WO2022147761A1 - 资源配置的方法及通信装置 - Google Patents

资源配置的方法及通信装置 Download PDF

Info

Publication number
WO2022147761A1
WO2022147761A1 PCT/CN2021/070849 CN2021070849W WO2022147761A1 WO 2022147761 A1 WO2022147761 A1 WO 2022147761A1 CN 2021070849 W CN2021070849 W CN 2021070849W WO 2022147761 A1 WO2022147761 A1 WO 2022147761A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
ports
type
reference signal
sounding reference
Prior art date
Application number
PCT/CN2021/070849
Other languages
English (en)
French (fr)
Inventor
顾传力
宋健
杜君
张攀
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/070849 priority Critical patent/WO2022147761A1/zh
Priority to EP21916817.6A priority patent/EP4266798A4/en
Priority to CN202180076938.XA priority patent/CN116472773A/zh
Publication of WO2022147761A1 publication Critical patent/WO2022147761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Definitions

  • the present application relates to the field of communication, and more particularly, to a method and communication device for resource configuration.
  • Sounding reference signal (sounding reference signal, SRS) is a very important uplink reference signal.
  • the SRS includes an antenna switching (antenna switching, AS) type SRS, a codebook (codebook, CB) type SRS, a beam management (beam management) type SRS, and a non-codebook (non codebook, nonCB) type SRS.
  • the base station can estimate the uplink channel quality through the SRS sent by the terminal. Based on the reciprocity of the uplink and downlink channels, the base station can also estimate the downlink channel quality according to the SRS sent by the terminal, and then perform downlink beamforming.
  • the base station may configure SRS resources for the terminal according to the capability information reported by the terminal, and the base station configures the SRS resources for the terminal according to the maximum capability of the terminal.
  • this way of resource allocation is not flexible enough.
  • the present application provides a method for resource configuration, in order to improve user experience and cell throughput.
  • a first aspect provides a resource configuration method, the method may include: a network device determining a first sounding reference signal resource corresponding to a second terminal device according to the number of first terminal devices, where the first terminal device is a first cell Accessed terminal equipment, the first cell is the cell to be accessed by the second terminal equipment; the network equipment sends resource configuration information to the second terminal equipment, where the resource configuration information is used to indicate the first sounding reference signal resource.
  • the network device configures SRS resources for the currently newly accessed terminal device according to the number of terminal devices already accessed in the current cell (ie, the first cell), which is beneficial to improve user experience and cell throughput.
  • the network device determining the first sounding reference signal resource corresponding to the second terminal device according to the number of first terminal devices includes: The number of devices and the maximum sounding reference signal resource supported by the second terminal device determine the first sounding reference signal resource, and the number of ports of the first sounding reference signal resource is less than or equal to the maximum sounding reference supported by the second terminal device. The number of ports for the signal resource.
  • the network device can configure the newly accessed terminal device with SRS resources that are smaller than the SRS resources that the terminal device can support at the maximum.
  • the network equipment can Configure SRS resources for more terminal devices, thereby improving cell throughput.
  • the network device determining the sounding reference signal resource corresponding to the second terminal device according to the number of the first terminal device includes: A sounding reference signal resource corresponding to a numerical interval is used as the first sounding reference signal resource, the first numerical interval is a numerical interval corresponding to the number of the first terminal equipment, and the first mapping relationship is used to indicate the plurality of numerical intervals and the plurality of numerical intervals. The mapping relationship between the sounding reference signal resources.
  • the network device determines the sounding reference signal resources corresponding to the second terminal device according to the number of the first terminal devices, including: if the second terminal device is of the first type the terminal device, the network device uses the sounding reference signal resource corresponding to the second value interval as the first sounding reference signal resource according to the first mapping relationship, or the network device uses the maximum sounding reference signal resource that the second terminal device can support
  • the signal resource is used as the first sounding reference signal resource
  • the first mapping relationship is used to indicate the mapping relationship between multiple value intervals and multiple sounding reference signal resources
  • the maximum value of the second value interval is smaller than the first terminal device
  • the minimum value of the numerical value interval corresponding to the number of the first type of terminal equipment includes: terminal equipment whose transmission data volume is greater than the preset threshold value, and can transmit the first A terminal device of a type of service, a terminal device of a first service identified by a transaction identifier or a user data identity identifier, where the first service includes: a high
  • the network device in the process of configuring the SRS resource for the newly accessed terminal device by the network device, in the case of considering the type of the newly accessed terminal device, the network device may be the newly accessed terminal device of the first type Allocate more SRS resources to ensure efficient use of SRS resources.
  • the number of ports of the sounding reference signal resource corresponding to the third numerical value interval is equal to the maximum number of ports of the sounding reference signal resource that the second terminal device can support, and the third The maximum value of the numerical interval is the numerical interval with the smallest maximum value among the plurality of numerical intervals.
  • the number of ports of the sounding reference signal resources corresponding to the fourth numerical interval is greater than the number of ports of the sounding reference signal resources corresponding to the fifth numerical interval
  • the fourth numerical interval and The fifth numerical interval is a numerical interval in which any two of the plurality of numerical intervals satisfy the following relationship: the maximum value in the fourth numerical interval is smaller than the minimum value in the fifth numerical interval.
  • the network device can gradually reduce the number of ports of the SRS resources configured for the newly accessed terminal device, so that more terminal devices can be configured with SRS resources, and the cell can be improved. throughput rate.
  • the sounding reference signal resources include multiple types of sounding reference signal resources, and the number of ports of the first type of sounding reference signal resources corresponding to the fourth numerical interval is greater than The number of ports of the first type of sounding reference signal resources corresponding to the fifth numerical value interval, where the first type of sounding reference signal resources is at least one type of sounding reference signal resources among the multiple types of sounding reference signal resources.
  • the network device can gradually reduce one or more types of SRS configured for the newly accessed terminal device.
  • the number of ports for various types of SRS resources can gradually reduce.
  • the critical value of at least one of the plurality of numerical ranges is determined according to the number of the first terminal devices.
  • the method further includes: if at least one of the following conditions is satisfied: the total number of ports of the sounding reference signal resources configured by the network device for the first terminal device is greater than or equal to The first preset threshold, the number of terminal devices newly accessed by the first cell is greater than or equal to the second preset threshold, and the total number of ports of the sounding reference signal resources configured by the network device for the first terminal device is less than or equal to the first Three preset thresholds, and the number of terminal devices withdrawn from the network in the first cell is greater than or equal to the fourth preset threshold, then the network device updates the critical value of at least one of the multiple intervals according to the number of the first terminal devices.
  • the method further includes: the network device, according to the sequence number of the first terminal device and the second mapping relationship, is at least one first terminal device in the first terminal device.
  • the terminal device reconfigures the sounding reference signal resources, and the second mapping relationship is used to indicate the mapping relationship between the updated multiple value intervals and the multiple sounding reference signal resources.
  • a second aspect provides a resource configuration method, the method includes: a network device determines a sounding reference signal resource corresponding to the terminal device according to a type of the terminal device, and the port number of the sounding reference signal resource corresponding to the terminal device is less than or equal to The maximum number of ports of the sounding reference signal resources that the terminal equipment can support; the network equipment sends resource configuration information to the terminal equipment, where the resource configuration information is used to indicate the sounding reference signal resources corresponding to the terminal equipment.
  • the network device may allocate SRS resources smaller than the SRS resources that the terminal device can support to the maximum to the newly accessed terminal device of the first type.
  • the network equipment always allocates the SRS resources that the terminal equipment can support to the maximum for the terminal equipment that is currently newly accessed. SRS resources can be configured for more terminal devices, thereby improving the throughput rate of the cell.
  • the terminal device is a terminal device of the first type
  • the number of ports of the sounding reference signal resource corresponding to the terminal device is equal to the maximum number of probes that the terminal device can support
  • the first type of terminal equipment includes: terminal equipment whose transmission data volume is greater than a preset threshold value, terminal equipment that can be configured to transmit the first service through the fifth-generation mobile communication system service quality parameter indicator A device, a terminal device of a first service identified by a transaction identifier or a user data identity identifier, where the first service includes: a high-traffic service, a high-priority service, or a low-latency service.
  • the network device allocates more SRS resources to the terminal device of the first type, thereby ensuring efficient use of the SRS resources.
  • the terminal device if the terminal device is not a terminal device of the first type, the number of ports of the sounding reference signal resource corresponding to the terminal device is less than the maximum sounding that the terminal device can support
  • the number of ports of reference signal resources the first type of terminal equipment includes: terminal equipment whose transmission data volume is greater than a preset threshold value, terminal equipment that can be configured to transmit the first service through the fifth-generation mobile communication system service quality parameter indicator A device, a terminal device of a first service identified by a transaction identifier or a user data identity identifier, where the first service includes: a high-traffic service, a high-priority service, or a low-latency service.
  • a method for resource configuration may include: a second terminal device receives resource configuration information from a network device, where the resource configuration information is used to indicate a first measurement reference signal corresponding to the second terminal device resource, the first sounding reference signal resource is determined according to the number of first terminal equipment, the first terminal equipment is the terminal equipment that has been accessed by the first cell, and the first cell is to be accessed by the second terminal equipment cell; the second terminal device sends a sounding reference signal on the first sounding reference signal resource.
  • the network device configures SRS resources for the currently newly accessed terminal device according to the number of terminal devices already accessed in the current cell (ie, the first cell), which is beneficial to improve user experience and cell throughput.
  • the number of ports of the first sounding reference signal resource is less than or equal to the maximum number of ports of the sounding reference signal resource that the second terminal device can support.
  • the network device can configure the newly accessed terminal device with SRS resources that are smaller than the SRS resources that the terminal device can support at the maximum.
  • the network equipment can Configure SRS resources for more terminal devices, thereby improving cell throughput.
  • the first sounding reference signal resource is a sounding reference signal resource corresponding to a first numerical interval, and the first numerical interval corresponds to the number of the first terminal devices A value interval, the sounding reference signal resource corresponding to the first value interval is determined according to a first mapping relationship, and the first mapping relationship is used to indicate the mapping relationship between the plurality of value intervals and the plurality of sounding reference signal resources.
  • the first sounding reference signal resource is a sounding reference signal resource corresponding to the second value interval, or the first sounding reference signal resource is the second terminal equipment
  • the maximum supported sounding reference signal resources the first mapping relationship is used to indicate the mapping relationship between multiple numerical ranges and multiple sounding reference signal resources, and the maximum value of the second numerical range is less than the number of the first terminal equipment
  • the minimum value of the corresponding numerical interval, the sounding reference signal resource corresponding to the second numerical interval is determined according to the first mapping relationship, and the first mapping relationship is used to indicate the plurality of numerical intervals and the plurality of sounding reference signal resources. mapping relationship.
  • the network device in the process of configuring the SRS resource for the newly accessed terminal device by the network device, in the case of considering the type of the newly accessed terminal device, the network device may be the newly accessed terminal device of the first type Allocate more SRS resources to ensure efficient use of SRS resources.
  • the number of ports of the sounding reference signal resource corresponding to the third numerical value interval is equal to the maximum number of ports of the sounding reference signal resource that the second terminal device can support, and the third The maximum value of the numerical interval is the numerical interval with the smallest maximum value among the plurality of numerical intervals.
  • the number of ports of the sounding reference signal resources corresponding to the fourth numerical interval is greater than the number of ports of the sounding reference signal resources corresponding to the fifth numerical interval
  • the fourth numerical interval and The fifth numerical interval is a numerical interval in which any two of the plurality of numerical intervals satisfy the following relationship: the maximum value in the fourth numerical interval is smaller than the minimum value in the fifth numerical interval.
  • the network device can gradually reduce the number of ports of the SRS resources configured for the newly accessed terminal device, so that more terminal devices can be configured with SRS resources, and the cell can be improved. throughput rate.
  • the sounding reference signal resources include multiple types of sounding reference signal resources, and the number of ports of the first type of sounding reference signal resources corresponding to the fourth numerical interval is greater than The number of ports of the first type of sounding reference signal resources corresponding to the fifth numerical value interval, where the first type of sounding reference signal resources is at least one type of sounding reference signal resources among the multiple types of sounding reference signal resources.
  • the network device can gradually reduce one or more types of SRS configured for the newly accessed terminal device.
  • the number of ports for various types of SRS resources can gradually reduce.
  • a method for resource configuration may include: a terminal device receiving resource configuration information from a network device, where the resource configuration information is used to indicate a sounding reference signal resource corresponding to the terminal device, the terminal device
  • the corresponding sounding reference signal resources are determined according to the type of the terminal equipment, and the number of ports of the sounding reference signal resources corresponding to the terminal equipment is less than or equal to the maximum number of ports of the sounding reference signal resources that the terminal equipment can support; the terminal equipment is in The sounding reference signal is sent on the corresponding sounding reference signal resource corresponding to the terminal device.
  • the network device may allocate SRS resources smaller than the SRS resources that the terminal device can support to the maximum to the newly accessed terminal device of the first type.
  • the network equipment can Configure SRS resources for more terminal devices, so that the throughput rate of the cell can be improved.
  • the terminal device is a terminal device of the first type
  • the number of ports of the sounding reference signal resource corresponding to the terminal device is equal to the maximum number of probes that the terminal device can support
  • the first type of terminal equipment includes: terminal equipment whose transmission data volume is greater than a preset threshold value, terminal equipment that can be configured to transmit the first service through the fifth-generation mobile communication system service quality parameter indicator A device, a terminal device of a first service identified by a transaction identifier or a user data identity identifier, where the first service includes: a high-traffic service, a high-priority service, or a low-latency service.
  • the network device allocates more SRS resources to the terminal device of the first type, thereby ensuring efficient use of the SRS resources.
  • the terminal device if the terminal device is not a terminal device of the first type, the number of ports of the sounding reference signal resource corresponding to the terminal device is less than the maximum sounding that the terminal device can support
  • the number of ports of reference signal resources the first type of terminal equipment includes: terminal equipment whose transmission data volume is greater than a preset threshold value, terminal equipment that can be configured to transmit the first service through the fifth-generation mobile communication system service quality parameter indicator A device, a terminal device of a first service identified by a transaction identifier or a user data identity identifier, where the first service includes: a high-traffic service, a high-priority service, or a low-latency service.
  • a fifth aspect provides a communication apparatus, the communication apparatus may include a transceiver unit and a processing unit, the processing unit is configured to determine the first sounding reference signal resource corresponding to the second terminal equipment according to the number of the first terminal equipment, the first sounding reference signal resource corresponding to the second terminal equipment.
  • a terminal device is a terminal device that has been accessed by a first cell, and the first cell is a cell to be accessed by the second terminal device; the transceiver unit is configured to send resource configuration information to the second terminal device, the resource configuration information It is used to indicate the first sounding reference signal resource.
  • the processing unit is specifically configured to determine the first sounding reference according to the number of the first terminal equipment and the maximum sounding reference signal resources that the second terminal equipment can support Signal resources, the number of ports of the first sounding reference signal resource is less than or equal to the number of ports of the sounding reference signal resource that can be supported by the second terminal device at most.
  • the processing unit is specifically configured to use the sounding reference signal resource corresponding to the first value interval as the first sounding reference signal resource according to the first mapping relationship, the first sounding reference signal resource.
  • the value interval is a value interval corresponding to the number of the first terminal devices, and the first mapping relationship is used to indicate the mapping relationship between the plurality of value intervals and the plurality of sounding reference signal resources.
  • the processing unit is specifically configured to: if the second terminal device is a terminal device of the first type, to The sounding reference signal resource is used as the first sounding reference signal resource, or the maximum sounding reference signal resource that can be supported by the second terminal device is used as the first sounding reference signal resource, and the maximum value of the second value interval is smaller than the first sounding reference signal resource.
  • the minimum value of the value interval corresponding to the number of terminal devices, the first type of terminal device includes: terminal devices whose data volume is greater than a preset threshold value, which can be configured through the QoS parameter indicator value of the fifth generation mobile communication system
  • the terminal equipment that transmits the first type of service, the terminal equipment of the first service identified by the transaction identifier or the user data identity identifier, the first service includes: high-traffic service, high-priority service or low-latency service.
  • the number of ports of the sounding reference signal resource corresponding to the third numerical value interval is equal to the maximum number of ports of the sounding reference signal resource that the second terminal device can support, and the third The maximum value of the numerical interval is the numerical interval with the smallest maximum value among the plurality of numerical intervals.
  • the number of ports of the sounding reference signal resources corresponding to the fourth numerical interval is greater than the number of ports of the sounding reference signal resources corresponding to the fifth numerical interval
  • the fourth numerical interval and The fifth numerical interval is a numerical interval in which any two of the plurality of numerical intervals satisfy the following relationship: the maximum value in the fourth numerical interval is smaller than the minimum value in the fifth numerical interval.
  • the sounding reference signal resources include multiple types of sounding reference signal resources, and the number of ports of the first type of sounding reference signal resources corresponding to the fourth numerical interval is greater than The number of ports of the first type of sounding reference signal resources corresponding to the fifth numerical value interval, where the first type of sounding reference signal resources is at least one type of sounding reference signal resources among the multiple types of sounding reference signal resources.
  • the critical value of at least one of the plurality of numerical ranges is determined according to the number of the first terminal devices.
  • the processing unit is further configured to: if at least one of the following conditions is satisfied: the total number of ports of the sounding reference signal resources configured by the communication apparatus for the first terminal device is greater than or equal to the first preset threshold, the number of terminal equipment newly accessed by the first cell is greater than or equal to the second preset threshold, and the total number of ports of the sounding reference signal resources configured by the communication device for the first terminal equipment is less than or equal to is equal to the third preset threshold, and the number of terminal devices that are withdrawn from the network in the first cell is greater than or equal to the fourth preset threshold, then update the critical value of at least one of the multiple intervals according to the number of the first terminal devices.
  • the processing unit is further configured to, according to the serial number of the first terminal device and the second mapping relationship, create an image for at least one first terminal device in the first terminal device
  • the sounding reference signal resources are reconfigured, and the second mapping relationship is used to indicate a mapping relationship between the updated multiple value intervals and the multiple sounding reference signal resources.
  • a communication device in a sixth aspect, includes a transceiver unit and a processing unit, the processing unit is configured to determine the sounding reference signal resource corresponding to the terminal device according to the type of the terminal device, and the sounding reference signal corresponding to the terminal device.
  • the number of ports of the resource is less than or equal to the number of ports of the sounding reference signal resource that the terminal device can support at most;
  • the transceiver unit is used to send resource configuration information to the terminal device, and the resource configuration information is used to indicate the sounding reference corresponding to the terminal device. signal resource.
  • the terminal device is a terminal device of the first type
  • the number of ports of the sounding reference signal resource corresponding to the terminal device is equal to the maximum number of probes that the terminal device can support
  • the first type of terminal equipment includes: terminal equipment whose transmission data volume is greater than a preset threshold value, terminal equipment that can be configured to transmit the first service through the fifth-generation mobile communication system service quality parameter indicator A device, a terminal device of a first service identified by a transaction identifier or a user data identity identifier, where the first service includes: a high-traffic service, a high-priority service, or a low-latency service.
  • the terminal device if the terminal device is not a terminal device of the first type, the number of ports of the sounding reference signal resource corresponding to the terminal device is less than the maximum sounding that the terminal device can support
  • the number of ports of reference signal resources the first type of terminal equipment includes: terminal equipment whose transmission data volume is greater than a preset threshold value, terminal equipment that can be configured to transmit the first service through the fifth-generation mobile communication system service quality parameter indicator A device, a terminal device of a first service identified by a transaction identifier or a user data identity identifier, where the first service includes: a high-traffic service, a high-priority service, or a low-latency service.
  • a communication apparatus may include a transceiver unit configured to receive resource configuration information from a network device, where the resource configuration information is used to indicate a first measurement reference signal corresponding to the communication apparatus resource, the first sounding reference signal resource is determined according to the number of first terminal equipment, the first terminal equipment is the terminal equipment that has been accessed by the first cell, and the first cell is to be accessed by the second terminal equipment a cell; the transceiver unit is further configured to send a sounding reference signal on the first sounding reference signal resource.
  • the number of ports of the first sounding reference signal resource is less than or equal to the number of ports of the sounding reference signal resource that can be supported by the communication apparatus at maximum.
  • the first sounding reference signal resource is a sounding reference signal resource corresponding to a first numerical interval, and the first numerical interval corresponds to the number of the first terminal devices A value interval, the sounding reference signal resource corresponding to the first value interval is determined according to a first mapping relationship, and the first mapping relationship is used to indicate the mapping relationship between the plurality of value intervals and the plurality of sounding reference signal resources.
  • the first sounding reference signal resource is the sounding reference signal resource corresponding to the second value interval, or the first sounding reference signal resource is the maximum capability of the communication device.
  • the maximum value of the second numerical interval is smaller than the minimum value of the numerical interval corresponding to the number of the first terminal equipment, and the sounding reference signal resource corresponding to the second numerical interval is determined according to the first mapping relationship , and the first mapping relationship is used to indicate the mapping relationship between the multiple value intervals and multiple sounding reference signal resources.
  • the number of ports of the sounding reference signal resource corresponding to the third numerical value interval is equal to the maximum number of ports of the sounding reference signal resource that the communication device can support, and the third numerical interval The maximum value of is the value interval with the smallest maximum value among the multiple value intervals.
  • the number of ports of the sounding reference signal resources corresponding to the fourth numerical interval is greater than the number of ports of the sounding reference signal resources corresponding to the fifth numerical interval
  • the fourth numerical interval and The fifth numerical interval is a numerical interval in which any two of the plurality of numerical intervals satisfy the following relationship: the maximum value in the fourth numerical interval is smaller than the minimum value in the fifth numerical interval.
  • the sounding reference signal resources include multiple types of sounding reference signal resources, and the number of ports of the first type of sounding reference signal resources corresponding to the fourth numerical interval is greater than The number of ports of the first type of sounding reference signal resources corresponding to the fifth numerical value interval, where the first type of sounding reference signal resources is at least one type of sounding reference signal resources among the multiple types of sounding reference signal resources.
  • a communication apparatus may include a transceiver unit configured to receive resource configuration information from a network device, where the resource configuration information is used to indicate a sounding reference signal resource corresponding to the communication apparatus , the sounding reference signal resources corresponding to the communication device are determined according to the type of the communication device, and the number of ports of the sounding reference signal resources corresponding to the communication device is less than or equal to the maximum number of ports of the sounding reference signal resources that the communication device can support;
  • the transceiver unit is further configured to send the sounding reference signal on the corresponding sounding reference signal resource corresponding to the communication device.
  • the communication device if the communication device is a communication device of the first type, the number of ports of the sounding reference signal resource corresponding to the communication device is equal to the maximum sounding that the communication device can support The number of ports of reference signal resources, the communication device of the first type includes: a communication device whose transmission data volume is greater than a preset threshold value, a communication device that can transmit the first service through the configuration of the QoS parameter indicator of the fifth generation mobile communication system A device, a communication device for a first service identified by a transaction identifier or a user data identity identifier, where the first service includes: a high-traffic service, a high-priority service, or a low-latency service.
  • the communication device is not a first type of communication device, the number of ports corresponding to the sounding reference signal resource prepared by the communication device is less than the maximum number of ports that the communication device can support.
  • the number of ports of sounding reference signal resources includes: a communication device whose transmission data volume is greater than a preset threshold value, a communication device that can transmit the first service through the configuration of the QoS parameter indicator of the fifth generation mobile communication system A communication device, a communication device for a first service identified by a transaction identifier or a user data identity identifier, where the first service includes: a high-traffic service, a high-priority service, or a low-latency service.
  • a communication apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any of the possible implementations of the first aspect and the second aspect above.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, the communication interface is used for inputting and/or outputting information, and the information includes at least one of instructions and data.
  • the communication apparatus is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication apparatus is a chip or a chip system configured in a network device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any of the possible implementations of the third aspect and the fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, the communication interface is used for inputting and/or outputting information, and the information includes at least one of instructions and data.
  • the communication apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication apparatus is a chip or a chip system configured in the terminal device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a processor comprising: an input circuit, an output circuit and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the possible implementation manners of the first aspect to the fourth aspect.
  • the above-mentioned processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing apparatus including a communication interface and a processor.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing device executes the method in any one of the possible implementations of the first aspect to the fourth aspect.
  • processors there are one or more processors and one or more memories.
  • a thirteenth aspect provides a processing apparatus including a processor and a memory.
  • the processor is configured to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter, so that the processing device executes the method in any one of the possible implementations of the first aspect to the fourth aspect .
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be separately set in different On the chip, the embodiment of the present application does not limit the memory type and the setting manner of the memory and the processor.
  • ROM read only memory
  • sending indication information may be a process of outputting indication information from the processor
  • receiving indication information may be a process of inputting received indication information to the processor.
  • the information output by the processing can be output to the transmitter, and the input information received by the processor can be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the device in the twelfth aspect and the thirteenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, or the like;
  • the processor When implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory, which may be integrated in the processor or located outside the processor and exist independently.
  • a fourteenth aspect provides a computer program product, the computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes the computer to execute the above-mentioned first aspect to The method in any possible implementation manner of the fourth aspect.
  • a computer program also referred to as code, or instructions
  • a computer-readable medium stores a computer program (also referred to as code, or instruction) when it runs on a computer, causing the computer to execute the above-mentioned first aspect to The method in any possible implementation manner of the fourth aspect.
  • a computer program also referred to as code, or instruction
  • a communication system including the aforementioned terminal device and network device.
  • FIG. 1 is a schematic diagram of a communication system applicable to the method provided by an embodiment of the present application
  • FIGS. 2 to 4 are schematic flowcharts of a method for resource configuration provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for resource reallocation provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for resource configuration provided by another embodiment of the present application.
  • FIG. 7 and 8 are schematic block diagrams of a communication apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication system may include a non-standalone (NSA, NSA) and/or an independent network (standalone, SA).
  • NSA non-standalone
  • SA independent network
  • the technical solutions provided in this application can also be applied to machine type communication (MTC), long term evolution-machine (LTE-M), device-to-device (D2D) Network, machine to machine (M2M) network, internet of things (IoT) network or other network.
  • the IoT network may include, for example, the Internet of Vehicles.
  • vehicle to X, V2X, X can represent anything
  • the V2X may include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and vehicle Infrastructure (V2I) communication, vehicle to pedestrian (V2P) or vehicle to network (V2N) communication, etc.
  • the network device may be any device with a wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • evolved Node B evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • It can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group of (including multiple antenna panels) antenna panels of a base station in a 5G system, or, it can also be a network node that constitutes a gNB or a transmission point, Such as baseband unit (BBU), or distributed unit (distributed unit, DU) and so on.
  • BBU baseband unit
  • DU distributed unit
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer function.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer.
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the network device provides services for the cell, and the terminal device communicates with the cell through transmission resources (eg, frequency domain resources, or spectrum resources) configured by the network device, and the cell may belong to a macro base station (eg, a macro eNB or a macro gNB, etc.) , can also belong to the base station corresponding to the small cell, where the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell), etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • transmission resources eg, frequency domain resources, or spectrum resources
  • the cell may belong to a macro base station (eg, a macro eNB or a macro gNB, etc.)
  • the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell), etc.
  • a terminal device may also be referred to as user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in unmanned driving (self driving), wireless terminals in remote medical (remote medical) Terminal, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless Telephone, session initiation protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device, computing device or connection with wireless communication capabilities
  • wearable devices can also be called wearable smart devices, which is a general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (part of terminal equipment), receiving control information and downlink data of network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for the method provided by this embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 shown in FIG. 1 ; the communication system 100 may also include at least one terminal device, such as the terminal device 102 to 107.
  • the terminal devices 102 to 107 may be mobile or stationary.
  • Each of the network device 101 and one or more of the end devices 102 to 107 may communicate over a wireless link.
  • Each network device can provide communication coverage for a specific geographic area and can communicate with terminal devices located within that coverage area.
  • the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device. Therefore, the network device 101 and the terminal devices 102 to 107 in FIG. 1 constitute a communication system.
  • D2D technology can be used to realize direct communication between terminal devices.
  • D2D technology can be used for direct communication between terminal devices 105 and 106 and between terminal devices 105 and 107 .
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • the terminal devices 105 to 107 can also communicate with the network device 101, respectively. For example, it can communicate directly with the network device 101. In the figure, the terminal devices 105 and 106 can communicate directly with the network device 101; it can also communicate with the network device 101 indirectly. In the figure, the terminal device 107 communicates with the network device via the terminal device 105. 101 Communications.
  • FIG. 1 exemplarily shows a network device, a plurality of terminal devices, and communication links between the communication devices.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices, such as more or less terminal devices. This application does not limit this.
  • Each of the above communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain, which can be understood by those of ordinary skill in the art, all of which may include multiple components (eg, processors, modulators, multiplexers) related to signal transmission and reception. , demodulator, demultiplexer or antenna, etc.). Therefore, the network device and the terminal device can communicate through the multi-antenna technology.
  • the wireless communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • Sounding reference signal (sounding reference signal, SRS) is a very important uplink reference signal.
  • the SRS includes an antenna switching (antenna switching, AS) type SRS, a codebook (codebook, CB) type SRS, a beam management (beam management) type SRS, and a non-codebook (non codebook, nonCB) type SRS.
  • the base station can estimate the uplink channel quality through the SRS sent by the terminal. Based on the reciprocity of the uplink and downlink channels, the base station can also estimate the downlink channel quality according to the SRS sent by the terminal, and then perform downlink beamforming.
  • the base station may configure SRS resources for the UE according to the capability information reported by the UE.
  • the UE will report the SRS antenna switching mode supported by the UE to the base station.
  • the UE may report the initial SRS antenna switching mode supported by the UE through a supported SRS transmission port switch (supportedSRS-TxPortSwitch) information element.
  • supportedSRS-TxPortSwitch values may be as follows:
  • the supportedSRS-TxPortSwitch When the supportedSRS-TxPortSwitch is t1r1-t1r2-t1r4, it indicates that the SRS antenna switching modes supported by the UE are t1r1, t2r2 and t1r4.
  • the supported SRS-TxPortSwitch When the supported SRS-TxPortSwitch is not supported (notsupport), it means that the UE does not support sending SRS of the AS type.
  • the UE can also report the updated SRS antenna switching mode supported by the UE through the ReducedMaxSrsTxPortSwitch information element.
  • the weight of ReducedMaxSrsTxPortSwitch may be as follows:
  • the UE will report to the base station the maximum number of uplink multiple-input multiple-output (multiple-input multiple-output, MIMO) layers of the CB-type SRS supported by the UE.
  • MIMO multiple-input multiple-output
  • the UE can report the maximum number of uplink MIMO layers of the CB type SRS supported by the UE through the maximum number of MIMO layers (maxNumberMIMO-LayersCB-PUSCH) supported by the physical uplink shared channel under codebook precoding, and the possible value of maxNumberMIMO-LayersCB-PUSCH as follows:
  • FeatureSetUplinkPerCC represents the uplink carrier feature set
  • mimo-CB-PUSCH represents the maximum number of MIMO layers supported by the physical uplink shared channel
  • MIMO-LayersUL represents the number of uplink MIMO layers.
  • reduceMaxMIMO- Layers may take the following values:
  • the UE will report to the base station the maximum number of uplink MIMO layers of the non-codebook type SRS supported by the UE.
  • the UE can report the initial maximum number of uplink MIMO layers of the nonCB type SRS supported by the UE through the maximum number of MIMO layers supported by the physical uplink shared channel under non-codebook precoding (maxNumberMIMO-LayersNonCB-PUSCH) information element, maxNumberMIMO-LayersNonCB-PUSCH may be The values are as follows:
  • the UE can report the updated maximum uplink MIMO layers supported by the UE through the reducedMaxMIMO-Layers information element (that is, the maximum uplink MIMO layers of the nonCB-type SRS supported by the UE are also updated), and the reducedMaxMIMO-Layers may be as follows:
  • the base station will use the initial or updated maximum uplink MIMO layers of the nonCB type SRS supported by the UE reported by the UE as a limiting factor for dynamically adjusting the nonCB type SRS resources used by the UE. That is, if the number of ports of the nonCB type SRS resources allocated by the base station to the UE is m, then m must be less than or equal to the maximum number of uplink MIMO layers supported by the UE for initial reporting, and try to update the maximum number of uplink MIMO layers supported by the UE. Assuming that the maximum number of uplink MIMO layers of the nonCB type SRS supported by the UE is two layers, the number of ports m of the SRS resources allocated by the base station to the UE can only be 1 or 2.
  • the UE will report the maximum number of ports corresponding to a single SRS resource that the UE can support.
  • the UE can report the initial maximum number of ports corresponding to a single SRS resource that the UE can support through maxNumberSRS-Ports-PerResource.
  • the number of ports of the SRS resource allocated by the base station to the UE must be less than or equal to the maximum number of ports for each SRS resource supported by the UE ( maxNumberSRS-Ports-PerResource).
  • maxNumberSRS-Ports-PerResource The possible values of maxNumberSRS-Ports-PerResource are as follows:
  • the UE can report the updated maximum number of ports corresponding to a single SRS resource that the UE can support through the reduced maximum number of ports for each SRS resource (reducedmaxNumberSRS-Ports-PerResource).
  • reducedmaxNumberSRS-Ports-PerResource The possible values of reducedmaxNumberSRS-Ports-PerResource are as follows:
  • the base station will report the initial or updated maximum number of ports corresponding to a single SRS resource that the UE can support, as a limiting factor for dynamically adjusting all types of SRS resources allocated to the UE delay. That is, if the number of ports for a single SRS resource of any type allocated by the base station to the UE is m, then m must be less than or equal to the maximum number of ports corresponding to a single SRS resource initially reported by the UE that the UE can support, so as to satisfy the update requirements of the single SRS resource supported by the UE as much as possible. The maximum number of ports corresponding to SRS resources.
  • the base station will receive the capability information reported by the UE, and further, the base station configures the SRS resources for the UE according to the capability information reported by the UE.
  • the base station usually configures SRS resources for the UE according to the SRS resources supported by the maximum capability of the UE. For example, if the maximum number of uplink MIMO layers of the CB-type SRS reported by the UE is 4, the CB-type SRS resources configured by the base station for the UE correspond to 4 port.
  • the SRS resources that can be used in each cell are limited.
  • the base station always configures the SRS resources for the UE according to the maximum capability of the UE, it cannot satisfy the configuration of SRS resources for a larger number of UEs, thus reducing the uplink throughput of the cell. and downlink beamforming performance.
  • the embodiments of the present application provide a method for resource configuration, so as to improve user experience and cell throughput.
  • the following describes the resource configuration method provided by the embodiments of the present application with reference to the accompanying drawings.
  • FIG. 2 shows a schematic flowchart of a resource configuration method provided by an embodiment of the present application. As shown in FIG. 2, the method 200 may include S210 to S250, and each step will be described in detail below.
  • the network device acquires the number of first terminal devices.
  • the first terminal device is a terminal device that has been accessed by the first cell, and the first cell is a cell to be accessed by the second terminal device.
  • the network device receives the first information.
  • the second terminal device sends the first information.
  • the first information is used to determine the maximum SRS resource that the second terminal device can support. Alternatively, it can also be said that the first information is used to determine the maximum number of ports of the SRS resource that the second terminal device can support.
  • the first information may include capability information of the second terminal device and/or auxiliary information of the second terminal device.
  • the first information may include capability information of the second terminal device, and the capability information of the second terminal device includes at least one of the following: an SRS antenna switching mode supported by the second terminal device, a CB-type SRS supported by the second terminal device The maximum number of uplink MIMO layers, the maximum number of uplink MIMO layers of the nonCB type SRS supported by the second terminal device, and the maximum number of ports of a single SRS resource supported by the second terminal device. It should be understood that, in the case where the first information includes capability information of the second terminal device, the SRS resource that can be supported by the second terminal device at the maximum is the SRS resource supported by the maximum capability of the second terminal device.
  • the network device may determine, according to the SRS antenna switching mode, the number of SRS resources of the AS type supported by the maximum capability of the second terminal device and the single The number of ports of the SRS resource may further determine the number of ports of the SRS resource of the AS type supported by the maximum capability of the second terminal device. For example, if the SRS antenna switching mode supported by the second terminal device included in the capability information of the second terminal device is t1r1-t1r2-t2r2-t2r4, the network device can determine the port of the SRS resource of the AS type supported by the maximum capability of the second terminal device The number is 4.
  • the network device may be based on the maximum number of uplink MIMO layers of the SRS of the CB type supported by the second terminal device. Determine the port number of the CB type SRS resource supported by the maximum capability of the second terminal device. For example, if the maximum number of uplink MIMO layers of CB-type SRS supported by the second terminal device is 4, the network device may determine that the number of ports of CB-type SRS resources supported by the second terminal device is 4.
  • the network device may determine the second terminal device according to the antenna switching mode supported by the second terminal device.
  • the number of ports of the AS-type SRS resources supported by the maximum capability of the terminal device, and the ports of the CB-type SRS resources supported by the maximum capability of the second terminal device can be determined according to the maximum number of uplink MIMO layers of the CB-type SRS supported by the second terminal device number. Further, the network device may determine the port number of the SRS resource supported by the maximum capability of the second terminal device.
  • the number of SRS resource ports supported by the maximum capability of the second terminal device is the number of SRS resource ports of the AS type supported by the maximum capability of the second terminal device plus the number of SRS resource ports of the CB type. That is to say, if the network device determines according to the capability information of the second terminal device that the second terminal device supports multiple types of SRS, the number of ports of the SRS resources supported by the maximum capability of the second terminal device determined by the network device is the second terminal device The sum of the number of ports of multiple types of SRS resources supported by the maximum capability.
  • the first information may include auxiliary information of the second terminal device.
  • the auxiliary information of the second terminal device may include auxiliary information related to overheating, auxiliary information related to energy saving, and the like.
  • the assistance information of the second terminal device may be used to determine the maximum SRS resource expected by the second terminal device. It should be understood that in the case where the first information includes the auxiliary information of the second terminal device, the maximum SRS resource that the second terminal device can support is the maximum SRS resource expected by the second terminal device.
  • the antenna switching mode expected by the second terminal device indicated by the auxiliary information of the second terminal device is t1r1-t1r2
  • the network device determines the largest AS type SRS expected by the second terminal device according to the auxiliary information of the second terminal device
  • the port number for the resource is 2.
  • the first information may include capability information of the second terminal device and auxiliary information of the second terminal device.
  • the maximum SRS resource that the second terminal device can support is the smallest value among the SRS resource that the second terminal device can support with the maximum capability and the maximum SRS resource expected by the second terminal device.
  • an antenna switching mode supported by the second terminal device included in the capability information of the second terminal device is t1r1-t1r2-t2r2-t2r4, and an antenna switching mode expected by the second terminal device indicated by the auxiliary information of the second terminal device is t1r1- t1r2, then the SRS resource of the AS type determined by the network device according to the first information that the second terminal device can support at the maximum corresponds to the antenna switching mode t1r2, that is, the SRS resource of the AS type determined by the network device that the second terminal device can support at the maximum capability includes 2 SRS resources, the number of ports of each SRS resource is 1.
  • the capability information of the second terminal device includes the maximum number of uplink MIMO layers of the CB type SRS supported by the second terminal device is 4 layers, and the auxiliary information of the second terminal device indicates the expected CB type of the second terminal device.
  • the maximum number of uplink MIMO layers of the SRS is 2, and the maximum number of SRS resources of the CB type that can be supported by the second terminal device determined by the network device according to the first information is 2 ports.
  • the network device determines the first SRS resource corresponding to the second terminal device according to the number of the first terminal device.
  • the first SRS resource corresponding to the second terminal device is the SRS resource configured by the network device for the second terminal device.
  • the network device may use the SRS resource corresponding to the value interval #1 (ie, the first value interval) as the first SRS resource according to the first mapping relationship.
  • the numerical value interval #1 is a numerical value interval corresponding to the number of the first terminal devices.
  • the first mapping relationship is used to indicate the mapping relationship between multiple numerical ranges and multiple SRS resources.
  • the first mapping relationship may be determined according to the number of the first terminal device and the SRS resource that can be supported by the second terminal device at maximum.
  • the multiple SRS resources may be determined according to the SRS resources that can be supported by the second terminal device at the maximum.
  • the multiple value intervals may be determined according to the number of first terminal devices, for example, the critical value of at least one value interval in the multiple value intervals is determined according to the number of first terminal devices.
  • the critical value of a numerical interval can be the maximum and/or minimum value of the numerical interval.
  • the relationship between the SRS resources corresponding to different numerical ranges is as follows: the number of ports of the SRS resources corresponding to the numerical range #2 (that is, the fourth numerical range) is greater than that of the SRS resources corresponding to the numerical range #3 (that is, the fifth numerical range).
  • the number of ports, numeric interval #2 and numeric interval #3 are any two numeric intervals among the multiple numeric intervals that satisfy the following relationship: the maximum value in numeric interval #2 is less than the minimum value in numeric interval #3. It can also be said that the SRS resources corresponding to the value interval #2 are larger than the SRS resources corresponding to the value interval #3.
  • the number of ports corresponding to the SRS resource corresponding to the numerical range with the smallest maximum value among the multiple numerical ranges is the largest.
  • the number of ports of the SRS resource corresponding to the value interval with the smallest maximum value among the plurality of value intervals is equal to the number of ports of the SRS resource that can be supported by the second terminal device at the maximum.
  • the SRS resource corresponding to the numerical interval with the smallest maximum value among the multiple numerical intervals ie, the third numerical interval
  • the number of ports of the first SRS resource determined by the network device decreases.
  • the reduction of the number of ports of the first SRS resource may be reflected in the reduction of the number of resources included in the first SRS resource, or the reduction of the number of ports of each SRS resource in the first SRS resource.
