WO2024032326A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2024032326A1
WO2024032326A1 PCT/CN2023/107875 CN2023107875W WO2024032326A1 WO 2024032326 A1 WO2024032326 A1 WO 2024032326A1 CN 2023107875 W CN2023107875 W CN 2023107875W WO 2024032326 A1 WO2024032326 A1 WO 2024032326A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
synchronization signals
synchronization
signal
cell
Prior art date
Application number
PCT/CN2023/107875
Other languages
English (en)
French (fr)
Inventor
李锐杰
官磊
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032326A1 publication Critical patent/WO2024032326A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • Embodiments of the present application relate to the field of wireless communications, and in particular, to methods and devices for transmitting and receiving random access signals.
  • terminal equipment completes cell synchronization by detecting synchronization signals and obtains main system information.
  • the main system information includes the time-frequency position of the control channel that schedules system message 1.
  • System message 1 carries information related to random access. Therefore, the base station needs to send a synchronization signal and system message 1 in each cell for the terminal device to establish a connection with the base station. In other words, as long as the base station needs to provide wireless access services to terminals, the base station needs to send synchronization signals and system messages 1, resulting in a large overall overhead of the base station.
  • This application proposes a communication method to save the overall power consumption of network equipment.
  • the present application provides a communication method, which can be executed by a terminal device or by a component (such as a chip or circuit) of the terminal device, which is not limited.
  • the method includes: a terminal device receives a first synchronization small signal in a first cell, the terminal receives first information in the first cell according to the first synchronization signal, and the first information is used to indicate at least one of the following: according to the first synchronization signal, the first synchronization signal is received in the first cell.
  • a cell receives first information, and the first information indicates at least one of the following: time domain resources of N second synchronization signals, frequency domain resources of N second synchronization signals, sequences of N second synchronization signals, or, Random access configuration of the second cell.
  • the synchronization signal of the first cell may include relevant information of the synchronization signal of the second cell, or include the random access configuration of the second cell, which is helpful for the terminal to obtain the relevant configuration of accessing the second cell, thereby saving time. Signaling overhead in the second cell.
  • the first synchronization signal and the N second synchronization signals have different spatial domain configurations.
  • the random access configuration of the second cell includes at least one of the following: candidate time domain resources of the random access signal, candidate frequency domain resources of the random access signal, and code of the random access signal. domain resource sequence, or the candidate transmission power of the random access signal.
  • the code domain resources include sequences.
  • each of the N second synchronization signals carries a second physical cell identity PCI.
  • the time-frequency resources of the random access signal are determined based on the second PCI, or the time-frequency resources of the random access signal are determined based on the sequence of the N second synchronization signals. .
  • the terminal device determines the first path loss based on the first synchronization signal, and determines the second path loss based on N second synchronization signals, and the first path loss is greater than the second path loss.
  • the terminal device sends a random access signal according to the corresponding synchronization signal with smaller path loss.
  • the terminal device can send the random access signal with smaller transmission power, which can save the power consumption of the terminal device.
  • the first synchronization signal and the N second synchronization signals have the same center frequency.
  • the terminal equipment can detect synchronization signals with different airspace configurations in two airspaces at one frequency point. Compared with the terminal equipment detecting synchronization signals with different airspace configurations in different frequency bands, the complexity of terminal detection can be reduced.
  • the terminal determines a third synchronization signal from N second synchronization signals, and according to the third synchronization signal, Send the random access signal.
  • the terminal device sends second information in the second cell, and the second information is used to indicate the third synchronization signal.
  • the second PCI corresponds to N second synchronization signals.
  • the second cell is a proper subset of the first cell.
  • the first synchronization signal is sent by the first network device
  • the N second synchronization signals are sent by the second network device
  • the coverage of the first network device includes the coverage of the second network device, or,
  • the coverage area of the second network device is a proper subset of the coverage area of the first network device.
  • this application provides a communication method, which can be executed by a first network device or by a component (such as a chip or circuit) of the first network device, which is not limited.
  • the method includes: a first network device sends a first synchronization signal of a first cell, and sends first information, where the first information indicates at least one of the following: time domain resources of N second synchronization signals, N second synchronization signals frequency domain resources, sequences of N second synchronization signals, or random access configuration of the second cell.
  • the first network device instructs the terminal device through the first information about the relevant information of the second synchronization signal or the random access configuration of the second cell, thereby reducing the complexity of the terminal device accessing the second cell, for example, reducing the complexity of the terminal device accessing the second cell.
  • the device blindly detects the complexity of the second synchronization information, or reduces the complexity of the terminal device determining the random access configuration.
  • the first network device can configure the resources and/or sequences of the second synchronization signal according to specific requirements for the terminal device to access. Therefore, it can adapt to the needs of the network device and improve the flexibility of communication.
  • the first synchronization signal and the N second synchronization signals have different spatial domain configurations.
  • the random access configuration of the second cell includes at least one of the following: candidate time domain resources of the random access signal, candidate frequency domain resources of the random access signal, or random access Candidate transmit power of the signal.
  • the first synchronization signal corresponds to the first path loss
  • the N second synchronization signals correspond to the second path loss
  • the first path loss is greater than the second path loss
  • the first synchronization signal and the N second synchronization signals have the same center frequency.
  • the second cell is a proper subset of the first cell.
  • the first synchronization signal is sent by the first network device
  • the N second synchronization signals are sent by the second network device
  • the coverage of the first network device includes the coverage of the second network device, or , the coverage of the second network device is a proper subset of the coverage of the first network device.
  • the present application provides a communication method, which can be executed by a second network device or by a component (such as a chip or circuit) of the second network device, which is not limited.
  • the method includes: the network device sends N second synchronization signals and receives random access signals.
  • the time-frequency resources of N second synchronization signals or the sequence of N second synchronization signals are determined based on the first information
  • the time-frequency resources of the scheduling information of the first information are determined based on the first synchronization signal
  • the first synchronization signal is related to N
  • the airspace configuration of the two second synchronization signals is different.
  • the random access configuration of the second cell includes at least one of the following: candidate time domain resources of the random access signal, candidate frequency domain resources of the random access signal, or candidate transmission of the random access signal. power.
  • each of the N second synchronization signals carries the second PCI.
  • the time-frequency resources of the random access signal are determined based on the second PCI, or the time-frequency resources of the random access signal are determined based on the sequence of N second synchronization signals.
  • the first synchronization signal corresponds to the first path loss
  • the N second synchronization signals correspond to the second path loss
  • the first path loss is greater than the second path loss
  • the second network device receives second information, the second information is used to indicate a third synchronization signal, and the third synchronization signal belongs to the N second synchronization signals.
  • the random access signal is received from the terminal device according to a third synchronization signal among the N second synchronization signals.
  • the second cell is a proper subset of the first cell.
  • the first synchronization signal is sent by the first network device
  • the N second synchronization signals are sent by the second network device
  • the coverage of the first network device includes the coverage of the second network device, or , the coverage of the second network device is a proper subset of the coverage of the first network device.
  • a fourth aspect provides a communication device, which may be the terminal device in the method embodiment provided in the first aspect, or a chip applied in the terminal device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit them to the processor or to send signals from the processor to the communication device.
  • the processor uses logic circuits or execution code instructions to cause the communication device to execute the method executed by the terminal device in the above method embodiment.
  • a fifth aspect provides a communication device, which may be the first network device in the method embodiment provided in the second aspect, or a chip applied in the first network device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit them to the processor or to send signals from the processor to the communication device.
  • the processor uses logic circuits or execution code instructions to cause the communication device to execute the method executed by the first network device in the above method embodiment.
  • a sixth aspect provides a communication device, which may be the second network device in the method embodiment provided in the third aspect, or a chip applied in the second network device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit them to the processor or to send signals from the processor to the communication device.
  • the processor uses logic circuits or execution code instructions to cause the communication device to execute the method executed by the second network device in the above method embodiment.
  • the present application provides a computer-readable storage medium that stores instructions.
  • the instructions are executed by the communication device, the method executed by the terminal device in the first aspect is executed. , or causing the method executed by the first network device in the above second aspect to be executed, or causing the method executed by the second network device in the above third aspect to be executed.
  • the present application provides a computer program product.
  • the computer program product includes a computer program.
  • the method executed by the terminal device in the above-mentioned first aspect is executed, or causes the above-mentioned third aspect to be executed.
  • the method executed by the first network device in the second aspect is executed, or the method executed by the first network device in the third aspect is executed.
  • the present application provides a chip system.
  • the chip system includes a processor for implementing the functions of the terminal device in the method of the first aspect, or for implementing the functions of the first network device in the method of the second aspect. function, or used to implement the function of the second network device in the method of the third aspect above.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a communication system, including at least one communication device in the fourth aspect; at least one communication device in the fifth aspect; and at least one communication device in the sixth aspect.
  • the present application provides a communication method, including: a first network device sending a first synchronization signal to a terminal and first information to the terminal; a second network device sending N second synchronization signals to the terminal; and the terminal Send a random access signal to the second network device according to the N second synchronization signals.
  • the first synchronization signal is used to indicate at least one of the following: time domain resources of N second synchronization signals, frequency domain resources of N second synchronization signals, sequences of N second synchronization signals, or the second cell Random access configuration.
