WO2023284490A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2023284490A1
WO2023284490A1 PCT/CN2022/099803 CN2022099803W WO2023284490A1 WO 2023284490 A1 WO2023284490 A1 WO 2023284490A1 CN 2022099803 W CN2022099803 W CN 2022099803W WO 2023284490 A1 WO2023284490 A1 WO 2023284490A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
frequency domain
indication information
domain resource
terminal
Prior art date
Application number
PCT/CN2022/099803
Other languages
English (en)
French (fr)
Inventor
李胜钰
官磊
李锐杰
郭志恒
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22841130.2A priority Critical patent/EP4358581A1/en
Publication of WO2023284490A1 publication Critical patent/WO2023284490A1/zh
Priority to US18/413,112 priority patent/US20240155698A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0875Non-scheduled access, e.g. ALOHA using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0891Non-scheduled access, e.g. ALOHA using a dedicated channel for access for synchronized access

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a communication method and device.
  • terminals can communicate in half-duplex.
  • carrier aggregation carrier aggregation, CA
  • terminals can communicate in half-duplex.
  • CC component carriers
  • the terminal is configured with multiple component carriers (CC)
  • CC#1 some symbols on carrier 1 (CC#1) are downlink symbols
  • carrier 2 CC# 2
  • CC# 2 carrier 2
  • the communication protocol needs to specify the behavior of the terminal in this scenario.
  • the terminal behavior specified in the current communication protocol does not consider the extremely reliable and low-latency communications (ultra-reliable and low-latency communications, URLLC) transmission and enhanced mobile broadband (eMBB) transmission have different urgency and Priority, so it is difficult to apply to URLLC scenarios, which may cause a large transmission delay.
  • URLLC ultra-reliable and low-latency communications
  • eMBB enhanced mobile broadband
  • the present application provides a communication method and device in order to reduce data transmission delay.
  • a communication method is provided.
  • the method can be executed by the terminal device, or executed by a chip applied to the terminal device.
  • the terminal device receives first indication information, and the first indication information indicates that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission.
  • the first transmission is a synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SSB) or a physical random access channel (physical random access channel, PRACH) on the first frequency domain resource
  • the second transmission is in For transmission on the second frequency domain resource, the transmission directions of the first transmission and the second transmission may be different, and the time domain resources of the first transmission opportunity and the second transmission may overlap.
  • the terminal device performs the second transmission on the second frequency domain resource according to the first indication information.
  • the first indication information may be used to indicate to the terminal that the priority of SSB or PRACH transmission on one frequency domain resource is lower than that of the opposite direction transmission on another frequency domain resource.
  • a terminal-specific transmission can be scheduled through high-level signaling configuration or physical layer signaling. This transmission can carry high-priority data, so the priority is higher than the cell-specific transmission at initial access, such as SSB or PRACH.
  • the terminal After receiving the first indication information, the terminal can perform opposite direction transmission on the symbol overlapping with the cell-specific transmission, thereby reducing the limitation of the cell-specific transmission on the transmission direction and increasing the flexibility of resource usage.
  • the first transmission may be SSB
  • the second transmission may be PRACH, physical uplink shared channel (PUSCH), physical uplink control channel (physical uplink control channel, PUCCH) or uplink One of the sounding reference signals (SRS).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS uplink One of the sounding reference signals
  • the above-mentioned PRACH is a contention-free PRACH, for example, a PRACH transmission triggered by a network device through a physical downlink control channel (physical downlink control channel, PDCCH) order (PDCCH order).
  • PDCCH physical downlink control channel
  • the first transmission may be PRACH
  • the second transmission may be PDCCH, physical downlink shared channel (physical downlink shared channel, PDSCH) or channel state information reference signal (channel state information-reference signal resource, One of the CSI-RS).
  • the foregoing PRACH is a contention-based PRACH, for example, a PRACH transmission selected by the terminal during initial access.
  • the first indication information may indicate that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission by indicating that the first transmission fails or the first transmission opportunity fails.
  • the first indication information may be used to explicitly indicate that the SSB or PRACH indicated in the system information block (secondary information block, SIB) 1 when the terminal initially accesses is invalid.
  • SIB system information block
  • the first transmission may be periodic transmission, the first transmission may include multiple transmission opportunities, and the first transmission opportunity may be one of the multiple transmission opportunities.
  • the first indication information may include grouping information of the first transmission, and may be used to divide multiple transmission opportunities into M transmission opportunity groups. Wherein, M is an integer greater than or equal to 2.
  • the first transmission opportunity may not belong to the first group, and the first group may be a group associated with the terminal device among the M transmission opportunity groups.
  • the SSB or PRACH transmission is grouped, so that different groups correspond to different terminals or terminal groups (groups), thereby supporting TDM transmission between different terminals or terminal groups and reducing SSB Or PRACH transmission limits the scheduling of all terminals to improve resource utilization efficiency.
  • the group information of the first transmission may include a correspondence between an identifier of the terminal device and the M transmission opportunity groups.
  • the first indication information may be carried in SIB1.
  • the identifier of the terminal device can be a 5G globally unique temporary identity (5G-GUTI), a 5G shorted-temporary mobile subscription identifier (5G- One of S-TMSI) or 5G temporary mobile subscriber identification (5G-temporary mobile subscriber identification, 5G-TMSI).
  • 5G-GUTI 5G globally unique temporary identity
  • 5G-TMSI 5G shorted-temporary mobile subscription identifier
  • 5G-temporary mobile subscriber identification 5G-temporary mobile subscriber identification
  • the first transmission may be periodic transmission, the first transmission may include multiple transmission opportunities, and the first transmission opportunity may be one of the multiple transmission opportunities.
  • the first indication information may be used to determine the first subset, the first subset may be a subset of a set of multiple transmission opportunities, and the transmission opportunities in the first subset are valid for the terminal device.
  • the first transmission opportunity may not belong to the first subset.
  • the first indication information can be used to clearly inform the terminal of a subset of effective transmission opportunities, thereby supporting TDM transmission between different terminals or terminal groups, reducing the scheduling restrictions of SSB or PRACH transmission on all terminals, and improving resource utilization efficiency.
  • a communication method is provided.
  • the method can be executed by a network device, or executed by a chip applied to the network device.
  • the network device sends first indication information, where the first indication information indicates that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission.
  • the first transmission is SSB or PRACH on the first frequency domain resource.
  • the second transmission is transmission on the second frequency domain resource, the transmission directions of the first transmission and the second transmission are different, and the time domain resources of the first transmission opportunity and the second transmission overlap.
  • the network device performs the second transmission on the second frequency domain resource.
  • the first transmission may be SSB
  • the second transmission may be one of PRACH, PUSCH, PUCCH or SRS.
  • the PRACH may be a contention-free PRACH, for example, a PRACH transmission triggered by a network device through a PDCCH order (PDCCH order).
  • PDCCH order PDCCH order
  • the first transmission may be a PRACH
  • the second transmission may be one of PDCCH, PDSCH or CSI-SR.
  • the foregoing PRACH is a contention-based PRACH, for example, a PRACH transmission selected by the terminal during initial access.
  • the first indication information may indicate that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission by indicating that the first transmission fails or the first transmission opportunity fails.
  • the first transmission may be periodic transmission, the first transmission may include multiple transmission opportunities, and the first transmission opportunity may be one of the multiple transmission opportunities.
  • the first indication information may include grouping information of the first transmission, and may be used to divide multiple transmission opportunities into M transmission opportunity groups. Wherein, M is an integer greater than or equal to 2.
  • the first transmission opportunity may not belong to the first group, and the first group may be a group associated with the terminal device among the M transmission opportunity groups.
  • the group information of the first transmission may include a correspondence between an identifier of the terminal device and the M transmission opportunity groups.
  • the first indication information may be carried in SIB1.
  • the identifier of the terminal device may be one of 5G-GUTI, 5G-S-TMSI or 5G-TMSI.
  • the first transmission may be periodic transmission, the first transmission may include multiple transmission opportunities, and the first transmission opportunity may be one of the multiple transmission opportunities.
  • the first indication information may be used to determine the first subset, the first subset may be a subset of a set of multiple transmission opportunities, and the transmission opportunities in the first subset may be valid for the terminal device, and the first transmission opportunities may be does not belong to the first subset.
  • a communication device including a transceiver module and a processing module.
  • the transceiver module is configured to receive first indication information, and the first indication information indicates that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission.
  • the first transmission is SSB or PRACH on the first frequency domain resource
  • the second transmission is transmission on the second frequency domain resource
  • the transmission directions of the first transmission and the second transmission are different
  • the timing of the first transmission is different from that of the second transmission.
  • the time domain resources of the two transmissions overlap.
  • a processing module configured to determine to perform the second transmission on the second frequency domain resource according to the first indication information.
  • the transceiver module is further configured to perform the second transmission on the second frequency domain resource.
  • the above-mentioned PRACH is a contention-free PRACH, for example, a PRACH transmission triggered by a network device through a PDCCH order (PDCCH order).
  • PDCCH order PDCCH order
  • the first transmission is SSB
  • the second transmission is one of PRACH, PUSCH, PUCCH, or SRS.
  • the first transmission is PRACH
  • the second transmission may be one of PDCCH, PDSCH, or CSI-RS.
  • the foregoing PRACH is a contention-based PRACH, for example, a PRACH transmission selected by the terminal during initial access.
  • the first indication information indicates that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission by indicating that the first transmission fails or the first transmission opportunity fails.
  • the first transmission is periodic transmission, the first transmission includes multiple transmission opportunities, and the first transmission opportunity is one of the multiple transmission opportunities; the first indication information includes group information of the first transmission, used for The multiple transmission opportunities are divided into M transmission opportunity groups, where M is an integer greater than or equal to 2; the first transmission opportunity does not belong to the first group, and the first group is a group associated with the terminal device in the M transmission opportunity groups.
  • the group information of the first transmission includes correspondences between identifiers of terminal devices and M transmission opportunity groups.
  • the first indication information is carried in SIB1.
  • the identifier of the terminal device is one of 5G-GUTI, 5G-S-TMSI or 5G-TMSI.
  • the first transmission is periodic transmission, the first transmission includes multiple transmission opportunities, and the first transmission opportunity is one of the multiple transmission opportunities; the first indication information is used to determine the first subset, and the first The subset is a subset of a set of multiple transmission opportunities, and the transmission opportunities in the first subset are valid for the terminal device; the first transmission opportunities do not belong to the first subset.
  • a communication device including a transceiver module and a processing module.
  • the processing module is configured to generate first indication information, where the first indication information indicates that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission.
  • the first transmission is SSB or PRACH on the first frequency domain resource.
  • the second transmission is transmission on the second frequency domain resource, the transmission directions of the first transmission and the second transmission are different, and the time domain resources of the first transmission opportunity and the second transmission may overlap.
  • a transceiver module configured to send the first indication information.
  • the transceiver module is further configured to perform the second transmission on the second frequency domain resource.
  • the first transmission may be SSB
  • the second transmission may be one of PRACH, PUSCH, PUCCH, or SRS.
  • the PRACH may be a contention-free PRACH, for example, a PRACH transmission triggered by a network device through a PDCCH order (PDCCH order).
  • PDCCH order PDCCH order
  • the first transmission may be PRACH
  • the second transmission may be one of PDCCH, PDSCH, or CSI-SR.
  • the foregoing PRACH is a contention-based PRACH, for example, a PRACH transmission selected by the terminal during initial access.
  • the first indication information indicates that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission by indicating that the first transmission fails or the first transmission opportunity fails.
  • the first transmission is periodic transmission, the first transmission includes multiple transmission opportunities, and the first transmission opportunity is one of the multiple transmission opportunities; the first indication information includes group information of the first transmission, used for The multiple transmission opportunities are divided into M transmission opportunity groups, where M is an integer greater than or equal to 2; the first transmission opportunity does not belong to the first group, and the first group is a group associated with the terminal device in the M transmission opportunity groups.
  • the group information of the first transmission includes correspondences between identifiers of terminal devices and M transmission opportunity groups.
  • the first indication information is carried in SIB1.
  • the identifier of the terminal device is one of 5G-GUTI, 5G-S-TMSI or 5G-TMSI.
  • the first transmission is periodic transmission, the first transmission includes multiple transmission opportunities, and the first transmission opportunity is one of the multiple transmission opportunities; the first indication information is used to determine the first subset, and the first The subset is a subset of a set of multiple transmission opportunities, and the transmission opportunities in the first subset are valid for the terminal device; the first transmission opportunities do not belong to the first subset.
  • a communication device including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions to perform the first aspect and/or the second aspect above implementation methods.
  • the memory may be located within the device or external to the device.
  • the number of the processors is one or more.
  • the present application provides a communication device, including: a processor and an interface circuit, where the interface circuit is used to communicate with other devices, and the processor is used for each implementation method of the first aspect and/or the second aspect.
  • a communication device in a seventh aspect, includes a logic circuit and an input and output interface.
  • the input and output interface is used to input first indication information, the first indication information indicating that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission, wherein the first transmission
  • the first transmission is SSB or PRACH on the first frequency domain resource;
  • the second transmission is transmission on the second frequency domain resource, the transmission directions of the first transmission and the second transmission are different, and the first transmission A transmission opportunity overlaps with the time domain resources of the second transmission.
  • the input and output interface is also used to perform the second transmission on the second frequency domain resource.
  • a logic circuit is used to generate the first indication information.
  • the first indication information indicates that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission, where the first transmission is SSB or PRACH on the first frequency domain resource; the The second transmission is transmission on the second frequency domain resource, the transmission directions of the first transmission and the second transmission are different, and the time domain resources of the first transmission and the second transmission overlap.
  • the input-output interface is used to output the first indication information.
  • the present application provides a communication system, including: a terminal device configured to execute the implementation methods of the first aspect above, and a network device configured to execute the implementation methods of the second aspect above.
  • the present application further provides a system on chip, including: a processor, configured to execute each implementation method of the first aspect and/or the second aspect above.
  • the present application further provides a computer program product, including computer-executable instructions, which, when the computer-executable instructions are run on a computer, enable the above-mentioned implementation methods of the first aspect and/or the second aspect to be executed.
  • the present application also provides a computer-readable storage medium, in which computer programs or instructions are stored, and when the instructions are run on a computer, the above-mentioned first aspect and/or second aspect are realized.
  • a computer-readable storage medium in which computer programs or instructions are stored, and when the instructions are run on a computer, the above-mentioned first aspect and/or second aspect are realized.
  • beneficial effects of the second aspect to the eleventh aspect can refer to the beneficial effects shown in the first aspect.
  • FIG. 1 is a schematic diagram of a community TDD frame structure
  • Fig. 2 is the communication system provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a complementary frame structure
  • Figure 4 is a schematic diagram of data transmission in the URLLC scenario
  • FIG. 5 is a schematic diagram of data transmission under SSB protection rules
  • FIG. 6 is an exemplary flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is one of the structural diagrams of the communication device provided by the embodiment of the present application.
  • FIG. 8 is one of structural diagrams of a communication device provided by an embodiment of the present application.
  • band n78 corresponds to a total frequency band of 500MHz from 3.3G to 3.8G, and it is stipulated that it can only be a time division duplex (TDD) system.
  • TDD time division duplex
  • Component Carrier which is the basic unit for operators to deploy spectrum or frequency domain resources.
  • CC Component Carrier
  • a band contains multiple CCs, and one CC corresponds to a spectrum position in the frequency domain, including the starting position and bandwidth, such as 100MHz, 80MHz, 40MHz, 20MHz, 10MHz, 5MHz, etc., and generally contains Guard band.
  • the configuration of the frame structure is based on CC. That is to say, without considering the dynamic TDD frame structure, the TDD frame structure in one CC is fixed, and the TDD frame structures of different CCs may be different.
  • BWP Bandwidth part
  • a CC contains multiple BWPs.
  • different BWPs support different subcarrier intervals, so that different services can be matched.
  • Multiple BWPs can share the central frequency point but have different bandwidths, so that the terminal can work on different bandwidths according to needs, so as to achieve the purpose of energy saving.
  • Different BWPs have different bandwidths, allowing terminals with various terminal capabilities to select BWPs according to their own capabilities, and giving more freedom to resource allocation.
  • 1 BWP has 1 SCS. That is to say, the configuration of the SCS is based on the BWP. In the frequency domain, it corresponds to a spectrum position on the CC. The starting position of the BWP is relative to the starting position of the CC.
  • the bandwidth is generally represented by the number of resource blocks (RB).
  • Subband contains multiple RBs, which generally exceed the coherent bandwidth width of the channel. Therefore, the concept of a subband is generally introduced during real data scheduling, transmission, and channel measurement.
  • One subband contains one or more RBs. For example, during channel measurement, it is often assumed that the channels on one subband are the same, and during scheduling, it may also be assumed that the precoding matrices on one subband are the same. It should be noted that subband is sometimes also called a precoding RB group (precoding RB group). In the embodiment of the present application, subband represents a continuous frequency spectrum.
  • 1 RB contains 12 consecutive sub-carriers SC