  • the network device may first reduce the configuration for the second terminal device The number of SRS resources, and then gradually reduce the number of ports of the SRS resources; or, the network device may first reduce the number of ports of each SRS resource configured for the second terminal device, and then reduce the number of SRS resources.
  • supportedSRS-TxPortSwitch-r16 is t1r1-t2r2-t4r4
  • the network device can first allocate SRS resources to the second terminal device according to the antenna switching mode of t4r4, and then according to the antenna switching mode of t2r2
  • the switching mode allocates SRS resources to the second terminal device. If the number of first terminal devices continues to increase, the network device may first allocate SRS resource allocation to the second terminal device according to the antenna switching mode of t1r1.
  • supportedSRS-TxPortSwitch-r16 is t1r1-t1r2-t2r2-t2r4, then according to the capability information reported by the second terminal device, the network device can first allocate SRS resources to the second terminal device according to the antenna switching mode of t2r4, and then follow The antenna switching mode of t2r2 or t1r2 allocates SRS resources to the second terminal device. If the number of first terminal devices continues to increase, the network device can first allocate SRS resources to the second terminal device according to the antenna switching mode of t1r1, and finally allocate SRS resources to the second terminal device according to the antenna switching mode of t1r1. The switching mode is notSupported to allocate SRS resources to the second terminal device.
  • the above resource configuration method can also be understood as, with the increase of the number of the first terminal equipment, the SRS resources configured by the network equipment for the second terminal equipment decrease, and the total SRS resources are gradually adjusted according to the first information reported by the second terminal equipment. port number process.
  • This embodiment of the present application does not limit the type of the first SRS resource.
  • the first SRS resource may be an AS-type SRS resource, that is, the network device may configure the AS-type SRS resource for the second terminal device according to the method provided in this embodiment of the present application.
  • the SRS antenna switching modes include the following: t1r1 (the total number of ports of the SRS resources corresponding to the AS type is 1), t1r2 (the total number of SRS resources of the corresponding AS type is 1) The number of ports is 2), t1r4 (the total number of ports of the corresponding AS type SRS resources is 4), t2r2 (the total number of ports of the corresponding AS type SRS resources is 2), t2r4 (the corresponding AS type SRS resources The total number of ports is 4), t4r4 (the total number of ports of the corresponding AS type SRS resources is 4). Therefore, multiple numerical ranges and the SRS resources corresponding to each numerical range satisfy the resource allocation policies shown in Table 1:
  • Table 1 is only an example. With the development of technology, the maximum number of ports of SRS resources of the AS type that the terminal device can support may increase to 6, 8, 10, etc., then the different values shown in Table 1
  • the resource configuration policy corresponding to the interval may change, for example, the resource configuration policy corresponding to [0, A1] may be: the total number of configured AS type SRS resource ports does not exceed 6.
  • Example 1 if the network device determines, according to the first information sent by the second terminal device, that the SRS antenna switching mode supported by the second terminal device is t1r1-t1r2-t2r2-t2r4, and the maximum port corresponding to the SRS resources that the second terminal device can support The number is 4 (the maximum number of ports corresponding to a single SRS resource can also be 1 or 2, if the value is 2, it means that the terminal device cannot support t4r4), then the first mapping relationship can be shown in Table 2:
  • the configured AS type SRS resource corresponds to t2r4 (A1, B1]
  • the configured AS type SRS resource corresponds to t2r2/t1r2 (B1, C1]
  • the configured AS type SRS resource corresponds to t1r1 (C1, infinity) Do not configure AS type SRS resources
  • A1 ⁇ B1 ⁇ C1, and A1, B1, and C1 are all positive integers.
  • the number of ports of the AS-type SRS resource corresponding to the first numerical interval (ie [0, A1]) shown in Table 2 is 4, that is, the AS-type SRS resource corresponding to the first numerical interval is the maximum value of the second terminal device.
  • SRS resources of the AS type that can be supported are taken as an example that is equal to the SRS resource of the AS type that the second terminal device can support at the maximum, and the SRS resource of the AS type corresponding to the first numerical interval is also
  • the SRS resource of the AS type that can be supported by the second terminal device may be smaller than the maximum.
  • the number of ports of the SRS resource of the AS type corresponding to the first numerical interval is 2.
  • the number of ports of the SRS resources of the AS type corresponding to the second numerical range is smaller than that of the AS type corresponding to the first numerical range
  • the number of ports of the SRS resource that is to say, the number of ports of the SRS resource of the AS type corresponding to the second numerical interval can be 2, 1, 0.
  • the SRS resource of the AS type corresponding to the second numerical interval is used.
  • the number of ports is 2 as an example.
  • the port number of the AS-type SRS resource corresponding to the third numerical interval (ie (B1, C1)) may be 1, 0 , in Table 2, the number of ports of the SRS resource of the AS type corresponding to the third numerical interval is 1 as an example.
  • the port number of the AS type SRS resource corresponding to the third numerical interval is 1
  • the port number of the AS type SRS resource corresponding to the fourth numerical interval is 0 (that is, according to Antenna switching mode is notSupported processing, no AS type resources).
  • each SRS resource configuration corresponds to a different SRS resource identifier (ResourceId), and the port of each SRS resource The number is 2.
  • the total number of ports of the AS-type SRS resources configured by the network device for the second terminal device is 4, which meets the requirements of Table 1.
  • the network device uses the SRS resource corresponding to the second value interval as the first SRS resource, that is, the network device follows the Tx-switch
  • the RRC signaling for configuring the SRS resources of the AS type carries two SRS resource configurations, each SRS resource configuration corresponds to a different SRS-ResourceId, and the number of ports of each SRS resource is 1.
  • the total number of ports of the AS-type SRS resources configured by the network device for the second terminal device is 2, which meets the requirements of Table 1.
  • the network equipment uses the SRS resource corresponding to the third numerical interval as the first SRS resource, that is, the network equipment follows the Tx-switch
  • the RRC signaling for configuring the SRS resources of the AS type carries one SRS resource configuration, that is, the RRC signaling carries one SRS-ResourceId, and the port number of the SRS resource is 1.
  • the total number of ports of the AS-type SRS resources configured by the network device for the second terminal device is 1, which meets the requirements of Table 1.
  • the network device uses the SRS resource corresponding to the fourth value interval as the first SRS resource, that is, the network device is not the second terminal device Configure the SRS resource of the AS type.
  • the resources occupied by an SRS with 2 ports are larger than those occupied by an SRS with 1 ports, but the resources occupied by 2 SRSs with 1 ports and the resources occupied by 1 SRS with 2 ports are basically The same (assuming that factors like performance and resource fragmentation are not considered).
  • the network device can define an allocation strategy in which the resources occupied by the SRS corresponding to the antenna switching mode t2r2 can be slightly larger than the resources occupied by the SRS corresponding to the antenna switching mode t1r2; of course, t1r2 and t1r2 can also be defined.
  • the number of t2r2 ports is the same, and only one type is selected, then (A1, B2] and (B2, B1] in Table 3 can be combined into one interval.
  • the numerical value interval (A1, B1) may be further divided into two consecutive numerical value intervals (A1, B2] and (B2, B1], A1 ⁇ B2 ⁇ B1.
  • the first A mapping relationship can also be shown in Table 3:
  • the configured AS type SRS resource corresponds to t2r4 (A1, B2]
  • the configured AS type SRS resource corresponds to t2r2 (B2,B1]
  • the configured AS type SRS resource corresponds to t1r2 (B1, C1]
  • the configured AS type SRS resource corresponds to t1r1 (C1, infinity) Do not configure AS type SRS resources
  • the relationship between the SRS resources corresponding to different numerical ranges can be described as: the port of the SRS resource corresponding to the numerical range #2 The number is greater than the number of ports of the SRS resource corresponding to the value interval #3, or the SRS resource corresponding to the value interval #2 is greater than the SRS resource corresponding to the value interval #3.
  • Example 2 if the network device determines, according to the first information sent by the second terminal device, that the SRS antenna switching mode supported by the second terminal device is t1r1-t1r2, and the maximum number of ports corresponding to a single SRS resource that the terminal device can support is 2, then
  • the first mapping relationship can be as shown in Table 4:
  • the configured AS type SRS resource corresponds to t1r2 (A1, B1]
  • the configured AS type SRS resource corresponds to t1r1 (B1, infinity)
  • the number of ports of the AS-type SRS resource corresponding to the first numerical interval (ie [0, A1]) shown in Table 4 is 2, that is, the AS-type SRS resource corresponding to the first numerical interval is the maximum value of the second terminal device.
  • SRS resources of the AS type that can be supported are taken as an example that is equal to the SRS resource of the AS type that can be supported by the second terminal device, and the SRS resource of the AS type corresponding to the first numerical interval is also
  • the SRS resource of the AS type that can be supported by the second terminal device may be smaller than the maximum.
  • the number of ports of the SRS resource of the AS type corresponding to the first numerical interval is 1.
  • the number of ports of the SRS resources of the AS type corresponding to the second numerical range (ie (A1, B1)) is smaller than that of the AS type corresponding to the first numerical range
  • the number of ports of the SRS resource that is, the number of ports of the SRS resource of the AS type corresponding to the second numerical interval can be 1 or 0.
  • the ports of the SRS resource of the AS type corresponding to the second numerical interval The number is 1 as an example.
  • the port number of the AS-type SRS resource corresponding to the third numerical interval (ie (B1, infinity)) may be 0 (ie According to the antenna switching mode is notSupported, there is no AS type resource).
  • the RRC signaling for configuring the SRS resources of the AS type carries two SRS resource configurations, each SRS resource configuration corresponds to a different SRS-ResourceId, and the number of ports of each SRS resource is 1.
  • the total number of ports of the AS-type SRS resources configured by the network device for the second terminal device is 2, which meets the requirements of Table 1.
  • the network device uses the SRS resource corresponding to the second value interval as the first SRS resource, that is, the network device follows the Tx-switch
  • the RRC signaling for configuring the SRS resources of the AS type carries one SRS resource configuration, that is, the RRC signaling carries one SRS-ResourceId, and the port number of the SRS resource is 1.
  • the total number of ports of the AS-type SRS resources configured by the network device for the second terminal device is 1, which meets the requirements of Table 1.
  • the network device uses the SRS resource corresponding to the third value interval as the first SRS resource, that is, the network device is not the second terminal
  • the device configures SRS resources of the AS type.
  • Example 2 and Table 1 it can be seen that in the process that the network device configures the SRS resource of the AS type for the second terminal device according to the embodiment of the present application, if the number of the first terminal device is in the first numerical range, then the network The number of ports of the AS-type SRS resource configured by the device for the second terminal device is equal to the maximum number of ports of the AS-type SRS resource that the second terminal device can support; if the number of the first terminal device is in the second numerical range, then the network The number of ports of the AS-type SRS resources configured by the device for the second terminal device is equal to min (the maximum number of ports of the AS-type SRS resources that the second terminal device can support, 2 ports); 3 numerical ranges, then the number of ports of the AS-type SRS resource configured by the network device for the second terminal device is equal to min (the maximum number of ports of the AS-type SRS resource that the second terminal device can support, 1 port); The number of a terminal device is in the fourth numerical range, and the network device does
  • the network device configures the SRS resource of the AS type for the second terminal device according to the embodiment of the present application, if the network device may also need to configure the SRS of other types (CB/nonCB/beam management) for the second terminal device resource, the network device may configure other types of SRS resources except the AS type for the second terminal device according to the existing resource configuration method.
  • CB/nonCB/beam management CB/nonCB/beam management
  • the first SRS resource may be a CB-type SRS resource, that is, the network device may configure a CB-type SRS resource for the second terminal device according to the method provided in the embodiment of the present application.
  • maxNumberMIMO-LayersCB-PUSCH it can be known that the maximum number of uplink MIMO layers of the SRS of the CB type that the second terminal device may support is: 4 layers (the maximum number of ports corresponding to the SRS resource of the CB type is 4 ), 2 layers (the maximum number of ports of the corresponding CB type SRS resources is 2), and 1 layer (the maximum number of ports of the corresponding CB type SRS resources is 1). Therefore, multiple numerical ranges and the SRS resources corresponding to each numerical range satisfy the resource allocation policies shown in Table 5:
  • Table 5 is only an example. With the development of technology, the maximum number of ports of CB-type SRS resources that the terminal device can support may be increased to 6, 8, 10, etc., then the different values shown in Table 5.
  • the resource configuration policy corresponding to the interval may change.
  • the resource configuration policy corresponding to [0, A1] may be: the total number of configured CB type SRS resources does not exceed 6 ports.
  • Example 1 if the network device determines, according to the first information sent by the second terminal device, that the maximum number of uplink MIMO layers of the CB-type SRS supported by the second terminal device is 4, and the number of layers corresponding to a single SRS resource that the second terminal device can support The maximum number of ports is 4, and the first mapping relationship can be shown in Table 6:
  • the configured CB type SRS resource corresponds to 4 ports (A1, B1]
  • the configured CB type SRS resource corresponds to 2 ports (B1, infinity)
  • the configured CB type SRS resource corresponds to one port
  • A1 ⁇ B1 ⁇ C1, and A1, B1, and C1 are all positive integers.
  • the number of ports of the CB-type SRS resource corresponding to the first numerical interval (ie [0, A1]) shown in Table 6 is 4, that is, the CB-type SRS resource corresponding to the first numerical interval is the maximum value of the second terminal equipment.
  • Supported CB type SRS resources It should be understood that in Table 6, only the SRS resource of the CB type corresponding to the first numerical interval is equal to the SRS resource of the CB type that the second terminal device can support at the maximum as an example, and the SRS resource of the CB type corresponding to the first numerical interval is also The SRS resource of the CB type that can be supported by the second terminal device may be smaller than the maximum. For example, the number of ports of the CB-type SRS resource corresponding to the first numerical interval is 2.
  • the number of ports of the SRS resources of the CB type corresponding to the second numerical range is smaller than that of the CB type corresponding to the first numerical range
  • the port number of the SRS resource that is, the port number of the CB type SRS resource corresponding to the second numerical interval can be 2, 1, 0, and the CB type SRS resource corresponding to the second numerical interval in Table 6
  • the number of ports is 2 as an example.
  • the port number of the CB-type SRS resource corresponding to the third numerical interval (ie (B1, infinity)) may be 1, 0 , in Table 6, the number of ports of the SRS resource of the CB type corresponding to the third numerical interval is 1 as an example.
  • the network equipment uses the SRS resource corresponding to the first numerical interval as the first SRS resource, that is, the network equipment Configuring CB-type SRS resources with 4 ports for the second terminal device, that is, the network device configures CB-type SRS resources for the second terminal device according to the SRS resources supported by the maximum capability of the second terminal device.
  • the network device uses the SRS resource corresponding to the second value interval as the first SRS resource, that is, the network device is the second terminal
  • the device configures CB-type SRS resources with 2 ports.
  • the network equipment uses the SRS resource corresponding to the third value interval as the first SRS resource, that is, the network equipment configures the second terminal equipment A CB type SRS resource with a port number of 1.
  • Example 2 if the network device determines, according to the first information sent by the second terminal device, that the maximum number of uplink MIMO layers of the CB-type SRS supported by the second terminal device is 2, and the maximum number of ports corresponding to a single SRS resource that the terminal device can support is 2, the first mapping relationship can be as shown in Table 7:
  • the configured CB type SRS resource corresponds to 2 ports (A1, infinity]
  • the configured CB type SRS resource corresponds to one port
  • the number of ports of the CB-type SRS resource corresponding to the first numerical interval (ie [0, A1]) shown in Table 7 is 2, that is, the CB-type SRS resource corresponding to the first numerical interval is the maximum value of the second terminal equipment.
  • Supported CB type SRS resources It should be understood that in Table 7, only the SRS resource of the CB type corresponding to the first numerical interval is equal to the SRS resource of the CB type that the second terminal device can support at the maximum as an example, and the SRS resource of the CB type corresponding to the first numerical interval is also
  • the SRS resource of the CB type that can be supported by the second terminal device may be smaller than the maximum. For example, the number of ports of the CB-type SRS resource corresponding to the first numerical interval is 1.
  • the number of ports of the SRS resources of the CB type corresponding to the second numerical range is less than that of the CB type corresponding to the first numerical range
  • the port number of the SRS resource that is, the port number of the CB type SRS resource corresponding to the second numerical interval can be 1, 0, and the port of the CB type SRS resource corresponding to the second numerical interval in Table 7
  • the number is 1 as an example.
  • the network equipment uses the SRS resource corresponding to the first numerical interval as the first SRS resource, that is, the network equipment Configuring CB-type SRS resources with 2 ports for the second terminal device, that is, the network device configures CB-type SRS resources for the second terminal device according to the maximum capability of the second terminal device to support SRS resources.
  • the network device uses the SRS resource corresponding to the second value interval as the first SRS resource, that is, the network device configures the second terminal device A CB type SRS resource with a port number of 1.
  • Example 2 and Table 5 it can be seen that in the process of configuring the SRS resource of the CB type for the second terminal device by the network device according to the embodiment of the present application, if the number of the first terminal device is in the first numerical range, then the network The number of ports of the CB-type SRS resources configured by the equipment for the second terminal equipment is equal to the number of ports of the CB-type SRS resources that the second terminal equipment can support at the maximum; if the number of the first terminal equipment is in the second first numerical range, Then the number of ports of the SRS resource of the CB type configured by the network device for the second terminal device is equal to min (the number of ports of the SRS resource of the CB type that the second terminal device can support at the most, 2 ports); if the number of the first terminal device In the third first value interval, the network device configures the second terminal device with the number of ports of the CB-type SRS resource equal to min (the maximum number of ports of the CB-type SRS resource that the second terminal device can
  • the network device may not configure CB-type SRS resources for the second terminal device.
  • the network device may configure CB-type SRS resources for the second terminal device according to the second mapping relationship shown in Table 8.
  • the network device configures CB-type SRS resources for the second terminal device according to the embodiment of the present application
  • the network device may also need to configure other types of SRS (AS/nonCB/beam management) for the second terminal device resource
  • the network device may configure other types of SRS resources except the CB type for the second terminal device according to the existing resource configuration method.
  • the first SRS resource may be a nonCB type SRS resource, that is, the network device may configure a nonCB type SRS resource for the second terminal device according to the method provided in the embodiment of the present application.
  • the maximum number of uplink MIMO layers of the nonCB type SRS that the second terminal device may support is: 4 layers (the maximum number of ports corresponding to the nonCB type SRS resources is 4 ), 2 layers (the maximum number of ports of the corresponding nonCB type SRS resources is 2), 1 layer (the maximum number of ports of the corresponding nonCB type SRS resources is 1). Therefore, multiple numerical intervals and the SRS resources corresponding to each numerical interval satisfy the resource allocation policies shown in Table 9:
  • Example 1 if the network device determines, according to the first information sent by the second terminal device, that the maximum number of uplink MIMO layers of the nonCB-type SRS supported by the second terminal device is 4, and the number of layers corresponding to a single SRS resource that the second terminal device can support The maximum number of ports is 4, and the first mapping relationship can be shown in Table 10:
  • the configured nonCB type SRS resource corresponds to 4 ports (A1, B1]
  • the configured nonCB type SRS resource corresponds to 2 ports (B1, infinity)
  • the configured nonCB type SRS resource corresponds to one port
  • A1 ⁇ B1 ⁇ C1, and A1, B1, and C1 are all positive integers.
  • the number of ports of the nonCB type SRS resource corresponding to the first numerical interval (ie [0, A1]) shown in Table 10 is 4, that is, the nonCB type SRS resource corresponding to the first numerical interval is the maximum value of the second terminal equipment. Supported nonCB type SRS resources. It should be understood that in Table 10, only the SRS resource of the nonCB type corresponding to the first numerical interval is equal to the SRS resource of the nonCB type that the second terminal device can support at the maximum as an example, and the SRS resource of the nonCB type corresponding to the first numerical interval is also It may be smaller than the nonCB type SRS resources that the second terminal device can support at most. For example, the number of ports of the nonCB-type SRS resource corresponding to the first numerical interval is 2.
  • the number of ports of the SRS resources of the nonCB type corresponding to the second numerical range is less than that of the nonCB type corresponding to the first numerical range
  • the number of ports of the SRS resource that is, the number of ports of the nonCB type SRS resource corresponding to the second numerical interval can be 2, 1, 0.
  • the nonCB type SRS resource corresponding to the second numerical interval is used.
  • the number of ports is 2 as an example.
  • the port number of the nonCB type SRS resource corresponding to the third numerical interval (ie (B1, infinity)) may be 1, 0 , in Table 10, the number of ports of the nonCB type SRS resource corresponding to the third numerical interval is 1 as an example.
  • the network equipment uses the SRS resource corresponding to the first numerical interval as the first SRS resource, that is, the network equipment Configuring nonCB type SRS resources with 4 ports for the second terminal device, that is, the network device configures nonCB type SRS resources for the second terminal device according to the SRS resources supported by the maximum capability of the second terminal device.
  • the network device uses the SRS resource corresponding to the second value interval as the first SRS resource, that is, the network device is the second terminal
  • the device configures a nonCB type SRS resource with 2 ports.
  • the network equipment uses the SRS resource corresponding to the third value interval as the first SRS resource, that is, the network equipment configures the second terminal equipment A nonCB type SRS resource with a port number of 1.
  • Example 2 if the network device determines, according to the first information sent by the second terminal device, that the maximum number of uplink MIMO layers of the nonCB-type SRS supported by the second terminal device is 2, and the maximum number of ports corresponding to a single SRS resource that the terminal device can support is 2, the first mapping relationship can be as shown in Table 11:
  • the configured nonCB type SRS resource corresponds to 2 ports (A1, infinity]
  • the configured nonCB type SRS resource corresponds to one port
  • the number of ports of the nonCB type SRS resource corresponding to the first numerical interval (ie [0, A1]) shown in Table 11 is 2, that is, the nonCB type SRS resource corresponding to the first numerical interval is the maximum value of the second terminal equipment. Supported nonCB type SRS resources. It should be understood that in Table 11, only the SRS resource of the nonCB type corresponding to the first numerical interval is equal to the SRS resource of the nonCB type that the second terminal device can support at the maximum as an example, and the SRS resource of the nonCB type corresponding to the first numerical interval is also It may be smaller than the nonCB type SRS resources that the second terminal device can support at most. For example, the number of ports of the nonCB type SRS resource corresponding to the first numerical interval is 1.
  • the number of ports of the SRS resources of the nonCB type corresponding to the second numerical range is less than that of the nonCB type corresponding to the first numerical range
  • the number of ports of the SRS resource that is, the number of ports of the nonCB type SRS resource corresponding to the second value interval can be 1, 0, and the port number of the nonCB type SRS resource corresponding to the second value interval in Table 11 The number is 1 as an example.
  • the network equipment configures the second terminal equipment with a nonCB type SRS resource with a port number of 2, that is, the network The device configures a nonCB type SRS resource for the second terminal device according to the maximum capability of the second terminal device to support SRS resources.
  • the network equipment configures the second terminal equipment with a nonCB type SRS resource with a port number of 1.
  • Example 2 and Table 9 it can be seen that in the process of configuring the SRS resource of the nonCB type for the second terminal device by the network device according to the embodiment of the present application, if the number of the first terminal device is in the first numerical range, then the network The number of ports of the nonCB-type SRS resource configured by the device for the second terminal device is equal to the number of ports of the nonCB-type SRS resource that the second terminal device can support; if the number of the first terminal device is in the second numerical range, then the network The number of ports of the nonCB-type SRS resources configured by the device for the second terminal device is equal to min (the maximum number of ports of the nonCB-type SRS resources that the second terminal device can support, 2 ports); 3 numerical ranges, the number of ports configured by the network device for the nonCB type SRS resource for the second terminal device is equal to min (the maximum number of ports of the nonCB type SRS resource that the second terminal device can support, 1 port).
  • the network device may not configure nonCB type SRS resources for the second terminal device.
  • the network device may configure nonCB-type SRS resources for the second terminal device according to the first mapping relationship shown in Table 12.
  • the network device configures the nonCB type SRS resource for the second terminal device according to the embodiment of the present application
  • the network device may also need to configure other types (AS/CB/beam management) SRS resources for the second terminal device resource
  • the network device may configure other types of SRS resources except the nonCB type for the second terminal device according to the existing resource configuration method.
  • the first SRS resource may be an SRS resource of the beam management type, that is, the network device may configure the SRS resource of the beam management type for the second terminal device according to the method provided in the embodiment of the present application.
  • maxNumberSRS-Ports-PerResource it can be known that the maximum number of ports corresponding to a single SRS resource that the second terminal device may support is: 4, 2, and 1. Therefore, the multiple numerical ranges and the SRS resources corresponding to each numerical range satisfy the resource allocation policies shown in Table 13:
  • the total number of configured beam management type SRS resource ports does not exceed 4 (A1, B1]
  • the total number of ports of the configured beam management type SRS resource does not exceed 2 (B1, infinity)
  • the total number of configured beam management type SRS resource ports does not exceed 1
  • Example 1 if the network device determines, according to the first information sent by the second terminal device, that the maximum number of ports corresponding to a single SRS resource that the second terminal device can support is 4, the first mapping relationship may be as shown in Table 14:
  • the configured beam management type SRS resource corresponds to 4 ports (A1, B1]
  • the configured beam management type SRS resource corresponds to 2 ports (B1, infinity)
  • the configured beam management type SRS resource corresponds to 1 port
  • A1 ⁇ B1 ⁇ C1, and A1, B1, and C1 are all positive integers.
  • the number of ports of the SRS resource of the beam management type corresponding to the first numerical interval (ie [0, A1]) shown in Table 14 is 4, that is, the SRS resource of the beam management type corresponding to the first numerical interval is the second terminal
  • the maximum SRS resources of the beam management type that the device can support It should be understood that in Table 14, only the SRS resource of the beam management type corresponding to the first numerical interval is equal to the SRS resource of the beam management type that the second terminal device can support at the maximum as an example, and the SRS resource of the beam management type corresponding to the first numerical interval is used as an example.
  • the SRS resource may also be smaller than the SRS resource of the beam management type that can be supported by the second terminal device at the maximum. For example, the number of ports of the SRS resource of the beam management type corresponding to the first numerical interval is 2.
  • the number of ports of the SRS resources of the beam management type corresponding to the second numerical range is smaller than that of the beams corresponding to the first numerical range
  • the number of ports of the SRS resource of the management type that is to say, the number of ports of the SRS resource of the beam management type corresponding to the second numerical interval can be 2, 1, 0.
  • the beam management corresponding to the second numerical interval is used.
  • the port number of type SRS resource is 2 as an example.
  • the number of ports of the SRS resource of the beam management type corresponding to the second numerical interval is 2
  • the number of ports of the SRS resource of the beam management type corresponding to the third numerical interval may be 1 , 0, in Table 14, the number of ports of the SRS resource of the beam management type corresponding to the third numerical interval is 1 as an example.
  • the network equipment uses the SRS resource corresponding to the first numerical interval as the first SRS resource, that is, the network equipment Configuring beam management type SRS resources with 4 ports for the second terminal device, that is, the network device configures beam management type SRS resources for the second terminal device according to the SRS resources supported by the second terminal device's maximum capability.
  • the network device uses the SRS resource corresponding to the second value interval as the first SRS resource, that is, the network device is the second terminal
  • the device configures SRS resources of the beam management type with 2 ports.
  • the network equipment uses the SRS resource corresponding to the third value interval as the first SRS resource, that is, the network equipment configures the second terminal equipment SRS resource of beam management type with the port number of 1.
  • Example 2 if the network device determines, according to the first information sent by the second terminal device, that the maximum number of ports corresponding to a single SRS resource that the second terminal device can support is 2, the first mapping relationship may be as shown in Table 15:
  • the configured beam management type SRS resource corresponds to 2 ports (A1, infinity]
  • the configured beam management type SRS resource corresponds to 1 port
  • the number of ports of the SRS resource corresponding to the beam management type in the first numerical interval (ie [0, A1]) shown in Table 15 is 2, that is, the SRS resource of the beam management type corresponding to the first numerical interval is the second terminal equipment
  • the maximum SRS resources of the beam management type that can be supported is 2 in Table 15. It should be understood that in Table 15, only the SRS resource of the beam management type corresponding to the first numerical interval is equal to the SRS resource of the beam management type that the second terminal equipment can support at the maximum as an example, and the SRS resource of the beam management type corresponding to the first numerical interval is used as an example.
  • the SRS resources may also be smaller than the SRS resources of type B for beam management that can be supported by the second terminal device at the maximum. For example, the number of ports of the SRS resource of the beam management type corresponding to the first numerical interval is 1.
  • the number of ports of the SRS resources of the beam management type corresponding to the second numerical range is smaller than that of the beams corresponding to the first numerical range
  • the number of ports of the SRS resource of the management type that is, the number of ports of the SRS resource of the beam management type corresponding to the second numerical interval can be 1 or 0.
  • the number of ports of the beam management type corresponding to the second numerical interval is The port number of the SRS resource is 1 as an example.
  • the network equipment uses the SRS resource corresponding to the first numerical interval as the first SRS resource, that is, the network equipment Configuring the SRS resource of the beam management type with the port number of 2 for the second terminal device, that is, the network device configures the SRS resource of the beam management type for the second terminal device according to the maximum capability of the second terminal device to support the SRS resource.
  • the network device uses the SRS resource corresponding to the second value interval as the first SRS resource, that is, the network device configures the second terminal device SRS resource of beam management type with the port number of 1.
  • Example 2 and Table 13 it can be seen that in the process that the network device configures the SRS resource of the beam management type for the second terminal device according to the embodiment of the present application, if the number of the first terminal device is in the first numerical range, then The number of ports of the SRS resource of the beam management type configured by the network device for the second terminal device is equal to the number of ports of the SRS resource of the beam management type that can be supported by the second terminal device; if the number of the first terminal device is in the second numerical interval , then the number of ports of the SRS resource of the beam management type configured by the network device for the second terminal device is equal to min (the maximum number of ports of the SRS resource of the beam management type that the second terminal device can support, 2 ports); if the first terminal The number of devices is in the third numerical interval, then the number of ports that the network device configures the SRS resource of the beam management type for the second terminal device is equal to min (the maximum number of ports of the SRS resource of the beam management type that the second terminal device can
  • the network device may not configure the SRS resource of the beam management type for the second terminal device.
  • the network device may configure the SRS resource of the beam management type for the second terminal device according to the first mapping relationship shown in Table 16.
  • the network device configures the SRS resource of the beam management type for the second terminal device according to the embodiment of the present application
  • the network device may also need to configure the SRS of other types (AS/CB/nonCB) for the second terminal device resource
  • the network device may configure other types of SRS resources for the second terminal device except the beam management type according to the existing resource configuration method.
  • the first SRS resource may include multiple types of SRS resources, that is, the network device may configure multiple types of SRS resources for the second terminal device according to the method provided in the embodiment of the present application.
  • the relationship between the SRS resources corresponding to different numerical ranges can be described as: the total number of ports of the multiple types of SRS resources corresponding to the numerical range #2 is greater than the numerical range The total number of ports of multiple types of SRS resources corresponding to #3, and the number of ports of the first type of SRS resources corresponding to the value interval #2 is greater than the number of ports of the first type of SRS resources corresponding to the value interval #3.
  • the first type of SRS resource is at least one type of SRS resource among multiple types of SRS resources.
  • the number of ports of the SRS resource of the second type corresponding to the value interval #2 is greater than or equal to the number of ports of the SRS resource of the second type corresponding to the value interval #3.
  • the second type of SRS resources are SRS resources other than the first type of SRS resources among the multiple types of SRS resources.
  • the following describes how the network device configures multiple types of SRS resources for the second terminal device simultaneously according to the method of the embodiment of the present application by taking the network device configuring the SRS resources of the AS type and the CB type simultaneously for the second terminal device as an example.
  • the SRS resource configuration policies corresponding to the multiple value intervals may be determined according to the following rules: The number of ports of the AS-type SRS resources configured for the second terminal device is reduced in the order from the kth numerical interval to the kth numerical interval, and then reduced to the number of ports in the order from the k+1th numerical interval to the Nth numerical interval.
  • the number of CB-type SRS resource ports configured by the second terminal device, the number of ports of the AS-type SRS resource configured by the network device for the second terminal device according to the resource configuration policy corresponding to the kth value interval is 0 (that is, according to the antenna switching mode is notSupported processing, no AS type resource), 1 ⁇ k ⁇ N, k is a positive integer.
  • the resource allocation policies corresponding to each numerical range determined according to the above rules are shown in Table 17:
  • the resource allocation policies corresponding to the multiple numerical ranges can also be determined according to the following rules: first, reduce the CB configured for the second terminal device according to the order from the first numerical range to the k'th numerical range.
  • the number of ports of the SRS resource of the type and then reduce the number of SRS resource ports of the AS type configured for the second terminal device in the order from the k'+1 numerical range to the Nth numerical range.
  • the resource configuration policy corresponding to the first value interval is that the number of ports of the CB-type SRS resource configured by the second terminal device is 0 (that is, the antenna switching mode is notSupported, and there is no AS-type resource), 1 ⁇ k' ⁇ N, k ' is a positive integer.
  • the resource allocation policies corresponding to each value interval determined according to the above rules are shown in Table 18:
  • the network device when the network device configures the SRS resources of the AS type and the CB type for the second terminal device, as the number of the first terminal devices increases, the network device can also reduce the number of SRS resources configured for the second terminal device at the same time.
  • the number of ports for SRS resources of AS type and CB type For example, the network device configures the AS type and CB type resource configuration policies for the second terminal device as shown in Table 19:
  • the first mapping relationship can be as shown in Table 20:
  • A1 ⁇ B1 ⁇ C1, and A1, B1, and C1 are all positive integers.
  • the number of ports of the AS type SRS resource and the CB type SRS resource corresponding to the first numerical interval (ie [0, A1]) shown in Table 20 are both 4, that is, the SRS resource corresponding to the first numerical interval is the first The maximum SRS resources that the terminal device can support. It should be understood that in Table 20, only the SRS resource corresponding to the first numerical interval is equal to the SRS resource that the second terminal device can support at the maximum as an example, and the SRS resource corresponding to the first numerical interval can also be smaller than the maximum supported by the second terminal device.
  • the number of ports of the AS-type SRS resource and the CB-type SRS resource corresponding to the first numerical interval is both 2.
  • the total number of ports of the two types of SRS resources corresponding to the second numerical range is less than that of the first numerical range.
  • the total number of ports of the two types of SRS resources that is, the total number of ports of the two types of SRS resources corresponding to the second numerical interval can be 6, 5, 4, 3, 2, 1, 0, Table 20
  • the total number of ports of the two types of SRS resources corresponding to the second numerical interval is 6 as an example.
  • the total number of ports of the two types of SRS resources corresponding to the second numerical interval is 6
  • the total number of ports of the two types of SRS resources corresponding to the third numerical interval can be are 5, 4, 3, 2, 1, and 0.
  • the total number of ports of the two types of SRS resources corresponding to the third numerical interval is 3 as an example.
  • the total number of ports of the two types of SRS resources corresponding to the third numerical interval is 3
  • the total number of ports of the two types of SRS resources corresponding to the fourth numerical interval can be are 2, 1, and 0.
  • the total number of ports of the two types of SRS resources corresponding to the lower 4 numerical ranges is 1 as an example.
  • the network equipment uses the SRS resource corresponding to the second numerical interval as the first SRS resource, that is, the network equipment is not the second terminal equipment Configure the SRS resource of the AS type, and configure the SRS resource of the CB type with the port number of 1 for the second terminal device.
  • the network device configures one SRS resource of the AS type and one SRS resource of the CB type for the second terminal device, the number of ports of the two SRS resources is 1, and the SRS-ResourceId corresponding to the one SRS resource is the same, That is, it can be considered that the SRS resource of the AS type and the SRS resource of the CB type are multiplexed with one resource.
  • the second terminal device supports all types of SRS resources, as the number of the first terminal devices increases, the number of ports of the SRS resources configured by the network device for the second terminal device decreases. It can be understood that the SRS resources configured by the network device for the second terminal device described herein are all types of SRS resources configured by the network device for the second terminal device.
  • the number of nonCB configured The number of ports of the SRS resource of the type + the number of ports of the SRS resource of the beam management type configured by the network device for the second terminal.
  • the number of ports of the SRS resource of the beam management type is the number of ports of the resource 1 of the beam management type + the number of ports of the SRS resource 2 of the beam management type + . . .
  • the resource configuration method provided by the embodiment of the present application can also be described as follows: in the case that the number of the first terminal equipment does not exceed the preset threshold, the number of ports of the SRS resource configured by the network equipment for the second terminal equipment is equal to the number of ports of the second terminal equipment.
  • the maximum number of ports of the SRS resources that the device can support when the number of first terminal devices is greater than the preset threshold, the number of ports of the SRS resources configured by the network device for the second terminal device is less than the maximum number of SRS resources that the second terminal device can support The number of ports for the resource.
  • two consecutive numerical intervals may include [0, A1], (A1, infinity), then if the number of the first terminal equipment does not exceed A1, the network equipment configures the port of the SRS resource for the second terminal equipment
  • the number is equal to the maximum number of ports of the SRS resources that the second terminal device can support; when the number of the first terminal devices is greater than A1, the number of ports of the SRS resources configured by the network device for the second terminal device is less than the maximum number of ports that the second terminal device can support. Number of ports supported for SRS resources.
  • the resource configuration method provided in the embodiment of the present application can also be described as follows: under the condition that the number of first terminal devices does not exceed a preset threshold, the number of ports of the SRS resources configured by the network device for the second terminal device is equal to The maximum number of ports of SRS resources that the second terminal device can support. When the number of first terminal devices exceeds the preset threshold, the number of ports of SRS resources configured by the network device for the second terminal device is less than the maximum number of ports that the second terminal device can support. Number of ports supported for SRS resources. Further, when the number of first terminal devices exceeds the preset threshold, the network device may also configure SRS resources for the second terminal device according to the numerical interval corresponding to the number of first terminal devices and the first mapping relationship.
  • the preset threshold may be A1
  • the continuous numerical interval may include: (A1, B1], (B1, C1], (C1, infinity), then when the number of first terminal devices does not exceed A1, the network
  • the number of SRS resource ports configured by the device for the second terminal device is equal to the maximum number of SRS resource ports that the second terminal device can support; when the number of first terminal devices is greater than A1, the network device is configured by the second terminal device.
  • the number of ports of the SRS resource is less than the maximum number of ports of the SRS resource that the second terminal device can support.
  • the network device may assign the SRS corresponding to the first numerical interval.
  • the resource is used as the first SRS resource; if the number of the first terminal equipment is in the second numerical interval ((B1, C1]), the network device can use the SRS resource corresponding to the second numerical interval as the first SRS resource; If the number of terminal devices is in the third value interval, the network device may use the SRS resource corresponding to the third value interval as the first SRS resource.
  • the critical value of at least one value interval among the plurality of value intervals may be determined according to the number of the first terminal devices. Therefore, it can be understood that, as the number of the first terminal devices changes, the network device can update the critical value of at least one value interval in the plurality of value intervals.
  • the network device for the first terminal device is greater than or equal to the first preset threshold, and the number of terminal devices newly accessed by the first cell is greater than or equal to the second The preset threshold, the total number of ports of the SRS resources configured by the network device for the first terminal device is less than or equal to the third preset threshold, and the number of terminal devices withdrawing from the network in the first cell is greater than or equal to the fourth preset threshold, then the network device The critical value of at least one value interval among the plurality of value intervals is updated according to the number of the first terminal devices.
  • the network device may increase or decrease the maximum value of the numerical range, or may increase or decrease the minimum value of the numerical range.
  • the numerical interval before the update can be recorded as: [0, A1], (A1, B1], (B1, C1], (C1, infinity)
  • the updated numerical interval can be recorded as: [0, A2 ], (A2, B2], (B2, C2], (C2, infinity)
  • the network device may also reconfigure at least one first terminal device in the first terminal device according to the second mapping relationship.
  • SRS resource, and the second mapping relationship is used to indicate the mapping relationship between the updated multiple value intervals and the multiple SRS resources.
  • the following method 500 will describe the resource reconfiguration method provided by the embodiment of the present application.
  • the network device sends resource configuration information.
  • the second device receives resource configuration information.
  • the resource configuration information is used to indicate the SRS resource configured by the network device for the second terminal device.
  • the second terminal device after receiving the resource configuration information, the second terminal device sends the SRS on the SRS resource indicated by the resource configuration information.
  • the network device configures the SRS resource for the terminal device that is currently newly accessed according to the number of terminal devices that have been accessed in the current cell, and when the number of terminal devices that have been accessed in the current cell is relatively large, The network device may configure the terminal device with SRS resources that are smaller than the SRS resources that the terminal device can support at the maximum.
  • the network device can configure SRS resources for more terminal devices, so that the throughput rate of the cell can be improved.
  • the method 200 may further include S250: the network device determines whether the second terminal device is a terminal device of the first type.
  • the first type of terminal equipment includes: a terminal equipment whose transmission data volume is greater than a preset threshold value, and the transmission first can be configured through the 5th generation quality of service indicator (5th generation quality of service indicator, 5QI) value of the fifth generation mobile communication system.
  • the terminal device of the service the terminal device that transmits the first service identified by the transaction identifier (transactionID) or the user data identity identifier (subscribe profile ID).
  • the first service may refer to a service with large traffic, a service with a high priority, a service with a high delay requirement, and the like.
  • the terminal equipment whose transmission data volume is greater than the preset threshold value may also be called a large-packet terminal equipment.
  • the network device may receive a buffer status report (buffer status report, BSR) sent by the second terminal device, and determine whether the second terminal device is based on whether the current amount of data to be sent by the second terminal device indicated by the BSR exceeds a preset threshold value. It is a large package terminal equipment.
  • BSR buffer status report
  • the network device determines that the second terminal device is not a terminal device of the first type, the network device configures the SRS resource for the second terminal device according to the resource configuration method described in S230, that is, the network device uses the SRS resource corresponding to the value interval #1 as The first SRS resource.
  • the network device determines that the second terminal device is a terminal device of the first type, uses the SRS resource corresponding to the value interval #4 (ie, the second value interval) as the first SRS resource.
  • the maximum value of the numerical value interval #4 is smaller than the minimum value of the numerical value interval corresponding to the number of the first terminal devices.
  • the value interval #4 is adjacent to the value interval #1.
  • the network device will allocate more SRS resources to the terminal device of the first type compared to the terminal device of the non-first type.
  • FIG. 3 is only an example, showing a schematic flowchart of a network device configuring CB-type SRS resources for the second terminal device according to the number of the first terminal device and the type of the second terminal device.
  • the method for the network device to configure the SRS resources of the AS type/nonCB type/beam management type for the second terminal device respectively according to the number of the first terminal device and the type of the second terminal device can refer to the process shown in FIG. 3. For brevity, this The application examples are not described in detail again.
  • the network device first obtains the number t of UE#1 (ie, the first terminal device) already accessed by the current cell and the first information from the newly accessed UE#2 (ie, the second terminal device). Further, the network device determines the numerical interval in which t is located.
  • the number of ports of CB-type SRS resources configured by the network device for UE#2 is equal to the maximum number of CB-type SRS resource ports that UE#2 can support.
  • the number of ports of the CB-type SRS resource configured by the network device for UE#2 is in the RRC signaling, and the role (usage) in the SRS resource set (SRS-ResourceSet) is the SRS resource identifier list (srs-ResourceIdList) corresponding to the codebook.
  • the number of ports (nrofSRS-Ports) of the SRS resource in the SRS-Resource indicates.
  • the maximum number of uplink MIMO layers of the CB type that UE#2 can support determined by the auxiliary information of UE#2, and the maximum MIMO capability of UE#2 indicates the uplink MIMO of the CB type supported by the maximum capability of UE#2 determined according to the capability information of UE#2 layers.
  • the number of ports of the CB-type SRS resource configured by the network device for UE#2 is equal to UE# 2
  • the maximum number of SRS resource ports of the CB type that can be supported that is, when UE#2 is a large-packet UE, the network device uses the SRS resource corresponding to the first value interval as the SRS resource configured for UE#2.
  • the number of CB-type SRS resource ports configured by the network device for UE#2 Min( Layer 2, the maximum number of ports that UE#2 can support for CB-type SRS resources).
  • Layer 2 indicates that the number of SRS resource ports of the CB type configured by the network device for UE#2 does not exceed 2.
  • the number of ports of CB-type SRS resources configured by the network device for UE#2 Min (layer 2 , the maximum number of ports of CB type SRS resources that UE#2 can support). That is, when UE#2 is a large-packet UE, the network device uses the SRS resource corresponding to the second value interval as the SRS resource configured for UE#2.
  • the number of CB-type SRS resource ports configured by the network device for UE#2 Min (layer 1 , the maximum number of ports of CB type SRS resources that UE#2 can support). Layer 1 indicates that the number of SRS resource ports of the CB type configured by the network device for UE#2 does not exceed 1.
  • nrofSRS-Ports Min (layer 1, Min(UE#2 auxiliary information MIMO capability, UE#2 capability maximum MIMO capability)).
  • nrofSRS-Ports Min (layer 1, UE#2 has the maximum MIMO capability).
  • the network device configures CB type and AS type SRS resources for the terminal device according to the method provided by the embodiment of the present application, and the terminal device of the first type is a large-packet terminal device as an example.
  • the resource allocation method is explained.
  • the network device first obtains the number t of UE#1 (ie, the first terminal device) already accessed by the current cell and the first information from the newly accessed UE#2 (ie, the second terminal device). Further, the network device determines the numerical interval in which t is located.
  • the number of ports of CB-type SRS resources configured by the network device for UE#2 is equal to the maximum number of ports of CB-type SRS resources that UE#2 can support, and
  • the number of ports of the AS-type SRS resource configured by the network device for UE#2 is equal to the maximum number of AS-type SRS resource ports that UE#2 can support.