  • Figure 1 is a schematic architectural diagram of a mobile communication system applied in an embodiment of the present application
  • Figure 2 is a schematic diagram of SSB in the time domain and frequency domain in this application;
  • Figure 3 is a schematic flow chart of a communication method in this application.
  • Figure 4 is a schematic diagram of a communication scenario in this application.
  • FIG. 5 is a schematic flow chart of another communication method in this application.
  • Figure 6 is a schematic diagram of a communication device in this application.
  • FIG. 7 is a schematic diagram of another communication device in this application.
  • FIG. 1 is a schematic architectural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a wireless access network 100 and a core network 200.
  • the communication system 1000 may also include the Internet 300.
  • the radio access network 100 may include at least one radio access network device (110a and 110b in Figure 1), and may also include at least one terminal (120a-120j in Figure 1).
  • the terminal is connected to the wireless access network equipment through wireless means, and the wireless access network equipment is connected to the core network through wireless or wired means.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device.
  • Terminals and terminals and wireless access network equipment and wireless access network equipment can be connected to each other in a wired or wireless manner.
  • Access network equipment may be referred to as network equipment, and Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • Wireless access network equipment can be a base station, an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), a fifth generation (5th generation, 5G) mobile
  • the next generation base station (next generation NodeB, gNB) in the communication system, the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • It can also be a module or unit that completes some functions of the base station.
  • it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the base station's radio resource control protocol and packet data convergence protocol (PDCP), and can also complete the functions of the service data adaptation protocol (SDAP); DU completes the functions of the base station
  • the functions of the wireless link control layer and medium access control (MAC) layer can also complete some or all of the physical layer functions.
  • the wireless access network equipment may be a macro base station (110a in Figure 1), a micro base station or an indoor station (110b in Figure 1), or a relay node or donor node.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the wireless access network equipment.
  • the following description takes a base station as an example of a radio access network device.
  • the terminal may also be called terminal device, user equipment (UE), mobile station, mobile terminal, etc.
  • the terminal can be a mobile phone, a tablet, a computer with wireless transceiver capabilities, a wearable device, a vehicle, a drone, a helicopter, an airplane, a ship, a robot, a robotic arm, a smart home device, a wireless modem, a computing device or a connection
  • Other processing equipment to wireless modems augmented reality (AR) equipment, virtual reality (VR) equipment, artificial intelligence (AI) equipment, etc.
  • AR augmented reality
  • VR virtual reality
  • AI artificial intelligence
  • the relay user equipment may be, for example, a residential gateway (RG).
  • RG residential gateway
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • D2D device-to-device
  • V2X vehicle to everything
  • MTC machine-type communication
  • IOT Internet of Things
  • virtual reality virtual reality
  • augmented reality industrial control
  • autonomous driving telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Base stations and terminals can be fixed-location or mobile. Base stations and terminals can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites. The embodiments of this application do not limit the application scenarios of base stations and terminals.
  • the helicopter or drone 120i in Figure 1 may be configured as a mobile base station.
  • the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is through a wireless air interface protocol.
  • communication between 110a and 120i can also be carried out through an interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, both base stations and terminals can be collectively called communication devices.
  • 110a and 110b in Figure 1 can be called communication devices with base station functions
  • 120a-120j in Figure 1 can be called communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time; it can communicate through 6,000 It can communicate using spectrum below gigahertz (GHz), it can also communicate through spectrum above 6GHz, and it can also communicate using spectrum below 6GHz and spectrum above 6GHz at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem that includes the base station functions.
  • the control subsystem containing base station functions here can be the control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal can also be performed by modules in the terminal (such as chips or modems), or by a device containing the terminal functions.
  • the base station sends downlink signals or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends uplink signals or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • Synchronization signal block (SSB)
  • SSB can include two parts, namely synchronization signal (SS) and physical broadcast channel block (PBCH).
  • SS can include primary synchronization signal (primary synchronization signal, PSS) and secondary synchronization signal (secondary synchronization signal, SSS). Therefore, SSB can also be considered to include three parts, that is, SSB includes PSS, SSS, and PBCH, which is not limited.
  • Figure 2 is a schematic diagram of SSB in the time domain and frequency domain.
  • SSB can occupy 4 consecutive symbols in the time domain in the time domain, and can occupy 20 resource blocks (RB) in the frequency domain, that is, 240 subcarriers (SC).
  • RB resource blocks
  • SC subcarriers
  • SSB can be used to implement the following functions: 1) cell synchronization and acquisition of master information block (MIB); 2) base station side beam training.
  • MIB master information block
  • base station side beam training A brief introduction below.
  • PSS and SSS in SSB can carry the physical cell identifier (PCI) of the cell, and the terminal obtains PCI by detecting PSS and SSS;
  • the PBCH in SSB can carry SSB index (index) , each SSB index Corresponding to a location where the SSB is sent, the terminal can complete cell synchronization by detecting the SSB index and detecting the time when the SSB is received.
  • the MIB can be carried in the PBCH in SSB, so the MIB can also be obtained based on SSB.
  • An SSB pattern can contain multiple SSB indexes. Different SSB indexes correspond to different transmit beams of the base station.
  • the terminal can detect the SSB and select the transmit beam corresponding to the SSB with better quality to complete the beam training. train.
  • the terminal can also use multiple receiving beams to receive the same SSB to complete terminal-side receiving beam training.
  • the SSB with better quality is SSB 1
  • SSB1 corresponds to the transmit beam 1 of the base station as an example for further introduction.
  • the functions of the transmit beam 1 mainly include: 1) The terminal receives the system information block 1 (SIB1) or paging (paging) sent by the base station through the transmit beam 1 at the position corresponding to SSB 1, thereby improving the coverage of SIB1 or paging ; 2) The terminal sends a physical random access channel (PRACH) at the position corresponding to the SSB 1, and the base station can use beam 1 to receive the above PRACH, improving the probability of PRACH reception success; 3) When the terminal completes the initial access establishment After radio resource control (RRC) is connected, the base station can perform more fine-grained beam training based on beam 1, reducing the cost of fine beam training.
  • SIB1 system information block 1
  • PRACH physical random access channel
  • the terminal Before the terminal detects the SSB, it generally cannot determine the specific time-frequency resource location of the SSB. In other words, the terminal needs to blindly detect the SSB.
  • the frequency domain interval for blind detection of SSB is predefined, that is, the synchronization raster, which is used for terminal detection of SSB. Synchronization grids have different sizes in different frequency bands.
  • the terminal can detect SSBs one by one at intervals of the synchronization grid to obtain the information needed to access the network.
  • the SSB detection period can be defined. For example, the terminal's default SSB transmission period is 20ms.
  • the base station also needs to continuously send SSB for terminal detection. If the terminal cannot detect SSB, it will not be able to receive subsequent SIB1 and send PRACH, and will not be able to access the network.
  • SIB1 System cells are broadcast through system information blocks, which group system cells of the same type together.
  • the main function of SIB1 is to complete the configuration of the primary cell (PCell), so that terminals in the idle state can monitor paging messages, or to facilitate terminals to complete uplink timing synchronization through random access, thereby becoming connected. state.
  • SIB1 is generally carried on the physical downlink shared channel (PDSCH).
  • the base station can indicate to the terminal the time-frequency location and transmission parameters of the PDSCH carrying SIB1 through the downlink control information (DCI).
  • DCI downlink control information
  • the candidate time domain location and frequency domain location can be indicated through the MIB.
  • the MIB contains a 4-bit control resource set zero (CORESET0) and a 4-bit common search space zero (CSS0), where CORESET0 is used to indicate the DCI for scheduling SIB1
  • CORESET0 is used to indicate the DCI for scheduling SIB1
  • the candidate frequency domain location where CSS0 is located is used to indicate the candidate time domain location where the DCI scheduling SIB1 is located.
  • the base station can use the same beam used to send SSB to send SIB1 corresponding to SSB.
  • the terminal when the terminal receives SIB1, it can use the same beam used to receive SSB to receive SIB1 corresponding to SSB.
  • the SIB1 corresponding to the SSB indicates that the MIB in the SSB is used to indicate the frequency domain location and time domain location of the DCI that schedules the SIB1.
  • SIB1 can be considered as the remaining minimum system information (RMSI), or SIB1 can also be considered as the first system message sent after the MIB, or SIB1 can also be considered as including the random access channel
  • the system message of the time-frequency resource indication information of (random access channel, RACH), or SIB1 can also be considered as the information carried in the PDSCH scheduled by the physical downlink control channel (physical downlink control channel, PDCCH) determined according to CORESET0 and CSS0.
  • RMSI remaining minimum system information
  • PDCCH physical downlink control channel
  • SIB1 and SSB are only illustrative descriptions, which do not limit the scope of protection of the embodiments of the present application.
  • RACH and PRACH are sometimes used interchangeably, and they represent the same meaning when the difference is not emphasized.
  • Random access is a necessary process for establishing wireless links between terminal equipment and base stations.
  • the terminal equipment sends uplink signals to establish uplink synchronization with the base station.
  • the uplink signal sent by the terminal during the random access process can be understood as random access.
  • the airspace configuration can be understood as the configuration of the antenna element or antenna port, including but not limited to: the phase of the antenna element or analog channel, and the weight of the analog channel or digital channel.
