WO2024032329A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2024032329A1
WO2024032329A1 PCT/CN2023/107917 CN2023107917W WO2024032329A1 WO 2024032329 A1 WO2024032329 A1 WO 2024032329A1 CN 2023107917 W CN2023107917 W CN 2023107917W WO 2024032329 A1 WO2024032329 A1 WO 2024032329A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
information
pattern
ssbs
time
Prior art date
Application number
PCT/CN2023/107917
Other languages
English (en)
French (fr)
Inventor
李锐杰
官磊
周国华
马霓
吴恒恒
马川
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032329A1 publication Critical patent/WO2024032329A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communications. In particular, it relates to a communication method, device and system.
  • the network device needs to periodically send SSB and SIB1.
  • the terminal device thinks that the SSB sending period is 20ms (milliseconds). If the network device sends The maximum period of SSB is longer, and the terminal device may not detect the NR network.
  • SIB1 also includes the information necessary for the terminal device to access the network. If the period for sending SIB1 is long, the terminal device will have to wait for a long time to access the network, which will also reduce the experience of the terminal device.
  • the configuration of the above-mentioned public signals is not flexible enough, resulting in high energy consumption of network equipment and terminal equipment.
  • This application provides a communication method that can improve the flexibility of system message configuration and reduce network equipment energy consumption.
  • embodiments of the present application provide a communication method.
  • the method can be executed by a terminal device, or can also be executed by a chip or circuit used in the terminal device.
  • This application does not limit this.
  • the following description takes execution by a terminal device as an example.
  • the method may include: the terminal device receives the first SSB, the terminal device receives first information according to the first SSB, the first information is used to indicate candidate time-frequency resources of the second SSB, and the terminal device determines the second SSB according to the first information .
  • the network device configures the time domain resources of the SSB according to the first information, which improves the flexibility of the network device in configuring time-frequency resources.
  • the first SSB corresponds to a first pattern
  • the second SSB corresponds to a second pattern
  • the first pattern and the second pattern are different.
  • the first pattern may be predefined or preset.
  • the second pattern may be predefined, preset, or instructed by the network device, which is not limited in this application.
  • the patterns corresponding to the time-frequency resources of the first SSB and the second SSB are different.
  • the pattern corresponding to the first SSB may be a pattern defined in the existing protocol, and the pattern corresponding to the second SSB may be the pattern defined in the existing protocol.
  • the protocol defines different patterns, for example, new patterns based on existing technology.
  • the first SSB and the second SSB respectively correspond to different patterns.
  • the terminal device can determine the first SSB according to the first pattern, and can determine the second SSB according to the second pattern.
  • the terminal device determines the SSB in the following ways: A variety of network devices further improve the flexibility of configuring time and frequency resources for network equipment.
  • the first information is used to indicate candidate time-frequency resources of the second SSB, including: the first information indicates a second pattern, and the second pattern is used to Indicates the candidate time-frequency resources of the second SSB.
  • the network device indicates the second pattern to the terminal device through the first information.
  • the second pattern belongs to a pattern set, and the pattern set includes at least one candidate pattern.
  • the second pattern is determined from the pattern set, or the second pattern is determined from multiple candidate patterns.
  • different patterns in the pattern set may correspond to different subcarrier intervals and/or bandwidths.
  • This method provides diverse SSB configurations for different communication scenarios, which is beneficial to improving communication efficiency.
  • the terminal device receives second information, the second information indicating time domain resources used to send the second SSB in the second pattern.
  • the pattern may be used to indicate candidate time-frequency resources of the second SSB, and the second information may indicate the time-frequency resources actually used to carry the SSB in the second pattern.
  • the network device instructs the terminal device to send the time domain resources of the second SSB, and the terminal device no longer needs to determine it by itself, which reduces the processing complexity of the terminal device and saves the power consumption of the terminal device.
  • the first information includes location information of the time domain resource of the second SSB.
  • the content of the first information is the information of the time-frequency resources of the second SSB.
  • the network device directly indicates the time-frequency resources of the second SSB to the terminal device, further reducing the complexity of the terminal device determining the time-frequency resources. Improve communication efficiency.
  • the second SSB belongs to N SSBs, the N SSBs belong to the same cell, the N SSBs belong to Q sets, and the Q is greater than or equal to 1.
  • the first information also includes the corresponding relationship between the N SSBs and the Q sets.
  • each of the Q sets is a synchronization signal burst set (SSB burst).
  • the SSBs sent by the network device to the terminal device all belong to the same cell. These SSBs may correspond to different sets, and the sets may also be called other names such as clusters, groups, or subsets. This application does not limit this. That is to say, in this method, the network device can jointly send SSB through multiple SSB bursts, which improves the transmission efficiency of SSB.
  • the first SSB and the second SSB have the same frequency domain position and different time domain positions.
  • the SSB included in the second pattern and the first SSB are transmitted in a time-division manner.
  • the first information is used to indicate candidate time-frequency resources of the second SSB, including: the first information indicates an offset value, and the offset value is The offset value of the candidate time-frequency resource of the second SSB relative to the time-frequency resource of the first SSB.
  • the first information is used to indicate an offset value, where the offset value is the frequency domain position of the second SSB relative to the frequency domain position of the first SSB. offset value.
  • the network device can indicate the offset value to the terminal device, and the terminal device determines the time-frequency resource of the second SSB based on the offset value and the reference (the first SSB time-frequency resource), which improves the efficiency of the network device in indicating the time-frequency resource.
  • Diversity the number of bits that can be used to indicate the offset value to the terminal device.
  • the first SSB occupies a first time-frequency resource, the first time-frequency resource belongs to the candidate time-frequency resource indicated by the first pattern, and belongs to the candidate time-frequency resource indicated by the second pattern.
  • the candidate time-frequency resources of the second SSB may include the candidate time-frequency resources of the first SSB, which can improve compatibility between different patterns.
  • embodiments of the present application provide a communication method, which can be executed by a network device, or can also be executed by a chip or circuit used in a network device, which is not limited by this application.
  • the method may include: the network device sends the first SSB, and the network device sends first information according to the first SSB, where the first information is used to indicate candidate time-frequency resources of the second SSB.
  • the first SSB corresponds to a first pattern
  • the second SSB corresponds to a second pattern
  • the first pattern and the second pattern are different.
  • the first information indicates the candidate time-frequency resources of the second SSB, including: the first information indicates a second pattern, and the second pattern is used to indicate the Candidate time-frequency resources for the second SSB.
  • the second pattern belongs to a pattern set, and the pattern set includes at least one candidate pattern.
  • the network device sends second information, the second information is used to indicate the The time domain resource in the second pattern is used to receive the second SSB.
  • the first information includes location information of the time domain resource of the second SSB.
  • the second SSB belongs to N SSBs, the N SSBs belong to the same cell, the N SSBs belong to Q sets, and the Q is greater than or equal to 1.
  • the first information also includes the corresponding relationship between the N SSBs and the Q sets.
  • each of the Q sets is a synchronization signal burst set (SSB burst).
  • the frequency domain positions of the first SSB and the second SSB are the same, and the time domain positions are different.
  • the first information is used to indicate candidate time-frequency resources of the second SSB, including: the first information indicates an offset value, and the offset value is the first The offset value of the candidate time-frequency resource of the second SSB relative to the time-frequency resource of the first SSB.
  • the first information indicates an offset value
  • the offset value is an offset of the frequency domain position of the second SSB relative to the frequency domain position of the first SSB. value.
  • the first SSB occupies a first time-frequency resource
  • the first time-frequency resource belongs to the candidate time-frequency resource indicated by the first pattern, and belongs to the candidate time-frequency resource indicated by the second pattern.
  • the second aspect is a method on the network device side corresponding to the first aspect.
  • the relevant explanations, supplements, and descriptions of beneficial effects of the first aspect are also applicable to the second aspect, and will not be described again here.
  • embodiments of the present application provide a communication method, which can be executed by a terminal device, or can also be executed by a chip or circuit used in the terminal device, which is not limited by this application.
  • the method may include: the terminal device determines N SSBs, where N is a positive integer greater than or equal to 2, where the N SSBs include a first SSB and a second SSB, where the first SSB is in the time domain among the N SSBs.
  • the SSB with the earliest position, the second SSB is the SSB with the latest position in the time domain among the N SSBs, the time domain interval between the first SSB and the second SSB is greater than half the length of the first frame, the A frame is a frame carrying the N SSBs.
  • the N SSBs belong to P sets.
  • the P is a positive integer greater than or equal to 2.
  • the P sets correspond to P cells one-to-one.
  • the P cells are different from each other.
  • the terminal device receives at least one SSB among the N SSBs.
  • multiple SSBs sent by the network device to the terminal device are divided into different cells, which expands the coverage of the time-frequency resources occupied by the SSB, such as being distributed over the entire frame, increasing the system information in different communication modes.
  • the opportunity to align time-frequency resources increases the probability of network equipment shutting down, which can save power consumption of network equipment and terminal equipment.
  • it enables terminal equipment of different versions to receive and identify SSB, reducing user costs.
  • the P sets when P is 4, the P sets include a first set, a second set, a third set and a fourth set, and the first set and the th
  • the SSB indexes included in the three sets are 2, O is 2, and M is 1; the SSB indexes corresponding to the SSBs included in the second set and the fourth set are 4, O is 5, and M is 1.
  • the O and the SSB indexes are 1.
  • the M is used to determine the candidate position of SIB1 in the SSB.
  • the network device sends SSB in a time-divided manner. It should be understood that the above values of O and M are only an example and not a limitation.
  • the N SSBs include a third SSB and a fourth SSB.
  • the third SSB belongs to the first cell
  • the fourth SSB belongs to the second cell
  • the third SSB belongs to the second cell.
  • the SSB and the fourth SSB occupy the same time domain resources but different frequency domain resources.
  • the network device sends SSBs belonging to different cells to the terminal device in a frequency division manner.
  • embodiments of the present application provide a communication method, which can be executed by a network device, or can also be executed by a chip or circuit used in a network device, which is not limited by this application.
  • a communication method which can be executed by a network device, or can also be executed by a chip or circuit used in a network device, which is not limited by this application.
  • the following description takes execution by a network device as an example.
  • the method may include: the network device determines N SSBs, the N SSBs include a first SSB and a second SSB, the first SSB is the SSB with the earliest position in the time domain among the N SSBs, and the second SSB is The latest set of N SSBs in the time domain, the time domain interval between the first SSB and the second SSB is greater than half the length of the first frame, and the first frame is a frame carrying the N SSBs,
  • the N SSBs belong to P sets, where P is a positive integer greater than or equal to 2.
  • the P sets correspond to P cells one-to-one, and the P cells are different from each other.
  • the network device sends the N SSBs.
  • the P sets when P is 4, the P sets include a first set, a second set, a third set and a fourth set, and the first set and the th
  • the SSB indexes corresponding to the SSBs included in the three sets are 2, O is 2, and M is 1; the SSB indexes included in the second set and the fourth set are 4, O is 5, and M is 1.
  • the O and the SSBs included in the fourth set are 1.
  • the M is used to determine the candidate position of SIB1 in the SSB.
  • the SSB includes a third SSB and a fourth SSB.
  • the third SSB belongs to the first cell
  • the fourth SSB belongs to the second cell
  • the third SSB and The fourth SSB occupies the same time domain resources but different frequency domain resources.
  • the fourth aspect is a method on the network device side corresponding to the third aspect, and the relevant explanations, supplements, and descriptions of beneficial effects in the third aspect are also applicable to the fourth aspect, and will not be described again here.
  • inventions of the present application provide a communication device.
  • the device includes a processing module and a transceiver module.
  • the transceiver module can be used to receive the first SSB.
  • the transceiver module is also used to receive the first information according to the first SSB.
  • the first information is used to indicate candidate time-frequency resources of the second SSB, and the processing module is used to determine the second SSB according to the first information.
  • inventions of the present application provide a communication device.
  • the communication device includes a transceiver module and a processing module.
  • the transceiver module is used to send the first SSB.
  • the transceiver module is also used to send the first information.
  • inventions of the present application provide a communication device.
  • the communication device includes a transceiver module and a processing module.
  • the processing module is used to determine N SSBs, where N is a positive integer greater than or equal to 2, and the N SSBs include The first SSB and the second SSB.
  • the first SSB is the SSB with the earliest position in the time domain among the N SSBs.
  • the second SSB is the SSB with the latest position in the time domain among the N SSBs.
  • the first SSB is the SSB with the earliest position in the time domain among the N SSBs.
  • the time domain interval between the SSB and the second SSB is greater than half the length of the first frame.
  • the first frame is a frame carrying the N SSBs.
  • the N SSBs belong to P sets, where P is a positive number greater than or equal to 2. Integer, the P sets correspond to the P cells one-to-one, the P cells are different from each other, and the transceiver module is used to receive at least one of the N SSBs.
  • inventions of the present application provide a communication device.
  • the communication device includes a transceiver module and a processing module.
  • the processing module is used to determine N SSBs.
  • the N SSBs include a first SSB and a second SSB.
  • the first SSB The SSB is the earliest SSB in the time domain among the N SSBs.
  • the second SSB is the last set of the N SSBs in the time domain.
  • the time domain interval between the first SSB and the second SSB is Greater than half the length of the first frame.
  • the first frame is a frame carrying the N SSBs.
  • the N SSBs belong to P sets.
  • the P is a positive integer greater than or equal to 2.
  • the P sets are one by one with the P cells.
  • the P cells are different from each other, and the transceiver module is used to send the N SSBs.
  • the fifth aspect, the sixth aspect, the seventh aspect, and the eighth aspect are device-side implementations corresponding to the first aspect, the second aspect, the third aspect, and the fourth aspect respectively.
  • the relevant explanations, supplements, possible implementation methods, and descriptions of beneficial effects of aspects, third aspects, and fourth aspects are also applicable to the fifth, sixth, seventh, and eighth aspects respectively, and will not be repeated here.
  • embodiments of the present application provide a communication device, including an interface circuit and a processor.
  • the interface circuit is used to implement the functions of the transceiver module in the fifth aspect or the seventh aspect.
  • the processor is used to implement the fifth aspect or the seventh aspect.
  • embodiments of the present application provide a communication device, including an interface circuit and a processor.
  • the interface circuit is used to implement the functions of the transceiver module in the sixth or eighth aspect.
  • the processor is used to implement the sixth or eighth aspect. The functions of the processing module in the eighth aspect.
