; the processing module 1210 is used to use the first beam for communication transmission , according to the fourth information, restricting the use of the downlink beam corresponding to the first beam.
  • the first beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the downlink beam is a beam used by a DU in the relay node to communicate with a corresponding terminal.
  • the transceiver module 1220 is also configured to:
  • the first condition is used to indicate stopping the restriction on the downlink beam; when the relay node determines that the first condition is satisfied, stop the restriction on the downlink beam.
  • the first condition is obtained by the relay node from the host node; or, the first condition is obtained by the relay node from the upper-level node.
  • the first condition includes the existence of the second signal in the time slot, all downlink beam restrictions corresponding to the beam are canceled; or the first condition includes the presence of the first symbol in the time slot
  • the second signal is to cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the processing module 1210 may be specifically configured to, when it is determined that one of the first cells satisfies the first condition, stop the downlink corresponding to the cell that satisfies the second condition Beam restriction; or when it is determined that one cell in the first cell satisfies the first condition, stop the restriction on the downlink beam corresponding to all cells in the first cell; wherein, the first cell The downlink beams corresponding to all the cells in are the same.
  • the transceiver module 1220 may also be configured to obtain first information, where the first information includes an identifier of at least one beam used to send the first signal; the processing module 1210 may also use Based on the first information, send second information to the upper node, the second information includes the corresponding relationship between the beam and the expected power spectral density PSD; the transceiver module 1220 can also be used to receive information from the upper node Third information sent by the node, where the third information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the first information is obtained by the relay node from the host node.
  • the correspondence between the beam and the expected PSD includes the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS.
  • each of the beams corresponds to one or more desired PSD ranges.
  • each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following:
  • the communication device 1200 can correspondingly implement the behaviors and functions of the upper-level node in the foregoing method embodiments.
  • the communication device 1200 may be an upper-level node, or may be a component (such as a chip or a circuit) applied in the upper-level node.
  • the transceiver module 1220 may be used to perform all the receiving or sending operations performed by the upper-level node in the embodiment shown in FIG. 7, such as S704 in the embodiment shown in FIG. 7 and/or the other processes.
  • the transceiver module 1220 may include an independent sending module and a receiving module, wherein the sending module is used to perform all the sending operations performed by the upper node in the embodiment shown in FIG.
  • the receiving module is used to perform the embodiment shown in FIG. 7 All receiving operations performed by the upper-level node in .
  • the processing module 1210 is configured to execute all operations performed by the upper-level node in the embodiment shown in FIG. 7 except the transceiving operation, and/or other processes for supporting the technology described herein.
  • the transceiver module 1220 is configured to send first information to the relay node, where the first information includes at least one identifier of a beam used to send the first signal; receive second information from the relay node , the second information includes the corresponding relationship between the identifier of the beam and the expected power spectral density PSD; the processing module 1210 is configured to send third information to the relay node according to the second information, the third The information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the correspondence between the beam and the expected PSD includes: the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS.
  • each of the beams corresponds to one or more desired PSD ranges; or each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following: the setting of guard bands between frequency bands during communication transmission, the size of the guard bands, the number of guard symbols, undesired beam sets, and the number of carrier frequency TRx , the setting situation of the downlink receiving power range of the mobile terminal MT in the relay node, the maximum number of DMRS ports for downlink scheduling of the MT, and the maximum number of DMRS ports for uplink scheduling of the MT.
  • the transceiver module 1220 is further configured to send the fourth information to the relay node, where the fourth information includes a restriction relationship between an uplink beam and a downlink beam.
  • the first condition includes the existence of the second signal in the time slot, all downlink beam restrictions corresponding to the beam are canceled; or the first condition includes the existence of the first symbol in the time slot
  • the second signal is to cancel the downlink beam restriction corresponding to the beam in the first symbol; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the transceiver module 1220 is configured to send the fourth information to the relay node, where the fourth information includes a restriction relationship between an uplink beam and a downlink beam.
  • the processing module 1210 may also be configured to determine a first condition, and notify the relay node of the first condition through the transceiver module 1220; the first condition includes If there is a second signal in the time slot, cancel all downlink beam restrictions corresponding to the beam; or if the first condition includes the presence of a second signal in the first symbol in the time slot, then cancel the beam in the first symbol Corresponding downlink beam restriction; the second signal includes one or more of SS/PBCH block, PDCCH common search space set, and periodic CSI-RS.
  • the transceiver module 1220 may also send first information to the relay node, where the first information includes at least one identifier of a beam used to send the first signal;
  • the second information of the node, the second information includes the corresponding relationship between the identifier of the beam and the expected power spectral density PSD;
  • the processing module 1210 is further configured to send to the relay node according to the second information third information, where the third information is used to instruct the relay node to determine transmission power based on the beam transmission information.
  • the fourth information may be determined by the upper-level node according to the second information.
  • the beam is a beam used by the MT in the relay node to communicate with the upper node.
  • the correspondence between the beam and the expected PSD includes: the beam and PSD information associated with the beam; or, the PSD and beam information associated with the PSD.
  • the first signal includes an uplink sounding reference signal SRS.
  • each of the beams corresponds to one or more desired PSD ranges; each PSD range corresponds to one or more beams.
  • the first information further includes an association relationship between the first signal corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the second information further includes an association relationship between the PSD corresponding to the beam and a first situation; the first situation is determined according to at least one parameter.
  • the parameters include at least one of the following: the setting of guard bands between frequency bands during communication transmission, the size of the guard bands, the number of guard symbols, undesired beam sets, and the number of carrier frequency TRx , the setting situation of the downlink receiving power range of the mobile terminal MT in the relay node, the maximum number of DMRS ports for downlink scheduling of the MT, and the maximum number of DMRS ports for uplink scheduling of the MT.
  • the communication device 1300 provided by the embodiment of the present application can realize the function of the relay node in the method provided by the embodiment of the present application, or the communication device 1300 can be The upper-level node can realize the function of the upper-level node in the method provided by the embodiment of the present application; the communication device 1300 can also be a device that can support the relay node to realize the corresponding function in the method provided by the embodiment of the present application, or can support the upper-level node to realize Devices corresponding to the functions in the methods provided in the embodiments of the present application.
  • the communication device 1300 may be a chip system or an upper node.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 1220 may be a transceiver, and the transceiver is integrated in the communication device 1300 to form the communication interface 1310 .
  • the communication device 1300 includes at least one processor 1320, configured to implement or support the communication device 1300 to implement the functions of the upper node or host node in the method provided by the embodiment of the present application. For details, refer to the detailed description in the method example, and details are not repeated here.
  • the communication device 1300 may also include at least one memory 1330 for storing program instructions and/or data.
  • the memory 1330 is coupled to the processor 1320 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1320 may cooperate with memory 1330 .
  • the processor 1320 may execute program instructions and/or data stored in the memory 1330, so that the communication device 1300 implements a corresponding method. At least one of the at least one memory may be included in the processor.
  • the communication device 1300 may also include a communication interface 1310 for communicating with other devices through a transmission medium, so that devices used in the communication device 1300 can communicate with other devices.
  • a communication interface 1310 for communicating with other devices through a transmission medium, so that devices used in the communication device 1300 can communicate with other devices.
  • the communication device is a relay node
  • the other device is an upper-level node; or, when the communication device is a higher-level node, the other device is a relay node.
  • the processor 1320 can use the communication interface 1310 to send and receive data.
  • the communication interface 1310 may specifically be a transceiver.
  • a specific connection medium among the communication interface 1310, the processor 1320, and the memory 1330 is not limited.
  • the memory 1330, the processor 1320, and the communication interface 1310 are connected through the bus 1340.
  • the bus is represented by a thick line in FIG. 13, and the connection mode between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 13 , but it does not mean that there is only one bus or one type of bus.
  • the processor 1320 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement Or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory 1330 may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), For example random-access memory (random-access memory, RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • FIG. 14 shows another form of the communication device 1300.
  • the communication device 1400 is an IAB node.
  • the IAB node includes MT and DU
  • the MT may include a communication interface, a processor, and a memory, and a bus connecting the communication interface, the processor, and the memory, wherein the communication interface may be used to communicate with The upper node of the IAB node or the source host base station or the target host base station communicates.
  • the DU may also include a communication interface, a processor, and a memory, and a bus connecting the communication interface, the processor, and the memory, wherein the communication interface is used to communicate with the lower-level nodes or terminals of the IAB node.
  • Fig. 15 shows a schematic structural diagram of a simplified communication device.
  • the communication device is an upper-level node or a relay node.
  • the communication device 1500 may include a transceiver 1510 , a memory 1521 and a processor 1522 .
  • the transceiver 1510 can be used by a communication device to communicate.
  • the memory 1521 is coupled with the processor 1522 and can be used to store programs and data necessary for the communication device 1500 to realize various functions.
  • the processor 1522 is configured to support the communication device 1500 to execute corresponding functions in the above methods, and the functions can be implemented by calling programs stored in the memory 1521 .
  • the transceiver 1510 may be a wireless transceiver, and may be used to support the communication device 1500 to receive and send signaling and/or data through a wireless air interface.
  • the transceiver 1510 may also be referred to as a transceiver unit or a communication unit, and the transceiver 1510 may include one or more radio frequency units 1512 and one or more antennas 1511, wherein the radio frequency unit is such as a remote radio unit (remote radio unit, RRU) Or an active antenna unit (active antenna unit, AAU), which can be specifically used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals, and the one or more antennas can be specifically used for radiating and receiving radio frequency signals.
  • the transceiver 1510 may only include the above radio frequency unit, then the communication device 1500 may include a transceiver 1510 , a memory 1521 , a processor 1522 and an antenna 1511 .
  • the memory 1521 and the processor 1522 can be integrated or independent of each other. As shown in FIG. 15 , the memory 1521 and the processor 1522 can be integrated into the control unit 1520 of the communication device 1500 .
  • the control unit 1520 may include a baseband unit (baseband unit, BBU) of an LTE base station, and the baseband unit may also be called a digital unit (digital unit, DU), or the control unit 1520 may include 5G and future wireless access Distributed unit (distributed unit, DU) and/or centralized unit (centralized unit, CU) in the base station under the technology.
  • BBU baseband unit
  • DU digital unit
  • centralized unit centralized unit
  • the above-mentioned control unit 1520 can be composed of one or more antenna panels, where multiple antenna panels can jointly support a wireless access network of a single access standard (such as an LTE network), and multiple antenna panels can also respectively support wireless access networks of different access standards. Radio access network (such as LTE network, 5G network or other networks).
  • the memory 1521 and processor 1522 may serve one or more antenna panels. That is to say, the memory 1521 and the processor 1522 may be separately provided on each antenna panel. It is also possible that multiple antenna panels share the same memory 1521 and processor 1522 .
  • necessary circuits may be provided on each antenna panel, for example, the circuits may be used to realize the coupling of the memory 1521 and the processor 1522 .
  • the above transceiver 1510, processor 1522 and memory 1521 may be connected through a bus structure and/or other connection media.
  • the processor 1522 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit, and the radio frequency unit performs radio frequency processing on the baseband signal and passes the radio frequency signal through the antenna. Sent in the form of electromagnetic waves.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1522, and the processor 1522 converts the baseband signal into data and converts the data to process.
  • the transceiver 1510 can be used to perform the above steps performed by the transceiver module 1220 .
  • the processor 1522 can be used to invoke instructions in the memory 1521 to perform the above steps performed by the processing module 1210 .
  • the embodiment of the present application also provides a communication system.
  • the communication system includes an IAB node, a host node, and multiple upper-level nodes, or may further include more IAB nodes, the host node, and upper-level nodes.