  • 1 SC is the smallest frequency domain unit of LTE and NR systems, and can carry 1 modulation symbol.
  • the units of time-domain transmission resources in NR are frame (frame), half-frame (Half-frame), subframe (subframe), time slot (Slot), orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol ( Symbol), the length of the frame is fixed at 10ms, the length of the half frame is fixed at 5ms, and the length of the subframe is fixed at 1ms.
  • the length of the time slot and symbol is related to the subcarrier spacing.
  • a time slot includes 14 symbols
  • 1 slot includes 12 symbols in the case of an extended cyclic prefix.
  • one subframe includes 2 ⁇ time slots, where ⁇ is the SCS index (index), and the values are 0, 1, 2, 3....
  • the basis of the TDD frame structure in NR is the transmission direction, and the minimum determination unit is the OFDM symbol.
  • the transmission direction on a symbol can be downlink D, uplink U, or flexible F.
  • the flexible symbol means that this symbol can be used for downlink transmission, uplink transmission, or for uplink and downlink switching.
  • the frame structure is generally expressed in units of time slots or symbols. For example, aD:bS:cU indicates that the uplink and downlink switching period of a TDD is a+b+c time slots, the first a time slots are downlink (DL) time slots, and the middle b time slots are flexible time slots. They are called special time slots, and the last c time slots are uplink (UL) time slots.
  • a, b and c are positive integers.
  • xD:yF:zU indicating that the first x symbols in the time slot are downlink, the middle y symbols are flexible, and the last z symbols are uplink.
  • x, y and z are positive integers.
  • tdd-UL-DL-Configuration Common tdd-UL-DL-ConfigurationCommon
  • tdd-UL-DL-ConfigurationCommon which is carried in system information or cell-specific configuration information, and can contain 1 subcarrier interval and 1 pattern.
  • This pattern will indicate a cycle P, and the unit is ms.
  • This cycle and the configured subcarrier spacing jointly determine the number of time slots in the cycle.
  • This pattern also indicates the number of DL slots d_slot, the number of DL symbols d_sym, the number of UL slots u_slot, and the number of UL symbols u_sym.
  • SCS 30kHz
  • P 5ms
  • the ones that do not indicate all the symbols in the middle are the flexible symbols f_slot, represented by X. It should be noted that the flexible symbols may span multiple time slots.
  • tdd-UL-DL-ConfigurationCommon will indicate 2 patterns, then these 2 patterns indicate 2 frame structures respectively, the lengths are P1 and P2, and the overall frame structure is the frame structure shown in Figure 1 in series.
  • Terminal-specific TDD frame structure configuration indicated by high-layer signaling tdd-UL-DL dedicated configuration (tdd-UL-DL-ConfigurationDedicated). This signaling is a supplementary solution to the above-mentioned tdd-UL-DL-ConfigurationCommon indicating frame structure.
  • tdd-UL-DL-ConfigurationDedicated will include a set of TDD-UL-DL slot configurations (TDD-UL-DL-SlotConfig).
  • TDD-UL-DL-SlotConfig is used to configure the frame structure of one of the above N time slots, which can indicate all downlink or all uplink, or indicate the number of downlink symbols and the number of uplink symbols.
  • the downlink symbol is located before the uplink symbol in the time domain.
  • tdd-UL-DL-ConfigurationDedicated can only configure the communication direction indicated as a flexible symbol in tdd-UL-DL-ConfigurationCommon.
  • Downlink control information dynamically indicates the TDD frame structure: the terminal can be configured to detect DCI format 2_0 (DCI format 2_0), which is used to indicate the TDD frame structure on a group of CCs. Specifically, for one CC, the DCI can only modify the communication direction of symbols on the flexible time slot after the configuration of the above frame structure.
  • FIG. 2 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 2 ), and may also include at least one terminal (such as 120a-120j in FIG. 2 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of radio access network equipment. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 2 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 2 .
  • Wireless access network equipment can also be called network equipment, which can be base station (base station), evolved base station (evolved NodeB, eNodeB), transmission reception point (transmission reception point, TRP), fifth generation (5th generation, 5G)
  • base station base station
  • evolved base station evolved NodeB, eNodeB
  • transmission reception point transmission reception point
  • TRP transmission reception point
  • 5th generation, 5G The next generation base station (next generation NodeB, gNB) in the mobile communication system, the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • It can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3rd generation partnership project, 3GPP third generation partnership project
  • the radio access network device may be a macro base station (such as 110a in Figure 2), a micro base station or an indoor station (such as 110b in Figure 2), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively called a communication device, 110a and 110b in FIG. 2 can be called a communication device with a base station function, and 120a-120j in FIG. 2 can be called a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the terminal needs to establish a wireless connection with the cell controlled by the base station.
  • a cell with which a terminal has established a wireless connection is called a serving cell of the terminal.
  • the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the time-domain symbols may be OFDM symbols, or discrete Fourier transform-spread OFDM (Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM) symbols.
  • the symbols in the embodiments of the present application refer to time-domain symbols.
  • PDSCH, PDCCH, PUCCH, and PUSCH are only examples of downlink data channels, downlink control channels, uplink control channels, and uplink data channels.
  • the data channel and the control channel may have different names, which are not limited in this embodiment of the present application.
  • signals may include data channels, control channels and reference signals.
  • the transmission of the signal may be uplink transmission, that is, sent from the terminal to the base station; it may also be downlink transmission, that is, sent from the base station to the terminal. When transmit is used as a verb, transmit can be used interchangeably with send/receive.
  • FDD frequency division duplex
  • TDD Time Division duplex
  • the terminal when the above two frequency domain resources with different frame structures are located in the same frequency band, the terminal often does not have the ability to receive downlink data and transmit uplink data at the same time, so the sending or receiving behavior of the terminal needs to be specified.
  • NRCA proposes terminal half-duplex, that is, when the terminal is configured with multiple CCs, if the TDD frame structures of these CCs are different, such as some symbols on carrier 1 (CC#1) are downlink symbols, while carrier 2 ( The time domain position corresponding to CC#2) is an uplink symbol, and the protocol needs to specify the behavior of the terminal in this scenario.
  • the protocol specifies the half-duplex behavior of terminals as follows:
  • the protocol stipulates that the terminal itself has the ability to resolve half-duplex conflicts as follows.
  • the SSB may include a synchronization signal (synchronization signal, SS) and a physical broadcast channel (physical broadcast channel, PBCH).
  • SS synchronization signal
  • PBCH physical broadcast channel
  • Rule #2 The PRACH Protection Principle. For any valid PRACH occasion (occasion), if a downlink transmission (except SSB, such as PDCCH, PDSCH, CSI-RS) overlaps with the valid PRACH, or overlaps with N gap OFDM symbols before the valid PRACH, the terminal does not Receive this downlink transmission.
  • a PRACH opportunity is valid, which refers to: 1) the OFDM symbol where the PRACH opportunity is located is an uplink symbol, and 2) the PRACH opportunity is not before an SSB opportunity in the time slot, and 3) the PRACH opportunity is before There is no SSB transmission on N gap OFDM symbols, where the parameter N gap is a value predefined by the protocol or indicated by the base station.
  • the above rules do not consider that URLLC transmission and eMBB transmission have different urgency and priority, so they are not very friendly to URLLC applications.
  • the above rules #1 to #3 can be simply summarized as cell-specific signal protection rules, since SSB, PRACH and CSS#0 are all cell-specific, that is, they are the same for all terminals, and For initial access, the base station cannot choose not to transmit, or the base station cannot not transmit for a long time, so these signals have a higher priority, and if there is a conflicting heterogeneous transmission, the heterogeneous transmission needs to be discarded.
  • the service arrival period is 4ms
  • 7OFDM symbol (OFDM symbol, OS) transmission time interval transmission time interval, TTI
  • one period contains 16 TTIs
  • the downlink data of 16 groups of terminals arrive at each TTI separately.
  • the downlink transmission resources of UE#0 to UE#15 are in TTI#0 to TTI#15 of the first frequency domain resource
  • the downlink transmission resources of UE#16 to UE#19 are in the TTI#0 to TTI#15 of the second frequency domain resource.
  • the uplink transmission resources of UE#0 ⁇ UE#5 are in TTI#10 ⁇ TTI#15 of the second frequency domain resource
  • the uplink transmission resources of UE#6 ⁇ UE#9 are in TTI#16 ⁇ TTI# of the first frequency domain resource 19.
  • the uplink transmission resources of UE#10-UE#19 are in TTI#0-TTI#9 of the second frequency domain resources. Since the terminal does not support receiving data on one CC and sending data on another CC at the same time, the arrival of the uplink data of the terminal may have a certain offset from the arrival of the downlink data and be arranged in different TTIs. However, in order to maximize resource utilization efficiency, the downlink transmission of a terminal or terminal group (UE group) #n on one TTI must correspond to the uplink transmission of another terminal or terminal group (UE group) #m.
  • the SSB period is 20ms
  • the business period is 6ms, that is, 24 groups of terminals will encounter SSB at a certain moment, then the least common multiple is 60ms, and each group of terminals will have 10 data arrivals within 60ms, and there will be 12 groups of terminals The data conflicts with SSB at some point.
  • the embodiment of the present application provides a communication method, which can agree on the behavior of the terminal when the uplink and downlink conflicts occur between the terminal's cell-specific transmission and the terminal-specific (UE-specific) transmission.
  • cell-specific transmission and UE-specific transmission are introduced respectively.
  • the cell-specific transmission may refer to the transmission of a cell-specific signal.
  • a cell-specific signal refers to a signal that is the same for all terminals and transmission configurations.
  • the cell-specific signal is a signal that needs to be received or sent when the terminal accesses the cell from an idle (Idle) state to a connected (Connected) state.
  • the cell-specific signal includes a downlink common signal and an uplink common signal.
  • the downlink public signal refers to the downlink public signal used for initial access, and is used to identify a cell, complete downlink timing synchronization, and acquire basic configuration information of a cell.
  • PDCCH on SSB and CSS#0 also known as Type0-PDCCH CSS
  • NR NR
  • the downlink common signal functionally includes a downlink synchronization signal, a downlink broadcast channel carrying MIB, a PDSCH carrying SIB1, and a PDCCH in CSS#0, and the DCI carried in the PDCCH is used to indicate the aforementioned PDSCH carrying SIB1.
  • different downlink common signals are introduced respectively.
  • SSB including the synchronization signal SS and the physical broadcast channel PBCH.
  • the synchronization signal includes the primary synchronization signal (primary SS, PSS) and the secondary synchronization signal (secondary SS, SSS).
  • the PBCH carries the MIB of the access cell, and the two are jointly used It is used to obtain cell identity (identity, ID), downlink timing synchronization and most important system information, such as obtaining the time-frequency position where the subsequent SIB1 is located.
  • SIB1 After the terminal detects the SSB, it can complete downlink timing synchronization, and then determine the time-frequency position for receiving the PDCCH used to schedule SIB1 based on the time-frequency position of the current SSB and the SSB index.
  • the frequency domain position of the PDCCH is called control resource set (control resource set, CORESET) #0 in NR, and the time domain position is called CSS#0 or Type0-PDCCH CSS.
  • CORESET control resource set
  • CSS#0 Type0-PDCCH CSS.
  • the time-frequency position of SSB, the corresponding relationship between CORESET#0 and CSS#0 will not be introduced here. It should be understood that one SSB index corresponds to one CSS#0 transmission position.
  • the time domain position where the terminal receives the PDCCH is configured by a search space (search space, SS).
  • General terminals will be configured with a CSS and some terminal-specific search spaces (UE search space, USS).
  • the CSS will include Type0-PDCCH CSS, Type0A-PDCCH CSS, Type1-PDCCH CSS, Type2-PDCCH CSS, and Type3-PDCCH CSS.
  • Type0-PDCCH CSS is the PDCCH that the user receives and schedules SIB1, and is generally used for initial access.
  • other CSS is public, but not used for initial access.
  • the USS is configured individually on a per-UE basis, that is, configured per-UE, and different terminals can be staggered through time division multiplexing (dime division multiplexing, TDM).
  • the uplink public signal refers to the information used for random access of the terminal, for completing the uplink timing synchronization between the terminal and the cell, and completing the registration function of the terminal in the cell, such as PRACH in NR.
  • PRACH may include PRACH transmission in four-step random access (4-Step RACH) and PRACH transmission in two-step random access (2-Step RACH).
  • the PRACH involved in the embodiment of the present application is the first transmission in the 4-step RACH, that is, message 1 (Msg1), and may also be the first transmission in the 2-step RACH, that is, message A (MsgA).
  • UE-specific transmission refers to the transmission of UE-specific signals.
  • the UE-specific signal means that the signal is sent to a specific terminal, not to all terminals in the cell, and may include downlink transmission and uplink transmission.
  • Downlink transmission includes PDCCH transmission, PDSCH transmission, downlink reference signal transmission, such as CSI-RS transmission, and UE-specific SSB transmission.
  • PDCCH transmission at least including PDCCH transmission on the USS. Or, it also includes PDCCH transmission on CSS other than CSS#0, such as PDCCH transmission on Type0A-PDCCH CSS, Type1-PDCCH CSS, Type2-PDCCH CSS, and Type3-PDCCH CSS.
  • PDSCH transmission at least including PDSCH transmission of DCI scheduling carried by PDCCH on USS, and semi-persistent scheduling PDSCH transmission configured by radio resource control (radio resource control, RRC), such as semi-persistent scheduling (semi-persistent scheduling) , SPS) PDSCH transmission.
  • RRC radio resource control
  • it also includes PDSCH transmission scheduled by PDCCH on CSS other than CSS#0, such as PDSCH transmission scheduled by PDCCH on Type0A-PDCCH CSS, Type1-PDCCH CSS, and Type2-PDCCH CSS.
  • CSI-RS transmission including periodic (periodic, P) CSI-RS transmission of RRC configuration, medium access control (medium access control, MAC) control element (control element, CE) or semi-persistent DCI activation ( semi-persistent (SP) CSI-RS transmission, aperiodic (A) CSI-RS transmission with DCI dynamic activation.
  • UE-specific SSB transmission refers to SSB transmission configured through UE-specific signaling, such as RRC signaling.
  • Uplink transmission includes PUSCH transmission, PUCCH and SRS transmission, and also includes UE-specific PRACH transmission.
  • the PUSCH transmission includes at least the PUSCH transmission scheduled by the DCI on the PDCCH in the USS, and the configured grant (CG) PUSCH transmission configured by the RRC. Alternatively, it also includes PUSCH transmission scheduled by a random access response (random access response, RAR) UL grant.
  • RAR random access response
  • PUCCH transmission including bearer hybrid automatic repeat request (hybrid automatic repeat request, HARQ)-ACK transmission, scheduling request (scheduling request, SR) transmission or beam failure recovery (beam failure recovery, BFR) transmission and CSI PUCCH transmission.
  • bearer hybrid automatic repeat request hybrid automatic repeat request, HARQ
  • HARQ-ACK transmission For PUCCH transmission carrying HARQ-ACK, it includes HARQ-ACK transmission of SPS PDSCH and PDSCH transmission scheduled by DCI, and may also include HARQ-ACK transmission of PDSCH scheduled by PDCCH on other CSSs except CSS#0.
  • PUCCH transmission carrying SR/BFR it is a periodic PUCCH transmission configured by RRC signaling, and when the upper layer triggers the physical layer to send SR or BFR on the corresponding PUCCH resource, the PUCCH transmission is actually carried out; otherwise, the PUCCH transmission can be skipped.
  • PUCCH transmission carrying CSI it includes periodic CSI transmission configured by RRC and half-period CSI transmission activated by MAC CE.
  • SRS transmission includes periodic SRS (P-SRS) transmission configured by RRC signaling, semi-persistent SRS (SP-SRS) transmission activated by MAC CE, and aperiodic SRS (A-SRS) transmission activated by DCI.
  • P-SRS periodic SRS
  • SP-SRS semi-persistent SRS
  • A-SRS aperiodic SRS
  • UE-specific PRACH transmission includes contention-free PRACH transmission, for example, PDCCH order triggers PRACH transmission.
  • FIG. 6 it is an exemplary flow chart of a communication method provided by an embodiment of the present application, which may include the following operations.
  • the base station sends first indication information, and a corresponding terminal receives the first indication information.
  • the first indication information may indicate that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission.
  • the foregoing first transmission may be cell-specific transmission on the first frequency domain resource, and the second transmission may be UE-specific transmission on the second frequency domain resource.
  • the first transmission may be cell-specific transmission during initial access.
  • the first transmission may be cell-specific downlink transmission, and the second transmission may be UE-specific uplink transmission, or the first transmission may be cell-specific uplink transmission, and the second transmission may be UE-specific downlink transmission.
  • the first transmission may be SSB and the second transmission is one of PRACH, PUSCH, PUCCH or SRS.
  • the first transmission being SSB means that the first transmission is the SSB configured in SIB1
  • the second transmission being PRACH may mean that the second transmission is contention-free PRACH.
  • the first transmission may be a PRACH
  • the second transmission may be one of PDCCH, PDSCH or CSI-RS.
  • the fact that the first transmission is the PRACH may refer to that the first transmission is a contention-based PRACH.
  • the foregoing first transmission and the second transmission may both be cell-specific transmissions, for example, the first transmission is SSB, and the second transmission is PRACH.
  • the PRACH is a contention-based PRACH.
  • the first transmission opportunity overlaps with the time domain resources of the second transmission.
  • the above-mentioned overlap can be a generalized overlap, and can correspond to any of the following situations: 1) the time-domain OFDM symbol occupied by the first transmission opportunity partially overlaps or completely overlaps the time-domain OFDM symbol occupied by the second transmission, 2) The OFDM symbols occupied by the first transmission opportunity do not overlap with the OFDM symbols occupied by the second transmission, but the OFDM symbols occupied by the first transmission opportunity overlap with N1 OFDM symbols before the second transmission, or the OFDM symbols occupied by the first transmission opportunity and N2 OFDM symbols overlap after the second transmission, or, M1 OFDM symbols before the first transmission opportunity overlap with the OFDM symbols occupied by the second transmission, or, M2 OFDM symbols after the first transmission opportunity overlap with the OFDM symbols occupied by the second transmission Overlapping, where N1, N2, M1 and M2 may be predefined parameters or parameters indicated by the base station. 3) The first transmission opportunity and the second transmission are within one time slot, and
  • the first frequency domain resource and the second frequency domain resource may be configured by the base station to the terminal.
  • the base station may send configuration information of the first frequency domain resource and configuration information of the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource can be 2 CCs on 2 frequency bands, or 2 CCs on 1 frequency band, or 2 BWPs in 1 CC, or 1 2 subbands within the BWP.
  • the first frequency domain resource and the second frequency domain resource may be one frequency domain resource, for example, the first frequency domain resource and the second frequency domain resource are one BWP, correspondingly, the subsequent first transmission and second transmission It may be transmissions occupying different RBs on this BWP.
  • the foregoing terminal does not support concurrent transmission in different directions on the first frequency domain resource and the second frequency domain resource. For example, the terminal does not support receiving a signal at a time on the first frequency domain resource while sending a signal at the same time on the second frequency domain resource. Or, the terminal does not support sending a signal at a time on the first frequency domain resource while receiving a signal at the same time on the second frequency domain resource.
  • the base station sends the configuration information of the first transmission and the configuration information of the second transmission to the terminal.
  • the configuration information of the first transmission may include multiple transmission opportunities of the first transmission, and frequency domain resources occupied by each transmission opportunity.
  • the aforementioned frequency domain resource occupied by each transmission opportunity may be on the first frequency domain resource.
  • the above-mentioned first transmission opportunity is one of the multiple transmission opportunities of the first transmission.
  • the configuration information of the second transmission may include time domain resources and frequency domain resources of the second transmission, and the frequency domain resources of the second transmission may be on the second frequency domain resources.