  • nrofSRS-Ports of the CB type Min (UE#2 auxiliary information MIMO capability, UE#2 capability maximum MIMO capability), UE#2 auxiliary information MIMO capability indicates The maximum number of uplink MIMO layers of the CB type that UE#2 can support determined according to the auxiliary information of UE#2, and the maximum MIMO capability of UE#2 indicates the CB type that UE#2 can support with the maximum capability determined according to the capability information of UE#2 The number of uplink MIMO layers.
  • AS type nrofSRS-Ports Min (UE#2 auxiliary information antenna switching capability, UE#2 capability maximum antenna switching capability), UE#2 auxiliary information antenna switching capability means UE#2 can be determined according to the auxiliary information of UE#2.
  • Supported antenna switching modes of the AS type, the maximum antenna switching capability of the UE#2 capability indicates the antenna switching mode of the AS type supported by the maximum capability of the UE#2 determined according to the capability information of the UE#2.
  • UE#2's auxiliary information antenna switching mode capability is t1r2
  • UE#2's maximum antenna switching capability is t2r4
  • the number of ports of the CB-type SRS resource configured by the network device for UE#2 is equal to UE# 2
  • the maximum number of SRS resource ports of the CB type that can be supported, and the number of ports of the AS type SRS resource configured by the network device for UE#2 is equal to the maximum number of AS type SRS resource ports that UE#2 can support. That is, when UE#2 is a large-packet UE, the network device uses the SRS resource corresponding to the first value interval as the SRS resource configured for UE#2.
  • the number of CB-type SRS resource ports configured by the network device for UE#2 is equal to UE# 2
  • the number of AS-type SRS resource ports configured by the network device for UE#2 Min (2, the maximum number of AS-type SRS resource ports that UE#2 can support). 2 indicates that the number of SRS resource ports of the AS type configured by the network device for UE#2 does not exceed 2.
  • the nrofSRS-Ports of the CB type Min (the auxiliary information MIMO capability of UE#2, the maximum MIMO capability of UE#2 capability).
  • nrofSRS-Ports of AS type Min(2, Min(UE#2 auxiliary information antenna switching capability, UE#2 capability maximum antenna switching capability)).
  • UE#2's auxiliary information antenna switching capability is t1r2
  • UE#2's maximum antenna switching capability is t2r4
  • the second terminal device is configured with an AS-type SRS resource with a port number of 2.
  • nrofSRS-Ports of CB type maximum MIMO capability of UE#2 capability.
  • the number of ports of CB-type SRS resources configured by the network device for UE#2 is equal to UE# 2
  • the number of SRS resource ports of AS type configured by the network device for UE#2 Min(2, the maximum number of ports of SRS resources of AS type that UE#2 can support ). That is, when UE#2 is a large-packet UE, the network device uses the SRS resource corresponding to the second value interval as the SRS resource configured for UE#2.
  • the number of CB-type SRS resource ports configured by the network device for UE#2 Min( Layer 2, the maximum number of ports that UE#2 can support for CB-type SRS resources).
  • Layer 2 indicates that the number of SRS resource ports of the CB type configured by the network device for UE#2 does not exceed 2.
  • the number of AS-type SRS resource ports configured by the network device for UE#2 Min (1, the maximum number of AS-type SRS resource ports that UE#2 can support). 1 indicates that the number of SRS resource ports of the AS type configured by the network device for UE#2 does not exceed 1.
  • UE#2's auxiliary information antenna switching capability is t1r2
  • UE#2's maximum antenna switching capability is t2r4
  • the network device is
  • the second terminal device is configured with an AS type SRS resource with a port number of 1.
  • the network device configures the AS type SRS resource with 1 port number for the second terminal device.
  • the second terminal device is configured with a CB type SRS resource with a port number of 1.
  • the network device in the process of configuring the SRS resource for the second terminal device by the network device, in the case of considering the type of the newly accessed terminal device, the network device may be the newly accessed first type of terminal device Allocate more SRS resources to ensure efficient use of SRS resources.
  • the network equipment has more SRS resources configured for the terminal equipment (ie, the first terminal equipment) that has been accessed by the first cell, but has less SRS resources that have not been allocated, the network equipment can be used for the first cell.
  • Some of the accessed terminal devices reconfigure SRS resources.
  • the network device may also re-allocate SRS resources for some of the terminal devices already accessed by the first cell .
  • the network device may be a certain one of the terminal devices that have been accessed by the first cell. Some terminal devices reconfigure SRS resources.
  • the network device may also re-allocate SRS resources for some of the terminal devices that have been accessed by the first cell.
  • FIG. 5 shows a schematic flowchart of a method for resource reconfiguration provided by an embodiment of the present application.
  • the method 500 may include S510 to S540, and each step will be described in detail below.
  • the network device configures SRS resources for terminal device #1 to terminal device #3.
  • this embodiment of the present application does not limit how the network device configures the SRS resources to the terminal device #1 to the terminal device #3.
  • the following describes the process of configuring the SRS resource for the terminal device #1 by the network device by taking the terminal device #1 as an example.
  • S510 may be that the network device configures the SRS resource for the terminal device #1 during the initial access process of the terminal device #1. It can be understood that during the initial access process of terminal device #1, terminal device #1 can send its own capability information to the network device, and further, the network device can configure SRS for terminal device #1 according to the capability information of terminal device #1 resource.
  • the network device may configure SRS resources for terminal device #1 according to an existing resource configuration method, or may configure SRS resources for terminal device #1 according to the resource configuration method described in the foregoing method 200 .
  • For the description of the capability information of the terminal device #1 reference may be made to the description of the capability information of the second terminal device in S220 above.
  • S510 may also be that the network device configures SRS resources for the terminal device under the condition that the terminal device #1 is overheated or expects to reduce power. It can be understood that in the case that terminal device #1 is overheated or is expected to reduce power, terminal device #1 can send auxiliary information of terminal device #1 to the network device, and further, the network device can Device #1 configures SRS resources.
  • the network device may configure the SRS resource for the terminal device according to the existing resource configuration method, or may configure the SRS resource for the terminal device according to the resource configuration method described in the foregoing method 200 .
  • the auxiliary information of the terminal device #1 reference may be made to the description of the auxiliary information of the second terminal device in S220 above.
  • the process of configuring the SRS resource by the network device for the terminal device #2 or the terminal device #3 is similar to the process of configuring the SRS resource for the terminal device #1 by the network device, and for brevity, it will not be described in detail here.
  • terminal equipment #1 to the terminal equipment #3 are terminal equipments that have been accessed by the first cell. It should also be understood that the embodiments of the present application only use terminal equipment #1 to terminal equipment #3 for illustration, and the number of terminal equipments that have been accessed by the first cell may be larger.
  • terminal equipment #1 to terminal equipment #3 are described as the first terminal equipment, and the first terminal equipment is the terminal equipment to which the first cell has accessed.
  • the network device determines whether the first condition or the second condition is satisfied.
  • the first condition is at least one of the following: the number of ports of the SRS resource configured by the network device for the first terminal device is greater than or equal to a first preset threshold (hereinafter, the first preset threshold is denoted as M), the current cell is newly connected The number of incoming terminal devices is greater than or equal to the second preset threshold (hereinafter, the second preset threshold is denoted as L).
  • the second condition is at least one of the following: the number of ports of the SRS resource configured by the network device for the first terminal device is less than or equal to a third preset threshold (hereinafter, the third preset threshold is denoted as P), the terminal of the current cell withdrawing from the network The number of devices is greater than or equal to a fourth preset threshold (hereinafter, the fourth preset threshold is denoted as Q).
  • a third preset threshold hereinafter, the third preset threshold is denoted as P
  • Q fourth preset threshold
  • the number of ports of the SRS resources configured by the network device for the first terminal device the number of ports of the SRS resources configured by the network device for the first first terminal device + the number of ports of the SRS resources configured by the network device for the first terminal device
  • the newly accessed terminal device is a terminal device that simultaneously accesses the first cell at the current moment, or the newly accessed terminal device is a terminal device that accesses the first cell from a certain moment.
  • the certain time may be the time when the number of the first terminal devices reaches the maximum value of the first value interval, that is, the certain time may be the time when the number of the first terminal devices reaches A1. It can be understood that the terminal equipment accessed after the A1 th first terminal equipment can be regarded as the newly accessed terminal equipment.
  • the certain time may be the time when the number of the first terminal devices reaches the maximum value of the second value interval, that is, the certain time may be the time when the number of the first terminal devices reaches B1. It can be understood that the terminal equipment accessed after the B1th first terminal equipment can be regarded as the newly accessed terminal equipment.
  • the terminal equipment that is withdrawn from the network is the total terminal equipment that is withdrawn from the network from the first terminal equipment that withdraws from the network in the first cell.
  • the terminal device that has been withdrawn from the network may be a terminal device that has been withdrawn from the network from a certain time.
  • the certain time may be the time when the number of the first terminal devices reaches the maximum value of the first value interval, that is, the certain time may be the time when the number of the first terminal devices reaches A1. It can be understood that after the number of the first terminal devices reaches A1, the terminal devices that are withdrawn from the network can be considered as terminal devices that are withdrawn from the network. However, before the number of the first terminal devices reaches A1, the terminal devices that are withdrawn from the network are not considered to be terminal devices that are withdrawn from the network.
  • the network device determines that the first condition is satisfied, the network device executes S530. If the network device determines that the second condition is satisfied, the network device executes S540.
  • the network device reconfigures the SRS resource for the terminal device #1.
  • Terminal device #1 may be understood as at least one terminal device in the first terminal device. That is, when the first condition is satisfied, the network device may reconfigure the SRS resources for one or more first terminal devices in the first terminal devices. In the embodiment of the present application, it is shown in FIG. 5 that the network device reconfigures the SRS resource for the terminal device #1 under the condition that the first condition is satisfied, which is only an example.
  • the network device may reconfigure the SRS resource for the terminal device #1 according to the sequence number of the first terminal device and the second mapping relationship.
  • the second mapping relationship is used to indicate the mapping relationship between the multiple value intervals and the SRS resource.
  • the network device may determine the SRS resource corresponding to the value interval #1 as the SRS resource reassigned to the terminal device #1, and the value interval #1 is the value interval corresponding to the serial number of the terminal device #1.
  • the serial number of the terminal device #1 is determined according to the order in which the t first terminal devices access the first cell. For example, if the terminal device #1 is the first one among the t first terminal devices to access the first cell, the sequence number of the terminal device #1 is 1.
  • the second mapping relationship may be determined according to the number of the first terminal devices and the SRS resources that the first terminal device can support at the maximum.
  • the multiple SRS resources may be determined according to the SRS resources that the first terminal device can support at the maximum.
  • the multiple value intervals may be determined according to the number of first terminal devices, for example, the critical value of at least one value interval in the multiple value intervals is determined according to the number of first terminal devices.
  • the critical value of a numerical interval can be the maximum and/or minimum value of the numerical interval.
  • the relationship between the SRS resources corresponding to different numerical ranges is as follows: the number of ports of the SRS resources corresponding to the numerical range #2 is greater than the number of ports of the SRS resources corresponding to the numerical range #3, and the numerical range #2 and the numerical range #3 are more. Any two value intervals in the number interval that satisfy the following relationship: the maximum value in the value interval #2 is less than the minimum value in the value interval #3. That is to say, in the case where the SRS resources are reconfigured for the terminal device #1 according to the method provided in the embodiment of the present application, the earlier the terminal device #1 accesses the current cell, the network device is the SRS resource reconfigured by the terminal device #1. The larger the number of ports.
  • the SRS resource reconfigured by the network device for the terminal device #1 is the SRS resource of the AS type.
  • the network device reconfigures the SRS resources of the AS type for the terminal device #1, the plurality of numerical ranges indicated by the second mapping relationship and the SRS resources corresponding to each numerical range can satisfy the resource configuration policies shown in Table 21:
  • the serial number of the first terminal device SRS resource allocation strategy in different intervals [0, A2] The total number of configured AS type SRS resource ports does not exceed 4 (A2, B2] The total number of configured AS type SRS resource ports does not exceed 2 (B2, C2] The total number of configured AS type SRS resource ports does not exceed 1 (C2, infinity) Do not configure AS type SRS resources
  • Table 21 is only an example. With the development of technology, the maximum number of ports of SRS resources of the AS type that the terminal device can support may increase to 6, 8, 10, etc., then the different values shown in Table 21
  • the resource configuration policy corresponding to the interval may change, for example, the resource configuration policy corresponding to [0, A1] may be: the total number of configured AS type SRS resource ports does not exceed 6.
  • the total number of ports of the AS type SRS resources configured by the network device for the first terminal device should not exceed 4. It can be seen from the above that the maximum number of ports of the AS-type SRS resources that the network device can configure for the terminal device is 4, that is, if the serial number of the first terminal device is in the first numerical range, then in S530, the network device can SRS resources are not reallocated for the first terminal device.
  • the total number of ports of the AS type SRS resources configured by the network device for the first terminal device should not exceed 2. If in S510, the total number of ports of the AS-type SRS resources configured by the network device for the first terminal device exceeds 2, then in S530, the network device may reconfigure SRS resources for the first terminal device, and the network device can reconfigure the SRS resources for the first terminal device in S530.
  • the number of ports of the AS-type SRS resource reconfigured by terminal device #1 does not exceed 2. That is to say, the terminal device #1 may be a terminal device whose serial number is in the second numerical range, and the number of ports of the previously configured AS-type SRS resource exceeds 2.
  • the total number of ports of the AS type SRS resources configured by the network device for the first terminal device should not exceed 1. If in S510, the total number of ports of the AS-type SRS resources configured by the network device for the first terminal device exceeds 1, then in S530, the network device may reconfigure the SRS resources for the first terminal device, and the network device can reconfigure the SRS resources for the first terminal device in S530.
  • the number of ports of the AS-type SRS resource reconfigured by terminal device #1 does not exceed 1. That is to say, the terminal device #1 may be a terminal device whose serial number is in the second numerical range, and the number of ports of the previously configured AS-type SRS resource exceeds 1.
  • the network device When the serial number of the first terminal device is in the fourth numerical range, the network device does not configure the SRS resource of the AS type for the first terminal device. If in S510, the network device configures the SRS resource of the AS type for the first terminal device, then in S530, the network device may release the SRS resource configured for the first terminal device. That is to say, the terminal device #1 may be a terminal device whose serial number is in the 4th numerical range and is previously configured with the SRS resource of the AS type.
  • the second mapping relationship can be shown in Table 22 :
  • the serial number of the first terminal device SRS resources in different intervals [0, A2]
  • the configured AS type SRS resource corresponds to t2r4 (A2, B2]
  • the configured AS type SRS resource corresponds to t2r2/t1r2 (B2, C2]
  • the configured AS type SRS resource corresponds to t1r1 (C2, infinity) Do not configure AS type SRS resources
  • A2 ⁇ B2 ⁇ C2, and A2, B2, and C2 are all positive integers.
  • the number of ports of the AS-type SRS resource corresponding to the first numerical interval (ie [0, A2]) shown in Table 22 is 4, that is, the AS-type SRS resource corresponding to the first numerical interval is the largest for terminal equipment #1 SRS resources of the AS type that can be supported. It should be understood that in Table 22, only the SRS resource of the AS type corresponding to the first numerical interval is equal to the SRS resource of the AS type that the terminal device #1 can support the maximum as an example, and the SRS resource of the AS type corresponding to the first numerical interval is also The SRS resource of the AS type that can be supported by the terminal device #1 can be smaller than the maximum. For example, the number of ports of the SRS resource of the AS type corresponding to the first numerical interval is 2.
  • the number of ports of the SRS resources of the AS type corresponding to the second numerical range is less than that of the AS type corresponding to the first numerical range
  • the number of ports of the SRS resource that is, the number of ports of the SRS resource of the AS type corresponding to the second numerical interval can be 2, 1, and 0.
  • the SRS resource of the AS type corresponding to the second numerical interval is used.
  • the number of ports is 2 as an example.
  • the port number of the AS type SRS resource corresponding to the third numerical interval (ie (B2, C2)) may be 1, 0 , in Table 22, the number of ports of the SRS resource of the AS type corresponding to the third numerical interval is 1 as an example.
  • the port number of the AS type SRS resource corresponding to the third numerical interval is 1
  • the port number of the AS type SRS resource corresponding to the fourth numerical interval is 0 (that is, according to Antenna switching mode is notSupported processing, no AS type resources).
  • the network device may release the AS-type SRS resources configured for terminal device #1.
  • the network device needs to release a part of the SRS resources configured for the first terminal device by reconfiguring the SRS resources for the terminal device #1, so as to increase the unallocated SRS resources of the current cell.
  • the network device configures the SRS resource for the first terminal device according to the resource configuration method described in the above method 200, then the multiple value ranges indicated by the first mapping relationship and the multiple values indicated by the second mapping relationship In the case where the intervals are exactly the same, the number of ports of the SRS resource configured for each first terminal device is the SRS resource corresponding to the numerical interval in which the respective serial number is located. Therefore, when the multiple numerical ranges indicated by the first mapping relationship and the multiple numerical ranges indicated by the second mapping relationship are different, the network device may release a part of the SRS resources by re-allocating the SRS resources for the terminal device #1.
  • the relationship between the multiple numerical ranges indicated by the second mapping relationship and the multiple numerical ranges indicated by the first mapping relationship may be: the maximum value of at least one numerical range among the multiple numerical ranges indicated by the second mapping relationship is smaller than the first The maximum value of the corresponding value interval among the plurality of value intervals indicated by a mapping relationship.
  • the corresponding numerical ranges among the multiple numerical ranges indicated by the first mapping relationship and the multiple numerical ranges indicated by the second mapping relationship may be understood as: numerical ranges corresponding to the same SRS resources.
  • the critical points A1, B1, C1, etc. of the multiple numerical ranges indicated by the first mapping relationship can be changed. Therefore, the second mapping relationship can also be understood as obtained by the network device after updating the first mapping relationship. of.
  • the updating of the first mapping relationship may be understood as updating the critical value of at least one value interval among the plurality of value intervals indicated by the first mapping relationship.
  • S530 can also be understood as: if the first condition is satisfied, update the critical value of at least one value interval in the plurality of value intervals indicated by the first mapping relationship to obtain the second mapping relationship; further ground, the SRS resources are reconfigured for terminal device #1 according to the second mapping relationship.
  • the multiple numerical ranges indicated by the first mapping relationship are [0, A1], (A1, B1], (B1, C1], (C1, infinity)
  • the multiple numerical ranges indicated by the second mapping relationship are [0 , A2], (A2, B2], (B2, C2], (C2, infinity)
  • the network device The SRS resource of the AS type may be reconfigured for the first terminal device whose sequence number is in (A2, A1] and the total port number of the configured SRS resources of the AS type exceeds 2. That is, the terminal device #1 may be the first terminal device whose sequence number is in ( A2, A1], a terminal device whose total port number of configured AS-type SRS resources exceeds 2.
  • the terminal device #1 may also be a terminal device other than the first type. That is to say, even if the SRS resource configured by terminal device #1 is the SRS resource corresponding to the numerical interval in which the serial number of terminal device #1 is located, in the case where terminal device #1 is not a terminal device of the first type, the network device will The SRS resources may be reconfigured for the terminal device #1, that is, the number of ports of the SRS resources configured for the terminal device #1 may be reduced.
  • the serial number of terminal device #1 is in the first numerical range indicated by the second mapping relationship, and the number of ports of the AS type SRS resource configured for terminal device #1 is 4, which satisfies the first numerical value indicated by the second mapping relationship.
  • the SRS resource corresponding to the interval. If the terminal device #1 is not a terminal device of the first type, in S530, the network device can still reconfigure the SRS resource of the AS type for the terminal device #1. For example, the network device may reconfigure the AS type for the terminal device #1.
  • the port number of the SRS resource is 2.
  • the network device reconfiguring the SRS resources of the AS type for terminal device #1 in S530 as an example.
  • the network device can reconfigure other types of SRS resources for terminal device #1 according to the same method. SRS resources, or re-allocate multiple types of SRS resources at the same time. It can be understood that the number of ports of the SRS resource reconfigured by the network device for terminal device #1 in S530 is less than the number of ports of the SRS resource configured for terminal device #1 in S510.
  • the The method of reconfiguring SRS resources for a part of terminal equipment can release part of the SRS resources as idle resources, so that the network equipment can configure SRS resources for more newly accessed terminal equipment. , to improve the throughput of the cell.
  • the network device reconfigures the SRS resource for the terminal device #2.
  • Terminal device #2 may be understood as at least one terminal device in the first terminal device. That is, if the second condition is satisfied, the network device may reconfigure the SRS resources for one or more first terminal devices in the first terminal devices. In the embodiment of the present application, it is shown in FIG. 5 that the network device reconfigures the SRS resource for the terminal device #2 under the condition that the first condition is satisfied, which is only an example.
  • the network device may reconfigure the SRS resource for the terminal device #2 according to the sequence number of the first terminal device and the second mapping relationship.
  • the second mapping relationship is used for the mapping relationship between multiple numerical ranges and SRS resources.
  • the network device may determine the SRS resource corresponding to the value interval #1 as the SRS resource reassigned to the terminal device #2, and the value interval #1 is the value interval corresponding to the serial number of the terminal device #2.
  • the sequence number of the terminal device #2 is determined according to the order in which the t first terminal devices access the current cell. For example, the terminal device #2 is the first one among the t first terminal devices to access the current cell, and the sequence number of the terminal device #2 is 1.
  • the SRS resource reconfigured by the network device for the terminal device #2 is the SRS resource of the AS type.
  • the network device reconfigures the SRS resources of the AS type for the terminal device #2
  • the plurality of numerical ranges indicated by the second mapping relationship and the SRS resources corresponding to each numerical range can satisfy the resources shown in Table 21 above. Configure policies. According to Table 21, when the serial number of the first terminal device is in the first second numerical range, the total number of ports of the AS type SRS resources configured by the network device for the first terminal device should not exceed 4.
  • the maximum number of ports of the AS-type SRS resources that the network device can configure for the terminal device is 4, that is, if in S510, the network device configures the SRS resource for the first terminal device according to the existing method, and the first terminal device is configured with SRS resources. If the serial number of a terminal device is in the first numerical range, in S530, the network device may not re-allocate SRS resources for the first terminal device.
  • the network device configures the SRS resource for the first terminal device according to the method 200, then when the first terminal device is withdrawn from the network, the serial numbers of the remaining first terminal devices will be updated, and there may be some first terminal devices. For the device, the original serial number is in the second numerical range, and the updated serial number is in the first numerical range. If the number of ports of the AS-type SRS resource that the first terminal device with the updated sequence number is in the first numerical range can support is 4, the network device may reconfigure the AS-type SRS resource for the first terminal device.
  • the terminal device #2 may be a terminal whose serial number is in the first numerical range, and the number of ports of the previously configured AS-type SRS resources is less than 4 and less than the maximum number of ports of the AS-type SRS resources that it can support. equipment.
  • the total number of ports of the AS type SRS resources configured by the network device for the first terminal device should not exceed 2. If in S510, the total number of ports of the AS-type SRS resources configured by the network device for the first terminal device is less than 2 and less than the maximum number of ports of the AS-type SRS resources that the first terminal device can support, then in S530, The network device may reconfigure the SRS resource for the first terminal device, and the number of ports of the AS-type SRS resource reconfigured by the network device for the terminal device #1 does not exceed 2.
  • the terminal device #2 may be a terminal whose serial number is in the second numerical range, and the number of ports of the previously configured AS-type SRS resources is less than 2 and less than the maximum number of AS-type SRS resources that it can support. equipment.
  • the total number of ports of the AS type SRS resources configured by the network device for the first terminal device should not exceed 1. If in S510, the network device is the SRS resource of the AS type configured by the key of the first terminal device, and the first terminal device can support the SRS resource of the AS type, then in S530, the network device can be the first terminal device.
  • the device is configured with an AS-type SRS resource on one port. That is to say, the terminal device #2 may be a terminal device whose serial number is in the third numerical range and has not been previously configured with the SRS resource of the AS type.
  • the network device When the serial number of the first terminal device is in the fourth second numerical range, the network device does not configure the SRS resource of the AS type for the first terminal device.
  • the second mapping relationship can be as shown in Table 22 above shown.
  • the network device needs to configure more SRS resources for the first terminal device by reconfiguring the SRS resources for the terminal device #2, so that the use of the SRS resources is efficient.
  • the network device configures the SRS resource for the first terminal device according to the resource configuration method described in the above method 200, and the first terminal device does not log out of the network, the plurality of numerical ranges indicated by the first mapping relationship and In the case where the plurality of numerical ranges indicated by the second mapping relationship are identical, the number of ports of the SRS resources configured for each first terminal device is the SRS resources corresponding to the numerical ranges in which the respective serial numbers are located. Therefore, in the case where the multiple numerical ranges indicated by the first mapping relationship and the multiple numerical ranges indicated by the second mapping relationship are different, the network device may configure the terminal device #2 by reconfiguring the SRS resources for the terminal device #2 More SRS resources.
  • the relationship between the plurality of numerical ranges indicated by the second mapping relationship and the plurality of numerical ranges indicated by the first mapping relationship may be: the second mapping relationship indicates that the maximum value of at least one numerical range in the plurality of numerical ranges is greater than that of the first mapping The maximum value of the corresponding value interval among the multiple value intervals indicated by the relationship.
  • the corresponding numerical ranges among the multiple numerical ranges indicated by the first mapping relationship and the multiple numerical ranges indicated by the second mapping relationship may be understood as: numerical ranges corresponding to the same SRS resources.
  • the critical points A1, B1, C1, etc. of the multiple numerical ranges indicated by the first mapping relationship can be changed. Therefore, the second mapping relationship can also be understood as obtained by the network device after updating the first mapping relationship. of.
  • the updating of the first mapping relationship may be understood as updating the critical value of at least one value interval among the plurality of value intervals indicated by the first mapping relationship.
  • S530 can also be understood as: if the second condition is satisfied, update the critical value of at least one value interval in the plurality of value intervals indicated by the first mapping relationship to obtain the second mapping relationship; further ground, the SRS resources are reconfigured for the terminal device #2 according to the second mapping relationship.
  • the multiple numerical ranges indicated by the first mapping relationship are [0, A1], (A1, B1], (B1, C1], (C1, infinity)
  • the multiple numerical ranges indicated by the second mapping relationship are [0 , A3], (A3, B3], (B3, C3], (C3, infinity)
  • the network device can For the first terminal device whose sequence number is in (A1, A3] and the maximum number of ports of the SRS resource of the AS type that can be supported is greater than 2, the SRS resource of the AS type is reconfigured. That is to say, the terminal device #2 may have a sequence number in (A1 , A3], the maximum number of ports that can support the AS type SRS resource is greater than 2 terminal equipment.
  • the terminal device #2 may also be a terminal device of the first type. That is to say, even if the port number of the SRS resource configured by terminal device #2 is the SRS resource corresponding to the numerical interval in which the serial number of terminal device #2 is located, in the case where terminal device #2 is the first type of terminal device,
  • the network device may also reconfigure the SRS resources for the terminal device #2, that is, increase the number of ports of the SRS resources configured for the terminal device #2.
  • the serial number of terminal device #2 is in the second numerical range indicated by the second mapping relationship, and the number of ports of the AS type SRS resource configured for terminal device #2 is 2, which satisfies the second numerical value indicated by the second mapping relationship.
  • the SRS resource corresponding to the interval. If the terminal device #2 is the first type of terminal device, and the maximum number of ports of the AS type SRS resource that the terminal device #2 can support is 4, then in S530, the network device can still reconfigure the AS for the terminal device #2 Type of SRS resource, for example, the number of ports of the AS type SRS resource reconfigured by the network device for terminal device #2 is 4.
  • the network device reconfiguring the SRS resources of the AS type for terminal device #2 in S540 as an example.
  • the network device can reconfigure other types of SRS resources for terminal device #2 according to the same method. SRS resources, or re-allocate multiple types of SRS resources at the same time. It can be understood that the number of ports of the SRS resources reconfigured by the network device for the terminal device #2 in S540 is greater than the number of ports of the SRS resources configured for the terminal device #2 in S510.
  • the number of the plurality of numerical ranges indicated by the second mapping relationship and the plurality of numerical ranges indicated by the first mapping relationship are equal in number for illustration, and the embodiments of the present application do not limit the second mapping. Whether the numbers of the multiple numerical ranges indicated by the relationship and the multiple numerical ranges indicated by the first mapping relationship are equal. That is to say, the number of the multiple numerical ranges indicated by the first mapping relationship and the number of multiple numerical ranges indicated by the second mapping relationship may be equal.
  • the multiple numerical ranges indicated by the first mapping relationship may include: [0, A1 ], (A1, B1], (B1, C1], (C1, infinity)
  • the plurality of numerical intervals indicated by the second mapping relationship may include: [0, A2], (A2, B2], (B2, C2] , (C2, infinity);
  • the number of the plurality of numerical intervals indicated by the first mapping relationship and the plurality of numerical intervals indicated by the second mapping relation may also be unequal, for example, the plurality of numerical intervals indicated by the first mapping relation may include : [0, A1], (A1, B1], (B1, C1], (C1, infinity),
  • the plurality of numerical ranges indicated by the second mapping relationship may include: (A2, B2], (B2, C2], (C2, infinity); for another example, the plurality of numerical ranges indicated by the first mapping relationship may include: [0, A1], (A1, B1], (B1, C1], (C1, infinity), the second mapping relationship
  • the first cell has accessed part of the SRS resources.
  • the terminal equipment reconfigures the SRS resources in a manner that configures more SRS resources for the part of the terminal equipment, thereby ensuring efficient use of the SRS resources.
  • the resource reconfiguration method provided in this embodiment of the present application can also be described as: when the serial number of the first terminal device does not exceed the preset threshold, the network device reconfigures the first terminal device The port number of the SRS resource is equal to the port number of the SRS resource that the first terminal device can support at the maximum; in the case that the serial number of the first terminal device is greater than the preset threshold, the network device is the port of the SRS resource reconfigured by the first terminal device The number is less than the maximum number of ports of the SRS resource that the first terminal device can support. It can be understood that the first terminal device mentioned here may be a certain first terminal device among the t first terminal devices.
  • the plurality of numerical ranges indicated by the second mapping relationship may include [0, A2], (A2, infinity), then if the serial number of the first terminal device does not exceed A2, the network device reconfigures the first terminal device
  • the number of ports of the SRS resource is equal to the number of ports of the SRS resource that the second terminal device can support; in the case where the number of the first terminal device is greater than A2, the number of ports of the SRS resource reconfigured by the network device for the first terminal device is less than The maximum number of ports of the SRS resource that the first terminal device can support.
  • the method for resource reconfiguration provided in this embodiment of the present application may also be described as: in the case that the serial number of the first terminal device does not exceed a preset threshold, the network device is the port of the SRS resource reconfigured by the first terminal device.
  • the number is equal to the maximum number of ports of the SRS resource that the first terminal device can support, and when the serial number of the first terminal device exceeds the preset threshold, the number of ports of the SRS resource reconfigured by the network device for the first terminal device is less than the number of ports of the first terminal device The maximum number of ports for SRS resources that the device can support.
  • the network device may further reconfigure the SRS resource for the first terminal device according to the serial number of the first terminal device and the second mapping relationship.
  • the preset threshold may be A2
  • the multiple binary value intervals indicated by the second mapping relationship may include: (A2, B2], (B2, C2], (C2, infinity), then the sequence number of the first terminal device does not In the case of exceeding A2, the number of ports of the SRS resources reconfigured by the network device for the first terminal device is equal to the number of ports of the SRS resources that the first terminal device can support; The number of ports of the SRS resource reconfigured by the device for the first terminal device is less than the number of ports of the SRS resource that the first terminal device can support at maximum.
  • the network device may assign the SRS corresponding to the first numerical interval.
  • the resource is used as the SRS resource reassigned to the first terminal device; if the serial number of the first terminal device is in the second numerical interval ((B2, C2]), the network device can use the SRS resource corresponding to the second second numerical interval as SRS resources reassigned to the first terminal device; if the serial number of the first terminal device is in the third value interval, the network device may use the third value interval as the SRS resource reassigned to the first terminal device.
  • FIG. 6 shows a schematic flowchart of a method for resource configuration provided by another embodiment of the present application. As shown in FIG. 6 , the method 600 may include S610 to S630, and each step will be described in detail below.
  • the network device receives the first information.
  • the second terminal device sends the first information.
  • the first information is used to determine the maximum SRS resource that the second terminal device can support. Alternatively, it can also be said that the first information is used to determine the maximum number of ports of the SRS resource that the second terminal device can support.
  • the first information may include capability information of the second terminal device and/or auxiliary information of the second terminal device.
  • the network device determines the SRS resource corresponding to the second terminal device according to the type of the second terminal device.
  • the number of ports of the SRS resource corresponding to the second terminal device determined by the network device is equal to the maximum number of ports of the SRS resource that the second terminal device can support.
  • the network device determines according to the first information that the maximum number of ports of the AS type SRS resource that the second terminal device can support is 4, then if the second terminal device is a terminal device of the first type, the first The number of ports of the AS-type SRS resource corresponding to the two terminal devices is 4.
  • the network device determines, according to the first information, that the maximum number of ports of the CB type SRS resource that the second terminal device can support is 2, then if the second terminal device is a first type of terminal device, the network device determines The number of ports of the CB-type SRS resource corresponding to the second terminal device is 2.
  • the number of ports of the SRS resource corresponding to the second terminal device determined by the network device is less than the maximum number of ports of the SRS resource that the second terminal device can support.
  • the network device determines, according to the first information, that the maximum number of ports of the AS type SRS resource that the second terminal device can support is 2, then if the second terminal device is not a terminal device of the first type, the The number of ports of the AS type SRS resource corresponding to the two terminal devices is 2, 1 or 0.
  • the network device determines, according to the first information, that the maximum number of ports of the CB-type SRS resource that the second terminal device can support is 2, then if the second terminal device is not a terminal device of the first type, the network device determines The port number of the CB-type SRS resource corresponding to the second terminal device is 1 or 0.
  • the terminal equipment of the first type includes: terminal equipment whose amount of transmitted data is greater than a preset threshold value, and which can be configured for transmission through the 5th generation quality of service indicator (5QI) value of the fifth generation mobile communication system
  • the terminal device of the first service the terminal device that transmits the first service identified by the transaction identifier (transactionID) or the user data identity identifier (subscribe profile ID).
  • the first service may refer to a service with large traffic, a service with a high priority, a service with a high delay requirement, and the like.
  • the network device sends resource configuration information.
  • the second device receives resource configuration information.
  • the resource configuration information is used to indicate the SRS resource configured by the network device for the second terminal device.
  • the second terminal device after receiving the resource configuration information, the second terminal device sends the SRS on the SRS resource indicated by the resource configuration information.
  • the network device in the process of configuring the SRS resource for the second terminal device by the network device, in the case of considering the type of the newly accessed terminal device, the network device may be the newly accessed first type of terminal device Allocate more SRS resources to ensure efficient use of SRS resources.
  • the terminal device and/or the network device may execute some or all of the steps in the embodiments. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of various operations. In addition, various steps may be performed in different orders presented in various embodiments, and may not be required to perform all operations in the embodiments of the present application. Moreover, the size of the sequence number of each step does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present application.
  • FIG. 7 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1000 may include a processing unit 1100 and a transceiver unit 1200 .
  • the communication apparatus 1000 may correspond to the terminal device in the above method embodiments, for example, may be a terminal device, or a component (such as a circuit, a chip or a chip system, etc.) configured in the terminal device.
  • the communication apparatus 1000 may correspond to the terminal equipment in the method 200, the method 500 and the method 600 according to the embodiments of the present application, and the communication apparatus 1000 may include a method for executing the method 200 in FIG. 2 and the method in FIG. 5 . 500 and the unit of the method performed by the terminal device in the method 600 in FIG. 6 .
  • each unit in the communication apparatus 1000 and the above-mentioned other operations and/or functions are respectively for implementing the corresponding processes of the method 200 in FIG. 2 , the method 500 in FIG. 5 and the method 600 in FIG. 6 .
  • the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the communication apparatus 2000 shown in FIG. 8 or the transceiver 2020 in FIG. 9 .
  • the transceiver 3020 in the shown terminal device 3000, the processing unit 1100 in the communication apparatus 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the communication apparatus 2000 shown in FIG. 8 or FIG. 9
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented through input/output interfaces, circuits, etc., and the processing unit 1100 in the communication apparatus 1000 It can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • the communication apparatus 1000 may correspond to the network device in the above method embodiments, for example, may be a network device, or a component (such as a circuit, a chip, or a chip system, etc.) configured in the network device.
  • a component such as a circuit, a chip, or a chip system, etc.
  • the communication apparatus 1000 may correspond to the network equipment in the method 200, the method 500 and the method 600 according to the embodiments of the present application, and the communication apparatus 1000 may include a method for executing the method 200 in FIG. 2 and the method in FIG. 5 . 500 and elements of a method performed by a network device in method 600 in FIG. 6 .
  • each unit in the communication apparatus 1000 and the above-mentioned other operations and/or functions are respectively for implementing the corresponding processes of the method 200 in FIG. 2 , the method 500 in FIG. 5 and the method 600 in FIG. 6 .
  • the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the communication apparatus 2000 shown in FIG. 8 or the transceiver 2020 in FIG. 10 .
  • the shown remote radio unit (remote radio unit, RRU) 4100 in the network device 4000, the processing unit 1100 in the communication apparatus 1000 may be implemented by at least one processor, for example, may correspond to the communication apparatus 2000 shown in FIG. 8
  • the processor 2010 in or the processing unit 4200 or the processor 4202 in the network device 4000 shown in FIG. 10 may be implemented by at least one processor, for example, may correspond to the communication apparatus 2000 shown in FIG. 8
  • the transceiver unit 1200 in the communication device 1000 can be implemented through input/output interfaces, circuits, etc., and the processing unit 1100 in the communication device 1000 It can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • FIG. 8 is another schematic block diagram of a communication apparatus 2000 provided by an embodiment of the present application.
  • the communication apparatus 2000 includes a processor 2010 , a transceiver 2020 and a memory 2030 .
  • the processor 2010, the transceiver 2020 and the memory 2030 communicate with each other through an internal connection path, the memory 2030 is used to store instructions, and the processor 2010 is used to execute the instructions stored in the memory 2030 to control the transceiver 2020 to send signals and / or receive signals.
  • the communication apparatus 2000 may correspond to the terminal device in the above method embodiments, and may be used to execute various steps and/or processes performed by the network device or the terminal device in the above method embodiments.
  • the memory 2030 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 2030 may be a separate device or may be integrated in the processor 2010 .
  • the processor 2010 may be configured to execute the instructions stored in the memory 2030, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is configured to execute each of the foregoing method embodiments corresponding to the network device or the terminal device steps and/or processes.
  • the communication apparatus 2000 is the terminal device in the foregoing embodiment.
  • the communication apparatus 2000 is the network device in the foregoing embodiment.
  • the transceiver 2020 may include a transmitter and a receiver.
  • the transceiver 2020 may further include antennas, and the number of the antennas may be one or more.
  • the processor 2010, the memory 2030 and the transceiver 2020 may be devices integrated on different chips.
  • the processor 2010 and the memory 2030 may be integrated in a baseband chip, and the transceiver 2020 may be integrated in a radio frequency chip.
  • the processor 2010, the memory 2030 and the transceiver 2020 may also be devices integrated on the same chip. This application does not limit this.
  • the communication apparatus 2000 is a component configured in a terminal device, such as a circuit, a chip, a chip system, and the like.
  • the communication apparatus 2000 is a component configured in a network device, such as a circuit, a chip, a chip system, and the like.
  • the transceiver 2020 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 2020, the processor 2010 and the memory 2020 can be integrated in the same chip, such as integrated in a baseband chip.
  • FIG. 9 is a schematic structural diagram of a terminal device 3000 provided by an embodiment of the present application.
  • the terminal device 3000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 3000 includes a processor 3010 and a transceiver 3020 .
  • the terminal device 3000 further includes a memory 3030 .
  • the processor 3010, the transceiver 3020 and the memory 3030 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the computer program is invoked and executed to control the transceiver 3020 to send and receive signals.
  • the terminal device 3000 may further include an antenna 3040 for sending the uplink data or uplink control signaling output by the transceiver 3020 through wireless signals.
  • the above-mentioned processor 3010 and the memory 3030 can be combined into a processing device, and the processor 3010 is configured to execute the program codes stored in the memory 3030 to realize the above-mentioned functions.
  • the memory 3030 may also be integrated in the processor 3010 or independent of the processor 3010 .
  • the processor 3010 may correspond to the processing unit 1100 in FIG. 7 or the processor 2010 in FIG. 8 .
  • the transceiver 3020 described above may correspond to the transceiver unit 1200 in FIG. 7 or the transceiver 2020 in FIG. 8 .
  • the transceiver 3020 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the terminal device 3000 shown in FIG. 9 can implement various processes involving the terminal device in the method embodiments shown in FIG. 2 , FIG. 5 and FIG. 6 .
  • the operations and/or functions of each module in the terminal device 3000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 3010 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the terminal device, and the transceiver 3020 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 3020 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the above-mentioned terminal device 3000 may further include a power supply 3050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 3000 may further include one or more of an input unit 3060, a display unit 3070, an audio circuit 3080, a camera 3090, a sensor 3100, etc., the audio circuit Speakers 3082, microphones 3084, etc. may also be included.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application, which may be, for example, a schematic structural diagram of a base station.
  • the base station 4000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the base station 4000 may include one or more radio frequency units, such as a remote radio unit (RRU) 4100 and one or more baseband units (BBUs) (also referred to as distributed units (DUs). )) 4200.
  • RRU 4100 may be called a transceiver unit, which may correspond to the transceiver unit 1200 in FIG. 7 or the transceiver 2020 in FIG. 8 .
  • the RRU 4100 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4101 and a radio frequency unit 4102.
  • the RRU 4100 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called a receiver, a receiving circuit), and the sending unit may correspond to a transmitter (or called a transmitter, a sending circuit).
  • the RRU 4100 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals to baseband signals, for example, for sending indication information to terminal equipment.
  • the part of the BBU 4200 is mainly used to perform baseband processing and control the base station.
  • the RRU 4100 and the BBU 4200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 4200 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing unit 1100 in FIG. 7 or the processor 2010 in FIG. 8, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing , modulation, spread spectrum, etc.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to generate the foregoing indication information and the like.
  • the BBU 4200 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 4200 also includes a memory 4201 and a processor 4202.
  • the memory 4201 is used to store necessary instructions and data.
  • the processor 4202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiments.
  • the memory 4201 and the processor 4202 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the base station 4000 shown in FIG. 10 can implement various processes involving network devices in the method embodiments shown in FIG. 2 , FIG. 5 and FIG. 6 .
  • the operations and/or functions of each module in the base station 4000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 4200 can be used to perform the actions described in the foregoing method embodiments that are implemented internally by the network device, and the RRU 4100 can be used to execute the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 4100 can be used to execute the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the base station 4000 shown in FIG. 10 is only a possible form of network equipment, and should not constitute any limitation to the present application.
  • the method provided in this application can be applied to other forms of network equipment.
  • it includes AAU, may also include CU and/or DU, or includes BBU and adaptive radio unit (ARU), or BBU; may also be customer terminal equipment (customer premises equipment, CPE), may also be
  • AAU adaptive radio unit
  • BBU adaptive radio unit
  • CPE customer premises equipment
  • the CU and/or DU may be used to perform the actions implemented by the network device described in the foregoing method embodiments, and the AAU may be used to execute the network device described in the foregoing method embodiments to send or receive from the terminal device. Actions. For details, please refer to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • the present application further provides a processing apparatus, including at least one processor, where the at least one processor is configured to execute a computer program stored in a memory, so that the processing apparatus executes the execution of the terminal device or the network device in the foregoing method embodiments.
  • the above-mentioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the embodiment of the present application also provides a processing apparatus, which includes a processor and a communication interface.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing apparatus executes the method executed by the terminal device or the network device in the above method embodiments.
  • Embodiments of the present application further provide a processing apparatus, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing apparatus executes the method performed by the terminal device or the network device in the above method embodiments.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute FIG. 2 , FIG. 5 and The method performed by the terminal device or the method performed by the network device in the embodiment shown in FIG. 6 .
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute FIG. 2 , FIG. 5 and the embodiments shown in FIG. 6 are the method performed by the terminal device or the method performed by the network device.
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • the terminal device may be used as an example of a receiving device
  • the network device may be used as an example of a sending device.
  • the sending device and the receiving device may both be terminal devices or the like. This application does not limit the specific types of the sending device and the receiving device.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源配置的方法及通信装置。该方法可以包括:网络设备根据第一终端设备的数量确定第二终端设备对应的第一探测参考信号资源,该第一终端设备为第一小区已接入的终端设备,该第一小区为该第二终端设备待接入的小区;该网络设备向该第二终端设备发送资源配置信息,该资源配置信息用于指示该第一探测参考信号资源。根据本申请提供的资源配置的方法,可以提高用户的体验和小区的吞吐率。

