WO2022188630A1 - 一种传输信息的方法及装置 - Google Patents

一种传输信息的方法及装置 Download PDF

Info

Publication number
WO2022188630A1
WO2022188630A1 PCT/CN2022/077409 CN2022077409W WO2022188630A1 WO 2022188630 A1 WO2022188630 A1 WO 2022188630A1 CN 2022077409 W CN2022077409 W CN 2022077409W WO 2022188630 A1 WO2022188630 A1 WO 2022188630A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
information
terminal device
bandwidths
signaling
Prior art date
Application number
PCT/CN2022/077409
Other languages
English (en)
French (fr)
Inventor
刘哲
余政
温容慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022188630A1 publication Critical patent/WO2022188630A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications. In particular, it relates to a method and device for transmitting information.
  • the working frequency of receiving downlink information and the working frequency of sending uplink information are different, causing the service of the communication device to be switched from uplink to downlink, or, When switching from downlink to uplink, the center frequency needs to be switched accordingly.
  • the frequent switching of the operating frequency of the communication equipment causes huge power consumption of the communication equipment. congestion.
  • the present application provides a method and apparatus for transmitting information, which can solve the problem of frequent switching of operating frequencies of a communication device in the process of accessing a network device, and save the power consumption of the communication device.
  • a method for transmitting information may include: determining a position of a first control resource set, and determining a position of the first bandwidth according to the position of the first control resource set and a first offset location, wherein the size of the first bandwidth is equal to or smaller than the maximum channel bandwidth supported by the first terminal device; the first offset is N resource blocks RB, and the first offset is the first control resource set
  • the interval between the first position of the first bandwidth and the second position of the first bandwidth, the N is a predefined integer, or the N is a value indicated by the first signaling; receiving downlink information within the first bandwidth, and/or sending uplink information within the first bandwidth.
  • the position of the first bandwidth is determined by the position of the first control resource set and the first offset, that is, the position of the first bandwidth is related to the position of the first control resource set, so as to avoid the problem of frequent switching of the terminal equipment frequency. It is beneficial to reduce the power consumption of the terminal device.
  • the total frequency range corresponding to the frequency of the frequency resources of the first control resource set and the frequency resources of the first bandwidth is less than or equal to the maximum frequency supported by the terminal device. bandwidth.
  • frequency resources may also be understood as frequency domain resources.
  • the positions of M candidate bandwidths may be determined according to the positions of the first control resource set and M offsets, where the M offsets include all the first offsets, the M offsets correspond to the M candidate bandwidths; the position of the first bandwidth is determined from the positions of the M candidate bandwidths, wherein the M is greater than 1 or, determine the positions of M candidate bandwidths according to the position of the first control resource set and Y offsets, where the M offsets include the first offset, and the Y offsets
  • the offset corresponds to the M candidate bandwidths, wherein Y is less than M, and the position of the first bandwidth is determined from the positions of the M candidate bandwidths, wherein M is a positive integer greater than 1, and the Y is a positive integer.
  • the first signaling may directly indicate the first bandwidth, or the first signaling may be used to indicate the first offset, or may indicate the location and the first offset of the first control resource set at the same time, or may indicate multiple The positions of the candidate bandwidths, and may also indicate the position of the first control resource set and multiple offsets.
  • the number of offsets may be less than the number of candidate bandwidths, that is, one offset is applied to different bandwidth pairs, and the number of offsets The number may also be the same as the number of candidate bandwidths, that is, the bandwidth and the offset correspond one-to-one.
  • the technical solution determines the position of the first bandwidth through the positions of multiple candidate bandwidths, thereby providing flexibility in determining the position of the first bandwidth.
  • the M candidate bandwidths include at least two second bandwidths, and the at least two second bandwidths have the same size and different N, or the M The candidate bandwidths include at least two third bandwidths, the at least two third bandwidths having different sizes and the same N.
  • the multiple candidate bandwidths may include at least two bandwidths with different offsets, and may also include at least two bandwidths with different sizes.
  • the solution determines that the multiple candidate bandwidths do not completely overlap, and the bandwidths with the same location may have different sizes, and the bandwidths with the same size may have different locations, which expands the selection range of the first bandwidth.