  • the first transmission is periodic transmission, for example, the first transmission is SSB, SSB is periodically repeated transmission, and in each period, there are multiple transmission opportunities, and SSB can be sent on each transmission opportunity .
  • the first transmission is the PRACH, the PRACH resources are periodic, and there are multiple transmission opportunities in each period, and the PRACH can be sent on each transmission opportunity.
  • the terminal performs a second transmission on the second frequency domain resource according to the first indication information.
  • the base station performs the second transmission on the second frequency domain resource.
  • the terminal sends an uplink signal to the base station on the second frequency domain resource according to the first indication information, and correspondingly, the base station receives the uplink signal from the terminal on the second frequency domain resource.
  • the base station sends a downlink signal to the terminal on the second frequency domain resource, and correspondingly, the terminal receives the downlink signal from the base station on the second frequency domain resource according to the first indication information.
  • the first indication information may be used to indicate that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission, so the terminal can perform different operations on resources overlapping with the cell-specific transmission in the time domain.
  • Direction transmission second transmission
  • the restriction of cell-specific transmission on the transmission direction can be reduced, and the flexibility of resource usage can be increased.
  • the terminal will stop the first transmission at the first transmission opportunity on the first frequency domain resource, where stopping the first transmission includes: 1) discarding/cancelling the entire first transmission, that is, not performing the first transmission, 2) A portion of the first transmission is discarded/cancelled, eg, a portion of the first transmission that overlaps symbols in the time domain with the second transmission is canceled.
  • the first transmission is a downlink transmission, such as SSB
  • the terminal does not receive or does not expect to receive the first transmission
  • the terminal will not update the measurement; when the first The first transmission is an uplink transmission, such as PRACH, and the terminal does not send or is not allowed to send the first transmission.
  • the function of the first indication information is to indicate that the priority of the first transmission at the first transmission opportunity is lower than the priority of the second transmission
  • the first indication information may have different implementations methods are described below.
  • Case 1 The first indication information indicates that the first transmission opportunity is invalid, or the first indication information indicates that the first transmission is invalid.
  • the above first indication information may be carried in RRC signaling, or may be carried in MAC CE, or may also be carried in DCI.
  • the first indication information may indicate that the first transmission opportunity is invalid, that is, it is used to close or disable (disable) the first transmission on the first transmission opportunity.
  • the first transmission is SSB, and the first indication information is used to indicate that the terminal does not need to detect or receive the SSB transmission on the first SSB opportunity.
  • the first transmission is the PRACH, and the first indication information is used to indicate that the terminal cannot send the PRACH at the first PRACH opportunity.
  • the first indication information may indicate that the first transmission is invalid, that is, it is used to disable all cell-specific transmissions during initial access.
  • the first indication information is used to disable all SSB transmission indicated in SIB1 and/or RACH configuration signaling in SIB1 configures PRACH transmission.
  • the terminal may determine to perform the second transmission on the second frequency domain resource according to the foregoing first indication information.
  • the terminal may also receive second indication information.
  • the second indication information is specific to the terminal, for example, the second indication information is sent to the terminal through terminal-specific RRC signaling, MAC CE or DCI, and is used to indicate a new transmission opportunity or transmission time-frequency position, for The above-mentioned first transmission is performed.
  • the base station indicates a set of new time-frequency positions to the terminal to transmit SSB through UE-specific RRC signaling, and the terminal detects the SSB at the new time-frequency position; for another example, after the initial access , the base station indicates to the terminal a set of new time-frequency positions to send the PRACH through UE-specific RRC signaling, and the terminal sends the contention-based PRACH and the contention-free PRACH at the new time-frequency positions.
  • the first transmission is the SSB transmission indicated in SIB1, for example, the SSB transmission indicated by ssb-PositioninBurst.
  • the first indication information may indicate that the SSB transmission indicated in SIB1 is invalid during the initial access process, and the terminal does not need to detect and measure these SSBs again.
  • the measurement and reporting associated with the SSB indicated in the above SIB1 is also invalid, or in other words, the SSB does not participate in the corresponding SSB measurement and reporting this time.
  • the terminal may then perform the second transmission on the second frequency domain resource overlapping with the SSB transmission opportunity in the time domain.
  • the base station may send the second indication information to the terminal, and the corresponding terminal may receive the second indication information.
  • the second indication information may be used to indicate a group of UE-specific SSBs.
  • the UE-specific SSB indicated by the second indication information is still transmitted on one or more SSB transmission position sets in the SSB transmission position set predefined by the protocol, and the second indication information may indicate UE-specific SSB transmission period and The specific transmission location of UE-specific SSB.
  • the first transmission is the PDCCH transmission on CSS#0.
  • the first indication information may indicate that the PDCCH transmission on CSS#0 is invalid during the initial access process, and the terminal does not need to detect the PDCCH on CSS#0 again. The terminal can then perform the second transmission on the second frequency domain resource overlapping with the PDCCH on CSS#0 in the time domain.
  • the base station configures a new USS or other CSS for the terminal through the second indication information, so as to receive the PDCCH scheduling the SIB1 in the connected state.
  • the OFDM symbols corresponding to the second frequency domain resources may be uplink symbols or flexible symbols.
  • the first transmission is the PRACH transmission indicated in SIB1, for example, the PRACH transmission indicated by RACH Configuration.
  • the first indication information is used to indicate that the PRACH transmission configured in SIB1 is invalid, and the terminal cannot send the PRACH spontaneously based on the PRACH resource indicated by the base station.
  • the terminal may perform the second transmission on the second frequency domain resource overlapping with the PRACH resource in the time domain, that is, receive the downlink signal.
  • the base station may configure UE-specific PRACH resources for the terminal through the second indication information.
  • the terminal can use symbols overlapping with the cell-specific transmission In this way, the restriction of cell-specific transmission on the transmission direction can be avoided, and the flexibility of resource usage can be increased.
  • the second indication information the above cell-specific transmission can be changed to UE-specific transmission, so as to realize TDM transmission between different terminals.
  • the first indication information indicates the group information of the first transmission.
  • the first transmission may be periodic transmission, and there may be multiple transmission opportunities.
  • the first indication information may be used to divide multiple transmission opportunities into M transmission opportunity groups, where M is an integer greater than or equal to 2.
  • M is an integer greater than or equal to 2.
  • the above first indication information may be carried in SIB1, or may be carried in RRC signaling after initial and random access, or in RRC signaling after RRC establishment.
  • the terminal may perform the second transmission on the second frequency domain resource overlapping with the first transmission opportunity in the time domain.
  • the first group may be a group associated with the terminal in the M transmission opportunity groups. That is to say, when the first indication information indicates that only the first group is associated with the terminal, that is, only the transmission opportunity in the first group is valid for the terminal, if the first transmission opportunity does not belong to the first group, it means The first transmission opportunity is invalid for the terminal, and at this time, the terminal may perform the second transmission on the time domain resources overlapping with the first transmission opportunity.
  • the group information of the first transmission may include a correspondence between the identifier of the terminal and the M transmission opportunity groups.
  • the terminal may determine whether the first transmission opportunity belongs to the first group according to the correspondence between its own identity and the M transmission opportunity groups.
  • the above-mentioned identifier of the terminal may be an identifier before random access, for example, may be one of 5G-GUTI, 5G-S-TMSI or 5G-TMSI.
  • the terminal identifier may be a cell-radio network temporary identifier (cell-radio network temporary identifier, C-RNTI) or other temporary terminal identifier indicated by the base station.
  • the first group associated with the terminal may be the (x mod M)+1th group. It should be understood that the foregoing correspondence between the identifier of the terminal and the M transmission opportunity groups is exemplary only, and is not enough to limit the first group associated with the paired terminal.
  • the first transmission is SSB transmission.
  • the first indication information is used to indicate the grouping information of the SSB indicated in the SIB1 during the initial access process. For example, it indicates that the SSBs are divided into M groups.
  • the first indication information may include the number M of groups, the SSB period corresponding to each group and/or the SSB transmission position within the period.
  • M the number of groups
  • the first group and the second group of SSBs correspond to a 20ms transmission period
  • the first group is located in the first half frame of the 20ms transmission period
  • the second group is located in the second half frame of the 20ms period.
  • both the first group and the second group are located in the first half frame within the 20ms period, but the first group corresponds to SSB index#0 ⁇ #3
  • the second group corresponds to SSB index#4 ⁇ #7.
  • the first indication information may also include a correspondence between SSB groups and UE IDs.
  • the first indication information may be carried in SIB1, and at this time, the UE ID may be one of 5G-GUTI, 5G-S-TMSI or 5G-TMSI.
  • the first indication information is carried in the RRC signaling after the initial and random access, or in the RRC signaling after the RRC is established.
  • the UE ID can be C-RNTI or other temporary UE ID indicated by the base station .
  • the first indication information may be divided into first sub-indication information and second sub-indication information.
  • the first sub-indication information is used to indicate SSB grouping information.
  • the first sub-indication information may include the number of groups M, the corresponding SSB period of each group and/or the SSB transmission position within the period, and the first sub-indication information may be carried in SIB1 or RRC signaling after RRC is established.
  • the second sub-indication information may be used to indicate the serial number of the SSB group corresponding to the terminal, and the second sub-indication information may be carried in RRC signaling, MAC CE or DCI.
  • the second sub-indication information may be separately notified to each terminal through UE-specific indication information.
  • the first transmission is PDCCH transmission on CSS#0.
  • the first indication information may be the first indication information transmitted by the SSB shown in (1) above, that is, the terminal only detects the PDCCH on the CSS#0 associated with the SSB group corresponding to its own UE ID, not the SSB group corresponding to its own UE ID The position of CSS#0 does not need to detect PDCCH.
  • the first indication information may be different from the first indication information of SSB transmission shown in (1) above.
  • the first indication information may be carried in SIB1 or carried in RRC signaling after RRC is established, and is used to indicate the number of groups of CSS#0 and the transmission position of CSS#0 in each group.
  • the first indication information may include the number M of groups, and each group corresponds to a CSS#0 transmission position.
  • the first indication information may also include a correspondence between SSB groups and UE IDs.
  • the UE ID may be one of 5G-GUTI, 5G-S-TMSI or 5G-TMSI, C-RNTI or other temporary UE IDs indicated by the base station.
  • the first indication information may be divided into first sub-indication information and second sub-indication information.
  • the first sub-indication information is used to indicate CSS#0 grouping information.
  • the first sub-indication information may include the number of groups M and the corresponding CSS#0 transmission position for each group, and the first sub-indication information may be carried in SIB1 or RRC signaling after RRC is established.
  • the second sub-indication information may be used to indicate the serial number of the CSS#0 group corresponding to the terminal, and the second sub-indication information may be carried in RRC signaling, MAC CE or DCI.
  • the second sub-indication information may be separately notified to each terminal through UE-specific indication information.
  • the first transmission is PRACH transmission.
  • the first indication information is used to indicate the PRACH transmission group information configured in SIB1. For example, information indicating the number of groups M is included.
  • the first indication information may include the number M of groups, the corresponding PRACH period of each group and/or the PRACH transmission position within the period.
  • each group of PRACHs corresponds to a PRACH configuration index (prach-ConfigurationIndex), and the prach-ConfigurationIndex can indicate the index of each group of PRACHs, and can be used to determine the time-domain resource position of each group of PRACHs.
  • the first indication information may also include the correspondence between the PRACH group and the UE ID.
  • the first indication information may be carried in SIB1.
  • the UE ID may be the ID of the terminal before random access, for example, one of 5G-GUTI, 5G-S-TMSI or 5G-TMSI.
  • the first indication information may be carried in RRC signaling after initial and random access, or in RRC signaling after RRC establishment.
  • the UE ID can be the C-RNTI of the terminal or other temporary UE ID indicated by the base station.
  • the first indication information may be divided into first sub-indication information and second sub-indication information.
  • the first sub-indication information is used to indicate PRACH group information, such as including the number M of groups, the PRACH period corresponding to each group and/or the PRACH transmission position within the period.
  • the first sub-indication information may be carried in SIB1 or RRC signaling after RRC is established.
  • the second sub-indication information may be used to indicate the PRACH group number corresponding to the terminal, and the second sub-indication information may be carried in RRC signaling, MAC CE or DCI.
  • the second sub-indication information may be notified to each UE separately through UE-specific indication information.
  • the terminal may determine whether the first transmission opportunity belongs to the cell-specific transmission packet corresponding to its own UE ID according to the first indication information.
  • the priority of the first transmission is higher than the priority of the second transmission. That is, the terminal performs the first transmission at the first transmission opportunity and gives up the second transmission.
  • the priority of the first transmission is lower than the priority of the second transmission. That is, the terminal performs the second transmission on the second frequency domain resource.
  • the cell-specific transmission is changed to UE-specific transmission, or UE group-specific transmission, thereby supporting TDM transmission between different UEs or UE groups, and avoiding cell-specific transmission.
  • Scheduling restrictions for all UEs improve resource utilization efficiency.
  • Case 3 The first indication information indicates the first subset.
  • the foregoing first subset may be a subset of a set of multiple transmission opportunities of the first transmission.
  • the base station may indicate to the terminal that the transmission opportunities in the first subset are valid (valid) to the terminal through the first indication information.
  • the multiple transmission opportunities of the first transmission can be divided into multiple subsets, each subset having an index.
  • the base station may indicate to the terminal the index of the first subset through the first indication information, so as to indicate to the terminal that the first subset is valid.
  • the first indication information may include multiple transmission opportunities, and these transmission opportunities may be regarded as the first subset, and the base station may indicate the multiple transmission opportunities to the terminal through the first indication information.
  • the terminal may perform the second transmission on the second frequency domain resource overlapping with the cell-specific in the time domain.
  • the terminal can perform cell-specific transmission and give up the second transmission.
  • the cell-specific transmission can be divided into multiple groups, and the subset of effective transmission opportunities can be indicated to the terminal through the first indication information, thereby supporting TDM transmission of different terminals and avoiding the impact of cell-specific transmission on all terminals Scheduling restrictions to improve resource utilization efficiency.
  • the base station may indicate to the terminal that the priority of the cell-specific transmission is lower than the priority of the second transmission through the first indication information.
  • the embodiment of the present application provides another communication method.
  • the priority of cell-specific transmission and UE-specific transmission can be predefined by the protocol, so that when the cell-specific transmission and UE-specific transmission overlap in the time domain, the terminal can determine to execute the cell-specific transmission according to the predetermined rules of the protocol. specific transmission or UE-specific transmission.
  • the first frequency domain resource corresponds to the first TDD frame structure
  • the second frequency domain resource corresponds to the second TDD frame structure
  • the first TDD frame structure on the OFDM symbol occupied by the first transmission opportunity may be a downlink symbol or a flexible symbol
  • the second TDD frame structure on the OFDM symbol occupied by the second transmission may be an uplink symbol or a flexible symbol
  • the uplink symbol and the flexible symbol may be determined through cell common TDD frame structure configuration information, or determined through terminal specific TDD frame structure configuration information, or determined through DCI.
  • the base station and the terminal include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 7 and FIG. 8 are schematic structural diagrams of a possible communication device provided by an embodiment of the present application. These communication devices can be used to implement the functions of the terminal or the base station in the above method embodiments, and therefore can also realize the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j shown in FIG. 2, or the base station 110a or 110b shown in FIG. 2, or a Modules (such as chips).
  • a communication device 700 includes a processing module 710 and a transceiver module 720 .
  • the communication device 700 is configured to implement functions of a terminal or a base station in the method embodiment shown in FIG. 6 above.
  • the transceiver module 720 is used to receive the first indication information; the processing module 710 is used to demodulate and/or decode the first indication information .
  • the transceiver module is further configured to perform the second transmission on the second frequency domain resource according to the first indication information.
  • the processing module 710 is used to generate the first indication information.
  • the transceiver module 720 is configured to send the first indication information.
  • the transceiver module 720 is further configured to perform second transmission on the second frequency domain resource.
  • processing module 710 and the transceiver module 720 can be directly obtained by referring to the relevant descriptions in the method embodiment shown in FIG. 6 , and will not be repeated here.
  • the communication device 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input/output interface.
  • the communication device 800 may further include a memory 830 for storing instructions executed by the processor 810 or storing input data required by the processor 810 to execute the instructions or storing data generated after the processor 810 executes the instructions.
  • the processor 810 is used to implement the functions of the processing module 710
  • the interface circuit 820 is used to implement the functions of the transceiver module 720 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the The information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent to the base station by the terminal; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), the The information is sent by the base station to the terminal.
  • the base station module here may be a baseband chip of the base station, or a DU or other modules, and the DU here may be a DU under an open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法和装置,涉及无线通信技术领域,用来在SSB或PRACH的频域资源与另一个频域资源上的异向传输在时域上重叠的情况下,指示终端进行第二传输。该方法中,终端设备在SSB或PRACH与第二传输在时域上重叠时,可以通过接收第一指示信息,确定在重叠的时域资源上的SSB或PRACH的优先级低于第二传输的优先级。终端设备可以根据第一指示信息进行第二传输。基于上述方案,终端设备可以在与SSB或PRACH重叠的符号上进行异向传输,从而降低SSB或PRACH对传输方向的限制,增加资源使用灵活度。