  • embodiments of the present application provide a computer-readable medium that stores program code for execution by a terminal device, where the program code includes a program code for executing the first aspect or the third aspect, or, Instructions for any possible method in the first aspect or the third aspect, or all possible methods in the first aspect or the third aspect.
  • embodiments of the present application provide a computer-readable medium that stores program code for execution by a network device, where the program code includes execution of the second aspect or the fourth aspect, or, Any possible method in the second aspect or the fourth aspect, or instructions for all possible methods in the second aspect or the fourth aspect.
  • a thirteenth aspect provides a computer program product storing computer-readable instructions.
  • the computer causes the computer to execute the above-mentioned first aspect or third aspect, or the first aspect or Any possible way in the third aspect, or all possible ways in the first aspect or the third aspect.
  • a fourteenth aspect provides a computer program product that stores computer-readable instructions.
  • the computer is caused to execute the above-mentioned second aspect or fourth aspect, or the second aspect or Any possible way in the fourth aspect, or all possible ways in the second aspect or the fourth aspect.
  • a fifteenth aspect provides a communication system, which includes a system capable of implementing the above first aspect or the third aspect, or the third aspect. Any possible way in the first aspect or the third aspect, or, all possible ways, methods and various possible designed functional devices in the first aspect or the third aspect, and the second aspect or the fourth aspect, or, the Any possible way in the second aspect or the fourth aspect, or all the possible ways, methods and devices with various possible designed functions in the second aspect or the fourth aspect.
  • a sixteenth aspect provides a processor, coupled to a memory, for executing the first aspect or the third aspect, or any possible method of the first aspect or the third aspect, or the first aspect.
  • Aspect or third aspect in all possible ways.
  • a seventeenth aspect provides a processor, coupled to a memory, for executing the above second aspect or the fourth aspect, or any possible method of the second aspect or the fourth aspect, or the second aspect. method in all possible ways in aspect or fourth aspect.
  • An eighteenth aspect provides a chip system.
  • the chip system includes a processor and may also include a memory for executing computer programs or instructions stored in the memory, so that the chip system implements any of the foregoing first to fourth aspects. Methods in one aspect, and in any possible implementation of either aspect.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • a nineteenth aspect provides a computer program product storing computer-readable instructions.
  • the computer is caused to execute the above-mentioned first aspect or third aspect, or the first aspect or Any possible implementation method in the third aspect, or all possible implementation methods in the first aspect or the third aspect.
  • a twentieth aspect provides a computer program product that stores computer-readable instructions.
  • the computer is caused to execute the above-mentioned second aspect or fourth aspect, or the second aspect or Any possible way in the fourth aspect, or all possible implementation methods in the second aspect or the fourth aspect.
  • a twenty-first aspect provides a communication system, including at least one communication device according to the fifth aspect and/or at least one communication device according to the sixth aspect, the communication system being used to implement the first aspect or the second aspect.
  • the communication system being used to implement the first aspect or the second aspect.
  • a communication system including at least one communication device according to the seventh aspect and at least one communication device according to the eighth aspect.
  • the communication system is used to implement the above third or fourth aspect, Or, any possible method in the third aspect or the fourth aspect, or all possible implementation methods in the third aspect or the fourth aspect.
  • a communication method including: a network device sends a first SSB to a terminal device, the terminal receives the first SSB, and receives first information according to the first SSB, and the first information is used to indicate the second SSB. For candidate time-frequency resources, the terminal device determines the second SSB based on the first information.
  • Figure 1 shows a system architecture suitable for embodiments of the present application.
  • Figure 2 shows a schematic structural diagram of an SSB.
  • Figure 3 shows a schematic diagram of an SSB pattern.
  • Figure 4 shows another schematic diagram of an SSB pattern.
  • Figure 5 shows a schematic diagram of the relationship between SSB and CORESET0.
  • Figure 6 shows a schematic diagram of a frame structure.
  • Figure 7 shows a schematic diagram of the correspondence between subframes and symbols.
  • Figure 8 shows a schematic diagram of the correspondence between subframes, MIBs and symbols.
  • Figure 9 shows a schematic diagram of a communication method proposed by an embodiment of the present application.
  • Figure 10 shows a schematic diagram of the correspondence between subframes, SSBs and symbols.
  • Figure 11 shows a schematic diagram of a communication resource proposed in this embodiment of the present application.
  • Figure 12 shows a schematic diagram of yet another communication method proposed by the embodiment of the present application.
  • Figure 13 shows a schematic diagram of yet another communication resource proposed by the embodiment of the present application.
  • Figure 14 shows a schematic diagram of beam scanning proposed by the embodiment of the present application.
  • Figure 15 shows a schematic block diagram of a communication device proposed in an embodiment of the present application.
  • Figure 16 shows a schematic block diagram of yet another communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic architectural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes wireless
  • the access network 100 and the core network 200, optionally, the communication system 1000 may also include the Internet 300.
  • the radio access network 100 may include at least one radio access network device (110a and 110b in Figure 1), and may also include at least one terminal (120a-120j in Figure 1).
  • the terminal is connected to the wireless access network equipment through wireless means, and the wireless access network equipment is connected to the core network through wireless or wired means.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • Wireless access network equipment can be a base station, an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), or the next generation of the fifth generation (5th generation, 5G) mobile communication system.
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, can be a centralized unit (CU) or a distributed unit (DU).
  • the CU here completes the functions of the base station's radio resource control protocol and packet data convergence protocol (PDCP), and can also complete the functions of the service data adaptation protocol (SDAP); DU completes the functions of the base station
  • the functions of the wireless link control layer and medium access control (MAC) layer can also complete some or all of the physical layer functions.
  • the wireless access network equipment may be a macro base station (110a in Figure 1), a micro base station or an indoor station (110b in Figure 1), or a relay node or donor node.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the wireless access network equipment.
  • the following description takes a base station as an example of a radio access network device.
  • the terminal can also be called terminal equipment, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal.
  • Base stations and terminals can be fixed-location or mobile. Base stations and terminals can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites. The embodiments of this application do not limit the application scenarios of base stations and terminals.
  • the helicopter or drone 120i in Figure 1 may be configured as a mobile base station.
  • the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is through a wireless air interface protocol.
  • communication between 110a and 120i can also be carried out through an interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, both base stations and terminals can be collectively called communication devices.
  • 110a and 110b in Figure 1 can be called communication devices with base station functions
  • 120a-120j in Figure 1 can be called communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time; it can communicate through 6,000 It can communicate using spectrum below gigahertz (GHz), it can also communicate through spectrum above 6GHz, and it can also communicate using spectrum below 6GHz and spectrum above 6GHz at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem that includes the base station functions.
  • the control subsystem containing base station functions here can be the control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal can also be performed by modules in the terminal (such as chips or modems), or by a device containing the terminal functions.
  • Wireless communication between communication devices may include: wireless communication between network devices and terminals, wireless communication between network devices and network devices, and wireless communication between terminal devices and terminal devices.
  • Wireless communication may also be referred to as “communication”
  • communication may also be described as "data transmission”, “information transmission” or “transmission”.
  • the physical uplink share channel (physical downlink share channel, PDSCH), the physical downlink control channel (physical downlink control channel, PDCCH) and the physical uplink share channel (physical uplink share channel, PUSCH)
  • PDSCH physical downlink share channel
  • PDCCH physical downlink control channel
  • PUSCH physical uplink share channel
  • Public signals also known as public information or non-dedicated information
  • public information can be understood as information sent by a network device to a community.
  • public information can be system information block (SIB), SSB, etc.
  • SIB system information block
  • SSB also called synchronization signal block
  • SSB includes synchronization signals and broadcast signals.
  • Specific synchronization signals include PSS and SSS; broadcast signals include PBCH data (physical broadcast channel data, PBCH data) and PBCH demodulation reference signal (demodulation reference signal, DMRS) signals.
  • Figure 2 shows an example of the time-frequency domain structure of SSB.
  • SSB occupies 4 orthogonal frequency division multiplexing OFDM symbols in the time domain and 20 RBs in the frequency domain, that is, 240 subcarriers. , SC).
  • NR's SSB mainly has two functions: 1) cell synchronization and acquisition of master information block (MIB), where MIB can be carried through PBCH; 2) base station side wide beam training.
  • MIB master information block
  • PSS and SSS will carry the physical cell identifier (PCI) of the cell, and the UE obtains the PCI by detecting the PSS and SSS.
  • PCI physical cell identifier
  • the PBCH of SSB will carry SSB index (index). Each SSB index corresponds to the sending position of an SSB.
  • the terminal can complete downlink timing synchronization by detecting the SSB index and detection time.
  • each PCI corresponds to a specific downlink reference signal sequence. All PCIs are divided into 168 groups (corresponding to variable The value range is 0 ⁇ 167), each group contains 3 cell IDs (corresponding variables The value range is 0 ⁇ 2), that is,
  • FIG. 2 shows the time domain positions of PSS and SSS in frequency division duplex (FDD) and time division duplex (TDD) systems.
  • FDD frequency division duplex
  • TDD time division duplex
  • PSS is sent on the last OFDM symbol of the first slot of subframes 0 and 5; SSS and PSS are sent on the same The subframe is sent on the same time slot, but the SSS is located on the penultimate OFDM symbol, one OFDM symbol earlier than the PSS.
  • PSS is transmitted on the third OFDM symbol of subframes 1 and 6, while SSS is transmitted on the last OFDM symbol of subframes 0 and 5. Compared with PSS 3 symbols ahead.
  • Beam training is also often called beam alignment and beam selection. Beam training uses simulated transmit beams and receive beams to detect the channel and find the transmit and receive beam combination with the largest received signal energy, that is, the beam pair that is most suitable for the transmission of the channel, thereby avoiding direct estimation of the air interface channel.
  • an SSB pattern will contain multiple SSB indexes. Different SSB indexes can correspond to different base stations transmitting beams. The UE can detect the SSB and select the best SSB index, such as SSB index 1, to complete wide beam training.
  • the UE can also use multiple receive beams to receive an SSB index 1 with different receive beams, and select the best receive beam, such as receive beam 2, to complete the UE side receive beam training.
  • the functions of this base station's wide beam include: 1) The UE is at the position corresponding to the SSB index 1 and improves the coverage of SIB1/Paging by receiving the SIB1/Paging sent by the beam 2. 2) The UE is at the position corresponding to the SSB index 1 and sends physical random information. Access channel (physical random access channel, PRACH), the base station can use the same wide beam that sends SSB index 1 to receive PRACH, improving the probability of PRACH reception success.
  • PRACH physical random access channel
  • the base station can The wide beam (receiving beam 2) performs thin beam training, that is, only the thin beams within the range of the receiving beam 2 are trained, thereby reducing the cost of fine beam training.
  • SSB detection The terminal device needs to blindly detect the location of SSB. However, since the cell bandwidth in NR is very wide, if the terminal device tries to detect SSB at every frequency point, the access speed of the terminal device will be very slow. Therefore, synchronization is defined in the NR protocol Raster (synchronization raster), used to determine the frequency location of candidate SSBs. In other words, the terminal device only needs to use the frequency domain position determined by the synchronization grid to try to detect SSB, thereby improving the speed of the terminal device detecting SSB.
  • the intervals between two adjacent frequency domain positions determined by the synchronization grid have different sizes in different frequency bands, which are 1200kHz, 1.44MHz and 17.28MHz respectively.
  • the terminal device only needs to detect SSB at the frequency determined by SS REF , and does not need to detect at all frequencies.
  • the result calculated by SS REF in the table below represents the center frequency of SSB. Combined with the fact that SSB contains 4 consecutive symbols in the time domain and occupies 20 RBs in the frequency domain, that is, the calculated result of SS REF is the 10th RB in SSB. The position where the resource element (RE) is equal to 0.
  • the terminal device will assume that the periodicity for the network device to send SSB is 20ms. In other words, if the terminal device does not detect SSB on an SS REF after waiting for 20ms, the terminal device may continue to detect on other synchronization grids.
  • SS REF represents the center frequency of SSB
  • GSCN represents the Global Synchronization Channel Number
  • Time-frequency resources including time domain resources and frequency domain resources.
  • the frequency domain position of the SSB can be determined based on the above synchronization grid, and the time domain position of the SSB can be determined based on the SSB pattern.
  • an SSB pattern represents the time domain position of a set of consecutive SSBs in a half-frame.
  • the authorized spectrum i.e. Unshared spectrum
  • Each pattern includes the time-frequency resource location of the SSB, the number of SSBs, the sub-carrier spacing of the SSB, etc.
  • Each SSB pattern has its own applicable sub-carrier spacing. (subcarrier space, SCS).
  • the sub-carrier spacing of SSB is 15kHz, and includes 4 beams when the carrier is less than or equal to 3GHz; as shown in (b) in Figure 3, the carrier is greater than At 3GHz (belonging to FR1), there are 8 beams.
  • the subcarrier spacing of SSB is 30kHz, as shown in (a) in Figure 4.
  • the carrier is less than or equal to 3GHz, it includes 4 beams; as shown in (b) in Figure 4, the carrier is greater than 3GHz (belonging to Frequency range 1, FR1), there are 8 beams.
  • the SSB pattern specified in the protocol determines the maximum number of SSBs and does not represent the actual number of SSBs sent. For example, for SSB pattern A, when the carrier is less than or equal to 3GHz, the maximum number of SSBs in a half frame is 4, corresponding to SSB index 0, 1, 2, and 3 respectively. But the network device can only send 3 SSB, for example, only send SSB index 0, 2, 3. Which/several SSBs are sent will be indicated by the bitmap in SIB1 (via the parameter ssb-PositionsInBurst). The position of the SSB index corresponds one-to-one to the position given in the pattern.
  • SIB1 is carried on the physical downlink shared channel (PDSCH).
  • the time-frequency position and transmission parameters of the PDSCH carrying SIB1 are indicated by downlink control information (DCI).
  • DCI downlink control information
  • the DCI corresponding to SIB1 is jointly determined by controlResourceSetZero (CORESET0) and searchSpaceZero (common search space, CSS0).
  • CORESET0 controlResourceSetZero
  • searchSpaceZero common search space, CSS0
  • the MIB in the SSB contains 4 bits for indicating CORESET0 and 4 bits for indicating CSS0, which respectively indicate the frequency domain position and time domain position of the DCI that receives the scheduled SIB1. specifically:
  • (1) Determine CORESET0 After the terminal device detects SSB, it obtains the 4-bit signaling controlResourceSetZero from the MIB. This signaling is used to indicate SSBMuxPattern, Offset, N CORESET RB , N CORESET sym , and reads it from the MIB. Another 4bit signaling k SSB .