  • the value of M may be indicated by the second signaling, and the values of the M offsets are indicated by the first signaling , or, the value of at least one of the M offsets is indicated by the first signaling, and the value of at least one of the M offsets is predefined, Alternatively, the M offsets are predefined, and the second signaling may also indicate the sizes of the M candidate bandwidths.
  • the value and offset of M can be indicated or predefined.
  • third signaling may be received, where the third signaling is used to indicate the first bandwidth among the M candidate bandwidths, or no other signaling is required.
  • Let the first terminal device determine the first bandwidth from the M candidate bandwidths according to a predefined rule. Determine the position of the first bandwidth according to the position of the first control resource set and the value of N corresponding to the first bandwidth, or according to the position of the first control resource set and the N value corresponding to the first bandwidth value to determine the location of the first bandwidth.
  • the first offset is related to the size of the first control resource set, the size of the first bandwidth, and the maximum channel bandwidth supported by the first terminal device. at least one correlation.
  • the value of the first offset may be one of the following values: 0, X-L, (X-L)/2, -L, X,
  • the L is the number of RBs included in the first bandwidth
  • the X is the number of RBs included in the first control resource set.
  • the value range of the first offset may be embodied in the form of a set, such as ⁇ 0, X-L ⁇ or ⁇ 0, X-L, (X-L)/2 ⁇ or ⁇ 0, X-L, (X-L)/2,- L ⁇ or ⁇ 0,X-L,(X-L)/2,-L,X ⁇ .
  • the value of the first offset may also be a value other than the above-mentioned value that can be obtained, for example, corresponding to different subcarrier intervals, the number of RBs of the same bandwidth corresponds to different.
  • the RRC connection when the RRC connection is not established, downlink data and downlink control information are received within the first bandwidth, where the first bandwidth is the initial downlink BWP Or, when the RRC connection is not established, the downlink control information is received in the first control resource set, and the first information is received in the second bandwidth, wherein the RB included in the second bandwidth is the first The RBs included in the bandwidth except the RBs included in the first control resource set, and the first information is one or more of system information, a random access response message, a contention resolution message, and a paging message.
  • This solution proposes to receive both downlink control information and downlink data information in the initial downlink BWP, or receive downlink control information in the first control resource set, and receive downlink data in the part of the initial downlink BWP that does not overlap with the first control resource set Receiving solves the problem of resource congestion and improves the flexibility of information transmission.
  • the downlink control information when an RRC connection is not established, downlink control information is received in the first control resource set, the downlink control information includes a frequency domain resource allocation field, the The bit size of the frequency domain resource allocation field is ceil(L(L+1)/2) bits, where ceil is rounded up, L is the number of RBs included in the first bandwidth, and the first bandwidth is received within the first bandwidth.
  • the first information may be one or more of system information, random access response message, contention resolution message, and paging message.
  • the scheme provides the allocation method of frequency resources, and provides several possibilities for the information received in the first bandwidth, which further improves the flexibility of information transmission.
  • each of the M candidate bandwidths includes the first control resource set.
  • a method for information transmission may include: configuring a first control resource set, where the first control resource set is used by a first terminal device to receive downlink information; The device sends downlink information and/or receives uplink information from the first terminal device within the first bandwidth, the first bandwidth being related to the position and the first offset of the first control resource set, wherein The size of the first bandwidth is equal to or smaller than the maximum channel bandwidth supported by the first terminal device, the first offset is N resource blocks RB, and the first offset is the first value of the first control resource set. The interval between the position and the second position of the first bandwidth, where N is an integer.
  • the solution solves the problem of frequent switching of operating frequencies during the process of the first terminal equipment accessing the network equipment, and saves the power consumption of the communication equipment.
  • the total frequency domain range corresponding to the frequency domain resources of the first control resource set and the frequency resources of the first bandwidth in the frequency domain is less than or equal to the terminal equipment Maximum bandwidth supported.
  • frequency domain resources can also be understood as frequency resources.
  • the first signaling may be sent to the first terminal device, where the first signaling is used to indicate the first offset.
  • the first signaling may be used to indicate M offsets, where the M offsets include the first offset, or the The first signaling may be used to indicate at least one offset among the M offsets, where the M offsets correspond to the M candidate bandwidths, or the first signaling may be used to indicate Y offsets, the Y offsets include the first offset, or the first signaling is used to indicate at least one offset among the Y offsets, the Y offsets
  • the offsets correspond to the M candidate bandwidths.