  • the IAB node, host node, and upper-level node are respectively used to implement the functions of the above-mentioned related devices in FIG. 7 .
  • the IAB node, host node, and upper-level node are respectively used to implement the functions of the above-mentioned related devices in FIG. 7 .
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method performed by the IAB node, the host node, or the upper-level node in FIG. 7 .
  • Embodiments of the present application also provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method performed by the IAB node, host node, or upper-level node in FIG. 7 .
  • An embodiment of the present application provides a chip system, the chip system includes a processor, and may further include a memory, configured to implement the functions of the IAB node, host node, or upper-level node in the foregoing method.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • At least one item (unit) in a, b or c can represent: a, b, c, a-b, a-c, b-c or a-b-c, wherein a, b, c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority or priority of multiple objects. Importance.
  • first configuration information and the second configuration information are only for distinguishing different configuration information, and do not represent the difference in priority, sending order, or importance of the two configuration information.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Abstract

本申请公开一种资源配置方法及通信装置,该方法包括:中继节点获取第一信息(S700),该第一信息包括至少一个用于发送第一信号的波束的标识;该中继节点根据该第一信息,向上级节点发送第二信息(S702),该第二信息包括该波束与期望的功率谱密度PSD的对应关系;该中继节点接收来自该上级节点发送的第三信息(S705),该第三信息用于指示该中继节点基于该波束发送信息确定发送功率。通过该方法,上级节点能够更灵活,准确的配置波束的发送功率,有效降低通信干扰。

Description

一种资源配置方法及通信装置
相关申请的交叉引用
本申请要求在2021年09月30日提交中国专利局、申请号为202111162607.6、申请名称为“一种资源配置方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种资源配置方法及通信装置。
背景技术
随着移动通信技术的不断发展,为了更好的提高频谱利用率以及降低网络部署成本等,经常采用无线中继节点(relay node,RN)通过无线回传链路与核心网建立连接的方式进行通信传输。
然而,在该通信场景中,经常存在上级节点无法确定中继节点上报的波束对应的期望功率谱密度(power spectrum density,PSD),从而无法准确有效设置该波束的发送功率,影响通信质量的问题。
发明内容
本申请提供一种资源配置方法及通信装置,以使得上级节点能够更灵活,准确的配置波束的发送功率,有效降低通信干扰。
第一方面,提供一种资源配置方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。
下面以所述通信设备为与至少一个上级节点连接的中继节点为例进行描述。该方法包括:
中继节点获取第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;
所述中继节点根据所述第一信息,向上级节点发送第二信息,所述第二信息包括所述波束与期望的功率谱密度PSD的对应关系;所述中继节点接收来自所述上级节点发送的第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。作为一种示例,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种示例,所述第一信息是所述中继节点从宿主节点获取的。
作为一种示例,所述波束与期望的PSD的对应关系包括:所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种示例,所述第一信号包括上行探测参考信号SRS,所述参考信号可以由IAB MT发送。
作为一种示例,所述第一信号还包括下行参考信号,例如信道状态信息参考信号CSI-RS,同步信号SSB。其中,所述第一信号可以由该中继节点中的DU发送。
作为一种示例,所述波束中的每个波束对应一个或多个期望的PSD范围。
作为一种示例,每个PSD范围对应多个波束。
作为一种示例,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述参数包括下列中的至少一个:
进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的期望的下行发送功率,所述MT的期望上行发送功率PSD范围,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
其中,本申请中的所述参数可以由上级节点或者宿主基站进行配置或指示。其中可以将所述参数中的一个或多个配置一个参数集合,每个参数集合可以用一个ID标识。IAB节点可以被配置多个参数集合,以及对应的ID标识。上级节点可以通过MAC-CE信令或DCI信令指示当前应用的参数集合ID。
作为一种示例,所述中继节点还可以接收来自所述上级节点发送的第四信息,所述第四信息包括上行波束与下行波束的限制关系;所述中继节点可以在采用所述波束进行通信传输时,根据所述第四信息,限制使用所述波束对应的下行波束。
作为一种示例,所述下行波束为所述中继节点中的DU向对应终端进行通信的波束。
作为一种示例,所述中继节点还可以获取第一条件,所述第一条件用于指示停止对所述下行波束的限制;所述中继节点在确定满足所述第一条件时,停止所述下行波束限制。
作为一种示例,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
作为一种示例,所述中继节点可以在确定第一小区中的一个小区满足所述第一条件时,停止对满足所述第二条件的小区对应的所述下行波束的限制;或所述中继节点可以在确定所述第一小区中的一个小区满足所述第一条件时,停止对所述第一小区中所有小区对应的所述下行波束的限制;其中,所述第一小区中的所有小区对应的下行波束相同。
作为一种示例,第一条件包括时隙中存在第二信号,则将所述时隙的资源类型视为Hard硬资源;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。当DU的资源配置为Hard硬资源时,IAB-DU的任意一个小区可以在所述资源上发送、接收不受任何限制,所述限制包括所述对下行波束的限制。
第二方面,提供一种资源配置方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。
下面以所述通信设备为与中继节点连接的多个上级节点的一个上级节点,例如第一上级节点为例进行描述。该方法包括:
上级节点向中继节点发送第一信息,所述第一信息包括至少一个用于发送第一信号的 波束的标识;所述上级节点接收来自所述中继节点的第二信息,所述第二信息包括所述波束的标识与期望的功率谱密度PSD的对应关系;所述上级节点根据所述第二信息,向所述中继节点发送第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种示例,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种示例,所述波束与期望的PSD的对应关系包括:所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种示例,所述第一信号包括上行探测参考信号SRS,所述参考信号可以由IAB MT发送。
作为一种示例,所述第一信号还包括下行参考信号,例如信道状态信息参考信号CSI-RS,同步信号SSB。其中,所述第一信号可以由该中继节点中的DU发送。
作为一种示例,所述波束中的每个波束对应一个或多个期望的PSD范围;或每个PSD范围对应一个或多个波束。
作为一种示例,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述参数包括下列中的至少一个:
进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的期望的下行发送功率,所述MT的期望上行发送功率PSD范围,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
其中,本申请中的所述参数可以由上级节点或者宿主基站进行配置或指示。其中可以将所述参数中的一个或多个配置一个参数集合,每个参数集合可以用一个ID标识。IAB节点可以被配置多个参数集合,以及对应的ID标识。上级节点可以通过MAC-CE信令或DCI信令指示当前应用的参数集合ID。
作为一种示例,所述上级节点还可以向所述中继节点发送所述第四信息,所述第四信息包括上行波束与下行波束的限制关系。
作为一种示例,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
第三方面,提供一种资源配置方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。
下面以所述通信设备为与至少一个上级节点连接的中继节点为例进行描述。该方法包括:
中继节点接收来自上级节点发送的第四信息,所述第四信息包括上行波束与下行波束的限制关系;所述中继节点采用第一波束进行通信传输时,根据所述第四信息,限制使用所述第一波束对应的下行波束。
作为一种示例,所述第一波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种示例,所述下行波束为所述中继节点中的DU向对应终端进行通信的波束。
作为一种示例,所述中继节点获取第一条件,所述第一条件用于指示停止对所述下行波束的限制;所述中继节点在确定满足所述第一条件时,停止所述下行波束限制。
作为一种示例,所述第一条件是所述中继节点从宿主节点获取的;或者,所述第一条件是所述中继节点从所述上级节点获取的。
作为一种示例,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
作为一种示例,第一条件包括时隙中存在第二信号,则将所述时隙的资源类型视为Hard硬资源;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。当DU的资源配置为Hard硬资源时,IAB-DU的任意一个小区可以在所述资源上发送、接收不受任何限制,所述限制包括所述对波束限制。
作为一种示例,所述中继节点可以在确定第一小区中的一个小区满足所述第一条件时,停止对满足所述第二条件的小区对应的所述下行波束的限制;或所述中继节点在确定所述第一小区中的一个小区满足所述第一条件时,停止对所述第一小区中所有小区对应的所述下行波束的限制;其中,所述第一小区中的所有小区对应的下行波束相同。
作为一种示例,所述方法还包括所述中继节点获取第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;所述中继节点根据所述第一信息,向上级节点发送第二信息,所述第二信息包括所述波束与期望的功率谱密度PSD的对应关系;所述中继节点接收来自所述上级节点发送的第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种示例,所述第一信息是所述中继节点从宿主节点获取的。
作为一种示例,所述波束与期望的PSD的对应关系包括所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种示例,所述第一信号包括上行探测参考信号SRS,所述参考信号可以由IAB MT发送。
作为一种示例,所述第一信号还包括下行参考信号,例如信道状态信息参考信号CSI-RS,同步信号SSB。其中,所述第一信号可以由该中继节点中的DU发送。
作为一种示例,所述波束中的每个波束对应一个或多个期望的PSD范围。
作为一种示例,或每个PSD范围对应一个或多个波束。
作为一种示例,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述参数包括下列中的至少一个:
进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的 波束集合,载频TRx数,所述中继节点中的移动终端MT的下行接收功率区间设置情况,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
其中,本申请中的所述参数可以由上级节点或者宿主基站进行配置或指示。其中可以将所述参数中的一个或多个配置一个参数集合,每个参数集合可以用一个ID标识。IAB节点可以被配置多个参数集合,以及对应的ID标识。上级节点可以通过MAC-CE信令或DCI信令指示当前应用的参数集合ID。
第四方面,提供一种资源配置方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。
下面以所述通信设备为与中继节点连接的多个上级节点的一个上级节点,例如第一上级节点为例进行描述。该方法包括:
上级节点向所述中继节点发送所述第四信息,所述第四信息包括上行波束与下行波束的限制关系。
作为一种示例,所述上级节点还可以确定第一条件,并将所述第一条件通知给所述中继节点;所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