Description

一种通信方法和装置
相关申请的交叉引用
本申请要求在2021年07月16日提交中国专利局、申请号为202110806913.2、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法和装置。
背景技术
新无线(new radio,NR)载波聚合(carrier aggregation,CA)中终端可以半双工通信。当终端被配置了多个成员载波(component carrier,CC)时,如果这些CC的TDD帧结构不同,如在载波1(CC#1)上的某些符号是下行符号,而载波2(CC#2)对应的时域位置是上行符号,通信协议需要规定这个场景下终端的行为。然而,目前通信协议规定的终端行为没有考虑极高可靠极低时延场景(ultra-reliable and low-latency communications,URLLC)传输和增强移动宽带(enhanced mobile broadband,eMBB)传输具有不同的紧急性和优先级,因此难以应用于URLLC场景,可能会造成较大的传输时延。
发明内容
本申请提供一种通信方法和装置,以期降低数据传输时延。
第一方面,提供一种通信方法。该方法可以由终端设备执行,或者应用于终端设备的芯片执行。该方法中,终端设备接收第一指示信息,第一指示信息指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。其中,第一传输是第一频域资源上的同步信号物理广播信道块(synchronization signal/physical broadcast channel block,SSB)或物理随机接入信道(physical random access channel,PRACH),第二传输是在第二频域资源上的传输,第一传输和第二传输的传输方向可以不同,且第一传输时机和第二传输的时域资源可以重叠。终端设备根据第一指示信息在第二频域资源上进行第二传输。
基于上述方案,可以通过第一指示信息指示终端一个频域资源上的SSB或PRACH传输的优先级,低于另一个频域资源上的异向传输。例如,另一个频域资源上可以通过高层信令配置或物理层信令调度一个终端特定的传输,该传输可以承载高优先级数据,因此优先级大于初始接入时的cell-specific传输,如SSB或PRACH。终端在收到该第一指示信息后,可以在与cell-specific传输重叠的符号上进行异向传输,从而降低cell-specific传输对传输方向的限制,增加资源使用灵活度。
在一种可能的实现方式中,第一传输可以为SSB,第二传输可以为PRACH、物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)或上行探测参考信号(sounding reference signal,SRS)中的一个。可选的,上述PRACH是免竞争的PRACH,例如是网络设备通过物理下行控制信道(physical downlink control channel,PDCCH)命令(PDCCH order)触发的PRACH传输。
在一种可能的实现方式中,第一传输可以为PRACH,第二传输可以为PDCCH、物理下行共享信道(physical downlink shared channel,PDSCH)或信道状态信息参考信号(channel state information-reference signal resource,CSI-RS)中的一个。可选的,上述PRACH是基于竞争的PRACH,例如是初始接入时终端选择的PRACH传输。
在一种可能的实现方式中,第一指示信息可以通过指示第一传输失效或者第一传输时机失效,指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。
基于上述方案,可以通过第一指示信息明确指示终端初始接入时的系统信息块(secondary information block,SIB)1中指示的SSB或者PRACH失效。
在一种可能的实现方式中,第一传输可以是周期性传输,第一传输可以包括多个传输时机,第一传输时机可以是多个传输时机中的一个。第一指示信息可以包括第一传输的分组信息,可以用于将多个传输时机分为M个传输时机分组。其中,M为大于等于2的整数。第一传输时机可以不属于第一分组,第一分组可以是M个传输时机分组中终端设备关联的一个分组。
基于上述方案,通过引入SSB或者PRACH的分组信息,将SSB或者PRACH传输进行分组,使不同的分组与不同的终端或终端组(group)对应,从而支持不同终端或终端group间TDM传输,降低SSB或者PRACH传输对所有终端的调度限制,提升资源利用效率。
在一种可能的实现方式中,第一传输的分组信息可以包括终端设备的标识与M个传输时机分组之间的对应关系。
在一种可能的实现方式中,第一指示信息可以携带在SIB1中。
在一种可能的实现方式中,终端设备的标识可以为5G全局唯一的临时标识(5G globally unique temporary identity,5G-GUTI)、5G缩短临时移动用户标识(5G shorted-temporary mobile subscription identifier,5G-S-TMSI)或5G临时移动用户标识(5G-temporary mobile subscriber identification,5G-TMSI)中的一个。
在一种可能的实现方式中,第一传输可以是周期性传输,第一传输可以包括多个传输时机,第一传输时机可以是多个传输时机中的一个。第一指示信息可以用于确定第一子集,第一子集可以为多个传输时机的集合的子集,且第一子集中的传输时机对终端设备是有效的。第一传输时机可以不属于第一子集。
基于上述方案,可以通过第一指示信息明确告知终端有效的传输时机的子集,从而支持不同终端或终端group间TDM传输,降低SSB或者PRACH传输对所有终端的调度限制,提升资源利用效率。
第二方面,提供一种通信方法。该方法可以由网络设备执行,或者应用于网络设备的芯片执行。该方法中,网络设备发送第一指示信息,第一指示信息指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。其中,第一传输是第一频域资源上的SSB或PRACH。第二传输是在第二频域资源上的传输,第一传输和第二传输的传输方向不同,且第一传输时机和第二传输的时域资源重叠。网络设备在第二频域资源上进行第二传输。
在一种可能的实现方式中,第一传输可以为SSB,第二传输可以为PRACH,PUSCH、PUCCH或SRS中的一个。可选的,PRACH可以是免竞争的PRACH,例如是网络设备通过PDCCH命令(PDCCH order)触发的PRACH传输。
在一种可能的实现方式中,第一传输可以为PRACH,第二传输可以为PDCCH、PDSCH 或CSI-SR中的一个。可选的,上述PRACH是基于竞争的PRACH,例如是初始接入时终端选择的PRACH传输。
在一种可能的实现方式中,第一指示信息可以通过指示第一传输失效或者第一传输时机失效,指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。
在一种可能的实现方式中,第一传输可以是周期性传输,第一传输可以包括多个传输时机,第一传输时机可以是多个传输时机中的一个。第一指示信息可以包括第一传输的分组信息,可以用于将多个传输时机分为M个传输时机分组。其中,M为大于等于2的整数。第一传输时机可以不属于第一分组,第一分组可以是M个传输时机分组中终端设备关联的一个分组。
在一种可能的实现方式中,第一传输的分组信息可以包括终端设备的标识与M个传输时机分组之间的对应关系。
在一种可能的实现方式中,第一指示信息可以携带在SIB1中。
在一种可能的实现方式中,终端设备的标识可以为5G-GUTI、5G-S-TMSI或5G-TMSI中的一个。
在一种可能的实现方式中,第一传输可以是周期性传输,第一传输可以包括多个传输时机,第一传输时机可以是多个传输时机中的一个。第一指示信息可以用于确定第一子集,第一子集可以为多个传输时机的集合的子集,且第一子集中的传输时机可以对终端设备是有效的,第一传输时机可以不属于第一子集。
第三方面,提供一种通信装置,包括收发模块和处理模块。
其中,收发模块用于接收第一指示信息,第一指示信息指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。其中,第一传输是第一频域资源上的SSB或PRACH,第二传输是在第二频域资源上的传输,第一传输和第二传输的传输方向不同,且第一传输时机和第二传输的时域资源重叠。处理模块,用于根据第一指示信息确定在第二频域资源上进行第二传输。收发模块,还用于在第二频域资源上进行第二传输。可选的,上述PRACH是免竞争的PRACH,例如是网络设备通过PDCCH命令(PDCCH order)触发的PRACH传输。
在一种设计中,第一传输为SSB,第二传输为PRACH、PUSCH、PUCCH或SRS中的一个。
在一种设计中,第一传输为PRACH,第二传输可以为PDCCH、PDSCH或CSI-RS中的一个。可选的,上述PRACH是基于竞争的PRACH,例如是初始接入时终端选择的PRACH传输。
在一种设计中,第一指示信息通过指示第一传输失效或者第一传输时机失效,指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。
在一种设计中,第一传输是周期性传输,第一传输包括多个传输时机,第一传输时机是多个传输时机中的一个;第一指示信息包括第一传输的分组信息,用于将多个传输时机分为M个传输时机分组,其中M为大于等于2的整数;第一传输时机不属于第一分组,第一分组是M个传输时机分组中终端设备关联的一个分组。
在一种设计中,第一传输的分组信息包括终端设备的标识与M个传输时机分组之间的对应关系。
在一种设计中,第一指示信息携带在SIB1中。
在一种设计中,终端设备的标识为5G-GUTI、5G-S-TMSI或5G-TMSI中的一个。
在一种设计中,第一传输是周期性传输,第一传输包括多个传输时机,第一传输时机是多个传输时机中的一个;第一指示信息用于确定第一子集,第一子集为多个传输时机的集合的子集,且第一子集中的传输时机对终端设备是有效的;第一传输时机不属于第一子集。
第四方面,提供一种通信装置,包括收发模块和处理模块。
其中,处理模块,用于生成第一指示信息,第一指示信息指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。其中,第一传输是第一频域资源上的SSB或PRACH。第二传输是在第二频域资源上的传输,第一传输和第二传输的传输方向不同,且第一传输时机和第二传输的时域资源可以重叠。收发模块,用于发送第一指示信息。收发模块,还用于在第二频域资源上进行第二传输。
在一种设计中,第一传输可以为SSB,第二传输可以为PRACH、PUSCH、PUCCH或SRS中的一个。可选的,PRACH可以是免竞争的PRACH,例如是网络设备通过PDCCH命令(PDCCH order)触发的PRACH传输。
在一种设计中,第一传输可以为PRACH,第二传输可以为PDCCH、PDSCH或CSI-SR中的一个。可选的,上述PRACH是基于竞争的PRACH,例如是初始接入时终端选择的PRACH传输。
在一种设计中,第一指示信息通过指示第一传输失效或者第一传输时机失效,指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。
在一种设计中,第一传输是周期性传输,第一传输包括多个传输时机,第一传输时机是多个传输时机中的一个;第一指示信息包括第一传输的分组信息,用于将多个传输时机分为M个传输时机分组,其中M为大于等于2的整数;第一传输时机不属于第一分组,第一分组是M个传输时机分组中终端设备关联的一个分组。
在一种设计中,第一传输的分组信息包括终端设备的标识与M个传输时机分组之间的对应关系。
在一种设计中,第一指示信息携带在SIB1中。
在一种设计中,终端设备的标识为5G-GUTI、5G-S-TMSI或5G-TMSI中的一个。
在一种设计中,第一传输是周期性传输,第一传输包括多个传输时机,第一传输时机是多个传输时机中的一个;第一指示信息用于确定第一子集,第一子集为多个传输时机的集合的子集,且第一子集中的传输时机对终端设备是有效的;第一传输时机不属于第一子集。
第五方面,提供一种通信装置,包括处理器,处理器和存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行计算机程序或指令,以执行上述第一方面和/或第二方面的各实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。该处理器的数量为一个或多个。
第六方面,本申请提供一种通信装置,包括:处理器和接口电路,接口电路用于与其它装置通信,处理器用于上述第一方面和/或第二方面的各实现方法。
第七方面,提供了一种通信装置。该装置包括逻辑电路和输入输出接口。
在一个示例中,输入输出接口用于输入第一指示信息,所述第一指示信息指示在第一传输时机上的第一传输的优先级低于第二传输的优先级,其中,所述第一传输是第一频域资源上的SSB或PRACH;所述第二传输是在第二频域资源上的传输,所述第一传输和所述第二传输的传输方向不同,且所述第一传输时机和所述第二传输的时域资源重叠。输入输出接口,还用于在第二频域资源上进行第二传输。
另一个示例中,逻辑电路用于生成第一指示信息。所述第一指示信息指示在第一传输时机上的第一传输的优先级低于第二传输的优先级,其中,所述第一传输是第一频域资源上的SSB或PRACH;所述第二传输是在第二频域资源上的传输,所述第一传输和所述第二传输的传输方向不同,且所述第一传输时机和所述第二传输的时域资源重叠。输入输出接口,用于输出第一指示信息。
第八方面,本申请提供一种通信系统,包括:用于执行上述第一方面各实现方法的终端设备,和用于执行上述第二方面各实现方法的网络设备。
第九方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述第一方面和/或第二方面的各实现方法。
第十方面,本申请还提供一种计算程序产品,包括计算机执行指令,当计算机执行指令在计算机上运行时,使得上述第一方面和/或第二方面的各实现方法被执行。
第十一方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当指令在计算机上运行时,实现上述第一方面和/或第二方面的各实现方法。
另外,第二方面至第十一方面的有益效果可以参见如第一方面所示的有益效果。
附图说明
图1为小区公共TDD帧结构示意图;
图2为本申请实施例提供的通信系统;
图3为互补帧结构示意图;
图4为URLLC场景下的数据传输示意图;
图5为SSB保护规则下的数据传输示意图;
图6为本申请实施例提供的通信方法的示例性流程图;
图7为本申请实施例提供的通信装置的结构图之一;
图8为本申请实施例提供的通信装置的结构图之一。
具体实施方式
为了便于理解本申请实施例提供的技术方案,以下对本申请实施例涉及的专业术语进行解释和说明。
1)频段(band),是国际电信联盟(international telecommunication union,ITU)统一制定的,一般是nxx来命名。例如,band n78对应3.3G~3.8G总共500MHz频段,规定只能是时分双工(time division duplex,TDD)制式。
2)成员载波(CC),是运营商部署频谱或频域资源的基本单位。一般来说,1个band内包含多个CC,1个CC对应频域上一段频谱位置,包括起始位置和带宽,例如100MHz、 80MHz、40MHz、20MHz、10MHz、5MHz等,并且两侧一般包含保护带(guard band)。
需要注意的是,目前长期演进技术(long term evolution,LTE)和NR中,帧结构的配置都是以CC为单位的。也就是说,在不考虑动态TDD帧结构的情况下,1个CC中的TDD帧结构是固定的,不同CC的TDD帧结构可以不同。
3)带宽部分(bandwidth part,BWP),一个CC包含多个BWP。其中,不同BWP支持不同子载波间隔,从而可以匹配不同业务。多个BWP可以共享中心频点但是具有不同带宽,从而允许终端可以根据需要在不同带宽上工作,实现节能省电的目的。不同BWP的带宽不同,可以允许多种终端能力的终端根据自身能力选择BWP,给资源分配更多自由度。
目前,BWP的两侧没有预留保护带宽,如果2个BWP的子载波间隔(subcarrier spacing,SCS)不同,如何规避干扰是由基站实现决定。1个BWP具有1个SCS。也就是说,SCS的配置是以BWP为单位的。在频域上对应CC上的一段频谱位置,BWP的起始位置是相对CC的起始位置而言的,带宽一般是通过资源块(resource block,RB)数目表示。
4)子带(subband):一个BWP包含多个RB,一般会超出信道的相干带宽宽度,因此真实数据调度、传输和信道测量的时候一般引入一个subband的概念。1个subband包含1个或多个RB。例如在信道测量的时候,往往假设1个subband上的信道相同,在调度的时候,也可以假设1个subband上的预编码矩阵相同。需要说明的是,subband有时也会被称为预编码RB组(precoding RB group)。本申请实施例中subband表示一段连续频谱。
5)RB和子载波(sub-carrier,SC),1个RB包含12个连续子载波SC,1个SC是LTE和NR系统最小的频域单位,可以承载1个调制符号。
下面介绍本申请实施例涉及的TTD帧结构的配置方法。
NR时域结构:
NR中时域传输资源的单位是帧(frame)、半帧(Half-frame)、子帧(subframe)、时隙(Slot)、正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(Symbol),帧的长度固定是10ms,半帧的长度固定是5ms,子帧的长度固定是1ms,时隙与符号的长度与子载波间隔相关,在正常循环前缀的情况下1个时隙包括14个符号,在扩展循环前缀的情况下1个时隙包括12个符号。假设子载波间隔是SCS=2 μ×15KHz,则1个子帧包含2 μ个时隙,其中μ是SCS索引(index),取值为0,1,2,3…。
TDD帧结构:
NR中TDD帧结构的基础是传输方向,最小确定单位是OFDM符号。对于TDD载波,一个符号上的传输方向可以是下行D,上行U,或者灵活F,灵活符号表示这个符号上可以进行下行传输,也可以进行上行传输,或者用于上下行切换。帧结构一般是以时隙或符号为单位表示的。例如,aD:bS:cU表示一个TDD的上下行切换周期是a+b+c个时隙,前a个时隙是下行(downlink,DL)时隙,中间b个时隙是灵活时隙又称为特殊时隙,最后c个时隙为上行(uplink,UL)时隙。上述a,b和c是正整数。对于灵活时隙,可以表示为xD:yF:zU,表示该时隙中前x个符号是下行,中间y个符号是灵活,最后z个符号是上行。上述x,y和z是正整数。
