WO2021233206A1 - 参数确定方法及装置 - Google Patents

参数确定方法及装置 Download PDF

Info

Publication number
WO2021233206A1
WO2021233206A1 PCT/CN2021/093670 CN2021093670W WO2021233206A1 WO 2021233206 A1 WO2021233206 A1 WO 2021233206A1 CN 2021093670 W CN2021093670 W CN 2021093670W WO 2021233206 A1 WO2021233206 A1 WO 2021233206A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
subcarrier interval
interval
480khz
240khz
Prior art date
Application number
PCT/CN2021/093670
Other languages
English (en)
French (fr)
Inventor
高宽栋
黄煌
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021233206A1 publication Critical patent/WO2021233206A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of communication technology, and in particular to a method and device for determining parameters.
  • terminal equipment has increasingly higher requirements for communication speed and communication efficiency.
  • 5G fifth-generation communication system
  • 5G NR new radio
  • the terminal device first performs synchronization signal and physical broadcast channel block (synchronization signal and physical) when accessing a cell.
  • Broadcast channel block (SSB) blind detection, and after receiving the SSB, determine the physical downlink control channel (PDCCH) from the master information block (MIB) carried in the SSB; then, the terminal equipment
  • the physical downlink shared channel (PDSCH) scheduled by the PDCCH and carrying the system information block 1 (SIB1) is determined, and finally the terminal device uses the PDSCH for data transmission.
  • SSB Broadcast channel block
  • PDSCH physical downlink shared channel
  • SIB1 system information block 1
  • the MIB carried in the SSB can indicate the subcarrier spacing used by the PDCCH through its subCarrierSpacingCommon field.
  • the size of this field is 1 bit, and the value of 0 and 1, for example, can be used to indicate the two subcarrier spacing.
  • the terminal device After the terminal device receives the end SSB, it determines the subcarrier interval used by the PDCCH as the subcarrier interval corresponding to 0 or 1 according to the subCarrierSpacingCommon field in the MIB, and then receives the PDCCH according to the determined subcarrier interval.
  • the subCarrierSpacingCommon field in the MIB has only 1 bit, the value of 0 or 1 can only be used to indicate the two possible subcarrier spacings of the PDCCH.
  • the possible sub-carrier spacing of PDCCH includes 120KHz, 240KHz, 480KHz, 960KHz and 1290KHz and other possible values.
  • the number of MIBs in the SSB is limited. Therefore, it is impossible to indicate to the terminal device more kinds of subcarrier intervals that may be used by the PDCCH, which results in the limitation of the number of subcarriers that the terminal device can use, thereby reducing the communication efficiency of the terminal device.
  • the first aspect of the present application provides a parameter determination method for a terminal device to determine the second subcarrier interval of a PDCCH.
  • the method includes: the terminal device receives a synchronization signal/physical broadcast channel block SSB sent from a network device; wherein, the SSB passes The first subcarrier interval transmission, the SSB includes first information, the first information is used to determine the second subcarrier interval for transmitting the physical downlink control channel PDCCH, and the PDCCH is used to schedule the physical downlink shared channel PDSCH carrying the system information block SIB; terminal;
  • the device determines the second subcarrier interval according to the first subcarrier interval and the first information; or, the terminal device determines the second subcarrier interval according to the first subcarrier interval.
  • the parameter determination method provided in this embodiment can take into account the first subcarrier interval of the SSB that the terminal device has received when the terminal device determines the second subcarrier interval of the SIB1PDCCH, and is especially suitable for the terminal device to use 52.6GHz or more.
  • the possible use of SIB1PDCCH sub-carrier spacing includes 120KHz, 240KHz, 480KHz, 960KHz and 1290KHz and other possible values.
  • the network device can pass through the MIB The subCarrierSpacingCommon field, combined with the first subcarrier interval, collectively indicates the second subcarrier interval.
  • the terminal device can determine more and more subcarrier intervals that may be used by the SIB1PDCCH through the first subcarrier interval and the subCarrierSpacingCommon field in the MIB, which is equivalent to adding the information indicating the second subcarrier interval through the first subcarrier interval Therefore, the number of subcarriers that can be used by the terminal device is prevented from being limited due to the insufficient number of subCarrierSpacingCommon field indications, thereby improving the communication efficiency of the terminal device.
  • the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 120kHz and the second subcarrier spacing is 120kHz or 240kHz.
  • One subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 480kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 960kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz.
  • the carrier spacing is 120kHz or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 240kHz.
  • the carrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz.
  • the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing 480kHz, the second subcarrier spacing is 120kHz or 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 240kHz or 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz Or 960kHz; Or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz; or, the first subcarrier spacing is 960kHz , The second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 480kHz; or
  • the two subcarrier spacing is 120kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 240kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 480kHz or Or, the first subcarrier interval is 1920kHz, and the second subcarrier interval is 960kHz or 1920kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 120kHz, 240kHz, or 480kHz; or, the first subcarrier interval is 120kHz, 240kHz, or 480kHz;
  • the carrier interval is 120kHz, and the second subcarrier interval is 120kHz, 240kHz, or 960kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 120kHz, and the first subcarrier interval is 120kHz.
  • the two subcarrier spacing is 240kHz, 480kHz, or 960kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 960kHz , 480kHz or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or ,
  • the first subcarrier interval is 240kHz, and the second subcarrier interval is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 240kHz, 480kHz, or 960kHz; or, the first subcarrier interval
  • the carrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz, 480kHz.
  • the first subcarrier interval is 480kHz, and the second subcarrier interval is 240kHz, 480kHz, or 960kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 240kHz, 480kHz, or 1920kHz;
  • One subcarrier spacing is 480kHz, and the second subcarrier spacing is 960kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 960kHz ,
  • the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier
  • the terminal device can determine more second subcarrier intervals according to different first carrier intervals, and for the first subcarriers of 120kHz, 240kHz, 480kHz, 960kHz, and 1920kHz.
  • the carrier intervals respectively correspond to different second subcarrier intervals, which facilitates the implementation of this application and makes the correspondence between different first subcarrier intervals more flexible.
  • the terminal device determining the second subcarrier interval according to the first subcarrier interval and the first information includes: the terminal device determines the first subcarrier according to the first subcarrier interval and the mapping relationship The set of candidate subcarrier intervals corresponding to the interval; the mapping relationship includes the correspondence between multiple subcarrier intervals and multiple sets of candidate subcarrier intervals, wherein the set of candidate subcarrier intervals corresponding to the first subcarrier interval includes multiple sets for transmitting PDCCH The sub-carrier interval of the terminal device; the terminal device determines the second sub-carrier interval according to the first information and the set of candidate sub-carrier intervals corresponding to the first sub-carrier interval.
  • the terminal device can implement the candidate subcarrier interval set determined by the terminal device according to the first subcarrier interval by means of a table, etc., which is especially suitable for the terminal device when the signal frequency used for communication is greater than 52.6.
  • the first sub-carrier spacing of 120kHz, 240kHz, 480kHz, 960kHz and 1920kHz corresponding to GHz which has the technical effect of easy implementation and easy query through tables and other methods, and can further improve the communication efficiency of the terminal equipment.
  • the first information occupies 1 bit, and there are two subcarrier intervals in the set of candidate subcarrier intervals corresponding to the first subcarrier interval; 1 bit is used to indicate the two subcarrier intervals ;
  • the terminal device determines the second subcarrier interval according to the first information and the candidate subcarrier interval set corresponding to the first subcarrier interval, including: the terminal device determines the candidate subcarrier set in the set of candidate subcarriers according to the value of the bit occupied by the first information
  • the subcarrier interval corresponding to the value of the bit is the second subcarrier interval.
  • the terminal device when receiving the SSB sent by the network device with the first subcarrier interval as the first information, and according to the mapping After the relationship determines the candidate subcarrier interval set corresponding to the first subcarrier interval, the second subcarrier interval of the SIB1PDCCH is further determined according to the first information carried by the SSB as the subcarrier interval corresponding to the first information in the candidate subcarrier interval set. Therefore, this embodiment realizes more indications of the second subcarrier interval without changing the existing MIB median, thereby improving the communication efficiency of the terminal device.
  • the first information occupies 2 bits
  • the set of candidate subcarrier intervals corresponding to the first subcarrier interval is three subcarrier intervals
  • 2 bits are used to indicate the three subcarrier intervals
  • the terminal device determines the second subcarrier interval according to the set of candidate subcarrier intervals corresponding to the first information and the first subcarrier interval, including: the terminal device determines the candidate subcarrier according to the value of the 2 bits occupied by the first information
  • the subcarrier interval corresponding to the value of 2 bits in the set is the second subcarrier interval.
  • the set of candidate subcarrier intervals corresponding to the first subcarrier interval in the mapping relationship of the terminal device includes three subcarrier intervals, in order to enable the first information to perform data on three different subcarrier intervals.
  • the first information can be extended. That is, in this embodiment of the present application, the subCarrierSpacingCommon field in the MIB is expanded to 2 bits to indicate more subcarrier spacing. Therefore, this embodiment can achieve more indications of the second subcarrier interval when only adding 1 bit to the MIB, thereby improving the communication efficiency of the terminal device.
  • the terminal device determining the second subcarrier interval according to the first subcarrier interval and the first information includes: the terminal device determines the first subcarrier according to the first subcarrier interval and the mapping relationship The set of candidate subcarrier intervals corresponding to the interval; the mapping relationship includes the correspondence between multiple subcarrier intervals and multiple candidate subcarrier interval sets, where the candidate subcarrier interval set corresponding to the first subcarrier interval includes a set of candidate subcarrier intervals for transmitting PDCCH Subcarrier interval: The terminal device determines that the subcarrier interval in the candidate subcarrier interval set corresponding to the first subcarrier interval is the second subcarrier interval.
  • the terminal device can determine the second subcarrier interval after determining the candidate subcarrier interval.
  • This implementation can ensure the completeness of the parameter determination method execution.
  • the signal frequency used by the terminal device during communication is greater than 52.6 GHz.
  • the embodiment of the present application may be applied to a communication scenario where the signal frequency used by the terminal device during communication is greater than 52.6 GHz.
  • the first sub-carrier interval may be 120 kHz, 240 kHz, 480 kHz, 960 kHz, or 1920 kHz
  • the second sub-carrier The interval can be 120kHz, 240kHz, 480kHz, 960kHz, or 1920kHz.
  • the second aspect of the present application provides a parameter determination method for a network device to send first information to a terminal device so that the terminal device determines the second subcarrier interval of the PDCCH.
  • the method includes: the network device determines the first information; One piece of information is used to determine the second subcarrier interval for transmitting PDCCH.
  • the physical downlink control channel PDCCH is used to schedule the physical downlink shared channel PDSCH carrying the system information block SIB; the network device sends a synchronization signal/physical broadcast channel block SSB to the terminal device, where ,
  • the SSB is transmitted through the first subcarrier interval, and the SSB includes the first information, so that the terminal device determines the second subcarrier interval according to the first subcarrier interval and the first information.
  • the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz. Or 240kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 480kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 960kHz Or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 120kHz or 1920kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 240kHz; or, so The first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 480kHz; or, the first subcarrier spacing is 120kHz.
  • One subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 1920kHz; or, the first subcarrier spacing is 240kHz or 1920kHz;
  • the carrier interval is 480kHz, and the second subcarrier interval is 480kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 120kHz or 240kHz; or, the first subcarrier interval is 480kHz ,
  • the second subcarrier interval is 120kHz or 480kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 240kHz or 480kHz; or, the first subcarrier interval is 480kHz, so
  • the second subcarrier spacing is 480kHz or 960kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is
  • the two subcarrier spacing is 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 480kHz or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 120kHz Or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 120 kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 120 kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 240kHz or 1920kHz; or,
  • the interval is 120kHz, 240kHz, or 480kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 120kHz, 240kHz, or 960kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 240kHz.
  • the subcarrier spacing is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz, 480kHz, or 960kHz; or, the first subcarrier spacing is 240kHz, the The second subcarrier interval is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 960kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 480kHz,
  • the second subcarrier interval is 120kHz, 240kHz, or 480kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 120kHz, 240kHz, or 960kHz; or, the first subcarrier interval is 480kHz, the second subcarrier spacing is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 480k
  • the network device determines a set of candidate subcarrier intervals corresponding to the first subcarrier interval according to the first subcarrier interval and the mapping relationship; the mapping relationship includes multiple subcarrier intervals. Correspondence between carrier spacing and multiple candidate subcarrier spacing sets, wherein the candidate subcarrier spacing set corresponding to the first subcarrier spacing includes one or more subcarrier spacings for transmitting the PDCCH; the network The device determines the first information according to the second subcarrier interval and the set of candidate subcarrier intervals.
  • the first information occupies 1 bit, and the set of candidate subcarrier intervals corresponding to the first subcarrier interval is two subcarrier intervals; and the 1 bit is used for To indicate the two subcarrier intervals; or, the first information occupies 2 bits, and there are three subcarrier intervals in the set of candidate subcarrier intervals corresponding to the first subcarrier interval; the 2 bits are used To indicate the three subcarrier spacing.
  • the signal frequency used by the terminal device during communication is greater than 52.6 GHz.
  • the third aspect of the present application provides a method for determining a parameter for a terminal device to determine the frequency range of an RE.
  • the method includes: the terminal device receives a synchronization signal/physical broadcast channel block SSB sent from a network device; wherein the SSB passes the first A subcarrier interval transmission, the SSB includes second information, and the second information is used to indicate the frequency offset between the frequency domain position of the SSB and the frequency domain position of the time-frequency resource of the system information block SIB, The frequency offset is in the unit of RE; the terminal device determines that the subcarrier bandwidth corresponding to the target subcarrier interval is the frequency range of the RE of the second information; the target subcarrier interval is the first transmission of the SSB One of the subcarrier interval and the second subcarrier interval for transmitting the SIB.
  • the terminal device when the terminal device can determine the subcarrier offset according to the ssb-SubcarrierOffset field in the MIB, the number of REs indicated by the ssb-SubcarrierOffset field does not directly use the SSB.
  • the first subcarrier offset is used as the unit of RE, but the larger subcarrier offset between the first subcarrier offset of SSB and the second subcarrier offset of SIB1CORESET is used as the unit of RE, which ensures that The ssb-SubcarrierOffset field in the MIB can indicate all subcarrier offset REs, so as to prevent the inability to indicate partial subcarrier offsets to reduce the communication efficiency of the terminal device.
  • the terminal device determining that the subcarrier bandwidth corresponding to the target subcarrier interval is the frequency range of the RE of the second information includes: the first subcarrier interval is greater than the first subcarrier interval Two subcarrier spacing, the terminal device determines that the subcarrier bandwidth corresponding to the first subcarrier spacing is the frequency range of the RE of the second information; or, the first subcarrier spacing is smaller than the second subcarrier Interval, the terminal device determines that the subcarrier bandwidth corresponding to the second subcarrier interval is the frequency range of the RE of the second information; or, the first subcarrier interval is equal to the second subcarrier interval, so The terminal device determines that the first subcarrier interval or the subcarrier bandwidth corresponding to the second subcarrier interval is the frequency range of the RE of the second information.
  • the terminal device can use the larger subcarrier offset between the first subcarrier offset and the second subcarrier offset as the unit of RE, or when the two are the same, any The subcarrier offset is used as the unit of RE, which ensures that the ssb-SubcarrierOffset field in the MIB can indicate all subcarrier offset REs, and prevents the inability to indicate part of the subcarrier offset, which reduces the communication of the terminal device. efficient.
  • the fourth aspect of the present application provides a method for determining parameters for a network device to send second information to a terminal device so that the terminal device determines the frequency range of the RE.
  • the method includes: the network device determines the second information; wherein, the second information
  • the information is used to indicate the frequency offset between the frequency domain position of the synchronization signal/physical broadcast channel block SSB and the frequency domain position of the time-frequency resource of the system information block SIB, and the frequency offset is in the unit of the RE of the target subcarrier interval
  • the target subcarrier interval is one of the first subcarrier interval for transmitting the SSB and the second subcarrier interval for transmitting the SIB, and the subcarrier bandwidth corresponding to the target subcarrier interval is the second information
  • the frequency range of the RE the network device sends the SSB to the terminal device, where the SSB is transmitted through the first subcarrier interval, and the SSB includes the second information.
  • the first subcarrier interval is greater than the second subcarrier interval, and the subcarrier bandwidth corresponding to the first subcarrier interval is the frequency range of the RE of the second information
  • the first subcarrier interval is smaller than the second subcarrier interval, and the subcarrier bandwidth corresponding to the second subcarrier interval is the frequency range of the RE of the second information; or, the first subcarrier interval
  • the carrier interval is equal to the second subcarrier interval, and the subcarrier bandwidth corresponding to the first subcarrier interval or the second subcarrier interval is the frequency range of the RE of the second information.
  • the fifth aspect of the present application provides a parameter determination method for a terminal device to determine the interval of a CD-SSB.
  • the method includes: the terminal device receives a non-cell-defined synchronization signal/physical broadcast channel block NCD-SSB sent from a network device; Wherein, the NCD-SSB includes third information, fourth information, and fifth information; the third information is used to indicate the relationship between the frequency range and the frequency domain position of the NCD-SSB; the fourth information is used to Indicates the bandwidth of the frequency range; the fifth information is used to indicate the relationship between the interval in which the cell defines the synchronization signal/physical broadcast channel block CD-SSB and the frequency domain position of the frequency range, and the frequency range is divided into multiple An interval; the terminal device determines the interval where the CD-SSB is located according to the third information, the fourth information, and the fifth information.
  • the terminal device determines the frequency domain grid where the CD-SSB is located according to the NCD-SSB
  • the third information in the MIB of the NCD-SSB can also be used to determine the frequency domain grid
  • the terminal device determining the interval where the CD-SSB is located according to the third information, the fourth information, and the fifth information includes: the terminal device according to The third information and the fourth information determine the frequency range; the terminal device determines the interval where the CD-SSB is located according to the frequency range and the fifth information.
  • the terminal device determines the frequency domain grid where the CD-SSB is located according to the NCD-SSB, since the third information is added, the determination can be made in more frequency ranges.
  • the interval specifically referred to by the CD-SSB increases the number of intervals where the CD-SSB can be indicated, thereby improving the communication efficiency of the terminal device.
  • the third information is carried in the subCarrierSpacingCommon field or the dmrs-TypeA-Position field of the main information block MIB of the SSB.
  • the third information is carried in the existing field in the MIB, and the MIB does not need to be changed too much, and no more bits are added.
  • the indication of the number of sections can improve the communication efficiency of the terminal device.
  • the third indication information and the fourth information are both k SSB , and the k SSB is carried in the ssb-SubcarrierOffset field of the MIB of the SSB; wherein, the The interval where the CD-SSB is determined by the terminal device when the value of k SSB is the first value, and the CD-SSB determined by the terminal device when the value of k SSB is the second target value The interval is adjacent in the frequency domain.
  • the sixth aspect of the present application provides a parameter determination method for a network device to send third information to a terminal device, so that the terminal device determines the interval where the CD-SSB is located.
  • the method includes: the network device determines the third information, the fourth information, and Fifth information; the third information is used to indicate the frequency domain position relationship between the frequency range and the non-cell-defined synchronization signal/physical broadcast channel block NCD-SSB; the fourth information is used to indicate the bandwidth of the frequency range; The fifth information is used to indicate the frequency domain position relationship between the interval in which the cell defines the synchronization signal/physical broadcast channel block CD-SSB and the frequency range.
  • the frequency range is divided into a plurality of intervals; the network device reports to the terminal The device sends an NCD-SSB, and the NCD-SSB includes third information, fourth information, and fifth information.
  • the third information is carried in the subCarrierSpacingCommon field or the dmrs-TypeA-Position field of the main information block MIB of the SSB.
  • the third indication information and the fourth information are both k SSB , and the k SSB is carried in the ssb-SubcarrierOffset field of the MIB of the SSB; wherein, the The interval where the CD-SSB is determined by the terminal device when the value of k SSB is the first value, and the CD-SSB determined by the terminal device when the value of k SSB is the second target value The interval is adjacent in the frequency domain.
  • a seventh aspect of the present application provides a parameter determination device, which can be used to implement the parameter determination method of the first aspect of the present application, and includes: a communication unit and a processing unit;
  • the communication unit is used to receive the synchronization signal/physical broadcast channel block SSB sent from the network device; wherein, the SSB is transmitted through the first subcarrier interval, and the SSB includes first information, and the first information is used to determine the transmission of the physical downlink control channel PDCCH In the second subcarrier interval, the PDCCH is used to schedule the physical downlink shared channel PDSCH that carries the system information block SIB;
  • the processing unit is configured to determine the second subcarrier interval according to the first subcarrier interval and the first information; or, the terminal device determines the second subcarrier interval according to the first subcarrier interval.
  • the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 240kHz.
  • One subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 480kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 960kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz.
  • the carrier spacing is 120kHz or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 240kHz.
  • the carrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz.
  • the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing 480kHz, the second subcarrier spacing is 120kHz or 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 240kHz or 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz Or 960kHz; Or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz; or, the first subcarrier spacing is 960kHz , The second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 480kHz; or
  • the two subcarrier spacing is 120kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 240kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 480kHz Or 1920kHz; or, the first subcarrier interval is 1920kHz, and the second subcarrier interval is 960kHz or 1920kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 120kHz, 240kHz, or 480kHz; or, the first subcarrier interval is 120kHz, 240kHz, or 480kHz;
  • the carrier interval is 120kHz, and the second subcarrier interval is 120kHz, 240kHz, or 960kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 120kHz, and the first subcarrier interval is
  • the two subcarrier spacing is 240kHz, 480kHz, or 960kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 960kHz , 480kHz or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or ,
  • the first subcarrier interval is 240kHz, and the second subcarrier interval is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 240kHz, 480kHz, or 960kHz; or, the first subcarrier interval
  • the carrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz, 480kHz.
  • the first subcarrier interval is 480kHz, and the second subcarrier interval is 240kHz, 480kHz, or 960kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 240kHz, 480kHz, or 1920kHz;
  • One subcarrier spacing is 480kHz, and the second subcarrier spacing is 960kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 960kHz ,
  • the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier
  • the processing unit is specifically configured to determine a set of candidate subcarrier intervals corresponding to the first subcarrier interval according to the first subcarrier interval and the mapping relationship; the mapping relationship includes multiple subcarrier intervals and multiple subcarrier intervals. Correspondence between sets of candidate subcarrier intervals, where the set of candidate subcarrier intervals corresponding to the first subcarrier interval includes multiple subcarrier intervals for PDCCH transmission; according to the first information and the candidate corresponding to the first subcarrier interval The subcarrier interval set, and the second subcarrier interval is determined.
  • the first information occupies 1 bit, and there are two subcarrier intervals in the set of candidate subcarrier intervals corresponding to the first subcarrier interval; 1 bit is used to indicate the two subcarrier intervals ;
  • the processing unit is specifically configured to determine, according to the value of the bit occupied by the first information, that the subcarrier interval corresponding to the value of the bit in the candidate subcarrier set is the second subcarrier interval.
  • the first information occupies 2 bits, and the set of candidate subcarrier intervals corresponding to the first subcarrier interval is three subcarrier intervals; 2 bits are used to indicate the three subcarrier intervals ;
  • the processing unit is specifically configured to determine, according to the value of the 2 bits occupied by the first information, that the subcarrier interval corresponding to the value of the 2 bits in the candidate subcarrier set is the second subcarrier interval.
  • the processing unit is specifically configured to determine a set of candidate subcarrier intervals corresponding to the first subcarrier interval according to the first subcarrier interval and the mapping relationship; the mapping relationship includes multiple subcarrier intervals and multiple subcarrier intervals.
  • the sub-carrier interval of is the second sub-carrier interval.
  • the signal frequency used by the terminal device during communication is greater than 52.6 GHz.
  • the eighth aspect of the present application provides a parameter determination device, which can be used to execute the parameter determination method as described in the second aspect of the present application, and includes: a communication unit and a processing unit;
  • the processing unit is used to determine the first information; where the first information is used to determine the second subcarrier interval for transmitting the PDCCH, and the physical downlink control channel PDCCH is used to schedule the physical downlink shared channel PDSCH that carries the system information block SIB;
  • the communication unit is used to send the synchronization signal/physical broadcast channel block SSB to the terminal equipment, where the SSB is transmitted through the first subcarrier interval, and the SSB includes the first information, so that the terminal equipment determines according to the first subcarrier interval and the first information The second subcarrier spacing.
  • the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, One subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 480kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 960kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz.
  • the carrier spacing is 120kHz or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 240kHz.
  • the carrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz.
  • the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing 480kHz, the second subcarrier spacing is 120kHz or 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 240kHz or 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz Or 960kHz; Or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz; or, the first subcarrier spacing is 960kHz , The second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 480kHz; or
  • the two subcarrier spacing is 120kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 240kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 480kHz Or 1920kHz; or, the first subcarrier interval is 1920kHz, and the second subcarrier interval is 960kHz or 1920kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 120kHz, 240kHz, or 480kHz; or, the first subcarrier interval is 120kHz, 240kHz, or 480kHz;
  • the carrier interval is 120kHz, and the second subcarrier interval is 120kHz, 240kHz, or 960kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 120kHz, and the first subcarrier interval is
  • the two subcarrier spacing is 240kHz, 480kHz, or 960kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 960kHz , 480kHz or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or ,
  • the first subcarrier interval is 240kHz, and the second subcarrier interval is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 240kHz, 480kHz, or 960kHz; or, the first subcarrier interval
  • the carrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz, 480kHz.
  • the first subcarrier interval is 480kHz, and the second subcarrier interval is 240kHz, 480kHz, or 960kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 240kHz, 480kHz, or 1920kHz;
  • One subcarrier spacing is 480kHz, and the second subcarrier spacing is 960kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 960kHz ,
  • the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier
  • the processing unit is specifically configured to determine a set of candidate subcarrier intervals corresponding to the first subcarrier interval according to the first subcarrier interval and the mapping relationship; the mapping relationship includes multiple subcarrier intervals and multiple subcarrier intervals. Correspondence between sets of candidate subcarrier intervals, where the set of candidate subcarrier intervals corresponding to the first subcarrier interval includes one or more subcarrier intervals for PDCCH transmission; according to the second subcarrier interval and the candidate subcarrier interval Set, determine the first information.
  • the first information occupies 1 bit, and there are two subcarrier intervals in the set of candidate subcarrier intervals corresponding to the first subcarrier interval; 1 bit is used to indicate the two subcarrier intervals
  • the first information occupies 2 bits, and the set of candidate subcarrier intervals corresponding to the first subcarrier interval is three subcarrier intervals; 2 bits are used to indicate the three subcarrier intervals.
  • the signal frequency used by the terminal device during communication is greater than 52.6 GHz.
  • a ninth aspect of the present application provides a parameter determination device, which can be used to execute the parameter determination method according to the third aspect of the present application, and includes: a communication unit and a processing unit;
  • the communication unit is used to receive the synchronization signal/physical broadcast channel block SSB sent from the network device; wherein, the SSB is transmitted through the first subcarrier interval, and the SSB includes second information, and the second information is used to indicate the frequency domain position of the SSB and The frequency offset between the frequency domain positions of the time-frequency resources of the system information block SIB, and the frequency offset is in the unit of RE;