  • SSBMuxPattern indicates the multiplexing pattern (Multiplexing Pattern, recorded as MuxPattern) of SSB and CSS0, which is used to determine CSS 0 later.
  • Offset and k SSB are used to determine the starting RB position of CORESET0, where k SSB represents the distance (unit is the number of subcarriers) between the starting subcarrier of the SSB and the reference RB (called CRB S in Figure 5), and Offset represents the reference RB.
  • N CORESET sym indicates how many symbols CORESET#0 occupies in the time domain, which means the length of the CORESET#0 time domain (unit is symbol).
  • N CORESET RB is used to determine the frequency domain width of CORESET#0.
  • CSS#0 itself corresponds to multiple time domain positions
  • one SSB index in NR corresponds to one time domain position of CSS#0.
  • NR supports 3 SSB and CSS#0 multiplexing modes. In each mode, the CSS#0 time domain position corresponding to an SSB index is determined in different ways.
  • multiplexing pattern 1 is used as an example to describe, and the others will not be introduced in detail.
  • n0 For reuse mode 1, CSS#0 can exist in two consecutive slots from n0.
  • SSB index i the terminal device can determine n0 as follows:
  • ⁇ 0,1,2,3 ⁇ is determined according to the subcarrier spacing of PDCCH in CORESET.
  • the subcarrier spacing corresponding to ⁇ values of 0, 1, 2, and 3 is 15kHz, 30kHz, 60kHz, and 120kHz respectively; It represents the number of slots in a system frame. That is, n0 can be determined through O and M.
  • O is used to control the starting position of the detection window of SIB1 corresponding to the first SSB to avoid conflict between CSS#0 and SSB
  • M is used to control the detection window of SIB1 corresponding to SSB i and SSB i+1 respectively.
  • the so-called overlap means overlap in the time domain.
  • O and M are indicated by the 4 bits mentioned above. As shown in Table 2, different SSB indexes correspond to different O and M. Among them, 4 bits are used to select an index from 0 to 15, and then the values of O and M can be determined.
  • the beam used to transmit SIB1 is the same as the beam of its corresponding SSB.
  • the receiving beam used is the same as the receiving beam used to receive the SSB corresponding to SIB1.
  • SIB1 can also be considered as remaining minimum system information (RMSI). It can also be considered as the first system message sent after the MIB. Alternatively, SIB1 may be considered to include a time-frequency resource indication associated with RACH. Informational system messages. Or, it can be considered as information carried in the PDSCH scheduled according to the PDCCH determined by CORESET 0 and CSS0.
  • RMSI remaining minimum system information
  • SIB1 may be considered to include a time-frequency resource indication associated with RACH.
  • Informational system messages can be considered as information carried in the PDSCH scheduled according to the PDCCH determined by CORESET 0 and CSS0.
  • SIB1 in LTE contains parameters used to determine whether a cell is suitable for cell selection, as well as time domain scheduling information of other SIBs.
  • the position of SIB1 in the time domain is fixed (for example, it is carried on subframe 5 and transmitted every 20ms), but the position in the frequency domain may change and is indicated by the corresponding PDCCH.
  • CRS Cell-specific reference signal
  • CRS can be used for all UEs in the cell. For example: 1) It can be used by UEs for downlink channel estimation and CSI acquisition; 2) Based on cell-specific reference Measurements of the signal can be used for cell selection and handover.
  • CRS can be carried in each downlink subframe and on each RB in the entire downlink bandwidth.
  • the downlink subframe is a variable describing the length of the time domain unit in the LTE system, with a length of 1ms (millisecond).
  • Figure 6 it is a schematic diagram of subframes in LTE. In the figure, the length of a frame is 10ms and is divided into 10 subframes. Taking subframe 0 as an example, as shown in Figure 7, the CRS occupies 4 symbols in this subframe, such as symbol 0 and symbol 4.
  • PBCH Similar to the NR system, LTE's PBCH also carries MIB. The difference is that the specific information content is different and it is not transmitted in a block with PSS and SSS.
  • the LTE MIB mainly contains information such as downlink system bandwidth, physical HARQ indicator channel (PHICH) configuration, and system frame number (SFN), which is used for terminal equipment to obtain the most basic cell configuration information.
  • the PBCH carrying the MIB is located in the time domain on the first 4 OFDM symbols of the second slot of subframe 0 of each system frame. In LTE, a subframe is divided into two time slots, which means that the length of one time slot is 0.5ms. Specifically, the location of the PBCH is shown in Figure 8, occupying four symbols 0, 1, 2 and 3.
  • Synchronization signal burst set (SS burst)
  • the SSB is sent periodically, and the SSB included in one SSB cycle can be used as an SSB set.
  • the SSB set can also be called a synchronization signal burst set (SS burst).
  • the base station In order to maintain basic functions (such as synchronization, cell discovery, etc.), the base station needs to frequently send some public signaling even if there is no data transmission, which will lead to a large waste of power consumption.
  • the base station In both the LTE and NR systems, the base station needs to frequently send some public signaling.
  • LTE and NR are common modules (both use the same hardware, such as radio frequency channels).
  • the network device can be shut down if and only if the network device does not send any messages in either the LTE system or the NR system. In other words, the current configuration of public signals is not flexible enough, resulting in high power consumption of network equipment.
  • embodiments of the present application propose a communication method that can flexibly configure communication resources and save power consumption of network equipment.
  • the method may include the following steps:
  • Step 901 The network device sends the first SSB to the terminal device, and correspondingly, the terminal device receives the first SSB.
  • the network device sends multiple SSBs to the terminal device, including the first SSB.
  • the network device sends N SSBs to the terminal device, where N is a positive integer greater than or equal to 2, and the N SSBs include the first SSB.
  • the N SSBs are SSBs of the same cell, that is to say, the physical cell identifiers PCI carried in the N SSBs are the same.
  • the N SSBs belong to Q sets, and Q is a positive integer greater than or equal to 1.
  • each of the Q sets is a synchronization signal burst set (SSB burst).
  • the first SSB may correspond to a pattern, and the pattern may be used to indicate candidate time-frequency resources of the first SSB.
  • the pattern can be used to determine candidate time-frequency resources of the first SSB.
  • the time-frequency resources may be time domain resources, frequency domain resources, or both time domain resources and frequency domain resources, which are not limited in the embodiments of the present application.
  • the network device may send the first SSB through part of the time-frequency resources, or may send the first SSB through all candidate time-frequency resources, which is not limited in this embodiment of the present application.
  • the first SSB corresponds to the first pattern, as shown in Figure 10, which is an example of the first pattern.
  • the candidate resources 0 to 13 included in the first pattern are all candidate resources for the first SSB.
  • the resources used to send the first SSB are candidate resources 2 to 5 and candidate resources 8 to 11. That is to say, in this example, part of the candidate resources are used to send the first SSB.
  • the above pattern can be understood as a set of candidate resources, and the terminal device can determine the time-frequency resources associated with the first SSB from the set of candidate resources. For example, the terminal device can perform a blind check on the candidate resource set. Alternatively, the network device may further indicate resources associated with the first SSB in the candidate resource set.
  • the terminal device receives the first SSB, and the index of the SSB can be obtained according to the first SSB. and/or current cell identity (PCI).
  • PCI current cell identity
  • Step 902 The network device sends the first information to the terminal device according to the first SSB.
  • the terminal device receives the first information according to the first SSB. Receive the first information.
  • the first SSB is used to determine the time-frequency resource of the first information.
  • the first SSB indicates the time-frequency resource of the control information for scheduling the first information, and the terminal device schedules the first information according to the specific time-frequency resource.
  • Control information determines the time-frequency resource of the first information.
  • the first information is used to indicate candidate time-frequency resources of the second SSB.
  • the second SSB may be different from the first SSB in that the time and frequency domain positions of the second SSB and the first SSB are different, or that the second SSB and the first SSB carry different contents, which is not limited in the embodiments of the present application.
  • the first SSB The SSB and the second SSB are time-divided;
  • Case 2 The frequency domain position of the first SSB is different from the frequency domain position of the second SSB, but the time domain position is the same, that is to say, the first SSB and the second SSB are frequency-divided;
  • Case 2 3 The frequency domain position of the first SSB is different from the frequency domain position of the second SSB, and the time domain position is also different.
  • the first SSB is different from the second SSB through at least one of the following: the index of the SSB is different, or the information carried by the PBCH in the SSB is different, or the DMRS corresponding to the PBCH is different, or the SSB
  • the beam directions are different, or the synchronization signals (PSS and/or SSS) included in the SSB are different.
  • different beam directions may mean that at least one of the following is different: airspace information, airspace filter configuration information, airspace filtering configuration, antenna pattern when transmitting SSB, or airspace filter used when transmitting SSB.
  • the first information indicating the candidate time-frequency resources of the second SSB may be a direct indication or an indirect indication.
  • the first information may be the location information of the candidate time-frequency resources of the second SSB.
  • the content of the first information is the location information of the candidate time-domain resources of the second SSB, and/or the second SSB The location information of candidate frequency domain resources.
  • the first information is the absolute position information of the candidate time-frequency resources of the second SSB.
  • the candidate time domain resources of the second SSB are located in the second to fifth symbols of the subframe, and the content of the first information is the second to fifth symbols of the subframe.
  • the candidate frequency domain resources of the second SSB are located in the 1st RB to 3rd RB of the first frequency domain resource, and the content of the first information is the 1st RB to 3rd RB of the first frequency domain resource, for example Can be the index of RB.
  • the first information is the relative position information of the candidate time-frequency resources of the second SSB.
  • the first information may be an offset value of the position of the second SSB relative to the first SSB.
  • the offset value of the position of the second SSB relative to the first SSB may be the offset value of the starting position of the second SSB relative to the starting position of the first SSB, or the end position of the second SSB relative to the starting position of the first SSB.
  • the offset value of the end position of an SSB may be the offset value of the predefined position of the second SSB relative to the predefined position of the first SSB, which is not limited in this embodiment of the present application. It should be understood that the above-mentioned start position, end position and predefined position may be time domain positions or frequency domain positions.
  • the first information may be an offset value of the frequency domain position of the second SSB relative to the first SSB.
  • the so-called offset value of the frequency domain position of the second SSB relative to the first SSB may be the offset value of the frequency domain starting position of the second SSB relative to the frequency domain starting position of the first SSB. It may be the offset value of the second SSB.
  • the offset value of the frequency domain end position relative to the frequency domain end position of the first SSB may be the offset value of the predefined frequency domain position of the second SSB relative to the predefined frequency domain position of the first SSB. This application implements This example does not limit this.
  • the first information may indicate the offset value of the time-frequency position of the second SSB relative to the first SSB.
  • the first information may indicate a second pattern
  • the second pattern is used to indicate candidate time-frequency resources of the second SSB, or in other words, the pattern may be used to determine candidate time-frequency resources of the second SSB.
  • the function of the second pattern is similar to the first pattern in step 901. Please refer to the description in step 901, which will not be described again here.
  • the distribution of time-frequency resources indicated by the second pattern and the first pattern are different. That is to say, the distribution of time-frequency resources of the first SSB is different from the distribution of time-frequency resources of the second SSB.
  • the second pattern may be a pattern in the set of patterns.
  • the pattern set may include multiple patterns, where each pattern may be used to indicate candidate time-frequency resources of the second SSB, but different patterns in the pattern set correspond to different time domain resources of resources carrying the SSB.
  • the time-frequency resource locations of the SSBs included in the multiple patterns may be different, or the number of SSBs carried by the time-frequency resources indicated by the multiple patterns may be different, or the subcarrier intervals of the SSBs corresponding to the multiple patterns may be different.
  • the embodiments of this application do not limit this. Specifically, you can refer to the description of SSB pattern A and SSB pattern B mentioned above.
  • the patterns in the pattern collection here are similar to them and will not be described again.
  • the first information can be used by the terminal device to determine the second pattern from the pattern set.
  • the first information may also indicate the time-frequency resources actually used to transmit the SSB.
  • the terminal device can determine a set of candidate time-frequency resources based on the pattern, and then determine the time-frequency resources actually used for transmitting SSB in the set of candidate time-frequency resources based on the first information.
  • the second pattern indicates that the candidate time-frequency resources of the second SSB are candidate resources 0 to 3, and candidate resources 5 to 8, and the first information indicates candidate resource 2 and candidate resource among them. 7 is used to send the second SSB.
  • the first information may be a bitmap.
  • the first information may be 001000010, where A bit value of 0 indicates that SSB is not sent at this time-frequency location, and a bit value of 1 indicates that SSB is sent at this location.
  • a bit value of 0 indicates that SSB is not sent at this time-frequency location
  • a bit value of 1 indicates that SSB is sent at this location.
  • a bit value of 0 may indicate that SSB is transmitted at this time-frequency location
  • a bit value of 1 may indicate that SSB is not transmitted at this location.
  • the corresponding relationship between the above-mentioned bit values and corresponding meanings may be predetermined or indicated, which is not limited in the embodiments of the present application.
  • the first information may be used to indicate the location information of N SSBs.
  • the location information of the 8 SSBs can be indicated separately or jointly.
  • the first information is a bit pattern
  • the 8 SSBs correspond to
  • the first information can be 01001000 10000100 11000000 00011000, which means that 32 bits are used to indicate the time-frequency positions of the 8 SSBs.
  • the terminal device may also determine the time domain position of the second SSB based on the first pattern.
  • the number of SSBs included in the second pattern is the same as the number of SSBs in the first pattern, and the time domain position of the SSB actually sent in the second pattern is the same as the time domain position of the SSB actually sent in the first pattern.
  • the terminal device does not need other information to indicate the time domain position and can determine the time domain position of the second SSB based on the first pattern.
  • the frequency domain location of the second SSB can be determined through indication information, such as the first information, or other information, and the indication information is used to indicate the frequency domain location of the second SSB.
  • the terminal device determines the location of the second SSB based on the time domain location and frequency domain location.
  • the first SSB occupies a first time-frequency resource, which belongs to the candidate time-frequency resource indicated by the first pattern and belongs to the candidate time-frequency resource indicated by the second pattern. That is to say, the candidate time-frequency resources of the second SSB may include the candidate time-frequency resources of the first SSB, which can improve compatibility between different patterns.
  • first SSB may be associated with the first information. For example:
  • the above-mentioned first information is carried in the first SSB.