Description

资源配置的方法及通信装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种资源配置的方法及通信装置。
背景技术
探测参考信号(sounding reference signal,SRS)是很重要的上行参考信号。SRS包括天线切换(antenna switching,AS)类型的SRS、码本(codebook,CB)类型的SRS、波束管理(beam management)类型的SRS以及非码本(non codebook,nonCB)类型的SRS。基站可以通过终端发送的SRS来估计上行信道质量。基于上下行信道的互易性,基站还可以根据终端发送的SRS估计下行信道质量,进而进行下行波束赋形。
对于不同类型的SRS,基站可以根据终端上报的能力信息为终端配置SRS资源,并且基站按照终端的最大能力为终端配置SRS资源。然而这种资源配置的方式不够灵活。
发明内容
本申请提供一种资源配置的方法,以期提高用户的体验和小区的吞吐率。
第一方面,提供了一种资源配置的方法,该方法可以包括:网络设备根据第一终端设备的数量确定第二终端设备对应的第一探测参考信号资源,该第一终端设备为第一小区已接入的终端设备,该第一小区为该第二终端设备待接入的小区;该网络设备向该第二终端设备发送资源配置信息,该资源配置信息用于指示该第一探测参考信号资源。
基于上述技术方案,网络设备根据当前小区(即第一小区)已接入的终端设备的数量为当前新接入的终端设备配置SRS资源,有利于提高用户的体验和小区的吞吐率。
结合第一方面,在第一方面的某些实现方式中,该网络设备根据第一终端设备的数量确定第二终端设备对应的第一探测参考信号资源,包括:该网络设备根据该第一终端设备的数量和该第二终端设备最大能支持的探测参考信号资源确定该第一探测参考信号资源,该第一探测参考信号资源的端口数小于或等于该第二终端设备最大能支持的探测参考信号资源的端口数。
基于上述技术方案,网络设备可以为新接入的终端设备配置比终端设备最大能支持的SRS资源更小的SRS资源。相比于现有的方案中网络设备始终为当前新接入的终端设备分配该终端设备最大能支持的SRS资源,按照上述方案,在当前小区能使用的SRS资源有限的情况下,网络设备能为更多的终端设备配置SRS资源,从而可以提升小区吞吐率。
结合第一方面,在第一方面的某些实现方式中,该网络设备根据第一终端设备的数量确定第二终端设备对应的探测参考信号资源,包括:该网络设备根据第一映射关系将第一数值区间对应的探测参考信号资源作为该第一探测参考信号资源,该第一数值区间为该第一终端设备的数量对应的数值区间,该第一映射关系用于指示多个数值区间与多个探测参考信号资源之间的映射关系。
结合第一方面,在第一方面的某些实现方式中,该网络设备根据第一终端设备的数量确定第二终端设备对应的探测参考信号资源,包括:若该第二终端设备是第一类型的终端设备,则该网络设备根据第一映射关系将第二数值区间对应的探测参考信号资源作为该第一探测参考信号资源,或者,该网络设备将该第二终端设备最大能支持的探测参考信号资源作为该第一探测参考信号资源,该第一映射关系用于指示多个数值区间与多个探测参考信号资源之间的映射关系,该第二数值区间的最大值小于该第一终端设备的数量对应的数值区间的最小值,该第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符值配置传输第一类型业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
基于上述技术方案,在网络设备为新接入的终端设备配置SRS资源的过程中,在考虑新接入的终端设备的类型的情况下,网络设备可以为新接入的第一类型的终端设备分配更多的SRS资源,从而确保SRS资源的使用高效。
结合第一方面,在第一方面的某些实现方式中,第三数值区间对应的探测参考信号资源的端口数等于该第二终端设备最大能支持的探测参考信号资源的端口数,该第三数值区间的最大值是该多个数值区间中最大值最小的数值区间。
结合第一方面,在第一方面的某些实现方式中,第四数值区间对应的探测参考信号资源的端口数大于第五数值区间对应的探测参考信号资源的端口数,该第四数值区间和该第五数值区间是该多个数值区间中任意两个满足以下关系的数值区间:该第四数值区间内的最大值小于该第五数值区间内的最小值。
基于上述技术方案,随着第一终端设备的数量的增加,网络设备可以逐渐减少为新接入的终端设备配置的SRS资源的端口数,从而可以为更多的终端设备配置SRS资源,提升小区的吞吐率。
结合第一方面,在第一方面的某些实现方式中,该探测参考信号资源包括多种类型的探测参考信号资源,该第四数值区间对应的第一类型的探测参考信号资源的端口数大于该第五数值区间对应的第一类型的探测参考信号资源的端口数,该第一类型的探测参考信号资源为该多种类型的探测参考信号资源中的至少一个类型的探测参考信号资源。
基于上述技术方案,在新接入的终端设备支持多种类型的SRS的情况下,随着第一终端设备的数量的增加,网络设备可以逐渐减少为新接入的终端设备配置的一种或多种类型的SRS资源的端口数。
结合第一方面,在第一方面的某些实现方式中,该多个数值区间中的至少一个数值区间的临界值是根据该第一终端设备的数量确定的。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:若满足如下至少一个条件:该网络设备为该第一终端设备配置的探测参考信号资源的总端口数大于或等于第一预设阈值、该第一小区新接入的终端设备的数量大于或等于第二预设阈值、该网络设备为该第一终端设备配置的探测参考信号资源的总端口数小于或等于第三预设阈值、该第一小区退网的终端设备的数量大于或等于第四预设阈值,则该网络设备根据该第一终端设备的数量更新该多个区间中至少一个区间的临界值。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该网络设备根据该第 一终端设备的序号和第二映射关系,为该第一终端设备中的至少一个第一终端设备重配探测参考信号资源,该第二映射关系用于指示更新后的多个数值区间与多个探测参考信号资源之间的映射关系。
第二方面,提供了一种资源配置的方法,该方法包括:网络设备根据终端设备的类型确定该终端设备对应的探测参考信号资源,该终端设备对应的探测参考信号资源的端口数小于或等于该终端设备最大能支持的探测参考信号资源的端口数;该网络设备向该终端设备发送资源配置信息,该资源配置信息用于指示该终端设备对应的探测参考信号资源。
基于上述技术方案,在考虑新接入的终端设备的类型的情况下,网络设备可以为新接入的第一类型的终端设备分配比终端设备最大能支持的SRS资源更小的SRS资源。相比于现有的方案中网络设备始终为当前新接入的终端设备分配该终端设备最大能支持的SRS资源,按照上述技术方案,在当前小区能使用的SRS资源有限的情况下,网络设备能为更多的终端设备配置SRS资源,从而可以提升小区的吞吐率。
结合第二方面,在第二方面的某些实现方式中,若该终端设备是第一类型的终端设备,则该终端设备对应的探测参考信号资源的端口数等于该终端设备最大能支持的探测参考信号资源的端口数,该第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符配置传输第一业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
基于上述技术方案,网络设备为第一类型的终端设备分配更多的SRS资源,从而可以保证SRS资源的使用高效。
结合第二方面,在第二方面的某些实现方式中,若该终端设备不是第一类型的终端设备,则该终端设备对应的探测参考信号资源的端口数小于该终端设备最大能支持的探测参考信号资源的端口数,该第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符配置传输第一业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
第三方面,提供了一种资源配置的方法,该方法可以包括:第二终端设备接收来自网络设备的资源配置信息,该资源配置信息用于指示该第二终端设备对应的第一测量参考信号资源,该第一探测参考信号资源是根据第一终端设备的数量确定的,该第一终端设备是第一小区已接入的终端设备,该第一小区是该第二终端设备待接入的小区;该第二终端设备在该第一探测参考信号资源上发送探测参考信号。
基于上述技术方案,网络设备根据当前小区(即第一小区)已接入的终端设备的数量为当前新接入的终端设备配置SRS资源,有利于提高用户的体验和小区的吞吐率。
结合第三方面,在第三方面的某些实现方式中,该第一探测参考信号资源的端口数小于或等于该第二终端设备最大能支持的探测参考信号资源的端口数。
基于上述技术方案,网络设备可以为新接入的终端设备配置比终端设备最大能支持的SRS资源更小的SRS资源。相比于现有的方案中网络设备始终为当前新接入的终端设备分配该终端设备最大能支持的SRS资源,按照上述方案,在当前小区能使用的SRS资源有限的情况下,网络设备能为更多的终端设备配置SRS资源,从而可以提升小区吞吐率。
结合第三方面,在第三方面的某些实现方式中,该第一探测参考信号资源是第一数值区间对应的探测参考信号资源,该第一数值区间为该第一终端设备的数量对应的数值区间,该第一数值区间对应的探测参考信号资源是根据第一映射关系确定的,该第一映射关系用于指示该多个数值区间与多个探测参考信号资源之间的映射关系。
结合第三方面,在第三方面的某些实现方式中,该第一探测参考信号资源是第二数值区间对应的探测参考信号资源,或者,该第一探测参考信号资源是该第二终端设备最大能支持的探测参考信号资源,该第一映射关系用于指示多个数值区间与多个探测参考信号资源之间的映射关系,该第二数值区间的最大值小于该第一终端设备的数量对应的数值区间的最小值,该第二数值区间对应的探测参考信号资源是根据第一映射关系确定的,该第一映射关系用于指示该多个数值区间与多个探测参考信号资源之间的映射关系。
基于上述技术方案,在网络设备为新接入的终端设备配置SRS资源的过程中,在考虑新接入的终端设备的类型的情况下,网络设备可以为新接入的第一类型的终端设备分配更多的SRS资源,从而确保SRS资源的使用高效。
结合第三方面,在第三方面的某些实现方式中,第三数值区间对应的探测参考信号资源的端口数等于该第二终端设备最大能支持的探测参考信号资源的端口数,该第三数值区间的最大值是该多个数值区间中最大值最小的数值区间。
结合第三方面,在第三方面的某些实现方式中,第四数值区间对应的探测参考信号资源的端口数大于第五数值区间对应的探测参考信号资源的端口数,该第四数值区间和该第五数值区间是该多个数值区间中任意两个满足以下关系的数值区间:该第四数值区间内的最大值小于该第五数值区间内的最小值。
基于上述技术方案,随着第一终端设备的数量的增加,网络设备可以逐渐减少为新接入的终端设备配置的SRS资源的端口数,从而可以为更多的终端设备配置SRS资源,提升小区的吞吐率。
结合第三方面,在第三方面的某些实现方式中,该探测参考信号资源包括多种类型的探测参考信号资源,该第四数值区间对应的第一类型的探测参考信号资源的端口数大于该第五数值区间对应的第一类型的探测参考信号资源的端口数,该第一类型的探测参考信号资源为该多种类型的探测参考信号资源中的至少一个类型的探测参考信号资源。
基于上述技术方案,在新接入的终端设备支持多种类型的SRS的情况下,随着第一终端设备的数量的增加,网络设备可以逐渐减少为新接入的终端设备配置的一种或多种类型的SRS资源的端口数。
第四方面,提供了一种资源配置的方法,该方法可以包括:终端设备接收来自网络设备的资源配置信息,该资源配置信息用于指示与该终端设备对应的探测参考信号资源,该终端设备对应的探测参考信号资源是根据该终端设备的类型确定的,该终端设备对应的探测参考信号资源的端口数小于或等于该终端设备最大能支持的探测参考信号资源的端口数;该终端设备在该终端设备对应的对应的探测参考信号资源上发送探测参考信号。
基于上述技术方案,在考虑新接入的终端设备的类型的情况下,网络设备可以为新接入的第一类型的终端设备分配比终端设备最大能支持的SRS资源更小的SRS资源。相比于现有的方案中网络设备始终为当前新接入的终端设备分配该终端设备最大能支持的SRS资源,按照上述方案,在当前小区能使用的SRS资源有限的情况下,网络设备能为 更多的终端设备配置SRS资源,从而可以提升小区的吞吐率。
结合第四方面,在第四方面的某些实现方式中,若该终端设备是第一类型的终端设备,则该终端设备对应的探测参考信号资源的端口数等于该终端设备最大能支持的探测参考信号资源的端口数,该第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符配置传输第一业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
基于上述技术方案,网络设备为第一类型的终端设备分配更多的SRS资源,从而可以保证SRS资源的使用高效。
结合第四方面,在第四方面的某些实现方式中,若该终端设备不是第一类型的终端设备,则该终端设备对应的探测参考信号资源的端口数小于该终端设备最大能支持的探测参考信号资源的端口数,该第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符配置传输第一业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
第五方面,提供了一种通信装置,该通信装置可以包括收发单元和处理单元,该处理单元用于根据第一终端设备的数量确定第二终端设备对应的第一探测参考信号资源,该第一终端设备为第一小区已接入的终端设备,该第一小区为该第二终端设备待接入的小区;该收发单元用于向该第二终端设备发送资源配置信息,该资源配置信息用于指示该第一探测参考信号资源。
结合第五方面,在第五方面的某些实现方式中,该处理单元具体用于根据该第一终端设备的数量和该第二终端设备最大能支持的探测参考信号资源确定该第一探测参考信号资源,该第一探测参考信号资源的端口数小于或等于该第二终端设备最大能支持的探测参考信号资源的端口数。
结合第五方面,在第五方面的某些实现方式中,该处理单元具体用于根据第一映射关系将第一数值区间对应的探测参考信号资源作为该第一探测参考信号资源,该第一数值区间为该第一终端设备的数量对应的数值区间,该第一映射关系用于指示该多个数值区间与多个探测参考信号资源之间的映射关系。
结合第五方面,在第五方面的某些实现方式中,该处理单元具体用于:若该第二终端设备是第一类型的终端设备,则根据第一映射关系将第二数值区间对应的探测参考信号资源作为该第一探测参考信号资源,或者,将该第二终端设备最大能支持的探测参考信号资源作为该第一探测参考信号资源,该第二数值区间的最大值小于该第一终端设备的数量对应的数值区间的最小值,该第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符值配置传输第一类型业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
结合第五方面,在第五方面的某些实现方式中,第三数值区间对应的探测参考信号资源的端口数等于该第二终端设备最大能支持的探测参考信号资源的端口数,该第三数值区间的最大值是该多个数值区间中最大值最小的数值区间。
结合第五方面,在第五方面的某些实现方式中,第四数值区间对应的探测参考信号资源的端口数大于第五数值区间对应的探测参考信号资源的端口数,该第四数值区间和该第五数值区间是该多个数值区间中任意两个满足以下关系的数值区间:该第四数值区间内的最大值小于该第五数值区间内的最小值。
结合第五方面,在第五方面的某些实现方式中,该探测参考信号资源包括多种类型的探测参考信号资源,该第四数值区间对应的第一类型的探测参考信号资源的端口数大于该第五数值区间对应的第一类型的探测参考信号资源的端口数,该第一类型的探测参考信号资源为该多种类型的探测参考信号资源中的至少一个类型的探测参考信号资源。
结合第五方面,在第五方面的某些实现方式中,该多个数值区间中的至少一个数值区间的临界值是根据该第一终端设备的数量确定的。
结合第五方面,在第五方面的某些实现方式中,该处理单元还用于:若满足如下至少一个条件:该通信装置为该第一终端设备配置的探测参考信号资源的总端口数大于或等于第一预设阈值、该第一小区新接入的终端设备的数量大于或等于第二预设阈值、该通信装置为该第一终端设备配置的探测参考信号资源的总端口数小于或等于第三预设阈值、该第一小区退网的终端设备的数量大于或等于第四预设阈值,则根据该第一终端设备的数量更新该多个区间中至少一个区间的临界值。
结合第五方面,在第五方面的某些实现方式中,该处理单元还用于根据该第一终端设备的序号和第二映射关系,为该第一终端设备中的至少一个第一终端设备重配探测参考信号资源,该第二映射关系用于指示更新后的多个数值区间与多个探测参考信号资源之间的映射关系。
第六方面,提供了一种通信装置,该通信装置包括收发单元和处理单元,该处理单元用于根据终端设备的类型确定该终端设备对应的探测参考信号资源,该终端设备对应的探测参考信号资源的端口数小于或等于该终端设备最大能支持的探测参考信号资源的端口数;该收发单元用于向该终端设备发送资源配置信息,该资源配置信息用于指示该终端设备对应的探测参考信号资源。
结合第六方面,在第六方面的某些实现方式中,若该终端设备是第一类型的终端设备,则该终端设备对应的探测参考信号资源的端口数等于该终端设备最大能支持的探测参考信号资源的端口数,该第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符配置传输第一业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
结合第六方面,在第六方面的某些实现方式中,若该终端设备不是第一类型的终端设备,则该终端设备对应的探测参考信号资源的端口数小于该终端设备最大能支持的探测参考信号资源的端口数,该第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符配置传输第一业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
第七方面,提供了一种通信装置,该通信装置可以包括收发单元,该收发单元用于接收来自网络设备的资源配置信息,该资源配置信息用于指示该通信装置对应的第一测量参 考信号资源,该第一探测参考信号资源是根据第一终端设备的数量确定的,该第一终端设备是第一小区已接入的终端设备,该第一小区是该第二终端设备待接入的小区;该收发单元还用于在该第一探测参考信号资源上发送探测参考信号。
结合第七方面,在第七方面的某些实现方式中,该第一探测参考信号资源的端口数小于或等于该通信装置最大能支持的探测参考信号资源的端口数。
结合第七方面,在第七方面的某些实现方式中,该第一探测参考信号资源是第一数值区间对应的探测参考信号资源,该第一数值区间为该第一终端设备的数量对应的数值区间,该第一数值区间对应的探测参考信号资源是根据第一映射关系确定的,该第一映射关系用于指示该多个数值区间与多个探测参考信号资源之间的映射关系。
结合第七方面,在第七方面的某些实现方式中,该第一探测参考信号资源是第二数值区间对应的探测参考信号资源,或者,该第一探测参考信号资源是该通信装置最大能支持的探测参考信号资源,该第二数值区间的最大值小于该第一终端设备的数量对应的数值区间的最小值,该第二数值区间对应的探测参考信号资源是根据第一映射关系确定的,该第一映射关系用于指示该多个数值区间与多个探测参考信号资源之间的映射关系。
结合第七方面,在第七方面的某些实现方式中,第三数值区间对应的探测参考信号资源的端口数等于该通信装置最大能支持的探测参考信号资源的端口数,该第三数值区间的最大值是该多个数值区间中最大值最小的数值区间。
结合第七方面,在第七方面的某些实现方式中,第四数值区间对应的探测参考信号资源的端口数大于第五数值区间对应的探测参考信号资源的端口数,该第四数值区间和该第五数值区间是该多个数值区间中任意两个满足以下关系的数值区间:该第四数值区间内的最大值小于该第五数值区间内的最小值。
结合第七方面,在第七方面的某些实现方式中,该探测参考信号资源包括多种类型的探测参考信号资源,该第四数值区间对应的第一类型的探测参考信号资源的端口数大于该第五数值区间对应的第一类型的探测参考信号资源的端口数,该第一类型的探测参考信号资源为该多种类型的探测参考信号资源中的至少一个类型的探测参考信号资源。
第八方面,提供了一种通信装置,该通信装置可以包括收发单元,该收发单元用于接收来自网络设备的资源配置信息,该资源配置信息用于指示与该通信装置对应的探测参考信号资源,该通信装置对应的探测参考信号资源是根据该通信装置的类型确定的,该通信装置对应的探测参考信号资源的端口数小于或等于该通信装置最大能支持的探测参考信号资源的端口数;该收发单元还用于在该通信装置对应的对应的探测参考信号资源上发送探测参考信号。
结合第八方面,在第八方面的某些实现方式中,若该通信装置是第一类型的通信装置,则该通信装置对应的探测参考信号资源的端口数等于该通信装置最大能支持的探测参考信号资源的端口数,该第一类型的通信装置包括:传输的数据量大于预设门限值的通信装置、可通过第五代移动通信系统服务质量参数指示符配置传输第一业务的通信装置、通过事务标识符或者用户数据身份标识符标识的第一业务的通信装置,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
结合第八方面,在第八方面的某些实现方式中,若该通信装置不是第一类型的通信装置,则该通信装置备对应的探测参考信号资源的端口数小于该通信装置最大能支持的探测 参考信号资源的端口数,该第一类型的通信装置包括:传输的数据量大于预设门限值的通信装置、可通过第五代移动通信系统服务质量参数指示符配置传输第一业务的通信装置、通过事务标识符或者用户数据身份标识符标识的第一业务的通信装置,该第一业务包括:大流量业务、高优先级的业务或低时延业务。
第九方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面和第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。当该通信装置为配置于网络设备中的芯片或芯片系统时,所述通信接口可以是输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第十方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第三方面和第四方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。当该通信装置为配置于终端设备中的芯片或芯片系统时,所述通信接口可以是输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第十一方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述第一方面至第四方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十二方面,提供了一种处理装置,包括通信接口和处理器。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一 项。所述处理器用于执行计算机程序,以使得所述处理装置执行第一方面至第四方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
第十三方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以使得所述处理装置执行第一方面至第四方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器类型以及存储器与处理器的设置方式不做限定。
应理解,相关的信息交互过程,例如发送指示信息可以为从处理器输出指示信息的过程,接收指示信息可以为向处理器输入接收到的指示信息的过程。具体地,处理输出的信息可以输出给发射器,处理器接收的输入信息可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十二方面和第十三方面中的装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十四方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第四方面中任一种可能实现方式中的方法。
第十五方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一种可能实现方式中的方法。
第十六方面,提供了一种通信系统,包括前述的终端设备和网络设备。
附图说明
图1是适用于本申请实施例提供的方法的通信系统的示意图;
图2至图4是本申请实施例提供的资源配置的方法的示意性流程图;
图5是本申请实施例提供的资源重配的方法的示意性流程图;
图6是本申请另一实施例提供的资源配置的方法的示意性流程图;
图7和图8是本申请实施例提供的通信装置的示意性框图;
图9是本申请实施例提供的终端设备的结构示意图;
图10是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:长期演进(long term  evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th Generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备配置的传输资源(例如,频域资源, 或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的资源配置的方法的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,如图1中所示的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供 通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。因此,图1中的网络设备101和终端设备102至107构成一个通信系统。
终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信。如图中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备105与网络设备101通信。
应理解,图1示例性地示出了一个网络设备和多个终端设备,以及各通信设备之间的通信链路。可选地,该通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,例如更多或更少的终端设备。本申请对此不做限定。
上述各个通信设备,如图1中的网络设备101和终端设备102至107,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
探测参考信号(sounding reference signal,SRS)是很重要的上行参考信号。SRS包括天线切换(antenna switching,AS)类型的SRS、码本(codebook,CB)类型的SRS、波束管理(beam management)类型的SRS以及非码本(non codebook,nonCB)类型的SRS。基站可以通过终端发送的SRS来估计上行信道质量。基于上下行信道的互易性,基站还可以根据终端发送的SRS估计下行信道质量,进而进行下行波束赋形。
对于不同类型的SRS,基站可以根据UE上报的能力信息为UE配置SRS资源。
例如,对于AS类型的SRS,UE会向基站上报UE支持的SRS天线切换模式。UE可以通过支持的SRS发送端口切换(supprotedSRS-TxPortSwitch)信元上报初始的UE支持的SRS天线切换模式。supprotedSRS-TxPortSwitch取值可能如下:
supprotedSRS-TxPortSwitch ENUMERATED{t1r1-t1r2,……,t1r1-t1r2-t1r4,t1r1-t1r2-t2r2-t2r4,t1r1-t1r2-t2r2-t1r4-t2r4,t1r1-t2r2,t1r1-t2r2-t4r4,nonsupport}
当supprotedSRS-TxPortSwitch为t1r1-t1r2-t1r4时,表示UE支持的SRS天线切换模式为t1r1、t2r2和t1r4。当supprotedSRS-TxPortSwitch为不支持(notsupport)时,表示UE不支持发送AS类型的SRS。
UE也可以通过缩减的最大SRS发送端口切换(ReducedMaxSrsTxPortSwitch)信元上报更新的UE支持的SRS天线切换模式,ReducedMaxSrsTxPortSwitch的权值可能如下:
Figure PCTCN2021070849-appb-000001
Figure PCTCN2021070849-appb-000002
基站会将UE上报的SRS天线切换模式,作为动态调整分配给UE使用的AS类型SRS资源的限制因素。即基站为UE分配的SRS资源的个数n和每个SRS资源的端口数m,该n和m所对应的SRS天线切换模式txry必须属于UE支持的天线切换模式。一般来说,x=m,y=m*n。例如,天线切换模式t1r4对应的SRS资源的个数为4,每个SRS资源的端口数为1。
又例如,对于CB类型的SRS,UE会向基站上报UE支持的CB类型SRS的最大上行多输入多输出(multiple-input multiple-output,MIMO)层数。UE可以通过码本预编码下物理上行共享信道支持的最大MIMO层数(maxNumberMIMO-LayersCB-PUSCH)信元上报UE支持的CB类型SRS的最大上行MIMO层数,maxNumberMIMO-LayersCB-PUSCH的可能取值如下:
Figure PCTCN2021070849-appb-000003
其中,FeatureSetUplinkPerCC表示上行载波特征集合;mimo-CB-PUSCH表示物理上行共享信道支持的最大MIMO层数;MIMO-LayersUL表示上行MIMO层数。
UE可以通过缩减的最大MIMO层数(reducedMaxMIMO-Layers)信元上报更新的UE支持的最大上行MIMO层数(即UE支持的CB类型的SRS的最大上行MIMO层数也跟着更新了),reduceMaxMIMO-Layers可能取值如下:
Figure PCTCN2021070849-appb-000004
基站会将UE上的初始的或者更新的UE支持的CB类型SRS的最大上行MIMO层数,作为动态调整分配给UE使用的CB类型SRS资源的限制因素。即,若基站为终端分配的CB类型SRS资源的端口数为m,则m必须小于或等于UE支持的初始上报最大上行MIMO层数,尽量满足更新UE支持的最大上行MIMO层数。一般来说,基站只会给UE分配一个CB类型的SRS资源,即n=1。假设UE支持的最大上行MIMO层数为两层(twoLayers),则基站为UE分配的SRS资源的端口数m只能为1或者2。
还例如,对于非码本类型的SRS资源,UE会向基站上报UE支持的非码本类型SRS的最大上行MIMO层数。UE可以通过非码本预编码下物理上行共享信道支持的最大MIMO层数(maxNumberMIMO-LayersNonCB-PUSCH)信元上报初始的UE支持的nonCB类型SRS的最大上行MIMO层数,maxNumberMIMO-LayersNonCB-PUSCH可能取值如下:
Figure PCTCN2021070849-appb-000005
UE可以通过reducedMaxMIMO-Layers信元上报更新的UE支持的最大上行MIMO层数(即UE支持的nonCB类型的SRS的最大上行MIMO层数也跟着更新了),reducedMaxMIMO-Layers可能取值如下:
Figure PCTCN2021070849-appb-000006
基站会将UE上报的初始的或者更新的UE支持的nonCB类型SRS的最大上行MIMO层数,作为动态调整分配给UE使用的nonCB类型SRS资源的限制因素。即,若基站为UE分配的nonCB类型SRS资源的端口数为m,则m必须小于或等于UE支持的初始上报最大上行MIMO层数,尽量满足更新UE支持的最大上行MIMO层数。假设UE支持的nonCB类型SRS的最大上行MIMO层数为两层(twoLayers),则基站为UE分配的SRS资源的端口数m只能为1或者2。
对于上述三种类型SRS,UE都会上报UE能够支持的单个SRS资源对应的最大端口数。UE可以通过maxNumberSRS-Ports-PerResource上报初始的UE能够支持的单个SRS资源对应的最大端口数,基站为UE分配的SRS资源的端口数必须小于或等于UE支持的每个SRS资源的最大端口数(maxNumberSRS-Ports-PerResource)。maxNumberSRS-Ports-PerResource的可能取值如下:
maxNumberSRS-Ports-PerResource ENUMERATED{n1,n2,n4}
UE可以通过缩减的每个SRS资源的最大端口数(reducedmaxNumberSRS-Ports-PerResource)上报更新的UE能够支持的单个SRS资源对应的最大端口数,reducedmaxNumberSRS-Ports-PerResource的可能取值如下:
reducedmaxNumberSRS-Ports-PerResource ENUMERATED{n1,n2,n4}
基站会为UE上报的初始的或者更新UE能够支持的单个SRS资源对应的最大端口数,作为动态调整分配给UE时延的所有类型SRS资源的限制因素。即,若基站为UE分配的单个任一类型的SRS资源的端口数为m,则m必须小于或等于UE能够支持的初始上报的单个SRS资源对应的最大端口数,尽量满足更新UE支持的单个SRS资源对应的最大端口数。
如上所述,在基站为UE配置SRS资源之前,基站会接收UE上报的能力信息,进一步地,基站根据UE上报的能力信息为UE配置SRS资源。目前,基站通常按照UE最大能力支持的SRS资源为UE配置SRS资源,例如,UE上报的CB类型的SRS的最大上行MIMO层数为4,则基站为UE配置的CB类型的SRS资源对应4个端口。然而,每个小区内能使用的SRS资源是有限的,在基站始终按照UE最大能力为UE配置SRS资源的情况下,无法满足为更多数量的UE配置SRS资源,从而降低了小区上行吞吐量和下行波束赋形性能。
有鉴于此,本申请实施例提供一种资源配置的方法,以期提高用户的体验和小区的吞吐率。以下结合附图,对本申请实施例提供的资源配置的方法进行介绍。
图2示出了本申请实施例提供的资源配置方法的示意性流程图。如图2所示,方法200可以包括S210至S250,下面详细介绍各个步骤。
S210,网络设备获取第一终端设备的数量。第一终端设备为第一小区已接入的终端设备,第一小区为第二终端设备待接入的小区。
S220,网络设备接收第一信息。相应地,在S220中,第二终端设备发送第一信息。
第一信息用于确定第二终端设备最大能支持的SRS资源。或者,也可以说第一信息用于确定第二终端设备最大能支持的SRS资源的端口数。具体地,第一信息可以包括第二终端设备的能力信息和/或第二终端设备的辅助信息。
作为一个示例,第一信息可以包括第二终端设备的能力信息,第二终端设备的能力信息包括以下至少一项:第二终端设备支持的SRS天线切换模式、第二终端设备支持CB类型的SRS的最大上行MIMO层数、第二终端设备支持的nonCB类型的SRS的最大上行MIMO层数、第二终端设备支持的单个SRS资源的最大端口数。应理解,在第一信息包括第二终端设备的能力信息的情况下,第二终端设备最大能支持的SRS资源即第二终端设备最大能力支持的SRS资源。
例如,若第二终端设备的能力信息包括第二终端设备支持的SRS天线切换模式,则网络设备可以根据SRS天线切换模式确定第二终端设备最大能力支持的AS类型的SRS资源的个数和单个SRS资源的端口数,进一步可以确定第二终端设备最大能力支持的AS类型的SRS资源的端口数。例如,第二终端设备的能力信息包括的第二终端设备支持的SRS天线切换模式为t1r1-t1r2-t2r2-t2r4,则网络设备可以确定第二终端设备最大能力支持的AS类型的SRS资源的端口数为4。
又例如,若第二终端设备的能力信息包括第二终端设备支持的CB类型的SRS的最大上行MIMO层数,则网络设备可以根据第二终端设备支持的CB类型的SRS的最大上行MIMO层数确定第二终端设备最大能力支持的CB类型的SRS资源的端口数。例如,第二终端设备支持的CB类型的SRS的最大上行MIMO层数为4层,则网络设备可以确定第二终端设备最大能力支持的CB类型的SRS资源的端口数为4。
再例如,若第二终端设备的能力信息包括第二终端设备支持的天线切换模式和CB类型的SRS的最大上行MIMO层数,则网络设备可以根据第二终端设备支持的天线切换模式确定第二终端设备最大能力支持的AS类型的SRS资源的端口数,以及可以根据第二终端设备支持的CB类型的SRS的最大上行MIMO层数确定第二终端设备最大能力支持的CB类型的SRS资源的端口数。进一步地,网络设备可以确定第二终端设备最大能力支持 的SRS资源的端口数。第二终端设备最大能力支持的SRS资源端口数为第二终端设备最大能力支持的AS类型的SRS资源端口数加CB类型的SRS资源的端口数。也就是说,若网络设备根据第二终端设备的能力信息确定第二终端设备支持多种类型的SRS,则网络设备确定的第二终端设备最大能力支持的SRS资源的端口数为第二终端设备最大能力支持的多种类型SRS资源的端口数的和。
作为另一个示例,第一信息可以包括第二终端设备的辅助信息。第二终端设备的辅助信息可以包括过热相关的辅助信息、节能相关的辅助信息等。第二终端设备的辅助信息可以用于确定第二终端设备期望的最大的SRS资源。应理解,在第一信息包括第二终端设备的辅助信息的情况下,第二终端设备最大能支持的SRS资源即第二终端设备期望的最大的SRS资源。
例如,第二终端设备的辅助信息指示的第二终端设备期望的天线切换模式为t1r1-t1r2,则网络设备根据第二终端设备的辅助信息确定的第二终端设备期望的最大的AS类型的SRS资源的端口数为2。
作为又一个示例,第一信息可以包括第二终端设备的能力信息和第二终端设备的辅助信息。在此情况下,第二终端设备最大能支持的SRS资源是第二终端设备最大能力支持的SRS资源和第二终端设备期望的最大的SRS资源中的最小值。
例如,第二终端设备的能力信息包括的第二终端设备支持的天线切换模式为t1r1-t1r2-t2r2-t2r4,第二终端设备的辅助信息指示的第二终端设备期望的天线切换模式为t1r1-t1r2,则网络设备根据第一信息确定的第二终端设备最大能支持的AS类型的SRS资源对应天线切换模式t1r2,即网络设备确定的第二终端设备最大能力支持的AS类型的SRS资源包括2个SRS资源,每个SRS资源的端口数为1。
又例如,第二终端设备的能力信息包括的第二终端设备支持的CB类型的SRS的最大上行MIMO层数为4层,第二终端设备的辅助信息指示的第二终端设备期望的CB类型的SRS的最大上行MIMO层数为2层,则网络设备根据第一信息确定的第二终端设备最大能支持的CB类型的SRS资源为2个端口。
S230,网络设备根据第一终端设备的数量确定第二终端设备对应的第一SRS资源。
第二终端设备对应的第一SRS资源即网络设备为第二终端设备配置的SRS资源。
网络设备可以根据第一映射关系将数值区间#1(即第一数值区间)对应的SRS资源作为第一SRS资源。数值区间#1为第一终端设备的数量对应的数值区间。第一映射关系用于指示多个数值区间与多个SRS资源之间的映射关系。
第一映射关系可以是根据第一终端设备的数量和第二终端设备最大能支持的SRS资源确定的。其中,多个SRS资源可以是根据第二终端设备最大能支持的SRS资源确定的。多个数值区间可以是根据第一终端设备的数量确定的,例如,多个数值区间中至少一个数值区间的临界值是根据第一终端设备的数量确定的。数值区间的临界值可以是数值区间的最大值和/或最小值。