  • the processing unit is configured to determine that the subcarrier bandwidth corresponding to the target subcarrier interval is the frequency range of the RE of the second information; the target subcarrier interval is one of the first subcarrier interval for transmitting SSB and the second subcarrier interval for transmitting SIB .
  • the processing unit is specifically configured to: the first subcarrier interval is greater than the second subcarrier interval, and determine that the subcarrier bandwidth corresponding to the first subcarrier interval is the frequency range of the RE of the second information; Or, the first subcarrier interval is less than the second subcarrier interval, and the subcarrier bandwidth corresponding to the second subcarrier interval is determined to be the frequency range of the RE of the second information; or, the first subcarrier interval is equal to the second subcarrier interval, and it is determined The subcarrier bandwidth corresponding to the first subcarrier interval or the second subcarrier interval is the frequency range of the RE of the second information.
  • a tenth aspect of the present application provides a parameter determination device, which can be used to execute the parameter determination method as described in the fourth aspect of the present application, and includes: a communication unit and a processing unit;
  • the processing unit is used to determine second information; where the second information is used to indicate the frequency offset between the frequency domain position of the synchronization signal/physical broadcast channel block SSB and the frequency domain position of the time-frequency resource of the system information block SIB, The frequency offset is based on the RE of the target subcarrier interval.
  • the target subcarrier interval is one of the first subcarrier interval for transmitting SSB and the second subcarrier interval for transmitting SIB.
  • the subcarrier bandwidth corresponding to the target subcarrier interval is the first
  • the second information is the frequency range of the RE; the communication unit is used to send the SSB to the terminal device, where the SSB is transmitted through the first subcarrier interval, and the SSB includes the second information.
  • the first subcarrier interval is greater than the second subcarrier interval, and the subcarrier bandwidth corresponding to the first subcarrier interval is the frequency range of the RE of the second information; or, the first subcarrier interval Less than the second subcarrier interval, the subcarrier bandwidth corresponding to the second subcarrier interval is the frequency range of the RE of the second information; or, the first subcarrier interval is equal to the second subcarrier interval, the first subcarrier interval or the second subcarrier interval
  • the subcarrier bandwidth corresponding to the carrier interval is the frequency range of the RE of the second information.
  • the eleventh aspect of the present application provides a parameter determination device, which can be used to execute the parameter determination method according to the fifth aspect of the present application, and includes: a communication unit and a processing unit;
  • the communication unit is used to receive a non-cell-defined synchronization signal/physical broadcast channel block NCD-SSB sent from a network device; wherein the NCD-SSB includes third information, fourth information, and fifth information; the third information is used to indicate The relationship between the frequency range and the frequency domain position of the NCD-SSB; the fourth information is used to indicate the bandwidth of the frequency range; the fifth information is used to indicate the interval of the cell definition synchronization signal/physical broadcast channel block CD-SSB and the frequency domain of the frequency range Location relationship, the frequency range is divided into multiple intervals;
  • the processing unit is used to determine the interval where the CD-SSB is located according to the third information, the fourth information, and the fifth information.
  • the processing unit is specifically configured to determine the frequency range according to the third information and the fourth information; and determine the interval where the CD-SSB is located according to the frequency range and the fifth information.
  • the third information is carried in the subCarrierSpacingCommon field or the dmrs-TypeA-Position field of the main information block MIB of the SSB.
  • the third indication information and the fourth information are both k SSB , and k SSB is carried in the ssb-SubcarrierOffset field of the MIB of the SSB;
  • the interval of the CD-SSB determined by the terminal device when the value of k SSB is the first value, and the interval of the CD-SSB determined by the terminal device when the value of k SSB is the second target value are adjacent in the frequency domain .
  • a twelfth aspect of the present application provides a parameter determination device, which can be used to execute the parameter determination method according to the sixth aspect of the present application, and includes: a communication unit and a processing unit;
  • the processing unit is used to determine the third information, the fourth information, and the fifth information;
  • the third information is used to indicate the frequency domain position relationship between the frequency range and the non-cell-defined synchronization signal/physical broadcast channel block NCD-SSB;
  • the fourth information is used to Indicate the bandwidth of the frequency range;
  • the fifth information is used to indicate the frequency domain position relationship between the interval in which the synchronization signal/physical broadcast channel block CD-SSB is located in the cell and the frequency range, and the frequency range is divided into multiple intervals;
  • the communication unit is used to send the NCD-SSB to the terminal device, and the NCD-SSB includes the third information, the fourth information, and the fifth information.
  • the third information is carried in the subCarrierSpacingCommon field or the dmrs-TypeA-Position field of the main information block MIB of the SSB.
  • the third indication information and the fourth information are both k SSB , and k SSB is carried in the ssb-SubcarrierOffset field of the MIB of the SSB; wherein, the value of k SSB is the first value When the interval of the CD-SSB determined by the terminal device is located, and the interval of the CD-SSB determined by the terminal device when the value of k SSB is the second target value is adjacent in the frequency domain.
  • an embodiment of the present application provides a communication device, including a processor and a communication interface.
  • the communication interface is used to realize the connection and communication between the communication device and the peripheral device.
  • the processor is configured to implement the method described in the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, or the sixth aspect.
  • the above-mentioned communication device further includes: a memory.
  • the memory is used to store a computer program, and the processor executes the computer program stored in the memory, so that the apparatus executes the above-mentioned first aspect, second aspect, third aspect, fourth aspect, fifth aspect, or The method described in the sixth aspect.
  • the above-mentioned communication device further includes a transceiver.
  • the transceiver is used to send and receive messages.
  • an embodiment of the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the first aspect, the second aspect, and the The method described in the third, fourth, fifth or sixth aspect.
  • an embodiment of the present application provides a chip including a processor and a communication interface
  • the communication interface is used to realize communication with other devices
  • the processor is configured to read instructions to implement the method described in the first, second, third, fourth, fifth, or sixth aspect described above.
  • embodiments of the present application provide a computer program product, the computer program product includes computer program code, and when the computer program code is executed by a computer, the computer can execute the above-mentioned first and second aspects.
  • an embodiment of the present application provides a communication system.
  • the communication system includes the communication device described in the seventh aspect of the present application as the second access network device and the communication described in the eighth aspect of the present application.
  • the device includes the first access network device, and the communication device described in the eleventh/second aspect of this application as terminal equipment; or, includes the communication device described in the ninth aspect of this application as the first access network device,
  • the second access network device of the communication device described in the tenth aspect of the present application, and the communication device described in the eleventh/second aspect of the present application are used as terminal devices.
  • FIG. 1 is a schematic structural diagram of an embodiment of a communication system applied in an embodiment of this application;
  • Figure 2 is a schematic diagram of a process when a terminal device accesses a network device
  • Figure 3 shows some of the fields carried in the MIB
  • FIG. 4 is a schematic flowchart of an embodiment of a parameter determination method provided by an embodiment of this application.
  • Figure 5 is a schematic diagram of a subcarrier offset
  • Fig. 6 is a schematic diagram of another seed carrier offset
  • FIG. 7 is a schematic flowchart of an embodiment of a parameter determination method provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart of an embodiment of a parameter determination method provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a parameter determination device provided by this application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a communication system applied in an embodiment of this application
  • FIG. 1 is a schematic diagram of a possible network architecture to which this embodiment of the application is applicable, including a terminal device 110 and a network device 120.
  • the network device 120 shown in FIG. 1 may be an access network device.
  • the terminal device 110 and the network device 120 can communicate through the Uu air interface, and the Uu air interface can be understood as a universal UE to network interface between the terminal device and the network device.
  • Uu air interface transmission includes uplink transmission and downlink transmission.
  • a core network device 130 may also be included.
  • the terminal device 110 may be connected to the network device 120 in a wireless manner, and the network device 120 may be connected to the core network device 130 in a wired or wireless manner.
  • the core network device 130 and the network device 120 may be separate and different physical devices, or the core network device 130 and the network device 120 may be the same physical device, and all of the core network device 130 and the network device 120 are integrated on the physical device / Part of the logic function.
  • the terminal device 110 may be a fixed location or may be movable, which is not limited.
  • the network architecture shown in FIG. 1 may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not limited.
  • the number of terminal equipment, network equipment, and core network equipment is not limited.
  • the network architecture shown in FIG. 1 is only for schematic illustration, and is not intended to limit the embodiments of the present application.
  • the technical solutions in the embodiments of the present application can be applied to various communication systems.
  • LTE long-term evolution
  • 5G fifth generation
  • future mobile communication systems for example, long-term evolution (LTE) systems, fifth generation (5G) mobile communication systems, and future mobile communication systems.
  • LTE long-term evolution
  • 5G fifth generation
  • the network device 120 shown in FIG. 1 may be an access network device, and the access network device may also be called a radio access network (RAN) device, which is a device that provides wireless communication functions for terminal devices.
  • the access network equipment includes, for example, but is not limited to: next-generation base stations (generation nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B ( node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit) , BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, base station in future mobile communication system or access point in WiFi system, etc.
  • generation nodeB, gNB next-generation base stations
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base
  • the access network equipment can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the equipment may be a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • the terminal device can communicate with multiple access network devices of different technologies.
  • the terminal device can communicate with an access network device that supports long term evolution (LTE), or can communicate with an access network device that supports 5G. , It can also be dual-connected with LTE-supporting access network equipment and 5G-supporting access network equipment.
  • LTE long term evolution
  • 5G 5G-supporting access network equipment
  • the embodiments of the application are not limited.
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is the network equipment, and the network equipment is a base station as an example to describe the technical solutions provided by the embodiments of the present application.
  • the terminal device shown in Figure 1 can be referred to as a terminal for short. It is a device with wireless transceiver function.
  • the terminal device can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; or on the water (such as ships, etc.) ); It can also be deployed in the air (such as airplanes, drones, balloons, and satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation safety (transportation) Wireless terminal equipment in safety), wireless terminal equipment in a smart city (smart city), wireless terminal equipment in a smart home (smart home), and may also include user equipment (UE), etc.
  • UE user equipment
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the 5th generation (5G) network in the future, or public land mobile communication networks that will evolve in the future (Public land mobile network (PLMN) terminal equipment, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Terminal equipment can sometimes be called terminal equipment, user equipment (UE), access terminal equipment, vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal Equipment, mobile equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile. The embodiments of the present application are not limited to this.
  • the device used to implement the function of the terminal may be a terminal device; it may also be a device capable of supporting the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal equipment is the terminal device, and the terminal equipment is the UE as an example to describe the technical solutions provided in the embodiments of the present application.
  • network equipment and/or terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water; it can also be deployed on airborne aircraft, balloons, and On the satellite.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • Communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through licensed spectrum, or through unlicensed spectrum, or through both licensed spectrum and unlicensed spectrum.
  • the spectrum resources used between the network device and the terminal device and between the terminal device and the terminal device may be, for example, a 4G spectrum or a 5G spectrum.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, time domain resources, frequency domain resources, or spectrum resources) used by the cell.
  • It can be a cell corresponding to a network device (such as a base station).
  • a cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: metro cell, micro cell ), pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • communication systems such as LTE systems and 5G systems, multiple cells can work at the same frequency on a carrier at the same time.
  • the concept of the above-mentioned carrier and cell can also be considered equivalent.
  • CA carrier aggregation
  • the carrier index of the secondary carrier and the cell identification (Cell ID) of the secondary cell working on the secondary carrier will be carried at the same time.
  • Cell ID cell identification
  • the concept of carrier and cell is equivalent.
  • the UE accessing a carrier is equivalent to accessing a cell.
  • network equipment can use beamforming technology to The transmitted signal energy is limited to a certain beam direction. Because beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, it can achieve higher communication efficiency when communicating between network equipment and terminal equipment. And to obtain higher network capacity to increase signal strength and improve transmission efficiency.
  • multiple beams with the same or similar communication characteristics are regarded as one beam, and network equipment and terminal equipment can correspond to one or more antenna ports in one beam, which are used to transmit data channels, control channels, and sounding signals, etc.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the terminal device when the terminal device is connected to the network device, it needs to send the data to the network device.
  • Beam scanning for example, the terminal device scans the synchronization signal sent by the network device and the PBCH block (synchronization signal and physical broadcast channel block, SSB) by blind detection, determines the relevant configuration information of the network device and completes the access to the network device.
  • PBCH block synchronization signal and physical broadcast channel block, SSB
  • FIG. 2 is a schematic diagram of the flow when a terminal device accesses a network device.
  • FIG. 2 shows that in the communication system shown in FIG. 1, when the terminal device accesses the network device or accesses the cell of the network device, the terminal The signal received by the device in turn.
  • the terminal device first performs blind detection on the SSB sent by the network device.
  • the SSB may be called a synchronization signal block, a synchronization signal/physical broadcast channel (Physical broadcast channel, PBCH) block, or may be referred to as SSB or SS/PBCH block.
  • the SSB may include at least one of PBCH, primary synchronization signal (PSS), and secondary synchronization signal (SSS).
  • the PBCH in the SSB carries a main information block (MIB).
  • MIB includes information related to random access of terminal equipment, information about the cell that terminal equipment accesses, identification information of the cell, information related to random access, PDCCH-related information, and other information blocks such as system information block (SIB1) )
  • SIB1 system information block
  • Information for example, includes the CORESET time-frequency position indicator of SIB1, and other indicators such as sub-carrier spacing.
  • the terminal device when the terminal device receives the SSB at time a, demodulates the PBCH in the SSB to obtain the MIB, and the MIB includes the CORESET time-frequency position of SIB1, subcarrier spacing and other information; then, the terminal device can receive the CORESET of SIB1 according to the MIB instructions , And obtain the physical downlink control channel (PDCCH) of SIB1 contained in the CORESET of SIB1 at time b.
  • the PDCCH of SIB1 is used to schedule the physical downlink control channel (PDSCH) carrying SIB1. Time-frequency position and modulation and coding strategy and other information.
  • the terminal device can receive the SIB1 PDSCH at time c according to the indication of the SIB1 PDCCH.
  • the MIB carried in the SSB can indicate the subcarrier spacing used by the PDCCH through its subCarrierSpacingCommon field.
  • the size of this field is 1 bit, and the value of 0 and 1, for example, can be used to indicate the two subcarrier spacing.
  • Figure 3 shows some of the fields carried in the MIB, where the subCarrierSpacingCommon field of the MIB can be configured to indicate different subcarrier spacing values through 0 and 1, for example, if the field is 0, it indicates that the subcarrier spacing is 15kHz.
  • This field is 1 corresponds to indicating that the sub-carrier interval is 30 kHz, and for example, this field is 0 corresponds to the indicating sub-carrier interval of 60 kHz, and this field is 1 corresponds to the indicating sub-carrier interval of 120 kHz.
  • the terminal device receives the SSB at time a in the scenario shown in Figure 2, it can determine the subcarrier interval used by the SIB1PDCCH as the subcarrier interval corresponding to 0 or 1 according to the subCarrierSpacingCommon field of the MIB in the SSB, and then according to the determined subcarrier interval
  • the carrier interval receives SIB1PDCCH at time b.
  • the value of 0 or 1 can only be used to indicate the two possible subcarrier spacings of the SIB1PDCCH.
  • the possible subcarrier spacing of SIB1PDCCH includes 120KHz, 240KHz, 480KHz, 960KHz, 1290KHz and other possible values.
  • the number of MIB bits in the SSB is limited.
  • the network device can only indicate two of the sub-carrier intervals through 0 and 1, so it cannot indicate to the terminal device more kinds of sub-carrier intervals that may be used by the SIB1PDCCH, resulting in the terminal device The number of subcarriers that can be used is limited, thereby reducing the communication efficiency of the terminal device.
  • the embodiments of the present application provide a parameter determination method to indicate more subcarrier intervals in the SSB sent by the network device to the terminal device, so that when the terminal device communicates in the frequency band above 56.2GHz,
  • the network device can indicate the subcarrier interval used by the terminal device to the terminal device to prevent the number of subcarriers that the terminal device can use from being limited, thereby improving the communication efficiency of the terminal device.
  • FIG. 4 is a schematic flowchart of an embodiment of a parameter determination method provided by an embodiment of the application.
  • the embodiment shown in FIG. 4 can be applied to the communication system shown in FIG. 1 for the terminal device according to the SSB sent by the network device
  • the information in determines the subcarrier spacing of SIB1PDCCH.
  • the parameter determination method specifically includes:
  • S100 The network device generates first information.
  • the first information is used to enable the terminal device to determine the subcarrier interval for transmitting the SIB1PDCCH, where the SIB1PDCCH is used to schedule the SIB1PDSCH carrying SIB1, and the subcarrier interval of the SIB1PDCCH is recorded as the second subcarrier interval.
  • the network device first generates first information for the terminal device to determine the second subcarrier interval.
  • the first information may be the subCarrierSpacingCommon field in the MIB, and the first information may specifically be the value of "0" or "1" in the 1 bit of the subCarrierSpacingCommon field.
  • both the network device and the terminal device combine the second subcarrier interval of the SIB1PDCCH with the network
  • the subcarrier interval of the SSB sent by the device to the terminal device is correlated, and the subcarrier interval of the SSB is recorded as the first subcarrier interval.
  • the terminal device may also determine the second subcarrier interval in combination with the first subcarrier interval of the SSB and the first information.
  • the first information generated for the network device is also related to the first subcarrier interval of the SSB sent by the network device to the terminal device in S101.
  • the network device sends the SSB, and correspondingly, the terminal device receives the SSB sent from the network device.
  • the SSB carries the first information determined in S101.
  • the network device carries the first information generated in S100 in the sent SSB, where, when the first information is the subCarrierSpacingCommon field in the MIB, the network device can carry all information in the MIB in the PBCH of the SSB. ⁇ Said first information.
  • the SSB can be blindly detected when accessing the network device, and after receiving the SSB sent by the network device, the PBCH in the SSB is demodulated to obtain the MIB, and then the first information is obtained from the subCarrierSpacingCommon field in the MIB.
  • the terminal device after receiving the SSB in S101, the terminal device further determines the subcarrier interval used during SSB transmission, which is recorded as the first subcarrier interval.
  • the terminal device determines the second subcarrier interval according to the first subcarrier interval and the first information. Or, the terminal device determines the second subcarrier interval according to the first subcarrier interval.
  • the second subcarrier interval of the SIB1PDCCH is related to the first subcarrier interval of the SSB, after the terminal device receives the SSB through S101, in S102, it can be based on the received SSB
  • the first subcarrier interval is combined with the first information to determine the second subcarrier interval, or the terminal device may directly determine the second subcarrier interval according to the first subcarrier interval.
  • the first subcarrier interval of each SSB may correspond to at least one subcarrier interval that may be used by the SIB1PDCCH, and the at least one subcarrier interval may be combined into a candidate subcarrier interval set.
  • the terminal device and the network device may store a set of candidate subcarrier intervals corresponding to different first subcarrier intervals by means of a mapping relationship, and specifically determine the second subcarrier interval from the set of candidate subcarrier intervals according to the first information .
  • the mapping relationship can be stored in the form of a table.
  • the mapping relationship stored in the terminal device and the network device may be set in advance, pre-configured, or determined by the terminal device or the network device.
  • mapping relationship may be represented by some rows in Table 1 below.
  • the possible corresponding different candidate subcarrier spacing sets, network equipment and terminal equipment can be based on the first subcarrier
  • the second subcarrier interval is determined from the subcarrier interval set.
  • the mapping relationship of a certain terminal device according to the first subcarrier interval supported by the terminal device, there is a set of candidate subcarrier intervals in Table 1 corresponding to the first subcarrier interval.
  • the terminal device uses a signal frequency greater than 52.6 GHz when communicating, and the first sub-carrier interval supported by the terminal device includes the following five types: 120kHz, 240kHz, 480kHz, 960kHz, and 1920kHz, and the mapping relationship that can be stored in the terminal device includes the above Among the five first subcarrier intervals, the corresponding relationship between each subcarrier interval and a candidate subcarrier set can be all or partly from Table 1.
  • the mapping relationship stored in the terminal device may include: the correspondence between the first subcarrier interval 120kHz-candidate subcarrier interval set (120kHz), and the correspondence between the first subcarrier interval 240kHz-candidate subcarrier interval set (240kHz) Correspondence, the correspondence between the first subcarrier interval 480kHz-candidate subcarrier interval set (240kHz, 480kHz), the correspondence between the first subcarrier interval 960kHz-candidate subcarrier interval set (240kHz, 960kHz), and the first subcarrier interval 1920kHz -Correspondence of candidate subcarrier spacing sets (240kHz, 1920kHz), the above five correspondences can all come from Table 1.
  • the candidate subcarrier interval The set includes two subcarrier intervals, the two subcarrier intervals can be distinguished according to the first information, and the second subcarrier interval is determined from the two subcarrier intervals according to the first information; the candidate subcarrier interval set includes one subcarrier interval, The subcarrier interval in the candidate subcarrier interval set may be directly used as the second subcarrier interval.
  • the second subcarrier of the SIB1PDCCH sent by the network device to the terminal device can be 240kHz or 480kHz.
  • the subcarrier spacing can be 240kHz or 480kHz.
  • the network device determines that the first subcarrier interval is 240kHz to send SSB and the second subcarrier interval is 240kHz.
  • the SIB PDCCH is sent with a carrier interval of 480kHz, it can be determined in S100 that the first information is "1" corresponding to 480kHz.
  • the terminal device after receiving the SSB sent by the network device with the first subcarrier interval of 240kHz, and determining the set of candidate subcarrier intervals corresponding to the first subcarrier interval according to the mapping relationship, further according to the first subcarrier interval carried by the SSB
  • the information "1" determines that the second subcarrier interval of the SIB1PDCCH is 480kHz corresponding to "1" in the candidate subcarrier interval set.
  • the second subcarrier interval of the SIB1PDCCH sent by the network device to the terminal device can be 120kHz.
  • the first information is "0" and "1".
  • any value such as a null value can be used to indicate the subcarrier spacing of 120kHz.
  • the terminal device when the terminal device determines that there is only one subcarrier interval in the candidate subcarrier interval according to the first subcarrier interval of the SSB, it may not judge the value of the first information, but may directly set the candidate subcarrier interval One sub-carrier interval of is used as the second sub-carrier interval.
  • mapping relationship may be represented by some rows in Table 2 below.
  • the second subcarrier interval is determined from the subcarrier interval set.
  • the mapping relationship of a certain terminal device according to the first subcarrier interval supported by the terminal device, there is a set of candidate subcarrier intervals in Table 2 corresponding to the first subcarrier interval.
  • the terminal device uses a signal frequency greater than 52.6 GHz when communicating, and the first sub-carrier interval supported by the terminal device includes the following five types: 120kHz, 240kHz, 480kHz, 960kHz, and 1920kHz, and the mapping relationship that can be stored in the terminal device includes the above Among the five first sub-carrier intervals, the corresponding relationship between each sub-carrier interval and a candidate sub-carrier set can be all or partly from Table 2.
  • the mapping relationship stored in the terminal device may include: the corresponding relationship between the first subcarrier interval 120kHz-candidate subcarrier interval set (120kHz, 240kHz, 480kHz), and the first subcarrier interval 240kHz-candidate subcarrier interval set ( 120kHz, 240kHz, 960kHz), the first subcarrier interval 480kHz-candidate subcarrier interval set (120kHz, 240kHz, 480kHz) correspondence, the first subcarrier interval 960kHz-candidate subcarrier interval set (120kHz, 480kHz, The corresponding relationship of 1920kHz) and the corresponding relationship of the first subcarrier interval 1920kHz-candidate subcarrier interval set (240kHz, 480kHz, 1920kHz), the above five corresponding relationships can all come from Table 1.
  • the candidate subcarrier interval set corresponding to the first subcarrier interval in the mapping relationship of the terminal device includes three subcarrier intervals, so that the first information can distinguish three different subcarrier intervals ,
  • the first information can be extended. That is, in this embodiment of the present application, the subCarrierSpacingCommon field in the MIB is expanded to 2 bits to indicate more subcarrier spacing.
  • the network device sends the SIB1PDCCH to the terminal device.
  • the second subcarrier interval may be 120kHz or 480kHz or 1920kHz.
  • the 2 bits of the subCarrierSpacingCommon field in the MIB are used as the first information, and the values of any three of the first information "00", "01", "10” and "11” can be used to indicate respectively Three sub-carrier spacings of 120kHz, 480kHz and 1920kHz.
  • the network device is determined to be the first When one subcarrier interval is 960kHz to send SSB, and the second subcarrier interval is 480kHz to send SIB PDCCH, it can be determined in S100 that the first information is "01" corresponding to 480kHz.
  • the terminal device after receiving the SSB sent by the network device with the first subcarrier interval of 960kHz, and determining the set of candidate subcarrier intervals corresponding to the first subcarrier interval according to the mapping relationship, further according to the first subcarrier interval carried by the SSB
  • the information "01" determines that the second subcarrier interval of the SIB1PDCCH is 480kHz corresponding to "01" in the candidate subcarrier interval set.
  • mapping relationship concentration is only shown in an exemplary manner.
  • different first subcarrier intervals can also correspond to other different The candidate subcarrier interval set, and the number of each subcarrier interval set may be one or more, and the implementation mode is the same as the principle, and will not be repeated.
  • the network device sends the SIB1PDCCH to the terminal device, and correspondingly, the terminal device receives the SIB1PDCCH sent from the network device.
  • the terminal device can receive the SIB1PDCCH sent by the network device according to the second subcarrier interval. And after receiving the SIB PDCCH, the SIB1 PDSCH is received according to the indication of the SIB1 PDCCH.
  • the parameter determination method provided by the embodiments of the present application can take into account the first subcarrier interval of the SSB that the terminal device has received when the terminal device determines the second subcarrier interval of the SIB1PDCCH, and is especially suitable for the terminal device using 52.6GHz
  • the possible sub-carrier spacing of SIB1PDCCH includes 120KHz, 240KHz, 480KHz, 960KHz, 1290KHz and other possible values.
  • the network device can pass the MIB.
  • the terminal device can determine more and more subcarrier intervals that may be used by the SIB1PDCCH through the first subcarrier interval and the subCarrierSpacingCommon field in the MIB, which is equivalent to adding the information indicating the second subcarrier interval through the first subcarrier interval Therefore, the number of subcarriers that can be used by the terminal device is prevented from being limited due to the insufficient number of subCarrierSpacingCommon field indications, thereby improving the communication efficiency of the terminal device.
  • ssb-SubcarrierOffset is also called k SSB , which is used to indicate the frequency domain position of the SSB bearing, and the time-frequency resource bearing SIB1, that is, the frequency domain position of SIB1CORESET.
  • the number of REs that are offset between subcarriers, and the SIB1CORESET includes SIB1PDCCH.
  • the k SSB field has a 4bits indication capability, it can indicate a maximum of 16 values, that is, it can indicate that it is within an RB (resource element) (a RB contains 12 RE (resource elements), that is, 12 subcarriers). Subcarrier offset.
  • Figure 5 is a schematic diagram of a subcarrier offset, where the subcarrier spacing of SSB can be 480kHz, and the subcarrier spacing of SIB1CORESET can be 240kHz.
  • the frequency domain position of SIB1CORESET is compared with the frequency domain position of SSB REs that are offset backward by 1 SSB, the k SSB carried in the MIB can be used to indicate that the subcarrier offset at this time is 1 RE.
  • Figure 6 is a schematic diagram of another sub-carrier offset.
  • the sub-carrier spacing of SSB is smaller than the sub-carrier spacing of SIB1CORESET.
  • the sub-carrier spacing of SSB is 240kHz
  • the sub-carrier spacing of SIB1CORESET is 480kHz.
  • the interval is small, and it can only indicate that the 12 REs corresponding to itself are equivalent to the subcarrier offsets corresponding to the 6 REs of SIB1CORESET, which will cause the subcarrier offsets of the 6 REs after SB1CORESET to be incomplete, making the terminal equipment unable to determine these. Sub-carrier offset, thereby reducing the communication efficiency of terminal equipment.
  • the embodiment of the present application also provides a parameter determination method for determining the subcarrier offset between the frequency domain position of SSB and the frequency domain position of SIB1CORESET by using one of SSB and SIB1CORESET.
  • the one with the larger inter-subcarrier spacing is used as the target sub-carrier spacing