作为一种示例,所述方法还包括,上级节点还可以向中继节点发送第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;所述上级节点接收来自所述中继节点的第二信息,所述第二信息包括所述波束的标识与期望的功率谱密度PSD的对应关系;所述上级节点根据所述第二信息,向所述中继节点发送第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种示例,所述第四信息可以是所述上级节点根据所述第二信息确定的。
作为一种示例,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种示例,所述波束与期望的PSD的对应关系包括:所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种示例,所述第一信号包括上行探测参考信号SRS,所述参考信号可以由IAB MT发送。
作为一种示例,所述第一信号还包括下行参考信号,例如信道状态信息参考信号CSI-RS,同步信号SSB。其中,所述第一信号可以由该中继节点中的DU发送。
作为一种示例,所述波束中的每个波束对应一个或多个期望的PSD范围;或每个PSD范围对应一个或多个波束。
作为一种示例,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述参数包括下列中的至少一个:进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点 中的移动终端MT的期望的下行发送功率,所述MT的期望上行发送功率PSD范围,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
其中,本申请中的所述参数可以由上级节点或者宿主基站进行配置或指示。其中可以将所述参数中的一个或多个配置一个参数集合,每个参数集合可以用一个ID标识。IAB节点可以被配置多个参数集合,以及对应的ID标识。上级节点可以通过MAC-CE信令或DCI信令指示当前应用的参数集合ID。
第五方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,包括收发模块和处理模块,其中:
通信模块,用于获取第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;
处理模块,用于根据所述第一信息,向上级节点发送第二信息,所述第二信息包括所述波束与期望的功率谱密度PSD的对应关系;
所述通信模块,还用于接收来自所述上级节点发送的第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种示例,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种示例,所述波束与期望的PSD的对应关系包括:所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种示例,所述第一信号包括上行探测参考信号SRS,所述参考信号可以由IAB MT发送。
作为一种示例,所述第一信号还包括下行参考信号,例如信道状态信息参考信号CSI-RS,同步信号SSB。其中,所述第一信号可以由该中继节点中的DU发送。
作为一种示例,所述波束中的每个波束对应一个或多个期望的PSD范围;或每个PSD范围对应一个或多个波束。
作为一种示例,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述参数包括下列中的至少一个:
进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的期望的下行发送功率,所述MT的期望上行发送功率PSD范围,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
作为一种示例,所述通信模块还用于,接收来自所述上级节点发送的第四信息,所述第四信息包括上行波束与下行波束的限制关系;所述处理模块还用于,采用所述波束进行通信传输时,根据所述第四信息,限制使用所述波束对应的下行波束。
作为一种示例,所述下行波束为所述中继节点中的DU向对应终端进行通信的波束。
作为一种示例,所述通信模块还用于,获取第一条件,所述第一条件用于指示停止对所述下行波束的限制;所述处理模块还用于,在确定满足所述第一条件时,停止所述下行波束限制。
作为一种示例,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
作为一种示例,第一条件包括时隙中存在第二信号,则将所述时隙的资源类型视为Hard硬资源;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。当DU的资源配置为Hard硬资源时,IAB-DU的任意一个小区可以在所述资源上发送、接收不受任何限制,所述限制包括所述对下行波束的限制。
作为一种示例,所述处理模块可以具体用于,在确定第一小区中的一个小区满足所述第一条件时,停止对满足所述第二条件的小区对应的所述下行波束的限制;或在确定所述第一小区中的一个小区满足所述第一条件时,停止对所述第一小区中所有小区对应的所述下行波束的限制;其中,所述第一小区中的所有小区对应的下行波束相同。
第六方面,本申请实施例提供了另一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,包括收发模块和处理模块,其中:
通信模块,用于向中继节点发送第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;接收来自所述中继节点的第二信息,所述第二信息包括所述波束的标识与期望的功率谱密度PSD的对应关系;
处理模块,用于根据所述第二信息,向所述中继节点发送第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种示例,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种示例,所述波束与期望的PSD的对应关系包括:所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种示例,所述第一信号包括上行探测参考信号SRS,所述参考信号可以由IAB MT发送。
作为一种示例,所述第一信号还包括下行参考信号,例如信道状态信息参考信号CSI-RS,同步信号SSB。其中,所述第一信号可以由该中继节点中的DU发送。
作为一种示例,所述波束中的每个波束对应一个或多个期望的PSD范围;或每个PSD范围对应一个或多个波束。
作为一种示例,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述参数包括下列中的至少一个:进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的期望的下行发送功率,所述MT的期望上行发送功率PSD范围,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
其中,本申请中的所述参数可以由上级节点或者宿主基站进行配置或指示。其中可以将所述参数中的一个或多个配置一个参数集合,每个参数集合可以用一个ID标识。IAB节点可以被配置多个参数集合,以及对应的ID标识。上级节点可以通过MAC-CE信令或DCI信令指示当前应用的参数集合ID。
作为一种示例,所述上级节点还可以向所述中继节点发送所述第四信息,所述第四信息包括上行波束与下行波束的限制关系。
作为一种示例,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
作为一种示例,第一条件包括时隙中存在第二信号,则将所述时隙的资源类型视为Hard硬资源;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。当DU的资源配置为Hard硬资源时,IAB-DU的任意一个小区可以在所述资源上发送、接收不受任何限制,所述限制包括所述对波束限制。
第七方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,包括收发模块和处理模块,其中:
通信模块,用于接收来自上级节点发送的第四信息,所述第四信息包括上行波束与下行波束的限制关系;
处理模块,用于采用第一波束进行通信传输时,根据所述第四信息,限制使用所述第一波束对应的下行波束。
作为一种示例,所述第一波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种示例,所述下行波束为所述中继节点中的DU向对应终端进行通信的波束。
作为一种示例,所述中继节点获取第一条件,所述第一条件用于指示停止对所述下行波束的限制;所述中继节点在确定满足所述第一条件时,停止所述下行波束限制。
作为一种示例,所述第一条件是所述中继节点从宿主节点获取的;或者,所述第一条件是所述中继节点从所述上级节点获取的。
作为一种示例,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;
所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一 个或多个。
作为一种示例,所述中继节点可以在确定第一小区中的一个小区满足所述第一条件时,停止对满足所述第二条件的小区对应的所述下行波束的限制;或所述中继节点在确定所述第一小区中的一个小区满足所述第一条件时,停止对所述第一小区中所有小区对应的所述下行波束的限制;其中,所述第一小区中的所有小区对应的下行波束相同。
作为一种示例,所述方法还包括所述中继节点获取第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;所述中继节点根据所述第一信息,向上级节点发送第二信息,所述第二信息包括所述波束与期望的功率谱密度PSD的对应关系;所述中继节点接收来自所述上级节点发送的第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种示例,所述第一信息是所述中继节点从宿主节点获取的。
作为一种示例,所述波束与期望的PSD的对应关系包括所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种示例,所述第一信号包括上行探测参考信号SRS。
作为一种示例,所述波束中的每个波束对应一个或多个期望的PSD范围。
作为一种示例,或每个PSD范围对应一个或多个波束。
作为一种示例,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述参数包括下列中的至少一个:
进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的期望的下行发送功率,所述MT的期望上行发送功率PSD范围,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
其中,本申请中的所述参数可以由上级节点或者宿主基站进行配置或指示。其中可以将所述参数中的一个或多个配置一个参数集合,每个参数集合可以用一个ID标识。IAB节点可以被配置多个参数集合,以及对应的ID标识。上级节点可以通过MAC-CE信令或DCI信令指示当前应用的参数集合ID。
第八方面,本申请实施例提供了另一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,包括收发模块和处理模块,其中:
通信模块,用于向所述中继节点发送所述第四信息,所述第四信息包括上行波束与下行波束的限制关系。
作为一种示例,所述上级节点还可以确定第一条件,并将所述第一条件通知给所述中继节点;所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合, 周期CSI-RS中的一个或多个。
作为一种示例,所述方法还包括,上级节点还可以向中继节点发送第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;所述上级节点接收来自所述中继节点的第二信息,所述第二信息包括所述波束的标识与期望的功率谱密度PSD的对应关系;所述上级节点根据所述第二信息,向所述中继节点发送第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种示例,所述第四信息可以是所述上级节点根据所述第二信息确定的。
作为一种示例,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种示例,所述波束与期望的PSD的对应关系包括:所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种示例,所述第一信号包括上行探测参考信号SRS。
作为一种示例,所述波束中的每个波束对应一个或多个期望的PSD范围;或每个PSD范围对应一个或多个波束。
作为一种示例,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种示例,所述参数包括下列中的至少一个:进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的期望的下行发送功率,所述MT的期望上行发送功率PSD范围,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
其中,本申请中的所述参数可以由上级节点或者宿主基站进行配置或指示。其中可以将所述参数中的一个或多个配置一个参数集合,每个参数集合可以用一个ID标识。IAB节点可以被配置多个参数集合,以及对应的ID标识。上级节点可以通过MAC-CE信令或DCI信令指示当前应用的参数集合ID。
第九方面,提供一种通信装置,该装置包括处理器和存储器。其中,存储器用于存储计算程序或指令,处理器与存储器耦合;当处理器执行计算机程序或指令时,使得该装置执行上述第一方面或第一方面中的任意一种方法;或使得该装置执行上述第三方面或第三方面中的任意一种方法。通信装置可以是第一装置,或能够支持第一装置实现上述第一方面提供的方法所需的功能的装置,或能够支持第一装置实现上述第三方面提供的方法所需的功能的装置,例如芯片系统。例如,所述通信装置可以是终端设备或终端设备内的部分组件(比如芯片)。所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动站(Mobile Station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。