  • the weight can include phase weight and amplitude weight.
  • Airspace configuration can also be understood as the configuration of the transceiver matrix, the configuration of the transceiver beam, etc.
  • the airspace configuration can be airspace filtering configuration, airspace filter configuration, etc.
  • the air domain configuration of the synchronization signal may be the antenna pattern configuration for transmitting the synchronization signal, or the configuration of the air domain filter used when transmitting the synchronization signal.
  • path loss can represent the fading experienced by a signal from the sending end to the receiving end.
  • the distance between the transmitter and the receiver, or the difference in the carrier frequency band, can cause different path losses.
  • SSB and SIB1 are at the cell level, that is, the base station sends SSB and SIB1 to each working cell. As long as the cell needs to provide wireless access services for terminals, the base station needs to send the SSB and SIB1 of this cell. When there are multiple cells in the network, one or more base stations corresponding to the multiple cells will send multiple copies of SSB and SIB1, resulting in a large overall system overhead.
  • this application proposes a communication method to reduce the signaling overhead of the base station while ensuring normal access of the terminal to the network. Realize energy saving in base stations.
  • the first network device sends the first synchronization signal of the first cell to the terminal device.
  • the first network device is hereinafter referred to as base station 1.
  • S301 can also be understood as the base station 1 sending the first synchronization signal to the terminal device on the first cell.
  • the first synchronization signal is used by the terminal to perform cell synchronization and MIB acquisition.
  • the terminal For the specific content of cell synchronization and MIB acquisition, please refer to the relevant explanation of SSB in the above terminology explanation section.
  • the first synchronization signal carries the first PCI.
  • the first PCI is the PCI of the first cell. In other words, the first PCI is used to identify the first cell.
  • the terminal device can determine the first PCI according to the sequence of the first synchronization signal and the first relationship.
  • the first relationship may be predefined or indicated by signaling.
  • the first relationship may be indicated by the first information.
  • the first PCI is carried by the sequence used by the first synchronization signal.
  • S302 can also be understood as base station 1 sending the first information to the terminal in the first cell.
  • the first information is used for the terminal to receive N second synchronization signals, and/or the first information is used for the terminal to obtain the random access configuration of the second cell.
  • the first information indicates at least one of the following:
  • Time domain resources of N second synchronization signals, frequency domain resources of N second synchronization signals, sequences of N second synchronization signals, or random access configuration of the second cell are time domain resources of N second synchronization signals, frequency domain resources of N second synchronization signals, sequences of N second synchronization signals, or random access configuration of the second cell.
  • the random access configuration of the second cell may include at least one of the following:
  • the code domain configuration can be a sequence.
  • the random access configuration includes parameter P1, and P1 is used to determine the transmission power of the random access signal.
  • the power of the terminal device to send the random access signal can be determined by P1 and path loss.
  • the path loss can be measured based on the second synchronization signal.
  • P_max represents the maximum transmit power of the terminal
  • PL represents the path loss measured by the terminal.
  • the unit of each parameter is dBm.
  • the conversion of dBm and watts (w) can be performed by formula (2):
  • x(dBm) 10*log10(P/0.001), where the unit of P is watts.
  • P1 is the target received power of the random access signal.
  • P1 is applicable to any base station.
  • P1 can be understood as the target received power of the random access signal of each base station.
  • the terminal communicates with any base station among the multiple base stations.
  • P1 is used as the target received power of the random access signal of the target base station.
  • P1 is the target received power of the random access signal of the target base station where the terminal device sends the random access signal. For example, when the terminal sends a random access signal to base station A, P1 is the target received power of the random access signal of base station A.
  • the first information is SIB1.
  • the second network device sends N second synchronization signals to the terminal.
  • the terminal receives N second synchronization signals.
  • the second network device is hereinafter referred to as base station 2. It can also be understood that the base station 2 sends N second synchronization signals to the terminal on the second cell.
  • the coverage area of the first cell may include the coverage area of the second cell, or in other words, the coverage area of the second cell is a true subset of the coverage area of the first cell.
  • base station 1 corresponds to the first cell
  • base station 2 corresponds to the second cell
  • the coverage of the first cell includes the coverage of the second cell.
  • Figure 4 takes one base station 2 and one second cell as an example. However, in this application, there may be multiple second cells and there may be multiple base stations 2.
  • the first information is also used to indicate a first time window.
  • the first time window is a time window for the terminal to detect the synchronization signal in the second cell, or in other words, the first time window is a time window for the terminal to receive the Nth synchronization signal. 2.
  • Time window of synchronization signal In this manner, the terminal in S303 receives N second synchronization signals, which can be alternatively described as the terminal receives N second synchronization signals within the first time window.
  • the starting position of the first time window is determined based on the first synchronization signal.
  • the terminal device completes downlink synchronization according to the first synchronization signal and determines the starting position of the first time window. Since the first synchronization signal and the second synchronization signal may originate from different base stations, the time synchronization of the two base stations is different. At this time, if the terminal receives N second synchronization signals on a fixed time domain resource, it may not be able to detect the N second synchronization signals, or the efficiency of receiving N second synchronization signals is low. Therefore, through configuration In the first time window, the terminal device detects the second synchronization signal within the first time window, which can improve the reception efficiency of N second synchronization signals.
  • the N second synchronization signals have different spatial domain configurations from the first synchronization signals.
  • N second synchronization signals and first synchronization signals are sent by different base stations respectively. Since different base stations are located in different geographical locations, the airspace configurations of the synchronization signals sent by different base stations are also different.
  • the first synchronization signal and the N second synchronization signals have the same center frequency. Further optionally, the frequency domain positions of the first synchronization signal and the N second synchronization signals are the same, or the partial bandwidth (bandwith part, BWP) determined by the terminal based on the first synchronization signal and the N second synchronization signals is Same, that is, if the BWP determined by the terminal based on the first synchronization signal is the first BWP, then the BWP determined by the terminal based on the N second synchronization signals is also the first BWP.
  • BWP bandwith part
  • each of the N second synchronization signals carries the second PCI.
  • the second PCI is the PCI of the second cell, or the second PCI is used to identify the second cell.
  • the first synchronization signal carries the first PCI, that is, the first synchronization signal and the N second synchronization signals respectively carry different PCIs.
  • the second PCI is associated with a sequence of N second synchronization signals.
  • the sequence of N second synchronization signals and the second PCI satisfy the second relationship, and the terminal determines the second PCI based on the sequence of N synchronization signals and the second relationship.
  • the second relationship can be obtained through the first information.
  • S304 The terminal sends a random access signal in the second cell according to the N second synchronization signals.
  • N second synchronization signals are used for terminal beam training or initial access. They are described below.
  • the terminal can perform beam training based on N second synchronization signals, thereby obtaining the beam with the best quality for communicating with the base station 2 .
  • the process of the terminal performing beam training based on the N second synchronization signals reference may be made to the description of beam training in the above terminology explanation section, which will not be described again here.
  • the N second synchronization signals have different indexes, or the N second synchronization signals correspond to N indexes respectively.
  • N indexes correspond to N sequences.
  • the sequence of the second synchronization signal with index 0 is the first sequence
  • the sequence of the second synchronization signal with index 1 is the second sequence.
  • N synchronization signals are used for initial access, and the terminal can determine the time domain resources of the random access signal, the frequency domain resources of the random access signal, and the random access signal based on the N second synchronization signals. At least one of the code domain resources, the air domain configuration of the random access signal, or the transmission power of the random access signal.
  • the code domain resource may be a sequence.
  • the N second synchronization signals carry the second PCI, and the second PCI and the time-frequency resource used by the terminal to send the random access signal satisfy a predefined relationship.
  • the sequence of N second synchronization signals and the time-frequency resource used by the terminal to send the random access signal satisfy a predefined relationship.
  • the terminal can learn the time-frequency resource for sending the random access signal through the sequence of N synchronization signals or the second PCI.
  • the first information may indicate the random access configuration of the second cell.
  • the first information indicates the candidate time domain resources, candidate frequency domain resources, candidate code domain resources, and candidate transmit power of the random access signal. At least one of the actual time domain resources, frequency domain resources, code domain resources, or transmission power of the random access signal determined by the terminal based on the N second synchronization signals.
  • Method 1 The terminal device determines the resource set according to the first information.
  • the resource collection includes X resource sub-collections, where X is a positive integer.
  • Each resource subset includes one or more first resources.
  • Each first resource may include one or more of time domain resources, frequency domain resources or code domain resources of the random access signal.
  • the code domain resource can be a sequence.
  • Each of the X resource subsets corresponds to a sequence or a PCI.
  • the terminal determines the first resource subset from the X resource subsets according to the sequence of N second synchronization signals or according to the PCI carried by the N second synchronization signals. Further, the first resource subset includes multiple first resources, and the terminal can determine the first resource from the first resource subset according to certain rules, or the terminal can arbitrarily select a first resource from the first resource subset.
  • the first resources include time domain resources, frequency domain resources or code domain resources, that is, time domain resources, frequency domain resources or code domain resources used by the terminal to send random access signals.
  • the random access signal resources of the second cell can be determined by the sequence of the second synchronization signal or PCI, and there is no need to independently notify through other signaling. For scenarios where there are multiple second cells, The random access signal resources of each second cell do not need to be independently notified, which reduces the signaling overhead of the base station.