  • the target sub-carrier spacing is used as the unit of RE indicated by k SSB of MIB, that is, the frequency range of RE, so as to ensure that k SSB in MIB can offset all sub-carriers. All the moved REs are instructed to prevent the communication efficiency of the terminal device from being reduced due to the inability to indicate part of the sub-carrier offset.
  • FIG. 7 is a schematic flowchart of an embodiment of a parameter determination method provided by an embodiment of this application.
  • the embodiment shown in FIG. 7 can be applied to the communication system shown in FIG. 1 for the terminal device according to the SSB sent by the network device
  • the information in determines the subcarrier offset between the frequency domain position of SSB and the frequency domain position of SIB1CORESET.
  • the parameter determination method may be performed separately, or the parameter determination method may also be performed in the embodiment shown in FIG. 4 after the terminal device determines the subcarrier spacing of the SSB and the subcarrier spacing of the SIB1PDCCH.
  • the method shown in Figure 7 specifically includes:
  • S200 The network device generates second information.
  • the second information is used to indicate the subcarrier offset between the frequency domain position of the SSB and the frequency domain position of SIB1CORESET, and the second information is in the unit of RE. Then in S200, the network device can make the terminal device determine the subcarrier offset through the second information sent.
  • the second information can be the ssb-SubcarrierOffset in the MIB, which is also referred to as k SSB.
  • the information may specifically be the value of the 4 bits of the ssb-SubcarrierOffset in the MIB.
  • the network device when the network device generates the second information, it is based on the first subcarrier used by the SSB.
  • the carrier interval is judged with the size of the second subcarrier interval used by SIB1CORESET, and the frequency domain range of the subcarrier corresponding to the larger subcarrier interval is selected as the unit of RE.
  • the network device sends the second information in the SSB to the terminal device, and correspondingly, the terminal device receives the SSB sent from the network device.
  • the network device can carry the second information generated in S200 in the sent SSB, where, when the second information is the ssb-SubcarrierOffset field in the MIB, the network device can carry the second information in the MIB in the PBCH of the SSB.
  • Second information For the terminal device, it can perform blind SSB detection when accessing the network device, and after receiving the SSB sent by the network device, demodulate the PBCH in the SSB to obtain the MIB, and then obtain the second information from the ssb-SubcarrierOffset field in the MIB .
  • the terminal device after receiving the SSB in S201, the terminal device further determines the first subcarrier interval used during SSB transmission.
  • the terminal device determines, according to the first subcarrier interval of the SSB and the second subcarrier interval of SIB1CORESET, the subcarrier bandwidth corresponding to the larger subcarrier interval of the two as the unit of the RE of the second information, that is, the frequency range.
  • the terminal device can determine the larger subcarrier interval as the target subcarrier interval from the relationship between the first subcarrier interval of the SSB and the second subcarrier interval of SIB1CORESET. , And use the sub-carrier bandwidth corresponding to the target sub-carrier interval as the frequency range of the RE in the second information.
  • the RE of the larger SSB may be used as the unit of the second information ;
  • the first subcarrier interval of SSB is smaller than the second subcarrier interval of SIB1CORESET, it corresponds to the indication scenario of subcarrier offset as shown in Figure 6.
  • the larger The RE of SIB1CORESET is used as the unit of the second information.
  • the RE of SSB can be used as the unit of second information, or the RE of SIB1CORESET can be used as the unit of second information.
  • the second indication information can use the subcarrier interval of SIB1CORESET 480kHz as the unit of RE to indicate the difference between SSB and SIB1CORESET.
  • the inter-subcarrier offset is 10 SIB1CORESET REs, which corresponds to 20 SSB REs. It can be seen that since the subcarrier spacing is indicated by the REs of SIB1CORESET with a larger subcarrier spacing of 10, compared with the subcarrier spacing shown in FIG.
  • the subcarrier offset of REs with more than 12 SSBs can be indicated to prevent Since the first subcarrier interval of the SSB is smaller than the second subcarrier interval of SIB1CORESET, the RE of the SSB cannot indicate the problem of partial subcarrier offset.
  • the terminal device finally determines the subcarrier offset between the frequency domain position of the SSB and the frequency domain position of SIB1CORESET according to the number of REs indicated by the second information and the frequency range of the RE determined in S202.
  • the frequency range of RE is finally multiplied by the number of REs in the second information to obtain the subcarrier between the frequency domain position of SSB and the frequency domain position of SIB1CORESET Offset.
  • the terminal device when the terminal device can determine the subcarrier offset according to the ssb-SubcarrierOffset field in the MIB, the number of REs indicated by the ssb-SubcarrierOffset field does not directly use SSB.
  • the first subcarrier offset is used as the unit of RE, but the larger subcarrier offset between the first subcarrier offset of SSB and the second subcarrier offset of SIB1CORESET is used as the unit of RE, which ensures that The ssb-SubcarrierOffset field in the MIB can indicate all subcarrier offset REs, so as to prevent the inability to indicate partial subcarrier offsets to reduce the communication efficiency of the terminal device.
  • CD-SSB cell definition (CD) SSB
  • NCD-SSB none cell definition (NCD) SSB
  • the terminal device blindly detects the NCD-SSB in the process of accessing the network device, it can further determine the position of the CD-SSB in the frequency domain according to the instructions of the NCD-SSB.
  • the value of the k SSB field in the MIB can be used to distinguish between CD-SSB and NCD-SSB.
  • the data bits of the SIB1PDCCH video resource in the MIB can be configured specifically (that is, the PDCCH-ConfigSIB1 in the MIB shown in Figure 3).
  • This field can be used in specific implementation. Including the sum of two fields of 16 ⁇ controlResourceSetZero and searchSpaceZero) indicates the frequency domain position of the CD-SSB.
  • the PDCCH-ConfigSIB1 field can be used to indicate the frequency domain positions of 256 CD-SSBs relative to the NCD-SSB through 8 bits.
  • the frequency domain positions are in units of frequency domain grids, which are also called synchronization.
  • the frequency domain grid, or global synchronization channel frequency domain grid has a frequency range from 24.25GHz to 100GHz, and a frequency domain grid is set every 17.28MHz starting from 24.2508GHz.
  • Table 3 shows a way for a terminal device to specifically determine the frequency domain grid of the CD-SSB.
  • the terminal device receives the SSB, it can obtain the k SSB field and the PDCCH-ConfigSIB1 field of the MIB in the SSB.
  • the Nth frequency domain grid is the frequency domain grid where the CD-SSB is located; when the k SSB field is 13, the specific value M from 0 to 255 indicated by the PDCCH-ConfigSIB1 field is further used to move from the frequency domain position of the SSB to the frequency Low direction shift
  • the M-th frequency domain grid is the frequency domain grid where the CD-SSB is located; when the k SSB field is 14, the frequency domain grid is undefined (reserved).
  • the 4-bit PDCCH-ConfigSIB1 field in Table 3 can only indicate 256 values and cannot indicate all 290 frequency domain grids completely, making the terminal device unable to Determining a part of the frequency domain grid reduces the communication efficiency of the terminal equipment.
  • this application also provides a parameter determination method for the terminal device to determine the frequency domain grid where the CD-SSB is located according to the NCD-SSB. More fields in the MIB of the NCD-SSB can be used to indicate the CD-SSB.
  • the frequency domain grid where the SSB is located to increase the number of indicated frequency domain grids, to ensure that all grids in the bandwidth used by the terminal device are indicated, and to prevent some frequency domain grids from reducing communication efficiency due to incomplete indications .
  • FIG. 8 is a schematic flowchart of an embodiment of a parameter determination method provided by an embodiment of the application.
  • the embodiment shown in FIG. 8 can be applied to the communication system shown in FIG. After the NCD-SSB, the frequency domain grid where the CD-SSB is located is determined according to the instructions of the NCD-SSB.
  • the parameter determination method can be executed alone, or the parameter method can also be combined with the embodiments shown in FIG. 4 and FIG. 7 and executed after the terminal device receives the SSB.
  • the method shown in FIG. 8 specifically includes:
  • S300 The network device generates third information.
  • the third information in this embodiment is used to increase the number of bits indicating the frequency domain grid where the NCD-SSB is located, so as to add more bits on the basis of the 4 bits of the existing PDCCH-ConfigSIB1 field.
  • the number of bits thereby increasing the number of indications to the frequency domain grid.
  • the number of bits of the added third information can be set according to the number of frequency-domain grids that need to be indicated. For example, for the 290 frequency-domain grids that are divided when the bandwidth of the terminal device may be greater than or equal to 5 GHz, the The third information combined with a total of 5 bits in the PDCCH-ConfigSIB1 field can indicate 290 frequency domain grids.
  • the third information may be fields such as subCarrierSpacingCommon or dmrs-TypeA-Position of MIB in the NCD-SSB.
  • the network device sends the NCD-SSB to the terminal device, and the NCD-SSB carries the third information, the fourth information, and the fifth information.
  • the terminal device receives the NCD-SSB sent from the network device.
  • the network device can carry the third information generated in S300 in the sent SSB, as well as the ssb-SubcarrierOffset field (denoted as The fourth information) and the pdcch-ConfigSIB1 field (denoted as the fifth information).
  • the SSB can be blindly detected when accessing the network device, and after receiving the SSB sent by the network device, the PBCH in the SSB is demodulated to obtain the MIB, and then the third information, the fourth information and the MIB are obtained from the MIB. Fifth information.
  • the terminal device jointly determines the frequency domain grid where the CD-SSB is located according to the third information, the fourth information, and the fifth information in the NCD-SSB.
  • the terminal device may determine the frequency range where the CD-SSB is located according to the third information in the NCD-SSB and the ssb-SubcarrierOffset field, and then determine the frequency domain grid where the CD-SSB is located according to the value of the pdcch-ConfigSIB1 field.
  • the grid is specifically located in the above-mentioned frequency range.
  • Table 4 shows the correspondence between the third information, the fourth information, and the fifth information and the frequency domain grid where the CD-SSB is located.
  • the value of "0" or "1" indicates that it can be used to indicate the relationship between the frequency range of the CD-SSB and the frequency domain position of the NCD-SSD, that is, to the higher frequency direction or lower frequency of the frequency domain position of the NCD-SSD The direction determines the frequency range.
  • the fourth information ssb-SubcarrierOffset field can be used to indicate the bandwidth of the frequency range, i.e., the frequency range indicated in the frequency domain is represented by a grid, the frequency range of the first cell to the last grid positions, for example in table 4 is 12 k SSB, the frequency of the gate 1-256
  • the grid is the frequency range, and the frequency grid of 257-512 when k SSB is 13 is the frequency range;
  • the fifth information pdcch-ConfigSIB1 field can be used to indicate that the CD-SSB is in a certain interval within the frequency range.
  • the interval may be the frequency grid in this embodiment.
  • the frequency domain position of the SSB is shifted by 1-256 frequency domain grids to the direction of higher frequency.
  • the specific value indicated by the pdcch-ConfigSIB1 field is used to determine the frequency domain grid where the CD-SSB is located; when the terminal device receives the NCD-SSB, it is 1, k
  • the specific value indicated by the pdcch-ConfigSIB1 field is used to determine where the CD-SSB is located.
  • Frequency domain grid when the terminal device receives the NCD-SSB, and according to the third information in the NCD-SSB is 0, when the k SSB field is 13, offset 257-512 from the frequency domain position where the SSB is located to the direction of higher frequency Within the frequency range of each frequency domain grid, the specific value indicated by the pdcch-ConfigSIB1 field is used to determine the frequency domain grid where the CD-SSB is located; when the terminal device receives the NCD-SSB, it will use the third information in the NCD-SSB When it is 1, when the k SSB field is 13, the deviation from the frequency domain position of the SSB to the higher frequency is within the frequency range of -257--512 frequency domain grids, and the specific value indicated by the pdcch-ConfigSIB1 field is used to determine the CD -The frequency domain grid where the SSB is located.
  • the NCD-SSB may also use the third information, the fourth information, and the fifth information to indicate the positions of the two frequency domain grids.
  • the third information and pdcch-ConfigSIB1 indicate that the offset of CD-SSB relative to NCD-SSB is 100, it means that the offset position of CD-SSB relative to NCD-SSB may be on the 100th frequency domain grid or On the 101st frequency domain grid.
  • the purpose of increasing the number of frequency domain grids indicated can be achieved.
  • Table 5 shows the correspondence between k SSB , pdcch-ConfigSIB1, and the frequency domain grid where CD-SSB is located, where k SSB can be regarded as the third information in the preceding example, and it can be regarded as the fourth information in the preceding example. information.
  • the frequency of the frequency domain position where the SSB is located is shifted by 1-256 frequency domain grids in the direction of higher frequency.
  • the specific value indicated by the pdcch-ConfigSIB1 field is used to determine the frequency domain grid where the CD-SSB is located; when the terminal device receives the NCD-SSB and the k SSB field in the NCD-SSB is 13, pdcch-ConfigSIB1
  • the field is less than or equal to 127, within the frequency range of 257-384 frequency domain grids from the frequency domain position of the SSB to the higher frequency
  • the specific value indicated by the pdcch-ConfigSIB1 field is used to determine the frequency of the CD-SSB.
  • S303 The terminal device receives the CD-SSB sent by the network device in the frequency domain grid determined in S302.
  • the terminal equipment can receive the CD-SSB sent by the network equipment within the frequency range corresponding to the frequency domain grid where the CD-SSB is located.
  • the third information in the MIB of the NCD-SSB can also be used to determine the frequency domain grid.
  • the network device and terminal device as the execution subject may include a hardware structure And/or software modules, in the form of a hardware structure, a software module, or a hardware structure plus a software module to realize the above-mentioned functions. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 9 is a schematic structural diagram of an embodiment of a parameter determination device provided by this application, where the parameter determination device 90 includes a processing unit 901 and a communication unit 902.
  • the communication unit 902 is used to receive the synchronization signal/physical broadcast channel block SSB sent from the network device; wherein, the SSB passes through the first Subcarrier interval transmission, the SSB includes first information, the first information is used to determine the second subcarrier interval for transmitting the physical downlink control channel PDCCH, and the PDCCH is used to schedule the physical downlink shared channel PDSCH carrying the system information block SIB; processing unit 901 It is used to determine the second subcarrier interval according to the first subcarrier interval and the first information; or the terminal device determines the second subcarrier interval according to the first subcarrier interval.
  • the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 120kHz,
  • the second subcarrier spacing is 120kHz or 480kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 960kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 1920kHz;
  • the first subcarrier interval is 240kHz, and the second subcarrier interval is 240kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 120kHz or 240kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 120kHz.
  • the subcarrier spacing is 240kHz or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 1920kHz; or, The first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz.
  • the interval is 120kHz or 480kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 240kHz or 480kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 480kHz or 960kHz; or, the first The subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 480kHz or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz or 1920kHz; or, the first subcarrier spacing is 960kHz or 1920kHz.
  • the interval is 960kHz, and the second subcarrier interval is 120kHz or 1920kHz; or, the first subcarrier interval is 1920kHz, and the second subcarrier interval is 1920kHz; or, the first subcarrier interval is 1920kHz, and the second subcarrier interval is 120kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 240kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 480kHz or 1920kHz; Or, the first subcarrier interval is 1920kHz, and the second subcarrier interval is 960kHz or 1920kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 120kHz, 240kHz, or 480kHz; or, the first subcarrier interval is 120kHz, the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier interval is 120kHz, the second
  • the interval is 240kHz, 480kHz, or 960kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 960kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or, the first The subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 480kHz or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz, 480kHz or 960kHz; or, the first subcarrier spacing is 240kHz, The second
  • Subcarrier spacing is 120kHz, 24 0kHz or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 240kHz, 480kHz, or 960kHz; or, The first subcarrier spacing is 960kHz, and the second subcarrier spacing is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 1920kHz, the second sub-carrier spacing is 120kHz, 240kHz, or 480kHz; or, the first sub-carrier spacing is 1920kHz, and the second sub-carrier spacing is 120kHz, 240kHz, or 480kHz; or, the first sub-carrier spacing is 1920k
  • the processing unit 901 is specifically configured to determine a candidate subcarrier interval set corresponding to the first subcarrier interval according to the first subcarrier interval and the mapping relationship; the mapping relationship includes multiple subcarrier intervals and multiple candidate subcarrier interval sets The corresponding relationship between the first subcarrier interval and the candidate subcarrier interval set includes multiple subcarrier intervals for PDCCH transmission; according to the first information and the candidate subcarrier interval set corresponding to the first subcarrier interval, it is determined The second subcarrier spacing.
  • the first information occupies 1 bit, and there are two subcarrier intervals in the set of candidate subcarrier intervals corresponding to the first subcarrier interval; 1 bit is used to indicate the two subcarrier intervals; the processing unit 901 is specifically configured to , According to the value of the bit occupied by the first information, the subcarrier interval corresponding to the value of the bit in the candidate subcarrier set is determined to be the second subcarrier interval.
  • the first information occupies 2 bits, and there are three subcarrier intervals in the set of candidate subcarrier intervals corresponding to the first subcarrier interval; 2 bits are used to indicate the three subcarrier intervals; the processing unit 901 is specifically configured to , According to the value of the 2 bits occupied by the first information, the subcarrier interval corresponding to the value of the 2 bits in the candidate subcarrier set is determined to be the second subcarrier interval.
  • the processing unit 901 is specifically configured to determine a candidate subcarrier interval set corresponding to the first subcarrier interval according to the first subcarrier interval and the mapping relationship; the mapping relationship includes multiple subcarrier intervals and multiple candidate subcarrier interval sets The corresponding relationship of the candidate subcarrier interval set corresponding to the first subcarrier interval includes a subcarrier interval for PDCCH transmission; it is determined that the subcarrier interval in the candidate subcarrier interval set corresponding to the first subcarrier interval is the first Two subcarrier spacing.
  • the signal frequency used by the terminal device for communication is greater than 52.6 GHz.
  • the processing unit 901 is used to determine the first information; wherein, the first information is used to determine the second subcarrier interval for transmitting the PDCCH ,
  • the physical downlink control channel PDCCH is used to schedule the physical downlink shared channel PDSCH carrying the system information block SIB;
  • the communication unit 902 is used to send a synchronization signal/physical broadcast channel block SSB to the terminal equipment, where the SSB is transmitted through the first subcarrier interval,
  • the SSB includes the first information, so that the terminal device determines the second subcarrier interval according to the first subcarrier interval and the first information.
  • the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 120kHz,
  • the second subcarrier spacing is 120kHz or 480kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 960kHz; or, the first subcarrier spacing is 120kHz, and the second subcarrier spacing is 120kHz or 1920kHz;
  • the first subcarrier interval is 240kHz, and the second subcarrier interval is 240kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 120kHz or 240kHz; or, the first subcarrier interval is 240kHz, and the second subcarrier interval is 120kHz.
  • the subcarrier spacing is 240kHz or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz or 1920kHz; or, The first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 120kHz or 240kHz; or, the first subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz.
  • the interval is 120kHz or 480kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 240kHz or 480kHz; or, the first subcarrier interval is 480kHz, and the second subcarrier interval is 480kHz or 960kHz; or, the first The subcarrier spacing is 480kHz, and the second subcarrier spacing is 480kHz or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 240kHz or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 480kHz or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz or 1920kHz; or, the first subcarrier spacing is 960kHz or 1920kHz.
  • the interval is 960kHz, and the second subcarrier interval is 120kHz or 1920kHz; or, the first subcarrier interval is 1920kHz, and the second subcarrier interval is 1920kHz; or, the first subcarrier interval is 1920kHz, and the second subcarrier interval is 120kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 240kHz or 1920kHz; or, the first subcarrier spacing is 1920kHz, and the second subcarrier spacing is 480kHz or 1920kHz; Or, the first subcarrier interval is 1920kHz, and the second subcarrier interval is 960kHz or 1920kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 120kHz, 240kHz, or 480kHz; or, the first subcarrier interval is 120kHz, the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier interval is 120kHz, the second
  • the interval is 240kHz, 480kHz, or 960kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier interval is 120kHz, and the second subcarrier interval is 960kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 480kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 240kHz, or 960kHz; or, the first The subcarrier spacing is 240kHz, and the second subcarrier spacing is 120kHz, 480kHz or 1920kHz; or, the first subcarrier spacing is 240kHz, and the second subcarrier spacing is 240kHz, 480kHz or 960kHz; or, the first subcarrier spacing is 240kHz, The second
  • Subcarrier spacing is 120kHz, 24 0kHz or 960kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 120kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 240kHz, 480kHz, or 960kHz; or, The first subcarrier spacing is 960kHz, and the second subcarrier spacing is 240kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 960kHz, and the second subcarrier spacing is 960kHz, 480kHz, or 1920kHz; or, the first subcarrier spacing is 1920kHz, the second sub-carrier spacing is 120kHz, 240kHz, or 480kHz; or, the first sub-carrier spacing is 1920kHz, and the second sub-carrier spacing is 120kHz, 240kHz, or 480kHz; or, the first sub-carrier spacing is 1920k
  • the processing unit 901 is specifically configured to determine a candidate subcarrier interval set corresponding to the first subcarrier interval according to the first subcarrier interval and the mapping relationship; the mapping relationship includes multiple subcarrier intervals and multiple candidate subcarrier interval sets The corresponding relationship between the first subcarrier interval and the candidate subcarrier interval set includes one or more subcarrier intervals for PDCCH transmission; the first information is determined according to the second subcarrier interval and the candidate subcarrier interval set .
  • the first information occupies 1 bit, and there are two subcarrier intervals in the set of candidate subcarrier intervals corresponding to the first subcarrier interval; 1 bit is used to indicate the two subcarrier intervals; or, the first information occupies 2 bits, there are three subcarrier intervals in the set of candidate subcarrier intervals corresponding to the first subcarrier interval; 2 bits are used to indicate the three subcarrier intervals.
  • the signal frequency used by the terminal device for communication is greater than 52.6 GHz.
  • the communication unit 902 is used to receive the synchronization signal/physical broadcast channel block SSB sent from the network device; wherein, the SSB passes the first A subcarrier interval transmission, the SSB includes second information, the second information is used to indicate the frequency offset between the frequency domain position of the SSB and the frequency domain position of the time-frequency resource of the system information block SIB.
  • the frequency offset is taken as the RE Unit; the processing unit 901 is configured to determine that the subcarrier bandwidth corresponding to the target subcarrier interval is the frequency range of the RE of the second information; the target subcarrier interval is the first subcarrier interval for transmitting SSB and the second subcarrier interval for transmitting SIB one of the.
  • the processing unit 901 is specifically configured to: the first subcarrier interval is greater than the second subcarrier interval, and determine that the subcarrier bandwidth corresponding to the first subcarrier interval is the frequency range of the RE of the second information; or, the first subcarrier If the interval is less than the second subcarrier interval, the subcarrier bandwidth corresponding to the second subcarrier interval is determined to be the frequency range of the RE of the second information; or, if the first subcarrier interval is equal to the second subcarrier interval, the first subcarrier interval is determined, or The subcarrier bandwidth corresponding to the second subcarrier interval is the frequency range of the RE of the second information.
  • the processing unit 901 is used to determine the second information; where the second information is used to indicate the synchronization signal/physical broadcast channel block
  • the frequency offset between the frequency domain position of the SSB and the frequency domain position of the time-frequency resource of the system information block SIB.
  • the frequency offset is based on the RE of the target subcarrier interval, and the target subcarrier interval is the first subcarrier for transmitting the SSB One of the second subcarrier interval and the second subcarrier interval for transmitting the SIB.
  • the subcarrier bandwidth corresponding to the target subcarrier interval is the frequency range of the RE of the second information; the communication unit 902 is configured to send the SSB to the terminal device, where the SSB passes the first One subcarrier is transmitted at intervals, and the SSB includes the second information.
  • the first subcarrier interval is greater than the second subcarrier interval, and the subcarrier bandwidth corresponding to the first subcarrier interval is the frequency range of the RE of the second information; or, the first subcarrier interval is smaller than the second subcarrier interval,
  • the subcarrier bandwidth corresponding to the second subcarrier interval is the frequency range of the RE of the second information; or, the first subcarrier interval is equal to the second subcarrier interval, and the subcarrier bandwidth corresponding to the first subcarrier interval or the second subcarrier interval Is the frequency range of the RE of the second information.
  • NCD-SSB includes third information, fourth information, and fifth information; the third information is used to indicate the relationship between the frequency range and the frequency domain position of NCD-SSB; the fourth information is used to indicate the bandwidth of the frequency range; and the fifth information is used to indicate the bandwidth of the frequency range.
  • the information is used to indicate the frequency domain position relationship between the interval in which the synchronization signal/physical broadcast channel block CD-SSB is defined by the cell and the frequency range.
  • the frequency range is divided into multiple intervals; the processing unit 901 is used to, according to the third information, the fourth The information and the fifth information determine the interval where the CD-SSB is located.
  • the processing unit 901 is specifically configured to determine the frequency range according to the third information and the fourth information; and determine the interval where the CD-SSB is located according to the frequency range and the fifth information.
  • the third information is carried in the subCarrierSpacingCommon field or the dmrs-TypeA-Position field of the main information block MIB of the SSB.
  • the third indication information and the fourth information are both k SSB , and k SSB is carried in the ssb-SubcarrierOffset field of the MIB of the SSB; where the value of k SSB is the CD-SSB determined by the terminal device when the first value is used.
  • the interval is adjacent to the interval of the CD-SSB determined by the terminal device when the value of k SSB is the second target value, and is adjacent in the frequency domain.
  • the processing unit 901 is used to determine the third information, the fourth information, and the fifth information; the third information is used to indicate the frequency range The frequency domain position relationship with the non-cell-defined synchronization signal/physical broadcast channel block NCD-SSB; the fourth information is used to indicate the bandwidth of the frequency range; the fifth information is used to indicate the location of the cell-defined synchronization signal/physical broadcast channel block CD-SSB The frequency domain position relationship between the interval and the frequency range, the frequency range is divided into multiple intervals; the communication unit 902 is used to send the NCD-SSB to the terminal device, and the NCD-SSB includes the third information, the fourth information, and the fifth information.
  • the third information is carried in the subCarrierSpacingCommon field or the dmrs-TypeA-Position field of the main information block MIB of the SSB.
  • the third indication information and the fourth information are both k SSB , and k SSB is carried in the ssb-SubcarrierOffset field of the MIB of the SSB; where the value of k SSB is the CD-SSB determined by the terminal device when the first value is used.
  • the interval is adjacent to the interval of the CD-SSB determined by the terminal device when the value of k SSB is the second target value, and is adjacent in the frequency domain.
  • the division of the various modules of the above device is only a division of logical functions, and may be fully or partially integrated into a physical entity during actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • Fig. 10 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • the communication device can be used as the network device or terminal device described in any of the foregoing embodiments of this application, and executes the parameter determination method executed by the corresponding device.
  • the communication device 1100 may include: a processor 111 (for example, a CPU) and a transceiver 113; wherein, the transceiver 113 is coupled to the processor 111, and the processor 111 controls the transceiver 113's transceiving actions.
  • the communication device 1100 further includes a memory 112, and various instructions can be stored in the memory 112 for completing various processing functions and implementing the methods executed by the network equipment, terminal equipment, or core network equipment in the embodiments of the present application. step.
  • the communication device involved in the embodiment of the present application may further include: a power supply 114, a system bus 115, and a communication interface 116.
  • the transceiver 113 may be integrated in the transceiver of the communication device, or may be an independent transceiver antenna on the communication device.
  • the system bus 115 is used to implement communication connections between components.
  • the aforementioned communication interface 116 is used to implement connection and communication between the communication device and other peripherals.
  • the above-mentioned processor 111 is configured to couple with the memory 112 to read and execute instructions in the memory 112 to implement the method steps executed by the network device, terminal device, or core network device in the above method embodiment.
  • the transceiver 113 is coupled with the processor 111, and the processor 111 controls the transceiver 113 to send and receive messages.
  • the implementation principles and technical effects are similar, and details are not described herein again.
  • the system bus mentioned in FIG. 10 may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the system bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used to realize the communication between the database access device and other devices (such as the client, the read-write library and the read-only library).
  • the memory may include RAM, or may also include non-volatile memory, such as at least one disk memory.
  • the processor mentioned in Figure 10 can be a general-purpose processor, including a central processing unit CPU, a network processor (NP), etc.; it can also be a digital signal processor DSP, an application-specific integrated circuit ASIC, and a field programmable gate.
  • an embodiment of the present application further provides a readable storage medium, which stores instructions in the storage medium, which when run on a computer, causes the computer to execute the network device or The method executed by the terminal device.
  • an embodiment of the present application further provides a chip for executing instructions, where the chip is used to execute the method executed by the network device or the terminal device as shown in the foregoing FIGS. 4, 7 and 8.
  • An embodiment of the present application further provides a program product, the program product includes a computer program, the computer program is stored in a storage medium, at least one processor can read the computer program from the storage medium, and the at least one When the processor executes the computer program, the method executed by the network device or the terminal device as shown in the above-mentioned Figures 4, 7 and 8 can be implemented.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship; in the formula, the character “/” indicates that the associated objects before and after are in a “division” relationship.
  • “The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple indivual.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.