不同数值区间对应的SRS资源之间的关系如下所述:数值区间#2(即第四数值区间)对应的SRS资源的端口数大于数值区间#3(即第五数值区间)对应的SRS资源的端口数,数值区间#2和数值区间#3为多个数值区间中满足以下关系的任意两个数值区间:数值区间#2内的最大值小于数值区间#3内的最小值。也可以说,数值区间#2对应的SRS资源大 于数值区间#3对应的SRS资源。
由上可知,多个数值区间中最大值最小的数值区间对应的SRS资源的端口数最大。可选地,多个数值区间中最大值最小的数值区间对应的SRS资源的端口数等于第二终端设备最大能支持的SRS资源的端口数。也可以说,多个数值区间中最大值最小的数值区间(即第三数值区间)对应的SRS资源等于第二终端设备最大能支持的SRS资源。
由上可知,随着第一终端设备数量的增加,网络设备确定的第一SRS资源的端口数减少。第一SRS资源的端口数减小可以体现在第一SRS资源包括的资源数减少,或者第一SRS资源中每个SRS资源的端口数减少。具体地,根据第二终端设备能力上报的支持序列,在网络设备为第二终端设备配置SRS资源的过程中,随着第一终端设备数量的增加,网络设备可以先减少为第二终端设备配置的SRS资源数,再逐步减少SRS资源的端口数;或者,网络设备可以先减少为第二终端设备配置的每个SRS资源的端口数,再减少SRS资源数。例如,若supportedSRS-TxPortSwitch-r16为t1r1-t2r2-t4r4,则按照第二终端设备上报的能力信息,网络设备可以先按照t4r4的天线切换模式为第二终端设备分配SRS资源,再按照t2r2的天线切换模式为第二终端设备分配SRS资源,若第一终端设备的数量的继续增加,网络设备可以先再按照t1r1的天线切换模式为第二终端设备分配SRS资源分配。又例如,若supportedSRS-TxPortSwitch-r16为t1r1-t1r2-t2r2-t2r4,则按照第二终端设备上报的能力信息,网络设备可以先按照t2r4的天线切换模式为第二终端设备分配SRS资源,再按照t2r2或t1r2的天线切换模式为第二终端设备分配SRS资源,若第一终端设备的数量的继续增加,网络设备可以先再按照t1r1的天线切换模式为第二终端设备分配SRS资源,最后按照天线切换模式为notSupported方式为第二终端设备分配SRS资源。
上述资源配置的方法也可以理解为,随着第一终端设备的数量的增加,网络设备为第二终端设备配置的SRS资源减少,按照第二终端设备上报的第一信息,逐步调整SRS资源总端口数的过程。
本申请实施例对第一SRS资源的类型不做限定。
作为一个示例,第一SRS资源可以是AS类型的SRS资源,即网络设备可以按照本申请实施例提供的方法为第二终端设备配置AS类型的SRS资源。如上所述,根据supprotedSRS-TxPortSwitch可能的取值可知,SRS天线切换模式包括以下几种:t1r1(对应AS类型的SRS资源的总端口数为1)、t1r2(对应的AS类型的SRS资源的总端口数为2)、t1r4(对应的AS类型的SRS资源的总端口数为4)、t2r2(对应的AS类型的SRS资源的总端口数为2)、t2r4(对应的AS类型的SRS资源的总端口数为4)、t4r4(对应的AS类型的SRS资源的总端口数为4)。因此,多个数值区间以及与每个数值区间对应的SRS资源满足表1所示的资源配置策略:
表1
第一终端设备的数量 不同区间的SRS资源配置策略
[0,A1] 配置的AS类型SRS资源总端口数不超过4
(A1,B1] 配置的AS类型SRS资源总端口数不超过2
(B1,C1] 配置的AS类型SRS资源总端口数不超过1
(C1,无穷大) 不配置AS类型SRS资源
应理解,表1仅为示例,随着技术的发展,终端设备最大能支持的AS类型的SRS资 源的端口数可能增加为6个、8个、10个等,则表1所示的不同数值区间对应的资源配置策略可能会发生变化,例如,[0,A1]对应的资源配置策略可能为:配置的AS类型的SRS资源总端口数不超过6。
下面给出两个示例,对网络设备为第二终端设备配置AS类型SRS资源的方法进行说明。
示例1,如果网络设备根据第二终端设备发送的第一信息确定第二终端设备支持的SRS天线切换模式为t1r1-t1r2-t2r2-t2r4,以及第二终端设备能够支持的SRS资源对应的最大端口数为4(单个SRS资源对应的最大端口数也可以取值为1或者2,若取值为2,则表示该终端设备不可能支持t4r4),则第一映射关系可以如表2所示:
表2
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的AS类型SRS资源对应t2r4
(A1,B1] 配置的AS类型SRS资源对应t2r2/t1r2
(B1,C1] 配置的AS类型SRS资源对应t1r1
(C1,无穷大) 不配置AS类型SRS资源
其中,A1<B1<C1,A1、B1、C1都为正整数。
表2所示的第1个数值区间(即[0,A1])对应的AS类型的SRS资源的端口数为4,即第1个数值区间对应的AS类型的SRS资源为第二终端设备最大能支持的AS类型的SRS资源。应理解,表2中仅以第1个数值区间对应的AS类型的SRS资源等于第二终端设备最大能支持的AS类型的SRS资源作为示例,第1个数值区间对应的AS类型的SRS资源也可以小于第二终端设备最大能支持的AS类型的SRS资源。例如,第1个数值区间对应的AS类型的SRS资源的端口数为2。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A1,B1])对应的AS类型的SRS资源的端口数小于第1个数值区间对应的AS类型的SRS资源的端口数,也就是说,第2个数值区间对应的AS类型的SRS资源的端口数可以是2、1、0,表2中以第2个数值区间对应的AS类型的SRS资源的端口数为2作为示例。
在第2个数值区间对应的AS类型的SRS资源的端口数为2的情况下,第3个数值区间(即(B1,C1])对应的AS类型的SRS资源的端口数可以是1、0,表2中以第3个数值区间对应的AS类型的SRS资源的端口数为1作为示例。
在第3个数值区间对应的AS类型的SRS资源的端口数为1的情况下,第4个数值区间(即(C1,无穷大))对应的AS类型的SRS资源的端口数为0(即按照天线切换模式为notSupported处理,无AS类型资源)。
如表2所示,若第一终端设备的数量t与第1个数值区间对应(即t≤A1),则网络设备将第1个数值区间对应的SRS资源作为第一SRS资源,即网络设备按照Tx-switch=t2r4为第二终端设备配置AS类型的SRS资源,即网络设备按照第二终端设备最大能力支持的SRS资源为第二终端设备配置AS类型的SRS资源。体现在用于配置AS类型的SRS资源的RRC信令中(即资源配置信息)携带有2个SRS资源配置,每个SRS资源配置对应不同的SRS资源标识(ResourceId),每个SRS资源的端口数为2。在此情况下,网络设备为第二终端设备配置的AS类型的SRS资源的总端口数为4,满足表1的要求。
若第一终端设备的数量t与第2个数值区间对应(即A1<t≤B1),则网络设备将第2个数值区间对应的SRS资源作为第一SRS资源,即网络设备按照Tx-switch=t2r2的SRS天线切换模式为第二终端设备配置AS类型的SRS资源。体现在用于配置AS类型的SRS资源的RRC信令中携带有1个SRS资源配置,即RRC信令中携带一个SRS-ResourceId,SRS资源的端口数为2。或者,网络设备按照Tx-switch=t1r2的SRS天线切换模式为第二终端设备配置AS类型的SRS资源。体现在用于配置AS类型的SRS资源的RRC信令中携带有2个SRS资源配置,每个SRS资源配置对应不同的SRS-ResourceId,每个SRS资源的端口数为1。在此情况下,网络设备为第二终端设备配置的AS类型的SRS资源的总端口数为2,满足表1的要求。
可以理解,若网络设备按照Tx-switch=t2r2的SRS天线切换模式为第二终端设备配置AS类型的SRS资源,则相当于在第一终端设备的数量增加的情况下,网络设备按照先减少SRS资源数的方式减少为第二终端设备配置的SRS资源。
若网络设备按照Tx-switch=t1r2的SRS天线切换模式为第二终端设备配置AS类型的SRS资源,则相当于在第一终端设备的数量增加的情况下,网络设备按照先减少每个SRS资源的端口数的方式减少为第二终端设备配置的SRS资源。
若第一终端设备的数量t与第3个数值区间对应(即B1<t≤C1),则网络设备将第3个数值区间对应的SRS资源作为第一SRS资源,即网络设备按照Tx-switch=t1r1的SRS天线切换模式为第二终端设备配置AS类型的SRS资源。体现在用于配置AS类型的SRS资源的RRC信令中携带有1个SRS资源配置,即RRC信令中携带一个SRS-ResourceId,SRS资源的端口数为1。在此情况下,网络设备为第二终端设备配置的AS类型的SRS资源的总端口数为1,满足表1的要求。
若第一终端设备的数量t与第4个数值区间对应(即t>C1),则网络设备将第4个数值区间对应的SRS资源作为第一SRS资源,即网络设备不为第二终端设备配置AS类型的SRS资源。
一般来说,端口数为2的SRS占用的资源比端口数为1的SRS占用的资源大,但是2个端口数为1的SRS占用的资源和1个端口数为2的SRS占用的资源基本相同(假设不考虑性能和资源碎片等因素)。为了防碎片化因素或发送SRS测量时延,网络设备可以定义天线切换模式t2r2对应的SRS占用的资源可以比天线切换模式t1r2对应的SRS占用的资源略大的分配策略;当然也可以定义t1r2和t2r2端口数相同,只选一种,那么表3的(A1,B2]和(B2,B1]可以合并为一个区间。
则针对第二终端设备,还可以将数值区间(A1,B1]进一步划分为连续的两个数值区间(A1,B2]和(B2,B1],A1<B2<B1。在此情况下,第一映射关系还可以如表3所示:
表3
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的AS类型SRS资源对应t2r4
(A1,B2] 配置的AS类型SRS资源对应t2r2
(B2,B1] 配置的AS类型SRS资源对应t1r2
(B1,C1] 配置的AS类型SRS资源对应t1r1
(C1,无穷大) 不配置AS类型SRS资源
在网络设备按照为第二终端设备配置的AS类型的SRS资源如表3所示的情况下,不同数值区间对应的SRS资源之间的关系可以描述为:数值区间#2对应的SRS资源的端口数大于数值区间#3对应的SRS资源的端口数,或者,数值区间#2对应的SRS资源大于数值区间#3对应的SRS资源。
示例2,如果网络设备根据第二终端设备发送的第一信息确定第二终端设备支持的SRS天线切换模式为t1r1-t1r2,且终端设备能够支持的单个SRS资源对应的最大端口数为2,则第一映射关系可以如表4所示:
表4
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的AS类型SRS资源对应t1r2
(A1,B1] 配置的AS类型SRS资源对应t1r1
(B1,无穷大) 不配置的AS类型SRS资源
表4所示的第1个数值区间(即[0,A1])对应的AS类型的SRS资源的端口数为2,即第1个数值区间对应的AS类型的SRS资源为第二终端设备最大能支持的AS类型的SRS资源。应理解,表4中仅以第1个数值区间对应的AS类型的SRS资源等于第二终端设备最大能支持的AS类型的SRS资源作为示例,第1个数值区间对应的AS类型的SRS资源也可以小于第二终端设备最大能支持的AS类型的SRS资源。例如,第1个数值区间对应的AS类型的SRS资源的端口数为1。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A1,B1])对应的AS类型的SRS资源的端口数小于第1个数值区间对应的AS类型的SRS资源的端口数,也就是说,第2个数值区间对应的AS类型的SRS资源的端口数可以是1、0,表4中以第2个数值区间对应的AS类型的SRS资源的端口数为1作为示例。
在第2个数值区间对应的AS类型的SRS资源的端口数为1的情况下,第3个数值区间(即(B1,无穷大))对应的AS类型的SRS资源的端口数可以是0(即按照天线切换模式为notSupported处理,无AS类型资源)。
如表4所示,若第一终端设备的数量t与第1个数值区间对应(即t≤A1),则网络设备将第1个数值区间对应的SRS资源作为第一SRS资源,即网络设备按照Tx-switch=t1r2的SRS天线切换模式为第二终端设备配置AS类型的SRS资源,即网络设备按照第二终端设备最大能力支持SRS资源为第二终端设备配置AS类型的SRS资源。体现在用于配置AS类型的SRS资源的RRC信令中携带有2个SRS资源配置,每个SRS资源配置对应不同的SRS-ResourceId,每个SRS资源的端口数为1。在此情况下,网络设备为第二终端设备配置的AS类型的SRS资源的总端口数为2,满足表1的要求。
若第一终端设备的数量t与第2个数值区间对应(即A1<t≤B1),则网络设备将第2个数值区间对应的SRS资源作为第一SRS资源,即网络设备按照Tx-switch=t1r1的SRS天线切换模式为第二终端设备配置AS类型的SRS资源。体现在用于配置AS类型的SRS资源的RRC信令中携带有1个SRS资源配置,即RRC信令中携带一个SRS-ResourceId,SRS资源的端口数为1。在此情况下,网络设备为第二终端设备配置的AS类型的SRS资源的总端口数为1,满足表1的要求。
若第一终端设备的数量t与第3个数值区间对应(即t>B1),则网络设备将第3个 数值区间对应的SRS资源作为第一SRS资源,即网络设备不为当第二终端设备配置AS类型的SRS资源。
结合示例1、示例2以及表1可知,在网络设备按照本申请实施例为第二终端设备配置AS类型的SRS资源的过程中,若第一终端设备的数量处于第1个数值区间,则网络设备为第二终端设备配置的AS类型的SRS资源的端口数等于第二终端设备最大能支持的AS类型的SRS资源的端口数;若第一终端设备的数量处于第2个数值区间,则网络设备为第二终端设备配置的AS类型的SRS资源的端口数等于min(第二终端设备最大能支持的AS类型的SRS资源的端口数,2个端口);若第一终端设备的数量处于第3个数值区间,则网络设备为第二终端设备配置的AS类型的SRS资源的端口数等于min(第二终端设备最大能支持的AS类型的SRS资源的端口数,1个端口);若第一终端设备的数量处于第4个数值区间,则网络设备不为第二终端设备配置AS类型的SRS资源。
应理解,在网络设备按照本申请实施例为第二终端设备配置AS类型的SRS资源的情况下,若网络设备还可能需要为第二终端设备配置其他类型(CB/nonCB/波束管理)的SRS资源,则网络设备可以按照现有的资源配置方法为第二终端设备配置除AS类型以外的其他类型的SRS资源。
作为另一个示例,第一SRS资源可以是CB类型的SRS资源,即网络设备可以按照本申请实施例提供的方法为第二终端设备配置CB类型的SRS资源。如上所述,根据maxNumberMIMO-LayersCB-PUSCH可能的取值可知,第二终端设备可能支持的CB类型的SRS的最大上行MIMO层数为:4层(对应CB类型的SRS资源的最大端口数为4)、2层(对应的CB类型的SRS资源的最大端口数为2)、1层(对应的CB类型的SRS资源的最大端口数为1)。因此,多个数值区间以及与每个数值区间对应的SRS资源满足表5所示的资源配置策略:
表5
第一终端设备的数量 不同区间的SRS资源配置策略
[0,A1] 配置的CB类型SRS资源总端口数不超过4
(A1,B1] 配置的CB类型SRS资源总端口数不超过2
(B1,无穷大) 配置的CB类型SRS资源总端口数不超过1
应理解,表5仅为示例,随着技术的发展,终端设备最大能支持的CB类型的SRS资源的端口数可能增加为6个、8个、10个等,则表5所示的不同数值区间对应的资源配置策略可能会发生变化,例如,[0,A1]对应的资源配置策略可能为:配置的CB类型的SRS资源总端口数不超过6。
下面给出两个示例,对网络设备为第二终端设备配置CB类型SRS资源的方法进行说明。
示例1,如果网络设备根据第二终端设备发送的第一信息确定第二终端设备支持的CB类型的SRS的最大上行MIMO层数为4层,以及第二终端设备能够支持的单个SRS资源对应的最大端口数为4,则第一映射关系可以如表6所示:
表6
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的CB类型SRS资源对应4个端口
(A1,B1] 配置的CB类型SRS资源对应2个端口
(B1,无穷大) 配置的CB类型SRS资源对应1个端口
其中,A1<B1<C1,A1、B1、C1都为正整数。
表6所示的第1个数值区间(即[0,A1])对应的CB类型的SRS资源的端口数为4,即第1个数值区间对应的CB类型的SRS资源为第二终端设备最大能支持的CB类型的SRS资源。应理解,表6中仅以第1个数值区间对应的CB类型的SRS资源等于第二终端设备最大能支持的CB类型的SRS资源作为示例,第1个数值区间对应的CB类型的SRS资源也可以小于第二终端设备最大能支持的CB类型的SRS资源。例如,第1个数值区间对应的CB类型的SRS资源的端口数为2。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A1,B1])对应的CB类型的SRS资源的端口数小于第1个数值区间对应的CB类型的SRS资源的端口数,也就是说,第2个数值区间对应的CB类型的SRS资源的端口数可以是2、1、0,表6中以第2个数值区间对应的CB类型的SRS资源的端口数为2作为示例。
在第2个数值区间对应的CB类型的SRS资源的端口数为2的情况下,第3个数值区间(即(B1,无穷大))对应的CB类型的SRS资源的端口数可以是1、0,表6中以第3个数值区间对应的CB类型的SRS资源的端口数为1作为示例。
如表6所示,若第一终端设备的数量t与第1个数值区间对应(即t≤A1),则网络设备将第1个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为4的CB类型的SRS资源,即网络设备按照第二终端设备最大能力支持的SRS资源为第二终端设备配置CB类型的SRS资源。
若第一终端设备的数量t与第2个数值区间对应(即A1<t≤B1),则网络设备将第2个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为2的CB类型的SRS资源。
若第一终端设备的数量t与第3个数值区间对应(即B1<t),则网络设备将第3个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为1的CB类型的SRS资源。
示例2,如果网络设备根据第二终端设备发送的第一信息确定第二终端设备支持的CB类型的SRS的最大上行MIMO层数为2,且终端设备能够支持的单个SRS资源对应的最大端口数为2,则第一映射关系可以如表7所示:
表7
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的CB类型SRS资源对应2个端口
(A1,无穷大] 配置的CB类型SRS资源对应1个端口
表7所示的第1个数值区间(即[0,A1])对应的CB类型的SRS资源的端口数为2,即第1个数值区间对应的CB类型的SRS资源为第二终端设备最大能支持的CB类型的SRS资源。应理解,表7中仅以第1个数值区间对应的CB类型的SRS资源等于第二终端 设备最大能支持的CB类型的SRS资源作为示例,第1个数值区间对应的CB类型的SRS资源也可以小于第二终端设备最大能支持的CB类型的SRS资源。例如,第1个数值区间对应的CB类型的SRS资源的端口数为1。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A1,无穷大))对应的CB类型的SRS资源的端口数小于第1个数值区间对应的CB类型的SRS资源的端口数,也就是说,第2个数值区间对应的CB类型的SRS资源的端口数可以是1、0,表7中以第2个数值区间对应的CB类型的SRS资源的端口数为1作为示例。
如表7所示,若第一终端设备的数量t与第1个数值区间对应(即t≤A1),则网络设备将第1个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为2的CB类型的SRS资源,即网络设备按照第二终端设备最大能力支持SRS资源为第二终端设备配置CB类型的SRS资源。
若第一终端设备的数量t与第2个数值区间对应(即A1<t),则网络设备将第2个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为1的CB类型的SRS资源。
结合示例1、示例2以及表5可知,在网络设备按照本申请实施例为第二终端设备配置CB类型的SRS资源的过程中,若第一终端设备的数量处于第1个数值区间,则网络设备为第二终端设备配置的CB类型的SRS资源的端口数等于第二终端设备最大能支持的CB类型的SRS资源的端口数;若第一终端设备的数量处于第2个第一数值区间,则网络设备为第二终端设备配置的CB类型的SRS资源的端口数等于min(第二终端设备最大能支持的CB类型的SRS资源的端口数,2个端口);若第一终端设备的数量处于第3个第一数值区间,则网络设备为第二终端设备配置CB类型的SRS资源的端口数等于min(第二终端设备最大能支持的CB类型的SRS资源的端口数,1个端口)。
可选地,网络设备也可以不为第二终端设备配置CB类型的SRS资源。在此情况下,网络设备可以按照表8所示的第二映射关系为第二终端设备配置CB类型的SRS资源。
表8
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的CB类型SRS资源总端口数不超过4
(A1,B1] 配置的CB类型SRS资源总端口数不超过2
(B1,C1] 配置的CB类型SRS资源总端口数不超过1
(C1,无穷大) 不配置CB类型的SRS资源
应理解,在网络设备按照本申请实施例为第二终端设备配置CB类型的SRS资源的情况下,若网络设备还可能需要为第二终端设备配置其他类型(AS/nonCB/波束管理)的SRS资源,则网络设备可以按照现有的资源配置方法为第二终端设备配置除CB类型以外的其他类型的SRS资源。
作为又一个示例,第一SRS资源可以是nonCB类型的SRS资源,即网络设备可以按照本申请实施例提供的方法为第二终端设备配置nonCB类型的SRS资源。如上所述,根据maxNumberMIMO-LayersNonCB-PUSCH可能的取值可知,第二终端设备可能支持的nonCB类型的SRS的最大上行MIMO层数为:4层(对应nonCB类型的SRS资源的最大端口数为4)、2层(对应的nonCB类型的SRS资源的最大端口数为2)、1层(对应的 nonCB类型的SRS资源的最大端口数为1)。因此,多个数值区间以及与每个数值区间对应的SRS资源满足表9所示的资源配置策略:
表9
第一终端设备的数量 不同区间的SRS资源配置策略
[0,A1] 配置的nonCB类型SRS资源总端口数不超过4
(A1,B1] 配置的nonCB类型SRS资源总端口数不超过2
(B1,无穷大) 配置的nonCB类型SRS资源总端口数不超过1
下面给出两个示例,对网络设备为第二终端设备配置nonCB类型SRS资源的方法进行说明。
示例1,如果网络设备根据第二终端设备发送的第一信息确定第二终端设备支持的nonCB类型的SRS的最大上行MIMO层数为4层,以及第二终端设备能够支持的单个SRS资源对应的最大端口数为4,则第一映射关系可以如表10所示:
表10
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的nonCB类型SRS资源对应4个端口
(A1,B1] 配置的nonCB类型SRS资源对应2个端口
(B1,无穷大) 配置的nonCB类型SRS资源对应1个端口
其中,A1<B1<C1,A1、B1、C1都为正整数。
表10所示的第1个数值区间(即[0,A1])对应的nonCB类型的SRS资源的端口数为4,即第1个数值区间对应的nonCB类型的SRS资源为第二终端设备最大能支持的nonCB类型的SRS资源。应理解,表10中仅以第1个数值区间对应的nonCB类型的SRS资源等于第二终端设备最大能支持的nonCB类型的SRS资源作为示例,第1个数值区间对应的nonCB类型的SRS资源也可以小于第二终端设备最大能支持的nonCB类型的SRS资源。例如,第1个数值区间对应的nonCB类型的SRS资源的端口数为2。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A1,B1])对应的nonCB类型的SRS资源的端口数小于第1个数值区间对应的nonCB类型的SRS资源的端口数,也就是说,第2个数值区间对应的nonCB类型的SRS资源的端口数可以是2、1、0,表10中以第2个数值区间对应的nonCB类型的SRS资源的端口数为2作为示例。
在第2个数值区间对应的nonCB类型的SRS资源的端口数为2的情况下,第3个数值区间(即(B1,无穷大))对应的nonCB类型的SRS资源的端口数可以是1、0,表10中以第3个数值区间对应的nonCB类型的SRS资源的端口数为1作为示例。
如表10所示,若第一终端设备的数量t与第1个数值区间对应(即t≤A1),则网络设备将第1个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为4的nonCB类型的SRS资源,即网络设备按照第二终端设备最大能力支持的SRS资源为第二终端设备配置nonCB类型的SRS资源。
若第一终端设备的数量t与第2个数值区间对应(即A1<t≤B1),则网络设备将第2个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为2的nonCB类型的SRS资源。
若第一终端设备的数量t与第3个数值区间对应(即B1<t),则网络设备将第3个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为1的nonCB类型的SRS资源。
示例2,如果网络设备根据第二终端设备发送的第一信息确定第二终端设备支持的nonCB类型的SRS的最大上行MIMO层数为2,且终端设备能够支持的单个SRS资源对应的最大端口数为2,则第一映射关系可以如表11所示:
表11
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的nonCB类型SRS资源对应2个端口
(A1,无穷大] 配置的nonCB类型SRS资源对应1个端口
表11所示的第1个数值区间(即[0,A1])对应的nonCB类型的SRS资源的端口数为2,即第1个数值区间对应的nonCB类型的SRS资源为第二终端设备最大能支持的nonCB类型的SRS资源。应理解,表11中仅以第1个数值区间对应的nonCB类型的SRS资源等于第二终端设备最大能支持的nonCB类型的SRS资源作为示例,第1个数值区间对应的nonCB类型的SRS资源也可以小于第二终端设备最大能支持的nonCB类型的SRS资源。例如,第1个数值区间对应的nonCB类型的SRS资源的端口数为1。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A1,无穷大))对应的nonCB类型的SRS资源的端口数小于第1个数值区间对应的nonCB类型的SRS资源的端口数,也就是说,第2个数值区间对应的nonCB类型的SRS资源的端口数可以是1、0,表11中以第2个数值区间对应的nonCB类型的SRS资源的端口数为1作为示例。
如表11所示,若第一终端设备的数量t与第1个数值区间对应(即t≤A1),则网络设备为第二终端设备配置端口数为2的nonCB类型的SRS资源,即网络设备按照第二终端设备最大能力支持SRS资源为第二终端设备配置nonCB类型的SRS资源。
若第一终端设备的数量t与第2个数值区间对应(即A1<t),则网络设备为第二终端设备配置端口数为1的nonCB类型的SRS资源。
结合示例1、示例2以及表9可知,在网络设备按照本申请实施例为第二终端设备配置nonCB类型的SRS资源的过程中,若第一终端设备的数量处于第1个数值区间,则网络设备为第二终端设备配置的nonCB类型的SRS资源的端口数等于第二终端设备最大能支持的nonCB类型的SRS资源的端口数;若第一终端设备的数量处于第2个数值区间,则网络设备为第二终端设备配置的nonCB类型的SRS资源的端口数等于min(第二终端设备最大能支持的nonCB类型的SRS资源的端口数,2个端口);若第一终端设备的数量处于第3个数值区间,则网络设备为第二终端设备配置nonCB类型的SRS资源的端口数等于min(第二终端设备最大能支持的nonCB类型的SRS资源的端口数,1个端口)。
可选地,网络设备也可以不为第二终端设备配置nonCB类型的SRS资源。在此情况下,网络设备可以按照表12所示的第一映射关系为第二终端设备配置nonCB类型的SRS资源。
表12
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的nonCB类型SRS资源总端口数不超过4
(A1,B1] 配置的nonCB类型SRS资源总端口数不超过2
(B1,C1] 配置的nonCB类型SRS资源总端口数不超过1
(C1,无穷大) 不配置nonCB类型的SRS资源
应理解,在网络设备按照本申请实施例为第二终端设备配置nonCB类型的SRS资源的情况下,若网络设备还可能需要为第二终端设备配置其他类型(AS/CB/波束管理)的SRS资源,则网络设备可以按照现有的资源配置方法为第二终端设备配置除nonCB类型以外的其他类型的SRS资源。
作为又一个示例,第一SRS资源可以是波束管理类型的SRS资源,即网络设备可以按照本申请实施例提供的方法为第二终端设备配置波束管理类型的SRS资源。如上所述,根据maxNumberSRS-Ports-PerResource可能的取值可知,第二终端设备可能支持的单个SRS资源对应的最大端口数为:4、2、1。因此,多个数值区间以及与每个数值区间对应的SRS资源满足表13所示的资源配置策略:
表13
第一终端设备的数量 不同区间的SRS资源配置策略
[0,A1] 配置的波束管理类型SRS资源总端口数不超过4
(A1,B1] 配置的波束管理类型SRS资源总端口数不超过2
(B1,无穷大) 配置的波束管理类型SRS资源总端口数不超过1
下面给出两个示例,对网络设备为第二终端设备配置波束管理类型SRS资源的方法进行说明。
示例1,如果网络设备根据第二终端设备发送的第一信息确定第二终端设备能够支持的单个SRS资源对应的最大端口数为4,则第一映射关系可以如表14所示:
表14
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的波束管理类型SRS资源对应4个端口
(A1,B1] 配置的波束管理类型SRS资源对应2个端口
(B1,无穷大) 配置的波束管理类型SRS资源对应1个端口
其中,A1<B1<C1,A1、B1、C1都为正整数。
表14所示的第1个数值区间(即[0,A1])对应的波束管理类型的SRS资源的端口数为4,即第1个数值区间对应的波束管理类型的SRS资源为第二终端设备最大能支持的波束管理类型的SRS资源。应理解,表14中仅以第1个数值区间对应的波束管理类型的SRS资源等于第二终端设备最大能支持的波束管理类型的SRS资源作为示例,第1个数值区间对应的波束管理类型的SRS资源也可以小于第二终端设备最大能支持的波束管理类型的SRS资源。例如,第1个数值区间对应的波束管理类型的SRS资源的端口数为2。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A1,B1])对应的波束管理类型的SRS资源的端口数小于第1个数值区间对应的波束管理类型 的SRS资源的端口数,也就是说,第2个数值区间对应的波束管理类型的SRS资源的端口数可以是2、1、0,表14中以第2个数值区间对应的波束管理类型的SRS资源的端口数为2作为示例。
在第2个数值区间对应的波束管理类型的SRS资源的端口数为2的情况下,第3个数值区间(即(B1,无穷大))对应的波束管理类型的SRS资源的端口数可以是1、0,表14中以第3个数值区间对应的波束管理类型的SRS资源的端口数为1作为示例。
如表14所示,若第一终端设备的数量t与第1个数值区间对应(即t≤A1),则网络设备将第1个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为4的波束管理类型的SRS资源,即网络设备按照第二终端设备最大能力支持的SRS资源为第二终端设备配置波束管理类型的SRS资源。
若第一终端设备的数量t与第2个数值区间对应(即A1<t≤B1),则网络设备将第2个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为2的波束管理类型的SRS资源。
若第一终端设备的数量t与第3个数值区间对应(即B1<t),则网络设备将第3个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为1的波束管理类型的SRS资源。
示例2,如果网络设备根据第二终端设备发送的第一信息确定第二终端设备能够支持的单个SRS资源对应的最大端口数为2,则第一映射关系可以如表15所示:
表15
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的波束管理类型SRS资源对应2个端口
(A1,无穷大] 配置的波束管理类型SRS资源对应1个端口
表15所示的第1个数值区间(即[0,A1])对应波束管理类型的SRS资源的端口数为2,即第1个数值区间对应的波束管理类型的SRS资源为第二终端设备最大能支持的波束管理类型的SRS资源。应理解,表15中仅以第1个数值区间对应的波束管理类型的SRS资源等于第二终端设备最大能支持的波束管理类型的SRS资源作为示例,第1个数值区间对应的波束管理类型的SRS资源也可以小于第二终端设备最大能支持的波束管理B类型的SRS资源。例如,第1个数值区间对应的波束管理类型的SRS资源的端口数为1。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A1,无穷大))对应的波束管理类型的SRS资源的端口数小于第1个数值区间对应的波束管理类型的SRS资源的端口数,也就是说,第2个数值区间对应的波束管理类型的SRS资源的端口数可以是1、0,表15中以第2个数值区间对应的波束管理类型的SRS资源的端口数为1作为示例。
如表15所示,若第一终端设备的数量t与第1个数值区间对应(即t≤A1),则网络设备将第1个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为2的波束管理类型的SRS资源,即网络设备按照第二终端设备最大能力支持SRS资源为第二终端设备配置波束管理类型的SRS资源。
若第一终端设备的数量t与第2个数值区间对应(即A1<t),则网络设备将第2个数值区间对应的SRS资源作为第一SRS资源,即网络设备为第二终端设备配置端口数为 1的波束管理类型的SRS资源。
结合示例1、示例2以及表13可知,在网络设备按照本申请实施例为第二终端设备配置波束管理类型的SRS资源的过程中,若第一终端设备的数量处于第1个数值区间,则网络设备为第二终端设备配置的波束管理类型的SRS资源的端口数等于第二终端设备最大能支持的波束管理类型的SRS资源的端口数;若第一终端设备的数量处于第2个数值区间,则网络设备为第二终端设备配置的波束管理类型的SRS资源的端口数等于min(第二终端设备最大能支持的波束管理类型的SRS资源的端口数,2个端口);若第一终端设备的数量处于第3个数值区间,则网络设备为第二终端设备配置波束管理类型的SRS资源的端口数等于min(第二终端设备最大能支持的波束管理类型的SRS资源的端口数,1个端口)。
可选地,网络设备也可以不为第二终端设备配置波束管理类型的SRS资源。在此情况下,网络设备可以按照表16所示的第一映射关系为第二终端设备配置波束管理类型的SRS资源。
表16
第一终端设备的数量 不同区间的SRS资源
[0,A1] 配置的波束管理类型SRS资源总端口数不超过4
(A1,B1] 配置的波束管理类型SRS资源总端口数不超过2
(B1,C1] 配置的波束管理类型SRS资源总端口数不超过1
(C1,无穷大) 不配置波束管理类型的SRS资源
应理解,在网络设备按照本申请实施例为第二终端设备配置波束管理类型的SRS资源的情况下,若网络设备还可能需要为第二终端设备配置其他类型(AS/CB/nonCB)的SRS资源,则网络设备可以按照现有的资源配置方法为第二终端设备配置除波束管理类型以外的其他类型的SRS资源。
作为又一个示例,第一SRS资源可以包括多种类型的SRS资源,即网络设备可以按照本申请实施例提供的方法为第二终端设备配置多种类型的SRS资源。
在第一SRS资源包括多种类型的SRS资源的情况下,不同数值区间对应的SRS资源之间的关系可以描述为:数值区间#2对应的多种类型的SRS资源的总端口数大于数值区间#3对应的多种类型的SRS资源的总端口数,并且数值区间#2对应的第一类型的SRS资源的端口数大于数值区间#3对应的第一类型的SRS资源的端口数。第一类型的SRS资源是多种类型的SRS资源中的至少一种类型的SRS资源。在此情况下,数值区间#2对应的第二类型的SRS资源的端口数大于或等于数值区间#3对应的第二类型的SRS资源的端口数。第二类型的SRS资源是多种类型SRS资源中除第一类型的SRS资源以外的SRS资源。
下文以网络设备同时为第二终端设备配置AS类型和CB类型的SRS资源为例,对网络设备按照本申请实施例的方法同时为第二终端设备配置多种类型的SRS资源进行说明。
具体地,在网络设备同时为第二终端设备配置AS类型和CB类型的SRS资源的过程中,与多个数值区间分别对应的SRS资源配置策略可以是按照如下规则确定的:先按照从第1个数值区间至第k个数值区间的顺序减少为第二终端设备配置的AS类型的SRS资源的端口数,再按照从第k+1个数值区间至第N个第数值区间的顺序减少为第二终端设备配置的CB类型的SRS资源端口数,网络设备按照第k个数值区间对应的资源配置策略 为第二终端设备配置的AS类型的SRS资源的端口数为0(即按照天线切换模式为notSupported处理,无AS类型资源),1<k<N,k为正整数。按照上述规则确定的与每个数值区间分别对应的资源配置策略如表17所示:
表17
Figure PCTCN2021070849-appb-000007
可选地,与多个数值区间分别对应的资源配置策略也可以是按照如下规则确定的:先按照从第1个数值区间至第k’个数值区间的顺序减少为第二终端设备配置的CB类型的SRS资源的端口数,再按照从第k’+1个数值区间至第N个数值区间的顺序减少为第二终端设备配置的AS类型的SRS资源端口数,网络设备按照第k’个第一数值区间对应的资源配置策略为第二终端设备配置的CB类型的SRS资源的端口数为0(即按照天线切换模式为notSupported处理,无AS类型资源),1<k’<N,k’为正整数。按照上述规则确定的与每个数值区间分别对应的资源配置策略如表18所示:
表18
Figure PCTCN2021070849-appb-000008
可选地,网络设备在为第二终端设备配置AS类型和CB类型的SRS资源的过程中,随着第一终端设备的数量的增大,网络设备也可以同时减少为第二终端设备配置的AS类型和CB类型的SRS资源的端口数。例如,网络设备为第二终端设备配置AS类型和CB类型的资源配置策略可以如表19所示:
表19
Figure PCTCN2021070849-appb-000009
下面给出一个示例,对网络设备为第二终端设备同时配置AS类型SRS资源和CB类型SRS资源的方法进行说明。