  • the terminal device receives the first information according to the first SSB.
  • the terminal device may parse the first SSB to obtain the first information.
  • the above first information is carried in a first system message (such as SIB1).
  • the first system message may be determined through the first SSB.
  • reference may be made to the previous method of determining SIB1 through the SSB, which will not be described again here.
  • Step 903 The terminal device determines the second SSB according to the first information.
  • the terminal device receives the first information and can directly obtain the location information of the candidate time-frequency resources of the second SSB by parsing the first information.
  • the terminal device receives the first information, obtains the offset value by parsing the first information, and then determines the candidate time-frequency resource of the second SSB based on the offset value and the location information of the first SSB. location information.
  • the terminal device receives the first information, determines the second pattern based on the first information, and determines the location information of the candidate video resource of the second SSB based on the second pattern.
  • the terminal device determines the second pattern based on the first information, which may be that the terminal device determines the second pattern from a pattern set based on the first information.
  • the terminal device can determine the time-frequency resources actually used to carry the SSB based on the first information.
  • the terminal device can also receive other information, such as the information in ssb-PositionsInBurst, to determine the specific location of the SSB. For example, when the first information is 01001000 10000100 11000000 00011000, the terminal device can determine that there are currently four SSB sets (bursts), and combined with the information in ssb-PositionsInBurst indicates that the candidate time-frequency resource of a certain SSB is represented as 10000100, the terminal device can It is determined that the SSB is in the second set.
  • the information in ssb-PositionsInBurst to determine the specific location of the SSB. For example, when the first information is 01001000 10000100 11000000 00011000, the terminal device can determine that there are currently four SSB sets (bursts), and combined with the information in ssb-PositionsInBurst indicates that the candidate time-frequency resource of a certain SSB is represented as 10000100,
  • the terminal device may receive second information, which is used to indicate which group a certain SSB is in, and the terminal device determines the specific location of the certain SSB based on the second information, such as the SSB set to which it belongs.
  • the number of SSBs and the number of SSB sets mentioned above can be predefined or indicated, or can be determined based on the period of the SSB set. For example, when the period of an SSB burst is 20ms. , the number of SSB bursts is 4; when the period of SSB burst is 40ms, the number of SSB bursts is 8. The embodiments of the present application do not limit this.
  • the terminal device also receives SBI1. After receiving the SSB, the terminal device can The information determines the DCI, which is used to schedule the PDSCH carrying SIB1.
  • Figure 11 is shown as an example of SSB and SIB1 transmission resources in NR. The figure also includes the transmission of system messages in LTE mode. It can be seen that the SIB1 in NR and the system message in LTE basically overlap in time and frequency, which greatly increases the possibility of shutting down network equipment.
  • the SSB is flexibly configured through different patterns, which can reduce the energy consumption of network equipment and improve the efficiency of terminal equipment accessing the network.
  • the time-frequency resource overlap ratio is large, the idle state of the network device can be maintained longer, that is, the network device has a greater probability of shutting down. , In this way, the energy consumption of network equipment is reduced.
  • the above method reduces the energy consumption of network equipment by redesigning the time-frequency resource location of SSB.
  • the embodiment of this application proposes another method that can provide compatibility, effectively reduce the energy consumption of network equipment, and improve terminal equipment access. Network efficiency. As shown in Figure 12, the method includes the following steps:
  • Step 1201 The network device determines N SSBs.
  • N is a positive integer greater than or equal to 2.
  • the N SSBs include SSB#1 (ie, the first SSB) and SSB#2 (ie, the second SSB). It should be understood that the first SSB or the second SSB may include multiple SSBs, or may include one SSB. Here, the description takes one SSB as an example.
  • SSB#1 is the SSB with the earliest position in the time domain among the N SSBs
  • SSB#2 is the SSB with the last position in the time domain among the N SSBs.
  • the position of the SSB in the time domain can be characterized by the position of the time domain resources occupied by the SSB in the time domain.
  • the first position in the time domain can also be understood as the first time domain resource or the first time sequence or The earliest position in the time domain, etc.
  • the last position in the time domain can also be understood as the last time domain resource or the last time sequence or the latest time domain position, etc.
  • the time domain interval between SSB#1 and SSB#2 is greater than half the length of the first frame (which can be understood as a half frame), and the first frame is a frame carrying N SSBs.
  • the first frame and half frame are time units.
  • the SSB will carry a bit to indicate whether the current SSB (and the burst to which this SSB belongs) is located in the first half of a frame or the second half of a frame.
  • the SSB also carries bits to indicate the frame index of the current SSB (and the burst to which this SSB belongs).
  • the time domain interval between two SSBs can be characterized by the interval between the time domain resources occupied by the two SSBs.
  • the time domain interval can be the interval between the starting position of the time domain resource occupied by SSB#1 and the starting position of the time domain resource occupied by SSB#2, or it can also be the end of the time domain resource occupied by SSB#1
  • the predefined position may be preset or indicated, which is not limited in the embodiments of the present application. For example, when the length of the frame is 10 ms, the time domain interval between SSB#1 and SSB#2 is greater than 5 ms.
  • the N SSBs may be determined based on an SSB pattern, and the SSB pattern may be used to indicate the time-frequency positions of the N SSBs.
  • the SSB pattern may be used to indicate the time-frequency positions of the N SSBs.
  • one SSB burst may be located on two half-frames respectively.
  • the N SSBs belong to P sets
  • P is a positive integer greater than or equal to 2
  • the P sets correspond to the P cells one-to-one
  • the P cells are different from each other.
  • the P cells correspond to P cell identification codes PCI
  • the P PCIs are different. That is to say, P sets include two sets: the first set and the second set.
  • the first SSB belongs to the first set
  • the second SSB belongs to the second set
  • the time domain interval between the first SSB and the second SSB is greater than the frame length. half of.
  • P sets include the first set, the second set, the third set and the fourth set.
  • the SSB index corresponding to the SSB included in the first set and the third set is 2, and O is 2, M is 1; the SSB index corresponding to the SSB included in the second set and the fourth set is 4, O is 5, and M is 1.
  • the corresponding relationship between SSB index, O and M can refer to the description in Table 2, and will not be repeated here.
  • the candidate location of SIB1 can be determined based on O and M.
  • n0 can be determined through O and M.
  • n0 can be used to determine the position of CSS0.
  • the PDCCH used to schedule SIB1 can be detected based on the CSS0, thereby determining the candidate position of SIB1.
  • the detailed process can be referred to the previous article and will not be repeated here.
  • the SSB indexes corresponding to the first set, the second set, the third set and the fourth set here are only used as a preferred example and are not limiting.
  • O and M can also be used to determine the time-frequency resource location of SIB1.
  • the N SSBs include the third SSB and the fourth SSB.
  • the third SSB belongs to the first cell
  • the fourth SSB belongs to the first cell.
  • the third SSB and the fourth SSB occupy the same time domain resources but different frequency domain resources.
  • SSBs belonging to different cells can be transmitted using frequency division.
  • SSB is transmitted in a frequency division manner
  • SIB1 is also transmitted in a frequency division manner.
  • the figure also includes a diagram of the transmission resources of system messages in LTE. It can be seen that the system messages in LTE occupy a lot of time.
  • the frequency resources overlap with the time-frequency resources occupied by SIB1 in NR, which can increase the shutdown probability of network equipment.
  • LTE and NR are used as examples of different communication modes to illustrate the solution, and the frequency domains of LTE and NR may overlap.
  • the frequency domain overlap between LTE and NR may specifically refer to the overlapping portion of the frequency band of LTE and the frequency band of NR.
  • the frequency domains of LTE and NR may not overlap. In the case of non-overlapping, they may be two independent frequency bands; or, LTE and NR may be in the same mode.
  • the common mode between LTE and NR can specifically mean that LTE and NR use the same hardware equipment, such as power amplifiers, radio frequency channels, etc. Furthermore, LTE and NR use the same hardware equipment, which specifically means that the hardware equipment used when transmitting LTE signals and NR signals is the same.
  • LTE and NR use the same hardware equipment, which specifically means that the hardware equipment used when transmitting LTE signals and NR signals is the same.
  • the operating bands of LTE and NR are located in the n41 frequency band, where the frequency range of the n41 frequency band is 2496 megahertz (MHz) to 2690 MHz.
  • N SSBs belong to one cell, and the time domain interval between two SSBs among the N SSBs is greater than half of the frame. It should be understood that N SSBs belonging to one cell may mean that the PCIs carried by the N SSBs are the same.
  • Step 1202 The network device sends N SSBs to the terminal device, and correspondingly, the terminal device receives the N SSBs.
  • SSB is sent in the form of beam scanning.
  • the number of SSB scanning beams is 8 and the number of beams in each cell is 8.
  • the number of beams in the entire space is still 8, which enables the SSB beams to cover the entire cell range.
  • the terminal device can perform processes such as synchronization or beam selection with the network device based on the N SSBs. It should be understood that synchronization or beam selection are only examples and not limitations, and the terminal device can also perform other related processes.
  • the SSB is divided into different cells. Without modifying the existing protocol, in the scenario where different communication modes coexist, it can increase the shutdown probability of the network equipment and reduce the power consumption of the network equipment. At the same time, Improve the efficiency of terminal equipment accessing the network. In addition, this method can be applied to existing equipment, improving compatibility and reducing user costs.
  • the network device and the terminal device are used as an example of dual communication, but it is not limited to this. It should also be understood that in the embodiments of this application, LTE and NR are used as examples of different communication modes, and there is no limitation on this.
  • the network device and the terminal device include corresponding hardware structures and/or software modules that perform each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 15 and 16 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of the terminal or base station in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j as shown in Figure 1, or it may be the base station 110a or 110b as shown in Figure 1, or it may be applied to the terminal or the base station. Modules (such as chips).
  • the communication device 1500 includes a processing unit 1510 and a transceiver unit 1520 .
  • the communication device 1500 is used to implement the functions of the terminal device or network device in the method embodiment shown in FIG. 9 or FIG. 12 .
  • the transceiver unit 1520 is used to receive the first information; the transceiver unit 1520 is also used to receive the first information; the processing unit 1510 is used according to the first A message identifies the second SSB.
  • the transceiver unit 1520 is used to send the first SSB; the transceiver unit 1520 is also used to send the first information; the transceiver unit 1520 is also used to send 2nd SSB.
  • the processing unit 1510 is used to determine N SSBs; the transceiver unit 1520 is used to receive N SSBs; the processing unit 1510 is also used to communicate with the network Device synchronization or beam selection.
  • the transceiver unit 1520 is used to send N SSBs; the processing unit 1510 is used to synchronize with the terminal device or select beams.
  • processing unit 1510 and transceiver unit 1520 can be obtained directly by referring to the relevant descriptions in the method embodiment shown in FIG. 9, and will not be described again here.
  • the communication device 1600 includes a processor 1610 and an interface circuit 1620 .
  • the processor 1610 and the interface circuit 1620 are coupled to each other.
  • the interface circuit 1620 may be a transceiver or an input-output interface.
  • the communication device 1600 may also include a memory 1630 for storing instructions executed by the processor 1610 or inputs required for the processor 1610 to run the instructions. Data or data generated after the storage processor 1610 executes instructions.
  • the processor 1610 is used to implement the functions of the above-mentioned processing unit 1510
  • the interface circuit 1620 is used to implement the functions of the above-mentioned transceiver unit 1520.
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas).
  • the information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the terminal to the base station; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), and the base station module The information is sent by the base station to the terminal.
  • the base station module here can be the baseband chip of the base station, or it can be a DU or other module.
  • the DU here can be a DU under the open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the base station or terminal.
  • the processor and storage medium may also exist as discrete components in the base station or terminal.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.