Abstract

本申请提供一种参数确定方法及装置,通过网络设备向终端设备发送的SSB指示更多的子载波间隔,使得终端设备在使用56.2GHz以上的频段通信时,网络设备能够向终端设备指示终端设备使用的子载波间隔,防止终端设备能够使用的子载波的数量被限制,进而提高终端设备的通信效率。

Description

参数确定方法及装置
本申请要求于2020年05月20日提交中国专利局、申请号为202010428636.1、申请名称为“参数确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种参数确定方法及装置。
背景技术
目前,随着移动通信业务的不断发展,终端设备对通信速率和通信效率的要求越来越高。在例如第五代通信系统(5th-generation,5G)NR(new radio)等通信系统中,为了提高通信效率,终端设备在接入小区时首先进行同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)的盲检,并在接收到SSB后,从SSB中携带的主信息块(master information block,MIB)确定物理下行控制信道(physical downlink control channel,PDCCH);随后,终端设备确定PDCCH所调度的承载系统信息块1(system information block,SIB1)的物理下行共享信道(physical down link shared channel,PDSCH),最终终端设备使用PDSCH进行数据的传输。
现有技术中,SSB中携带的MIB可以通过其subCarrierSpacingCommon字段指示PDCCH使用的子载波间隔,该字段的大小为1bit,能够通过例如0和1的取值来指示两个子载波间隔。使得终端设备接收端SSB后,根据MIB中的subCarrierSpacingCommon字段确定PDCCH使用的子载波间隔为0或者1对应的子载波间隔,进而根据所确定的子载波间隔接收PDCCH。
但是,采用现有技术,由于MIB中的subCarrierSpacingCommon字段只有1bit,只能通过0或1的取值指示PDCCH可能的两种子载波间隔。而当终端设备使用52.6GHz以上的频段通信时,PDCCH的可能使用的子载波间隔包括120KHz,240KHz,480KHz,960KHz和1290KHz等多种可能的取值,在SSB中MIB的位数有限的情况下,不能向终端设备指示更多种PDCCH可能使用的子载波间隔,从而导致了终端设备能够使用的子载波的数量被限制,进而降低了终端设备的通信效率。
发明内容
本申请第一方面提供一种参数确定方法,用于终端设备确定PDCCH的第二子载波间隔,该方法包括:终端设备接收来自网络设备发送的同步信号/物理广播信道块SSB;其中,SSB通过第一子载波间隔传输,SSB中包括第一信息,第一信息用于确定传输物理下行控制信道PDCCH的第二子载波间隔,PDCCH用于调度承载系统信息块SIB的物理下行共享信道PDSCH;终端设备根据第一子载波间隔和第一信息,确定 第二子载波间隔;或者,终端设备根据第一子载波间隔,确定第二子载波间隔。
具体地,本实施例提供的参数确定方法,能够在终端设备确定SIB1PDCCH的第二子载波间隔时,考虑到终端设备已经接收的SSB的第一子载波间隔,尤其适用于终端设备使用52.6GHz以上的频段通信时,SIB1PDCCH的可能使用的子载波间隔包括120KHz,240KHz,480KHz,960KHz和1290KHz等多种可能的取值,在SSB中MIB的位数有限的情况下,使得网络设备能够通过MIB中subCarrierSpacingCommon字段,结合第一子载波间隔,共同指示第二子载波间隔。相应地,终端设备可以通过第一子载波间隔以及MIB中subCarrierSpacingCommon字段确定更多更多种SIB1PDCCH可能使用的子载波间隔,相当于通过第一子载波间隔增加了指示第二子载波间隔的信息的位数,从而防止终端设备能够使用的子载波的数量由于subCarrierSpacingCommon字段位数少指示不全而被限制的情况,进而提高了终端设备的通信效率。
在本申请第一方面一实施例中,第一子载波间隔为120kHz,第二子载波间隔为120kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为480kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者1920kHz; 或者,第一子载波间隔为120kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz、480kHz或者1920kHz。
具体地,本实施例提供的参数确定方法中,可以使得终端设备可以根据不同第一载波间隔,确定更多的第二子载波间隔,并且对于120kHz、240kHz、480kHz、960kHz和1920kHz的第一子载波间隔,各自对应不同的第二子载波间隔,方便本申请的实施,并且使得不同的第一子载波间隔之间的对应更具有灵活性。
在本申请第一方面一实施例中,终端设备根据第一子载波间隔和第一信息,确定第二子载波间隔,包括:终端设备根据第一子载波间隔和映射关系,确定第一子载波间隔对应的候选子载波间隔集合;映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,第一子载波间隔对应的候选子载波间隔集合中包括多个用于传输PDCCH的子载波间隔;终端设备根据第一信息和第一子载波间隔对应的候选子载波间隔集合,确定第二子载波间隔。
具体地,本实施例提供的参数确定方法中,终端设备可以通过表格等方式实现终端设备根据第一子载波间隔确定的候选子载波间隔集合,尤其适用于终端设备通信时使用的信号频率大于52.6GHz时对应的,120kHz、240kHz、480kHz、960kHz和1920kHz的第一子载波间隔,从而通过表格等方式具有便于实现、易于查询的技术效果,能够 进一步提高而终端设备的通信效率。
在本申请第一方面一实施例中,第一信息占用1个比特位,第一子载波间隔对应的候选子载波间隔集合中为两个子载波间隔;1个比特位用于指示两个子载波间隔;则终端设备根据第一信息和第一子载波间隔对应的候选子载波间隔集合,确定第二子载波间隔,包括:终端设备根据第一信息占用的比特位的值,确定候选子载波集合中与比特位的值对应的子载波间隔为第二子载波间隔。
具体地,本实施例中,可以规定通过MIB中的subCarrierSpacingCommon字段的1个比特位作为第一信息,则对于终端设备,当接收到网络设备以第一子载波间隔为发送的SSB,并根据映射关系确定第一子载波间隔对应的候选子载波间隔集合后,进一步根据SSB携带的第一信息确定SIB1PDCCH的第二子载波间隔为候选子载波间隔集合中与第一信息对应的子载波间隔。因此,本实施例通过在不用改变现有的MIB中位数的前提下,实现了更多第二子载波间隔的指示,进而能够提高终端设备的通信效率。
在本申请第一方面一实施例中,第一信息占用2个比特位,第一子载波间隔对应的候选子载波间隔集合中为三个子载波间隔;2个比特位用于指示三个子载波间隔;则终端设备根据第一信息和第一子载波间隔对应的候选子载波间隔集合,确定第二子载波间隔,包括:终端设备根据第一信息占用的2个比特位的值,确定候选子载波集合中与2个比特位的值对应的子载波间隔为第二子载波间隔。
具体地,在本实施例中,终端设备的映射关系中第一子载波间隔所对应的候选子载波间隔集合中包括三个子载波间隔,为了使得第一信息能够对三个不同的子载波间隔进行区分,可以对第一信息进行扩展。即,本申请实施例中,通过将MIB中的subCarrierSpacingCommon字段扩展为2个比特位来指示更多的子载波间隔。因此,本实施例能够在仅对MIB增加1个比特位的情况下,实现了更多第二子载波间隔的指示,进而能够提高终端设备的通信效率。
在本申请第一方面一实施例中,终端设备根据第一子载波间隔和第一信息,确定第二子载波间隔,包括:终端设备根据第一子载波间隔和映射关系,确定第一子载波间隔对应的候选子载波间隔集合;映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,第一子载波间隔对应的候选子载波间隔集合中包括一个用于传输PDCCH的子载波间隔;终端设备确定第一子载波间隔对应的候选子载波间隔集合中的子载波间隔为第二子载波间隔。
具体地,在本实施例中,对于候选子载波间隔集合中只有一个第二子载波间隔的情况,则终端设备在确定出候选子载波间隔之后,即可确定出第二子载波间隔,本实施例能够保证参数确定方法执行时的完备性。
在本申请第一方面一实施例中,终端设备通信时使用的信号频率大于52.6GHz。
具体地,本申请实施例可以应用于终端设备通信时使用的信号频率大于52.6GHz的通信场景下,此时,第一子载波间隔可以是120kHz、240kHz、480kHz、960kHz或者1920kHz,第二子载波间隔可以是120kHz、240kHz、480kHz、960kHz或者1920kHz。
本申请第二方面提供一种参数确定方法,用于网络设备向终端设备发送第一信息,使得终端设备确定PDCCH的第二子载波间隔,该方法包括:网络设备确定第一信息; 其中,第一信息用于确定传输PDCCH的第二子载波间隔,物理下行控制信道PDCCH用于调度承载系统信息块SIB的物理下行共享信道PDSCH;网络设备向终端设备发送同步信号/物理广播信道块SSB,其中,SSB通过第一子载波间隔传输,SSB中包括第一信息,使终端设备根据第一子载波间隔和第一信息,确定第二子载波间隔。
在本申请第二方面一实施例中,第一子载波间隔为120kHz,所述第二子载波间隔为120kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者240kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者480kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者960kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者1920kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz或者240kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz或者480kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz或者960kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz或者1920kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为480kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz或者240kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz或者480kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为240kHz或者480kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为480kHz或者960kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为480kHz或者1920kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为960kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为240kHz或者960kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为480kHz或者960kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为960kHz或者1920kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz或者1920kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为1920kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz或者1920kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为240kHz或者1920kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为480kHz或者1920kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为960kHz或者1920kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为120kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,所述第一子载 波间隔为240kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为240kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为480kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为960kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,所述第一子载波间隔为1920kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz。
在本申请第二方面一实施例中,所述网络设备根据所述第一子载波间隔和映射关系,确定所述第一子载波间隔对应的候选子载波间隔集合;所述映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,所述第一子载波间隔对应的候选子载波间隔集合中包括一个或多个用于传输所述PDCCH的子载波间隔;所述网络设备根据所述第二子载波间隔和所述候选子载波间隔集合,确定所述第一信息。
在本申请第二方面一实施例中,所述第一信息占用1个比特位,所述第一子载波间隔对应的候选子载波间隔集合中为两个子载波间隔;所述1个比特位用于指示所述两个子载波间隔;或者,所述第一信息占用2个比特位,所述第一子载波间隔对应的候选子载波间隔集合中为三个子载波间隔;所述2个比特位用于指示所述三个子载波间隔。
在本申请第二方面一实施例中,所述终端设备通信时使用的信号频率大于52.6GHz。
有关本申请第二方面的具体实现和有益效果,可以参照本申请第一方面位于网络设备对侧的终端设备,不再赘述。
本申请第三方面提供一种参数确定方法,用于终端设备确定RE的频率范围,该方法包括:终端设备接收来自网络设备发送的同步信号/物理广播信道块SSB;其中,所述SSB通过第一子载波间隔传输,所述SSB中包括第二信息,所述第二信息用于指示所述SSB的频域位置和系统信息块SIB的时频资源的频域位置之间的频率偏移,所述频率偏移以RE为单位;所述终端设备确定目标子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;所述目标子载波间隔为传输所述SSB的第一子载波间隔和传输所述SIB的第二子载波间隔中的一个。
具体地,本实施例提供的参数确定方法中,能够在终端设备根据MIB中的ssb-SubcarrierOffset字段确定子载波偏移时,对于ssb-SubcarrierOffset字段所指示的RE的数量,并不是直接采用SSB的第一子载波偏移作为RE的单位,而是采用SSB的第一子载波偏移和SIB1CORESET的第二子载波偏移之间较大的子载波偏移作为RE的单位,从而保证了以保证MIB中的ssb-SubcarrierOffset字段能够将所有的子载波偏移的RE都进行指示,防止无法指示部分子载波偏移造成的降低终端设备的通信效率。
在本申请第三方面一实施例中,所述终端设备确定目标子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围,包括:所述第一子载波间隔大于所述第二子载波间隔,所述终端设备确定所述第一子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;或者,所述第一子载波间隔小于所述第二子载波间隔,所述终端设备确定所述第二子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;或者,所述第一子载波间隔等于所述第二子载波间隔,所述终端设备确定所述第一子载波间隔或者所述第二子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围。
具体地,在本实施例中,终端设备可以通过第一子载波偏移和第二子载波偏移之间较大的子载波偏移作为RE的单位,或者在二者相同时,可以将任意子载波偏移作为RE的单位,从而保证了以保证MIB中的ssb-SubcarrierOffset字段能够将所有的子载波偏移的RE都进行指示,防止无法指示部分子载波偏移造成的降低终端设备的通信效率。
本申请第四方面提供一种参数确定方法,用于网络设备向终端设备发送第二信息,使得终端设备确定RE的频率范围,该方法包括:网络设备确定第二信息;其中,所述第二信息用于指示同步信号/物理广播信道块SSB的频域位置和系统信息块SIB的时频资源的频域位置之间的频率偏移,所述频率偏移以目标子载波间隔的RE为单位,所述目标子载波间隔为传输所述SSB的第一子载波间隔和传输所述SIB的第二子载波间隔中的一个,所述目标子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;所述网络设备向终端设备发送SSB,其中,所述SSB通过第一子载波间隔传输,所述SSB中包括第二信息。
在本申请第四方面一实施例中,所述第一子载波间隔大于所述第二子载波间隔,所述第一子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;或者,所述第一子载波间隔小于所述第二子载波间隔,所述第二子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;或者,所述第一子载波间隔等于所述第二子载波 间隔,所述第一子载波间隔或者所述第二子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围。
有关本申请第四方面的具体实现和有益效果,可以参照本申请第三方面位于网络设备对侧的终端设备,不再赘述。
本申请第五方面提供一种参数确定方法,用于终端设备确定CD-SSB所在区间,所述方法包括:终端设备接收来自网络设备发送的非小区定义同步信号/物理广播信道块NCD-SSB;其中,所述NCD-SSB中包括第三信息、第四信息和第五信息;所述第三信息用于指示频率范围与所述NCD-SSB的频域位置关系;所述第四信息用于指示所述频率范围的带宽;所述第五信息用于指示小区定义同步信号/物理广播信道块CD-SSB所在的区间与所述频率范围的频域位置关系,所述频率范围被划分为多个区间;所述终端设备根据所述第三信息、所述第四信息和所述第五信息,确定所述CD-SSB所在区间。
具体地,本实施例提供的参数确定方法,在终端设备根据NCD-SSB确定CD-SSB所在的频域栅格时,由于NCD-SSB的MIB中的第三信息也可用于确定频域栅格,使得终端设备能够通过更多的字段确定CD-SSB所在的频域栅格,增加了所指示的频域栅格的数量,使得终端设备使用52.6GHz以上频率通信而带宽可能大于或等于5GHz时,保证了终端设备所使用的带宽内所有290个栅格都被指示,防止部分频域栅格由于指示,进而提高了终端设备的通信效率。
在本申请第五方面一实施例中,所述终端设备根据所述第三信息、所述第四信息和所述第五信息,确定所述CD-SSB所在区间,包括:所述终端设备根据所述第三信息和所述第四信息,确定所述频率范围;所述终端设备根据所述频率范围和所述第五信息,确定所述CD-SSB所在区间。
具体地,本实施例提供的参数确定方法,在终端设备根据NCD-SSB确定CD-SSB所在的频域栅格时,由于新增了第三信息,因此可以在更多的频率范围中,确定CD-SSB具体所指的区间,从而增加了能够指示的CD-SSB所在区间的数量,进而提高了终端设备的通信效率。
在本申请第五方面一实施例中,所述第三信息携带在所述SSB的主信息块MIB的subCarrierSpacingCommon字段或者dmrs-TypeA-Position字段中。
具体地,本实施例中,将第三信息携带在MIB中现有的字段中,在不需要对MIB进行过多更改、不增加更多比特位的情况下,实现对更多CD-SSB所在区间数量的指示,能够提高终端设备的通信效率。
在本申请第五方面一实施例中,所述第三指示信息和所述第四信息均为k SSB,所述k SSB承载在所述SSB的MIB的ssb-SubcarrierOffset字段中;其中,所述k SSB的取值为第一数值时所述终端设备确定的所述CD-SSB所在区间,与所述k SSB的取值为第二目标数值时所述终端设备所确定的所述CD-SSB所在区间,在频域相邻。
具体地,本实施例中,可以将现有的未定义的k SSB=14的未定义部分应用起来,各分配一部分给k SSB=12和k SSB=13时对应的频域栅格,同样可以实现增加所指示的频域栅格数量的目的,提高终端设备的通信效率
本申请第六方面提供一种参数确定方法,用于网络设备向终端设备发送第三信息, 使得终端设备确定CD-SSB所在区间,所述方法包括:网络设备确定第三信息、第四信息和第五信息;所述第三信息用于指示频率范围与非小区定义同步信号/物理广播信道块NCD-SSB的频域位置关系;所述第四信息用于指示所述频率范围的带宽;所述第五信息用于指示小区定义同步信号/物理广播信道块CD-SSB所在的区间与所述频率范围的频域位置关系,所述频率范围被划分为多个区间;所述网络设备向终端设备发送NCD-SSB,所述NCD-SSB中包括第三信息、第四信息和第五信息。
在本申请第六方面一实施例中,所述第三信息携带在所述SSB的主信息块MIB的subCarrierSpacingCommon字段或者dmrs-TypeA-Position字段中。
在本申请第六方面一实施例中,所述第三指示信息和所述第四信息均为k SSB,所述k SSB承载在所述SSB的MIB的ssb-SubcarrierOffset字段中;其中,所述k SSB的取值为第一数值时所述终端设备确定的所述CD-SSB所在区间,与所述k SSB的取值为第二目标数值时所述终端设备所确定的所述CD-SSB所在区间,在频域相邻。
有关本申请第六方面的具体实现和有益效果,可以参照本申请第五方面位于网络设备对侧的终端设备,不再赘述。
本申请第七方面提供一种参数确定装置,可用于执行本申请第一方面的参数确定方法,包括:通信单元和处理单元;
通信单元用于接收来自网络设备发送的同步信号/物理广播信道块SSB;其中,SSB通过第一子载波间隔传输,SSB中包括第一信息,第一信息用于确定传输物理下行控制信道PDCCH的第二子载波间隔,PDCCH用于调度承载系统信息块SIB的物理下行共享信道PDSCH;
处理单元用于根据第一子载波间隔和第一信息,确定第二子载波间隔;或者,终端设备根据第一子载波间隔,确定第二子载波间隔。
在本申请第七方面一实施例中,第一子载波间隔为120kHz,第二子载波间隔为120kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为480kHz或者960kHz;或者,第一子载波 间隔为960kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz、480kHz或者1920kHz。
在本申请第七方面一实施例中,处理单元具体用于,根据第一子载波间隔和映射关系,确定第一子载波间隔对应的候选子载波间隔集合;映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,第一子载波间隔对应的候选子载波 间隔集合中包括多个用于传输PDCCH的子载波间隔;根据第一信息和第一子载波间隔对应的候选子载波间隔集合,确定第二子载波间隔。
在本申请第七方面一实施例中,第一信息占用1个比特位,第一子载波间隔对应的候选子载波间隔集合中为两个子载波间隔;1个比特位用于指示两个子载波间隔;
处理单元具体用于,根据第一信息占用的比特位的值,确定候选子载波集合中与比特位的值对应的子载波间隔为第二子载波间隔。
在本申请第七方面一实施例中,第一信息占用2个比特位,第一子载波间隔对应的候选子载波间隔集合中为三个子载波间隔;2个比特位用于指示三个子载波间隔;
处理单元具体用于,根据第一信息占用的2个比特位的值,确定候选子载波集合中与2个比特位的值对应的子载波间隔为第二子载波间隔。
在本申请第七方面一实施例中,处理单元具体用于,根据第一子载波间隔和映射关系,确定第一子载波间隔对应的候选子载波间隔集合;映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,第一子载波间隔对应的候选子载波间隔集合中包括一个用于传输PDCCH的子载波间隔;确定第一子载波间隔对应的候选子载波间隔集合中的子载波间隔为第二子载波间隔。
在本申请第七方面一实施例中,终端设备通信时使用的信号频率大于52.6GHz。
有关本申请第七方面中记载的装置所实现的技术效果可参照第一方面对应的方法,不再赘述。
本申请第八方面提供一种参数确定装置,可用于执行如本申请第二方面所述的参数确定方法,包括:通信单元和处理单元;
处理单元用于确定第一信息;其中,第一信息用于确定传输PDCCH的第二子载波间隔,物理下行控制信道PDCCH用于调度承载系统信息块SIB的物理下行共享信道PDSCH;
通信单元用于向终端设备发送同步信号/物理广播信道块SSB,其中,SSB通过第一子载波间隔传输,SSB中包括第一信息,使终端设备根据第一子载波间隔和第一信息,确定第二子载波间隔。
在本申请第八方面一实施例中,第一子载波间隔为120kHz,第二子载波间隔为120kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载 波间隔为480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为480kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者1920kHz; 或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz、480kHz或者1920kHz。
在本申请第八方面一实施例中,处理单元具体用于,根据第一子载波间隔和映射关系,确定第一子载波间隔对应的候选子载波间隔集合;映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,第一子载波间隔对应的候选子载波间隔集合中包括一个或多个用于传输PDCCH的子载波间隔;根据第二子载波间隔和候选子载波间隔集合,确定第一信息。
在本申请第八方面一实施例中,第一信息占用1个比特位,第一子载波间隔对应的候选子载波间隔集合中为两个子载波间隔;1个比特位用于指示两个子载波间隔;或者,第一信息占用2个比特位,第一子载波间隔对应的候选子载波间隔集合中为三个子载波间隔;2个比特位用于指示三个子载波间隔。
在本申请第八方面一实施例中,终端设备通信时使用的信号频率大于52.6GHz。
有关本申请第八方面中记载的装置所实现的技术效果可参照第二方面对应的方法,不再赘述。
本申请第九方面提供一种参数确定装置,可用于执行如本申请第三方面所述的参数确定方法,包括:通信单元和处理单元;
通信单元用于,接收来自网络设备发送的同步信号/物理广播信道块SSB;其中,SSB通过第一子载波间隔传输,SSB中包括第二信息,第二信息用于指示SSB的频域位置和系统信息块SIB的时频资源的频域位置之间的频率偏移,频率偏移以RE为单位;
处理单元用于,确定目标子载波间隔对应的子载波带宽为第二信息的RE的频率范围;目标子载波间隔为传输SSB的第一子载波间隔和传输SIB的第二子载波间隔中的一个。
在本申请第九方面一实施例中,处理单元具体用于,第一子载波间隔大于第二子载波间隔,确定第一子载波间隔对应的子载波带宽为第二信息的RE的频率范围;或者,第一子载波间隔小于第二子载波间隔,确定第二子载波间隔对应的子载波带宽为第二信息的RE的频率范围;或者,第一子载波间隔等于第二子载波间隔,确定第一子载波间隔或者第二子载波间隔对应的子载波带宽为第二信息的RE的频率范围。
有关本申请第九方面中记载的装置所实现的技术效果可参照第三方面对应的方法,不再赘述。
本申请第十方面提供一种参数确定装置,可用于执行如本申请第四方面所述的参数确定方法,包括:通信单元和处理单元;
处理单元用于,确定第二信息;其中,第二信息用于指示同步信号/物理广播信道块SSB的频域位置和系统信息块SIB的时频资源的频域位置之间的频率偏移,频率偏移以目标子载波间隔的RE为单位,目标子载波间隔为传输SSB的第一子载波间隔和传输SIB的第二子载波间隔中的一个,目标子载波间隔对应的子载波带宽为第二信息的RE的频率范围;通信单元用于,向终端设备发送SSB,其中,SSB通过第一子载波间隔传输,SSB中包括第二信息。