第十方面,提供一种通信装置,该装置包括处理器和存储器。其中,存储器用于存储计算程序或指令,处理器与存储器耦合;当处理器执行计算机程序或指令时,使得该装置 执行上述第二方面或第二方面中的任意一种方法;或使得该装置执行上述第四方面或第四方面中的任意一种方法。通信装置可以是第二装置或能够支持第二装置实现上述第二方面提供的方法所需的功能的装置,或能够支持第二装置实现上述第四方面提供的方法所需的功能的装置,例如芯片系统。例如,所述通信装置可以是网络设备。其中,本申请实施例中的网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同,例如GSM(Global System for Mobile Communication,全球移动通信系统)或CDMA(Code Division Multiple Access,码分多址)网络中的BTS(Base Transceiver Station,基站收发信台),WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB),LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional NodeB)。网络设备还可以是CRAN(Cloud Radio Access Network,云无线接入网络)场景下的无线控制器。网络设备还可以是未来5G网络中的基站设备或者未来演进的PLMN网络中的网络设备。网络设备还可以是可穿戴设备或车载设备。网络设备还可以传输接收节点(Transmission and Reception Point,TRP)。
第十一方面,提供一种终端,该终端可包括上述第五方面或第七方面所述的装置。可选的,该装置可以为智能家居设备、智能制造设备、智能运输设备等,例如车辆、无人机、无人运输车、汽车和车辆等,或机器人等。或者,该装置可以为鼠标、键盘、可穿戴设备、TWS耳机等。
第十二方面,本申请提供一种芯片,芯片与存储器相连,用于读取并执行存储器中存储的计算机程序或指令,以实现上述第一方面或第一方面的任一种可能的实现方式中的方法;或以实现上述第二方面或第二方面的任一种可能的实现方式中的方法;或以实现上述第三方面或第三方面的任一种可能的实现方式中的方法;或以实现上述第四方面或第四方面的任一种可能的实现方式中的方法。
第十三方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被装置执行时,使得该装置执行上述第一方面或第一方面的任意可能的实现方式中的方法;或以实现上述第二方面或第二方面的任一种可能的实现方式中的方法;或以实现上述第三方面或第三方面的任一种可能的实现方式中的方法;或以实现上述第四方面或第四方面的任一种可能的实现方式中的方法。
第十四方面,提供本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被装置执行时,使得该装置执行上述第一方面或第一方面的任意可能的实现方式中的方法;或以实现上述第二方面或第二方面的任一种可能的实现方式中的方法;或以实现上述第三方面或第三方面的任一种可能的实现方式中的方法;或以实现上述第四方面或第四方面的任一种可能的实现方式中的方法。
附图说明
图1为本申请实施例提供的一种IAB系统的结构示意图;
图2为本申请实施例提供的IAB节点的结构示意图;
图3为本申请实施例提供的一种回传链路、接入链路的示意图;
图4为本申请实施例提供的一种IAB节点通信的示意图;
图5为本申请实施例提供的可使用的通信系统的网络架构示意图;
图6为本申请实施例提供的为IAB节点的两个上级节点为IAB节点指示可用资源的示意图;
图7为本申请实施例提供的第一种资源配置方法的流程示意图;
图8为本申请实施例提供的第一种波束与PSD的关联示意图;
图9为本申请实施例提供的第二种波束与PSD的关联示意图;
图10为本申请实施例提供的第二种资源配置的方法流程示意图;
图11为本申请实施例提供的第三种资源配置的方法流程示意图;
图12为本申请实施例提供的通信装置的第一种结构示意图;
图13为本申请实施例提供的通信装置的第二种结构示意图;
图14为本申请实施例提供的通信装置的第三种结构示意图;
图15为本申请实施例提供的通信装置的第四种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
在介绍本申请之前,首先对本申请实施例中的部分用语进行简单解释说明,以便于本领域技术人员理解。
1)波束:
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
可选地,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束可以对应一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。例如,发射波束可以是指信号经天线发射出去后,在空间不同方向上形成的信号强度的分布;接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在使用低频或中频频段时,可以全向发送信号或者通过一个较宽的角度来发送信号。而在使用高频频段时,得益于高频通信系统较小的载波波长,可以在发送端和接收端布置很多天线阵子构成的天线阵列,发送端以一定波束赋形权值发送信号,使发送信号形成具有空间指向性的波束。同时,在接收端用天线阵列以一定波束赋形权值进行接收,可以提高信号在接收端的接收功率,对抗路径损耗。
在协议中,一般采用TCI state ID,或SRI对波束进行标识。在一些可能的实现中,也通过参考信号资源标识,或同步信号索引,间接的表示波束。
2)准共址(quasi-co-location,QCL):
QCL用于表示多个资源之间具有一个或多个相同或者相类似的通信特征。对于具有QCL关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口QCL,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。其中,大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到 达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。
在应用时,可以利用同位指示来指示至少两组天线端口是否具有QCL关系。其中,利用同位指示来指示至少两组天线端口是否具有QCL关系可以理解为:同位指示用于指示至少两组天线端口发送的信道状态信息参考信号(CSI RS)是否来自相同的传输点,或同位指示用于指示至少两组天线端口发送的信道状态信息参考信号(CSI RS)是否来自相同的波束组。
3)传输配置指示(transmission configuration indicator,TCI):
TCI是下行控制信息(downlink control information,DCI)中用于指示物理下行共享信道(physical downlink shared channel,PDSCH)天线端口的QCL关系的字段。
TCI可以由高层,如无线资源控制(radio resource control,RRC)层配置。在配置信令中TCI可以被称为TCI状态(TCI-state),TCI-state是一个信息结构,其中包括波束相关的信息。在由RRC配置后,可以由基站发送媒体(介质)接入控制(medium access control,MAC)控制元素(control element,CE)(MAC-CE)以激活一个或多个TCI-state。基站可以进一步发送下行控制信息(downlink control information,DCI)指示多个被激活的TCI-state中的一个。
协议中的高层可以通过TCI-state来配置QCL,其中,TCI-state的参数可以用于在一到两个下行参考信号和PDSCH的解调参考信号(demodulation reference signal,DMRS)之间配置QCL关系。TCI可以包括一个或者两个QCL关系。由于QCL可以表征终端设备当前将要接收(或发送)的信号/信道,与之前已知的某参考信号之间的某种一致性关系,因此若存在QCL关系,终端设备可以继承之前接收(或发送)某参考信号时的参数,来接收(或发送)将要到来的信号/信道。
在应用时,如果TCI-state中包含标识为QCL Type-D的信息,则该TCI-state可以用于指示波束。如果TCI-state中包含的标识QCL Type-A、QCL Type-B或QCL Type-C的信息,则该TCI-state可以用于指示时域与频域偏移等信息(不包括空域信息),一般用于辅助终端设备进行数据接收解调。在实现时,可以考虑当两个TCI状态配置采用了相同的QCL Type-D的源参考信号,则两个TCI状态具有QCL关系,或可以认为采用了相同的波束。
4)参考信号(reference signal,RS):根据长期演进LTE/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中上行物理信道包括随机接入信道(random access channel,PRACH)上行控制信道(physical uplink control channel,PUCCH),上行数据信道(physical uplink shared channel,PUSCH)等,上行信号包括信道探测信号SRS,上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS),上行定位信号(uplink positioning RS)等等。下行通信包括下行物理信道和下行信号的传输。其中下行物理信道包括广播信道(physical broadcast channel,PBCH),下行控制信道(physical downlink control channel,PDCCH),下行数据信道(physical downlink shared channel,PDSCH)等,下行信号包括主同步信号(primary synchronization signal,简称PSS)/辅同步信号(secondary synchronization signal,SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(channel status information reference signal,CSI-RS), 小区信号(Cell reference signal,CRS)(NR没有),精同步信号(time/frequency tracking reference signal,TRS)(LTE没有),LTE/NR定位信号(positioning RS)等。
为了提高频谱利用率,未来的基站部署将会更加密集。然而由于光纤的部署成本非常高昂,通过无线中继节点(relay node,RN)的回传链路与核心网建立连接,可节省部分光纤部署成本。
中继节点可以与一个或多个上级节点建立无线回传链路,并通过上级节点接入核心网。上级节点可通过多种信令对中继节点进行一定的控制(例如,数据调度、定时调制、功率控制等)。另外,中继节点可以与一个或多个下级节点建立连接,并为一个或多个下级节点提供服务。中继节点的上级节点可以是基站,也可以是另一个中继节点。中继节点的下级节点可以是终端,也可以是另一个中继节点。在某些情形下,上级节点也可以称为上游节点,下级节点也可以称为下游节点。
为了提高频谱的利用率,回传链路和接入链路可共享相同频段,该方案也称为带内中继。带内中继一般具有半双工的约束,也就是中继节点在接收其上级节点发送的下行信号时不能向其下级节点发送下行信号,且中继节点在接收其下级节点发送的上行信号时不能向其上级节点发送上行信号。新一代无线通信系统(new radio,NR)的带内中继方案被称为IAB,相应的,中继节点被称为IAB节点(IAB node)。
图1示出了一种IAB系统,IAB节点(可认为是无线回传设备)为终端提供无线接入和接入业务的无线回传。IAB donor节点(IAB宿主节点,可认为是宿主基站)向IAB节点提供无线回传功能,并提供终端与核心网的接口。IAB节点通过无线回传链路连接到IAB donor节点,从而使IAB节点所服务的终端与核心网进行连接。
需要说明的是,在如图1所示的网络架构图中,尽管示出了终端侧设备、无线回传设备及宿主基站,但该网络架构可以并不限于包括终端侧设备、无线回传设备及宿主基站。例如,还可以包括核心网设备或用于承载虚拟化网络功能的设备等,这些对于本领域普通技术人员而言是显而易见的,在此不一一详述。另外,如图1所示的系统中,尽管示出了一个终端侧设备、一个无线回传设备及一个宿主基站,但该网络架构并不限制终端侧设备、无线回传设备及宿主基站的数量,例如,也可以包括多个终端侧设备、多个无线回传设备及多个宿主基站等。在下文的描述中,以无线回传设备是IAB节点为例。
donor节点是指通过该节点可以接入到核心网的节点,或者是无线接入网的网络设备,例如为锚点基站(或上文提到的宿主基站、宿主节点),通过该锚点基站可以接入到网络。锚点基站负责分组数据汇聚协议(packet data convergence protocol,PDCP)层的数据处理,或者负责接收核心网的数据并转发给中继节点,或者接收中继节点的数据并转发给核心网。Donor节点一般可以通过有线的方式连接到网络,例如光纤线缆。
网络设备可以称为基站,又可以称为无线接入网(radio access network,RAN)节点(或设备)。示例的,网络设备可以为下一代节点B(next-generation Node B,gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。本申请实施例中网络设备的名称可以是中 继节点(RN),中继发送接收点(rTRP),IAB节点(IAB node)等;中继节点的上级节点可以是gNB(包括gNB-DU,gNB-CU等),也可以是另一个中继节点。
示例性的,本申请实施例中的网络设备可以划分为集中单元(centralized unit,CU)和至少一个分布式单元(distributed unit,DU)。其中,CU和DU是相对而言的,CU可以用于管理或者控制至少一个DU,也可以称之为CU与至少一个DU连接。这种结构可以将通信系统中网络设备的协议层拆开,其中部分协议层放在CU集中控制,剩下部分或全部协议层功能分布在DU中,由CU集中控制DU。以网络设备为gNB为例,gNB的协议层包括无线资源控制(radio resource control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体访问控制子层(media access control,MAC)层和物理层(physical layer,PHY)。其中,示例性的,CU可以用于实现RRC层、SDAP层和PDCP层的功能,DU可以用于实现RLC层、MAC层和物理层的功能。CU与DU物理上可以通过光纤连接,逻辑上存在一个专门定义的F1接口,用于CU与DU之间进行通信。从功能的角度,CU主要负责无线资源控制与配置,跨小区移动性管理,承载管理等;DU主要负责调度,物理信号生成与发送。本以CU向DU发送配置(类似下行传输方向)为例,CU生成的F1-AP数据包被封装成IP包,在空口多跳节点之间传递。数据包到达目标IAB节点后,在目标IAB MT适配层处理后,将数据包转给本地IAB DU模块进行处理,最终在DU解析到F1-AP数据包。本申请实施例不对CU、DU包括的协议栈做具体限定。