  • the terminal in S304 sends a random access signal in the second cell according to the N second synchronization signals, which may specifically include: the terminal determines a third synchronization signal from the N second synchronization signals. , sending a random access signal according to the third synchronization signal.
  • the terminal can determine the time domain resources of the random access signal, the frequency domain resources of the random access signal, the code domain resources of the random access signal, the air domain configuration of the random access signal, or the random access signal according to the third synchronization signal. At least one of the transmit power of the access signal.
  • the terminal can determine the airspace configuration of the random access signal based on the third synchronization signal. Specifically, the airspace configuration used by the terminal to send the random access signal is the same as the airspace configuration used to receive the second synchronization signal. .
  • the terminal determines the transmission power of the random access signal based on the third synchronization signal. Specifically, the power of the random access signal transmitted by the terminal is obtained by measuring the path loss of the third synchronization signal. More specifically, reference may be made to the method for determining the random signal transmission power in step S302, which will not be described again here.
  • the terminal determines the time-frequency resource of the random access signal according to the third synchronization signal.
  • Method 2 The terminal device determines the resource set according to the first information.
  • the resource collection includes X resource sub-collections, where X is a positive integer.
  • Each resource subset includes one or more first resources.
  • Each first resource may include one or more of time domain resources, frequency domain resources or code domain resources of the random access signal.
  • the code domain resource can be a sequence.
  • Each of the X resource subsets corresponds to multiple sequences.
  • the terminal determines the first resource subset from the X resource subsets according to the sequence of N second synchronization signals. Further, the first resource subset includes a plurality of first resources, and the plurality of first resources respectively correspond to sequences of N synchronization signals.
  • the terminal selects the first resource corresponding to the sequence of the third synchronization signal from the plurality of first resources according to the sequence of the third synchronization signal among the N synchronization signals, and uses the first resource corresponding to the sequence of the third synchronization signal.
  • the resource sends a random access signal.
  • the terminal determines the granularity of the relevant information of the random access signal as a resource subset.
  • the terminal determines the granularity of the relevant information of the random access signal as the resource subset in the resource subset.
  • the terminal can determine it at a finer granularity.
  • Information about random access signals When there are multiple terminals in the second cell, the resource granularity of different terminals selecting random access signals is smaller, which can reduce resource conflicts.
  • the method shown in Figure 3 also includes S305: the terminal sends second information in the second cell, and the second information is used to indicate the third synchronization signal.
  • base station 1 sends a first synchronization signal and first information for the terminal to receive a second synchronization signal or a random access configuration of the second cell.
  • Base station 2 sends N synchronization signals.
  • the terminal can use base station 2 to The N synchronization signals sent send random access signals to access the network.
  • base station 2 since the terminal can send a random access signal according to the synchronization signal of base station 2, base station 2 no longer needs to send the first information to the terminal, thus saving the power consumption of the base station as a whole.
  • Figure 5 shows a schematic flow chart of another embodiment of the present application, which will be described in detail below with reference to Figure 5 .
  • S501 The terminal device receives the first synchronization signal in the first cell.
  • the first synchronization signal of the first cell is sent through the first network device, and the first network device is hereinafter referred to as the base station 1.
  • step S301 For specific description of the first signal, reference may be made to the description in step S301, which will not be described again here.
  • S502 The terminal receives the first information in the first cell.
  • base station 1 sends the first information in the first cell, and the terminal receives the first information of the first cell from base station 1 .
  • step S302 For specific description of the first information, reference may be made to the description in step S302, which will not be described again here.
  • S503 The terminal receives N second synchronization signals in the second cell.
  • the second network device sends N second synchronization signals to the terminal in the second cell, and the second network device is hereinafter referred to as the base station 2.
  • step S302 For a specific description of the N second synchronization signals, reference may be made to the description in step S302, which will not be described again here.
  • the terminal determines the first path loss based on the first synchronization signal; the terminal determines the second path loss based on the N second synchronization signals.
  • the first path loss can be understood as the path loss in the communication between the terminal and the base station 1
  • the second path loss can be understood as the path loss in the communication between the terminal and the base station 2 .
  • the terminal sends a random access signal in the first cell, which can also be understood as the terminal sends a random access signal to the base station 1 in the first cell, and the terminal sends a random access signal in the second cell, which can also be understood as The terminal sends a random access signal to the base station 2 in the second cell.
  • base station 1 sends a first synchronization signal and first information for the terminal to receive a second synchronization signal or a second
  • base station 2 sends N synchronization signals
  • the terminal selects the base station with smaller path loss and sends random access signals to access the network.
  • the terminal chooses the base station with smaller path loss to send the random access signal, which means that the terminal equipment uses less power to send the random access signal, and the base station can also detect the random access signal, which is beneficial to the energy saving of the terminal equipment. .
  • the base station and the terminal include corresponding hardware structures and/or software modules that perform each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 6 and 7 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of the terminal or base station in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 70a-70j as shown in Figure 1, or the base station 60a or 60b as shown in Figure 1, or may be applied to the terminal or the base station. Modules (such as chips).
  • the communication device 600 includes a processing unit 610 and a transceiver unit 620 .
  • the communication device 600 is used to implement the functions of the terminal or the base station in the method embodiment shown in FIG. 3 or FIG. 5 .
  • the transceiver unit 620 is used to receive the first synchronization signal, the first information and N second synchronization signals.
  • the transceiver unit 620 also uses To send random access signals.
  • the processing unit 610 is configured to control the transceiver unit 620 to send the configuration of the random access signal according to the N second synchronization signals.
  • the transceiver unit 620 is also configured to send second information, and the second information is used to indicate the third synchronization signal among the N synchronization signals.
  • processing unit 610 and transceiver unit 620 can be directly obtained by referring to the relevant descriptions in the method embodiments shown in FIG. 3 or FIG. 5 , and will not be described again here.
  • the transceiver unit 620 is used to send the first synchronization signal.
  • Processing unit 610 may be optional.
  • the processing unit 610 may be used to determine the first synchronization signal.
  • the transceiver unit 620 is used to send N second synchronization signals and receive random access signals, an optional In this mode, the transceiver unit 620 is also configured to receive second information, and the second information is used to indicate the third synchronization signal among the N synchronization signals.
  • Processing unit 610 may be optional. When the communication device 600 includes the processing unit 610, in an optional manner, the processing unit 610 is used to determine N second synchronization signals.
  • processing unit 610 and the transceiver unit 620 can be obtained directly by referring to the relevant descriptions in the method embodiments shown in FIG. 3 or FIG. 5 , and will not be described again here.
  • the communication device 700 includes a processor 710 and an interface circuit 720 .
  • the processor 710 and the interface circuit 720 are coupled to each other.
  • the interface circuit 720 may be a transceiver or an input-output interface.
  • the communication device 700 may also include a memory 730 for storing instructions executed by the processor 710 or input data required for the processor 710 to run the instructions or data generated after the processor 710 executes the instructions.
  • the processor 710 is used to implement the functions of the above-mentioned processing unit 610
  • the interface circuit 720 is used to implement the functions of the above-mentioned transceiver unit 620 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas).
  • the information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the terminal to the base station; or,
  • the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the base station to the terminal.
  • the base station module here can be a baseband chip of the base station, or it can be a DU or other module.
  • the DU here can be a DU under an open radio access network (open radio access network, O-RAN) architecture.
  • the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the base station or terminal.