在本申请第十方面一实施例中,第一子载波间隔大于第二子载波间隔,第一子载波间隔对应的子载波带宽为第二信息的RE的频率范围;或者,第一子载波间隔小于 第二子载波间隔,第二子载波间隔对应的子载波带宽为第二信息的RE的频率范围;或者,第一子载波间隔等于第二子载波间隔,第一子载波间隔或者第二子载波间隔对应的子载波带宽为第二信息的RE的频率范围。
有关本申请第十方面中记载的装置所实现的技术效果可参照第四方面对应的方法,不再赘述。
本申请第十一方面提供一种参数确定装置,可用于执行如本申请第五方面所述的参数确定方法,包括:通信单元和处理单元;
通信单元用于,接收来自网络设备发送的非小区定义同步信号/物理广播信道块NCD-SSB;其中,NCD-SSB中包括第三信息、第四信息和第五信息;第三信息用于指示频率范围与NCD-SSB的频域位置关系;第四信息用于指示频率范围的带宽;第五信息用于指示小区定义同步信号/物理广播信道块CD-SSB所在的区间与频率范围的频域位置关系,频率范围被划分为多个区间;
处理单元用于,根据第三信息、第四信息和第五信息,确定CD-SSB所在区间。
在本申请第十一方面一实施例中,处理单元具体用于,根据第三信息和第四信息,确定频率范围;根据频率范围和第五信息,确定CD-SSB所在区间。
在本申请第十一方面一实施例中,第三信息携带在SSB的主信息块MIB的subCarrierSpacingCommon字段或者dmrs-TypeA-Position字段中。
在本申请第十一方面一实施例中,第三指示信息和第四信息均为k SSB,k SSB承载在SSB的MIB的ssb-SubcarrierOffset字段中;
其中,k SSB的取值为第一数值时终端设备确定的CD-SSB所在区间,与k SSB的取值为第二目标数值时终端设备所确定的CD-SSB所在区间,在频域相邻。
有关本申请第十一方面中记载的装置所实现的技术效果可参照第五方面对应的方法,不再赘述。
本申请第十二方面提供一种参数确定装置,可用于执行如本申请第六方面所述的参数确定方法,包括:通信单元和处理单元;
处理单元用于确定第三信息、第四信息和第五信息;第三信息用于指示频率范围与非小区定义同步信号/物理广播信道块NCD-SSB的频域位置关系;第四信息用于指示频率范围的带宽;第五信息用于指示小区定义同步信号/物理广播信道块CD-SSB所在的区间与频率范围的频域位置关系,频率范围被划分为多个区间;
通信单元用于向终端设备发送NCD-SSB,NCD-SSB中包括第三信息、第四信息和第五信息。
在本申请第十二方面一实施例中,第三信息携带在SSB的主信息块MIB的subCarrierSpacingCommon字段或者dmrs-TypeA-Position字段中。
在本申请第十二方面一实施例中,第三指示信息和第四信息均为k SSB,k SSB承载在SSB的MIB的ssb-SubcarrierOffset字段中;其中,k SSB的取值为第一数值时终端设备确定的CD-SSB所在区间,与k SSB的取值为第二目标数值时终端设备所确定的CD-SSB所在区间,在频域相邻。
有关本申请第十二方面中记载的装置所实现的技术效果可参照第六方面对应的方法,不再赘述。
第十三方面,本申请实施例提供一种通信装置,包括:处理器和通信接口。
所述通信接口用于实现所述通信装置与外设的连接通信。
所述处理器用于实现上述第一方面、第二方面、第三方面、第四方面、第五方面或者第六方面所述的方法。
作为一种可能的设计,上述通信装置还包括:存储器。
所述存储器用于存储计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使得所述装置执行上述第一方面、第二方面、第三方面、第四方面、第五方面或者第六方面所述的方法。
作为一种可能的设计,上述通信装置还包括:收发器。
所述收发器用于进行消息收发。
第十四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如上述第一方面、第二方面、第三方面、第四方面、第五方面或者第六方面所述的方法。
第十五方面,本申请实施例提供一种芯片,包括处理器和通信接口;
所述通信接口用于实现与其他设备通信;
所述处理器用于读取指令以实现如上述第一方面、第二方面、第三方面、第四方面、第五方面或者第六方面所述的方法。
第十六方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被计算机执行时,使得所述计算机执行如上述第一方面、第二方面、第三方面、第四方面、第五方面或者第六方面所述的方法。
第十七方面,本申请实施例提供一种通信系统,所述通信系统中,包括如本申请第七方面所述的通信装置作为第二接入网设备、本申请第八方面所述的通信装置第一接入网设备,以及本申请第十一方面/第二方面所述的通信装置作为终端设备;或者,包括如本申请第九方面所述的通信装置作为第一接入网设备、本申请第十方面所述的通信装置第二接入网设备,以及本申请第十一方面/第二方面所述的通信装置作为终端设备。
附图说明
图1为本申请实施例所应用的通信系统一实施例的结构示意图;
图2为终端设备接入网络设备时的流程示意图;
图3示出了MIB中携带的部分字段;
图4为本申请实施例提供的参数确定方法一实施例的流程示意图;
图5为一种子载波偏移的示意图;
图6为另一种子载波偏移的示意图;
图7为本申请实施例提供的参数确定方法一实施例的流程示意图;
图8为本申请实施例提供的参数确定方法一实施例的流程示意图;
图9为本申请提供的参数确定装置一实施例的结构示意图;
图10为本申请提供的通信装置一实施例的结构示意图。
具体实施方式
图1为本申请实施例所应用的通信系统一实施例的结构示意图,如图1所示为本申请实施例适用的一种可能的网络架构示意图,包括终端设备110和网络设备120。如图1所示的网络设备120可以是接入网设备。其中,终端设备110和网络设备120间可通过Uu空口进行通信,Uu空口可以理解为通用的终端设备和网络设备之间的接口(universal UE to network interface)。Uu空口的传输包括上行传输和下行传输。
可选的,在图1所示的网络架构中,还可包括核心网设备130。其中,终端设备110可以通过无线的方式与网络设备120相连,网络设备120可通过有线或无线的方式与核心网设备130相连。核心网设备130与网络设备120可以是独立的不同的物理设备,或者,核网设备130与网络设备120可以是相同的物理设备,该物理设备上集成有核心网设备130与网络设备120的全部/部分逻辑功能。
需要说明的是,在图1所示的网络架构中,终端设备110可以是固定位置的,也可以是可移动的,不作限定。图1所示的网络架构中,还可包括其它网络设备,比如无线中继设备和无线回传设备等,不作限定。图1所示的架构中,对终端设备、网络设备和核心网设备的数量不作限定。
进一步,需要说明的是,上述图1所示的网络架构,仅为示意性说明,并不作为对本申请实施例的限定。例如,本申请实施例中的技术方案,可应用于各种通信系统。比如,长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统以及未来的移动通信系统等。
如图1所示的网络设备120可以是接入网设备,而接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心、未来移动通信系统中的基站或WiFi系统中的接入点等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持长期演进(long term evolution,LTE)的接入网设备通信,也可以与支持5G的接入网设备通信,还可以与支持LTE的接入网设备以及支持5G的接入网设备的双连接。本申请实施例并不限定。
本申请各实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
如图1所示的终端设备可以简称为终端,是一种具有无线收发功能的设备,终端设备 可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、无人机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备,以及还可以包括用户设备(user equipment,UE)等。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来第五代(the 5th generation,5G)网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端设备有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。本申请实施例对此并不限定。
本申请实施例中,用于实现终端的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备,以终端设备是UE为例,描述本申请实施例提供的技术方案。
在如图1所示的通信系统中,网络设备和/或终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间所使用的频谱资源可是例如4G的频谱、5G的频谱。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,时域资源、频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。此外,LTE系统、5G系统等通信系统中,载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如,在载波聚合(carrier aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(cell identify,Cell  ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
随着移动业务的不断发展,对无线通信的速度和效率的要求越来越高,例如在图1所示的5G NR(new radio)等一些通信系统中,网络设备可以通过波束成型技术,将其所传输的信号能量限制在某个波束方向内,由于波束成型技术能够有效扩大无线信号的传输范围,降低信号干扰,因此能够使得网络设备和终端设备之间通信时,达到更高的通信效率和获取更高的网络容量以增加信号的强度并提高传输效率。其中,具有相同或者类似的通信特征的多个波束视为是一个波束,网络设备和终端设备在一个波束内可以对应一个或多个天线端口,用于传输数据信道、控制信道和探测信号等,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。然而,在上述使用波束成型技术的通信系统中,首先需要将发送波束和接收波束进行匹配来达到发送端到接收端的增益最大化,因此在终端设备接入网络设备时,需要对网络设备发送的波束进行扫描,例如终端设备通过盲检的方式扫描网络设备发送的同步信号和PBCH块(synchronization signal and physical broadcast channel block,SSB)的方式,确定网络设备的相关配置信息并完成接入网络设备。
具体地,图2为终端设备接入网络设备时的流程示意图,如图2示出了如图1所示的通信系统中,终端设备接入网络设备、或者接入网络设备的小区时,终端设备依次接收的信号。其中,终端设备首先对网络设备所发送的SSB进行盲检,所述SSB又可以被称为同步信号块、同步信号/物理广播信道(Physical broadcast channel,PBCH)块,或者可以简称为SSB或者为SS/PBCH block。SSB中可以包含PBCH、主同步信号(primary synchronization signal,PSS)、辅同步信号(Secondary synchronization signal,SSS)中的至少一个。SSB中的PBCH携带主信息块(main information block,MIB)。MIB中包括终端设备随机接入相关的信息、终端设备接入小区的信息、小区的标识信息随机接入相关的信息、PDCCH相关的信息以及其他信息块例如系统信息块1(system information block,SIB1)的信息等,例如包含有SIB1的CORESET时频位置指示,以及子载波间隔等其他指示。
则当终端设备在时间a接收到SSB之后解调SSB中的PBCH得到MIB,MIB中包括SIB1的CORESET时频位置、子载波间隔等信息;随后,终端设备就可以根据MIB的指示接收SIB1的CORESET,并在时间b得到SIB1的CORESET中包含的SIB1的物理下行控制信道(physical downlink control channel,PDCCH),SIB1的PDCCH用于调度承载SIB1的物理下行共享信道(physical down link shared channel,PDSCH)的时频位置以及调制编码策略等信息。最终,终端设备可以根据SIB1PDCCH的指示在时间c接收SIB1PDSCH。
更为具体地,SSB中携带的MIB可以通过其subCarrierSpacingCommon字段指示PDCCH使用的子载波间隔,该字段的大小为1bit,能够通过例如0和1的取值来指示两个子载波间隔。例如,图3示出了MIB中携带的部分字段,其中,MIB的subCarrierSpacingCommon字段可以配置为通过0和1对应指示不同的子载波间隔的取值,例如该字段为0对应指示子载波间隔为15kHz、该字段为1对应指示子载波间隔为30kHz,又例如该字段为0对应指示子载波间隔为60kHz、该字段为1对应指示子载波间隔为120kHz。则终端设备在图2所示的场景中时间a接收到SSB之后,即可根据SSB中MIB的subCarrierSpacingCommon字段确定SIB1PDCCH使用的子载波间隔为0或者1对应的子载波间隔,进而根据所确定的子载波间隔在时间b接收SIB1PDCCH。
但是,在如图3所示的技术,由于MIB中的subCarrierSpacingCommon字段只有1bit,只能通过0或1的取值指示SIB1PDCCH可能的两种子载波间隔。而当终端设备使用52.6GHz以上的频段通信时,SIB1PDCCH的可能使用的子载波间隔包括120KHz,240KHz,480KHz,960KHz和1290KHz等多种可能的取值,在SSB中MIB的位数有限的情况下,即使终端设备可以使用多种子载波间隔通信,但是网络设备只能通过0和1指示其中两个子载波间隔,因此不能向终端设备指示更多种SIB1PDCCH可能使用的子载波间隔,从而导致了终端设备能够使用的子载波的数量被限制,进而降低了终端设备的通信效率。
综上,为了解决上述问题,本申请实施例提供一种参数确定方法,以通过网络设备向终端设备发送的SSB指示更多的子载波间隔,使得终端设备在使用56.2GHz以上的频段通信时,网络设备能够向终端设备指示终端设备使用的子载波间隔,防止终端设备能够使用的子载波的数量被限制,进而提高终端设备的通信效率。
下面以具体地实施例对本申请的技术方案进行详细说明。下面的具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图4为本申请实施例提供的参数确定方法一实施例的流程示意图,如图4所示的实施例能够应用于如图1所示的通信系统中,用于终端设备根据网络设备发送的SSB中的信息确定SIB1PDCCH的子载波间隔。该参数确定方法具体包括:
S100:网络设备生成第一信息。
具体地,所述第一信息用于使终端设备确定传输SIB1PDCCH的子载波间隔,其中,所述SIB1PDCCH用于调度承载SIB1的SIB1PDSCH,将SIB1PDCCH的子载波间隔记为第二子载波间隔。则在S100中,网络设备在发送SIB1PDCCH之前,首先生成用于终端设备确定第二子载波间隔的第一信息。可选地,所述第一信息可以是MIB中的subCarrierSpacingCommon字段,则所述第一信息具体可以是subCarrierSpacingCommon字段1bit位的“0”或者“1”的取值。
特别地,由于MIB中的subCarrierSpacingCommon字段只有一个比特位,所能够指示的第二子载波间隔的数量有限,因此在本实施例中,网络设备和终端设备都将SIB1PDCCH的第二子载波间隔与网络设备向终端设备所发送的SSB的子载波间隔关联起来,所述SSB的子载波间隔记为第一子载波间隔。使得终端设备在接收到SSB之后,还可也结合SSB的第一子载波间隔和第一信息共同确定第二子载波间隔。则对于网络设备所生成的第一信息也与S101中网络设备向终端设备发送的SSB的第一子载波间隔有关。所述第一信息与第一子载波间隔的关联关系详见S102中的描述。
S101:网络设备发送SSB,相应地,终端设备接收来自网络设备发送的SSB。其中,SSB中携带S101中所确定的第一信息。
随后,在S101中,网络设备在发送的SSB中携带S100中生成的所述第一信息,其中,当第一信息是MIB中的subCarrierSpacingCommon字段时,网络设备可以在SSB的PBCH中的MIB携带所述第一信息。则对于终端设备,可以在接入网络设备时进行盲检SSB,并在接收到网络设备所发送的SSB后,解调SSB中的PBCH获取MIB,进而从MIB中的subCarrierSpacingCommon字段获取第一信息。
可选地,终端设备在S101中接收到SSB之后,还进一步确定SSB传输时所使用的子载波间隔,记为第一子载波间隔。
S102:终端设备根据第一子载波间隔和第一信息,确定第二子载波间隔。或者,终端设备根据第一子载波间隔,确定第二子载波间隔。
具体地,由于在本实施例中,SIB1PDCCH的第二子载波间隔与SSB的第一子载波间隔有关,因此,终端设备通过S101接收到SSB之后,在S102中即可根据已经接收到的SSB的第一子载波间隔,结合第一信息一起确定第二子载波间隔,或者,终端设备也可以直接根据第一子载波间隔确定第二子载波间隔。其中,每个SSB的第一子载波间隔可以对应SIB1PDCCH所可能使用的至少一个子载波间隔,所述至少一个子载波间隔可以组合成为一个候选子载波间隔集合的形式实现。
可选地,终端设备和网络设备可以通过映射关系的方式,存储不同第一子载波间隔对应的候选子载波间隔集合,并具体根据第一信息从候选子载波间隔集合中确定第二子载波间隔。所述映射关系可以通过表格的方式存储。终端设备和网络设备中存储的所述映射关系可以是提前设置的、预配置的、或者是终端设备或网络设备所确定的。
例如,在一种可能的具体实现方式中,所述映射关系可以通过如下表1中的部分行来表示。
表1
Figure PCTCN2021093670-appb-000001
Figure PCTCN2021093670-appb-000002
具体地,如表1示出了第一子载波间隔分别为120kHz、240kHz、480kHz、960kHz和1920kHz时,所可能对应的不同的候选子载波间隔集合,网络设备和终端设备可以根据第一子载波间隔确定候选子载波间隔集合之后,从子载波间隔集合中确定第二子载波间隔。而对于某一个终端设备的映射关系,可以根据终端设备所支持的第一子载波间隔,在表1中有一种候选子载波间隔集合与第一子载波间隔对应。
例如,终端设备通信时使用的信号频率大于52.6GHz,所述终端设备支持的第一子载波间隔包括以下五种:120kHz、240kHz、480kHz、960kHz和1920kHz,终端设备中可以存储的映射关系包括上述五种第一子载波间隔中,每一种子载波间隔与一个候选子载波集合的对应关系,该对应关系可以全部或部分来自于表1。
示例性地,终端设备中存储的映射关系可以包括:第一子载波间隔120kHz-候选子载波间隔集合(120kHz)的对应关系、第一子载波间隔240kHz-候选子载波间隔集合(240kHz)的对应关系、第一子载波间隔480kHz-候选子载波间隔集合(240kHz、480kHz)的对应关系、第一子载波间隔960kHz-候选子载波间隔集合(240kHz、960kHz)的对应关系以及第一子载波间隔1920kHz-候选子载波间隔集合(240kHz、1920kHz)的对应关系,上述五个对应关系均可以来自于表1。
进一步地,在上述示例中,终端设备的映射关系中第一子载波间隔所对应的候选子载波间隔集合中可能只有一个子载波间隔或者有两个不同的子载波间隔,因此,候选子载波间隔集合中包括两个子载波间隔,可以根据第一信息对两个子载波间隔进行区分,根据第一信息从两个子载波间隔中确定第二子载波间隔;候选子载波间隔集合中包括一个子载波间隔,可以直接以候选子载波间隔集合中的子载波间隔作为第二子载波间隔。
例如,当网络设备向终端设备发送的SSB所使用的第一子载波间隔为480kHz,则根据上述映射关系中480kHz-(240kHz、480kHz)的对应关系,网络设备向终端设备发送的SIB1PDCCH的第二子载波间隔可以是240kHz或者480kHz。此时,可以规定通过MIB中的 subCarrierSpacingCommon字段的1个比特位作为第一信息,通过第一信息“0”和“1”的取值分别来指示240kHz和480kHz两个子载波间隔。例如,若规定“0”对应候选子载波间隔集合中的240kHz,“1”对应候选子载波间隔集合中的480kHz,则对于网络设备确定以第一子载波间隔为240kHz发送SSB、以第二子载波间隔为480kHz发送SIB PDCCH时,可以在S100中确定第一信息为480kHz对应的“1”。相应地,对于终端设备,当接收到网络设备以第一子载波间隔为240kHz发送的SSB,并根据映射关系确定第一子载波间隔对应的候选子载波间隔集合后,进一步根据SSB携带的第一信息“1”确定SIB1PDCCH的第二子载波间隔为候选子载波间隔集合中与“1”对应的480kHz。
又例如,当网络设备向终端设备发送的SSB所使用的第一子载波间隔为120kHz,则根据上述映射关系中120kHz-120kHz的对应关系,网络设备向终端设备发送的SIB1PDCCH的第二子载波间隔可以是120kHz,此时,由于候选子载波间隔集合中只有这一个对应的取值,因此MIB中的subCarrierSpacingCommon字段的1个比特位作为第一信息时,对于第一信息“0”和“1”或者空值等任意的取值都可以用来指示120kHz的子载波间隔。或者,当终端设备根据SSB的第一子载波间隔确定对应出候选子载波间隔中只有一个子载波间隔时,可以不对第一信息的取值进行判断,而是直接可以将候选子载波间隔集合中的一个子载波间隔作为第二子载波间隔。
在另一种可能的实现方式中,所述映射关系可以通过如下表2中的部分行来表示。
表2
Figure PCTCN2021093670-appb-000003
Figure PCTCN2021093670-appb-000004
同样地,如表2示出了第一子载波间隔分别为120kHz、240kHz、480kHz、960kHz和1920kHz时,所可能对应的不同的候选子载波间隔集合,网络设备和终端设备可以根据第一子载波间隔确定候选子载波间隔集合之后,从子载波间隔集合中确定第二子载波间隔。而对于某一个终端设备的映射关系,可以根据终端设备所支持的第一子载波间隔,在表2中有一种候选子载波间隔集合与第一子载波间隔对应。
例如,终端设备通信时使用的信号频率大于52.6GHz,所述终端设备支持的第一子载波间隔包括以下五种:120kHz、240kHz、480kHz、960kHz和1920kHz,终端设备中可以存储的映射关系包括上述五种第一子载波间隔中,每一种子载波间隔与一个候选子载波集合的对应关系,该对应关系可以全部或部分来自于表2。
示例性地,终端设备中存储的映射关系可以包括:第一子载波间隔120kHz-候选子载波间隔集合(120kHz、240kHz、480kHz)的对应关系、第一子载波间隔240kHz-候选子载波间隔集合(120kHz、240kHz、960kHz)的对应关系、第一子载波间隔480kHz-候选子载波间隔集合(120kHz、240kHz、480kHz)的对应关系、第一子载波间隔960kHz-候选子载波间隔集合(120kHz、480kHz、1920kHz)的对应关系以及第一子载波间隔1920kHz-候选子载波间隔集合(240kHz、480kHz、1920kHz)的对应关系,上述五个对应关系均可以来自于表1。
进一步地,在上述示例中,终端设备的映射关系中第一子载波间隔所对应的候选子载波间隔集合中包括三个子载波间隔,为了使得第一信息能够对三个不同的子载波间隔进行区分,可以对第一信息进行扩展。即,本申请实施例中,通过将MIB中的subCarrierSpacingCommon字段扩展为2个比特位来指示更多的子载波间隔。
例如,当网络设备向终端设备发送的SSB所使用的第一子载波间隔为480kHz,则根据上述映射关系中960kHz-(120kHz、480kHz、1920kHz)的对应关系,网络设备向终端设备发送的SIB1PDCCH的第二子载波间隔可以是120kHz或者480kHz或1920kHz。此时,可以规定通过MIB中的subCarrierSpacingCommon字段的2个比特位作为第一信息,通过第一信息“00”、“01”、“10”和“11”中任意三个的取值分别来指示120kHz、480kHz和1920kHz三个子载波间隔。例如,若规定“00”对应候选子载波间隔集合中的120kHz,“01”对应候选子载波间隔集合中的480kHz,“11”对应候选子载波间隔集合中的1920kHz,则对于网络设备确定以第一子载波间隔为960kHz发送SSB、以第二子载波间隔为480kHz发送SIB PDCCH时,可以在S100中确定第一信息为480kHz对应的“01”。相应地,对于终端设备,当接收到网络设备以第一子载波间隔为960kHz发送的SSB,并根据映射关系确定第一子载波间隔对应的候选子载波间隔集合后,进一步根据SSB携带的第一信息“01”确定SIB1PDCCH的第二子载波间隔为候选子载波间隔集合中与“01”对应的480kHz。
需要说明的是,在上述表1和表2中,仅以示例性的方式展现了映射关系集中可能的实现方式,在其他可能的实现中,不同的第一子载波间隔还可以对应其他不同的候选子载波间隔集合,并且每个子载波间隔集合中的数量可以是一个或者多个,其实现方式与原理相同,不再赘述。
S103:网络设备向终端设备发送SIB1PDCCH,相应地,终端设备接收来自网络设备发送的SIB1PDCCH。
最终,终端设备在确定传输SIB1PDCCH使用的第二子载波间隔后,可以根据第二子载波间隔接收网络设备所发送的SIB1PDCCH。并且在接收到SIB PDCCH之后,根据SIB1PDCCH的指示接收SIB1PDSCH。
综上,本申请实施例提供的参数确定方法,能够在终端设备确定SIB1PDCCH的第二子载波间隔时,考虑到终端设备已经接收的SSB的第一子载波间隔,尤其适用于终端设备使用52.6GHz以上的频段通信时,SIB1PDCCH的可能使用的子载波间隔包括120KHz,240KHz,480KHz,960KHz和1290KHz等多种可能的取值,在SSB中MIB的位数有限的情况下,使得网络设备能够通过MIB中subCarrierSpacingCommon字段,结合第一子载波间隔,共同指示第二子载波间隔。相应地,终端设备可以通过第一子载波间隔以及MIB中subCarrierSpacingCommon字段确定更多更多种SIB1PDCCH可能使用的子载波间隔,相当于通过第一子载波间隔增加了指示第二子载波间隔的信息的位数,从而防止终端设备能够使用的子载波的数量由于subCarrierSpacingCommon字段位数少指示不全而被限制的情况,进而提高了终端设备的通信效率。
此外,在如图3所示的MIB中携带的部分字段中,ssb-SubcarrierOffset也称为k SSB,用于指示承载SSB的频域位置,以及承载SIB1的时频资源即SIB1CORESET的频域位置,之间子载波偏移的RE数量,所述SIB1CORESET包括SIB1PDCCH。并且由于k SSB字段具有4bits 的指示能力,最多可以指示16个值,也就是可以指示在一个RB(resource element)(一个RB包含12个RE(resource element),也就是12个子载波)之内的子载波偏移。例如,图5为一种子载波偏移的示意图,其中,SSB的子载波间隔可以是480kHz、SIB1CORESET的子载波间隔可以是240kHz,此时,若SIB1CORESET的频域位置与SSB的频域位置相比向后偏移了1个SSB的RE,则MIB中携带的k SSB可以用于指示此时的子载波偏移为1个RE。
然而,上述通过SSB的RE作为基准单位,来指示子载波间隔的方式基于SSB的子载波间隔大于SIB1CORESET的子载波间隔,图6为另一种子载波偏移的示意图,在图6所示的示例中,SSB的子载波间隔小于SIB1CORESET的子载波间隔,例如SSB的子载波间隔为240kHz,SIB1CORESET的子载波间隔为480kHz,若此时仍然以SSB的子载波间隔为基准单位,由于SSB的子载波间隔较小,只能够指示其自身对应的12个RE相当于SIB1CORESET的6个RE对应的子载波偏移,会造成SB1CORESET后6个RE的子载波偏移指示不全,使得终端设备无法确定该些子载波偏移,进而降低了终端设备的通信效率。
因此,为了解决上述问题,本申请实施例还提供一种参数确定方法,用于终端设备在确定SSB的频域位置与SIB1CORESET的频域位置之间的子载波偏移时,以SSB和SIB1CORESET之间子载波间隔较大的作为目标子载波间隔,并将目标子载波间隔作为MIB的k SSB所指示的RE的单位即RE的频率范围,以保证MIB中的k SSB能够将所有的子载波偏移的RE都进行指示,防止无法指示部分子载波偏移造成的降低终端设备的通信效率。
图7为本申请实施例提供的参数确定方法一实施例的流程示意图,如图7所示的实施例能够应用于如图1所示的通信系统中,用于终端设备根据网络设备发送的SSB中的信息确定SSB的频域位置与SIB1CORESET的频域位置之间的子载波偏移。该参数确定方法可以单独执行,或者,该参数确定方法还可以在如图4所示的实施例中,当终端设备确定SSB的子载波间隔以及SIB1PDCCH的子载波间隔之后执行。如图7所示的方法具体包括:
S200:网络设备生成第二信息。
具体地,所述第二信息用于指示SSB的频域位置与SIB1CORESET的频域位置之间的子载波偏移,并且所述第二信息以RE为单位。则在S200中,网络设备可以通过发送的第二信息使得终端设备确定子载波偏移,可选地,所述第二信息可以是MIB中的ssb-SubcarrierOffset也称为k SSB则所述第二信息具体可以是MIB中的ssb-SubcarrierOffset的4bits位的取值。
特别地,由于如图6所示的子载波偏移中所存在的部分RE指示不全的问题,因此在本实施例中,网络设备在生成第二信息时,根据SSB的所使用的第一子载波间隔与SIB1CORESET所使用的第二子载波间隔的大小进行判断,并选择较大的子载波间隔对应的子载波的频域范围作为RE的单位。
S201:网络设备向终端设备发送SSB中携带第二信息,相应地,终端设备接收来自于网络设备所发送的SSB。
随后,网络设备可以在发送的SSB中携带S200中生成的所述第二信息,其中,当第二信息是MIB中的ssb-SubcarrierOffset字段时,网络设备可以在SSB的PBCH中的MIB携带所述第二信息。则对于终端设备,可以在接入网络设备时进行盲检SSB,并在接收到网络设备发送的SSB后,解调SSB中的PBCH获取MIB,进而从MIB中的ssb-SubcarrierOffset字段获取第二信息。
可选地,终端设备在S201中接收到SSB之后,还进一步确定SSB传输时所使用的第一子载波间隔。
S202:终端设备根据SSB的第一子载波间隔,以及SIB1CORESET的第二子载波间隔,确定二者较大的子载波间隔对应的子载波带宽作为第二信息的RE的单位即频率范围。
具体地,在本实施例中,终端设备可以根据SSB的第一子载波间隔以及SIB1CORESET的第二子载波间隔之间的大小关系,从二者中确定较大的子载波间隔为目标子载波间隔,并将目标子载波间隔对应的子载波带宽作为第二信息中RE的频率范围。
例如,当SSB的第一子载波间隔大于SIB1CORESET的第二子载波间隔时,对应于如图5所示的子载波偏移的指示场景,可以将较大的SSB的RE作为第二信息的单位;当SSB的第一子载波间隔小于SIB1CORESET的第二子载波间隔时,对应于如图6所示的子载波偏移的指示场景,为了防止部分RE指示不完全,此时可以将较大的SIB1CORESET的RE作为第二信息的单位。而当SSB的第一子载波间隔等于SIB1CORESET的第二子载波间隔时,由于二者RE相同,因此既可以将SSB的RE作为第二信息的单位,也可以SIB1CORESET的RE作为第二信息的单位。
示例性地,当SSB的第一子载波间隔为240kHz,SIB1CORESET的第二子载波间隔为480kHz,则此时第二指示信息可以以SIB1CORESET的子载波间隔480kHz作为RE的单位,指示SSB和SIB1CORESET之间的子载波偏移为10个SIB1CORESET的RE,对应于20个SSB的RE。可以看出,由于子载波间隔通过10个子载波间隔较大的SIB1CORESET的RE进行指示,与如图5所示的子载波间隔相比,能够指示多余12个SSB的RE的子载波偏移,防止由于SSB的第一子载波间隔小于SIB1CORESET的第二子载波间隔时,SSB的RE无法指示部分子载波偏移的问题。
S203:终端设备根据第二信息所指示的RE的数量以及S202中所确定的RE的频率范围,最终确定SSB的频域位置和SIB1CORESET的频域位置之间的子载波偏移。
最终,当终端设备通过S202确定出RE的单位即频率范围只有,最终根据第二信息中RE的数量乘以RE的频率范围,得到SSB的频域位置与SIB1CORESET的频域位置之间的子载波偏移。
综上,本实施例提供的参数确定方法中,能够在终端设备根据MIB中的ssb-SubcarrierOffset字段确定子载波偏移时,对于ssb-SubcarrierOffset字段所指示的RE的数量,并不是直接采用SSB的第一子载波偏移作为RE的单位,而是采用SSB的第一子载波偏移和SIB1CORESET的第二子载波偏移之间较大的子载波偏移作为RE的单位,从而保证了以保证MIB中的ssb-SubcarrierOffset字段能够将所有的子载波偏移的RE都进行指示,防止无法指示部分子载波偏移造成的降低终端设备的通信效率。
进一步地,在5G NR中定义了两种SSB,一种是小区定义(cell defining,CD)的SSB,简称:CD-SSB,另一种是非小区定义(none cell defining,NCD)的SSB,简称:NCD-SSB。则当终端设备在接入网络设备过程中,盲检到NCD-SSB后,可以根据NCD-SSB的指示,进一步确定CD-SSB在频域的位置。
具体地,MIB中的k SSB字段的取值可以用于对CD-SSB和NCD-SSB进行区分,例如,当k SSB的取值为0-11时用于指示CD-SSB,当k SSB的取值为12-15时用于指示NCD-SSB,此时, 可以具体通过MIB中SIB1PDCCH视频资源配置数据比特(即,如图3所示MIB中的PDCCH-ConfigSIB1,该字段在具体实现时可以包括16×controlResourceSetZero和searchSpaceZero两个字段之和)指示CD-SSB的频域位置。其中,PDCCH-ConfigSIB1字段通过8个比特位可用于指示256个CD-SSB相对于NCD-SSB的频域位置,所述频域位置通过频域栅格为单位,频域栅格也称为同步频域栅格,或者称为全局同步信道频域栅格,频率范围从24.25GHz~100GHz,从24.2508GHz开始每17.28MHz设置一个频域栅格。
例如,表3示出了一种终端设备具体确定CD-SSB频域栅格的方式,其中,当终端设备接收到SSB后,可以获取SSB中MIB的k SSB字段和PDCCH-ConfigSIB1字段,当k SSB字段为12时进一步根据PDCCH-ConfigSIB1字段指示的0-255的具体数值N,从SSB所在频域位置向频率高的方向偏移
Figure PCTCN2021093670-appb-000005
第N个频域栅格即为CD-SSB所在的频域栅格;当k SSB字段为13时进一步根据PDCCH-ConfigSIB1字段指示的0-255的具体数值M,从SSB所在频域位置向频率低的方向偏移
Figure PCTCN2021093670-appb-000006
第M个频域栅格即为CD-SSB所在的频域栅格;当k SSB字段为14时的频域栅格未定义(reserved)。
表3
Figure PCTCN2021093670-appb-000007
但是,在如图表3所示的技术中,当终端设备使用52.6GHz以上的频段通信时,所使用的带宽可能大于或等于5GHz,则对于带宽内的频域栅格按照每17.28MHz划分一个可以得到5000/17.28=290个频域栅格,导致了如表3中4比特位的PDCCH-ConfigSIB1字段由于只能指示256个值而无法将所有290个频域栅格指示完全,使得终端设备不能确定一部分频域栅格,降低了终端设备的通信效率。
因此,本申请还提供一种参数确定方法,用于终端设备在根据NCD-SSB确定CD-SSB所在的频域栅格时,可以将NCD-SSB的MIB中更多的字段用于指示CD-SSB所在的频域栅格,以增加所指示的频域栅格的数量,保证终端设备所使用的带宽内所有栅格都被指示,防止部分频域栅格由于指示不全而降低通信效率的问题。
图8为本申请实施例提供的参数确定方法一实施例的流程示意图,如图8所示的实施例能够应用于如图1所示的通信系统中,用于终端设备在接收到网络设备发送的NCD-SSB之后,根据NCD-SSB的指示确定CD-SSB所在的频域栅格。该参数确定方法可以单独执行,或者,该参数方法还可以结合如图4、图7所示的实施例,在终端设备接收到SSB之后执行,如图8所示的方法具体包括:
S300:网络设备生成第三信息。
具体地,本实施例中的第三信息用于增加对NCD-SSB所在频域栅格的指示的比特位数,以在现有PDCCH-ConfigSIB1字段的4个比特位的基础上增加更多的比特位数,从而增加对 频域栅格的指示数量。所增加的第三信息的位数可以根据需要指示的频域栅格的数量进行设置,例如,对于终端设备使用带宽可能大于或等于5GHz时所划分的290个频域栅格,可以通过1bit的第三信息结合PDCCH-ConfigSIB1字段共5个比特位可以实现对于290个频域栅格的指示。
可选地,所述第三信息可以是NCD-SSB中MIB的subCarrierSpacingCommon或者dmrs-TypeA-Position等字段。
S301:网络设备向终端设备发送NCD-SSB,在NCD-SSB中携带第三信息、第四信息和第五信息,对应地,终端设备接收来自于网络设备所发送的NCD-SSB。
随后,网络设备可以在发送的SSB中携带S300中生成的所述第三信息,以及携带如表3中所示的共同用于指示CD-SSB所在频域栅格的ssb-SubcarrierOffset字段(记为第四信息)和pdcch-ConfigSIB1字段(记为第五信息)。则对于终端设备,可以在接入网络设备时进行盲检SSB,并在接收到网络设备发送的SSB后,解调SSB中的PBCH获取MIB,进而从MIB中获取第三信息、第四信息和第五信息。
S302:终端设备根据NCD-SSB中的第三信息、第四信息和第五信息共同确定CD-SSB所在的频域栅格。
具体地,终端设备可以根据NCD-SSB中的第三信息和ssb-SubcarrierOffset字段确定CD-SSB所在的频率范围后,根据pdcch-ConfigSIB1字段的取值,确定所述CD-SSB所在的频域栅格具体在上述频率范围的位置。
例如,在一种具体的实现方式中,表4为第三信息、第四信息、第五信息与CD-SSB所在频域栅格的对应关系,其中,第三信息可以通过1个比特位的“0”或者“1”的取值表示,可用于指示CD-SSB所在的频率范围与NCD-SSD的频域位置关系,即,向NCD-SSD的频域位置更高频率方向或更低频率方向确定频率范围,例如表4中第三信息为0时向频率更高方向确定频率范围、第三信息为1时向频率更低方向确定频率范围;第四信息ssb-SubcarrierOffset字段可以用于指示频率范围的带宽,即,指示频率范围通过频域栅格表示时,频率范围第一个栅格到最后一个栅格的位置,例如表4中k SSB为12时,在1-256的频率栅格为频率范围,k SSB为13时在257-512的频率栅格为频率范围;第五信息pdcch-ConfigSIB1字段可用于指示在CD-SSB具体在的频率范围内的某个区间内,所述区间可以是本实施例中的频率栅格。
表4
Figure PCTCN2021093670-appb-000008
Figure PCTCN2021093670-appb-000009
则当终端设备接收到NCD-SSB,并根据NCD-SSB中的第三信息为0、k SSB字段为12时,从SSB所在频域位置向频率高的方向偏移1-256个频域栅格的频率范围之内,以pdcch-ConfigSIB1字段指示的具体数值确定CD-SSB所在的频域栅格;当终端设备接收到NCD-SSB,并根据NCD-SSB中的第三信息为1、k SSB字段为12时,从SSB所在频域位置向频率低的方向偏移-1--256个频域栅格的频率范围之内,以pdcch-ConfigSIB1字段指示的具体数值确定CD-SSB所在的频域栅格;当终端设备接收到NCD-SSB,并根据NCD-SSB中的第三信息为0、k SSB字段为13时,从SSB所在频域位置向频率高的方向偏移257-512个频域栅格的频率范围之内,以pdcch-ConfigSIB1字段指示的具体数值确定CD-SSB所在的频域栅格;当终端设备接收到NCD-SSB,并根据NCD-SSB中的第三信息为1、k SSB字段为13时,从SSB所在频域位置向频率高的方向偏移-257--512个频域栅格的频率范围之内,以pdcch-ConfigSIB1字段指示的具体数值确定CD-SSB所在的频域栅格。因此,从表4可以看出,通过加入1比特位的第三信息就能够对512个频域栅格进行指示,使得终端设备使用52.6GHz以上频率通信而带宽可能大于或等于5GHz时,确保所划分的290个频域栅格都可以被指示。
可选地,在上述示例中,NCD-SSB还可以使用第三信息、第四信息和第五信息指示两个频域栅格的位置。例如,当第三信息和pdcch-ConfigSIB1指示CD-SSB相对于NCD-SSB的偏移为100,则表示CD-SSB相对于NCD-SSB的偏移位置可能在第100个频域栅格上或者在第101个频域栅格上。
或者,在本实施例另一种可能的实现方式中,可以将k SSB=14的未定义部分应用起来,各分配一部分给k SSB=12和k SSB=13时对应的频域栅格,同样可以实现增加所指示的频域栅格数量的目的。
例如,表5为k SSB、pdcch-ConfigSIB1与CD-SSB所在频域栅格的对应关系,其中,k SSB可以看作是前述示例中的第三信息,又可看作前述示例中的第四信息。
表5
Figure PCTCN2021093670-appb-000010
具体地,则当终端设备接收到NCD-SSB,并根据NCD-SSB中的k SSB字段为12时,从SSB所在频域位置向频率高的方向偏移1-256个频域栅格的频率范围之内,以pdcch-ConfigSIB1字段指示的具体数值确定CD-SSB所在的频域栅格;当终端设备接收到NCD-SSB,并根据 NCD-SSB中的k SSB字段为13时,pdcch-ConfigSIB1字段小于或等于127时,从SSB所在频域位置向频率高的方向偏移257-384个频域栅格的频率范围之内,以pdcch-ConfigSIB1字段指示的具体数值确定CD-SSB所在的频域栅格;当终端设备接收到NCD-SSB,并根据NCD-SSB中的k SSB字段为13时,pdcch-ConfigSIB1字段大于127时,从SSB所在频域位置向频率低的方向偏移-1--128个频域栅格的频率范围之内,以pdcch-ConfigSIB1字段指示的具体数值确定CD-SSB所在的频域栅格;当终端设备接收到NCD-SSB,并根据NCD-SSB中的k SSB字段为14时,从SSB所在频域位置向频率低的方向偏移-129--384个频域栅格的频率范围之内,以pdcch-ConfigSIB1字段指示的具体数值确定CD-SSB所在的频域栅格。
可以理解的是,在表5中将k SSB=14对应的偏移分配给对应-129-384个频域栅格作为示例性的说明,在其他可能的实现方式中,k SSB=14对应的偏移还可以分配给129-384个频域栅格;或者k SSB=14对应的偏移还可以拆分为-1--128个频域栅格、或者拆分为1-128个频域栅格等,k SSB=12和k SSB=13的频域栅格可以做适应性的调整,其实现方式与原理相同,不再赘述。
S303:终端设备在S302所确定的频域栅格中接收网络设备发送的CD-SSB。
最终,终端设备在确定CD-SSB所在的频域栅格之后,即可在CD-SSB所在频域栅格对应的频率范围内接收网络设备发送的CD-SSB。
综上,本实施例提供的参数确定方法,在终端设备根据NCD-SSB确定CD-SSB所在的频域栅格时,由于NCD-SSB的MIB中的第三信息也可用于确定频域栅格,使得终端设备能够通过更多的字段确定CD-SSB所在的频域栅格,增加了所指示的频域栅格的数量,使得终端设备使用52.6GHz以上频率通信而带宽可能大于或等于5GHz时,保证了终端设备所使用的带宽内所有290个栅格都被指示,防止部分频域栅格由于指示,进而提高了终端设备的通信效率。
在前述实施例中,对本申请实施例提供的参数确定方法进行了介绍,而为了实现上述本申请实施例提供的参数确定方法中的各功能,作为执行主体的网络设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
例如,图9为本申请提供的参数确定装置一实施例的结构示意图,其中,该参数确定装置90包括:处理单元901和通信单元902。
当如图9所示的参数确定装置作为如图4所示实施例中的终端设备时,通信单元902用于接收来自网络设备发送的同步信号/物理广播信道块SSB;其中,SSB通过第一子载波间隔传输,SSB中包括第一信息,第一信息用于确定传输物理下行控制信道PDCCH的第二子载波间隔,PDCCH用于调度承载系统信息块SIB的物理下行共享信道PDSCH;处理单元901用于根据第一子载波间隔和第一信息,确定第二子载波间隔;或者,终端设备根据第一子载波间隔,确定第二子载波间隔。
可选地,第一子载波间隔为120kHz,第二子载波间隔为120kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为120kHz, 第二子载波间隔为120kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为480kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者, 第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz、480kHz或者1920kHz。
可选地,处理单元901具体用于,根据第一子载波间隔和映射关系,确定第一子载波间隔对应的候选子载波间隔集合;映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,第一子载波间隔对应的候选子载波间隔集合中包括多个用于传输PDCCH的子载波间隔;根据第一信息和第一子载波间隔对应的候选子载波间隔集合,确定第二子载波间隔。
可选地,第一信息占用1个比特位,第一子载波间隔对应的候选子载波间隔集合中为两个子载波间隔;1个比特位用于指示两个子载波间隔;处理单元901具体用于,根据第一信息占用的比特位的值,确定候选子载波集合中与比特位的值对应的子载波间隔为第二子载波间隔。
可选地,第一信息占用2个比特位,第一子载波间隔对应的候选子载波间隔集合中为三个子载波间隔;2个比特位用于指示三个子载波间隔;处理单元901具体用于,根据第一信息占用的2个比特位的值,确定候选子载波集合中与2个比特位的值对应的子载波间隔为第二子载波间隔。
可选地,处理单元901具体用于,根据第一子载波间隔和映射关系,确定第一子载波间隔对应的候选子载波间隔集合;映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,第一子载波间隔对应的候选子载波间隔集合中包括一个用于传输PDCCH的子载波间隔;确定第一子载波间隔对应的候选子载波间隔集合中的子载波间隔为第二子载波间隔。
可选地,终端设备通信时使用的信号频率大于52.6GHz。
当如图9所示的参数确定装置作为如图4所示实施例中的网络设备时,处理单元901用于确定第一信息;其中,第一信息用于确定传输PDCCH的第二子载波间隔,物理下行控制信道PDCCH用于调度承载系统信息块SIB的物理下行共享信道PDSCH;通信单元902用于向终端设备发送同步信号/物理广播信道块SSB,其中,SSB通过第一子载波间隔传输,SSB中包括第一信息,使终端设备根据第一子载波间隔和第一信息,确定第二子载波间隔。
可选地,第一子载波间隔为120kHz,第二子载波间隔为120kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为120kHz, 第二子载波间隔为120kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者240kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为480kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为120kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为240kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为480kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者, 第一子载波间隔为960kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为960kHz,第二子载波间隔为960kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者480kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、240kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为120kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者960kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为240kHz、480kHz或者1920kHz;或者,第一子载波间隔为1920kHz,第二子载波间隔为960kHz、480kHz或者1920kHz。
可选地,处理单元901具体用于,根据第一子载波间隔和映射关系,确定第一子载波间隔对应的候选子载波间隔集合;映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,第一子载波间隔对应的候选子载波间隔集合中包括一个或多个用于传输PDCCH的子载波间隔;根据第二子载波间隔和候选子载波间隔集合,确定第一信息。
可选地,第一信息占用1个比特位,第一子载波间隔对应的候选子载波间隔集合中为两个子载波间隔;1个比特位用于指示两个子载波间隔;或者,第一信息占用2个比特位,第一子载波间隔对应的候选子载波间隔集合中为三个子载波间隔;2个比特位用于指示三个子载波间隔。
可选地,终端设备通信时使用的信号频率大于52.6GHz。
当如图9所示的参数确定装置作为如图7所示实施例中的终端设备时,通信单元902用于,接收来自网络设备发送的同步信号/物理广播信道块SSB;其中,SSB通过第一子载波间隔传输,SSB中包括第二信息,第二信息用于指示SSB的频域位置和系统信息块SIB的时频资源的频域位置之间的频率偏移,频率偏移以RE为单位;处理单元901用于,确定目标子载波间隔对应的子载波带宽为第二信息的RE的频率范围;目标子载波间隔为传输SSB的第一子载波间隔和传输SIB的第二子载波间隔中的一个。
可选地,处理单元901具体用于,第一子载波间隔大于第二子载波间隔,确定第一子载波间隔对应的子载波带宽为第二信息的RE的频率范围;或者,第一子载波间隔小于第二子载波间隔,确定第二子载波间隔对应的子载波带宽为第二信息的RE的频率范围;或者,第一子载波间隔等于第二子载波间隔,确定第一子载波间隔或者第二子载波间隔对应的子载波带宽为第二信息的RE的频率范围。
有关本申请第九方面中记载的装置所实现的技术效果可参照第三方面对应的方法,不再赘述。
当如图9所示的参数确定装置作为如图7所示实施例中的网络设备时,处理单元901用于,确定第二信息;其中,第二信息用于指示同步信号/物理广播信道块SSB的频域位置和系统信息块SIB的时频资源的频域位置之间的频率偏移,频率偏移以目标子载波间隔的RE为单位,目标子载波间隔为传输SSB的第一子载波间隔和传输SIB的第二子载波间隔中的一个,目标子载波间隔对应的子载波带宽为第二信息的RE的 频率范围;通信单元902用于,向终端设备发送SSB,其中,SSB通过第一子载波间隔传输,SSB中包括第二信息。
可选地,第一子载波间隔大于第二子载波间隔,第一子载波间隔对应的子载波带宽为第二信息的RE的频率范围;或者,第一子载波间隔小于第二子载波间隔,第二子载波间隔对应的子载波带宽为第二信息的RE的频率范围;或者,第一子载波间隔等于第二子载波间隔,第一子载波间隔或者第二子载波间隔对应的子载波带宽为第二信息的RE的频率范围。
有关本申请第十方面中记载的装置所实现的技术效果可参照第四方面对应的方法,不再赘述。
当如图9所示的参数确定装置作为如图8所示实施例中的终端设备时,通信单元902用于,接收来自网络设备发送的非小区定义同步信号/物理广播信道块NCD-SSB;其中,NCD-SSB中包括第三信息、第四信息和第五信息;第三信息用于指示频率范围与NCD-SSB的频域位置关系;第四信息用于指示频率范围的带宽;第五信息用于指示小区定义同步信号/物理广播信道块CD-SSB所在的区间与频率范围的频域位置关系,频率范围被划分为多个区间;处理单元901用于,根据第三信息、第四信息和第五信息,确定CD-SSB所在区间。
可选地,处理单元901具体用于,根据第三信息和第四信息,确定频率范围;根据频率范围和第五信息,确定CD-SSB所在区间。
可选地,第三信息携带在SSB的主信息块MIB的subCarrierSpacingCommon字段或者dmrs-TypeA-Position字段中。
可选地,第三指示信息和第四信息均为k SSB,k SSB承载在SSB的MIB的ssb-SubcarrierOffset字段中;其中,k SSB的取值为第一数值时终端设备确定的CD-SSB所在区间,与k SSB的取值为第二目标数值时终端设备所确定的CD-SSB所在区间,在频域相邻。
当如图9所示的参数确定装置作为如图8所示实施例中的网络设备时,处理单元901用于确定第三信息、第四信息和第五信息;第三信息用于指示频率范围与非小区定义同步信号/物理广播信道块NCD-SSB的频域位置关系;第四信息用于指示频率范围的带宽;第五信息用于指示小区定义同步信号/物理广播信道块CD-SSB所在的区间与频率范围的频域位置关系,频率范围被划分为多个区间;通信单元902用于向终端设备发送NCD-SSB,NCD-SSB中包括第三信息、第四信息和第五信息。
可选地,第三信息携带在SSB的主信息块MIB的subCarrierSpacingCommon字段或者dmrs-TypeA-Position字段中。
可选地,第三指示信息和第四信息均为k SSB,k SSB承载在SSB的MIB的ssb-SubcarrierOffset字段中;其中,k SSB的取值为第一数值时终端设备确定的CD-SSB所在区间,与k SSB的取值为第二目标数值时终端设备所确定的CD-SSB所在区间,在频域相邻。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通 过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图10为本申请提供的通信装置一实施例的结构示意图,该通信装置可作为本申请前述实施例中任一所述的网络设备或者终端设备,并执行相应的设备所执行的参数确定方法。如图10所示,该通信装置1100可以包括:处理器111(例如CPU)、收发器113;其中,收发器113耦合至处理器111,处理器111控制收发器113的收发动作。可选的,所述通信装置1100还包括存储器112,存储器112中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例中网络设备、终端设备或核心网设备执行的方法步骤。
可选的,本申请实施例涉及的通信装置还可以包括:电源114、系统总线115以及通信接口116。收发器113可以集成在通信装置的收发信机中,也可以为通信装置上独立的收发天线。系统总线115用于实现元件之间的通信连接。上述通信接口116用于实现通信装置与其他外设之间进行连接通信。
在本申请实施例中,上述处理器111用于与存储器112耦合,读取并执行存储器 112中的指令,以实现上述方法实施例中网络设备、终端设备或核心网设备执行的方法步骤。收发器113与处理器111耦合,由处理器111控制收发器113进行消息收发,其实现原理和技术效果类似,在此不再赘述。
该图10中提到的系统总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述系统总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信接口用于实现数据库访问装置与其他设备(例如客户端、读写库和只读库)之间的通信。存储器可能包含RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
该图10中提到的处理器可以是通用处理器,包括中央处理器CPU、网络处理器(network processor,NP)等;还可以是数字信号处理器DSP、专用集成电路ASIC、现场可编程门阵列FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可选的,本申请实施例还提供一种可读存储介质,所述存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如上述图4、7和8中,网络设备或者终端设备所执行的方法。
可选的,本申请实施例还提供一种运行指令的芯片,所述芯片用于执行如上述图4、7和8中,网络设备或者终端设备所执行的方法。
本申请实施例还提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在存储介质中,至少一个处理器可以从所述存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序时可实现如上述图4、7和8中,网络设备或者终端设备所执行的方法。
在本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。
可以理解的是,在本申请实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
可以理解的是,在本发明的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (26)