  • At least one refers to one or more
  • “multiple” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the related objects before and after are a kind of “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法和装置,该通信方法通过网络设备向终端设备指示SSB的资源配置,并且提供了多种SSB资源配置的不同方式,提高了资源配置的灵活性,增加了网络设备的关断机会,能够节省网络设备的能耗。

Description

通信方法、装置及系统
本申请要求于2022年8月8日提交中国专利局、申请号为202210947916.2、申请名称为“通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域。尤其涉及一种通信方法、装置及系统。
背景技术
随着通信系统的逐步演进,“低碳”在通信网络中受到了越来越多的关注,目前,当网络设备没有发送任何数据信息的时候,可以关断网络设备进而节省能耗。但是,为了能够让终端设备识别网络设备,网络设备不得不发送一些总需要发送(always on)的公共信号,例如新无线(new radio,NR)系统中的同步信号和物理广播信道块(synchronization signal and physical broadcast channel(PBCH)block,SSB)和系统信息块1(system information block 1,SIB1),以及长期演进(long term evolution,LTE)系统中的小区特定的参考信号(cell-specific reference signal,CRS),主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS)和SIB1等。
以NR系统为例,为了保证终端设备能够检测到NR的载波,并接入网络,网络设备需要一直周期性发送SSB和SIB1,终端设备认为SSB的发送周期是20ms(毫秒),如果网络设备发送SSB的最大周期较长,终端设备可能检测不到NR网络。此外,SIB1中还包括终端设备接入网络必要的信息,如果发送SIB1周期较长,则终端设备接入网络需要等待的时间较长,这样也将会降低终端设备的体验。目前,上述公共信号的配置不够灵活,导致了网络设备与终端设备较高的能耗。
因此,如何提高公共信号配置的灵活度,降低网络设备能耗,是亟待解决的问题。
发明内容
本申请提供一种通信方法,能够提高系统消息配置的灵活度,降低网络设备能耗。
第一方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备接收第一SSB,终端设备根据第一SSB接收第一信息,该第一信息用于指示第二SSB的候选时频资源,终端设备根据该第一信息确定第二SSB。
该方法中,网络设备根据第一信息配置SSB的时域资源,提高了网络设备配置时频资源的灵活度。
结合第一方面,在第一方面的某些实现方式中,该第一SSB对应第一图样,该第二SSB对应第二图样,该第一图样和该第二图样不同。
应理解,第一图样可以是预定义的或者预设的。第二图样可以是预定义的,可以是预设的,可以是网络设备指示的,本申请对此不作限定。换句话说,第一SSB与第二SSB的时频资源所对应的图样不同,其中,第一SSB对应的图样可以是现有协议中定义的图样,第二SSB对应的图样可以是与现有协议的定义不同的图样,比如,基于现有技术新增的图样。
该方式中,第一SSB与第二SSB分别对应不同的图样,终端设备可以通过第一图样确定第一SSB,可以根据第二图样确定第二SSB,换句话说,终端设备确定SSB的方式有多种,进一步提高了网络设备配置时频资源的灵活度。
结合第一方面,在第一方面的某些实现方式中,该第一信息用于指示该第二SSB的候选时频资源,包括:该第一信息指示第二图样,该第二图样用于指示该第二SSB的候选时频资源。
换句话说,网络设备通过第一信息向终端设备指示第二图样。
结合第一方面,在第一方面的某些实现方式中,该第二图样属于图样集合,该图样集合包括至少一个候选图样。
换句话说,第二图样是从图样集合中确定的,或者说第二图样是从多个候选图样中确定的。
结合第一方面,在第一方面的某些实现方式中,图样集合中不同的图样可以对应于不同的子载波间隔和/或带宽。
该方式为不同的通信场景提供了多样化的SSB配置,有利于提高通信效率。
结合第一方面,在第一方面的某些实现方式中,终端设备接收第二信息,该第二信息指示该第二图样中用于发送该第二SSB的时域资源。
应理解,图样可以用于指示第二SSB的候选时频资源,该第二信息可以指示第二图样中实际用于承载SSB的时频资源。
该方式中,网络设备向终端设备指示发送第二SSB的时域资源,终端设备无需再自行确定,降低了终端设备的处理复杂度,节省了终端设备的功耗。
结合第一方面,在第一方面的某些实现方式中,该第一信息包括该第二SSB的时域资源的位置信息。
应理解,第一信息的内容为第二SSB的时频资源的信息,换句话说,网络设备直接向终端设备指示第二SSB的时频资源,进一步降低终端设备确定时频资源的复杂度,提高通信效率。
结合第一方面,在第一方面的某些实现方式中,该第二SSB属于N个SSB,该N个SSB属于同一小区,该N个SSB属于Q个集合,该Q为大于或等于1的正整数,该第一信息还包括该N个SSB与该Q个集合的对应关系。
结合第一方面,在第一方面的某些实现方式中,Q个集合中的每个集合为一个同步信号突发集(SSB burst)。
网络设备向终端设备发送的SSB均属于同一个小区,这些SSB可以对应于不同的集合,集合也可以是簇、分组或者子集等其他称谓,本申请对此不作限定。也就是说,该方式中,网络设备可以通过多个SSB burst联合发送SSB,提高了SSB的传输效率。
结合第一方面,在第一方面的某些实现方式中,该第一SSB和该第二SSB的频域位置相同,且时域位置不同。
也就是说,第二图样中所包括的SSB与第一SSB以时分的方式进行传输。
结合第一方面,在第一方面的某些实现方式中,该第一信息用于指示该第二SSB的候选时频资源,包括:该第一信息指示偏移值,该偏移值为该第二SSB的候选时频资源相对于该第一SSB时频资源的偏移值。
结合第一方面,在第一方面的某些实现方式中,该第一信息用于指示偏移值,该偏移值为该第二SSB的频域位置相对于该第一SSB的频域位置的偏移值。
该方式中,网络设备可以向终端设备指示偏移值,终端设备根据偏移值以及参照物(第一SSB时频资源)确定第二SSB的时频资源,提高了网络设备指示时频资源的多样性。
结合第一方面,在第一方面的某些实现方式中,第一SSB占用第一时频资源,该第一时频资源属于第一图样指示的候选时频资源,且属于第二图样指示的候选时频资源。
该方式中,第二SSB的候选时频资源可以包括第一SSB的候选时频资源,能够提高不同图样之间的提高兼容性。
第二方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,或者,也可以由用于网络设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。该方法可以包括:网络设备发送第一SSB,网络设备根据第一SSB发送第一信息,该第一信息用于指示第二SSB的候选时频资源。
结合第二方面,在第二方面的某些实现方式中,该第一SSB对应第一图样,该第二SSB对应第二图样,该第一图样和该第二图样不同。
结合第二方面,在第二方面的某些实现方式中,该第一信息指示该第二SSB的候选时频资源,包括:该第一信息指示第二图样,该第二图样用于指示该第二SSB的候选时频资源。
结合第二方面,在第二方面的某些实现方式中,该第二图样属于图样集合,该图样集合包括至少一个候选图样。
结合第二方面,在第二方面的某些实现方式中,网络设备发送第二信息,该第二信息用于指示该 第二图样中用于接收该第二SSB的时域资源。
结合第二方面,在第二方面的某些实现方式中,该第一信息包括该第二SSB的时域资源的位置信息。
结合第二方面,在第二方面的某些实现方式中,该第二SSB属于N个SSB,该N个SSB属于同一小区,该N个SSB属于Q个集合,该Q为大于或等于1的正整数,该第一信息还包括该N个SSB与该Q个集合的对应关系。
结合第二方面,在第二方面的某些实现方式中,Q个集合中的每个集合为一个同步信号突发集(SSB burst)。
结合第二方面,在第二方面的某些实现方式中,该第一SSB和该第二SSB的频域位置相同,且时域位置不同。
结合第二方面,在第二方面的某些实现方式中,该第一信息用于指示该第二SSB的候选时频资源,包括:该第一信息指示偏移值,该偏移值为第二SSB的候选时频资源相对于该第一SSB时频资源的偏移值。
结合第二方面,在第二方面的某些实现方式中,该第一信息指示偏移值,该偏移值为第二SSB的频域位置相对于该第一SSB的频域位置的偏移值。
结合第二方面,在第二方面的某些实现方式中,第一SSB占用第一时频资源,该第一时频资源属于第一图样指示的候选时频资源,且属于第二图样指示的候选时频资源。
应理解,第二方面是与第一方面对应的网络设备侧的方法,第一方面的相关解释、补充和有益效果的描述对第二方面同样适用,此处不再赘述。
第三方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。该方法可以包括:终端设备确定N个SSB,该N为大于或等于2的正整数,该N个SSB包括第一SSB和第二SSB,该第一SSB为该N个SSB中在时域上位置最早的SSB,该第二SSB为该N个SSB中在时域上位置最晚的SSB,该第一SSB与该第二SSB之间的时域间隔大于第一帧长度的一半,该第一帧为承载该N个SSB的帧,该N个SSB属于P个集合,该P为大于等于2的正整数,该P个集合与P个小区一一对应,该P个小区互不相同,终端设备接收该N个SSB中的至少一个SSB。
该方法中,网络设备向终端设备发送的多个SSB划分为不同的小区,扩大了SSB占用的时频资源的覆盖范围,比如分布在整个帧上,增大了不同通信模式中的系统信息在时频资源上对齐的机会,进而增大了网络设备关断概率,能够节省网络设备和终端设备的功耗,同时,能够使得不同版本的终端设备都能够接收和识别SSB,降低了用户成本。
结合第三方面,在第三方面的某些实现方式中,该P为4时,该P个集合包括第一集合、第二集合、第三集合和第四集合,该第一集合和该第三集合包括的SSB的索引为2,O为2,M为1;该第二集合和该第四集合包括的SSB对应的SSB索引为4,O为5,M为1,所述O和所述M用于确定所述SSB中SIB1的候选位置。
换句话说,在该方式中,网络设备以时分的方式发送SSB。应理解,上述O和M取值仅作为一种示例而非限定。
结合第三方面,在第三方面的某些实现方式中,该N个SSB包括第三SSB和第四SSB,该第三SSB属于第一小区,该第四SSB属于第二小区,该第三SSB和该第四SSB占用的时域资源相同,频域资源不同。
换句话说,在该方式中,网络设备以频分的方式向终端设备发送属于不同小区的SSB。
第四方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,或者,也可以由用于网络设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。该方法可以包括:网络设备确定N个SSB,该N个SSB包括第一SSB和第二SSB,该第一SSB为该N个SSB中在时域上位置最早的SSB,该第二SSB为该N个SSB中在时域上位置最晚的集合,该第一SSB与该第二SSB之间的时域间隔大于第一帧长度的一半,该第一帧为承载该N个SSB的帧,该N个SSB属于P个集合,该P为大于等于2的正整数,该P个集合与P个小区一一对应,该P个小区互不相同,网络设备发送该N个SSB。
结合第四方面,在第四方面的某些实现方式中,该P为4时,该P个集合包括第一集合、第二集合、第三集合和第四集合,该第一集合和该第三集合包括的SSB对应的SSB索引为2,O为2,M为1;该第二集合和该第四集合包括的SSB的索引为4,O为5,M为1,所述O和所述M用于确定所述SSB中SIB1的候选位置。
结合第四方面,在第四方面的某些实现方式中,该SSB包括第三SSB和第四SSB,该第三SSB属于第一小区,该第四SSB属于第二小区,该第三SSB和该第四SSB占用的时域资源相同,频域资源不同。
应理解,第四方面是与第三方面对应的网络设备侧的方法,第三方面的相关解释、补充和有益效果的描述对第四方面同样适用,此处不再赘述。
第五方面,本申请实施例提供一种通信装置,该装置包括处理模块和收发模块,该收发模块可以用于接收第一SSB,该收发模块还用于根据该第一SSB接收第一信息,该第一信息用于指示第二SSB的候选时频资源,该处理模块用于根据该第一信息确定第二SSB。
第六方面,本申请实施例提供一种通信装置,该通信装置包括收发模块和处理模块,该收发模块用于发送第一SSB,该收发模块还用于发送第一信息。
第七方面,本申请实施例提供一种通信装置,该通信装置包括收发模块和处理模块,该处理模块用于确定N个SSB,该N为大于或等于2的正整数,该N个SSB包括第一SSB和第二SSB,该第一SSB为该N个SSB中在时域上位置最早的SSB,该第二SSB为该N个SSB中在时域上位置最晚的SSB,该第一SSB与该第二SSB之间的时域间隔大于第一帧长度的一半,该第一帧为承载该N个SSB的帧,该N个SSB属于P个集合,该P为大于等于2的正整数,该P个集合与P个小区一一对应,该P个小区互不相同,该收发模块用于接收N个SSB中的至少一个。
第八方面,本申请实施例提供一种通信装置,该通信装置包括收发模块和处理模块,该处理模块用于确定N个SSB,该N个SSB包括第一SSB和第二SSB,该第一SSB为该N个SSB中在时域上位置最早的SSB,该第二SSB为该N个SSB中在时域上位置最后的集合,该第一SSB与该第二SSB之间的时域间隔大于第一帧长度的一半,该第一帧为承载该N个SSB的帧,该N个SSB属于P个集合,该P为大于等于2的正整数,该P个集合与P个小区一一对应,该P个小区互不相同,该收发模块用于发送该N个SSB。
应理解,第五方面、第六方面、第七方面、第八方面是与第一方面、第二方面、第三方面、第四方面分别对应的装置侧的实现方式,第一方面、第二方面、第三方面、第四方面的相关解释、补充、可能的实现方式和有益效果的描述分别对第五方面、第六方面、第七方面、第八方面同样适用,此处不再赘述。
第九方面,本申请实施例提供了一种通信装置,包括接口电路和处理器,该接口电路用于实现第五方面或第七方面中收发模块的功能,该处理器用于实现第五方面或第七方面中处理模块的功能。
第十方面,本申请实施例提供了一种通信装置,包括接口电路和处理器,该接口电路用于实现第六方面或第八方面中收发模块的功能,该处理器用于实现第六方面或第八方面中处理模块的功能。
第十一方面,本申请实施例提供了一种计算机可读介质,该计算机可读介质存储用于终端设备执行的程序代码,该程序代码包括用于执行第一方面或第三方面,或,第一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的方式的方法的指令。
第十二方面,本申请实施例提供了一种计算机可读介质,该计算机可读介质存储用于网络设备执行的程序代码,该程序代码包括用于执行第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的方式的方法的指令。
第十三方面,提供了一种存储有计算机可读指令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第一方面或第三方面,或,第一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的方式的方法。
第十四方面,提供了一种存储有计算机可读令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的方式的方法。
第十五方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面或第三方面,或,第 一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的方式的方法及各种可能设计的功能的装置和第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的方式的方法及各种可能设计的功能的装置。
第十六方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或第三方面,或,第一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的方式的方法。
第十七方面,提供了一种处理器,用于与存储器耦合,用于执行上述第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的方式的方法。
第十八方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于执行该存储器中存储的计算机程序或指令,使得芯片系统实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十九方面,提供了一种存储有计算机可读令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第一方面或第三方面,或,第一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的实现方式的方法。