图2示出了IAB节点的一种结构示意图。NR中的IAB节点可分为移动终端(mobile termination,MT)与DU两部分。MT也可以理解为在IAB节点中类似终端的一个组件。DU是相对网络设备的集中单元(centralized unit,CU)功能而言的。因此,也可认为IAB节点包括MT功能和DU功能,为了描述简便,在下文中,将MT功能称为MT,将DU功能称为DU。由于MT类似一个普通终端的功能,那么可以理解为MT用于IAB节点与上级节点(父节点)通信。DU是相对网络设备的集中单元(centralized unit,CU)功能而言的,DU用于IAB节点与下级节点(子节点)通信。应理解,上级节点可以是基站或者其他IAB节点,下级节点可以是终端或者其他IAB节点。MT与上级节点通信的链路称为上级回传链路(parent BackHaul link),DU与下级IAB节点通信的链路称为下级回传链路(child BackHaul link),而DU与下属终端通信的链路称为接入链路。在一些实施例中,下级回传链路也被称为接入链路,其中,上级回传链路包括上级回传上行链路(uplink,UL)以及上级回传下行链路(downlink,DL),下级回传链路包括下级回传UL和下级回传DL,接入链路包括接入UL和接入DL,如图3所示。
若网络设备是中继设备,尤其是IAB节点时,网络设备可以包括MT功能和DU功能。即IAB节点通过MT与上级节点进行通信,DU是IAB节点的基站功能模块,用于实现RLC层、MAC层和物理层的功能,主要负责调度、物理信号生成与发送,即IAB节点通过DU与下级节点和终端进行通信,如图4所示。IAB节点的MT与DU均具有完整的收发模块,且两者之间具有接口。但应注意,MT与DU为逻辑模块,在实际中,两者可以共享部分子模块,例如可共用收发天线,基带处理模块等,如图4所示。
在IAB节点正常工作时,接入链路与回传链路(也就是MT与DU)以时分多路复用(time-division multiplexing,TDM),空分多路复用(space division multiplexing,SDM) 或频分多路复用(frequency-division multiplexing,FDM)的方式进行资源复用。回传链路与接入链路在不同的时刻工作即为TDM模式;在同一时间,接入链路与回传链路上仅接收或发送,那么回传链路与接入链路的工作模式为SDM模式;在同一时间,接入链路或回传链路上既接收,也发送,那么回传链路与接入链路的工作模式为全双工模式。通常来说,由于全双工传输需要额外考虑自身发送信号对自身接收信号的影响,全双工模式对硬件要求更高。
以TDM场景为例,回传链路与接入链路在不同的时刻工作,因此IAB节点需要在回传链路的收发与接入链路的收发之间切换。当回传与接入链路无间隔切换时,即接入链路符号与回传链路符号连续时,IAB节点具有较高的资源利用率。然而在实现中,由于功放的开关时间,传输距离,非理想同步等各种因素,回传链路与接入链路无法实现无间隔切换。此时,IAB节点需要确定回传链路和接入链路的可用/不可用符号集合。
为此,可配置MT资源和DU资源。MT资源可被配置为下行(downlink,D),上行(uplink,U),灵活(Flexible,F)三种类型。下行表示资源用于下行传输,上行表示资源用于上行传输,灵活表示MT的传输方向依赖于上级节点的进一步指示(一般通过物理层信令动态指示)。DU资源也可被配置为上行,下行,灵活三种类型,表示三种传输方向。进一步的,DU资源的上行资源,下行资源和灵活资源还可分为hard和soft两类。其中,DU hard资源表示DU始终可用的资源;DU soft资源表示DU是否可用该资源,依赖于上级节点的指示。DU还有一种不可用(NA,Not Available)资源类型,表示DU始终不可使用该资源。
可见,MT资源具有3种类型,DU资源具有7种类型,根据MT资源配置和DU资源配置可确定IAB节点的资源配置。例如,可以通过F1-AP接口信令在CU与DU之间进行传递DU的资源类型以及相应的传输方向。如在TS 38.473 9.2.9.3中定义的“GNB-DU RESOURCE CONFIGURATION”包括“gNB-DU Cell Resource Configuratio”实现了对DU资源的具体配置。
其中,“gNB-DU Cell Resource Configuratio”中的“DUF Slot Configuratio ltem”用于配置DU的传输方向,包括上行,下行和灵活。“gNB-DU Cell Resource Configuratio”中的“HSNA Slot Configuratio list”相关配置用于配置DU资源的属性(hard,soft,not available)。
进一步地,为了确定IAB DU上soft资源的可用性,上级节点可通过发送DCI 2_5进行指示。例如,IAB节点的多个上级节点可分别对可调度的DU soft资源进行指示。以图5为例,上级节点1和上级节点2分别获取IAB节点中DU上的多个小区的soft资源,上级节点1和上级节点2基于DCI 2_5指示DU上的多个小区中的具体哪些小区的哪些soft资源可用。当一个下行、上行或灵活的符号被配置为hard时,DU可以分别在符号中发送或接收,要么发送或接收。当一个下行、上行或灵活的符号被配置为soft时,DU可以只能在符号中发送或接收,要么发送或接收。例如IAB的MT在符号中不发送或不接收;又例如,IAB的MT在符号中接收或发送,但是不会改变IAB的DU在符号中的发送或接收;又例如,IAB的MT检测到DCI 2_5,且指示DU soft资源可用。应理解,当一个符号被配置不可用,那么IAB的DU在该符号既不发送也不接收。
前述介绍了如图1所示的网络架构中的IAB节点的资源配置方法。然而,在一种可能的应用场景中,如图5所示,为IAB节点双连接的网络架构的示意图。IAB节点双连接指的是为IAB节点提供无线回传链路资源的节点为2个,也就是IAB节点具有两个上级节点。 图5以2个上级节点为上级节点1和上级节点2为例。当然,图5中的上级节点可以是其他IAB节点,也可以是donor节点,还可以是普通基站。如果上级节点是IAB节点,那么上级节点也可以包括MT功能和DU功能。如果上级节点是donor节点,那么上级节点也可以包括CU功能和DU功能。
针对IAB节点双连接的场景来说,如果沿用目前的IAB节点的资源配置方法,即多个上级节点可分别对可调度的DU soft资源进行指示,也就是,多个上级节点独立地对可调度的DU soft资源进行指示。多个上级节点可以在同一资源或不同资源上调度IAB节点,但是多个上级节点并不知道彼此对哪些可调度的DU soft资源进行指示,这样会导致DU soft资源分区效率低下。例如,多个上级节点在不同的多个DU soft资源上调度IAB,多个DU soft资源无重叠(无交集),那么实际可用于IAB-DU的资源会非常有限,这会降低IAB节点的频谱效率,甚至会造成IAB节点处发生数据堵塞。
为了便于理解,请参见图6,为IAB节点的两个上级节点为IAB节点指示可用资源的示意图。图6以可调度的资源从左到右依次为1个hard资源、2个soft资源、2个hard资源、4个soft资源以及1个hard资源。在图6中,“S”表示soft资源,“H”表示hard资源。以上级节点为IAB节点指示可用的soft资源为例,IAB节点的DU上所有soft资源都有至少一个上级节点不指示是否可用。下文主要以soft资源为例,为了便于描述,可称为处于左侧的2个soft资源为soft资源1,处于右侧的4个soft资源称为soft资源2。如图6所示,上级节点1可指示soft资源1可用,不指示soft资源2是否可用;上级节点2不指示soft资源1是否可用,指示soft资源2可用。即IAB节点的所有Soft资源都有至少一个上级节点不指示可用,也就是上级节点1指示的可用soft资源和上级节点2指示的可用soft资源无交集或者交集很少,这种情况下,IAB节点的DU剩余可用的soft资源较少,容易造成IAB节点处发生数据堵塞。
为此,在本申请实施例中,可协调多个上级节点之间的资源,例如,多个上级节点在可能的情况下使用重叠的资源调度IAB节点,以使得剩余更多实际可用于IAB-DU的资源,尽量提高IAB节点的频谱效率,避免IAB节点处发生数据堵塞。
示例性的,本申请实施例提供了一种IAB节点的资源配置方法,该方法中,宿主节点配置优先级不同的一个或多个资源集合,并告知IAB节点的多个上级节点。各个上级节点可根据各个资源集合的优先级,优先选择优先级较高的资源调度IAB节点进行传输。由于优先级较低的资源没有优先被指示,这样较低优先级资源可作为IAB节点后续可用的资源,即为IAB节点的DU剩余更多的可用资源,可尽量减少数据发生堵塞的现象。
本申请实施例提供的通信方法可以应用于具有中继节点的双连接的通信系统,如图5所示。应理解,图5仅是一种示例性说明,并不对无线通信系统中包括的终端设备、中继节点的数量进行具体限定。在LTE中,中继节点一般被称为RN。在NR中,中继节点一般被称为IAB节点。在一些实施例中,中继节点也可以称为中继设备,或者中继传输接收点(relay transmission and receptio point,rTRP),中继节点的上级节点可以是网络设备(包括网络设备的DU,或者包括网络设备的CU等)。
应理解,本申请实施例中采用IAB节点仅仅出于描述的需要,并不表示本申请实施例的方案仅用于NR的场景,在本申请实施例中,IAB节点可以泛指任何具有中继功能的节点或设备,本申请实施中的IAB节点和中继节点的使用应理解具有相同的含义。
本申请实施例中涉及的终端,也称为终端设备,是用户侧的一种用于接收或发射信号 的实体。终端可以是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车与外界(vehicle-to-everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化实现方式、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。当然,本申请实施例中的终端也可以是车辆。或者本申请实施例中的终端也可以是物联网终端,例如智能家电,例如智能水表或智能电表等;又例如路测设备等。这里的路测设备可以包括智能路灯、路边智能摄像头等。
下面结合附图对本申请实施例提供的资源配置方法进行详细介绍。
请参见图7,为本申请实施例提供的资源配置方法的流程图。
在下文的介绍过程中,以该方法应用于图5所示的通信系统为例。另外,该方法可由三个通信装置执行,这三个通信装置例如为第一通信装置、第二通信装置和第三通信装置。
为了便于介绍,在下文中,以该方法由IAB节点、宿主节点和上级节点执行为例,也就是,以第一通信装置是IAB节点、第二通信装置是上级节点,第三通信装置是宿主节点为例。其中,上级节点可以是基站,也可以是其他IAB节点,在下文中以上级节点是基站为例。其中,所述基站可以是具有宿主节点功能的基站。
需要说明的是,本申请实施例只是以通过图5的通信系统为例,并不限制于这种场景。应理解,宿主节点指的是IAB节点当前所连接的宿主基站。上级节点指的是IAB节点当前 连接的基站或其他IAB节点。
具体的,本申请实施例提供的资源配置方法的流程描述如下。
S700、中继节点获取第一信息。
本申请实施例中该第一信息包括至少一个用于发送第一信号的上行波束的标识。其中,该第一信号包括SRS。可以理解的,所述上行波束为所述中继节点中的MT向所述上级节点进行通信的波束。
其中,该第一信号还可以包括CSI-RS和SSB。可以理解在这种情况下,中继节点利用自身发送下行信号的波束,作为第一信号的波束标识,所述波束为所述中继节点中的DU发送的波束,但可以被上级节点测量和识别并标识。下文以第一信号为SRS,波束为上行波束作为示例进行阐述。
可选的,该第一信息是该中继节点从Donor获取的。
作为一种示例,Donor为该中继节点配置SRS的资源时,假设Donor需要为3个SRS配置资源。其中,中继节点使用SRS1资源配置发送SRS信号时采用的波束为波束1,中继节点使用SRS2资源配置发送SRS信号时采用的波束为波束2,中继节点使用SRS3资源配置发送SRS信号时采用的波束为波束3。因此,该第一信息可以包括SRS与波束的标识的对应关系。例如,该第一信息可以包括下述表1的对应关系。其中SRS资源的标识有时也称为SRI(SRS resource indicator)。
SRS资源的标识 波束
SRS1 波束1
SRS2 波束2
SRS3 波束3
表1 SRS资源与波束的对应关系
其中,本申请实施例中该第一信息还可以包括该第一信号与配置情况的关联关系,从而可以使所述中继节点根据该第一信号与配置情况的关联关系,确定该第一信号对应的波束的传输配置;或者,该第一信息还可以包括该波束与配置情况的关联关系,从而可以使该中继节点根据该波束与配置情况的关联关系,确定该波束的传输配置0。
可选的,本申请实施例中的配置情况根据该宿主节点根据对至少一个配置参数的设置确定的。
可选的,该配置参数包括下列信息中的一个或多个:
信息1:进行通信传输时频段间保护带设置情况,可以表示当中继节点的MT和DU进行频分复用时,是否需要保护带。
信息2:保护带大小,表示在中继节点的接入与回传进行频分复用时,MT与DU所使用的频域资源之间预留频域资源的大小,所述预留频域资源不被MT或DU所使用。
示例性的,所述保护带的大小可以通过物理资源块(PRB,physical resource block)的个数进行表示。
信息3:保护符号数量,表示中继节点MT与DU工作之间进行转换所需要的时间。
信息4:不期望的波束集合,表示中继节点在MT与DU进行空分。
信息5:载频TRx数,表示中继节点在空分复用或频分复用时,接入或回传通信能够 使用的端口数。
信息6:该中继节点中的移动终端MT的下行接收功率区间设置情况,表示中继节点在进行空分接收时,MT期望的下行发送功率的范围或调整量,例如在当前上级节点下行传输信号的功率基础上,降低X dB。
信息7:该中继节点中MT的下行调度的解调参考信号DMRS端口的最大数量。
信息8:该中继节点中MT的上行调度的DMRS端口的最大数量。
例如,宿主基站或者中继节点的上级节点可以利用信令配置多组配置参数,每组配置参数包括上述信息中的一个或多个。每组参数可以用一个ID进行标识,如下所示结构:
Figure PCTCN2022123085-appb-000001
上述参数也可以是中继节点上报给上级节点或Donor节点,即上报中继节点期望的参数后,再由上级节点或Donor节点配置给中继节点的。
中继节点的上级节点还可以通过DCI信令,或者MAC-CE信令,进一步指示一个参数集合ID,用于指示中继节点生效的参数集合。在所述指示的参数集合生效后,中继节点在预配置的空分传输时间资源上,根据参数集合所指示的参数,进行空分传输。
需要说明的是,上述信元的名称仅为示例性的,实现中可以被替换为其他实现等效功能的其他名称,本申请不做限定。
S701、该中继节点根据该第一信息确定第二信息。
本申请实施例中该第二信息包括该上行波束与期望的PSD的对应关系。
本申请实施例中该PSD是指上行发送信号的PSD范围,简称PSD。
其中,本申请实施例中该第二信息包括的内容形式多样,具体并不限于下述几种:
内容1:本申请实施例中该第二信息中包括的上行波束对应一个PSD。
其中,需要说明的是,本申请实施例中该上行波束与PSD的对应关系具体可以根据实际情况进行关联。
示例性的,假设中继节点接收到的第一信息中指示的上行波束包括上行波束1~4。该中继节点分别为每个上行波束确定对应的期望PSD。
其中,如图8中的(a)所示,例如中继节点为上行波束1确定的期望PSD为PSD1,中继节点为上行波束2确定的期望PSD为PSD2,中继节点为上行波束3确定的期望PSD为PSD2,中继节点为上行波束4确定的期望PSD为PSD3。因此,该中继节点向上级节点发送的第二信息的内容可以为上述图8(a)所示的内容。