  • the processor and storage medium may also exist as discrete components in the base station or terminal.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the related objects before and after are a kind of "division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Abstract

一种通信方法,该方法包括:终端在第一小区接收第一同步信号,并根据第一同步信号在第一小区接收第一信息。第一信息用于指示第二小区的第二同步信号的时频码信息或者第二小区的随机接入配置。终端在第二小区接收N个第二同步信号,并根据N个第二同步信号或者所述第二小区的随机接入配置,在所述第二小区上发送随机接入信号,N为正整数。

Description

一种通信方法和装置
本申请要求于2022年8月12日提交中国专利局、申请号为202210968849.2、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及随机接入信号的收发方法和装置。
背景技术
通信系统中,终端设备通过检测同步信号完成小区同步,并获取主系统信息。主系统信息中包括了调度系统消息1的控制信道的时频位置。系统消息1中承载了随机接入相关的信息,因此,基站需要在每个小区发送同步信号和系统消息1,用于终端设备与基站建立连接。换言之,只要基站需要为终端提供无线接入服务,基站就需要发送同步信号和系统消息1,导致基站的总体开销较大。
发明内容
本申请提出一种通信方法,用于节省网络设备的总体功耗。
第一方面,本申请提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。该方法包括:终端设备在第一小区接收第一同步小信号,终端根据第一同步信号在第一小区接收第一信息,第一信息用于指示以下至少一项:根据第一同步信号在第一小区接收第一信息,第一信息指示以下至少一项:N个第二同步信号的时域资源、N个第二同步信号的频域资源、N个第二同步信号的序列,或者,第二小区的随机接入配置。
该方式下,第一小区的同步信号可以包括第二小区的同步信号的相关信息,或者包括第二小区的随机接入配置,有利于终端获取接入第二小区的相关配置,从而能够节第二小区中的信令开销。
一种可选的方式中,第一同步信号和N个第二同步信号的空域配置不同。
一种可选的方式中,所述第二小区的随机接入配置包括以下至少一项:随机接入信号的候选时域资源,随机接入信号的候选频域资源,随机接入信号的码域资源序列,或者所述随机接入信号的候选发送功率。
一种可选的方式,码域资源包括序列。
一种可选的方式中,N个第二同步信号中的每个同步信号均携带第二物理小区标识PCI。
一种可选的方式中,所述随机接入信号的时频资源根据所述第二PCI确定,或者,所述随机接入信号的时频资源根据所述N个第二同步信号的序列确定。
一种可选的方式中,终端设备根据第一同步信号确定第一路损,根据N个第二同步信号确定第二路损,第一路损大于所述第二路损。
该方式下,终端设备根据对应的路损更小的同步信号发送随机接入信号,终端设备可以以更小的发送功率发送随机接入信号,能够节省终端设备的功耗。
一种可选的方式中,第一同步信号和N个第二同步信号的中心频点相同。
该方式下,终端设备在一个频点上可以检测到两个空域配置不同的同步信号,相比较于终端设备在不同的频段检测不同空域配置的同步信号,能够降低终端检测的复杂度。
一种可选的方式中,终端从N个第二同步信号中确定第三同步信号,根据所述第三同步信号, 发送所述随机接入信号。
一种可选的方式中,终端设备在第二小区发送第二信息,第二信息用于指示第三同步信号。
一种可选的方式中,第二PCI与N个第二同步信号对应。
一种可选的方式中,第二小区为第一小区的真子集。
一种可选的方式中,第一同步信号由第一网络设备发送,N个第二同步信号由第二网络设备发送,第一网络设备的覆盖范围包括第二网络设备的覆盖范围,或者,第二网络设备的覆盖范围为第一网络设备的覆盖范围的真子集。
第二方面,本申请提供一种通信方法,该方法可以由第一网络设备执行,也可以由第一网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。该方法包括:第一网络设备发送第一小区的第一同步信号,并发送第一信息,第一信息指示以下至少一项:N个第二同步信号的时域资源、N个第二同步信号的频域资源、N个第二同步信号的序列,或者,第二小区的随机接入配置。
该方式下,第一网络设备通过第一信息指示终端设备关于第二同步信号的相关信息或者第二小区的随机接入配置,降低了终端设备接入第二小区复杂度,例如,降低了终端设备盲检测第二同步信息的复杂度,或者降低了终端设备确定随机接入配置的复杂度。进一步的,第一网络设备可以根据具体需求配置第二同步信号的资源和/或序列供终端设备接入,因此,能够适配网络设备的需求,提高通信的灵活性。
一种可选的方式中,第一同步信号和N个第二同步信号的空域配置不同。
一种可选的方式中,所述第二小区的随机接入配置包括以下至少一项:随机接入信号的候选时域资源,所述随机接入信号的候选频域资源,或者随机接入信号的候选发送功率。
一种可选的方式中,第一同步信号对应第一路损,N个第二同步信号对应第二路损,第一路损大于第二路损。
一种可选的方式中,第一同步信号和N个第二同步信号的中心频点相同。
一种可选的方式中,第二小区为第一小区的真子集。
一种可选的方式中,第一同步信号由第一网络设备发送,的N个第二同步信号由第二网络设备发送,第一网络设备的覆盖范围包括第二网络设备的覆盖范围,或者,第二网络设备的覆盖范围为第一网络设备的覆盖范围的真子集。
第二方面中任一方式的有益效果可以参考第一方面的描述,在此不再赘述。
第三方面,本申请提供一种通信方法,该方法可以由第二网络设备执行,也可以由第二网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。该方法包括:第而网络设备发送N个第二同步信号,并接收随机接入信号。其中,N个第二同步信号的时频资源或者N个第二同步信号的序列根据第一信息确定,第一信息的调度信息的时频资源根据第一同步信号确定,第一同步信号与N个第二同步信号的空域配置不同。
一种可选的方式中,第二小区的随机接入配置包括以下至少一项:随机接入信号的候选时域资源,随机接入信号的候选频域资源,或者随机接入信号的候选发送功率。
一种可选的方式中,N个第二同步信号中的每个第二同步信号均携带的第二PCI。
一种可选的方式中,随机接入信号的时频资源根据第二PCI确定,或者,随机接入信号的时频资源根据N个第二同步信号的序列确定。
一种可选的方式中,第一同步信号对应第一路损,N个第二同步信号对应第二路损,第一路损大于第二路损。
一种可选的方式中,第二网络设备接收第二信息,所述第二信息用于指示第三同步信号,所述第三同步信号属于所述N个第二同步信号。
一种可选的方式中,根据所述N个第二同步信号中的第三同步信号,从终端设备接收所述随机接入信号。
一种可选的方式中,第二小区为第一小区的真子集。
一种可选的方式中,第一同步信号由第一网络设备发送,的N个第二同步信号由第二网络设备发送,第一网络设备的覆盖范围包括第二网络设备的覆盖范围,或者,第二网络设备的覆盖范围为第一网络设备的覆盖范围的真子集。
第三方面中任一方式的有益效果可以参考第一方面的描述,在此不再赘述。
第四方面,提供一种通信装置,该通信装置可以为上述第一方面提供的方法实施例中的终端设备,或者为应用于终端设备中的芯片。该通信装置包括处理器和接口电路,接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令使通信装置执行上述方法实施例中由终端设备所执行的方法。
第五方面,提供一种通信装置,该通信装置可以为上述第二方面提供的方法实施例中的第一网络设备,或者为应用于第一网络设备中的芯片。该通信装置包括处理器和接口电路,接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令使通信装置执行上述方法实施例中由第一网络设备所执行的方法。
第六方面,提供一种通信装置,该通信装置可以为上述第三方面提供的方法实施例中的第二网络设备,或者为应用于第二网络设备中的芯片。该通信装置包括处理器和接口电路,接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令使通信装置执行上述方法实施例中由第二网络设备所执行的方法。
第七方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当所述指令被通信装置执行时,使得上述第一方面中由终端设备执行的方法被执行,或使得上述第二方面中由第一网络设备执行的方法被执行,或使得上述第三方面中由第二网络设备执行的方法被执行。
第八方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序并运行时,使得上述第一方面中由终端设备执行的方法被执行,或使得上述第二方面中由第一网络设备执行的方法被执行,或使得上述第三方面中由第一网络设备执行的方法被执行。
第九方面,本申请提供一种芯片系统,该芯片系统包括处理器,用于实现上述第一方面的方法中终端设备的功能,或用于实现上述第二方面的方法中第一网络设备的功能,或用于实现上述第三方面的方法中第二网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供一种通信系统,包括至少一个第四方面中的通信装置;至少一个第五方面中的通信装置和至少一个第六方面中的通信装置。
第十一方面,本申请提供一种通信方法,包括,第一网络设备向终端发送第一同步信号,并向终端发送第一信息,第二网络设备向终端发送N个第二同步信号,终端根据N个第二同步信号,向第二网络设备发送随机接入信号。其中,第一同步信号用于指示以下至少一项:N个第二同步信号的时域资源、N个第二同步信号的频域资源、N个第二同步信号的序列,或者,第二小区的随机接入配置。
附图说明
图1为本申请的实施例应用的移动通信系统的架构示意图;
图2为本申请中SSB在时域和频域上的一种示意图;
图3为本申请中一种通信方法的流程示意图;
图4为本申请中一种通信场景的示意图;
图5为本申请中另一种通信方法的流程示意图;
图6为本申请中一种通信装置的示意图;
图7为本申请中另一种通信装置的示意图。
具体实施方式
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。接入网设备可以简称网络设备,图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备,或者说网络设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备(terminal device)、用户设备(user equipment,UE)、移动台、移动终端等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备、无线调制解调器(modem)、计算设备或连接到无线调制解调器的其它处理设备、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificial intelligence,AI)设备等。还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant, PDA)电脑、平板型电脑、上网本、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端,或者中继用户设备等。其中,中继用户设备例如可以是住宅网关(residential gateway,RG)。为方便描述,本申请中,上面提到的设备统称为终端。