小区公共TDD帧结构配置:通过高层信令tdd-UL-DL公共配置(tdd-UL-DL-ConfigurationCommon)来指示,该信令承载在系统消息或者小区特定配置信息中,可以包含1个子载波间隔和1个模式(pattern)。这个pattern会指示1个周期P,单 位是ms,这个周期与配置的子载波间隔联合确定周期内的时隙数目。这个pattern还会指示DL时隙数目d_slot、DL符号数目d_sym、UL时隙数目u_slot和UL符号数目u_sym。
参阅图1,SCS=30kHz,P=5ms,前面d_slot=4个时隙和随后一个时隙中的d_sym=3个符号是DL符号,用D来表示。最后u_slot=2个时隙和这2个时隙前面一个时隙中的u_sym=7个符号是UL符号,用U来表示。中间未指示所有符号的就是灵活符号f_slot,用X来表示。需要说明的是,灵活符号可能跨多个时隙。
在一些实施例中,tdd-UL-DL-ConfigurationCommon会指示2个pattern,则这2个pattern分别指示2个帧结构,长度为P1和P2,总的帧结构是图1所示的帧结构的串联。
终端特定TDD帧结构配置:通过高层信令tdd-UL-DL专用配置(tdd-UL-DL-ConfigurationDedicated)来指示。这个信令是对上述tdd-UL-DL-ConfigurationCommon指示帧结构的补充方案。
假设tdd-UL-DL-ConfigurationCommon指示的帧结构周期包括N个时隙,tdd-UL-DL-ConfigurationDedicated会包含一组TDD-UL-DL时隙配置(TDD-UL-DL-SlotConfig)。其中,每个TDD-UL-DL-SlotConfig会用于配置上述N个时隙中一个时隙的帧结构,可以指示是全下行或全上行,或者指示下行符号数目和上行符号数目。其中,下行符号在时域上位于上行符号之前。
需要注意的是,tdd-UL-DL-ConfigurationDedicated只能配置tdd-UL-DL-ConfigurationCommon中指示为灵活符号的通信方向。
下行控制信息(downlink control information,DCI)动态指示TDD帧结构:终端可以被配置去检测DCI格式2_0(DCI format 2_0),该DCI格式用于指示1组CC上的TDD帧结构。具体的,对于1个CC,DCI只能修改上述帧结构配置后是灵活时隙上符号的通信方向。
图2是本申请的实施例应用的通信系统1000的架构示意图。如图2所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图2中的110a和110b),还可以包括至少一个终端(如图2中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图2只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图2中未画出。
无线接入网设备又可以称为网络设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无 线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图2中的110a),也可以是微基站或室内站(如图2中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图2中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图2中的110a和110b可以称为具有基站功能的通信装置,图2中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
在本申请的实施例中,时域符号可以是OFDM符号,也可以是离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中,PDSCH、PDCCH、PUCCH和PUSCH只是作为 下行数据信道、下行控制信道、上行控制信道上行数据信道的一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。在本申请中,信号可以包括数据信道、控制信道和参考信号。信号的传输可以是上行传输,即终端发给基站的;也可以是下行传输,即基站发给终端的。当传输作为动词的时候,传输可以与发送/接收互换。
传统宏站部署要么是使用频分双工(frequency division duplex,FDD),要么是使用TDD。在TDD部署场景下,如果一个下行数据包在上行时隙到达,则需要等待好几个时隙才有下行传输资源,等待时延太长。类似的,如果一个下行数据传输后,终端译码失败,也要等待好几个时隙到上行时隙才能反馈下行数据的译码正确与否的肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK),才能触发基站发送数据的重传,重传等待时间太长。
上述问题造成现有TDD无法满足URLLC业务的低时延需求。
为了解决上述问题,提出了一种互补帧结构设计方案,参阅图3,在已有的帧结构为3D:1S:1U的频域资源的基础上,引入另一个帧结构为3U:1S:1D的频域资源,形成互补。这样,在任何时刻都有下行资源和上行资源,通过动态选择频域资源,可以保证无额外等待时延,同时,由于每个频域资源都是TDD帧结构,可以通过上行参考信号估计下行传输信道,提升频谱效率。
但是,当上述2个帧结构不同的频域资源位于一个频段内,终端往往不具备同时进行下行数据接收和上行数据发送的能力,因此需要规定终端的发送或接收行为。
NRCA提出了终端半双工,即当终端被配置了多个CC时,如果这些CC的TDD帧结构不同,如在载波1(CC#1)上的某些符号是下行符号,而载波2(CC#2)对应的时域位置是上行符号,协议需要规定这个场景下终端的行为。目前,协议对终端半双工行为规定如下:
终端被配置了一组CC,且没有配置去检测DCI format 2_0,即不支持DCI动态修改时隙格式(slot format),并被配置半双工行为(half-duplex-behavior)='开启'(enable),也就是指示终端需要进行半双工操作,协议规定终端自己具有遵循如下半双工冲突解决的能力。
规则#1:SSB保护原则。其中,SSB可以包括同步信号(synchronization signal,SS)和物理广播信道(physical broadcast channel,PBCH)。上述1组CC中任何一个CC上的系统消息或小区公共配置信息中指示的SSB的传输符号上,不进行任何上行传输。如果PUSCH、PUCCH、PRACH与SSB符号冲突,则取消PUSCH、PUCCH和PRACH的发送。如果SRS与SSB冲突,只取消冲突符号上的SRS传输。
规则#2:PRACH保护原则。对于任何有效的PRACH时机(occasion),如果一个下行传输(除SSB之外,例如PDCCH、PDSCH、CSI-RS)和该有效PRACH重叠,或者和该有效PRACH之前N gap个OFDM符号重叠,终端不接收这个下行传输。其中,一个PRACH时机是有效的,指的是:1)该PRACH时机所在OFDM符号是上行符号,且2)该PRACH时机在所在时隙内不是在一个SSB时机之前,且3)该PRACH时机之前N gap个OFDM符号上没有SSB传输,其中参数N gap是协议预定义或者基站指示的一个数值。
规则#3:公共搜索空间(common search space,CSS)#0保护原则。对于主系统信息块(master information block,MIB)中指示的CSS#0位置上不希望任何一个小区将重叠符号配置成上行,CSS#0这个位置上终端需要检测调度辅SIB1。
上述多个规则没有考虑URLLC传输和eMBB传输具有不同的紧急性和优先级,因此对URLLC应用不太友好。具体地,上述规则#1至规则#3简单可以总结为小区特定(cell-specific)的信号保护规则,由于SSB、PRACH和CSS#0都是cell-specific的,即对所有终端都相同,且用于初始接入,基站不能选择不发送,或者说基站不能长期不发送,因此这些信号的优先级较高,如果有与之冲突的异向传输,则异向传输需要被丢掉。
这些规则对于一些典型URLLC应用,会出现较大问题。例如,未来工厂自动化应用中每个用户的数据到达都是周期而确定性的,例如每隔4ms或6ms来一个数据包。为了最大化资源利用效率,未来工厂中终端的数据包到达会尽量均匀分布,充分使用一个业务周期内所有资源。
参阅图4,假设业务到达周期是4ms,在30kHz子载波间隔和7OFDM符号(OFDM symbol,OS)传输时间间隔(transmission time interval,TTI)下,一个周期包含16个TTI,16组终端的下行数据分别在每个TTI到达。具体的,图4中UE#0~UE#15的下行传输资源在第一频域资源的TTI#0~TTI#15,UE#16~UE#19的下行传输资源在第二频域资源的TTI#16~TTI#19。UE#0~UE#5的上行传输资源在第二频域资源的TTI#10~TTI#15,UE#6~UE#9的上行传输资源在第一频域资源的TTI#16~TTI#19,UE#10~UE#19的上行传输资源在第二频域资源的TTI#0~TTI#9。由于终端不支持在1个CC上接收数据同时在另一个CC上发送数据,因此终端的上行数据到达可以与下行数据到达有一定偏移,排布在不同TTI。但是为了最大化资源利用效率,一个TTI上终端或终端组(UE group)#n的下行传输必然会对应另一个终端或终端组(UE group)#m的上行传输。
此时,考虑上述cell-specific信号保护规则,则部分资源不可以用于终端的数据传输。以SSB为例,参阅图5,TTI#0、#1、#2和#3存在SSB传输,则对应TTI上另一个CC上的上行资源不可以用于任何终端的上行传输,即图中的UE或UE group#10、#11、#12和#13会由于和SSB冲突被取消。并且,考虑到SSB是周期传输,业务到达也是周期传输,当2个周期不对齐的情况下,可能造成每一组终端的数据在某个时刻都会遇到SSB。例如,SSB周期是20ms,而业务周期是6ms,即24组终端在某个时刻都会遇到SSB,则最小公倍数是60ms,60ms内每组终端会有10次数据到达,且会有12组终端的数据在一些时刻与SSB冲突。
基于上述问题,本申请实施例提供一种通信方法,可以在终端的cell-specific的传输和终端特定(UE-specific)的传输发生上下行冲突时,约定终端的行为。以下,分别对cell-specific传输和UE-specific传输进行介绍。
一、cell-specific传输可以是指cell-specific信号的传输。cell-specific信号指的是对所有终端、传输配置都相同的信号。可选的,cell-specific信号是终端从空闲(Idle)态接入小区变为连接(Connected)态的过程所需要接收或发送的信号。本申请实施例中cell-specific信号包含下行公共信号和上行公共信号。
(1)下行公共信号,指的是用于初始接入的下行公共信号,用于识别小区、完成下行定时同步和获取小区基本配置信息。例如NR中SSB和CSS#0(又称Type0-PDCCH CSS)上的PDCCH。
或者,下行公共信号从功能上包括下行同步信号,承载MIB的下行广播信道,承载SIB1的PDSCH,CSS#0中的PDCCH,该PDCCH中承载的DCI用于指示前述承载SIB1的PDSCH。以下,分别对不同的下行公共信号进行介绍。
1)、SSB:包括同步信号SS和物理广播信道PBCH,同步信号包括主同步信号(primary SS,PSS)和辅同步信号(secondary SS,SSS),PBCH承载接入小区的MIB,二者联合用于获取小区标识(identity,ID)、下行定时同步和最主要的系统消息,如获取后续SIB1所在的时频位置。
2)、SIB1:终端检测到SSB后,就可以完成下行定时同步,然后基于当前SSB的时频位置和SSB index,确定接收用于调度SIB1的PDCCH的时频位置。具体地,该PDCCH的频域位置在NR中称为控制资源集合(control resource set,CORESET)#0,时域位置称为CSS#0或者Type0-PDCCH CSS。SSB的时频位置、CORESET#0和CSS#0的对应关系这里不展开介绍,应理解1个SSB index对应1个CSS#0传输位置。
终端接收PDCCH的时域位置是由搜索空间(search space,SS)配置的。一般终端会被配置一个CSS和一些终端特定搜索空间(UE search space,USS)。其中,CSS会包含Type0-PDCCH CSS、Type0A-PDCCH CSS、Type1-PDCCH CSS、Type2-PDCCH CSS和Type3-PDCCH CSS,这些CSS中Type0-PDCCH CSS是用户接收调度SIB1的PDCCH,一般用于初始接入,其他CSS虽然是公共的,但是不用于初始接入。USS则是以每个终端为单位单独配置的,即per-UE配置的,不同终端可以通过时分复用(dime division multiplexing,TDM)错开。
(2)上行公共信号,指的是用于终端进行随机接入的,用于终端和小区之间完成上行定时同步和完成终端在小区注册功能等信息,例如NR中的PRACH。
1)、PRACH,可以包括四步随机接入(4-Step RACH)中PRACH传输和两步随机接入(2-Step RACH)中PRACH传输。本申请实施例中涉及的PRACH是4-step RACH中的第一个传输,即消息1(Msg1),也可以是2-step RACH中的第一个传输,即消息A(MsgA)。
二、UE-specific传输,是指UE-specific信号的传输。其中,UE-specific信号是指该信号是发送给特定的某个终端的,而不是发给小区内所有终端的,可以包含下行传输和上行传输。
(1)、下行传输包括PDCCH传输、PDSCH传输、下行参考信号传输,例如CSI-RS传输,还包括通过UE-specific SSB传输。
1)、PDCCH传输,至少包括USS上的PDCCH传输。或者,还包括除去CSS#0外其他CSS上的PDCCH传输,例如Type0A-PDCCH CSS、Type1-PDCCH CSS、Type2-PDCCH CSS上的PDCCH传输,以及Type3-PDCCH CSS上的PDCCH传输。
2)、PDSCH传输,至少包括通过USS上PDCCH承载DCI调度的PDSCH传输,以及通过无线资源控制(radio resource control,RRC)配置的半持续性调度PDSCH传输,例如半持续性调度(semi-persistent scheduling,SPS)PDSCH传输。或者,还包括除去CSS#0外其他CSS上的PDCCH调度的PDSCH传输,例如Type0A-PDCCH CSS、Type1-PDCCH CSS、Type2-PDCCH CSS上的PDCCH调度的PDSCH传输。
3)、CSI-RS传输,包括RRC配置的周期性(periodic,P)CSI-RS传输、媒体访问控制(medium access control,MAC)控制元素(control element,CE)或DCI激活的半持续性(semi-persistent,SP)CSI-RS传输、DCI动态激活的非周期(aperiodic,A)CSI-RS传输。
4)、UE-specific SSB传输,指的是通过UE-specific信令,如RRC信令配置的SSB传输。
(2)上行传输包括PUSCH传输、PUCCH和SRS传输,还包括UE-specific的PRACH 传输。
1)、PUSCH传输至少包括通过USS中PDCCH上DCI调度的PUSCH传输,以及通过RRC配置的配置授权(configured grant,CG)PUSCH传输。或者,还包括通过随机接入应答(random access response,RAR)UL grant调度的PUSCH传输。
2)、PUCCH传输,包括承载混合自动重传请求(hybrid automatic repeat request,HARQ)-ACK传输、调取请求(scheduling request,SR)传输或波束失败恢复(beam failure recovery,BFR)传输和CSI的PUCCH传输。对于承载HARQ-ACK的PUCCH传输,包括SPS PDSCH的HARQ-ACK传输和DCI调度的PDSCH传输,还可以包括除去CSS#0外其他CSS上PDCCH调度的PDSCH的HARQ-ACK传输。对于承载SR/BFR的PUCCH传输,都是RRC信令配置的周期性PUCCH传输,且当高层触发物理层在对应的PUCCH资源上发送SR或BFR,则该PUCCH传输真正进行,否则,该PUCCH传输可以被跳过。对于承载CSI的PUCCH传输,包括RRC配置的周期性CSI传输和MAC CE激活的半周期CSI传输。
3)、SRS传输包括RRC信令配置的周期SRS(P-SRS)传输、MAC CE激活的半持续SRS(SP-SRS)传输和DCI激活的非周期SRS(A-SRS)传输。
4)、UE-specific PRACH传输包括免竞争的PRACH传输,例如PDCCH order触发PRACH传输。
参阅图6,为本申请实施例提供的通信方法的示例性流程图,可以包括以下操作。
S601:基站发送第一指示信息,相应的终端接收第一指示信息。
其中,第一指示信息可以指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。
在一个可能的实现方式中,上述第一传输可以是在第一频域资源上的cell-specific传输,第二传输可以是在第二频域资源上的UE-specific传输。具体的,第一传输可以是初始接入时的cell-specific传输。第一传输可以是cell-specific下行传输,第二传输可以是UE-specific上行传输,或者第一传输可以是cell-specific上行传输,第二传输可以是UE-specific下行传输。
例如,第一传输可以是SSB,第二传输是PRACH,PUSCH,PUCCH或SRS中的一个。可选的,第一传输是SSB指的是第一传输是SIB1中配置的SSB,第二传输是PRACH可以指的是第二传输是免竞争的PRACH。
又例如,第一传输可以为PRACH,第二传输可以为PDCCH,PDSCH或CSI-RS中的一个。可选的,第一传输为PRACH可以指的是第一传输是基于竞争的PRACH。