  1. 一种参数确定方法,其特征在于,包括:
    终端设备接收来自网络设备发送的同步信号/物理广播信道块SSB;其中,所述SSB通过第一子载波间隔传输,所述SSB中包括第一信息,所述第一信息用于确定传输物理下行控制信道PDCCH的第二子载波间隔,所述PDCCH用于调度承载系统信息块SIB的物理下行共享信道PDSCH;
    所述终端设备根据所述第一子载波间隔和所述第一信息,确定所述第二子载波间隔;或者,所述终端设备根据所述第一子载波间隔,确定所述第二子载波间隔。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者240kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者480kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者960kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者1920kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz或者240kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz或者480kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz或者960kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz或者1920kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为480kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz或者240kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz或者480kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为240kHz或者480kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为480kHz或者960kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为480kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为240kHz或者960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为480kHz或者960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为960kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为240kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为480kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为960kHz或者1920kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一子 载波间隔和所述第一信息,确定所述第二子载波间隔,包括:
    所述终端设备根据所述第一子载波间隔和映射关系,确定所述第一子载波间隔对应的候选子载波间隔集合;所述映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,所述第一子载波间隔对应的候选子载波间隔集合中包括多个用于传输所述PDCCH的子载波间隔;
    所述终端设备根据所述第一信息和所述第一子载波间隔对应的候选子载波间隔集合,确定所述第二子载波间隔。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信息占用1个比特位,所述第一子载波间隔对应的候选子载波间隔集合中为两个子载波间隔;所述1个比特位用于指示所述两个子载波间隔;
    所述终端设备根据所述第一信息和所述第一子载波间隔对应的候选子载波间隔集合,确定所述第二子载波间隔,包括:
    所述终端设备根据所述第一信息占用的比特位的值,确定所述候选子载波集合中与所述比特位的值对应的子载波间隔为所述第二子载波间隔。
  5. 根据权利要求3所述的方法,其特征在于,所述第一信息占用2个比特位,所述第一子载波间隔对应的候选子载波间隔集合中为三个子载波间隔;所述2个比特位用于指示所述三个子载波间隔;
    所述终端设备根据所述第一信息和所述第一子载波间隔对应的候选子载波间隔集合,确定所述第二子载波间隔,包括:
    所述终端设备根据所述第一信息占用的2个比特位的值,确定所述候选子载波集合中与所述2个比特位的值对应的子载波间隔为所述第二子载波间隔。
  6. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一子载波间隔和所述第一信息,确定所述第二子载波间隔,包括:
    所述终端设备根据所述第一子载波间隔和映射关系,确定所述第一子载波间隔对应的候选子载波间隔集合;所述映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,所述第一子载波间隔对应的候选子载波间隔集合中包括一个用于传输所述PDCCH的子载波间隔;
    所述终端设备确定所述第一子载波间隔对应的候选子载波间隔集合中的子载波间隔为所述第二子载波间隔。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,
    所述终端设备通信时使用的信号频率大于52.6GHz。
  8. 一种参数确定方法,其特征在于,包括:
    网络设备确定第一信息;其中,所述第一信息用于确定传输物理下行控制信道PDCCH的第二子载波间隔,所述PDCCH用于调度承载系统信息块SIB的物理下行共享信道PDSCH;
    所述网络设备向终端设备发送同步信号/物理广播信道块SSB,其中,所述SSB通过第一子载波间隔传输,所述SSB中包括所述第一信息,使所述终端设备根据所述第一子载波间隔和所述第一信息,确定所述第二子载波间隔。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者240kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者480kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者960kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz或者1920kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz或者240kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz或者480kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz或者960kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz或者1920kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为480kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz或者240kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz或者480kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为240kHz或者480kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为480kHz或者960kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为480kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为240kHz或者960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为480kHz或者960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为960kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为240kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为480kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为960kHz或者1920kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为120kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为240kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为240kHz、480kHz或者 960kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为480kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为960kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz、240kHz或者480kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz、240kHz或者960kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为120kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为240kHz、480kHz或者960kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为240kHz、480kHz或者1920kHz;或者,
    所述第一子载波间隔为1920kHz,所述第二子载波间隔为960kHz、480kHz或者1920kHz。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述网络设备根据所述第一子载波间隔和映射关系,确定所述第一子载波间隔对应的候选子载波间隔集合;所述映射关系包括多个子载波间隔与多个候选子载波间隔集合的对应关系,其中,所述第一子载波间隔对应的候选子载波间隔集合中包括一个或多个用于传输所述PDCCH的子载波间隔;
    所述网络设备根据所述第二子载波间隔和所述候选子载波间隔集合,确定所述第一信息。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一信息占用1个比特位,所述第一子载波间隔对应的候选子载波间隔集合中为两个子载波间隔;所述1个比特位用于指示所述两个子载波间隔;或者,
    所述第一信息占用2个比特位,所述第一子载波间隔对应的候选子载波间隔集合中为三个子载波间隔;所述2个比特位用于指示所述三个子载波间隔。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,
    所述终端设备通信时使用的信号频率大于52.6GHz。
  13. 一种参数确定方法,其特征在于,包括
    终端设备接收来自网络设备发送的同步信号/物理广播信道块SSB;其中,所述SSB通过第一子载波间隔传输,所述SSB中包括第二信息,所述第二信息用于指示所述SSB的频域位置和系统信息块SIB的时频资源的频域位置之间的频率偏移,所述频率偏移以RE为单位;
    所述终端设备确定目标子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;所述目标子载波间隔为传输所述SSB的第一子载波间隔和传输所述SIB的第二子载波间隔中的一个。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备确定目标子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围,包括:
    所述第一子载波间隔大于所述第二子载波间隔,所述终端设备确定所述第一子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;或者,
    所述第一子载波间隔小于所述第二子载波间隔,所述终端设备确定所述第二子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;或者,
    所述第一子载波间隔等于所述第二子载波间隔,所述终端设备确定所述第一子载波间隔或者所述第二子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围。
  15. 一种参数确定方法,其特征在于,包括:
    网络设备确定第二信息;其中,所述第二信息用于指示同步信号/物理广播信道块SSB的频域位置和系统信息块SIB的时频资源的频域位置之间的频率偏移,所述频率偏移以目标子载波间隔的RE为单位,所述目标子载波间隔为传输所述SSB的第一子载波间隔和传输所述SIB的第二子载波间隔中的一个,所述目标子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;
    所述网络设备向终端设备发送SSB,其中,所述SSB通过第一子载波间隔传输,所述SSB中包括第二信息。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第一子载波间隔大于所述第二子载波间隔,所述第一子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;或者,
    所述第一子载波间隔小于所述第二子载波间隔,所述第二子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围;或者,
    所述第一子载波间隔等于所述第二子载波间隔,所述第一子载波间隔或者所述第二子载波间隔对应的子载波带宽为所述第二信息的RE的频率范围。
  17. 一种参数确定方法,其特征在于,包括:
    终端设备接收来自网络设备发送的非小区定义同步信号/物理广播信道块NCD-SSB;其中,所述NCD-SSB中包括第三信息、第四信息和第五信息;所述第三信息用于指示频率范围与所述NCD-SSB的频域位置关系;所述第四信息用于指示所 述频率范围的带宽;所述第五信息用于指示小区定义同步信号/物理广播信道块CD-SSB所在的区间与所述频率范围的频域位置关系,所述频率范围被划分为多个区间;
    所述终端设备根据所述第三信息、所述第四信息和所述第五信息,确定所述CD-SSB所在区间。
  18. 根据权利要求17所述的方法,其特征在于,所述终端设备根据所述第三信息、所述第四信息和所述第五信息,确定所述CD-SSB所在区间,包括:
    所述终端设备根据所述第三信息和所述第四信息,确定所述频率范围;
    所述终端设备根据所述频率范围和所述第五信息,确定所述CD-SSB所在区间。
  19. 根据权利要求17或18所述的方法,其特征在于,
    所述第三信息携带在所述SSB的主信息块MIB的subCarrierSpacingCommon字段或者dmrs-TypeA-Position字段中。
  20. 根据权利要求17或18所述的方法,其特征在于,
    第三指示信息和第四信息均为k SSB,所述k SSB承载在所述SSB的MIB的ssb-SubcarrierOffset字段中;
    其中,所述k SSB的取值为第一数值时所述终端设备确定的所述CD-SSB所在区间,与所述k SSB的取值为第二目标数值时所述终端设备所确定的所述CD-SSB所在区间,在频域相邻。
  21. 一种参数确定方法,其特征在于,包括:
    网络设备确定第三信息、第四信息和第五信息;所述第三信息用于指示频率范围与非小区定义同步信号/物理广播信道块NCD-SSB的频域位置关系;所述第四信息用于指示所述频率范围的带宽;所述第五信息用于指示小区定义同步信号/物理广播信道块CD-SSB所在的区间与所述频率范围的频域位置关系,所述频率范围被划分为多个区间;
    所述网络设备向终端设备发送NCD-SSB,所述NCD-SSB中包括第三信息、第四信息和第五信息。
  22. 根据权利要求21所述的方法,其特征在于,
    所述第三信息携带在所述SSB的主信息块MIB的subCarrierSpacingCommon字段或者dmrs-TypeA-Position字段中。
  23. 根据权利要求21或22所述的方法,其特征在于,
    第三指示信息和第四信息均为k SSB,所述k SSB承载在所述SSB的MIB的ssb-SubcarrierOffset字段中;
    其中,所述k SSB的取值为第一数值时所述终端设备确定的所述CD-SSB所在区间,与所述k SSB的取值为第二目标数值时所述终端设备所确定的所述CD-SSB所在区间,在频域相邻。
  24. 一种参数确定装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元用于实现所述通信装置与其他装置进行通信;
    所述处理单元用于实现如权利要求1-7任一项、8-12任一项、13-14任一项、15-16任一项、17-20任一项或者21-23任一项所述的方法。
  25. 一种通信装置,其特征在于,包括:处理器和通信接口;
    所述通信接口用于实现所述通信装置与其他装置进行通信;
    所述处理器用于实现如权利要求1-7任一项、8-12任一项、13-14任一项、15-16任一项、17-20任一项或者21-23任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1-7任一项、8-12任一项、13-14任一项、15-16任一项、17-20任一项或者21-23任一项所述的方法。
PCT/CN2021/093670 2020-05-20 2021-05-13 参数确定方法及装置 WO2021233206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010428636.1 2020-05-20
CN202010428636.1A CN113709864A (zh) 2020-05-20 2020-05-20 参数确定方法及装置