第二十方面,提供了一种存储有计算机可读令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的实现方式的方法。
第二十一方面,提供一种通信系统,包括至少一个如第五方面该的通信装置和/或至少一个如第六方面该的通信装置,该通信系统用于实现上述第一方面或第二方面,或,第一方面或第二方面中任一可能的方式,或,第一方面或第二方面中所有可能的实现方式的方法。
第二十二方面,提供一种通信系统,包括至少一个如第七方面该的通信装置和至少一个如第八方面该的通信装置,该通信系统用于实现上述第三方面或第四方面,或,第三方面或第四方面中任一可能的方式,或,第三方面或第四方面中所有可能的实现方式的方法。
第二十三方面,提供一种通信方法,包括:网络设备向终端设备发送第一SSB,终端接收第一SSB,并根据第一SSB接收第一信息,第一信息用于指示第二SSB的候选时频资源,终端设备根据第一信息确定第二SSB。
附图说明
图1示出了一种本申请实施例适用的系统架构。
图2示出了一种SSB的结构示意图。
图3示出了一种SSB图样示意图。
图4示出了又一种SSB图样示意图。
图5示出了一种SSB与CORESET0的关系示意图。
图6示出了一种帧结构示意图。
图7示出了一种子帧与符号的对应关系示意图。
图8示出了一种子帧、MIB与符号的对应关系示意图。
图9示出了本申请实施例提出的一种通信方法的示意图。
图10示出了一种子帧、SSB与符号的对应关系示意图。
图11示出了本申请实施例提出的一种通信资源的示意图。
图12示出了本申请实施例提出的又一种通信方法的示意图。
图13示出了本申请实施例提出的又一种通信资源的示意图。
图14示出了本申请实施例提出的一种波束扫描示意图。
图15示出了本申请实施例提出的一种通信装置的示意性框图。
图16示出了本申请实施例提供的又一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接 入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端间的无线通信、网络设备和网络设备间的无线通信以及终端设备和终端设备间的 无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
可以理解的是,本申请的实施例中,物理上行共享信道(physical downlink share channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)和物理上行共享信道(physical uplink share channel,PUSCH)只是分别作为下行数据信道、下行控制信道和上行数据信道一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
为了便于理解本申请实施例的方案,对相关概念做一解释。
1.公共信号
公共信号,也可称为公共信息或者非专用信息,可以理解一个通信设备发送给多个通信设备的信息,以图1所示的通信系统为例,公共信息可以理解为网络设备发给小区中的多个终端设备或者一个终端设备组的信息,或者理解为,网络设备不特定发给小区中的某个终端设备或某个终端设备组的信息,或者理解为,小区内多个终端设备或者一个终端设备组可以共同使用的信息,例如,公共信息可以是系统信息(system information block,SIB),SSB等。其中,SSB(也称同步信号块)可以用于终端设备接入小区,比如小区搜索、波束测量、波束选择和波束恢复等。在5G中,SSB包括同步信号和广播信号,具体同步信号包括PSS和SSS;广播信号包括PBCH数据(physical broadcast channel data,PBCH data)和PBCH解调参考信号(demodulation reference signal,DMRS)信号。具体的,图2为SSB的时频域结构示例,SSB在时域占据4个正交频分复用(orthogonal frequency division multiplexing OFDM)符号,在频域占据20个RB,即240个子载波(subcarrier,SC)。NR的SSB主要有2个功能:1)小区同步和主系统消息(master information block,MIB)的获取,其中MIB可以通过PBCH承载;2)基站侧宽波束训练。
2.小区同步:PSS和SSS会携带小区物理标识(physical cell identifier,PCI),UE通过检测PSS和SSS获取PCI。在NR中,SSB的PBCH中会携带SSB索引(index),每个SSB index对应一个SSB的发送位置,终端通过检测SSB index和检测时刻,可以完成下行定时同步。
LTE中,一共定义了504个不同的PCI,每个PCI对应一个特定的下行参考信号序列。所有的PCI被分为168组(对应变量取值范围是0~167),每组包含3个小区ID(对应变量取值范围是0~2),即,
图2所示为频分双工(frequency division duplex,FDD)和时分双工(time division duplex,TDD)系统中PSS和SSS的时域位置。对于TDD和FDD而言,这2类同步信号的结构是一样的,但在帧中的时域位置有所不同。如图2中的(a)和图2中的(b)所示,对于FDD而言,PSS在子帧0和5的第一个时隙的最后一个OFDM符号上发送;SSS与PSS在同一子帧同一时隙上发送,但SSS位于倒数第二个OFDM符号上,比PSS提前一个OFDM符号。对于TDD而言,如图2中的(b)所示,PSS在子帧1和6的第三个OFDM符号上发送,而SSS在子帧0和5的最后一个OFDM符号上发送,比PSS提前3个符号。
3.波束训练:波束训练通常也称为波束对准、波束选择。波束训练通过使用模拟的发射波束和接收波束对信道进行探测,寻找接收信号能量最大的收发波束组合,即最适配于该信道传输的波束对,从而避免了对空口信道的直接估计。示例地,一个SSB图样(pattern)会包含多个SSB index,不同SSB index可以对应不同的基站发送波束,UE可以通过检测SSB,选择最好的SSB index,例如为SSB index 1,完成宽波束训练,同时,UE也可以通过多个接收波束,对一个SSB index 1用不同接收波束接收,选出最好的接收波束,例如接收波束2,以完成UE侧接收波束训练。这个基站宽波束的作用包括:1)UE在该SSB index 1对应的位置,通过接收波束2发送的SIB1/Paging,提升SIB1/Paging的覆盖,2)UE在该SSB index 1对应位置发送物理随机接入信道(physical random access channel,PRACH),基站可以用其发送SSB index 1的相同的宽波束接收PRACH,提高PRACH接收成功概率,3)当UE完成初始接入建立RRC连接后,基站可以基于该宽波束(接收波束2)进行细波束训练,即只针对该接收波束2范围内的细波束进行训练,降低细波束训练的开销。
4.SSB检测:终端设备需要盲检测SSB的位置。但是,由于NR中小区带宽非常宽,如果终端设备在每个频点上都去尝试检测SSB,将会导致终端设备接入速度非常慢。因此,NR协议中定义了同步 栅格(synchronization raster),用于确定候选SSB的频率位置。也就是说,终端设备只需要以同步栅格所确定的频域位置去尝试检测SSB就可以了,进而提高了终端设备检测SSB的速度。同步栅格所确定的相邻两个频域位置的间隔在不同的频段有不同的大小,分别是1200kHz,1.44MHz以及17.28MHz。例如,如表1所示:终端设备只需要在SSREF所确定的频率上检测SSB即可,而不需要在所有的频点上都进行检测。下表中SSREF计算出来的结果表示SSB的中心频率,结合SSB包含时域连续的4个符号,在频域占据20个RB,也就是SSREF计算出来的是SSB中第10个RB中的资源单元(resource element,RE)等于0的位置。
此外,在初始接入过程中,终端设备会假设网络设备发送SSB的周期是20ms。也就是说,如果在一个SSREF上,终端设备等待20ms都没有检测到SSB,则终端设备可能会到别的同步栅格上继续检测。
表1频率栅格参数(GSCN parameters for the global frequency raster)
表1中的,SSREF表示SSB的中心频率,GSCN表示全球同步信道号(Global Synchronization Channel Number)。
5.时频资源:包括时域资源和频域资源。SSB的频域位置可以根据上述同步栅格确定,SSB的时域位置可以根据SSB pattern确定。示例地,一个SSB pattern,表征一组连续的SSB在半帧(Half-Frame)中的时域位置。目前,授权频谱(即Unshared spectrum)定义了5种SSB pattern,每种pattern包括SSB的时频资源位置、SSB的数量、SSB的子载波间隔等,每种SSB pattern都有自己适用的子载波间隔(subcarrier space,SCS)。但是每个带宽(band)可用的SSB pattern一般有1~2个。下面简要介绍两种预定义的SSB pattern:
SSB pattern A,如图3中的(a)所示,SSB的子载波间隔为15kHz,当载波小于等于3GHz时包括4个波束(beam);如图3中的(b)所示,载波大于3GHz(属于FR1)时,有8个beam。
SSB pattern B,SSB的子载波间隔为30kHz,如图4中的(a)所示,当载波小于等于3GHz时包括4个beam;如图4中的(b)所示,载波大于3GHz(属于频率范围1,FR1)时,有8个beam。
其他情况这里不再展开。协议中规定的SSB的pattern中所确定的是SSB的最大的数目,并不代表真实发送的SSB的数目。例如,针对SSB pattern A,当载波小于等于3GHz时,半帧中SSB最大的数目为4,分别对应SSB index 0,1,2,3。但是网络设备可以只发送3个SSB,例如只发送SSB index为0,2,3。具体发送哪个/几个SSB将会在SIB1中(通过参数ssb-PositionsInBurst)通过比特图(bitmap)指示。SSB index的位置和pattern中给出的位置一一对应。例如,在图3中的(a)中从前往后,分别对应SSB index 0,1,2,3。也就是说,当网络设备没有发送index 1时表明在图3中的(a)中第二个SSB的位置没有发送SSB。进一步的,一个周期内的所有SSB可以统称为一个SSB集合(burst)。
6.SIB1:SIB1承载于物理下行数据信道(physical downlink shared channel,PDSCH)。承载SIB1的PDSCH的时频位置和传输参数通过下行控制信息(downlink control information,DCI)指示,SIB1所对应的DCI是通过controlResourceSetZero(CORESET0)和searchSpaceZero(common search space,CSS0)联合确定的。SSB中MIB包含4bit用于指示CORESET0,4bit用于指示CSS0,分别指示接收调度SIB1的DCI所在的频域位置和时域位置。具体地:
(1)确定CORESET0:终端设备检测到SSB后,从MIB中获取4比特(bit)信令controlResourceSetZero,该信令用于指示SSBMuxPattern、Offset、NCORESET RB、NCORESET sym,并从MIB中读取另一个4bit信令kSSB
其中,SSBMuxPattern指示SSB和CSS0的复用模式(Multiplexing Pattern,记为MuxPattern),用于后续确定CSS 0。例如,MuxPattern#1,MuxPattern#2和MuxPattern#3。
Offset和kSSB用于确定CORESET0的起始RB位置,其中kSSB表示SSB的起始子载波与参考RB(图5中称为CRB S)的距离(单位是子载波数目),Offset表示参考RB到CORESET 0起始RB的距离(单位是RB)。NCORESET sym表示CORESET#0在时域占据几个符号,即表示CORESET#0时域长度(单位是符号)。NCORESET RB用于确定CORESET#0的频域宽度。
(2)确定CSS 0:CSS#0本身对应多个时域位置,NR中1个SSB index对应1个CSS#0的时域位置。具体地,NR支持3种SSB与CSS#0复用模式,每种模式下一个SSB index对应的CSS#0时域位置确定方法不同,这里以multiplexing pattern1为例进行描述,其他不详细展开介绍。
对于复用模式1,从n0连续的两个slot内均可以存在CSS#0。对于SSB index i,终端设备可以通过如下方式确定n0:
如果且位于偶数帧;
如果且位于奇数帧;
其中μ∈{0,1,2,3}根据CORESET中PDCCH的子载波间隔确定,μ取值为0、1、2、3分别对应的子载波间隔为15kHz,30kHz,60kHz和120kHz;表示的是一个系统帧(frame)内的时隙(slot)数目。也就是说,通过O和M可以确定n0。可选的,O用来控制第一个SSB对应的SIB1的检测窗的起始位置,避免CSS#0和SSB冲突;M用来控制SSB i和SSB i+1分别对应的SIB1的检测窗的重叠情况,比如,M=2表示完全不重叠,M=1表示重叠一个时隙,M=1/2表示完全重叠。所谓重叠表示的是时域上的重叠。O和M通过上文所述的4bit指示,如表2所示,不同的SSB索引对应不同的O和M。其中通过4bit从0到15中的index选择一个,进而可以确定O和M分别是多少。
表2 0型PDCCH搜索空间集-SSB和CORESET多路复用模式1和FR1下的PDCCH监测点参数(Parameters for PDCCH monitoring occasions for Type0-PDCCH CSS set-SS/PBCH block and CORESET multiplexing pattern 1and FR 1)
此外,发送SIB1采用的波束是和其对应的SSB的波束是相同的。对应的,终端设备接收SIB1时,采用的接收波束和接收SIB1对应的SSB的接收波束相同。
SIB1还可以认为是剩余最小系统信息(remaining minimum system information,RMSI)。也可以认为是MIB之后第一个发送的系统消息。又或者,SIB1可以认为是包括RACH关联的时频资源指示 信息的系统消息。又或者,可以认为是根据CORESET 0和CSS0确定的PDCCH所调度的PDSCH中承载的信息。
LTE中的SIB1包含用来判断某小区是否适合用于小区选择的参数,以及其他SIB的时域调度信息。SIB1在时域上的位置是固定的(比如承载在子帧5上,每20ms传输一次),频域位置可能会变化,由对应的PDCCH来指示。
7.小区特定的参考信号(cell-specific reference signal,CRS):CRS可以用于小区内的所有UE,比如:1)可被UE用于下行信道估计,获取CSI;2)基于小区特定的参考信号的测量可用于小区选择和切换。CRS可以承载于每个下行子帧,整个下行带宽内的每个RB上。下行子帧是LTE系统中描述时域单元长度的变量,长度为1ms(millisecond)。如图6所示,为LTE中的子帧示意图,图中一帧长度为10ms,分为10个子帧。以子帧0为例,如图7所示,该子帧中CRS占用4个符号,比如符号0和符号4。
8.PBCH:类似于NR系统,LTE的PBCH承载的也是MIB,区别在于具体信息内容不同,以及不会和PSS以及SSS组成块(block)传输。LTE的MIB主要包含的信息是下行系统带宽,物理HARQ指示信道(physical HARQ indicator channel,PHICH)配置,以及系统帧号(system frame number,SFN),用于终端设备获取最基本的小区配置信息。承载MIB的PBCH在时域上位于每个系统帧的子帧0的第二个时隙的前4个OFDM符号上。在LTE中,一个子帧分为两个时隙,也就是说一个时隙长度为0.5ms。具体地,PBCH的位置如图8所示,占用0、1、2和3四个符号。
9.同步信号突发集(SS burst)
SSB为周期性发送的,一个SSB周期包括的SSB可以作为一个SSB集合,该SSB集合也可以称为同步信号突发集(SS burst)。
为了保持基本的功能(例如同步、小区发现等),即使没有数据传输,基站也需要频繁的发送一些公共信令,这将会导致较大的功耗浪费。以LTE系统和NR系统为例,LTE和NR系统中,基站均需要频繁的发送一些公共信令。当LTE和NR是共模块时(二者使用的是相同的硬件,例如射频通道)。此时,当且仅当网络设备在LTE系统和NR系统中均不发送任何消息时,网络设备才能关断。换句话说,目前的公共信号的配置不够灵活,导致了网络设备的功耗较大。
针对上述问题,本申请实施例提出一种通信方法,能够灵活配置通信资源,节省网络设备的功耗。如图9所示,该方法可以包括下述步骤:
步骤901:网络设备向终端设备发送第一SSB,对应地,终端设备接收该第一SSB。
一种可能的方式,网络设备向终端设备发送多个SSB,其中包括第一SSB。比如,网络设备向终端设备发送N个SSB,N为大于或等于2的正整数,该N个SSB中包括第一SSB。可选的,该N个SSB为同一个小区的SSB,也就是说该N个SSB中携带的物理小区标识PCI相同。该N个SSB属于Q个集合,Q为大于或等于1的正整数。可选地,该Q个集合中的每个集合为一个同步信号突发集(SSB burst)。