  • the M candidate bandwidths may include at least two second bandwidths, the two second bandwidths have the same size and different N, or the M The candidate bandwidths include at least two third bandwidths, the two third bandwidths having different sizes and the same N.
  • the multiple candidate bandwidths may include at least two bandwidths with different offsets, and may also include at least two bandwidths with different sizes.
  • the first signaling may directly indicate the first bandwidth, or the first signaling may be used to indicate the first offset, or may indicate the location and the first offset of the first control resource set at the same time, or may indicate multiple The positions of the candidate bandwidths, and may also indicate the position of the first control resource set and multiple offsets.
  • the number of offsets may be less than the number of candidate bandwidths, that is, one offset is applied to different bandwidth pairs, and the number of offsets The number may also be the same as the number of candidate bandwidths, that is, the bandwidth and the offset correspond one-to-one.
  • the technical solution determines the first bandwidth position by using multiple candidate bandwidth positions, provides flexibility in determining the first bandwidth position, and provides that multiple candidate bandwidths do not completely overlap, and the bandwidths at the same position can be different in size, and the bandwidth positions with the same size It can be different, and the selection range of the first bandwidth is expanded.
  • second signaling may be sent, and the second signaling may be used to indicate the value of M.
  • the second signaling may also indicate the size of the M candidate bandwidths.
  • the value of the M or the F may be indicated by signaling, or may be predefined.
  • a third signaling may also be sent, and the third signaling may be used to indicate the first bandwidth among the M candidate bandwidths.
  • the first offset is related to the size of the first control resource set, the size of the first bandwidth, and the maximum channel bandwidth supported by the first terminal device. at least one correlation.
  • the value of the first offset may be one of the following values: 0, X-L, (X-L)/2, -L, X,
  • the L is the number of RBs included in the first bandwidth
  • the X is the number of RBs included in the first control resource set.
  • the value range of the first offset may be embodied in the form of a set, such as ⁇ 0, X-L ⁇ or ⁇ 0, X-L, (X-L)/2 ⁇ or ⁇ 0, X-L, (X-L)/2,- L ⁇ or ⁇ 0,X-L,(X-L)/2,-L,X ⁇ .
  • the value of the first offset may also be a value other than the above-mentioned value that can be obtained, for example, corresponding to different subcarrier intervals, the number of RBs of the same bandwidth corresponds to different.
  • This solution provides a reference amount for determining the first offset and a specific partial value, which improves the simplicity of determining the first bandwidth.
  • downlink data and downlink control information may be sent within the first bandwidth, where the first bandwidth is the initial downlink BWP; or, when the RRC connection is not established, the downlink control information may be sent in the first control resource set, and the first information may be received in the second bandwidth, where the RB included in the second bandwidth is the The RBs included in the first bandwidth except the RBs included in the first control resource set, and the first information may be one of system information, random access response message, contention resolution message, and paging message, or variety.
  • This solution proposes to receive both downlink control information and downlink data information in the initial downlink BWP, or receive downlink control information in the first control resource set, and receive downlink data in the part of the initial downlink BWP that does not overlap with the first control resource set Receiving solves the problem of resource congestion and improves the flexibility of information transmission.
  • downlink control information when no RRC connection is established, downlink control information may be sent in the first control resource set, and the downlink control information may include a frequency domain resource allocation field,
  • the bit size of the frequency domain resource allocation field is ceil(L(L+1)/2) bits, where ceil is rounded up, and L is the number of RBs included in the first bandwidth;
  • the first information is sent within the system, where the first information may be one or more of system information, random access response message, contention resolution message, and paging message.
  • the scheme provides an allocation method of frequency resources, and provides several possibilities of information received in the first bandwidth, which further improves the flexibility of information transmission.
  • each of the M candidate bandwidths includes the first control resource set.
  • a communication apparatus configured to include: a processing unit configured to determine a position of a first control resource set according to the position of the first control resource set and a first offset Determine the position of the first bandwidth, where the size of the first bandwidth is equal to or smaller than the maximum channel bandwidth supported by the first terminal device; the first offset is N resource blocks RB, and the first offset The amount is the interval between the first position of the first control resource set and the second position of the first bandwidth, and the N is a predefined integer, or the N is a value indicated by the first signaling.