如果网络设备根据第二终端设备发送的第一信息确定第二终端设备能够支持的SRS天线切换模式为t1r1-t1r2-t2r2-t2r4,以及能够支持的CB类型的SRS的最大上行MIMO层数为4层,则第一映射关系可以如表20所示:
表20
Figure PCTCN2021070849-appb-000010
其中,A1<B1<C1,A1、B1、C1都为正整数。
表20所示的第1个数值区间(即[0,A1])对应的AS类型的SRS资源和CB类型的SRS资源的端口数都为4,即第1个数值区间对应的SRS资源为第二终端设备最大能支持的SRS资源。应理解,表20中仅以第1个数值区间对应的SRS资源等于第二终端设备最大能支持的SRS资源作为示例,第1个数值区间对应的SRS资源也可以小于第二终端设备最大能支持的A SRS资源。例如,第1个数值区间对应的AS类型的SRS资源和CB类型的SRS资源的端口数都为2。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A1, B1])对应的两种类型的SRS资源的总端口数小于第1个数值区间对应的两种类型的SRS资源的总端口数,也就是说,第2个数值区间对应的两种类型的SRS资源的总端口数可以是6、5、4、3、2、1、0,表20中以第2个数值区间对应的两种类型的SRS资源的总端口数为6作为示例。
在第2个数值区间对应的两种类型的SRS资源的总端口数为6的情况下,第3个数值区间(即(B1,C1])对应的两种类型的SRS资源的总端口数可以是5、4、3、2、1、0,表20中以第3个数值区间对应的两种类型的SRS资源的总端口数为3作为示例。
在第3个数值区间对应的两种类型的SRS资源的总端口数为3的情况下,第4个数值区间(即(C1,无穷大))对应的两种类型的SRS资源的总端口数可以是2、1、0,表20中以低4个数值区间对应的两种类型的SRS资源的总端口数为1作为示例。
如表20所示,若第一终端设备的数量t与第1个数值区间对应(即t≤A1),则网络设备将第1个数值区间对应的SRS资源作为第一SRS资源,即网络设备按照Tx-switch=t2r4为第二终端设备配置AS类型的SRS资源,以及为第二终端设备配置端口数为4的CB类型的SRS资源,即网络设备按照第二终端设备最大能力支持的SRS资源为第二终端设备配置AS类型和CB类型的SRS资源。
若第一终端设备的数量t与第2个数值区间对应(即A1<t≤B1),则网络设备将第2个数值区间对应的SRS资源作为第一SRS资源,即网络设备Tx-switch=t2r2/t1r2为第二终端设备配置AS类型的SRS资源,以及为第二终端设备配置端口数为4的CB的SRS资源。
若第一终端设备的数量t与第3个数值区间对应(即B1<t≤C1),则网络设备将第3个数值区间对应的SRS资源作为第一SRS资源,即网络设备按照Tx-switch=t1r1为第二终端设备配置AS类型的SRS资源,以及为第二终端设备配置端口数为2的CB类型的SRS资源。
若第一终端设备的数量t与第4个数值区间对应(即C1<t),则网络设备将第2个数值区间对应的SRS资源作为第一SRS资源,即网络设备不为第二终端设备配置AS类型的SRS资源,以及为第二终端设备配置端口数为1的CB类型的SRS资源。或者,网络设备为第二终端设备配置1个AS类型的SRS资源和1个CB类型的SRS资源,该2个SRS资源的端口数为1,且该1个SRS资源对应的SRS-ResourceId相同,即可以认为AS类型的SRS资源和CB类型的SRS资源复用了一个资源。
类似地,若第二终端设备支持所有类型的SRS资源,则随着第一终端设备的数量增大,网络设备为第二终端设备配置的SRS资源的端口数减少。可以理解,此处所述的网络设备为第二终端设备配置的SRS资源的为网络设备为第二终端设备配置的所有类型的SRS资源,相应地,网络设备为第二终端设备配置的SRS资源的端口数=网络设备为第二终端设备配置的AS类型的SRS资源的端口数+网络设备为第二终端设备配置的CB类型的SRS资源的端口数+网络设备为第二终端设备配置的nonCB类型的SRS资源的端口数+网络设备为第二终端配置的波束管理类型的SRS资源的端口数。其中,示例性地,AS类型的SRS资源的端口数=AS类型的SRS资源1的端口数+AS类型的SRS资源2的端口数+……;CB类型的SRS资源的端口数=CB类型的资源1的端口数+CB类型的SRS资源2的端口数+……;nonCB类型的SRS资源的端口数=nonCB类型的资源1的端口数+nonCB类型的SRS资源2的端口数+……;波束管理类型的SRS资源的端口数波束管理类型的资 源1的端口数+波束管理类型的SRS资源2的端口数+……。
可选地,若数值区间的个数是2,且网络设备可以按照第1个数值区间为第二终端设备配置的SRS资源的端口数等于第二终端设备最大能支持的SRS资源的端口数,则本申请实施例提供的资源配置的方法还可以描述为:在第一终端设备的数量不超过预设阈值的情况下,网络设备为第二终端设备配置的SRS资源的端口数等于第二终端设备最大能支持的SRS资源的端口数;在第一终端设备的数量大于预设阈值的情况下,网络设备为第二终端设备配置的SRS资源的端口数小于第二终端设备最大能支持的SRS资源的端口数。
例如,2个连续的数值区间可以包括[0,A1]、(A1,无穷大),则在第一终端设备的数量不超过A1的情况下,网络设备为第二终端设备配置的SRS资源的端口数等于第二终端设备最大能支持的SRS资源的端口数;在第一终端设备的数量大于A1的情况下,网络设备为第二终端设备配置的SRS资源的端口数小于第二终端设备最大能支持的SRS资源的端口数。
可选地,本申请实施例提供的资源配置的方法还可以描述为:在第一终端设备的数量不超过预设阈值的情况下,网络设备为第二终端设备配置的SRS资源的端口数等于第二终端设备最大能支持的SRS资源的端口数,在第一终端设备的数量超过预设阈值的情况下,网络设备为第二终端设备配置的SRS资源的端口数小于第二终端设备最大能支持的SRS资源的端口数。进一步地,在第一终端设备的数量超过预设阈值的情况下,网络设备还可以根据第一终端设备的数量所对应的数值区间和第一映射关系为第二终端设备配置SRS资源。
例如,预设阈值可以是A1,连续的数值区间可以包括:(A1,B1],(B1,C1],(C1,无穷大),则在第一终端设备的数量不超过A1的情况下,网络设备为第二终端设备配置的SRS资源的端口数等于第二终端设备最大能支持的SRS资源的端口数;在第一终端设备的数量大于A1的情况下,网络设备为第二终端设备配置的SRS资源的端口数小于第二终端设备最大能支持的SRS资源的端口数。
进一步地,在第一终端设备的数量大于A1的情况下,若第一终端设备的数量处于第1个数值区间((A1,B1]),则网络设备可以将第1个数值区间对应的SRS资源作为第一SRS资源;若第一终端设备的数量处于第2个数值区间((B1,C1]),则网络设备可以将第2个数值区间对应的SRS资源作为第一SRS资源;若第一终端设备的数量处于第3个数值区间,则网络设备可以将第3个数值区间对应的SRS资源作为第一SRS资源。
如上所述,多个数值区间中至少一个数值区间的临界值可以是根据第一终端设备的数量确定的。因此可以理解,随着第一终端设备的数量的变化,网络设备可以对多个数值区间中至少一个数值区间的临界值进行更新。具体地,若满足以下至少一个条件:网络设备为第一终端设备配置的SRS资源的总端口数大于或等于第一预设阈值、第一小区新接入的终端设备的数量大于或等于第二预设阈值、网络设备为第一终端设备配置的SRS资源的总端口数小于或等于第三预设阈值、第一小区退网的终端设备的数量大于或等于第四预设阈值,则网络设备根据第一终端设备的数量对多个数值区间中至少一个数值区间的临界值进行更新。
网络设备在更新多个数值区间中至少一个数值区间的临界值的过程中,可以增大或减小数值区间的最大值,也可以增大或减小数值区间的最小值。例如,将更新前的数值区间 可以记为:为[0,A1]、(A1,B1]、(B1,C1]、(C1,无穷大),将更新后的数值区间记为:[0,A2]、(A2,B2]、(B2,C2]、(C2,无穷大),则更新前数值区间与更新后的数值区间之间的关系可以是:A2<A1(即减小第1个数值区间的最大值),B2=B1,C2=C1;或者,可以是:A2=A1,B2<B1(即减小2个数值区间的最大值),C2=C1;或者,可以是:A2=A1,B2=B1,C2<C1(即减小第3个数值区间的最大值);或者,可以是:A2<A1,B2<B1,C2=C1;或者,可以是:A2<A1,B2<B1,C2<C1;等等。
可选地,在网络设备对多个数值区间中至少一个数值区间的临界值进行更新的情况下,网络设备还可以根据第二映射关系为第一终端设备中的至少一个第一终端设备重配SRS资源,第二映射关系用于指示更新后的多个数值区间与多个SRS资源之间的映射关系。具体地,下文方法500会对本申请实施例提供的资源重配的方法进行说明。
S240,网络设备发送资源配置信息。相应地,在S240中,第二设备接收资源配置信息。
该资源配置信息用于指示网络设备为第二终端设备配置的SRS资源。相应地,第二终端设备收到该资源配置信息之后,则在该资源配置信息指示的SRS资源上发送SRS。
在本申请实施例中,网络设备根据当前小区已接入的终端设备的数量为当前新接入的终端设备配置SRS资源,并且在当前小区已接入的终端设备的数量较大的情况下,网络设备可以为终端设备配置比终端设备最大能支持的SRS资源更小的SRS资源。相比于现有的方案中网络设备始终为当前新接入的终端设备分配该终端设备最大能支持的SRS资源,按照本申请实施例的方法,在当前小区能使用的SRS资源有限的情况下,网络设备能为更多的终端设备配置SRS资源,从而可以提升小区的吞吐率。
可选地,方法200还可以包括S250:网络设备确定第二终端设备是否为第一类型的终端设备。
第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符(5th generation quality of service indicator,5QI)值配置传输第一业务的终端设备、通过事物标识符(transactionID)或者用户数据身份标识符(subscribe profile ID)标识的传输第一业务的终端设备。第一业务可以指大流量的业务、优先级高的业务、时延要求高的业务等。
其中,传输数据量大于预设门限值的终端设备也可以叫做大包终端设备。网络设备可以接收第二终端设备发送的缓冲状态报告(buffer status report,BSR),并根据BSR指示的第二终端设备当前待发送的数据量是否超过预设门限值来判断第二终端设备是否是大包终端设备。
若网络设备确定第二终端设备不是第一类型的终端设备,则网络设备按照上述S230中描述的资源配置方法为第二终端设备配置SRS资源,即网络设备将数值区间#1对应的SRS资源作为第一SRS资源。
若网络设备确定第二终端设备是第一类型的终端设备,则网络设备将数值区间#4(即第二数值区间)对应的SRS资源作为第一SRS资源。数值区间#4的最大值小于第一终端设备的数量对应的数值区间的最小值。可选地,数值区间#4与数值区间#1相邻。
可以理解,按照本申请实施例提供的资源配置方法,相比于非第一类型的终端设备,网络设备会为第一类型的终端设备分配更多的SRS资源。
下面结合图3,以网络设备按照本申请实施例提供的方法为终端设备配置CB类型的SRS资源、以及第一类型的终端设备是大包终端设备为例,对本申请实施例提供的资源配置方法进行说明。应理解,图3仅为示例,示出了网络设备在根据第一终端设备的数量和第二终端设备的类型为第二终端设备配置CB类型的SRS资源的流程示意图。网络设备根据第一终端设备的数量和第二终端设备的类型分别为第二终端设备配置AS类型/nonCB类型/波束管理类型的SRS资源的方法可以参考图3所示的流程,为了简洁,本申请实施例不再详述。
如图3所示,网络设备首先获取当前小区已接入的UE#1(即第一终端设备)的数量t和来自新接入的UE#2(即第二终端设备)的第一信息。进一步地,网络设备确定t所处的数值区间。
若t处于第1个数值区间(即t<A1),则网络设备为UE#2配置的CB类型的SRS资源的端口数等于UE#2最大能支持的CB类型的SRS资源的端口数。网络设备为UE#2配置的CB类型的SRS资源的端口数在RRC信令中,由SRS资源集(SRS-ResourceSet)中作用(usage)为codebook所对应的SRS资源标识列表(srs-ResourceIdList)的SRS-Resource(即资源配置信息)中的SRS资源的端口数(nrofSRS-Ports)指示。
进一步地,若第一信息包括UE#2的辅助信息,则nrofSRS-Ports=Min(UE#2辅助信息MIMO能力,UE#2能力最大MIMO能力),UE#2辅助信息MIMO能力表示根据UE#2的辅助信息确定的UE#2能支持的CB类型的最大上行MIMO层数,UE#2能力最大MIMO能力表示根据UE#2的能力信息确定的UE#2最大能力支持的CB类型的上行MIMO层数。例如,UE#2辅助信息MIMO能力为2,UE#2能力最大MIMO能力为4,则nrofSRS-Ports=Min(2,4)=2,即网络设备为第二终端设备配置端口数为2的CB类型的SRS资源。若第一信息不包括UE#2的辅助信息,则nrofSRS-Ports=UE#2能力最大MIMO能力。例如,UE#2能力最大MIMO能力为4,则nrofSRS-Ports=4,即网络设备为UE#2配置端口数为4的CB类型的SRS资源。
若t处于第2个数值区间(即A1≤t<B1),且UE#2的数据量大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源的端口数等于UE#2最大能支持的CB类型的SRS资源端口数。即在UE#2是大包UE的情况下,网络设备将第1个数值区间对应的SRS资源作为给UE#2配置SRS资源。
若t处于第2个数值区间(即A1≤t<B1),且UE#2的数据量不大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源端口数=Min(2层,UE#2最大能支持的CB类型的SRS资源的端口数)。2层表示与网络设备为UE#2配置的CB类型的SRS资源端口数不超过2。
进一步地,若第一信息包括UE#2的辅助信息,则nrofSRS-Ports=Min(2层,Min(UE#2辅助信息MIMO能力,UE#2能力最大MIMO能力))。例如,UE#2辅助信息MIMO能力为2,UE#2能力最大MIMO能力为4,则nrofSRS-Ports=Min(2层,Min(2,4))=2,即网络设备为第二终端设备配置端口数为2的CB类型的SRS资源。若第一信息不包括UE#2的辅助信息,则nrofSRS-Ports=Min(2层,UE#2能力最大MIMO能力)。例如,UE#2能力最大MIMO能力为4,则nrofSRS-Ports=Min(2层,4)=2,即网络设备为UE#2配置端口数为2的CB类型的SRS资源。
若t处于第3个数值区间(即B1≤t),且UE#2的数据量大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源的端口数=Min(2层,UE#2最大能支持的CB类型的SRS资源的端口数)。即在UE#2是大包UE的情况下,网络设备将第2个数值区间对应的SRS资源作为给UE#2配置SRS资源。
若t处于第3个数值区间(即B1≤t),且UE#2的数据量不大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源端口数=Min(1层,UE#2最大能支持的CB类型的SRS资源的端口数)。1层表示与网络设备为UE#2配置的CB类型的SRS资源端口数不超过1。
进一步地,若第一信息包括UE#2的辅助信息,则nrofSRS-Ports=Min(1层,Min(UE#2辅助信息MIMO能力,UE#2能力最大MIMO能力))。例如,UE#2辅助信息MIMO能力为2,UE#2能力最大MIMO能力为4,则nrofSRS-Ports=Min(1层,Min(2,4))=1,即网络设备为第二终端设备配置端口数为1的CB类型的SRS资源。若第一信息不包括UE#2的辅助信息,则nrofSRS-Ports=Min(1层,UE#2能力最大MIMO能力)。例如,UE#2能力最大MIMO能力为4,则nrofSRS-Ports=Min(1层,4)=1,即网络设备为UE#2配置端口数为1的CB类型的SRS资源。
下面结合图4,以网络设备按照本申请实施例提供的方法为终端设备配置CB类型和AS类型的SRS资源、以及第一类型的终端设备是大包终端设备为例,对本申请实施例提供的资源配置方法进行说明。
如图4所示,网络设备首先获取当前小区已接入的UE#1(即第一终端设备)的数量t和来自新接入的UE#2(即第二终端设备)的第一信息。进一步地,网络设备确定t所处的数值区间。
若t处于第1个数值区间(即t<A1),则网络设备为UE#2配置的CB类型的SRS资源的端口数等于UE#2最大能支持的CB类型的SRS资源的端口数,以及网络设备为UE#2配置的AS类型的SRS资源的端口数等于UE#2最大能支持的AS类型的SRS资源的端口数。
进一步地,若第一信息包括UE#2的辅助信息,则CB类型的nrofSRS-Ports=Min(UE#2辅助信息MIMO能力,UE#2能力最大MIMO能力),UE#2辅助信息MIMO能力表示根据UE#2的辅助信息确定的UE#2能支持的CB类型的最大上行MIMO层数,UE#2能力最大MIMO能力表示根据UE#2的能力信息确定的UE#2最大能力支持的CB类型的上行MIMO层数。例如,UE#2辅助信息MIMO能力为2,UE#2能力最大MIMO能力为4,则CB类型的nrofSRS-Ports=Min(2,4)=2,即网络设备为第二终端设备配置端口数为2的CB类型的SRS资源。
AS类型的nrofSRS-Ports=Min(UE#2辅助信息天线切换能力,UE#2能力最大天线切换能力),UE#2辅助信息天线切换能力表示根据UE#2的辅助信息确定的UE#2能支持的AS类型的天线切换模式,UE#2能力最大天线切换能力表示根据UE#2的能力信息确定的UE#2最大能力支持的AS类型的天线切换模式。例如,UE#2辅助信息天线切换模式能力为t1r2,UE#2能力最大天线切换能力为t2r4,则AS类型的nrofSRS-Ports=Min(2,4)=2,即网络设备为第二终端设备配置端口数为2的AS类型的SRS资源。
若第一信息不包括UE#2的辅助信息,则CB类型nrofSRS-Ports=UE#2能力最大MIMO 能力。例如,UE#2能力最大MIMO能力为4,则CB类型的nrofSRS-Ports=4,即网络设备为UE#2配置端口数为4的CB类型的SRS资源。AS类型nrofSRS-Ports=UE#2能力最大天线切换能力。例如,UE#2能力最大天线切换能力为t2r4,则AS类型的nrofSRS-Ports=4,即网络设备为UE#2配置端口数为4的AS类型的SRS资源。
若t处于第2个数值区间(即A1≤t<B1),且UE#2的数据量大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源的端口数等于UE#2最大能支持的CB类型的SRS资源端口数,以及网络设备为UE#2配置的AS类型的SRS资源的端口数等于UE#2最大能支持的AS类型的SRS资源的端口数。即在UE#2是大包UE的情况下,网络设备将第1个数值区间对应的SRS资源作为给UE#2配置SRS资源。
若t处于第2个数值区间(即A1≤t<B1),且UE#2的数据量不大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源端口数等于UE#2最大能支持的CB类型的SRS资源端口数。网络设备为UE#2配置的AS类型的SRS资源端口数=Min(2,UE#2最大能支持的AS类型的SRS资源的端口数)。2表示与网络设备为UE#2配置的AS类型的SRS资源端口数不超过2。
进一步地,若第一信息包括UE#2的辅助信息,则CB类型的nrofSRS-Ports=Min(UE#2辅助信息MIMO能力,UE#2能力最大MIMO能力)。例如,UE#2辅助信息MIMO能力为2,UE#2能力最大MIMO能力为4,则CB类型的nrofSRS-Ports=Min(2,4)=2,即网络设备为第二终端设备配置端口数为2的CB类型的SRS资源。AS类型的nrofSRS-Ports=Min(2,Min(UE#2辅助信息天线切换能力,UE#2能力最大天线切换能力))。例如,UE#2辅助信息天线切换能力为t1r2,UE#2能力最大天线切换能力为t2r4,则AS类型的nrofSRS-Ports=Min(2,Min(2,4))=2,即网络设备为第二终端设备配置端口数为2的AS类型的SRS资源。
若第一信息不包括UE#2的辅助信息,则CB类型的nrofSRS-Ports=UE#2能力最大MIMO能力。AS类型的nrofSRS-Ports=Min(2,UE#2能力最大天线切换能力)。例如,UE#2能力最大天线切换能力为t2r4,则AS类型的nrofSRS-Ports=Min(2,4)=2,即网络设备为第二终端设备配置端口数为2的AS类型的SRS资源。
若t处于第3个数值区间(即B1≤t<C1),且UE#2的数据量大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源的端口数等于UE#2最大能支持的CB类型的SRS资源的端口数),网络设备为UE#2配置的AS类型的SRS资源端口数=Min(2,UE#2最大能支持的AS类型的SRS资源的端口数)。即在UE#2是大包UE的情况下,网络设备将第2个数值区间对应的SRS资源作为给UE#2配置SRS资源。
若t处于第3个数值区间(即B1≤t<C1),且UE#2的数据量不大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源端口数=Min(2层,UE#2最大能支持的CB类型的SRS资源的端口数)。2层表示与网络设备为UE#2配置的CB类型的SRS资源端口数不超过2。网络设备为UE#2配置的AS类型的SRS资源端口数=Min(1,UE#2最大能支持的AS类型的SRS资源的端口数)。1表示与网络设备为UE#2配置的AS类型的SRS资源端口数不超过1。
进一步地,若第一信息包括UE#2的辅助信息,则CB类型的nrofSRS-Ports=Min(2层,Min(UE#2辅助信息MIMO能力,UE#2能力最大MIMO能力))。例如,UE#2辅助信 息MIMO能力为2,UE#2能力最大MIMO能力为4,则CB类型的nrofSRS-Ports=Min(2层,Min(2,4))=2,即网络设备为第二终端设备配置端口数为2的CB类型的SRS资源。AS类型的nrofSRS-Ports=Min(1,Min(UE#2辅助信息天线切换能力,UE#2能力最大天线切换能力))。例如,UE#2辅助信息天线切换能力为t1r2,UE#2能力最大天线切换能力为t2r4,则AS类型的nrofSRS-Ports=Min(1,Min(2,4))=1,即网络设备为第二终端设备配置端口数为1的AS类型的SRS资源。
若第一信息不包括UE#2的辅助信息,则CB类型nrofSRS-Ports=Min(2层,UE#2能力最大MIMO能力)。例如,UE#2能力最大MIMO能力为4,则CB类型的nrofSRS-Ports=Min(2层,4)=2,即网络设备为UE#2配置端口数为2的CB类型的SRS资源。AS类型的nrofSRS-Ports=Min(1,UE#2能力最大天线切换能力)。例如,UE#2能力最大天线切换能力为t2r4,则AS类型的nrofSRS-Ports=Min(1,4)=1,即网络设备为第二终端设备配置端口数为1的AS类型的SRS资源。
若t处于第4个数值区间(即C1≤t),且UE#2的数据量大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源的端口数=Min(2层,UE#2最大能支持的CB类型的SRS资源的端口数),网络设备为UE#2配置的AS类型的SRS资源端口数=Min(1,UE#2最大能支持的AS类型的SRS资源的端口数)。即在UE#2是大包UE的情况下,网络设备将第3个数值区间对应的SRS资源作为给UE#2配置SRS资源。
若t处于第4个数值区间(即C1≤t),且UE#2的数据量不大于识别大包门限,则网络设备为UE#2配置的CB类型的SRS资源端口数=Min(1层,UE#2最大能支持的CB类型的SRS资源的端口数)。1层表示与网络设备为UE#2配置的CB类型的SRS资源端口数不超过1。以及网络设备为UE#2配置的AS类型的nrofSRS-Ports=0,即网络设备不为UE#2配置AS类型的SRS资源。
进一步地,若第一信息包括UE#2的辅助信息,则CB类型的nrofSRS-Ports=Min(1层,Min(UE#2辅助信息MIMO能力,UE#2能力最大MIMO能力))。例如,UE#2辅助信息MIMO能力为2,UE#2能力最大MIMO能力为4,则CB类型的nrofSRS-Ports=Min(1层,Min(2,4))=1,即网络设备为第二终端设备配置端口数为1的CB类型的SRS资源。
若第一信息不包括UE#2的辅助信息,则CB类型nrofSRS-Ports=Min(1层,UE#2能力最大MIMO能力)。例如,UE#2能力最大MIMO能力为4,则CB类型的nrofSRS-Ports=Min(1层,4)=1,即网络设备为UE#2配置端口数为2的CB类型的SRS资源。
在本申请实施例中,在网络设备为第二终端设备配置SRS资源的过程中,在考虑新接入的终端设备的类型的情况下,网络设备可以为新接入的第一类型的终端设备分配更多的SRS资源,从而确保SRS资源的使用高效。
可以理解,在网络设备为第一小区已接入的终端设备(即第一终端设备)配置的SRS资源较多,而未分配的SRS资源较少的情况下,网络设备可以为第一小区已接入的终端设备中的某些终端设备重配SRS资源。或者,在第一小区新接入的终端设备过多,而未分配的SRS资源不足的情况下,网络设备也可以为第一小区已接入的终端设备中的某些终端设备重配SRS资源。或者,在网络设备为第一小区已接入的终端设备配置的SRS资源较少,而未分配的SRS资源很充足的情况下,网络设备可以为第一小区已接入的终端 设备中的某些终端设备重配SRS资源。或者,在第一小区退网的终端设备过多,使得释放的SRS资源过多的情况下,网络设备也可以为第一小区已接入的终端设备中的某些终端设备重配SRS资源。
基于此,本申请实施例还提供了一种资源重配的方法。图5示出了本申请实施例提供的资源重配的方法的示意性流程图。如图5所示,方法500可以包括S510至S540,下面详细描述各个步骤。
S510,网络设备为终端设备#1至终端设备#3配置SRS资源。
在S510中,本申请实施例对网络设备如何向终端设备#1至终端设备#3配置SRS资源不做限制。下文以终端设备#1为例,对网络设备为终端设备#1配置SRS资源的过程进行说明。
S510可以是网络设备在终端设备#1初始接入的过程中为终端设备#1配置SRS资源。可以理解,在终端设备#1初始接入的过程中,终端设备#1可以向网络设备发送各自的能力信息,进一步地,网络设备可以根据终端设备#1的能力信息为终端设备#1配置SRS资源。网络设备可以按照现有的资源配置方法为终端设备#1配置SRS资源,也可以按照上述方法200中描述的资源配置方法为终端设备#1配置SRS资源。关于终端设备#1的能力信息的描述可以参考上文S220中关于第二终端设备的能力信息的描述。
S510也可以是网络设备在终端设备#1过热或期望降低功率的情况下,为终端设备配置SRS资源。可以理解,在终端设备#1过热或期望降低功率的情况下,终端设备#1可以向网络设备发送终端设备#1的辅助信息,进一步地,网络设备可以根据终端设备#1的辅助信息为终端设备#1配置SRS资源。网络设备可以按照现有的资源配置方法为终端设备配置SRS资源,也可以按照上述方法200中描述的资源配置方法为终端设备配置SRS资源。关于终端设备#1的辅助信息的描述可以参考上文S220中关于第二终端设备的辅助信息的描述。
网络设备为终端设备#2或终端设备#3配置SRS资源的过程与网络设备为终端设备#1配置SRS资源的过程类似,为了简洁,此处不再详述。
应理解,在网络设备为终端设备#1至终端设备#3配置完SRS资源之后,则认为终端设备#1至终端设备#3是第一小区已接入的终端设备。还应理解,本申请实施例仅以终端设备#1至终端设备#3进行举例说明,第一小区已接入的终端设备的数量可能有更多。下文中,将终端设备#1至终端设备#3描述为第一终端设备,第一终端设备即第一小区已接入的终端设备。
S520,网络设备确定是否满足第一条件或第二条件。
其中,第一条件为以下至少一个:网络设备为第一终端设备配置的SRS资源的端口数大于或等于第一预设阈值(下文中将第一预设阈值记为M)、当前小区新接入的终端设备的数量大于或等于第二预设阈值(下文中将第二预设阈值记为L)。
第二条件为以下至少一个:网络设备为第一终端设备配置的SRS资源的端口数小于或等于第三预设阈值(下文中将第三预设阈值记为P)、当前小区退网的终端设备的数量大于或等于第四预设阈值(下文中第四预设阈值记为Q)。
其中,假设第一终端设备的数量为t,则网络设备为第一终端设备配置的SRS资源的端口数=网络设备为第1个第一终端设备配置的SRS资源的端口数+网络设备为第2个第 一终端设备配置的SRS资源的端口数+……+网络设备为第t个第一终端设备配置的SRS资源的端口数。
新接入的终端设备为当前时刻同时接入第一小区的终端设备,或者新接入的终端设备为从某个时刻开始算起的接入第一小区的终端设备。例如,该某个时刻可以是第一终端设备的数量达到第1数值区间的最大值的时刻,即该某个时刻可以是第一终端设备的数量达到A1的时刻。可以理解,在第A1个第一终端设备之后接入的终端设备都可以认为是新接入的终端设备。又例如,该某个时刻可以是第一终端设备的数量达到第2个数值区间的最大值的时刻,即该某个时刻可以是第一终端设备的数量达到B1的时刻。可以理解,在第B1个第一终端设备之后接入的终端设备都可以认为是新接入的终端设备。
退网的终端设备为从第一小区第一个退网的终端设备算起的总的退网的终端设备。或者,退网的终端设备可以是从某个时刻开始算起的退网的终端设备。例如,该某个时刻可以是第一终端设备的数量达到第1个数值区间的最大值的时刻,即该某个时刻可以是第一终端设备的数量达到A1的时刻。可以理解,在第一终端设备的数量达到A1之后,退网的终端设备都可以认为是退网的终端设备。而在第一终端设备的数量没有达到A1之前,退网的终端设备不认为是退网的终端设备。
若网络设备确定满足第一条件,则网络设备执行S530。若网络设备确定满足第二条件,则网络设备执行S540。
S530,在满足第一条件的情况下,网络设备为终端设备#1重配SRS资源。
终端设备#1可以理解为第一终端设备中的至少一个终端设备。即在满足第一条件的情况下,网络设备可以为第一终端设备中的一个或多个第一终端设备重配SRS资源。本申请实施例在图5中示出网络设备在满足第一条件的情况下为终端设备#1重配SRS资源仅为示例。
具体地,网络设备可以根据第一终端设备的序号和第二映射关系为终端设备#1重配SRS资源。第二映射关系用于指示多个数值区间与SRS资源之间的映射关系。网络设备可以将数值区间#1对应的SRS资源确定为重配给终端设备#1的SRS资源,数值区间#1为终端设备#1的序号对应的数值区间。终端设备#1的序号是按照t个第一终端设备接入第一小区的顺序确定的。例如,终端设备#1是t个第一终端设备中第1个接入第一小区的,则终端设备#1的序号为1。
第二映射关系可以是根据第一终端设备的数量和第一终端设备最大能支持的SRS资源确定的。其中,多个SRS资源可以是根据第一终端设备最大能支持的SRS资源确定的。多个数值区间可以是根据第一终端设备的数量确定的,例如,多个数值区间中至少一个数值区间的临界值是根据第一终端设备的数量确定的。数值区间的临界值可以是数值区间的最大值和/或最小值。
不同数值区间对应的SRS资源之间的关系如下所述:数值区间#2对应的SRS资源的端口数大于数值区间#3对应的SRS资源的端口数,数值区间#2和数值区间#3为多个数值区间中满足以下关系的任意两个数值区间:数值区间#2内的最大值小于数值区间#3内的最小值。也就是说,在按照本申请实施例提供的方法为终端设备#1重配SRS资源的情况下,终端设备#1越早接入当前小区,网络设备为终端设备#1重配的SRS资源的端口数越大。
下面以网络设备为终端设备#1重配的SRS资源是AS类型的SRS资源为例进行说明。在网络设备为终端设备#1重配AS类型的SRS资源的情况下,第二映射关系指示的多个数值区间以及与每个数值区间对应的SRS资源可以满足表21所示的资源配置策略:
表21
第一终端设备的序号 不同区间的SRS资源配置策略
[0,A2] 配置的AS类型SRS资源总端口数不超过4
(A2,B2] 配置的AS类型SRS资源总端口数不超过2
(B2,C2] 配置的AS类型SRS资源总端口数不超过1
(C2,无穷大) 不配置AS类型SRS资源
应理解,表21仅为示例,随着技术的发展,终端设备最大能支持的AS类型的SRS资源的端口数可能增加为6个、8个、10个等,则表21所示的不同数值区间对应的资源配置策略可能会发生变化,例如,[0,A1]对应的资源配置策略可能为:配置的AS类型的SRS资源总端口数不超过6。
根据表21可知,在第一终端设备的序号处于第1个数值区间的情况下,网络设备为第一终端设备配置的AS类型的SRS资源总端口数应不超过4。由上可知,网络设备能为终端设备配置的AS类型的SRS资源的端口数最大为4,也就是说,若第一终端设备的序号处于第1个数值区间,则在S530中,网络设备可以不为该第一终端设备重配SRS资源。
在第一终端设备序号处于第2个数值区间的情况下,网络设备为第一终端设备配置的AS类型的SRS资源总端口数应不超过2。若在S510中,网络设备为第一终端设备配置的AS类型的SRS资源总端口数超过了2,则在S530中,网络设备可以为该第一终端设备重配SRS资源,并且网络设备为该终端设备#1重配的AS类型的SRS资源的端口数不超过2。也就是说,终端设备#1可以是序号处于第2个数值区间、在先被配置的AS类型的SRS资源的端口数超过了2的终端设备。
在第一终端设备序号处于第3个数值区间的情况下,网络设备为第一终端设备配置的AS类型的SRS资源总端口数应不超过1。若在S510中,网络设备为第一终端设备配置的AS类型的SRS资源总端口数超过了1,则在S530中,网络设备可以为该第一终端设备重配SRS资源,并且网络设备为该终端设备#1重配的AS类型的SRS资源的端口数不超过1。也就是说,终端设备#1可以是序号处于第2个数值区间、在先被配置的AS类型的SRS资源的端口数超过了1的终端设备。
第一终端设备序号处于第4个数值区间的情况下,网络设备不为第一终端设备配置的AS类型的SRS资源。若在S510中,网络设备为第一终端设备配置了AS类型的SRS资源,则在S530中,网络设备可以释放为该第一终端设备配置的SRS资源。也就是说,终端设备#1可以是序号处于第4个数值区间、在先被配置了AS类型的SRS资源的终端设备。
假设终端设备#1支持的SRS天线切换模式为t1r1-t1r2-t2r2-t2r4,以及终端设备#1能够支持的单个SRS资源对应的最大端口数为4,则第二映射关系可以如表22所示:
表22
第一终端设备的序号 不同区间的SRS资源
[0,A2] 配置的AS类型SRS资源对应t2r4
(A2,B2] 配置的AS类型SRS资源对应t2r2/t1r2
(B2,C2] 配置的AS类型SRS资源对应t1r1
(C2,无穷大) 不配置AS类型SRS资源
其中,A2<B2<C2,A2、B2、C2都为正整数。
表22所示的第1个数值区间(即[0,A2])对应的AS类型的SRS资源的端口数为4,即第1个数值区间对应的AS类型的SRS资源为终端设备#1最大能支持的AS类型的SRS资源。应理解,表22中仅以第1个数值区间对应的AS类型的SRS资源等于终端设备#1最大能支持的AS类型的SRS资源作为示例,第1个数值区间对应的AS类型的SRS资源也可以小于终端设备#1最大能支持的AS类型的SRS资源。例如,第1个数值区间对应的AS类型的SRS资源的端口数为2。
按照上文所述不同数值区间对应的SRS资源之间的关系,第2个数值区间(即(A2,B2])对应的AS类型的SRS资源的端口数小于第1个数值区间对应的AS类型的SRS资源的端口数,也就是说,第2个数值区间对应的AS类型的SRS资源的端口数可以是2、1、0,表22中以第2个数值区间对应的AS类型的SRS资源的端口数为2作为示例。
在第2个数值区间对应的AS类型的SRS资源的端口数为2的情况下,第3个数值区间(即(B2,C2])对应的AS类型的SRS资源的端口数可以是1、0,表22中以第3个数值区间对应的AS类型的SRS资源的端口数为1作为示例。
在第3个数值区间对应的AS类型的SRS资源的端口数为1的情况下,第4个数值区间(即(C1,无穷大))对应的AS类型的SRS资源的端口数为0(即按照天线切换模式为notSupported处理,无AS类型资源)。
如表22所示,若终端设备#1的序号处于第2个数值区间,且终端设备#1在先被配置的AS类型的SRS资源对应Tx-switch=t2r4,则网络设备可以将Tx-switch=t2r2/t1r2对应的AS类型的SRS资源作为重配给终端设备#1的SRS资源。
若终端设备#1的序号处于第3个数值区间,且终端设备#1在先被配置的AS类型的SRS资源对应Tx-switch=t2r4,或者对应Tx-switch=t2r2/t1r2,则网络设备可以将Tx-switch=t1r1对应的AS类型的SRS资源作为重配给终端设备#1的SRS资源。
若终端设备#1的序号处于第4个数值区间,且终端设备#1在先被配置了AS类型的SRS资源,则网络设备可以将配置给终端设备#1的AS类型的SRS资源释放掉。
在满足第一条件的情况下,表示当前小区未被分配的SRS资源较少。也就是说,网络设备需要通过为终端设备#1重配SRS资源的方式释放掉一部分为第一终端设备配置的SRS资源,从而使得增加当前小区未被分配的SRS资源。
若在S510中,网络设备按照上文方法200中描述的资源配置方法为第一终端设备配置了SRS资源,则在第一映射关系指示的多个数值区间与第二映射关系指示的多个数值区间完全相同的情况下,每个第一终端设备被配置的SRS资源的端口数都为各自的序号所处的数值区间对应的SRS资源。因此,第一映射关系指示的多个数值区间与第二映射关系指示多个数值区间不同的情况下,网络设备可以通过为终端设备#1重配SRS资源的 方式释放掉一部分SRS资源。
具体地,第二映射关系指示的多个数值区间与第一映射关系指示的多个数值区间的关系可以是:第二映射关系指示的多个数值区间中的至少一个数值区间的最大值小于第一映射关系指示的多个数值区间中对应的数值区间的最大值。第一映射关系指示的多个数值区间和第二映射关系指示的多个数值区间中相对应的数值区间可以理解为:对应于同样的SRS资源的数值区间。如上文所述,第一映射关系指示的多个数值区间的临界点A1、B1、C1等是可以变化,因此,第二映射关系还可以理解为是网络设备对第一映射关系进行更新后得到的。对第一映射关系的更新可以理解为,对第一映射关系指示的多个数值区间中至少一个数值区间的临界值进行更新。在此情况下,S530还可以理解为:在满足第一条件的情况下,对第一映射关系指示的多个数值区间中至少一个数值区间的临界值进行更新,以得到第二映射关系;进一步地,根据第二映射关系为终端设备#1重配SRS资源。
例如,第一映射关系指示的多个数值区间为[0,A1]、(A1,B1]、(B1,C1]、(C1,无穷大),第二映射关系指示的多个数值区间为[0,A2]、(A2,B2]、(B2,C2]、(C2,无穷大),则第一映射关系指示的多个数值区间与第二映射关系指示的多个数值区间之间的关系可以是:A2<A1(即第二映射关系指示的第1个数值区间的最大值小于第一映射关系指示的第1个数值区间的最大值),B2=B1,C2=C1;或者,可以是:A2=A1,B2<B1(即第二映射关系指示的第2个数值区间的最大值小于第一映射关系指示的第2个数值区间的最大值),C2=C1;或者,可以是:A2=A1,B2=B1,C2<C1(即第二映射关系指示的第3个数值区间的最大值小于第一映射关系指示的第3个数值区间的最大值);或者,可以是:A2<A1,B2<B1,C2=C1;或者,可以是:A2<A1,B2<B1,C2<C1;等等。