第一SSB可以对应一个图样(pattern),该图样可以用于指示第一SSB的候选时频资源。或者说,该图样可以用于确定第一SSB的候选时频资源。
应理解,本申请实施例中,时频资源可以是时域资源,也可以是频域资源,也可以是时域资源和频域资源,本申请实施例对此不作限定。
应理解,网络设备可以是通过其中一部分时频资源发送第一SSB,也可以是通过所有的候选时频资源发送第一SSB,本申请实施例对此不作限定。示例地,第一SSB对应第一图样,如图10所示,为一种第一图样的示例,该第一图样中包括的候选资源0至候选资源13均作为第一SSB的候选资源,实际用于发送第一SSB的资源为候选资源2至候选资源5以及候选资源8至候选资源11,也就是说,在这个例子中,候选资源的一部分用于发送第一SSB。也就是说,上述图样可以理解为候选资源集合,终端设备可以从该候选资源集合中确定第一SSB关联的时频资源。比如,终端设备可以对该候选资源集合进行盲检。又或者,网络设备可以进一步指示该候选资源集合中与第一SSB关联的资源。
可选地,终端设备接收到第一SSB,根据第一SSB可以得到该SSB的索引(index)。和/或当前小区的标识(PCI)。
步骤902:网络设备根据第一SSB向终端设备发送第一信息,对应地,终端设备根据第一SSB接 收第一信息。
一种可选的方式中,第一SSB用于确定第一信息的时频资源,例如,第一SSB指示调度第一信息的控制信息的时频资源,终端设备根据具体的调度第一信息的控制信息,确定第一信息的时频资源。
具体的,该第一信息用于指示第二SSB的候选时频资源。其中,第二SSB与第一SSB不同,可以是第二SSB与第一SSB时频域位置不同,也可以是第二SSB与第一SSB承载内容不同,本申请实施例对此不限定。其中,第一SSB与第二SSB的时频域位置不同可以有三种情况,情况1:第一SSB的时域位置与第二SSB的时域位置不同,频域位置相同,也就是说第一SSB与第二SSB是时分的;情况2:第一SSB的频域位置与第二SSB的频域位置不同,时域位置相同,也就是说第一SSB与第二SSB是频分的;情况3:第一SSB的频域位置与第二SSB的频域位置不同,时域位置也不同。又或者,可以通过如下至少一项理解第一SSB与第二SSB不同:SSB的index是不同的,或者SSB中的PBCH承载的信息是不同的,或者PBCH对应的DMRS是不同的,或者SSB的波束方向是不同的,或者SSB中包括的同步信号(PSS和/或SSS)是不同的。进一步地,波束方向不同可以指以下至少一项是不同的:空域信息、空域滤波器的配置信息、空域滤波配置、发送SSB时的天线方向图或者发送SSB时采用的空域滤波器。
其中,第一信息指示第二SSB的候选时频资源可以是直接指示,也可以是间接指示。
直接指示的一个示例,第一信息可以是第二SSB的候选时频资源的位置信息,比如,第一信息的内容为第二SSB的候选时域资源的位置信息,和/或,第二SSB的候选频域资源的位置信息。其中又有两种可能的方式:
方式1:第一信息为第二SSB的候选时频资源的绝对位置的信息。比如,第二SSB的候选时域资源位于子帧的第2个符号至第5个符号,第一信息的内容就是子帧的第2个符号至第5个符号。或者,第二SSB的候选频域资源位于第一频域资源的第1个RB至第3个RB,第一信息的内容就是第一频域资源的第1个RB至第3个RB,比如可以是RB的索引。
方式2:第一信息为第二SSB的候选时频资源的相对位置的信息。示例地,第一信息可以是,第二SSB相对于第一SSB的位置的偏移值。所谓第二SSB相对于第一SSB的位置的偏移值,可以是第二SSB的起始位置相对于第一SSB的起始位置的偏移值,可以是第二SSB的结束位置相对于第一SSB的结束位置的偏移值,可以是第二SSB的预定义位置相对于第一SSB的预定义位置的偏移值,本申请实施例对此不作限定。应理解,上述起始位置、结束位置和预定义位置,可以是时域位置,也可以是频域位置。
示例地,第一信息可以是,第二SSB相对于第一SSB的频域位置的偏移值。所谓第二SSB相对于第一SSB的频域位置的偏移值,可以是第二SSB的频域起始位置相对于第一SSB的频域起始位置的偏移值,可以是第二SSB的频域结束位置相对于第一SSB的频域结束位置的偏移值,可以是第二SSB的预定义频域位置相对于第一SSB的预定义频域位置的偏移值,本申请实施例对此不作限定。
也就是说第一信息可以指示第二SSB相对于第一SSB的时频位置的偏移值。
间接指示的一个示例,第一信息可以指示第二图样,第二图样用于指示第二SSB的候选时频资源,或者说,该图样可以用于确定第二SSB的候选时频资源。该第二图样的功能与步骤901中的第一图样类似,可以参考步骤901中的说明,这里不再赘述。但是第二图样与第一图样所指示的时频资源的分布不同。也就是说,第一SSB的时频资源的分布与第二SSB的时频资源的分布不同。
可选地,第二图样可以是图样集合中的一个图样。该图样集合可以包括多个图样,其中每个图样都可以用于指示第二SSB的候选时频资源,但是该图样集合中的不同图样对应的承载SSB的资源的时域资源不同。示例地,该多个图样包括的SSB的时频资源位置可能不同,或者该多个图样指示的时频资源承载的SSB的数量不同,又或者,该多个图样对应的SSB的子载波间隔不同,等等,本申请实施例对此不作限定。具体地,可以参考前文所述SSB pattern A和SSB pattern B的说明,这里的图样集合中的图样与之类似,不再赘述。换句话说,第一信息可以用于终端设备从图样集合中确定出第二图样。
可选地,第一信息还可以指示实际用于发送SSB的时频资源。一种可能的方式,终端设备可以根据图样确定候选时频资源集合,再根据第一信息在该候选时频资源集合中确定实际用于发送SSB的时频资源。示例地,如图10所示,第二图样指示第二SSB的候选时频资源为候选资源0至候选资源3,候选资源5至候选资源8,第一信息指示其中的候选资源2和候选资源7用于发送第二SSB。一种可能 的方式,当第一信息指示实际用于发送SSB的时频资源时,第一信息可以是比特图案(bitmap),示例地,如图10所示的图样中,第一信息可以是001000010,其中比特取值为0表示该时频位置不发送SSB,比特取值为1表示该位置发送SSB。应理解,上述比特取值表征的含义只作为一种示例而非限定,比如,也可以是比特取值为0表示该时频位置发送SSB,比特取值为1表示该位置不发送SSB。上述比特取值与对应的含义之间的对应关系可以是预定的,也可以是指示的,本申请实施例对此不作限定。
可以理解的是,第一信息可以用于指示N个SSB的位置信息。示例地,当第一信息用于指示8个SSB的位置信息时,可以分别指示该8个SSB的位置信息,也可以联合指示,比如,当第一信息为比特图案,该8个SSB对应于四个SSB pattern时,第一信息可以是01001000 10000100 11000000 00011000,也就是说用32个比特指示出该8个SSB的时频位置。
可选地,终端设备也可以根据第一图样确定第二SSB的时域位置。示例地,第二图样中包括的SSB的数目与第一图样中SSB的数目相同,第二图样中实际发送的SSB的时域位置与第一图样中实际发送的SSB的时域位置相同。换句话说,终端设备无需其他信息指示时域位置,根据第一图样即可确定第二SSB的时域位置。应理解,第二SSB的频域位置可以通过指示信息确定,比如第一信息,或者其他信息,该指示信息用于指示第二SSB的频域位置。终端设备根据该时域位置和频域位置确定第二SSB的位置。
可选地,第一SSB占用第一时频资源,该第一时频资源属于第一图样指示的候选时频资源,且属于第二图样指示的候选时频资源。也就是说,第二SSB的候选时频资源可以包括第一SSB的候选时频资源,能够提高不同图样之间的提高兼容性。
应理解,上述第一SSB可以关联第一信息。比如:
一种可能的方式,上述第一信息承载于第一SSB中。终端设备根据第一SSB接收第一信息,可以是终端设备解析第一SSB,以获取第一信息。
另一种可能的方式,上述第一信息承载于第一系统消息(比如SIB1)中。第一系统消息可以是通过第一SSB确定的。其中,根据第一SSB确定第一系统消息可以参考前文通过SSB确定SIB1的方法,这里不再赘述。
步骤903:终端设备根据第一信息确定第二SSB。
当第一信息直接指示第二SSB的时频位置时:
对应于步骤902中的方式1,终端设备接收第一信息,通过解析第一信息可以直接获取第二SSB的候选时频资源的位置信息。
对应于步骤902中的方式2,终端设备接收第一信息,通过解析第一信息获取偏移值,再根据该偏移值与第一SSB的位置信息,可以确定第二SSB的候选时频资源的位置信息。
当第一信息间接指示第二SSB的时频位置时:
对应于步骤902中的间接指示的方式,终端设备接收第一信息,根据第一信息确定第二图样,根据第二图样确定第二SSB的候选视频资源的位置信息。其中,一种可能的方式,终端设备根据第一信息确定第二图样,可以是终端设备根据第一信息从图样集合中确定第二图样。
可选地,当第一信息还用于指示实际用于发送SSB的时频资源时,终端设备可以根据该第一信息确定实际承载SSB的时频资源。
当第一信息指示N个SSB的时频资源位置时:
终端设备还可以接收其他信息,比如ssb-PositionsInBurst中的信息,以确定SSB的具体位置。示例地,当第一信息为01001000 10000100 11000000 00011000,终端设备可以确定当前有四个SSB集合(burst),结合ssb-PositionsInBurst中的信息指示某SSB的候选时频资源表示为10000100,则终端设备可以确定该SSB处于第二集合。
又或者,终端设备可以接收第二信息,该第二信息用于指示某SSB处于第几组,终端设备根据该第二信息确定某SSB的具体位置,比如所属的SSB集合。
应理解,上述SSB的数量,以及SSB集合的数量,可以是预定义的,也可以是指示的,又或者,可以是根据SSB集合的周期确定的,例如,当一个SSB burst的周期为20ms时,SSB burst的数量为4;当SSB burst的周期为40ms时,SSB burst的数量8。本申请实施例对此不作限定。
应理解,终端设备还接收SBI1。终端设备在接收到SSB后,可以根据SSB中的PBCH携带的信 息确定DCI,该DCI用于调度承载SIB1的PDSCH。如图11所示,为NR中SSB与SIB1传输资源的一个示例,该图中还包括LTE模式下的系统消息的传输。可以看出,NR中的SIB1与LTE中的系统消息在时频位置上基本重合,这大大增加了网络设备的关断可能。
该方法中,通过不同的图样(pattern)灵活配置SSB,能够降低网络设备能耗,提高终端设备接入网络的效率。例如,当SSB或者SIB1在不同的通信模式(比如NR和LTE)中,时频资源重叠的比例大,则网络设备的空闲状态保持的时间可以更久,也就是网络设备的关断概率更大,这样,降低了网络设备的能耗。
上述方法通过重新设计SSB的时频资源位置,实现了网络设备的能耗降低,本申请实施例提出又一种方法,能够提供兼容性,并有效降低网络设备的能耗,提高终端设备接入网络的效率。如图12所示,该方法包括下述步骤:
步骤1201:网络设备确定N个SSB。
其中,N为大于或等于2的正整数。
该N个SSB包括SSB#1(即第一SSB)和SSB#2(即第二SSB)。应理解,第一SSB或者第二SSB可以包括多个SSB,也可以包括一个SSB,这里以包括一个SSB为例进行说明。
SSB#1为N个SSB中在时域上位置最先的SSB,SSB#2为N个SSB中在时域上位置最后的SSB。其中,SSB在时域上的位置,可以通过该SSB占用的时域资源在时域上的位置来表征,在时域上位置最先也可以理解为时域资源最靠前或者时序最先或者在时域位置上最早等,在时域上位置最后也可以理解为时域资源最靠后或者时序最后或者在时域位置上最晚等。
该SSB#1与SSB#2之间的时域间隔大于第一帧长度的一半(可以理解为半帧),该第一帧为承载N个SSB的帧。其中,第一帧和半帧是时间单位。具体地,SSB中会承载一个比特,用于指示当前这个SSB(以及这个SSB属于的burst)是位于一个帧的前半帧,还是后半帧。SSB中也会承载比特,用于指示当前SSB(以及这个SSB属于的burst)的帧的索引。
两个SSB之间的时域间隔可以通过该两个SSB各自所占用的时域资源之间的间隔表征。该时域间隔可以是SSB#1占用的时域资源的起始位置,与SSB#2占用的时域资源的起始位置之间的间隔,也可以是SSB#1占用的时域资源的结束位置,与SSB#2占用的时域资源的结束位置之间的间隔,也可以是SSB#1占用的时域资源的预定义位置,与SSB#2占用的时域资源的预定义位置之间的间隔。该预定义位置可以是预设的,可以是指示的,本申请实施例对此不作限定。示例地,当该帧的长度为10ms时,该SSB#1与SSB#2之间的时域间隔大于5ms。
可选地,该N个SSB可以是根据SSB pattern确定的,该SSB pattern可以用于指示该N个SSB的时频位置,比如,一个SSB burst可以分别位于两个半帧上。
一种可能的方式,上述N个SSB属于P个集合,P为大于等于2的正整数,P个集合与P个小区一一对应,P个小区互不相同。其中,该P个小区对应P个小区标识码PCI,该P个PCI各不相同。也就是说,P个集合中包括两个集合:第一集合和第二集合,第一SSB属于第一集合,第二SSB属于第二集合,第一SSB和第二SSB时域间隔大于帧长度的一半。
一种可能的实现,P为4时,P个集合包括第一集合、第二集合、第三集合和第四集合,第一集合和第三集合包括的SSB对应的SSB index为2,O为2,M为1;第二集合和第四集合包括的SSB对应的SSB index为4,O为5,M为1。应理解,SSB index、O和M之间的对应关系可以参考表2的说明,这里不再赘述。示例地,可以根据O和M来确定SIB1的候选位置。具体地,一种可能的方式,O可以指示首个SSB对应的SIB1的检测窗的起始位置,避免CSS#0和SSB冲突;M可以用来表征SSB i和SSB i+1分别对应的SIB1的检测窗的重叠情况,比如,M=2表示完全不重叠,M=1表示重叠一个时隙,M=1/2表示完全重叠。可选的,可以通过O和M确定n0,通过O和M确定n0的方式可以参考前文说明,这里不再赘述。n0可以用于确定CSS0的位置,比如,从n0连续的X个时隙内可以存在CSS0,该X为正整数,例如X=2。确定了CSS0的位置,可以根据该CSS0检测用于调度SIB1的PDCCH,从而确定SIB1的候选位置。详细流程可以参考前文所述,这里不再赘述。还应理解,这里的第一集合、第二集合、第三集合和第四集合对应的SSB index仅作为一种优选的示例,而非限定。进一步,O和M还可以用于确定SIB1的时频资源位置。
另一种可能的实现,N个SSB包括第三SSB和第四SSB,第三SSB属于第一小区,第四SSB属 于第二小区,第三SSB和第四SSB占用的时域资源相同,频域资源不同。换句话说,属于不同小区的SSB,可以采用频分方式进行传输。示例地,如图13所示,SSB以频分方式传输,SIB1也以频分方式传输,图中还包括LTE中的系统消息的传输资源示意,可以看出,LTE中的系统消息占用的时频资源,与,NR中的SIB1占用的时频资源,相互重叠,这样能够增加网络设备的关断概率。应理解,该方法中,LTE和NR作为不同通信模式的示例进行方案的说明,其中,LTE和NR的频域可能是交叠的。可以理解,LTE和NR的频域交叠具体可以指LTE的频带和NR的频带有交叠部分。当然,LTE与NR的频域也可能是不重叠的,在不重叠情况下可能是两个独立的频带(band);或者,LTE与NR是共模的。其中,LTE与NR共模具体可以指LTE和NR采用相同的硬件设备,例如功率放大器,射频通道等。进一步地,LTE和NR采用相同的硬件设备具体可以指,发送LTE信号和NR信号时采用的硬件设备相同。一种可能的实现,LTE和NR的工作频带(operating bands)位于n41频带,其中n41频带的频率范围是2496megahertz(MHz)至2690MHz。
另一种可能的方式,该N个SSB属于一个小区,这N个SSB中存在两个SSB的时域间隔大于帧的一半。应理解,N个SSB属于一个小区可以指N个SSB所承载的PCI相同。
步骤1202:网络设备向终端设备发送N个SSB,对应地,终端设备接收该N个SSB。
其中,SSB是按照波束(beam)扫描的形式发送的。在该方法中,假设SSB扫描波束数目为8,每个小区内的波束数目为8,如图14所示,整个空间中波束数目还是8个,能够使SSB的波束覆盖整个小区范围。
可选地,终端设备接收到该N个SSB后,可以根据该N个SSB与网络设备执行同步或者波束选择等流程。应理解,同步或波束选择等只作为示例而非限定,终端设备也可以执行其他相关流程。
该方法中,将SSB划分为不同的小区,在未修改现有协议的情况下,在不同的通信模式共存的场景中,能够增大网络设备的关断概率,降低网络设备的功耗,同时提高终端设备接入网络的效率。另外,该方法能够适用于现有设备,提高了兼容性,降低了用户成本。
应理解,本申请实施例中以网络设备与终端设备作为通信双发的一个示例,但不限于次。还应理解,本申请实施例中以LTE和NR作为不同通信模式的示例,对此也不做限定。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图15和图16为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯片)。
如图15所示,通信装置1500包括处理单元1510和收发单元1520。通信装置1500用于实现上述图9或图12中所示的方法实施例中终端设备或网络设备的功能。