  • a transceiver unit where the transceiver unit is configured to receive downlink information within the first bandwidth, and/or send uplink information within the first bandwidth.
  • the apparatus supports determining the position of the first bandwidth by using the position of the first control resource set and the first offset, that is, the position of the first bandwidth is related to the position of the first control resource set, which prevents the first terminal device from accessing the network device.
  • the total frequency domain range corresponding to the frequency domain resources of the first control resource set and the frequency resources of the first bandwidth in the frequency domain is less than or equal to the terminal equipment Maximum bandwidth supported.
  • frequency domain resources can also be understood as frequency resources.
  • the processing unit is specifically configured to determine the positions of the M candidate bandwidths according to the position of the first control resource set and the M offsets, and the M offsets
  • the offset includes the first offset, and the M offsets correspond to the M candidate bandwidths; the position of the first bandwidth is determined from the positions of the M candidate bandwidths; or, according to the first
  • the position of a control resource set and Y offsets determine the positions of M candidate bandwidths, the M offsets include the first offset, the Y offsets are related to the M candidate bandwidths Correspondingly, wherein Y is less than M; the position of the first bandwidth is determined from the positions of M candidate bandwidths, wherein the M is a positive integer greater than 1, and the Y is a positive integer.
  • the first signaling may directly indicate the first bandwidth, or the first signaling may be used to indicate the first offset, or may indicate the location of the first control resource set and the first offset, or may indicate multiple
  • the position of the candidate bandwidth may also indicate the position of the first control resource set and multiple offsets, and the number of offsets may be less than the number of candidate bandwidths, that is, one offset is applied to different bandwidth pairs, and the number of offsets is The number may also be the same as the number of candidate bandwidths, that is, the bandwidth and the offset correspond one-to-one.
  • the apparatus supports determining the first bandwidth position through multiple candidate bandwidth positions, and provides flexibility in determining the first bandwidth position.
  • the M candidate bandwidths include at least two second bandwidths, and the two second bandwidths have the same size and different N, or the M candidate bandwidths
  • the candidate bandwidths include at least two third bandwidths with different sizes and the same N.
  • the multiple candidate bandwidths may include at least two bandwidths with different offsets, and may also include at least two bandwidths with different sizes.
  • the device supports multiple candidate bandwidths that do not overlap completely, and bandwidths with the same location may have different sizes, and bandwidths with the same size may have different locations, which expands the selection range of the first bandwidth.
  • the transceiver unit is specifically configured to receive first signaling, where the first signaling is used to indicate the values of the M offsets, or, The first signaling is used to indicate the value of at least one offset among the M offsets; the second signaling is received, and the second signaling is used to indicate the value of M.
  • the transceiver unit is further configured to receive third signaling, where the third signaling is used to indicate the first one of the M candidate bandwidths bandwidth, the processing unit determines the first bandwidth according to the third signaling; or, if no other signaling is required, the processing unit determines the first bandwidth from the M candidate bandwidths according to a predefined rule bandwidth.
  • the processing unit is further configured to: according to the size of the first control resource set, the size of the first bandwidth, the At least one of maximum channel bandwidths determines the first offset.
  • the value of the first offset is one of the following values: 0, X-L, (X-L)/2, -L, X, where The L is the number of RBs included in the first bandwidth, and the X is the number of RBs included in the first control resource set.
  • the value range of the first offset may be embodied in the form of a set, such as ⁇ 0, X-L ⁇ or ⁇ 0, X-L, (X-L)/2 ⁇ or ⁇ 0, X-L, (X-L)/2,- L ⁇ or ⁇ 0,X-L,(X-L)/2,-L,X ⁇ .
  • the value of the first offset may also be a value other than the above-mentioned value that can be obtained, for example, corresponding to different subcarrier intervals, the number of RBs of the same bandwidth corresponds to different.
  • the transceiver unit is specifically configured to receive downlink data and downlink control information within the first bandwidth when no RRC connection is established, wherein the The first bandwidth is the initial downlink BWP; or, when the RRC connection is not established, the downlink control information is received in the first control resource set, and the first information is received in the second bandwidth, wherein the second The RBs included in the bandwidth are RBs included in the first bandwidth except the RBs included in the first control resource set, and the first information is system information, random access response messages, contention resolution messages, and paging one or more of the messages.