在一个可能的实现方式中,上述第一传输和第二传输可以都是cell-specific传输,例如第一传输是SSB,第二传输是PRACH。可选的,PRACH是基于竞争的PRACH。
在一个示例中,第一传输时机与第二传输的时域资源重叠。应理解,上述重叠可以是广义的重叠,可以对应如下情况中任何一种:1)第一传输时机占据的时域OFDM符号与第二传输占据的时域OFDM符号部分重叠或全部重叠,2)第一传输时机占据的OFDM符号和第二传输占据的OFDM符号不重叠,但是第一传输时机占据的OFDM符号和第二传输之前N1个OFDM符号重叠,或者,第一传输时机占据的OFDM符号和第二传输之后N2个OFDM符号重叠,或,第一传输时机之前M1个OFDM符号和第二传输占据的OFDM符号重叠,或者,第一传输时机之后M2个OFDM符号和第二传输占据的OFDM符号重 叠,其中,N1、N2、M1和M2可以是预定义的参数或者基站指示的参数。3)第一传输时机和第二传输在一个时隙内,且第二传输占据的OFDM符号在时域上位于第一传输时机占据的OFDM符号之前。
在一种可能的实现方式中,上述第一频域资源和第二频域资源可以是基站配置给终端的。具体的,基站可以发送第一频域资源的配置信息和第二频域资源的配置信息。
第一频域资源和第二频域资源可以是2个频段上的2个CC也可以是1个频段上的2个CC,也可以是1个CC内的2个BWP,还可以是1个BWP内的2个子带。
可选的,第一频域资源和第二频域资源可以是一个频域资源,例如,第一频域资源和第二频域资源是一个BWP,对应地,后续第一传输和第二传输可以是这个BWP上占据不同RB的传输。
在一个可能的实现方式中,上述终端不支持在第一频域资源和第二频域资源上同时进行异向的传输。例如,终端不支持在第一频域资源上一个时刻上接收信号的同时在第二频域资源上的相同时刻上发送信号。或者,终端不支持在第一频域资源上一个时刻上发送信号的同时在第二频域资源上的相同时刻上接收信号。
进一步,基站向终端发送第一传输的配置信息和第二传输的配置信息。其中,第一传输的配置信息中可以包含第一传输的多个传输时机,以及每个传输时机所占用的频域资源。前述每个传输时机所占用的频域资源可以在第一频域资源上。上述第一传输时机是第一传输的多个传输时机中的一个传输时机。第二传输的配置信息可以包含第二传输的时域资源和频域资源,第二传输的频域资源可以在第二频域资源上。
可选的,第一传输是周期性传输,例如,第一传输是SSB,SSB是周期性重复传输的,且在每一个周期内,存在多个传输时机,每个传输时机上都可以发送SSB。又例如,第一传输是PRACH,PRACH资源是周期性的,且在每一个周期内,存在多个传输时机,每个传输时机上都可以发送PRACH。
S602:终端根据第一指示信息在第二频域资源上进行第二传输。对应的,基站在第二频域资源上进行第二传输。当第二传输是上行传输时,终端根据第一指示信息在第二频域资源上向基站发送上行信号,对应的,基站在第二频域资源上接收来自终端的上行信号。当第二传输是下行传输时,基站在第二频域资源上向终端发送下行信号,对应的,终端根据第一指示信息在第二频域资源上接收来自基站的下行信号。
基于上述方案,可以通过第一指示信息指示第一传输时机上的第一传输的优先级低于第二传输的优先级,因此终端可以在时域上与cell-specific传输重叠的资源上进行异向传输(第二传输),从而可以降低cell-specific传输对传输方向的限制,增加资源使用的灵活度。
对应的,终端会停止第一频域资源上的第一传输时机上的第一传输,其中,停止第一传输包括:1)丢弃/取消整个第一传输,即不进行第一传输,2)丢弃/取消部分第一传输,例如取消和第二传输时域重叠符号的部分第一传输。具体的,当第一传输是下行传输,例如SSB,终端不接收或不期望接收第一传输,对应的,如果某个测量量与第一传输关联,终端也不会更新该测量量;当第一传输是上行传输,例如PRACH,终端不发送或不允许发送第一传输。
在本申请实施例中,第一指示信息的功能虽是用于指示在第一传输时机上的第一传输的优先级低于第二传输的优先级,但第一指示信息可以有不同的实现方式,以下分别进行介绍。
情况1、第一指示信息指示第一传输时机失效,或者第一指示信息指示第一传输失效。
上述第一指示信息可以携带在RRC信令中,或者可以携带在MAC CE中,或者还可以携带在DCI中。第一指示信息可以指示第一传输时机失效,也就是用于关闭或去使能(disable)第一传输时机上的第一传输。例如,第一传输是SSB,第一指示信息用于指示终端不需要去检测或接收该第一SSB时机上的SSB传输。又例如,第一传输是PRACH,第一指示信息用于指示终端不可以在该第一PRACH时机上发送PRACH。或者,第一指示信息可以指示第一传输失效,也就是用于disable所有初始接入时的cell-specific传输。例如,第一指示信息用于disable所有在SIB1中指示的SSB传输和/或SIB1中RACH configuration信令配置PRACH传输。
终端可以根据上述第一指示信息,确定在第二频域资源上进行第二传输。
可选的,终端还可以接收第二指示信息。其中,第二指示信息是终端特定的,例如第二指示信息是通过终端特定的RRC信令、MAC CE或DCI发送给终端的,用于指示一个新的传输时机或者传输时频位置,用于进行上述第一传输。例如,在初始接入后,基站通过UE-specific RRC信令给终端指示一组新的时频位置来传输SSB,终端在该新的时频位置上检测SSB;又例如,在初始接入后,基站通过UE-specific RRC信令给终端指示一组新的时频位置来发送PRACH,终端在该新的时频位置上发送基于竞争的PRACH和免竞争的PRACH。
以下,分别以不同类型的第一传输为例,对本申请实施例提供的通信方法进行详细说明。
(1)、第一传输是SIB1中指示的SSB传输,例如通过ssb-PositioninBurst指示的SSB传输。
第一指示信息可以指示初始接入过程中SIB1中指示的SSB传输失效,终端不需要再检测和测量这些SSB。可选的,关联上述SIB1中指示的SSB的测量和上报也失效,或者说,本次SSB不参与对应的SSB测量和上报。终端则可以在时域上与SSB传输时机重叠的第二频域资源上进行第二传输。
可选的,基站可以向终端发送第二指示信息,相应的终端可以接收第二指示信息。该第二指示信息可以用于指示一组UE-specific的SSB。可选的,第二指示信息指示的UE-specific SSB还是在协议预定义的SSB传输位置集合中的一个或多个SSB传输位置集合上传输,第二指示信息可以指示UE-specific SSB传输周期以及UE-specific SSB的具体传输位置。
(2)、第一传输是CSS#0上的PDCCH传输。
第一指示信息可以指示初始接入过程中CSS#0上的PDCCH传输失效,终端不需要再检测CSS#0中的PDCCH。终端则可以在时域上与CSS#0上的PDCCH重叠的第二频域资源上进行第二传输。
可选的,基站通过第二指示信息给终端配置一个新的USS或其他CSS,用于在连接态接收调度SIB1的PDCCH。
在上述CSS#0的时域资源上,第二频域资源对应的OFDM符号可以是上行符号、灵活符号。
(3)、第一传输是SIB1中指示的PRACH传输,例如通过RACH Configuration指示的PRACH传输。
第一指示信息用于指示通过SIB1中配置的PRACH传输失效,终端不可以基于基站指示的PRACH资源上自发的发送PRACH。终端可以在时域上与PRACH资源重叠的第二频域资源上进行第二传输,即接收下行信号。
可选的,基站可以通过第二指示信息为终端配置UE-specific PRACH资源。
基于上述方案,通过引入第一指示信息,可以明确告诉终端初始接入时的cell-specific传输失效,并明确规定终端在收到该第一指示信息后,可以在与cell-specific传输重叠的符号上进行异向传输,从而规避cell-specific传输对传输方向的限制,增加资源使用灵活度。并可以通过引入第二指示信息,将上述cell-specific传输改为UE-specific传输,从而实现不同终端间TDM传输。
情况2、第一指示信息指示第一传输的分组信息。
第一传输可以是周期性传输,可以有多个传输时机。第一指示信息可以用于将多个传输时机分为M个传输时机分组,M是大于或等于2的整数。上述第一指示信息可以携带在SIB1中,或者可以携带在初始和随机接入后的RRC信令中,或者说在RRC建立之后的RRC信令中。
在第一传输时机不属于第一分组时,终端可以在时域上与第一传输时机重叠的第二频域资源上进行第二传输。其中,第一分组可以是M个传输时机分组中终端关联的一个分组。也就是说,当第一指示信息指示只有第一分组是与终端关联的,即只有第一分组中传输时机对所述终端是有效的,如果第一传输时机不属于该第一分组,则表示第一传输时机对所述终端是无效的,此时终端可以在该第一传输时机重叠的时域资源上进行第二传输。
可选的,第一传输的分组信息可以包括终端的标识与M个传输时机分组之间的对应关系。终端可以根据自身的标识与M个传输时机分组之间的对应关系,确定第一传输时机是否属于第一分组。
可选的,上述终端的标识可以是随机接入之前的标识,例如可以是5G-GUTI、5G-S-TMSI或5G-TMSI中的一个。或者,终端的标识可以是小区-无线网络临时标识(cell-radio network temporary identifier,C-RNTI)或基站指示的其他临时终端的标识。
举例来说,如果第一传输的传输时机分为M组,终端的标识为x,那么终端所关联的第一分组可以是第(x mod M)+1组。应理解,上述终端的标识与M个传输时机分组之间的对应关系仅是示例性的,并不够成对终端所关联的第一分组的限定。
以下,分别以不同类型的第一传输为例,对本申请实施例提供的通信方法进行详细说明。
(1)、第一传输是SSB传输。
第一指示信息用于指示初始接入过程中SIB1中指示的SSB的分组信息。例如指示SSB分为M组。
举例来说,第一指示信息可以包括分组数目M,每一组对应的SSB周期和/或周期内的SSB传输位置。例如,M=2的情况下,第一组和第二组SSB对应20ms传输周期,且第一组位于20ms传输周期内第一个半帧,第二组位于20ms周期内第二个半帧,或者第一组和第二组都位于20ms周期内第一个半帧,但是第一组对应SSB index#0~#3,第二组对应SSB index#4~#7。
第一指示信息还可以包括SSB分组与UE ID的对应关系。
可选的,第一指示信息可以携带在SIB1中,此时UE ID可以是5G-GUTI、5G-S-TMSI或5G-TMSI中的一个。
或者,第一指示信息携带在初始和随机接入后的RRC信令中,或者说,在RRC建立之后的RRC信令中,此时UE ID可以是C-RNTI或基站指示的其他临时UE ID。
可选的,第一指示信息可以分为第一子指示信息和第二子指示信息。其中,第一子指示信息用于指示SSB分组信息。例如,第一子指示信息可以包括分组数目M,每一组对应的SSB周期和/或周期内的SSB传输位置,第一子指示信息可以携带在SIB1中或RRC建立后的RRC信令中。第二子指示信息可以用于指示终端对应的SSB分组的编号,第二子指示信息可以携带在RRC信令、MAC CE或DCI中。例如,第二子指示信息可以通过UE-specific指示信息单独告诉每个终端。
(2)、第一传输是CSS#0上PDCCH传输。
第一指示信息可以上述(1)中示出的SSB传输的第一指示信息,也就是终端只在自身UE ID对应的SSB分组关联的CSS#0上检测PDCCH,不是自身UE ID对应的SSB分组的CSS#0位置不需要检测PDCCH。
可选的,第一指示信息可以不同于上述(1)中示出的SSB传输的第一指示信息。第一指示信息可以在SIB1中承载或RRC建立后RRC信令承载,用于指示CSS#0的分组数目、每一组的CSS#0传输位置。
举例来说,第一指示信息可以包括分组数目M,每一组对应的CSS#0传输位置。
第一指示信息还可以包括SSB分组与UE ID的对应关系。其中,UE ID可以是5G-GUTI、5G-S-TMSI或5G-TMSI、C-RNTI或基站指示的其他临时UE ID中的一个。
可选的,第一指示信息可以分为第一子指示信息和第二子指示信息。其中,第一子指示信息用于指示CSS#0分组信息。例如,第一子指示信息可以包括分组数目M,每一组对应的CSS#0传输位置,第一子指示信息可以携带在SIB1中或RRC建立后的RRC信令中。第二子指示信息可以用于指示终端对应的CSS#0分组的编号,第二子指示信息可以携带在RRC信令、MAC CE或DCI中。例如,第二子指示信息可以通过UE-specific指示信息单独告诉每个终端。
(3)、对于第一传输是PRACH传输。
第一指示信息用于指示SIB1中配置的PRACH传输分组信息。例如,包括分组数目M指示信息。
举例来说,第一指示信息可以包括分组数目M,每一组对应的PRACH周期和/或周期内的PRACH传输位置。例如,每一组PRACH都对应一个PRACH配置索引(prach-ConfigurationIndex),prach-ConfigurationIndex可以指示每一组PRACH的索引,可以用于确定每一组PRACH的时域资源位置。
第一指示信息还可以包括PRACH分组与UE ID的对应关系。
可选的,第一指示信息可以携带在SIB1,此时UE ID可以是终端在随机接入之前的ID,例如是5G-GUTI、5G-S-TMSI或5G-TMSI中一个。
或者,第一指示信息可以携带在初始和随机接入后的RRC信令中,或者说,在RRC建立之后的RRC信令中。此时,UE ID可以是终端的C-RNTI或基站指示的其他临时UE ID。
可选的,第一指示信息可以分为第一子指示信息和第二子指示信息。其中,第一子指示信息用于指示PRACH分组信息,如包括分组数目M,每一组对应的PRACH周期和/或 周期内的PRACH传输位置。第一子指示信息可以携带在SIB1中或RRC建立后的RRC信令中。第二子指示信息可以用于指示终端对应的PRACH分组编号,第二子指示信息可以携带在RRC信令、MAC CE或DCI中。例如,第二子指示信息可以通过UE-specific指示信息单独告诉每个UE。
基于上述情况2,终端可以根据第一指示信息确定第一传输时机是否属于自身的UE ID对应的cell-specific传输分组。在第一传输时机属于自身的UE ID对应的cell-specific传输分组的情况下,第一传输的优先级大于第二传输的优先级。也就是,终端在第一传输时机进行第一传输,而放弃第二传输。在第一传输时机不属于自身的UE ID对应的cell-specific传输分组的情况下,第一传输的优先级小于第二传输的优先级。也就是,终端在第二频域资源进行第二传输。
基于上述方案,通过引入cell-specific传输分组信息,将cell-specific传输变为UE-specific传输,或者说UE group-specific传输,从而支持不同UE或UE group间TDM传输,规避cell-specific传输对所有UE的调度限制,提升资源利用效率。
情况3、第一指示信息指示第一子集。
上述第一子集可以是第一传输的多个传输时机的集合的子集。基站可以通过第一指示信息向终端指示第一子集中的传输时机对终端是有效的(valid)。
在一个示例中,可以将第一传输的多个传输时机分为多个子集,每个子集具有一个索引。基站可以通过第一指示信息向终端指示第一子集的索引,以实现向终端指示第一子集是有效的。
另一个示例中,第一指示信息中可以包括多个传输时机,这些传输时机可以被看作是第一子集,基站可以通过第一指示信息向终端指示多个传输时机。
在第一传输时机不属于第一子集时,终端可以在时域上与cell-specific重叠的第二频域资源上进行第二传输。在第一传输时机属于第一子集时,终端可以进行cell-specific传输,而放弃第二传输。
基于上述方案,可以将cell-specific传输分为多个分组,并可以通过第一指示信息向终端指示有效的传输时机的子集,从而支持不同终端的TDM传输,规避cell-specific传输对所有终端的调度限制,提升资源利用效率。
在上述通信方法中,基站可以通过第一指示信息向终端指示cell-specific传输的优先级低于第二传输的优先级。以下,本申请实施例提供另一种通信方法。其中,可以通过协议预定义cell-specific传输与UE-specific传输的优先级,使得在cell-specific传输与UE-specific传输在时域上重叠时,终端可以根据协议预定的规则,确定执行cell-specific传输或者UE-specific传输。
在一种可能的实现方式中,以第一传输为下行传输,第二传输为上行传输为例,第一频域资源对应第一TDD帧结构,第二频域资源对应第二TDD帧结构,第一传输时机占据的OFDM符号上第一TDD帧结构可以是下行符号或者灵活符号,第二传输占据的OFDM符号上第二TDD帧结构可以是上行符号或者灵活符号,其中,所述下行符号、上行符号、灵活符号,可以是通过小区公共TDD帧结构配置信息确定的,或者,通过终端特定TDD帧结构配置信息确定的,或者,通过DCI确定的。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图7和图8为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图2所示的终端120a-120j中的一个,也可以是如图2所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯片)。
如图7所示,通信装置700包括处理模块710和收发模块720。通信装置700用于实现上述图6中所示的方法实施例中终端或基站的功能。
当通信装置700用于实现图6所示的方法实施例中终端的功能时:收发模块720用于接收第一指示信息;处理模块710用于对第一指示信息进行解调和/或译码。收发模块,还用于根据第一指示信息在第二频域资源上进行第二传输。
当通信装置700用于实现图6所示的方法实施例中基站的功能时:处理模块710用于生成第一指示信息。收发模块720用于发送第一指示信息。收发模块720,还用于在第二频域资源上进行第二传输。
有关上述处理模块710和收发模块720更详细的描述可以直接参考图6所示的方法实施例中相关描述直接得到,这里不加赘述。
如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现图6所示的方法时,处理器810用于实现上述处理模块710的功能,接口电路820用于实现上述收发模块720的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件 或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (23)