再例如,如图8中的(b)所示,例如中继节点为上行波束1确定的期望PSD为PSD1,中继节点为上行波束2确定的期望PSD为PSD2,中继节点为上行波束3确定的期望PSD为PSD1,中继节点为上行波束4确定的期望PSD为PSD2。因此,该中继节点向上级节点发送的第二信息的内容可以为上述图8(b)所示的内容。
其中,根据上述图8所述的内容,可以理解,本申请实施例中该第二信息中的对应关系可以为波束以及与该波束关联的PSD的信息,也可以为PSD以及与该PSD关联的波束的信息,表现形式多样,在此并不进行限定。
内容2:本申请实施例中该第二信息中包括的上行波束中的一个或多个波束可以对应多个PSD。
其中,需要说明的是,本申请实施例中该上行波束与PSD的对应关系具体可以根据实际情况进行关联。
可选的,本申请实施例可以基于一个波束的不同配置情况,分别设置对应的期望PSD,从而可以使上级节点根据波束不同配置情况,设置该波束的发送功率。
例如,下面的表2示例了一种对应的情况。其中,参数配置包括但不限于示例中的频分与否的状态以及保护带的大小;期望的PSD范围的表示形式包括但不限于示例中的情况,还可以仅包括下限,或同时包括上限和下限;PSD的范围还可以体现为上行发送的标称功率P0和或偏移值。
Figure PCTCN2022123085-appb-000002
表2波束配置情况示例
示例性的,假设中继节点接收到的第一信息中指示的上行波束包括上行波束1~2。该中继节点分别为每个上行波束基于配置情况1~3分别确定对应的期望PSD。
其中,如图9中的(a)所示,例如,当上行波束1的配置情况为配置情况1时,中继节点为上行波束1确定的期望PSD为PSD1,当上行波束1的配置情况为配置情况2时,中继节点为上行波束1确定的期望PSD为PSD3,当上行波束1的配置情况为配置情况3时,中继节点为上行波束1确定的期望PSD为PSD2。
当上行波束2的配置情况为配置情况1时,中继节点为上行波束2确定的期望PSD为PSD4,当上行波束2的配置情况为配置情况2时,中继节点为上行波束2确定的期望PSD为PSD3,当上行波束2的配置情况为配置情况3时,中继节点为上行波束2确定的期望PSD为PSD1。因此,该中继节点向上级节点发送的第二信息的内容可以为上述图9(a)所示的内容。
再例如,如图9中的(b)所示,例如中继节点为上行波束1在配置情况1确定的期望PSD为PSD1,为上行波束1在配置情况2确定的期望PSD为PSD2,为上行波束1在配置情况3确定的期望PSD为PSD3。
中继节点为上行波束2在配置情况1确定的期望PSD为PSD3,为上行波束2在配置情况2确定的期望PSD为PSD1,为上行波束2在配置情况3确定的期望PSD为PSD2。 因此,该中继节点向上级节点发送的第二信息的内容还可以为上述图9(b)所示的内容。
其中,根据上述图9所述的内容,可以理解,本申请实施例中该第二信息中的对应关系可以为波束,配置情况以及与该波束关联的PSD的信息,也可以为PSD,配置情况以及与该PSD关联的波束的信息,表现形式多样,在此并不进行限定。
内容3:本申请实施例中该第二信息中包括的用于配置上行波束的参数集合可以对应一个多个PSD。
其中,该内容3可以理解为配置参数也可以与波束直接进行结合,例如宿主基站或者中继节点的上级节点可以利用信令为某个波束配置多组参数集合,每组参数集合包括上述表示配置参数的信息1~信息8中的一个或多个。其中,每组参数集合可以用一个ID进行标识。
示例性的,参数集合如下所示结构:
Figure PCTCN2022123085-appb-000003
可选的,本申请实施例可以基于不同的参数集合分别设置对应的期望PSD范围,从而 可以使上级节点根据波束的不同配置情况,设置该波束的发送功率。
示例性的,假设该参数集合与期望PSD范围的对应关系如下表3所示:
Figure PCTCN2022123085-appb-000004
表3参数集合与PSD范围的对应关系
假设,当该波束1可以采用参数集合1~参数集合3分别进行配置,其中,中继节点向上级节点发送的第二信息中指示了参数集合与期望PSD的对应关系,即上述表3的内容,因此,上级节点确定该波束1采用参数集合2进行配置时,根据表3的内容可知,对应的上行PSD上限为15dBm。从而,可以基于该PSD(即上行PSD上限为15dBm)确定该波束1在采用参数集合2进行配置情况下对应的发送功率。
需要说明的是,本申请实施例中该参数集合与PSD范围的对应关系具体可以根据实际情况进行关联。
其中,本申请实施例中配置的参数集合中,可以不包括波束的标识,或者不包括上行功率PSD范围,或者不包括波束标识和上行功率PSD范围。
进一步的,本申请实施例中的中继节点的上级节点还可以通过DCI信令,或者MAC-CE信令,进一步指示一个参数集合与波束标识和/或功率PSD范围的关联关系。例如,上级节点发送MAC-CE信令,如下表4所示:
Figure PCTCN2022123085-appb-000005
可选的,上述表4中的一行可以为MAC-CE信令中的一个8比特序列长度。其中,这里仅示例了MAC-CE所包括的内容,根据表4所述,应理解,所述MAC-CE所包括的内容可以不止于此。
此外,上述方法也可以通过不将波束标识或上行功率PSD范围进行动态指示,而将不进行预配置的参数集合中的其他参数进行动态指示来实现,此时,波束标识或PSD范围可以作为配置参数的一部分进行预配置,具体哪些参数(参数组合)通过上级节点动态指示来确定,在此不再赘述。
S702、中继节点向上级节点发送该第二信息。
S703、上级节点获取该第二信息。
S704、上级节点根据该第二信息,确定第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
可选的,本申请实施例中该发送信息可以包括控制信道的数据,数据信道的数据以及SRS,例如,用该波束基于该第三信息指示的该波束对应的发送功率传输数据,或者SRS。
S705、上级节点向中继节点发送第三信息。
S706、中继节点接收该第三信息。
通过该方法,上级节点能够更灵活,准确的配置波束的发送功率,有效降低通信干扰。
进一步的,本申请实施例中为了减少对下行波束通信传输的不必要影响,本申请实施例中上级节点还可以指示中继节点该上行波束与下行波束的限制关系,从而当上级节点采用该上行波束进行传输时,仅需限制对应的下行传输波束,不需要限制所有下行波束,有效减少了对下行波束通信传输的影响。
具体的,如图10所示,本申请实施例提供另一种资源配置方法的流程描述如下。
S1000、上级节点确定第四信息,所述第四信息中包括上行波束与下行波束的限制关系。
可选的,本申请实施例中该上级节点可以在接收到来自上述实施例中的中继节点发送的第二信息之后,确定该第四信息。
可选的,该第四信息可以是该上级节点根据接收到的该第二信息确定的。
S1001、上级节点向中继节点发送该第四信息。
可选的,本申请实施例中,该第四信息可以携带在上述实施例中的第三信息中,也可以单独发送,发送方式以及发送时机本申请实施例在此不进行限定。
S1002、中继节点接收该第四信息。
S1003、中继节点采用第一波束进行通信传输时,根据该第四信息,限制使用该第一波束对应的下行波束。
示例性的,假设该第四信息中包括的上行波束与下行波束的限制关系如下表5所示:
上行波束的标识 下行波束的标识
上行波束1 下行波束1,5,4
上行波束2 下行波束2,3
上行波束3 下行波束4,6
表5上行波束与下行波束的限制关系
假设,当中继节点采用上行波束1进行通信传输时,此时下行波束有下行波束1~10。中继节点根据上述表2的内容,可以从下行波束1~10中选择下行波束1,5,4进行限制。
此外,本申请实施例中用于确定需要限定的下行波束的方式有多种,并不限于上述表4所示的内容,任何可以应用到本申请实施例的映射关系等内容都可以用于确定需要限定的下行波束,例如,本申请实施例还可以基于参数配置集合与需要限定的下行波束的对应关系,确定该需要进行限定的下行波束。
其中,假设第四信息中包括参数配置集合与下行波束的限制关系如下表6所示:
参数集合标识 限制的下行波束标识
参数集合1 下行波束1,5,4
参数集合2 下行波束2,3
参数集合3 下行波束4,6
表6参数集合标识与下行波束的限制关系
因此,当中继节点确定应用的上行波束采用参数集合1进行配置时,中继节点根据上述表5的内容,确定对下行波束1,5,4进行限制。
进一步的,本申请实施例中,为了避免因对下行波束的限制,导致应用该下行波束进行传输的优先级较高的业务受到影响,本申请实施例中该中继节点还可以在确定满足第一条件时,停止对该下行波束的限制。
具体的,如图11所示,本申请实施例提供另一种资源配置方法的流程描述如下。
S1100、中继节点采用第一波束进行通信传输时,根据该第四信息,限制使用该第一波束对应的下行波束。
S1101、中继节点判断是否满足第一条件,若是,执行S1102,若否,执行S1100。
其中,本申请实施例中该第一条件可以是该中继节点从宿主节点获取的;或者,该第一条件是该中继节点从所述上级节点获取的;或者该第一条件是协议预定义的。
可选的,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;
或者,第一条件包括时隙中存在第二信号,则将所述时隙的资源类型视为Hard硬资源;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。当DU的资源配置为Hard硬资源时,IAB-DU的任意一个小区可以在所述资源上发送、接收不受任何限制,所述限制包括所述对波束限制。
所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
S1102、中继节点停止对该下行波束的限制。
可选的,所述中继节点可以在确定第一小区中的一个小区满足所述第一条件时,停止对满足所述第二条件的小区对应的所述下行波束的限制;或所述中继节点在确定所述第一小区中的一个小区满足所述第一条件时,停止对所述第一小区中所有小区对应的所述下行波束的限制;其中,所述第一小区中的所有小区对应的下行波束相同。
上述本申请提供的实施例中,分别从IAB节点、宿主节点、上级节点,以及IAB节点、宿主节点和上级节点之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,IAB节点、宿主节点、上级节点可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图12为本申请实施例提供的通信装置1200的示意性框图。该通信装置1200可以对应实现上述各个方法实施例中由中继节点或上级节点实现的功能或者步骤。该通信装置可以包括处理模块1210和收发模块1220。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1210和收发模块1220可以与该存储单元耦合,例如,处理模块1210可以读取存储单元中的指令(代码或者程序)和/或数据, 以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
在一些可能的实施方式中,通信装置1200能够对应实现上述方法实施例中中继节点的行为和功能。例如通信装置1200可以为中继节点,也可以为应用于中继节点中的部件(例如芯片或者电路)。收发模块1220可以用于执行图7所示的实施例中由中继节点所执行的全部接收或发送操作,例如图7所示的实施例中的S701和S702,S704和/或用于支持本文所描述的技术的其它过程。收发模块1220可以包括独立的发送模块和接收模块,其中,发送模块用于执行图7所示的实施例中由中继节点所执行的全部发送操作;接收模块用于执行图7所示的实施例中由中继节点所执行的全部接收操作。处理模块1210用于执行如图7所示的实施例中由中继节点所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,收发模块1220用于获取第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;处理模块1210用于根据所述第一信息,向上级节点发送第二信息,所述第二信息包括所述波束与期望的功率谱密度PSD的对应关系;收发模块1220用于接收来自所述上级节点发送的第三信息,所述第三信息包括指示所述中继节点基于所述波束发送信息的发送功率。
作为一种可选的实现方式,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种可选的实现方式,所述波束与期望的PSD的对应关系包括:所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种可选的实现方式,所述第一信号包括上行探测参考信号SRS。
作为一种可选的实现方式,所述波束中的每个波束对应一个或多个期望的PSD范围;或每个PSD范围对应一个或多个波束。
作为一种可选的实现方式,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种可选的实现方式,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种可选的实现方式,所述参数包括下列中的至少一个:
进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的下行接收功率区间设置情况,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
作为一种可选的实现方式,所述收发模块1220还用于:
接收来自所述上级节点发送的第四信息,所述第四信息包括上行波束与下行波束的限制关系;
所述处理模块1210还用于:
采用所述波束进行通信传输时,根据所述第四信息,限制使用所述波束对应的下行波束。
作为一种可选的实现方式,所述下行波束为所述中继节点中的DU向对应终端进行通信的波束。
作为一种可选的实现方式,所述收发模块1220还用于:
获取第一条件,所述第一条件用于指示停止对所述下行波束的限制;
所述处理模块1210还用于:
在确定满足所述第一条件时,停止所述下行波束限制。
作为一种可选的实现方式,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
作为一种可选的实现方式,所述处理模块1210可以具体用于:
在确定第一小区中的一个小区满足所述第一条件时,停止对满足所述第二条件的小区对应的所述下行波束的限制;或在确定所述第一小区中的一个小区满足所述第一条件时,停止对所述第一小区中所有小区对应的所述下行波束的限制;其中,所述第一小区中的所有小区对应的下行波束相同。
在另一些实施例中,收发模块1220用于接收来自上级节点发送的第四信息,所述第四信息包括上行波束与下行波束的限制关系;处理模块1210用于采用第一波束进行通信传输时,根据所述第四信息,限制使用所述第一波束对应的下行波束。
作为一种可选的实现方式,所述第一波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种可选的实现方式,所述下行波束为所述中继节点中的DU向对应终端进行通信的波束。
作为一种可选的实现方式,所述收发模块1220,还用于:
获取第一条件,所述第一条件用于指示停止对所述下行波束的限制;所述中继节点在确定满足所述第一条件时,停止所述下行波束限制。