以A2<A1、B2=B1、C2=C2为例,在S510中,网络设备为第一终端设备配置SRS资源的过程中,对于序号处于[0,A1]的第一终端设备,网络设备为该第一终端设备配置的AS类型SRS资源总端口数不超过4。则在S530中,对于序号处于(A2,A1]的第一终端设备,其对应的资源配置策略更新为:配置的AS类型的SRS资源总端口数不超过2。因此,在S530中,网络设备可以对于序号处于(A2,A1]、被配置的AS类型的SRS资源的总端口数超过2的第一终端设备重配AS类型的SRS资源。也就是说,终端设备#1可以是序号处于(A2,A1]、被配置的AS类型的SRS资源的总端口数超过2的终端设备。
可选地,终端设备#1还可以是非第一类型的终端设备。也就是说,即使终端设备#1被配置的SRS资源为终端设备#1的序号所处的数值区间对应的SRS资源,在终端设备#1是非第一类型的终端设备的情况下,网络设备也可以为终端设备#1重配SRS资源,即减少为终端设备#1配置的SRS资源的端口数。
例如,终端设备#1的序号处于第二映射关系指示的第1个数值区间,终端设备#1被配置的AS类型的SRS资源的端口数为4,满足第二映射关系指示的第1个数值区间对应的SRS资源。若终端设备#1为非第一类型的终端设备,则在S530中,网络设备依然可以为终端设备#1重配AS类型的SRS资源,例如,网络设备为终端设备#1重配的AS类型的SRS资源的端口数为2。
应理解,上文仅以网络设备在S530中为终端设备#1重配AS类型的SRS资源为例进行说明,在S530中,网络设备可以按照同样的方法为终端设备#1重配其他类型的SRS资源,或者同时重配多种类型的SRS资源。可以理解,网络设备在S530中为终端设备#1重 配的SRS资源的端口数小于在S510中为终端设备#1配置的SRS资源的端口数。
在本申请实施例中,在网络设备为第一小区已接入的终端设备分配的SRS资源过多,或者新接入的终端设备的数量过多的情况下,通过为第一小区已接入的一部分终端设备重配SRS资源的方式,缩小一部分已接入用户的SRS端口数,可释放出来一部分SRS资源为空闲资源,从而使得网络设备可以为更多的新接入的终端设备配置SRS资源,提高小区的吞吐率。
S540,在满足第二条件的情况下,网络设备为终端设备#2重配SRS资源。
终端设备#2可以理解为第一终端设备中的至少一个终端设备。即在满足第二条件的情况下,网络设备可以为第一终端设备中的一个或多个第一终端设备重配SRS资源。本申请实施例在图5中示出网络设备在满足第一条件的情况下为终端设备#2重配SRS资源仅为示例。
具体地,网络设备可以根据第一终端设备的序号和第二映射关系为终端设备#2重配SRS资源。第二映射关系用于多个数值区间与SRS资源之间的映射关系。网络设备可以将数值区间#1对应的SRS资源确定为重配给终端设备#2的SRS资源,数值区间#1为终端设备#2的序号对应的数值区间。终端设备#2序号是按照t个第一终端设备接入当前小区的顺序确定的。例如,终端设备#2是t个第一终端设备中第1个接入当前小区的,则终端设备#2的序号为1。
下面以网络设备为终端设备#2重配的SRS资源是AS类型的SRS资源为例进行说明。在网络设备为终端设备#2重配AS类型的SRS资源的情况下,第二映射关系指示的多个数值区间以及与每个数值区间对应的SRS资源可以满足上文的表21所示的资源配置策略。根据表21可知,在第一终端设备的序号处于第1个第二数值区间的情况下,网络设备为第一终端设备配置的AS类型的SRS资源总端口数应不超过4。由上可知,网络设备能为终端设备配置的AS类型的SRS资源的端口数最大为4,也就是说,若在S510中,网络设备按照现有方法为第一终端设备配置SRS资源,且第一终端设备的序号处于第1个数值区间,则在S530中,网络设备可以不为该第一终端设备重配SRS资源。
若在S510中,网络设备按照方法200为第一终端设备配置SRS资源,则在有第一终端设备退网的情况下,剩余的第一终端设备的序号会发生更新,并且可能有些第一终端设备,原先的序号处于第2个数值区间,而更新之后的序号处于第1个数值区间。若更新之后的序号处于第1个数值区间的第一终端设备最大能支持的AS类型的SRS资源的端口数为4,则网络设备可以为该第一终端设备重配AS类型的SRS资源。也就是说,终端设备#2可以是序号处于第1个数值区间、在先被配置的AS类型的SRS资源的端口数小于4并且小于其最大能支持的AS类型的SRS资源的端口数的终端设备。
在第一终端设备序号处于第2个数值区间的情况下,网络设备为第一终端设备配置的AS类型的SRS资源总端口数应不超过2。若在S510中,网络设备为该第一终端设备配置的AS类型的SRS资源总端口数小于2,且小于第一终端设备最大能支持的AS类型的SRS资源的端口数,则在S530中,网络设备可以为该第一终端设备重配SRS资源,并且网络设备为该终端设备#1重配的AS类型的SRS资源的端口数不超过2。也就是说,终端设备#2可以是序号处于第2个数值区间、在先被配置的AS类型的SRS资源的端口数小于2且小于其最大能支持的AS类型的SRS资源的端口数的终端设备。
在第一终端设备序号处于第3个数值区间的情况下,网络设备为第一终端设备配置的AS类型的SRS资源总端口数应不超过1。若在S510中,网络设备为该第一终端设备密钥配置的AS类型的SRS资源,且该第一终端设备可以支持AS类型的SRS资源,则在S530中,网络设备可以为该第一终端设备配置1个端口的AS类型的SRS资源。也就是说,终端设备#2可以是序号处于第3个数值区间、在先没有被配置AS类型的SRS资源的终端设备。
第一终端设备序号处于第4个第二数值区间的情况下,网络设备不为第一终端设备配置的AS类型的SRS资源。
假设终端设备#2支持的SRS天线切换模式为t1r1-t1r2-t2r2-t2r4,以及终端设备#2能够支持的单个SRS资源对应的最大端口数为4,则第二映射关系可以如上文的表22所示。
如表22所示,若终端设备#2的序号处于第1个数值区间,且终端设备#1在先被配置的AS类型的SRS资源的端口数小于4,则网络设备可以将Tx-switch=t2r4对应的AS类型的SRS资源作为重配给终端设备#2的SRS资源。
若终端设备#1的序号处于第2个数值区间,且终端设备#2在先被配置的AS类型的SRS资源的端口数小于2,则网络设备可以将Tx-switch=t2r2/t1r2对应的AS类型的SRS资源作为重配给终端设备#1的SRS资源。
若终端设备#1的序号处于第3个数值区间,且终端设备#1在先没有被配置AS类型的SRS资源,则网络设备可以将Tx-switch=t1r1对应的AS类型的SRS资源作为重配给终端设备#1的SRS资源。
在满足第二条件的情况下,表示当前小区未被分配的SRS资源较多。也就是说,网络设备需要通过为终端设备#2重配SRS资源的方式为第一终端设备配置更多的SRS资源,从而使得SRS资源使用高效。
若在S510中,网络设备按照上文方法200中描述的资源配置方法为第一终端设备配置了SRS资源,且没有第一终端设备退网,则在第一映射关系指示的多个数值区间与第二映射关系指示的多个数值区间完全相同的情况下,每个第一终端设备被配置的SRS资源的端口数都为各自的序号所处的数值区间对应的SRS资源。因此,在第一映射关系指示的多个数值区间与第二映射关系指示多个数值区间不同的情况下,网络设备可以通过为终端设备#2重配SRS资源的方式来为终端设备#2配置更多的SRS资源。
具体地,第二映射关系指示多个数值区间与第一映射关系指示的多个数值区间的关系可以是:第二映射关系指示多个数值区间中的至少一个数值区间的最大值大于第一映射关系指示的多个数值区间中对应的数值区间的最大值。第一映射关系指示的多个数值区间和第二映射关系指示的多个数值区间中相对应的数值区间可以理解为:对应于同样的SRS资源的数值区间。如上文所述,第一映射关系指示的多个数值区间的临界点A1、B1、C1等是可以变化,因此,第二映射关系还可以理解为是网络设备对第一映射关系进行更新后得到的。对第一映射关系的更新可以理解为,对第一映射关系指示的多个数值区间中至少一个数值区间的临界值进行更新。在此情况下,S530还可以理解为:在满足第二条件的情况下,对第一映射关系指示的多个数值区间中至少一个数值区间的临界值进行更新,以得到第二映射关系;进一步地,根据第二映射关系为终端设备#2重配SRS资源。
例如,第一映射关系指示的多个数值区间为[0,A1]、(A1,B1]、(B1,C1]、(C1, 无穷大),第二映射关系指示的多个数值区间为[0,A3]、(A3,B3]、(B3,C3]、(C3,无穷大),则第一映射关系指示的多个数值区间与第二映射关系指示的多个数值区间之间的关系可以是:A3>A1(即第第二映射关系指示的第1个数值区间的最大值大于第一映射关系指示第1个数值区间的最大值),B3=B1,C3=C1;或者,可以是:A3=A1,B3>B1(即第二映射关系指示的第2个数值区间的最大值小于第一映射关系指示的第2个数值区间的最大值),C3=C1;或者,可以是:A3=A1,B3=B1,C3>C1(即第二映射关系指示的第3个数值区间的最大值大于第一映射关系指示的第3个数值区间的最大值);或者,可以是:A3>A1,B3>B1,C3=C1;或者,可以是:A3>A1,B3>B1,C3>C1;等等。
以A3>A1、B3=B1、C3=C2为例,在S510中,网络设备为第一终端设备配置SRS资源的过程中,对于序号处于(A1,A3]的第一终端设备,网络设备为该第一终端设备配置的AS类型SRS资源总端口数不超过2。则在S530中,对于序号处于(A1,A3]的第一终端设备,其对应的资源配置策略更新为:配置的AS类型的SRS资源总端口数不超过4。因此,若某些序号处于(A1,A3]的第一终端设备最大能支持的AS类型的SRS资源的端口数大于2,则在S530中,网络设备可以对于序号处于(A1,A3]、最大能支持的AS类型的SRS资源的端口数大于2的第一终端设备重配AS类型的SRS资源。也就是说,终端设备#2可以是序号处于(A1,A3]、最大能支持的AS类型的SRS资源的端口数大于2的终端设备。
可选地,终端设备#2还可以是第一类型的终端设备。也就是说,即使终端设备#2被配置的SRS资源的端口数为终端设备#2的序号所处的数值区间对应的SRS资源,在终端设备#2是第一类型的终端设备的情况下,网络设备也可以为终端设备#2重配SRS资源,即增加为终端设备#2配置的SRS资源的端口数。
例如,终端设备#2的序号处于第二映射关系指示的第2个数值区间,终端设备#2被配置的AS类型的SRS资源的端口数为2,满足第二映射关系指示的第2个数值区间对应的SRS资源。若终端设备#2为第一类型的终端设备,且终端设备#2最大能支持的AS类型的SRS资源的端口数为4,则在S530中,网络设备依然可以为终端设备#2重配AS类型的SRS资源,例如,网络设备为终端设备#2重配的AS类型的SRS资源的端口数为4。
应理解,上文仅以网络设备在S540中为终端设备#2重配AS类型的SRS资源为例进行说明,在S540中,网络设备可以按照同样的方法为终端设备#2重配其他类型的SRS资源,或者同时重配多种类型的SRS资源。可以理解,网络设备在S540中为终端设备#2重配的SRS资源的端口数大于在S510中为终端设备#2配置的SRS资源的端口数。
还应理解,本申请实施例中以第二映射关系指示的多个数值区间和第一映射关系指示的多个数值区间的个数相等为例进行说明,本申请实施例并不限定第二映射关系指示的多个数值区间和第一映射关系指示的多个数值区间的个数是否相等。也就是说,第一映射关系指示的多个数值区间和第二映射关系指示的多个数值区间的个数可能相等,例如,第一映射关系指示的多个数值区间可以包括:[0,A1]、(A1,B1]、(B1,C1]、(C1,无穷大),第二映射关系指示的多个数值区间可以包括:[0,A2]、(A2,B2]、(B2,C2]、(C2,无穷大);第一映射关系指示的多个数值区间和第二映射关系指示的多个数值区间的个数也可能不相等,例如,第一映射关系指示的多个数值区间可以包括:[0,A1]、(A1,B1]、(B1,C1]、(C1,无穷大),第二映射关系指示的多个数值区间可以包括:(A2, B2]、(B2,C2]、(C2,无穷大);又例如,第一映射关系指示的多个数值区间可以包括:[0,A1]、(A1,B1]、(B1,C1]、(C1,无穷大),第二映射关系指示的多个数值区间可以包括:[0,A2]、(A2,B2]、(B2,C2]。
在本申请实施例中,在网络设备为当前小区已接入的终端设备分配的SRS资源较少,或者退网的终端设备的数量过多的情况下,通过为第一小区已接入的一部分终端设备重配SRS资源的方式,为该一部分终端设备配置更多的SRS资源,从而确保SRS资源的使用高效。
可选地,若第二映射关系指示的多个数值区间的个数是2,且网络设备按照第1个数值区间为第二终端设备重配的SRS资源的端口数等于第二终端设备最大能支持的SRS资源的端口数,则本申请实施例提供的资源重配的方法还可以描述为:在第一终端设备的序号不超过预设阈值的情况下,网络设备为第一终端设备重配的SRS资源的端口数等于第一终端设备最大能支持的SRS资源的端口数;在第一终端设备的序号大于预设阈值的情况下,网络设备为第一终端设备重配的SRS资源的端口数小于第一终端设备最大能支持的SRS资源的端口数。可以理解,这里所说的第一终端设备可以是t个第一终端设备中的某个第一终端设备。
例如,第二映射关系指示的多个数值区间可以包括[0,A2]、(A2,无穷大),则在第一终端设备的序号不超过A2的情况下,网络设备为第一终端设备重配的SRS资源的端口数等于第二终端设备最大能支持的SRS资源的端口数;在第一终端设备的数量大于A2的情况下,网络设备为第一终端设备重配的SRS资源的端口数小于第一终端设备最大能支持的SRS资源的端口数。
可选地,本申请实施例提供的资源重配的方法还可以描述为:在第一终端设备的序号不超过预设阈值的情况下,网络设备为第一终端设备重配的SRS资源的端口数等于第一终端设备最大能支持的SRS资源的端口数,在第一终端设备的序号超过预设阈值的情况下,网络设备为第一终端设备重配的SRS资源的端口数小于第一终端设备最大能支持的SRS资源的端口数。进一步地,在第一终端设备的序号超过预设阈值的情况下,网络设备还可以根据第一终端设备的序号和第二映射关系为第一终端设备重配SRS资源。
例如,预设阈值可以是A2,第二映射关系指示的多个二数值区间可以包括:(A2,B2],(B2,C2],(C2,无穷大),则在第一终端设备的序号不超过A2的情况下,网络设备为第一终端设备重配的SRS资源的端口数等于第一终端设备最大能支持的SRS资源的端口数;在第一终端设备的序号大于A2的情况下,网络设备为第一终端设备重配的SRS资源的端口数小于第一终端设备最大能支持的SRS资源的端口数。
进一步地,在第一终端设备的序号大于A2的情况下,若第一终端设备的序号处于第1个数值区间((A2,B2]),则网络设备可以将第1个数值区间对应的SRS资源作为重配给第一终端设备的SRS资源;若第一终端设备的序号处于第2个数值区间((B2,C2]),则网络设备可以将第2个第二数值区间对应的SRS资源作为重配给第一终端设备的SRS资源;若第一终端设备的序号处于第3个数值区间,则网络设备可以将第3个数值区间作为重配给第一终端设备的SRS资源。
图6示出了本申请另一实施例提供的资源配置的方法的示意性流程图。如图6所示,方法600可以包括S610至S630,下面详细描述各个步骤。
S610,网络设备接收第一信息。相应地,在S610中,第二终端设备发送第一信息。
第一信息用于确定第二终端设备最大能支持的SRS资源。或者,也可以说第一信息用于确定第二终端设备最大能支持的SRS资源的端口数。具体地,第一信息可以包括第二终端设备的能力信息和/或第二终端设备的辅助信息。
具体地,更多关于第一信息的描述可以参考上文S220中的描述,为了简洁,此处不再详述。
S620,网络设备根据第二终端设备的类型确定第二终端设备对应的SRS资源。
具体地,若第二终端设备是第一类型的终端设备,则网络设备确定的第二终端设备对应的SRS资源的端口数等于第二终端设备最大能支持的SRS资源的端口数。
例如,网络设备根据第一信息确定第二终端设备最大能支持的AS类型的SRS资源的端口数为4,则在第二终端设备是第一类型的终端设备的情况下,网络设备确定的第二终端设备对应的AS类型的SRS资源的端口数为4。
又例如,网络设备根据第一信息确定第二终端设备最大能支持的CB类型的SRS资源的端口数为2,则在第二终端设备是第一类型的终端设备的情况下,网络设备确定的第二终端设备对应的CB类型的SRS资源的端口数为2。
若第二终端设备不是第一类型的终端设备,则网络设备确定的第二终端设备对应的SRS资源的端口数小于第二终端设备最大能支持的SRS资源的端口数。
例如,网络设备根据第一信息确定第二终端设备最大能支持的AS类型的SRS资源的端口数为2,则在第二终端设备不是第一类型的终端设备的情况下,网络设备确定的第二终端设备对应的AS类型的SRS资源的端口数为2、1或0。
又例如,网络设备根据第一信息确定第二终端设备最大能支持的CB类型的SRS资源的端口数为2,则在第二终端设备不是第一类型的终端设备的情况下,网络设备确定的第二终端设备对应的CB类型的SRS资源的端口数为1或0。
其中,第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符(5th generation quality of service indicator,5QI)值配置传输第一业务的终端设备、通过事物标识符(transactionID)或者用户数据身份标识符(subscribe profile ID)标识的传输第一业务的终端设备。第一业务可以指大流量的业务、优先级高的业务、时延要求高的业务等。
S630,网络设备发送资源配置信息。相应地,在S630中,第二设备接收资源配置信息。
该资源配置信息用于指示网络设备为第二终端设备配置的SRS资源。相应地,第二终端设备收到该资源配置信息之后,则在该资源配置信息指示的SRS资源上发送SRS。
在本申请实施例中,在网络设备为第二终端设备配置SRS资源的过程中,在考虑新接入的终端设备的类型的情况下,网络设备可以为新接入的第一类型的终端设备分配更多的SRS资源,从而确保SRS资源的使用高效。
应理解,在上文各实施例中,终端设备和/或网络设备可以执行各实施例中的部分或全部步骤。这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照各实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。且,各步骤的序号的大小并不意味着执行顺序的先后,各 过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图6详细说明了本申请实施例提供的资源配置的方法。以下,结合图7至图10详细说明本申请实施例提供的通信装置。
图7是本申请实施例提供的通信装置的示意性框图。如图7所示,该通信装置1000可以包括处理单元1100和收发单元1200。
可选地,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如电路、芯片或芯片系统等)。
应理解,该通信装置1000可对应于根据本申请实施例的方法200、方法500和方法600中的终端设备,该通信装置1000可以包括用于执行图2中的方法200、图5中的方法500和图6中的方法600中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200、图5中的方法500和图6中的方法600的相应流程。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图8中示出的通信装置2000中的收发器2020或图9中示出的终端设备3000中的收发器3020,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图8中示出的通信装置2000中的处理器2010或图9中示出的终端设备3000中的处理器3010。
还应理解,该通信装置1000为配置于终端设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
可选地,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如电路、芯片或芯片系统等)。
应理解,该通信装置1000可对应于根据本申请实施例的方法200、方法500和方法600中的网络设备,该通信装置1000可以包括用于执行图2中的方法200、图5中的方法500和图6中的方法600中网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200、图5中的方法500和图6中的方法600的相应流程。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图8中示出的通信装置2000中的收发器2020或图10中示出的网络设备4000中的遥控射频单元(remote radio unit,RRU)4100,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图8中示出的通信装置2000中的处理器2010或图10中示出的网络设备4000中的处理单元4200或处理器4202。
还应理解,该通信装置1000为配置于网络设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图8是本申请实施例提供的通信装置2000的另一示意性框图。如图8所示,该通信装置2000包括处理器2010、收发器2020和存储器2030。其中,处理器2010、收发器2020和存储器2030通过内部连接通路互相通信,该存储器2030用于存储指令,该处理器2010用于执行该存储器2030存储的指令,以控制该收发器2020发送信号和/或接收信号。
应理解,该通信装置2000可以对应于上述方法实施例中的终端设备,并且可以用于执行上述方法实施例中网络设备或终端设备执行的各个步骤和/或流程。可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器2030可以是一个单独的器件,也可以集成在处理器2010中。该处理器2010可以用于执行存储器2030中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与网络设备或终端设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置2000是前文实施例中的终端设备。
可选地,该通信装置2000是前文实施例中的网络设备。
其中,收发器2020可以包括发射机和接收机。收发器2020还可以进一步包括天线,天线的数量可以为一个或多个。该处理器2010和存储器2030与收发器2020可以是集成在不同芯片上的器件。如,处理器2010和存储器2030可以集成在基带芯片中,收发器2020可以集成在射频芯片中。该处理器2010和存储器2030与收发器2020也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置2000是配置在终端设备中的部件,如电路、芯片、芯片系统等。
可选地,该通信装置2000是配置在网络设备中的部件,如电路、芯片、芯片系统等。
其中,收发器2020也可以是通信接口,如输入/输出接口、电路等。该收发器2020与处理器2010和存储器2020都可以集成在同一个芯片中,如集成在基带芯片中。
图9是本申请实施例提供的终端设备3000的结构示意图。该终端设备3000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备3000包括处理器3010和收发器3020。可选地,该终端设备3000还包括存储器3030。其中,处理器3010、收发器3020和存储器3030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器3030用于存储计算机程序,该处理器3010用于从该存储器3030中调用并运行该计算机程序,以控制该收发器3020收发信号。可选地,终端设备3000还可以包括天线3040,用于将收发器3020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器3010可以和存储器3030可以合成一个处理装置,处理器3010用于执行存储器3030中存储的程序代码来实现上述功能。具体实现时,该存储器3030也可以集成在处理器3010中,或者独立于处理器3010。该处理器3010可以与图7中的处理单元1100或图8中的处理器2010对应。
上述收发器3020可以与图7中的收发单元1200或图8中的收发器2020对应。收发器3020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图9所示的终端设备3000能够实现图2、图5和图6所示方法实施例中涉及终端设备的各个过程。终端设备3000中的各个模块的操作和/或功能,分别为了实现上 述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器3010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器3020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备3000还可以包括电源3050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备3000还可以包括输入单元3060、显示单元3070、音频电路3080、摄像头3090和传感器3100等中的一个或多个,所述音频电路还可以包括扬声器3082、麦克风3084等。
图10是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站4000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站4000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)4100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))4200。所述RRU 4100可以称为收发单元,可以与图7中的收发单元1200或图8中的收发器2020对应。可选地,该RRU 4100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线4101和射频单元4102。可选地,RRU 4100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 4100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 4200部分主要用于进行基带处理,对基站进行控制等。所述RRU 4100与BBU 4200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 4200为基站的控制中心,也可以称为处理单元,可以与图7中的处理单元1100或图8中的处理器2010对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 4200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 4200还包括存储器4201和处理器4202。所述存储器4201用以存储必要的指令和数据。所述处理器4202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器4201和处理器4202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图10所示的基站4000能够实现图2、图5和图6所示方法实施例中涉及网络设备的各个过程。基站4000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 4200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作, 而RRU 4100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图10所示出的基站4000仅为网络设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括AAU,还可以包括CU和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请对于网络设备的具体形态不做限定。
其中,CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备所执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例还提供了一种处理装置,包括处理器和通信接口。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备所执行的方法。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结 合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2、图5和图6所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2、图5和图6所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
上述实施例中,终端设备可以作为接收设备的一例,网络设备可以作为发送设备的一例。但这不应对本申请构成任何限定。例如,发送设备和接收设备也可以均为终端设备等。本申请对于发送设备和接收设备的具体类型不作限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部 件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种资源配置的方法,其特征在于,包括:
    网络设备根据第一终端设备的数量确定第二终端设备对应的第一探测参考信号资源,所述第一终端设备为第一小区已接入的终端设备,所述第一小区为所述第二终端设备待接入的小区;
    所述网络设备向所述第二终端设备发送资源配置信息,所述资源配置信息用于指示所述第一探测参考信号资源。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备根据第一终端设备的数量确定第二终端设备对应的第一探测参考信号资源,包括:
    所述网络设备根据所述第一终端设备的数量和所述第二终端设备最大能支持的探测参考信号资源确定所述第一探测参考信号资源,所述第一探测参考信号资源的端口数小于或等于所述第二终端设备最大能支持的探测参考信号资源的端口数。
  3. 如权利要求1或2所述的方法,其特征在于,所述网络设备根据第一终端设备的数量确定第二终端设备对应的探测参考信号资源,包括:
    所述网络设备根据第一映射关系将第一数值区间对应的探测参考信号资源作为所述第一探测参考信号资源,所述第一数值区间为所述第一终端设备的数量对应的数值区间,所述第一映射关系用于指示多个数值区间与多个探测参考信号资源之间的映射关系。
  4. 如权利要求1或2所述的方法,其特征在于,所述网络设备根据第一终端设备的数量确定第二终端设备对应的探测参考信号资源,包括:
    若所述第二终端设备是第一类型的终端设备,则所述网络设备根据第一映射关系将第二数值区间对应的探测参考信号资源作为所述第一探测参考信号资源,或者,所述网络设备将所述第二终端设备最大能支持的探测参考信号资源作为所述第一探测参考信号资源,所述第一映射关系用于指示多个数值区间与多个探测参考信号资源之间的映射关系,所述第二数值区间的最大值小于所述第一终端设备的数量对应的数值区间的最小值,所述第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符值配置传输第一类型业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,所述第一业务包括:大流量业务、高优先级的业务或低时延业务。
  5. 如权利要求3或4所述的方法,其特征在于,第三数值区间对应的探测参考信号资源的端口数等于所述第二终端设备最大能支持的探测参考信号资源的端口数,所述第三数值区间的最大值是所述多个数值区间中最大值最小的数值区间。
  6. 如权利要求3至5中任一项所述的方法,其特征在于,第四数值区间对应的探测参考信号资源的端口数大于第五数值区间对应的探测参考信号资源的端口数,所述第四数值区间和所述第五数值区间是所述多个数值区间中任意两个满足以下关系的数值区间:所述第四数值区间内的最大值小于所述第五数值区间内的最小值。
  7. 如权利要求6所述的方法,其特征在于,所述探测参考信号资源包括多种类型的探测参考信号资源,所述第四数值区间对应的第一类型的探测参考信号资源的端口数大于 所述第五数值区间对应的第一类型的探测参考信号资源的端口数,所述第一类型的探测参考信号资源为所述多种类型的探测参考信号资源中的至少一个类型的探测参考信号资源。
  8. 如权利要求3至7中任一项所述的方法,其特征在于,所述多个数值区间中的至少一个数值区间的临界值是根据所述第一终端设备的数量确定的。
  9. 如权利要求3至8中任一项所述的方法,其特征在于,所述方法还包括:
    若满足如下至少一个条件:所述网络设备为所述第一终端设备配置的探测参考信号资源的总端口数大于或等于第一预设阈值、所述第一小区新接入的终端设备的数量大于或等于第二预设阈值、所述网络设备为所述第一终端设备配置的探测参考信号资源的总端口数小于或等于第三预设阈值、所述第一小区退网的终端设备的数量大于或等于第四预设阈值,则所述网络设备根据所述第一终端设备的数量更新所述多个区间中至少一个区间的临界值。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第一终端设备的序号和第二映射关系,为所述第一终端设备中的至少一个第一终端设备重配探测参考信号资源,所述第二映射关系用于指示更新后的多个数值区间与多个探测参考信号资源之间的映射关系。
  11. 一种资源配置的方法,其特征在于,包括:
    第二终端设备接收来自网络设备的资源配置信息,所述资源配置信息用于指示所述所述第二终端设备对应的第一测量参考信号资源,所述第一探测参考信号资源是根据第一终端设备的数量确定的,所述第一终端设备是第一小区已接入的终端设备,所述第一小区是所述第二终端设备待接入的小区;
    所述第二终端设备在所述第一探测参考信号资源上发送探测参考信号。
  12. 如权利要求11所述的方法,其特征在于,所述第一探测参考信号资源的端口数小于或等于所述第二终端设备最大能支持的探测参考信号资源的端口数。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一探测参考信号资源是第一数值区间对应的探测参考信号资源,所述第一数值区间为所述第一终端设备的数量对应的数值区间,所述第一数值区间对应的探测参考信号资源是根据第一映射关系确定的,所述第一映射关系用于指示所述多个数值区间与多个探测参考信号资源之间的映射关系。
  14. 如权利要求11或12所述的方法,其特征在于,所述第一探测参考信号资源是第二数值区间对应的探测参考信号资源,或者,所述第一探测参考信号资源是所述第二终端设备最大能支持的探测参考信号资源,所述第一映射关系用于指示多个数值区间与多个探测参考信号资源之间的映射关系,所述第二数值区间的最大值小于所述第一终端设备的数量对应的数值区间的最小值,所述第二数值区间对应的探测参考信号资源是根据第一映射关系确定的,所述第一映射关系用于指示所述多个数值区间与多个探测参考信号资源之间的映射关系,所述第一类型的终端设备包括:传输的数据量大于预设门限值的终端设备、可通过第五代移动通信系统服务质量参数指示符值配置传输第一类型业务的终端设备、通过事务标识符或者用户数据身份标识符标识的第一业务的终端设备,所述第一业务包括:大流量业务、高优先级的业务或低时延业务。
  15. 如权利要求13或14所述的方法,其特征在于,第三数值区间对应的探测参考信号资源的端口数等于所述第二终端设备最大能支持的探测参考信号资源的端口数,所述第 三数值区间的最大值是所述多个数值区间中最大值最小的数值区间。
  16. 如权利要求13至15中任一项所述的方法,其特征在于,第四数值区间对应的探测参考信号资源的端口数大于第五数值区间对应的探测参考信号资源的端口数,所述第四数值区间和所述第五数值区间是所述多个数值区间中任意两个满足以下关系的数值区间:所述第四数值区间内的最大值小于所述第五数值区间内的最小值。
  17. 如权利要求16所述的方法,其特征在于,所述探测参考信号资源包括多种类型的探测参考信号资源,所述第四数值区间对应的第一类型的探测参考信号资源的端口数大于所述第五数值区间对应的第一类型的探测参考信号资源的端口数,所述第一类型的探测参考信号资源为所述多种类型的探测参考信号资源中的至少一个类型的探测参考信号资源。
  18. 如权利要求13至17中任一项所述的方法,其特征在于,所述多个数值区间中的至少一个数值区间的临界值是根据所述第一终端设备的数量确定的。
  19. 一种通信装置,其特征在于,包括用于实现如权利要求1至18中任一项所述的方法的单元。
  20. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至18中任一项所述的方法。
  21. 一种通信装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求1至18中任一项所述的方法。
  22. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并执行所述计算机程序,以使得所述装置实现如权利要求1至18中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至18中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2021/070849 2021-01-08 2021-01-08 资源配置的方法及通信装置 WO2022147761A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/070849 WO2022147761A1 (zh) 2021-01-08 2021-01-08 资源配置的方法及通信装置
EP21916817.6A EP4266798A4 (en) 2021-01-08 2021-01-08 RESOURCE CONFIGURATION METHOD AND COMMUNICATION DEVICE
CN202180076938.XA CN116472773A (zh) 2021-01-08 2021-01-08 资源配置的方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070849 WO2022147761A1 (zh) 2021-01-08 2021-01-08 资源配置的方法及通信装置