Publications (1)

Publication Number Publication Date
WO2021233206A1 true WO2021233206A1 (zh) 2021-11-25

Family

ID=78645452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093670 WO2021233206A1 (zh) 2020-05-20 2021-05-13 参数确定方法及装置

Country Status (2)

Country Link
CN (1) CN113709864A (zh)
WO (1) WO2021233206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045200A1 (en) * 2022-09-03 2024-03-07 Qualcomm Incorporated Non-cell-defining synchronization signal bursts for idle mode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083229A1 (zh) * 2021-11-09 2023-05-19 上海星思半导体有限责任公司 同步信号块的频域位置确定方法及系统
CN114125999B (zh) * 2021-12-03 2024-02-09 星思连接(上海)半导体有限公司 一种小区接入方法及装置、小区广播方法及装置
CN114125998A (zh) * 2021-12-03 2022-03-01 星思连接(上海)半导体有限公司 小区接入方法、信息广播方法、装置及电子设备
CN116601902A (zh) * 2021-12-14 2023-08-15 北京小米移动软件有限公司 执行预定操作的方法、装置、通信设备及存储介质
CN117241364A (zh) * 2022-06-08 2023-12-15 维沃移动通信有限公司 信息确定方法、装置及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019213955A1 (zh) * 2018-05-11 2019-11-14 Oppo广东移动通信有限公司 一种信息的指示方法及装置、计算机存储介质
CN110603852A (zh) * 2017-11-17 2019-12-20 Lg电子株式会社 发送和接收下行链路信道的方法及其装置
CN111669235A (zh) * 2020-05-15 2020-09-15 中国信息通信研究院 一种高频发现信号传输方法、设备和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603852A (zh) * 2017-11-17 2019-12-20 Lg电子株式会社 发送和接收下行链路信道的方法及其装置
WO2019213955A1 (zh) * 2018-05-11 2019-11-14 Oppo广东移动通信有限公司 一种信息的指示方法及装置、计算机存储介质
CN111669235A (zh) * 2020-05-15 2020-09-15 中国信息通信研究院 一种高频发现信号传输方法、设备和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining details on RMSI configurations", 3GPP DRAFT; R1-1803627, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051425924 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045200A1 (en) * 2022-09-03 2024-03-07 Qualcomm Incorporated Non-cell-defining synchronization signal bursts for idle mode

Also Published As

Publication number Publication date
CN113709864A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2021233206A1 (zh) 参数确定方法及装置
US20210250931A1 (en) Method and apparatus for configuration of sidelink channel resource units
US11336412B2 (en) Synchronization signal configuration method and apparatus
WO2018196716A1 (zh) 一种寻呼指示的传输方法及装置
WO2020233690A1 (zh) 确定频谱资源的方法及装置
US11956758B2 (en) Method and apparatus for configuration of sidelink channel resource units
US11638226B2 (en) Method and device for processing synchronization signal block information and communication device
WO2021159467A1 (zh) 一种资源的配置方法及网络设备
WO2021027376A1 (zh) 一种共生网络中的资源配置方法及装置
KR102535608B1 (ko) 전력 제어 방법 및 장치
WO2019015445A1 (zh) 一种通信方法及装置
US20210204312A1 (en) Downlink control information transmission method and apparatus
WO2022017321A1 (zh) 信号发送方法、装置、接入网设备及可读存储介质
WO2022012396A1 (zh) 一种通信方法及装置
WO2022151494A1 (zh) 一种传输参数确定方法及装置
WO2022151404A1 (zh) 基于接入回传一体化的通信方法及装置
WO2021032014A1 (zh) 一种小区配置的确定方法及装置
WO2022052117A1 (zh) 配置辅助上行链路sul的方法和装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
CN113923683A (zh) 一种测量方法、装置及计算机可读存储介质
CN116636272A (zh) 一种系统信息的传输方法、通信装置及相关设备
WO2023030144A1 (zh) 一种频域资源配置方法以及相关装置
EP4319264A1 (en) Signal forwarding method and communication apparatus
WO2024007878A1 (zh) 通信方法及装置
WO2024032326A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808231

Country of ref document: EP

Kind code of ref document: A1