  • the apparatus supports receiving both downlink control information and downlink data information in the initial downlink BWP, or, receiving downlink control information in the first control resource set, and receiving downlink data in the part of the initial downlink BWP that does not overlap with the first control resource set Receiving solves the problem of resource congestion and improves the flexibility of information transmission.
  • the transceiver unit is specifically configured to receive downlink control information in the first control resource set when no RRC connection is established, where the downlink control information includes The frequency domain resource allocation field, the bit size of the frequency domain resource allocation field is ceil(L(L+1)/2) bits, where ceil is rounded up, and L is the number of RBs included in the first bandwidth;
  • the transceiver unit receives first information within the first bandwidth, where the first information is one or more of system information, random access response message, contention resolution message, and paging message.
  • the device supports frequency resource allocation, and provides several possibilities for information received in the first bandwidth, which further improves the flexibility of information transmission.
  • each of the M candidate bandwidths includes the first control resource set.
  • a communication apparatus may include: a processing unit configured to configure a first control resource set, where the first control resource set is used for a first terminal device to receive downlink information; a transceiving unit, the transceiving The unit is configured to send downlink information to the first terminal device within the first bandwidth and/or receive uplink information from the first terminal device within the first bandwidth, the first bandwidth and the position of the first control resource set is related to a first offset, wherein the size of the first bandwidth is equal to or smaller than the maximum channel bandwidth supported by the first terminal device, the first offset is N resource blocks RB, and the first offset is the interval between the first position of the first control resource set and the second position of the first bandwidth, and the N is an integer.
  • the transceiver unit before the transceiver unit sends downlink information within the first bandwidth and/or receives uplink information within the first bandwidth, the transceiver unit further uses for sending the first signaling to the first terminal device, where the first signaling is used to indicate the first offset.
  • the device supports configuring the first control resource set and the first bandwidth, and transmits information within the first bandwidth, which solves the problem of frequent switching of operating frequencies during the process of the first terminal equipment accessing the network equipment, and saves the power consumption of the communication equipment.
  • the total frequency domain range corresponding to the frequency domain resources of the first control resource set and the frequency resources of the first bandwidth in the frequency domain is less than or equal to the terminal equipment Maximum bandwidth supported.
  • frequency domain resources can also be understood as frequency resources.
  • the first signaling is used to indicate M offsets, and the M offsets include the first offset, or the The first signaling is used to indicate at least one offset among the M offsets, and the M offsets correspond to the M candidate bandwidths, or the first signaling is used to indicate Y offsets.
  • the Y offsets include the first offset, or the first signaling is used to indicate at least one offset among the F offsets, the Y offsets
  • the quantity corresponds to the M candidate bandwidths, wherein the M is a positive integer greater than 1, and the Y is a positive integer.
  • the M candidate bandwidths may include at least two second bandwidths, the two second bandwidths have the same size and different N, or the M The candidate bandwidths include at least two third bandwidths, the two third bandwidths having different sizes and the same N.
  • the multiple candidate bandwidths may include at least two bandwidths with different offsets, and may also include at least two bandwidths with different sizes.
  • the first signaling may directly indicate the first bandwidth, or the first signaling may be used to indicate the first offset, or may indicate the location and the first offset of the first control resource set at the same time, or may indicate multiple The positions of the candidate bandwidths, and may also indicate the position of the first control resource set and multiple offsets.
  • the number of offsets may be less than the number of candidate bandwidths, that is, one offset is applied to different bandwidth pairs, and the number of offsets The number may also be the same as the number of candidate bandwidths, that is, the bandwidth and the offset correspond one-to-one.
  • the M candidate bandwidths include at least two second bandwidths, and the two second bandwidths have the same size and different N, or the M candidate bandwidths
  • the candidate bandwidths include at least two third bandwidths with different sizes and the same N.
  • the device supports determining the first bandwidth position through multiple candidate bandwidth positions, provides flexibility in determining the first bandwidth position, and provides that multiple candidate bandwidths do not completely overlap, and bandwidths with the same position can have different sizes, and bandwidth positions with the same size It can be different, and the selection range of the first bandwidth is expanded.
  • the transceiver unit is further configured to send second signaling, where the second signaling is used to indicate the value of the M or the F.