终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。
本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。
下面对本申请涉及的一些名词或术语进行解释说明。
1、同步信号块(synchronization signal block,SSB)
SSB可包括2个部分,分别是同步信号(synchronization signal,SS)和物理广播信道(physical broadcast channel block,PBCH)。其中,SS可包括主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS)。因此,也可以认为SSB包括3个部分,即SSB包括PSS、SSS、以及PBCH,对此不予限制。图2是SSB在时域和频域上的一种示意图。
图2中,SSB在时域上可占时域连续的4个符号,在频域上可占20个资源块(resource block,RB),即240个子载波(subcarrier,SC)。
SSB可用于实现以下功能:1)小区同步和获取主信息块(master information block,MIB);2)基站侧波束训练。下面简单介绍。
1)小区同步和获取MIB:SSB中的PSS和SSS可以携带小区物理标识(physical cell identifier,PCI),终端通过检测PSS和SSS获取PCI;此外,SSB中的PBCH中可携带SSB索引(index),每个SSB index 对应一个发送该SSB的位置,终端通过检测SSB index和检测接收SSB的时刻,可完成小区同步。此外,在SSB中的PBCH中可携带MIB,因此基于SSB也可获取到MIB。
2)基站侧波束训练:一个SSB图案(pattern)可包含多个SSB index,不同SSB index对应基站的不同发送波束,终端可以通过检测SSB,选择质量较好的SSB对应的发送波束,从而完成波束训练。此外,终端也可以通过采用多个接收波束去接收同一个SSB,完成终端侧接收波束训练,为方便描述,以质量较好的SSB为SSB 1,SSB1对应基站的发送波束1为例进一步介绍。该发送波束1的作用主要包括:1)终端在SSB 1对应的位置接收基站通过发送波束1发送的系统消息1(system information block 1,SIB1)或寻呼(paging),提升SIB1或paging的覆盖;2)终端在该SSB 1对应的位置发送物理随机接入信道(physical random access channel,PRACH),基站可以用波束1接收上述PRACH,提高PRACH接收成功概率;3)当终端完成初始接入建立无线资源控制(radio resource control,RRC)连接后,基站可以基于波束1进行更细粒度的波束训练,降低细波束训练的开销。
终端在检测到SSB之前,一般不能确定SSB具体的时频资源位置,换句话说,终端需要盲检测SSB。在频域上,通过预定义用于盲检测SSB的频域间隔,也即同步栅格(synchronization raster),用于终端检测SSB。同步栅格在不同的频段有不同的大小,终端可以以同步栅格为间隔逐个检测SSB,从而获得接入网络需要的信息。在时域上,可以定义SSB的检测周期,例如,终端默认SSB的发送周期为20ms,对应的,基站也需要持续性的发送SSB以用于终端检测。若终端检测不到SSB,也就无法进行后续SIB1的接收和PRACH的发送,无法接入网络。
2、系统信息块1SIB1
系统信元通过系统信息块进行广播,系统信息将同类的系统信元组合在一起。SIB1的主要功能是完成对主小区(primary cell,PCell)的配置,便于处于空闲(idle)态的终端监听寻呼消息,或者便于终端通过随机接入完成上行定时同步,从而进入连接(connected)态。
SIB1一般承载于物理下行数据信道(physical downlink shared channel,PDSCH),通常,基站可通过下行控制信息(downlink control information,DCI),向终端指示承载SIB1的PDSCH的时频位置和传输参数,上述DCI的候选时域位置和频域位置可通过MIB指示。举例来说,MIB包含4比特(bit)的控制资源集0(control resource set zero,CORESET0)和4bit的公共搜索空间0(common search space zero,CSS0),其中,CORESET0用于指示调度SIB1的DCI所在的候选频域位置,CSS0用于指示调度SIB1的DCI所在的候选时域位置。基站可采用与发送SSB相同的波束来发送SSB对应的SIB1,相应地,终端接收SIB1时,可采用与接收SSB相同的波束来接收SSB对应的SIB1。其中,SSB对应的SIB1,表示该SSB中的MIB用于指示调度该SIB1的DCI所在的频域位置和时域位置。
一种可能的理解,SIB1可认为是剩余最小系统信息(remaining minimum system information,RMSI),或者SIB1也可以认为是MIB之后第一个发送的系统消息,或者SIB1也可以认为是包括随机接入信道(random access channel,RACH)的时频资源指示信息的系统消息,或者SIB1也可以认为是根据CORESET0和CSS0确定的物理下行控制信道(physical downlink control channel,PDCCH)所调度的PDSCH中承载的信息。
可以理解,上述关于SIB1和SSB的相关描述,仅是示例性说明,其对本申请实施例的保护范围不造成限定。
还可以理解,在本申请实施例中,RACH和PRACH有时交替使用,在不强调区别的情况下,其表示同样的含义。
3、随机接入(random access,RA)信号
随机接入是终端设备和基站建立无线链路的必经过程。在随机接入过程中,终端设备通过发送上行信号,用于和基站建立上行同步。终端在随机接入过程中所发送的上行信号可以理解为随机接 入信号,例如终端设备发送的RACH。
4、空域配置
空域配置可以理解为天线阵子或者天线端口的配置,包括但不限于:天线阵子或者模拟通道的相位,模拟通道或者数字通道的权值,该权值可以包括相位权值和幅度权值。空域配置也可以理解为收发矩阵的配置,收发波束的配置等。
空域配置可以是空域滤波配置,空域滤波器配置等。本申请中,同步信号的空域配置可以为发送同步信号的天线方向图配置,或者发送同步信号时采用的空域滤波器的配置。
5、路径损耗
简称路损。电磁波信号在空间中传播时,信号能量会随着传输距离增加而衰减。通信系统中,路损可以表示信号从发送端到接收端经历的衰落。收发端距离,或者载波频段的不同,都可以造成不同的路损。
通过上述可知,终端接入基站,必须先检测SSB和SIB1,才能获取发送随机接入信号的相关信息。SSB和SIB1为小区级的,也即,基站在每个处于工作状态的小区发送SSB和SIB1,只要该小区需要为终端提供无线接入服务,基站就需要发送这个小区的SSB和SIB1。当网络中存在多个小区时,多个小区对应的一个或者多个基站将会发送多份SSB和SIB1,导致系统的总体开销较大。
为此,本申请提出一种通信方法,用于降低基站的信令开销,同时保证终端正常接入网络。实现基站节能。
基于图1提供的网络架构,下面结合图3对本申请的通信方法进行详细描述。
S301:第一网络设备向终端设备发送第一小区的第一同步信号。第一网络设备以下简称基站1。S301也可以理解为,基站1在第一小区上向终端设备发送第一同步信号。
具体的,第一同步信号用于终端进行小区同步和MIB获取。关于小区同步和MIB获取的具体内容,可以参见上述术语解释部分对于SSB的相关解释。
一种可选的方式中,第一同步信号携带第一PCI。第一PCI为第一小区的PCI。或者说,第一PCI用于标识第一小区。
另一种可选的方式中,多个序列和多个PCI满足第一关系,终端设备可以根据第一同步信号的序列以及第一关系,确定第一PCI。第一关系可以是预定义的,也可以是信令指示的。例如,第一关系可以通过第一信息指示。该方式下,也可以理解为通过第一同步信号所采用的序列来携带第一PCI。S302:基站1向终端发送第一信息,对应的,终端接收第一信息。
S302也可以理解为,基站1在第一小区向终端发送第一信息。
具体的,第一信息用于终端接收N个第二同步信号,和/或,第一信息用于终端获取第二小区的随机接入配置。
一种可选的方式中,第一信息指示以下至少一项:
N个第二同步信号的时域资源,N个第二同步信号的频域资源,N个第二同步信号的序列,或者,第二小区的随机接入配置。
可选的,第二小区的随机接入配置可以包括以下至少一项:
随机接入信号的候选时域资源,随机接入信号的候选频域资源,随机接入信号的候选码域配置或者,随机接入信号的候选发送功率。可选的,码域配置可以是序列。
一种可选的方式中,随机接入配置包括参数P1,P1用于确定随机接入信号的发送功率。
例如,终端设备发送随机接入信号的功率可以通过P1和路损来确定。可选的,该路损可以基于第二同步信号进行测量获得。P1、路损和随机接入信号的发送功率满足以下公式(1):
P_rach=min{P_max,P1+PL}(dBm)
其中P_max表示终端的最大发射功率,PL表示终端测量得到的路损。在公式(1)中,各个参数的单位均为dBm。dBm和瓦特(w)的换算可以通过如公式(2)进行:
x(dBm)=10*log10(P/0.001),其中P的单位为瓦特。
可选的,P1为随机接入信号的目标接收功率。一种可选的方式中,P1适用于任意基站,对于多个基站的场景,P1可以理解为每个基站的随机接入信号的目标接收功率,终端与多个基站中的任一个基站通信,都适用P1作为目标基站的随机接入信号的目标接收功率。另一种可选的方式中,P1为终端设备发送随机接入信号的目标基站的随机接入信号的目标接收功率。例如,当终端向基站A发送随机接入信号时,P1为基站A的随机接入信号的目标接收功率。
一种可选的方式中,第一信息为SIB1。
S303:第二网络设备向终端发送N个第二同步信号。相应的,终端接收N个第二同步信号。
具体的,第二网络设备以下简称基站2。也可以理解为,基站2在第二小区上向终端发送N个第二同步信号。
S303第一小区的覆盖范围可以包括第二小区的覆盖范围,或者说,第二小区的覆盖范围为第一小区的覆盖范围的真子集。例如图4中,基站1对应第一小区,基站2对应第二小区,第一小区的覆盖范围包括第二小区的覆盖范围。
需要说明的是,图4中以一个基站2和一个第二小区为例示出,但本申请中,第二小区可以有多个,基站2也可以有多个。
一种可选的方式中,第一信息还用于指示第一时间窗,第一时间窗为终端在第二小区检测同步信号的时间窗,或者说,第一时间窗为终端接收N个第二同步信号的时间窗。该方式下,S303中的终端接收N个第二同步信号,可以替换描述为,终端在第一时间窗内接收N个第二同步信号。