  1. 一种通信方法,由终端设备或应用于终端设备的模块执行,其特征在于,包括:
    接收第一指示信息,所述第一指示信息指示在第一传输时机上的第一传输的优先级低于第二传输的优先级,其中,所述第一传输是第一频域资源上的同步信号物理广播信道块SSB或物理随机接入信道PRACH;所述第二传输是在第二频域资源上的传输,所述第一传输和所述第二传输的传输方向不同,且所述第一传输时机和所述第二传输的时域资源重叠;
    根据所述第一指示信息在所述第二频域资源上进行所述第二传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一传输为SSB,所述第二传输为PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS中的一个。
  3. 根据权利要求1所述的方法,其特征在于,所述第一传输为PRACH,所述第二传输为物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息参考信号CSI-RS中的一个。
  4. 根据权利要求1~3任一所述的方法,其特征在于,所述第一指示信息通过指示所述第一传输失效或者第一传输时机失效,指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。
  5. 根据权利要求1~4任一所述的方法,其特征在于,所述第一传输是周期性传输,所述第一传输包括多个传输时机,所述第一传输时机是所述多个传输时机中的一个;
    所述第一指示信息包括所述第一传输的分组信息,用于将所述多个传输时机分为M个传输时机分组,其中M为大于等于2的整数;
    所述第一传输时机不属于第一分组,所述第一分组是所述M个传输时机分组中所述终端设备关联的一个分组。
  6. 根据权利要求5所述的方法,其特征在于,所述第一传输的分组信息包括所述终端设备的标识与所述M个传输时机分组之间的对应关系。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备的标识为5G全局唯一的临时标识5G-GUTI、5G缩短临时移动用户标识5G-S-TMSI或5G临时移动用户标识5G-TMSI中的一个。
  8. 根据权利要求1~7任一所述的方法,其特征在于,所述第一指示信息携带在系统信息块1 SIB1中。
  9. 根据权利要求1~4任一所述的方法,其特征在于,所述第一传输是周期性传输,所述第一传输包括多个传输时机,所述第一传输时机是所述多个传输时机中的一个;
    所述第一指示信息用于确定第一子集,所述第一子集为所述多个传输时机的集合的子集,且所述第一子集中的传输时机对所述终端设备是有效的;
    所述第一传输时机不属于所述第一子集。
  10. 根据权利要求1~9任一所述的方法,其特征在于,所述第一频域资源和所述第二频域资源是一个频段内的两个成员载波,或者,所述第一频域资源和所述第二频域资源是两个频段内的两个成员载波,或者,所述第一频域资源和所述第二频域资源是一个成员载波 内的两个带宽部分,或者,所述第一频域资源和所述第二频域资源是一个带宽部分内的两个子带。
  11. 一种通信方法,由网络或应用于网络设备的模块执行,其特征在于,包括:
    发送第一指示信息;所述第一指示信息指示在第一传输时机上的第一传输的优先级低于第二传输的优先级,其中,所述第一传输是所述第一频域资源上的同步信号物理广播信道块SSB或物理随机接入信道PRACH;所述第二传输是在所述第二频域资源上的传输,所述第一传输和所述第二传输的传输方向不同,且所述第一传输时机和所述第二传输的时域资源重叠;
    在所述第二频域资源上进行所述第二传输。
  12. 根据权利要求11所述的方法,其特征在于,所述第一传输为SSB,所述第二传输为PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH或探测参考信号SRS中的一个。
  13. 根据权利要求11所述的方法,其特征在于,所述第一传输为PRACH,所述第二传输为物理下行控制信道PDCCH、物理下行共享信道PDSCH或信道状态信息参考信号CSI-RS中的一个。
  14. 根据权利要求11~13任一所述的方法,其特征在于,所述第一指示信息通过指示所述第一传输失效或者第一传输时机失效,指示在第一传输时机上的第一传输的优先级低于第二传输的优先级。
  15. 根据权利要求11~14任一所述的方法,其特征在于,所述第一传输是周期性传输,所述第一传输包括多个传输时机,所述第一传输时机是所述多个传输时机中的一个;
    所述第一指示信息包括所述第一传输的分组信息,用于将所述多个传输时机分为M个传输时机分组,其中M为大于等于2的整数;
    所述第一传输时机不属于第一分组,所述第一分组是所述M个传输时机分组中所述终端设备关联的一个分组。
  16. 根据权利要求15所述的方法,其特征在于,所述第一传输的分组信息包括所述终端设备的标识与所述M个传输时机分组之间的对应关系。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备的标识为5G全局唯一的临时标识5G-GUTI、5G缩短临时移动用户标识5G-S-TMSI或5G临时移动用户标识5G-TMSI中的一个。
  18. 根据权利要求11~17任一所述的方法,其特征在于,所述第一指示信息携带在系统信息块1 SIB1中。
  19. 根据权利要求11~14任一所述的方法,其特征在于,所述第一传输是周期性传输,所述第一传输包括多个传输时机,所述第一传输时机是所述多个传输时机中的一个;
    所述第一指示信息用于确定第一子集,所述第一子集为所述多个传输时机的集合的子集,且所述第一子集中的传输时机对所述终端设备是有效的;
    所述第一传输时机不属于所述第一子集。
  20. 根据权利要求1~19任一所述的方法,其特征在于,所述第一频域资源和所述第二频域资源是一个频段内的两个成员载波,或者,所述第一频域资源和所述第二频域资源是两个频段内的两个成员载波,或者,所述第一频域资源和所述第二频域资源是一个成员载 波内的两个带宽部分,或者,所述第一频域资源和所述第二频域资源是一个带宽部分内的两个子带。
  21. 一种通信装置,其特征在于,包括用于执行如权利要求1~10中的任一项所述方法的模块,或者包括用于执行如权利要求11~20中的任一项所述方法的模块。
  22. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1~10中任一项所述的方法或者用于实现如权利要求11~20中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1~10中任一项所述的方法或者实现如权利要求11~20任一项所述的方法。
PCT/CN2022/099803 2021-07-16 2022-06-20 一种通信方法和装置 WO2023284490A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22841130.2A EP4358581A1 (en) 2021-07-16 2022-06-20 Communication method and apparatus
US18/413,112 US20240155698A1 (en) 2021-07-16 2024-01-16 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110806913.2A CN115701176A (zh) 2021-07-16 2021-07-16 一种通信方法和装置
CN202110806913.2 2021-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/413,112 Continuation US20240155698A1 (en) 2021-07-16 2024-01-16 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2023284490A1 true WO2023284490A1 (zh) 2023-01-19