  • the processing unit is further configured to send third signaling, where the third signaling is used to indicate the first one of the M candidate bandwidths bandwidth.
  • the processing unit may, according to the size of the first control resource set, the size of the first bandwidth, and the maximum channel bandwidth supported by the first terminal device, at least one definite.
  • the value of the first offset is one of the following values: 0, X-L, (X-L)/2, -L, X, where The L is the number of RBs included in the first bandwidth, and the X is the number of RBs included in the first control resource set.
  • the value range of the first offset may be embodied in the form of a set, such as ⁇ 0, X-L ⁇ or ⁇ 0, X-L, (X-L)/2 ⁇ or ⁇ 0, X-L, (X-L)/2,- L ⁇ or ⁇ 0,X-L,(X-L)/2,-L,X ⁇ .
  • the value of the first offset may also be a value other than the above-mentioned value that can be obtained, for example, corresponding to different subcarrier intervals, the number of RBs of the same bandwidth corresponds to different.
  • the transceiver unit is specifically configured to send downlink data and downlink control information within the first bandwidth when the RRC connection is not established, wherein the The first bandwidth is the initial downlink BWP; or, the transceiver unit is specifically configured to send downlink control information in the first control resource set and receive the first information, wherein the RBs included in the second bandwidth are RBs included in the first bandwidth except the RBs included in the first control resource set, and the first information may be system information, random access response One or more of message, contention resolution message, paging message.
  • the apparatus supports receiving both downlink control information and downlink data information in the initial downlink BWP, or, receiving downlink control information in the first control resource set, and receiving downlink data in the part of the initial downlink BWP that does not overlap with the first control resource set Receiving solves the problem of resource congestion and improves the flexibility of information transmission.
  • the transceiver unit is specifically configured to send downlink control information in the first control resource set when no RRC connection is established, where the downlink control information includes The frequency domain resource allocation field, the bit size of the frequency domain resource allocation field is ceil(L(L+1)/2) bits, where ceil is rounded up, and L is the number of RBs contained in the first bandwidth;
  • the first information is sent within the first bandwidth, where the first information is one or more of system information, random access response message, contention resolution message, and paging message.
  • the device supports frequency resource allocation, and provides several possibilities for information received in the first bandwidth, which further improves the flexibility of information transmission.
  • each of the M candidate bandwidths includes the first control resource set.
  • a method for transmitting information may include: a first terminal device may determine a first resource according to a first control resource set; the first terminal device may use the first control resource and the The first resource sends and/or receives information, wherein the frequency range corresponding to the first control resource set and the first resource in frequency is less than or equal to the maximum bandwidth supported by the first terminal device, and the first The terminal device may be a first type of terminal device.
  • the position of the first bandwidth is determined by the position of the first control resource set, and the frequency range of the first control resource set and the first resource is smaller than the maximum bandwidth supported by the first terminal device.
  • a resource for sending and/or receiving information solves the problem of frequent switching of frequency points in the random access process, and saves the power consumption of the communication device.
  • the first terminal device may determine the location of the first resource according to the location of the first control resource set and the first offset, and the The first offset is the offset of the position of the first resource relative to the position of the first control resource set; or, the first terminal device may be based on the position of the first control resource set and the first association
  • the relationship determines the location of the first resource, and the first association relationship includes an association relationship between the location of the first control resource set and the location of the first resource.
  • the first terminal device may directly determine the position of the first resource according to the position of the first control resource set and the first offset, or may determine the position of the first control resource set and the first association relationship according to the position of the first control resource set. Sure.
  • the first offset is N RBs, and N is an integer.
  • the N may be one of the following values: 0, X-L, (X-L)/2, -L, X, where L is the first The number of RBs included in a resource, and X is the number of RBs included in the first control resource set.
  • the first terminal device determines multiple candidate resources according to the first control resource set, the multiple candidate resources include the first resource, the multiple candidate resources
  • the candidate resources include at least two candidate resources, the first candidate resource and the second candidate resource have the same size and the first offset is different, or the first candidate resource and the second candidate resource have different sizes and the first offset is the same.
  • the multiple candidate bandwidths may include at least two bandwidths with different offsets, and may also include at least two bandwidths with different sizes.