可选的,第一时间窗的起始位置是根据第一同步信号所确定的。在该方法中,终端设备根据第一同步信号完成下行同步,并且确定第一时间窗的起始位置。由于第一同步信号和第二同步信号可能来源于不同的基站,两个基站的时间同步不同。此时,若终端在一个固定的时域资源上接收N个第二同步信号,有可能无法检测到N个第二同步信号,或者接收N个第二同步信号的效率较低,因此,通过配置第一时间窗,终端设备在第一时间窗内检测第二同步信号,能够提高N个第二同步信号的接收效率。
具体的,N个第二同步信号与第一同步信号的空域配置不同。
例如图4中,N个第二同步信号和第一同步信号分别由不同的基站发送,由于不同的基站所在的地理位置不同,不同基站发送的同步信号的空域配置也不同。
一种可选的方式中,第一同步信号和N个第二同步信号的中心频点相同。进一步可选的,第一同步信号和N个第二同步信号的频域位置相同,或者,终端根据第一同步信号和N个第二同步信号,确定的部分带宽(bandwith part,BWP)的是相同的,也即,若终端根据第一同步信号确定的BWP为第一BWP,则终端根据N个第二同步信号确定的BWP也是第一BWP。
一种可选的方式中,N个第二同步信号中每个第二同步信号均携带第二PCI。第二PCI为第二小区的PCI,或者说第二PCI用于标识第二小区。当第一同步信号携带第一PCI时,也即,第一同步信号和N个第二同步信号分别携带不同的PCI。
另一种可选的方式中,第二PCI和N个第二同步信号的序列相关联。或者说,N个第二同步信号的序列与第二PCI满足第二关系,终端根据N个同步信号的序列,以及第二关系,确定第二PCI。
进一步可选的,第二关系可以通过第一信息获取。
S304:终端根据N个第二同步信号,在第二小区发送随机接入信号。
可选的,N个第二同步信号用于终端波束训练或者初始接入。以下分别描述。
一种可选的方式中,终端可以基于N个第二同步信号进行波束训练,从而获取与基站2通信的质量最好的波束。关于终端基于N个第二同步信号进行波束训练的过程,可以参考上术语解释部分关于波束训练的描述,此处不再赘述。
一种可选的方式,N个第二同步信号有不同的索引,或者说N个第二同步信号分别对应N个索引。N个索引对应N的序列。例如,N=2,表示有两个第二同步信号,两个第二同步信号的索引分别为0和1。索引为0的第二同步信号的序列为第一序列,索引为1的第二同步信号的序列为第二序列。
一种可选的方式中,N个同步信号用于初始接入,终端可以基于N个第二同步信号确定随机接入信号的时域资源、随机接入信号的频域资源、随机接入信号的码域资源,随机接入信号的空域配置,或者所述随机接入信号的发送功率中的至少一项。该码域资源可以是序列。
例如,N个第二同步信号携带第二PCI,第二PCI和终端发送随机接入信号的时频资源满足预定义的关系。又例如,N个第二同步信号的序列与终端发送随机接入信号的时频资源满足预定义的关系。终端通过N个同步信号的序列或者第二PCI,可以获知发送随机接入信号的时频资源。由于S303中,第一信息可以指示第二小区的随机接入配置,该方式下,第一信息指示随机接入信号的候选时域资源,候选频域资源,候选码域资源,候选发送功率中的至少一项,终端根据N个第二同步信号确定出的随机接入信号的实际时域资源,频域资源,码域资源,或者发送功率中的至少一项。
通过下面方式一,以终端基于N个第二同步信号确定随机接入信号的时频资源为例进行详细描述。
方式一:终端设备根据第一信息确定资源集合。该资源集合包括X个资源子集合,X为正整数。每个资源子集合包括一个或者多个第一资源。每个第一资源可以包括随机接入信号的时域资源、频域资源或码域资源中的一项或者多项。可选的,该码域资源可以为序列。
X个资源子集合中的每个资源子集合对应一个序列或者一个PCI。终端根据N个第二同步信号的序列,或者根据N个第二同步信号携带的PCI,从X个资源子集合中确定第一资源子集合。进一步的,第一资源子集合包括多个第一资源,终端可以按照一定的规则从第一资源子集合中确定第一资源,终端也可以从第一资源子集合中任意选择一个第一资源。第一资源包括的时域资源、频域资源或码域资源,也即终端发送随机接入信号使用的时域资源,频域资源或者码域资源。
该方式下,而且,第二小区的随机接入信号的资源可以通过第二同步信号的序列或者PCI所确定,不需要再通过其他信令独立的通知,对于第二小区有多个的场景,每个第二小区的随机接入信号的资源均不需要独立的通知,降低了基站的信令开销。
在一个可选的实施例中,S304中的终端根据N个第二同步信号,在第二小区发送随机接入信号,可以具体包括:终端从N个第二同步信号中,确定第三同步信号,根据第三同步信号,发送随机接入信号。
具体的,终端可以根据第三同步信号确定随机接入信号的时域资源、随机接入信号的频域资源、随机接入信号的码域资源,随机接入信号的空域配置,或者所述随机接入信号的发送功率中的至少一项。
一种可选的方式中,终端可以根据第三同步信号确定随机接入信号的空域配置,具体为,终端发送随机接入信号所采用的空域配置和接收第二同步信号所采用的空域配置相同。
一种可选的方式中,终端根据第三同步信号确定随机接入信号的发送功率,具体可以为,终端发送随机接入信号的功率通过第三同步信号测量的路损得到。更具体而言,可以参考步骤S302随机信号发射功率的确定方法,此处不再不赘述。
一种可选的方式中,终端根据第三同步信号确定随机接入信号的时频资源,也可以参考上述S304 的方式一。以下结合方式一,通过方式二对S304方式下,终端基于N个第二同步信号中的第三同步信号确定随机接入信号的时频资源进行详细描述。
方式二,终端设备根据第一信息确定资源集合。该资源集合包括X个资源子集合,X为正整数。每个资源子集合包括一个或者多个第一资源。每个第一资源可以包括随机接入信号的时域资源、频域资源或码域资源中的一项或者多项。可选的,该码域资源可以为序列。
X个资源子集合中的每个资源子集合对应多个序列。终端根据N个第二同步信号的序列,从X个资源子集合中确定第一资源子集合。进一步的,第一资源子集合包括多个第一资源,多个第一资源与N个同步信号的序列分别对应。终端根据N个同步信号中,第三同步信号的序列,从多个第一资源中选出与第三同步信号的序列对应的第一资源,并使用与第三同步信号的序列对应的第一资源发送随机接入信号。
方式一中,终端确定随机接入信号的相关信息的粒度为资源子集合,方式二中,终端确定随机接入信号的相关信息的粒度为资源子集合中的资源终端可以通过更细的粒度确定随机接入信号的相关信息。当第二小区中有多个终端时,不同终端选择随机接入信号的资源粒度更小,可以减少资源冲突。
一种可选的方式中,图3所示方法还包括S305:终端在第二小区发送第二信息,第二信息用于指示第三同步信号。
图3所示方法中,基站1发送第一同步信号和第一信息,用于终端接收第二同步信号或者第二小区的随机接入配置,基站2发送N个同步信号,终端可以基于基站2发送的N个同步信号发送随机接入信号,从而接入网络。对于基站1和基站2来说,由于终端根据基站2的同步信号可以发送随机接入信号,基站2不需要再向终端发送第一信息,从而从整体上节省了基站的功耗。
图5所示为本申请提供另一个实施例的流程示意图,以下结合图5详细描述。
S501:终端设备在第一小区接收第一同步信号。
可选的,可选的,第一小区的第一同步信号通过第一网络设备发送,第一网络设备以下简称基站1。
第一信号的具体描述可以参考步骤S301中的描述,此处不再赘述。
S502:终端在第一小区接收第一信息。
可选的,基站1在第一小区发送第一信息,终端从基站1接收第一小区的第一信息。
第一信息的具体描述可以参考步骤S302中的描述,此处不再赘述。
S503:终端在第二小区接收N个第二同步信号。
一种可选的方式中,第二网络设备在第二小区向终端发送N个第二同步信号,第二网络设备以下简称基站2。
N个第二同步信号的具体描述可以参考步骤S302中的描述,此处不再赘述。
S504:终端根据第一同步信号,确定第一路损;终端根据N个第二同步信号,确定第二路损。
S505:当第一路损小于第二路损时,终端在第一小区发送随机接入信号。当第一路损大于第二路损时,终端在第二小区发送随机接入信号。
具体的,第一路损可以理解为终端与基站1通信的路损,第二路损可以理解为终端与基站2通信的路损。
结合图4所示场景,终端在第一小区发送随机接入信号,也可以理解为终端在第一小区向基站1发送随机接入信号,终端在第二小区发送随机接入信号,也可以理解为终端在第二小区向基站2发送随机接入信号。
图5所示方法中,基站1发送第一同步信号和第一信息,用于终端接收第二同步信号或者第二 小区的随机接入配置,基站2发送N个同步信号,终端选择路损较小的基站,发送随机接入信号,从而接入网络。对于基站1和基站2来说,相对于基站2不需要再向终端发送第一信息,从而从整体上节省了基站的功耗。对终端而言,终端选择路损较小的基站发送随机接入信号,意味着终端设备采用较小的功率发送随机接入信号,基站也能够检测到随机接入信号,因此有利于终端设备节能。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图6和图7为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端70a-70j中的一个,也可以是如图1所示的基站60a或60b,还可以是应用于终端或基站的模块(如芯片)。
如图6所示,通信装置600包括处理单元610和收发单元620。通信装置600用于实现上述图3或者图5中所示的方法实施例中终端或基站的功能。
当通信装置600用于图3或者图5所示的方法实施例中终端的功能时:收发单元620用于接收第一同步信号,第一信息和N个第二同步信号,收发单元620还用于发送随机接入信号。处理单元610用于根据N个第二同步信号控制收发单元620发送随机接入信号的配置。
一种可选的方式中,收发单元620还用于发送第二信息,第二信息用于指示N个同步信号中的第三同步信号。
有关上述处理单元610和收发单元620更详细的描述可以直接参考图3或者图5所示的方法实施例中相关描述直接得到,这里不加赘述。
当通信装置600用于实现图3或图5所示的方法实施例中基站1的功能时:收发单元620用于发送第一同步信号。处理单元610可以是可选的。当通信装置600包括处理单元610时,在一种可选的方式中,处理单元610可以用于确定第一同步信号。
当通信装置600用于实现图3或图5所示的方法实施例中基站2的功能时:收发单元620用于发送N个第二同步信号,以及接收随机接入信号,一种可选的方式中,收发单元620还用于接收第二信息,第二信息用于指示N个同步信号中的第三同步信号。处理单元610可以是可选的。当通信装置600包括处理单元610时,一种可选的方式中,处理单元610用于确定N个第二同步信号。
有关上述处理单元610和收发单元620更详细的描述可以直接参考图3或图5所示的方法实施例中相关描述直接得到,这里不加赘述。
如图7所示,通信装置700包括处理器710和接口电路720。处理器710和接口电路720之间相互耦合。可以理解的是,接口电路720可以为收发器或输入输出接口。可选的,通信装置700还可以包括存储器730,用于存储处理器710执行的指令或存储处理器710运行指令所需要的输入数据或存储处理器710运行指令后产生的数据。