Family

ID=84919027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099803 WO2023284490A1 (zh) 2021-07-16 2022-06-20 一种通信方法和装置

Country Status (4)

Country Link
US (1) US20240155698A1 (zh)
EP (1) EP4358581A1 (zh)
CN (1) CN115701176A (zh)
WO (1) WO2023284490A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392368A (zh) * 2011-02-18 2013-11-13 株式会社Ntt都科摩 移动终端装置、基站装置及通信控制方法
CN109392126A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 上行传输方法、终端设备和网络设备
WO2019216586A1 (en) * 2018-05-10 2019-11-14 Samsung Electronics Co., Ltd. Method for grant free uplink transmission, user equipment and base station device
CN111278115A (zh) * 2018-12-27 2020-06-12 维沃移动通信有限公司 传输方法、配置方法及相关设备
CN112970315A (zh) * 2018-11-12 2021-06-15 高通股份有限公司 管理在被分配给定位参考信号的资源集合与被分配给物理信道的资源集合之间的重叠

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392368A (zh) * 2011-02-18 2013-11-13 株式会社Ntt都科摩 移动终端装置、基站装置及通信控制方法
CN109392126A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 上行传输方法、终端设备和网络设备
WO2019216586A1 (en) * 2018-05-10 2019-11-14 Samsung Electronics Co., Ltd. Method for grant free uplink transmission, user equipment and base station device
CN112970315A (zh) * 2018-11-12 2021-06-15 高通股份有限公司 管理在被分配给定位参考信号的资源集合与被分配给物理信道的资源集合之间的重叠
CN111278115A (zh) * 2018-12-27 2020-06-12 维沃移动通信有限公司 传输方法、配置方法及相关设备

Also Published As

Publication number Publication date
EP4358581A1 (en) 2024-04-24
CN115701176A (zh) 2023-02-07
US20240155698A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
CN110786045B (zh) 通信系统中用于支持宽带载波的带宽设定方法
US11616629B2 (en) Method for controlling sidelink HARQ feedback and device therefor
US11641262B2 (en) Strategic mapping of uplink resources
RU2687033C1 (ru) Передача ответного сообщения произвольного доступа
RU2679570C1 (ru) Планирование при радиодоступе на базе лицензионного спектра
KR20200110359A (ko) 상향링크 정보를 전송하는 방법 및 장치
US20230073095A1 (en) Method and apparatus for transmitting or receiving downlink channel from multiple transmission/reception points in wireless communication system
JP2022520785A (ja) 新無線設定されたアップリンク(ul)のための時間リソース
CN114503744A (zh) 用于在无线通信系统中发送和接收信号的方法和装置
CN113273296A (zh) 用于发送上行链路的方法、用户设备、装置和存储介质以及用于接收上行链路的方法和基站
CN111771348B (zh) Nr中用于由回退dci调度的传输的dmrs指示
CN111699722B (zh) 在空闲模式下操作的方法和使用该方法的设备
US20220353048A1 (en) Method for performing sidelink communication and device therefor
US11363583B2 (en) Method and apparatus for uplink communication based on grant-free scheme in communication system
US11844095B2 (en) Method and device for transmitting or receiving HARQ-ARK information in wireless communication system
WO2023284490A1 (zh) 一种通信方法和装置
JP6933283B2 (ja) 通信を実行するための方法および装置
CN114616784A (zh) 无线通信中的跨载波调度
US11956780B2 (en) Method and device for transmitting and receiving HARQ-ACK information in wireless communication system
WO2022218063A1 (zh) 一种随机接入的方法、通信装置及通信系统
US20230403682A1 (en) Method and apparatus for transmission and reception using configured grant in wireless communication system
US20240155581A1 (en) Signal transmission method and apparatus
WO2022188630A1 (zh) 一种传输信息的方法及装置
WO2022183390A1 (zh) 一种无线通信方法、通信装置及通信系统
WO2023201701A1 (en) Transmission configuration indicator for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022841130

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022841130

Country of ref document: EP

Effective date: 20240117

NENP Non-entry into the national phase

Ref country code: DE