Publications (1)

Publication Number Publication Date
WO2022147761A1 true WO2022147761A1 (zh) 2022-07-14

Family

ID=82357795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070849 WO2022147761A1 (zh) 2021-01-08 2021-01-08 资源配置的方法及通信装置

Country Status (3)

Country Link
EP (1) EP4266798A4 (zh)
CN (1) CN116472773A (zh)
WO (1) WO2022147761A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969694A (zh) * 2009-07-27 2011-02-09 华为技术有限公司 测量参考信号时间频率资源配置的方法和装置
CN111758272A (zh) * 2020-05-22 2020-10-09 北京小米移动软件有限公司 Srs资源配置方法、srs资源确定方法和装置
CN111836266A (zh) * 2019-08-13 2020-10-27 维沃移动通信有限公司 Srs的发送方法、配置方法、终端及网络侧设备
WO2020218904A1 (ko) * 2019-04-25 2020-10-29 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치
CN111869156A (zh) * 2020-06-16 2020-10-30 北京小米移动软件有限公司 参考信号资源的配置方法、装置、通信设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797988B2 (en) * 2012-03-02 2014-08-05 Nokia Siemens Networks Oy Resource allocation methods and use thereof for sounding reference signals in uplink
KR101460331B1 (ko) * 2012-12-11 2014-11-11 주식회사 케이티 이동 통신 시스템 및 그 시스템에서의 다중 셀 기반 무선 자원 할당 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969694A (zh) * 2009-07-27 2011-02-09 华为技术有限公司 测量参考信号时间频率资源配置的方法和装置
WO2020218904A1 (ko) * 2019-04-25 2020-10-29 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치
CN111836266A (zh) * 2019-08-13 2020-10-27 维沃移动通信有限公司 Srs的发送方法、配置方法、终端及网络侧设备
CN111758272A (zh) * 2020-05-22 2020-10-09 北京小米移动软件有限公司 Srs资源配置方法、srs资源确定方法和装置
CN111869156A (zh) * 2020-06-16 2020-10-30 北京小米移动软件有限公司 参考信号资源的配置方法、装置、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266798A4 *

Also Published As

Publication number Publication date
EP4266798A1 (en) 2023-10-25
EP4266798A4 (en) 2024-05-01
CN116472773A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2019136724A1 (zh) Srs传输方法及相关设备
US11477307B2 (en) Media access control protocol data unit processing method and apparatus
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2020216133A1 (zh) 一种通信方法及设备
US20220329293A1 (en) Wireless communication method, terminal device and network device
WO2022022517A1 (zh) 确定传输功率的方法及装置
US20230308141A1 (en) Communication Method, Device, and System
WO2019096232A1 (zh) 通信方法和通信装置
WO2021159413A1 (zh) 下行传输方法和终端设备
US20230127511A1 (en) Communication method and communication device
CN113747605A (zh) 通信方法和通信装置
CN108365879A (zh) 数据发送方法和装置及数据接收方法和装置
WO2022213872A1 (zh) 通信方法和通信装置
WO2022147761A1 (zh) 资源配置的方法及通信装置
WO2023029008A1 (zh) 信息传输方法、设备及存储介质
CN111526533A (zh) 测量方法和通信装置
WO2022193260A1 (zh) 无线通信方法、终端设备和网络设备
CN114342519A (zh) 一种通信方法及装置
WO2024067869A1 (zh) 通信方法和通信装置
WO2022056870A1 (zh) 无线通信方法、终端设备和网络设备
WO2023051755A1 (zh) 一种资源配置方法及通信装置
WO2022247552A1 (zh) 一种对齐下行控制信息大小的方法和装置
WO2024065890A1 (zh) 无线通信的方法、终端设备和网络设备
US20230319908A1 (en) Data transmission method and data transmission apparatus
WO2022104689A1 (zh) 一种小区频域带宽切换的方法、相关装置以及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180076938.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021916817

Country of ref document: EP

Effective date: 20230718

NENP Non-entry into the national phase

Ref country code: DE