当通信装置700用于实现图7所示的方法时,处理器710用于实现上述处理单元610的功能,接口电路720用于实现上述收发单元620的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者, 该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (19)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    在第一小区接收第一同步信号;
    根据第一同步信号在第一小区接收第一信息,所述第一信息指示以下至少一项:N个第二同步信号的时域资源、所述N个第二同步信号的频域资源、所述N个第二同步信号的序列,或者,所述第一信息指示第二小区的随机接入配置,所述N为正整数;
    在所述第二小区接收所述N个第二同步信号;
    根据所述N个第二同步信号或者所述第二小区的随机接入配置,在所述第二小区上发送随机接入信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一同步信号和所述N个第二同步信号的空域配置不同。
  3. 根据权利要求1或者2所述的方法,其特征在于,所述第二小区的随机接入配置包括以下至少一项:
    所述随机接入信号的候选时域资源,所述随机接入信号的候选频域资源,所述随机接入信号的候选码域资源,或者所述随机接入信号的候选发送功率信息。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述N个第二同步信号中的每个同步信号均携带第二物理小区标识PCI,所述随机接入信号的时频资源根据所述第二PCI确定,或者,
    所述随机接入信号的时频资源根据所述N个第二同步信号的序列确定。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,包括:
    根据所述第一同步信号确定第一路损;
    根据所述N个第二同步信号确定第二路损,其中,所述第一路损大于所述第二路损。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一同步信号和所述N个第二同步信号的中心频点相同。
  7. 根据要求1-6任一项所述的方法,其特征在于,根据所述N个第二同步信号,发送随机接入信号,包括:
    确定第三同步信号,所述第三同步信号属于所述N个第二同步信号;
    根据所述第三同步信号,发送所述随机接入信号。
  8. 一种通信方法,其特征在于,所述方法包括:
    在第一小区上发送第一同步信号;
    在所述第一小区发送第一信息,所述第一信息指示以下至少一项:N个第二同步信号的时域资源、所述N个第二同步信号的频域资源、所述N个第二同步信号的序列,或者,所述第一信息指示第二小区的随机接入配置,所述N为正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述第一同步信号和所述N个第二同步信号的空域配置不同。
  10. 根据权利要求8或者9所述的方法,其特征在于,
    所述第一同步信号对应第一路损,所述N个第二同步信号对应第二路损,所述第一路损大于所述第二路损。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述第一同步信号和所述N个第二同步信号的中心频点相同。
  12. 一种通信方法,其特征在于,所述方法包括:
    在第二小区发送N个第二同步信号;
    接收来自终端设备的随机接入信号,所述随机接入信号的时频资源是根据所述N个第二同步信号确定的,其中,所述N个第二同步信号的时频资源或者所述N个第二同步信号的序列根据第一信息确定,所述第一信息的调度信息的时频资源根据第一同步信号确定,所述第一同步信号与所述N个第二同步信号的空域配置不同,所述N为正整数。
  13. 根据权利要求12所述的方法,其特征在于,
    所述N个第二同步信号中的每个第二同步信号均携带的第二PCI,所述随机接入信号的时频资源根据所述第二PCI确定,或者,
    所述随机接入信号的时频资源根据所述N个第二同步信号的序列确定。
  14. 根据权利要求12或者13所述的方法,其特征在于,所述第一同步信号对应第一路损,所述N个第二同步信号对应第二路损,所述第一路损大于所述第二路损。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述第一同步信号和所述N个第二同步信号的中心频点相同。
  16. 根据要求12-15任一项所述的方法,其特征在于,所述接收来自终端设备的所述随机接入信号,包括:
    根据所述N个第二同步信号中的第三同步信号,从所述终端设备接收所述随机接入信号。
  17. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述至少一个处理器的信号发送给所述通信装置之外的其它通信装置,所述至少一个处理器通过逻辑电路或执行代码指令用于实现如权利要求1-7或者如权利要求8-11或者如权利要求12-16中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被运行时,实现如权利要求1-7或者如权利要求8-11或者如权利要求12-16中任一项所述的方法。
  19. 一种计算机程序产品,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得如权利要求1-7或者如权利要求8-11或者如权利要求12-16中任一项所述的方法被执行。
PCT/CN2023/107875 2022-08-12 2023-07-18 一种通信方法和装置 WO2024032326A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210968849.2 2022-08-12
CN202210968849.2A CN117651307A (zh) 2022-08-12 2022-08-12 一种通信方法和装置

Publications (1)

Publication Number Publication Date
WO2024032326A1 true WO2024032326A1 (zh) 2024-02-15

Family

ID=89850733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107875 WO2024032326A1 (zh) 2022-08-12 2023-07-18 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN117651307A (zh)
WO (1) WO2024032326A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695278A (zh) * 2012-06-05 2012-09-26 华为技术有限公司 资源分配方法及设备
US20200329503A1 (en) * 2017-09-28 2020-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Multi-beam random access procedure in handover execution
CN112399630A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695278A (zh) * 2012-06-05 2012-09-26 华为技术有限公司 资源分配方法及设备
US20200329503A1 (en) * 2017-09-28 2020-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Multi-beam random access procedure in handover execution
CN112399630A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Introducing 5G indication in LTE RRC SIB", 3GPP DRAFT; R2-1710512 - INTRODUCING 5G INDICATION IN LTE RRC SIB, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051342555 *

Also Published As

Publication number Publication date
CN117651307A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
CN110089187B (zh) 共享通信介质上的自主上行链路传输
WO2018196716A1 (zh) 一种寻呼指示的传输方法及装置
JP2019502301A (ja) 共有通信媒体におけるショート物理アップリンク制御チャネル(pucch)のためのハイブリッド自動再送要求(harq)ペイロードマッピング
WO2021057473A1 (zh) 一种共生网络中载波的调度方法、装置及存储介质
WO2020221318A1 (zh) 一种上行波束管理方法及装置
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
WO2021233206A1 (zh) 参数确定方法及装置
US11134514B2 (en) Random access method, network device, and terminal device
WO2016004828A1 (zh) 基站、用户设备及相关方法
WO2018228537A1 (zh) 信息发送、接收方法及装置
US20230179374A1 (en) Channel transmission method, terminal device, and network device
WO2022022517A1 (zh) 确定传输功率的方法及装置
WO2021254482A1 (zh) 一种覆盖增强等级的确定方法及装置
CN109644403A (zh) 无线通信的方法和设备
JP2023512807A (ja) 無線通信において、低減した能力のデバイスをサポートする方法及び装置
WO2024032326A1 (zh) 一种通信方法和装置
US20210136833A1 (en) Random access method and data reception method, apparatuses thereof and communication system
WO2020200115A1 (zh) 通信方法、装置、系统和存储介质
CN113678563B (zh) 随机接入方法及相关设备
CN113993142A (zh) 通信方法及装置
WO2024017019A1 (zh) 一种通信方法和装置
WO2023125091A1 (zh) 通信方法及装置
WO2023207589A1 (zh) 信息传输的方法和通信装置
WO2024045882A1 (zh) 服务小区选择方法和装置
WO2024032329A1 (zh) 通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851549

Country of ref document: EP

Kind code of ref document: A1