作为一种可选的实现方式,所述第一条件是所述中继节点从宿主节点获取的;或者,所述第一条件是所述中继节点从所述上级节点获取的。
作为一种可选的实现方式,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
作为一种可选的实现方式,所述处理模块1210可以具体用于在确定第一小区中的一个小区满足所述第一条件时,停止对满足所述第二条件的小区对应的所述下行波束的限制;或在确定所述第一小区中的一个小区满足所述第一条件时,停止对所述第一小区中所有小区对应的所述下行波束的限制;其中,所述第一小区中的所有小区对应的下行波束相同。
作为一种可选的实现方式,所述收发模块1220还可以用于获取第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;所述处理模块1210还可以用于根据所述第一信息,向上级节点发送第二信息,所述第二信息包括所述波束与期望的功率谱密度PSD的对应关系;所述收发模块1220还可以用于接收来自所述上级节点发送的第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种可选的实现方式,所述第一信息是所述中继节点从宿主节点获取的。
作为一种可选的实现方式,所述波束与期望的PSD的对应关系包括所述波束以及与所 述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种可选的实现方式,所述第一信号包括上行探测参考信号SRS。
作为一种可选的实现方式,所述波束中的每个波束对应一个或多个期望的PSD范围。
作为一种可选的实现方式,每个PSD范围对应一个或多个波束。
作为一种可选的实现方式,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种可选的实现方式,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种可选的实现方式,所述参数包括下列中的至少一个:
进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的下行接收功率区间设置情况,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
在另一些可能的实施方式中,通信装置1200能够对应实现上述方法实施例中上级节点的行为和功能。例如通信装置1200可以为上级节点,也可以为应用于上级节点中的部件(例如芯片或者电路)。收发模块1220可以用于执行图7所示的实施例中由上级节点所执行的全部接收或发送操作,例如图7所示的实施例中的S704和/或用于支持本文所描述的技术的其它过程。收发模块1220可以包括独立的发送模块和接收模块,其中,发送模块用于执行图7所示的实施例中由上级节点所执行的全部发送操作;接收模块用于执行图7所示的实施例中由上级节点所执行的全部接收操作。处理模块1210用于执行如图7所示的实施例中由上级节点所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,收发模块1220用于向中继节点发送第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;接收来自所述中继节点的第二信息,所述第二信息包括所述波束的标识与期望的功率谱密度PSD的对应关系;处理模块1210用于根据所述第二信息,向所述中继节点发送第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种可选的实现方式,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种可选的实现方式,所述波束与期望的PSD的对应关系包括:所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种可选的实现方式,所述第一信号包括上行探测参考信号SRS。
作为一种可选的实现方式,所述波束中的每个波束对应一个或多个期望的PSD范围;或每个PSD范围对应一个或多个波束。
作为一种可选的实现方式,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种可选的实现方式,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种可选的实现方式,所述参数包括下列中的至少一个:进行通信传输时频段间 保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的下行接收功率区间设置情况,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
作为一种可选的实现方式,所述收发模块1220还用于向所述中继节点发送所述第四信息,所述第四信息包括上行波束与下行波束的限制关系。
作为一种可选的实现方式,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
在另一些实施例中,收发模块1220用于向所述中继节点发送所述第四信息,所述第四信息包括上行波束与下行波束的限制关系。
作为一种可选的实现方式,所述处理模块1210还可以用于确定第一条件,并通过所述收发模块1220将所述第一条件通知给所述中继节点;所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
作为一种可选的实现方式,所述收发模块1220还可以向中继节点发送第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;接收来自所述中继节点的第二信息,所述第二信息包括所述波束的标识与期望的功率谱密度PSD的对应关系;所述处理模块1210还用于根据所述第二信息,向所述中继节点发送第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
作为一种可选的实现方式,所述第四信息可以是所述上级节点根据所述第二信息确定的。
作为一种可选的实现方式,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
作为一种可选的实现方式,所述波束与期望的PSD的对应关系包括:所述波束以及与所述波束关联的PSD信息;或者,所述PSD以及与所述PSD关联的波束信息。
作为一种可选的实现方式,所述第一信号包括上行探测参考信号SRS。
作为一种可选的实现方式,所述波束中的每个波束对应一个或多个期望的PSD范围;每个PSD范围对应一个或多个波束。
作为一种可选的实现方式,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种可选的实现方式,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;所述第一情况是根据至少一个参数确定的。
作为一种可选的实现方式,所述参数包括下列中的至少一个:进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的下行接收功率区间设置情况,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
如图13所示为本申请实施例提供的通信装置1300,其中,通信装置1300可以是中继节点,能够实现本申请实施例提供的方法中中继节点的功能,或者,通信装置1300可以是上级节点,能够实现本申请实施例提供的方法中上级节点的功能;通信装置1300也可以是能够支持中继节点实现本申请实施例提供的方法中对应的功能的装置,或者能够支持上级节点实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置1300可以为芯片系统或者上级节点。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块1220可以为收发器,收发器集成在通信装置1300中构成通信接口1310。
通信装置1300包括至少一个处理器1320,用于实现或用于支持通信装置1300实现本申请实施例提供的方法中上级节点或宿主节点的功能。具体参见方法示例中的详细描述,此处不做赘述。
通信装置1300还可以包括至少一个存储器1330,用于存储程序指令和/或数据。存储器1330和处理器1320耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1320可能和存储器1330协同操作。处理器1320可能执行存储器1330中存储的程序指令和/或数据,以使得通信装置1300实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1300还可以包括通信接口1310,用于通过传输介质和其它设备进行通信,从而用于通信装置1300中的装置可以和其它设备进行通信。示例性地,当该通信装置为中继节点时,该其它设备为上级节点;或者,当该通信装置为上级节点时,该其它设备为中继节点。处理器1320可以利用通信接口1310收发数据。通信接口1310具体可以是收发器。
本申请实施例中不限定上述通信接口1310、处理器1320以及存储器1330之间的具体连接介质。本申请实施例在图13中以存储器1330、处理器1320以及通信接口1310之间通过总线1340连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1320可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1330可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
应理解,通信装置1300为上级节点或中继节点,例如为IAB节点时,图14示出了通 信装置1300的另一种形式。图14中,通信装置1400是IAB节点,应理解,IAB节点包括MT和DU,MT可包括通信接口、处理器以及存储器,以及连接通信接口、处理器以及存储器的总线,其中通信接口可用于与该IAB节点的上级节点或源宿主基站或目标宿主基站进行通信。DU也可包括通信接口、处理器以及存储器,以及连接通信接口、处理器以及存储器的总线,其中通信接口用于与该IAB节点的下级节点或终端进行通信。
图15示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图15中,以通信装置是上级节点或中继节点。
该通信装置1500可包括收发器1510、存储器1521以及处理器1522。该收发器1510可以用于通信装置进行通信。该存储器1521与所述处理器1522耦合,可用于保存通信装置1500实现各功能所必要的程序和数据。该处理器1522被配置为支持通信装置1500执行上述方法中相应的功能,所述功能可通过调用存储器1521存储的程序实现。
具体的,该收发器1510可以是无线收发器,可用于支持通信装置1500通过无线空口进行接收和发送信令和/或数据。收发器1510也可被称为收发单元或通信单元,收发器1510可包括一个或多个射频单元1512以及一个或多个天线1511,其中,射频单元如远端射频单元(remote radio unit,RRU)或者有源天线单元(active antenna unit,AAU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线具体可用于进行射频信号的辐射和接收。可选的,收发器1510可以仅包括以上射频单元,则此时通信装置1500可包括收发器1510、存储器1521、处理器1522以及天线1511。
存储器1521以及处理器1522可集成于一体也可相互独立。如图15所示,可将存储器1521以及处理器1522集成于通信装置1500的控制单元1520。示例性的,控制单元1520可包括LTE基站的基带单元(baseband unit,BBU),基带单元也可称为数字单元(digital unit,DU),或者,该控制单元1520可包括5G和未来无线接入技术下基站中的分布式单元(distribute unit,DU)和/或集中单元(centralized unit,CU)。上述控制单元1520可由一个或多个天线面板构成,其中,多个天线面板可以共同支持单一接入制式的无线接入网(如LTE网络),多个天线面板也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。所述存储器1521和处理器1522可以服务于一个或多个天线面板。也就是说,可以每个天线面板上单独设置存储器1521和处理器1522。也可以是多个天线面板共用相同的存储器1521和处理器1522。此外每个天线面板上可以设置有必要的电路,如,该电路可用于实现存储器1521以及处理器1522的耦合。以上收发器1510、处理器1522以及存储器1521之间可通过总线(bus)结构和/或其他连接介质实现连接。
基于图15所示结构,当通信装置1500需要发送数据时,处理器1522可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1500时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1522,处理器1522将基带信号转换为数据并对该数据进行处理。
基于如图15所示结构,收发器1510可用于执行以上由收发模块1220所执行的步骤。和/或,处理器1522可用于调用存储器1521中的指令以执行以上由处理模块1210所执行的步骤。
本申请实施例还提供一种通信系统,具体的,通信系统包括IAB节点、宿主节点和多个上级节点,或者还可以包括更多个IAB节点、宿主节点和上级节点。
所述IAB节点、宿主节点和上级节点分别用于实现上述图7相关设备的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图7中IAB节点、宿主节点或上级节点执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图7中IAB节点、宿主节点或上级节点执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中IAB节点、宿主节点或上级节点的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一配置信息和第二配置信息,只是为了区分不同的配置信息,而并不是表示这两种配置信息的优先级、发送顺序或者重要程度等的不同。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种资源配置方法,其特征在于,所述方法包括:
    中继节点获取第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;
    所述中继节点根据所述第一信息,向上级节点发送第二信息,所述第二信息包括所述波束与期望的功率谱密度PSD的对应关系;
    所述中继节点接收来自所述上级节点发送的第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
  2. 如权利要求1所述的方法,其特征在于,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