当通信装置1500用于实现图9所示的方法实施例中终端设备的功能时:收发单元1520用于接收第一信息;收发单元1520还用于接收第一信息;处理单元1510用于根据第一信息确定第二SSB。
当通信装置1500用于实现图9所示的方法实施例中网络设备的功能时:收发单元1520用于发送第一SSB;收发单元1520还用于发送第一信息;收发单元1520还用于发送第二SSB。
当通信装置1500用于实现图12所示的方法实施例中终端设备的功能时:处理单元1510用于确定N个SSB;收发单元1520用于接收N个SSB;处理单元1510还用于与网络设备同步或波束选择。
当通信装置1500用于实现图12所示的方法实施例中网络设备的功能时:收发单元1520用于发送N个SSB;处理单元1510用于与终端设备同步或波束选择。
有关上述处理单元1510和收发单元1520更详细的描述可以直接参考图9所示的方法实施例中相关描述直接得到,这里不加赘述。
如图16所示,通信装置1600包括处理器1610和接口电路1620。处理器1610和接口电路1620之间相互耦合。可以理解的是,接口电路1620可以为收发器或输入输出接口。可选的,通信装置1600还可以包括存储器1630,用于存储处理器1610执行的指令或存储处理器1610运行指令所需要的输入 数据或存储处理器1610运行指令后产生的数据。
当通信装置1600用于实现图9或图12所示的方法时,处理器1610用于实现上述处理单元1510的功能,接口电路1620用于实现上述收发单元1520的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
根据说明书是否用到可选:本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (31)

  1. 一种通信方法,其特征在于,
    接收第一同步信号块SSB;
    根据第一SSB接收第一信息,所述第一信息用于指示第二SSB的候选时频资源;
    根据所述第一信息确定第二SSB。
  2. 根据权利要求1所述的方法,其特征在于,所述第一SSB对应第一图样,所述第二SSB对应第二图样,所述第一图样和所述第二图样不同。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息用于指示所述第二SSB的候选时频资源,包括:
    所述第一信息指示第二图样,所述第二图样用于指示所述第二SSB的候选时频资源。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第二图样属于图样集合,所述图样集合包括至少一个候选图样。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收第二信息,所述第二信息用于指示所述第二图样中用于发送所述第二SSB的时域资源。
  6. 根据权利要求1所述的方法,其特征在于,所述第一信息包括所述第二SSB的时域资源的位置信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第二SSB属于N个SSB,所述N个SSB属于同一小区,所述N个SSB属于Q个集合,所述Q为大于或等于1的正整数,所述第一信息还包括所述N个SSB与所述Q个集合的对应关系。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一SSB和所述第二SSB的频域位置相同,且时域位置不同。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一信息用于指示所述第二SSB的候选时频资源,包括:
    所述第一信息用于指示偏移值,所述偏移值为所述第二SSB的候选时频资源相对于所述第一SSB时频资源的偏移值。
  10. 根据权利要求9所述的方法,其特征在于,第一SSB占用第一时频资源,所述第一时频资源属于所述第一图样指示的候选时频资源,且属于所述第二图样指示的候选时频资源。
  11. 一种通信方法,其特征在于,包括:
    确定N个SSB,所述N为大于或等于2的整数,所述N个SSB包括第一SSB和第二SSB,所述第一SSB为所述N个SSB中在时域上位置最早的SSB,所述第二SSB为所述N个SSB中在时域上位置最晚的SSB,所述第一SSB与所述第二SSB之间的时域间隔大于第一帧长度的一半,所述第一帧为承载所述N个SSB的帧,所述N个SSB属于P个集合,所述P为大于等于2的正整数,所述P个集合与P个小区一一对应,所述P个小区互不相同;
    接收所述N个SSB中的至少一个SSB。
  12. 根据权利要求11所述的方法,其特征在于,所述P为4时,所述P个集合包括第一集合、第二集合、第三集合和第四集合,所述第一集合和所述第三集合包括的SSB的索引为2,O为2,M为1;所述第二集合和所述第四集合包括的SSB对应的SSB索引为4,O为5,M为1,所述O和所述M用于确定所述SSB中SIB1的候选位置。
  13. 根据权利要求11所述的方法,其特征在于,所述N个SSB包括第三SSB和第四SSB,所述第三SSB属于第一小区,所述第四SSB属于第二小区,所述第三SSB和所述第四SSB占用的时域资源相同,频域资源不同。
  14. 一种通信方法,其特征在于,包括:
    发送第一SSB;
    根据第一SSB发送所述第一信息,所述第一信息用于指示第二SSB的候选时频资源。
  15. 根据权利要求14所述的方法,其特征在于,所述第一SSB对应第一图样,所述第二SSB对 应第二图样,所述第一图样和所述第二图样不同。
  16. 根据权利要求15所述的方法,其特征在于,所述第一信息用于指示所述第二SSB的候选时频资源,包括:
    所述第一信息指示第二图样,所述第二图样用于指示所述第二SSB的候选时频资源。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第二图样属于图样集合,所述图样集合包括至少一个候选图样。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    发送第二信息,所述第二信息用于指示所述第二图样中用于接收所述第二SSB的时域资源。
  19. 根据权利要求14所述的方法,其特征在于,所述第一信息包括所述第二SSB的时域资源的位置信息。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述第二SSB属于N个SSB,所述N个SSB属于同一小区,所述N个SSB属于Q个集合,所述Q为大于或等于1的正整数,所述第一信息还包括所述N个SSB与所述Q个集合的对应关系。
  21. 根据权利要求14至20中任一项所述的方法,其特征在于,所述第一SSB和所述第二SSB的频域位置相同,且时域位置不同。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述第一信息用于指示所述第二SSB的候选时频资源,包括:
    所述第一信息用于指示偏移值,所述偏移值为所述第二SSB的候选时频资源相对于所述第一SSB时频资源的偏移值。
  23. 根据权利要求22所述的方法,其特征在于,所述第一SSB占用第一时频资源,所述第一时频资源属于所述第一图样指示的候选时频资源,且属于第二图样指示的候选时频资源。
  24. 一种通信方法,其特征在于,包括:
    确定N个SSB,所述N个SSB包括第一SSB和第二SSB,所述第一SSB为所述N个SSB中在时域上位置最早的SSB,所述第二SSB为所述N个SSB中在时域上位置最晚的集合,所述第一SSB与所述第二SSB之间的时域间隔大于第一帧长度的一半,所述第一帧为承载所述N个SSB的帧,所述N个SSB属于P个集合,所述P为大于等于2的正整数,所述P个集合与P个小区一一对应,所述P个小区互不相同;
    发送所述N个SSB。
  25. 根据权利要求24所述的方法,其特征在于,所述P为4时,所述P个集合包括第一集合、第二集合、第三集合和第四集合,所述第一集合和所述第三集合包括的SSB的索引为2,O为2,M为1;所述第二集合和所述第四集合包括的SSB对应的SSB索引为4,O为5,M为1,其中,所述O和所述M用于确定所述SSB中SIB1的候选位置。
  26. 根据权利要求24所述的方法,其特征在于,所述SSB包括第三SSB和第四SSB,所述第三SSB属于第一小区,所述第四SSB属于第二小区,所述第三SSB和所述第四SSB占用的时域资源相同,频域资源不同。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求1至10,或如权利要求11至13中任一项所述的方法的模块。
  28. 一种通信装置,其特征在于,包括用于执行如权利要求14至23,或如权利要求24至26中任一项所述的方法的模块。
  29. 一种通信系统,其特征在于,包括如权利要求27和如权利要求28所述的通信装置。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至10中任一项所述的方法被执行,或者,如权利要求11至13中任一项所述的方法被执行,或者,如权利要求14至23中任一项所述的方法被执行,或者,如权利要求24至26中任一项所述的方法被执行。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,如权利要求1至10中任一项所述的方法被执行,或者,如权利要求11至13中任一项所述的方法被执行,或者,如权利要求14至23中任一项所述的方法被执行,或者, 如权利要求24至26中任一项所述的方法被执行。
PCT/CN2023/107917 2022-08-08 2023-07-18 通信方法、装置及系统 WO2024032329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210947916.2 2022-08-08
CN202210947916.2A CN117596669A (zh) 2022-08-08 2022-08-08 通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2024032329A1 true WO2024032329A1 (zh) 2024-02-15

Family

ID=89850740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107917 WO2024032329A1 (zh) 2022-08-08 2023-07-18 通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN117596669A (zh)
WO (1) WO2024032329A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989967A (zh) * 2018-02-19 2020-11-24 瑞典爱立信有限公司 用于载波聚合和双连接的辅小区的改进激活
EP3780699A1 (en) * 2018-04-04 2021-02-17 ZTE Corporation Method for sending signal channel, and base station, storage medium and electronic apparatus
KR20210081904A (ko) * 2019-12-24 2021-07-02 엘지전자 주식회사 Xr 컨텐트 제공 방법 및 디바이스
CN114071686A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种同步信号块的传输方法和通信装置
CN114424666A (zh) * 2019-09-29 2022-04-29 华为技术有限公司 一种通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989967A (zh) * 2018-02-19 2020-11-24 瑞典爱立信有限公司 用于载波聚合和双连接的辅小区的改进激活
EP3780699A1 (en) * 2018-04-04 2021-02-17 ZTE Corporation Method for sending signal channel, and base station, storage medium and electronic apparatus
CN114424666A (zh) * 2019-09-29 2022-04-29 华为技术有限公司 一种通信方法及装置
KR20210081904A (ko) * 2019-12-24 2021-07-02 엘지전자 주식회사 Xr 컨텐트 제공 방법 및 디바이스
CN114071686A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种同步信号块的传输方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Considerations on DL reference signals and channels design for NR-U", 3GPP DRAFT; R1-1812433, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 8, XP051478633 *

Also Published As

Publication number Publication date
CN117596669A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
US10645679B2 (en) Hybrid automatic repeat request (HARQ) payload mapping for short physical uplink control channel (PUCCH) on a shared communication medium
CN107113116B (zh) 用于共享频谱中的不连续发送(dtx)的小区切换的方法、装置和计算机可读介质
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
US11115924B2 (en) Methods and apparatus for transmission and detection of multi-band wake-up
CN114503744A (zh) 用于在无线通信系统中发送和接收信号的方法和装置
WO2014053885A1 (en) Methods, apparatus and computer programs for half-duplex frequency division duplexing
KR20180011175A (ko) 면허 지원 액세스에서의 스케줄링
CN111699722B (zh) 在空闲模式下操作的方法和使用该方法的设备
JP2023166462A (ja) 端末デバイスのウェイクアップ方法及び装置、ネットワーク・デバイス、並びに端末デバイス
CN113508637A (zh) 用于促成将唤醒信号与其他资源复用的方法和装置
US20220330291A1 (en) Method and apparatus of communication for reduced-capability user equipment in wireless communication system
CN115104377A (zh) 用于支持无线通信中的能力降低的设备的方法和装置
US20240008097A1 (en) Communication method, apparatus, and system
CN116134894A (zh) 一种资源信息指示方法及装置
CN114902592A (zh) 传输初始接入配置信息的方法和装置
WO2024032329A1 (zh) 通信方法、装置及系统
US20220061098A1 (en) Communication method and device for reduced-capability ue in wireless communication system
US11962543B2 (en) Wireless device full duplex cooperative schemes
US20210321480A1 (en) Power saving for extended reality (xr) communication
WO2024093741A1 (zh) 通信方法、装置、系统及存储介质
EP4325965A1 (en) Random access method, communication apparatus and communication system
WO2024032326A1 (zh) 一种通信方法和装置
WO2023125091A1 (zh) 通信方法及装置
WO2023030207A1 (zh) 通信方法和通信装置
WO2023284490A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851552

Country of ref document: EP

Kind code of ref document: A1