  3. 如权利要求1或2所述的方法,其特征在于,所述波束与期望的PSD的对应关系包括:
    所述波束以及与所述波束关联的PSD信息;或者,
    所述PSD以及与所述PSD关联的波束信息。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述第一信号包括上行探测参考信号SRS。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述波束中的每个波束对应一个或多个期望的PSD范围;或每个PSD范围对应一个或多个波束。
  6. 如权利要求1~5任一项所述的方法,其特征在于,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;
    所述第一情况是根据至少一个参数确定的。
  7. 如权利要求1~6任一项所述的方法,其特征在于,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;
    所述第一情况是根据至少一个参数确定的。
  8. 如权利要求6或7所述的方法,其特征在于,所述参数包括下列中的至少一个:
    进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的期望的下行发送功率,所述MT的期望上行发送功率PSD范围,所述MT的下行调度的解调参考信号DMRS端口的最大数量,所述MT的上行调度的DMRS端口的最大数量。
  9. 如权利要求1~8任一项所述的方法,其特征在于,所述方法还包括:
    所述中继节点接收来自所述上级节点发送的第四信息,所述第四信息包括上行波束与下行波束的限制关系;
    所述中继节点采用所述波束进行通信传输时,根据所述第四信息,限制使用所述波束对应的下行波束。
  10. 如权利要求9所述的方法,其特征在于,所述下行波束为所述中继节点中的DU向对应终端进行通信的波束。
  11. 如权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述中继节点获取第一条件,所述第一条件用于指示停止对所述下行波束的限制;
    所述中继节点在确定满足所述第一条件时,停止所述下行波束限制。
  12. 如权利要求11所述的方法,其特征在于,所述第一条件包括时隙中存在第二信号, 则取消所述波束对应的所有下行波束限制;或
    所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;
    所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
  13. 如权利要求11或12所述的方法,其特征在于,所述中继节点在确定满足所述第一条件时,停止所述下行波束限制,包括:
    所述中继节点在确定第一小区中的一个小区满足所述第一条件时,停止对满足所述第二条件的小区对应的所述下行波束的限制;或
    所述中继节点在确定所述第一小区中的一个小区满足所述第一条件时,停止对所述第一小区中所有小区对应的所述下行波束的限制;
    其中,所述第一小区中的所有小区对应的下行波束相同。
  14. 一种资源配置方法,其特征在于,所述方法包括:
    上级节点向中继节点发送第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;
    所述上级节点接收来自所述中继节点的第二信息,所述第二信息包括所述波束的标识与期望的功率谱密度PSD的对应关系;
    所述上级节点根据所述第二信息,向所述中继节点发送第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
  15. 如权利要求14所述的方法,其特征在于,所述波束为所述中继节点中的MT向所述上级节点进行通信的波束。
  16. 如权利要求14或15所述的方法,其特征在于,所述波束与期望的PSD的对应关系包括:
    所述波束以及与所述波束关联的PSD信息;或者,
    所述PSD以及与所述PSD关联的波束信息。
  17. 如权利要求14~16任一项所述的方法,其特征在于,所述第一信号包括上行探测参考信号SRS。
  18. 如权利要求14~17任一项所述的方法,其特征在于,所述波束中的每个波束对应一个或多个期望的PSD范围;或每个PSD范围对应一个或多个波束。
  19. 如权利要求14~18任一项所述的方法,其特征在于,所述第一信息还包括所述波束对应的第一信号与第一情况的关联关系;
    所述第一情况是根据至少一个参数确定的。
  20. 如权利要求14~19任一项所述的方法,其特征在于,所述第二信息还包括所述波束对应的PSD与第一情况的关联关系;
    所述第一情况是根据至少一个参数确定的。
  21. 如权利要求19或20所述的方法,其特征在于,所述参数包括下列中的至少一个:
    进行通信传输时频段间保护带设置情况,所述保护带大小,保护符号数量,不期望的波束集合,载频TRx数,所述中继节点中的移动终端MT的期望的下行发送功率,所述MT的期望上行发送功率PSD范围,所述MT的下行调度的解调参考信号DMRS端口的最 大数量,所述MT的上行调度的DMRS端口的最大数量。
  22. 如权利要求14~21任一项所述的方法,其特征在于,所述方法还包括:
    所述上级节点向所述中继节点发送所述第四信息,所述第四信息包括上行波束与下行波束的限制关系。
  23. 如权利要求22所述的方法,其特征在于,所述第一条件包括时隙中存在第二信号,则取消所述波束对应的所有下行波束限制;或
    所述第一条件包括时隙中的第一符号存在第二信号,则取消所述波束在所述第一符号对应的下行波束限制;
    所述第二信号包括SS/PBCH block,PDCCH公共搜索空间集合,周期CSI-RS中的一个或多个。
  24. 一种通信装置,其特征在于,包括:
    通信模块,用于获取第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;
    处理模块,用于根据所述第一信息,向上级节点发送第二信息,所述第二信息包括所述波束与期望的功率谱密度PSD的对应关系;
    所述通信模块,还用于接收来自所述上级节点发送的第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
  25. 一种通信装置,其特征在于,包括:
    通信模块,用于向中继节点发送第一信息,所述第一信息包括至少一个用于发送第一信号的波束的标识;接收来自所述中继节点的第二信息,所述第二信息包括所述波束的标识与期望的功率谱密度PSD的对应关系;
    处理模块,用于根据所述第二信息,向所述中继节点发送第三信息,所述第三信息用于指示所述中继节点基于所述波束发送信息确定发送功率。
  26. 一种通信装置,其特征在于,包括至少一个处理器和接口电路;所述接口电路为所述至少一个处理器提供程序或者指令,所述至少一个处理器通过逻辑电路或执行程序或者指令以实现所述通信装置所在的设备执行如权利要求1至13中任一项。
  27. 一种通信装置,其特征在于,包括至少一个处理器和接口电路;所述接口电路为所述至少一个处理器提供程序或者指令,所述至少一个处理器通过逻辑电路或执行程序或者指令以实现所述通信装置所在的设备执行如权利要求14至23中任一项。
  28. 一种通信系统,其特征在于,包括如权利要求24或26所述的通信装置,以及包括如权利要求25或27所述的通信装置。
  29. 一种计算机可读存储介质,其特征在于,包括程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1~13中任一所述的方法;或者,使得所述计算机执行如权利要求14~23中任一所述的方法。
  30. 一种终端,其特征在于,包括执行如权利要求1~13中任一所述方法的中继节点,和/或,执行如权利要求14~23任一项所述方法的上级节点。
PCT/CN2022/123085 2021-09-30 2022-09-30 一种资源配置方法及通信装置 WO2023051755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111162607.6 2021-09-30
CN202111162607.6A CN115915441A (zh) 2021-09-30 2021-09-30 一种资源配置方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023051755A1 true WO2023051755A1 (zh) 2023-04-06

Family

ID=85767771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123085 WO2023051755A1 (zh) 2021-09-30 2022-09-30 一种资源配置方法及通信装置

Country Status (2)

Country Link
CN (1) CN115915441A (zh)
WO (1) WO2023051755A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418412A (zh) * 2018-04-28 2019-11-05 华为技术有限公司 一种波束管理方法、中继收发节点、终端和基站
US20200045645A1 (en) * 2018-08-02 2020-02-06 At&T Intellectual Property I, L.P. Power control enhancements for multi-hop integrated access and backhaul
CN110831135A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种功率控制的方法和装置
GB2577529A (en) * 2018-09-27 2020-04-01 Samsung Electronics Co Ltd Improvements in and relating to power control in integrated access and backhaul
WO2021159467A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 一种资源的配置方法及网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418412A (zh) * 2018-04-28 2019-11-05 华为技术有限公司 一种波束管理方法、中继收发节点、终端和基站
US20200045645A1 (en) * 2018-08-02 2020-02-06 At&T Intellectual Property I, L.P. Power control enhancements for multi-hop integrated access and backhaul
CN110831135A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种功率控制的方法和装置
GB2577529A (en) * 2018-09-27 2020-04-01 Samsung Electronics Co Ltd Improvements in and relating to power control in integrated access and backhaul
WO2021159467A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 一种资源的配置方法及网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "IAB with high PSD single RB testing", 3GPP TSG-RAN WG4 MEETING # 100-E, R4-2114324, 6 August 2021 (2021-08-06), XP052037570 *

Also Published As

Publication number Publication date
CN115915441A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN105704822B (zh) 频谱资源管理装置和方法、无线通信设备和方法
CN113383499A (zh) 用于多传输点/多面板物理下行链路共享信道传输的媒体接入控制(mac)控制元素信令
CN110800362B (zh) 用于nr的传输简档
US20230089990A1 (en) Capability information reporting method and apparatus
WO2021063372A1 (zh) 一种资源确定方法及装置
WO2021159467A1 (zh) 一种资源的配置方法及网络设备
TW202118324A (zh) 側鏈路csi報告傳輸方法和條件
US20220173847A1 (en) Downlink transmission method and terminal device
CN109417805A (zh) 无线通信系统中的电子设备和方法
US20230362727A1 (en) Communication method and apparatus based on integrated access and backhaul
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2023051755A1 (zh) 一种资源配置方法及通信装置
WO2021248456A1 (zh) 无线通信的方法及设备
CN115915167A (zh) 一种通信方法及通信装置
WO2022082789A1 (zh) 复用关系上报方法及通信装置
CN113647043A (zh) 基于复制数据传输的方法和设备
WO2024067869A1 (zh) 通信方法和通信装置
WO2023011518A1 (zh) 一种通信方法及通信装置
WO2022147761A1 (zh) 资源配置的方法及通信装置
WO2022024427A1 (ja) 端末及び通信方法
CN113016146B (zh) 用于mu-mimo的功率分配的方法、装置和计算机可读介质
WO2021147106A1 (zh) 一种dmrs配置方法及装置
WO2021227071A1 (zh) 保护间隔的确定方法、设备及存储介质
WO2023102813A1 (zh) 无线通信的方法、终端设备和网络设备
US20230319873A1 (en) Maintaining channel occupancy time in sidelink communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022875136

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022875136

Country of ref document: EP

Effective date: 20240327