  • the technical solution determines the first resource by using multiple candidate resources, provides flexibility in determining the first resource, provides that the multiple candidate resources do not completely overlap, and the resources at the same location can be different in size, which expands the selection range of the first resource .
  • the position of the first control resource set and the first offset, or the position of the first control resource set and the first offset is indicated by signaling or, alternatively, is predefined.
  • the first terminal device may receive control information through the first control resource set; the first terminal device may receive data through the first resource .
  • the first terminal device receives control information through the first control resource set; the first terminal device receives data through the first resource, and the first terminal device receives data through the first resource.
  • the RBs in a resource for receiving data are different from the RBs included in the first control resource set.
  • This solution proposes to receive downlink control information in the first control resource set and receive downlink data in the first resource, or, receive downlink control information in the first control resource set, and downlink data in the first resource and the first control resource Parts of sets that do not overlap are received, which solves the problem of resource congestion and improves the flexibility of information transmission.
  • a method for transmitting information may include: the network device may send and/or receive information from the first terminal device to and/or from the first terminal device through the first control resource and the first resource, wherein the The frequency range corresponding to the first control resource set and the first resource in frequency is less than or equal to the maximum bandwidth supported by the first terminal device, and the first resource is determined according to the first control resource set; the first The terminal device may be a first type of terminal device.
  • the total frequency domain range corresponding to the frequency domain resources of the first control resource set and the frequency domain resources of the first resource in the frequency domain is smaller than the maximum bandwidth supported by the first terminal device , sending and/or receiving information between the first control resource and the first resource solves the problem of frequent switching of the operating frequency during the process of the first terminal device accessing the network device, and saves the power consumption of the communication device.
  • the network device may send the first signaling to the first terminal device, where the first signaling is used to indicate the location and the first offset of the first control resource set.
  • the first offset is the offset of the position of the first resource relative to the position of the first control resource set
  • the first signaling may also indicate the position of the first control resource set and the position of the first control resource set.
  • an association relationship the first association relationship includes an association relationship between the position of the first control resource set and the position of the first resource
  • the first offset may be represented by N RBs.
  • N can take the following values 0,X-L,(X-L)/2,-L,X.
  • L is the number of RBs included in the first resource
  • X is the number of RBs included in the first control resource set.
  • the position, the first offset, and the first association relationship of the first control resource set may also be predefined.
  • N is not limited to the listed values, and corresponding to different subcarrier intervals, the number of RBs may also change.
  • the network device may indicate to the first terminal device multiple candidate resources, where the multiple candidate resources include the first resource.
  • the multiple candidate resources may include at least two candidate resources, the first candidate resource and the second candidate resource have the same size and the first offset is different, or the first candidate resource and the second candidate resource
  • the candidate resources are of different sizes and the first offsets are the same.
  • the multiple candidate bandwidths may include at least two candidate resources with different offsets, and may also include at least two candidate resources with different sizes.
  • the technical solution determines the first resource by using multiple candidate resources, provides flexibility in determining the first resource, provides that the multiple candidate resources do not completely overlap, and resources with the same location may have different sizes, and bandwidths with the same size may have different locations. Expanded selection of primary resources.
  • the network device may send control information through the first control resource set; the network device may send data through the first resource.
  • the network device sends control information through the first control resource set; the network device sends data through the first resource, and the RB and the RB receiving the data in the first resource
  • the RBs included in the first control resource set are different.
  • This solution proposes to send downlink control information in the first control resource set and downlink data in the first resource, or send downlink control information in the first control resource set, and downlink data in the first resource and the first control resource Parts of sets that do not overlap are sent, which solves the problem of resource congestion and improves the flexibility of information transmission.
  • a seventh aspect provides a method for information transmission, wherein the method may include: the first terminal device sends first uplink information in a first uplink bandwidth; the first terminal device receives in the first downlink bandwidth The first downlink information, the sending of the first uplink information immediately precedes the reception of the first downlink information; the last time unit for sending the first uplink information is the time unit n1, and monitoring the first downlink information
  • the starting time unit of the information is the time unit m1
  • the minimum interval between the time unit n1 and the time unit m1 is k time units, the k is greater than w
  • the w is the second uplink information sent by the second terminal device
  • the number of minimum time units between the last time unit n2 and the starting time unit m2 for monitoring the second downlink information, and the transmission of the second uplink information immediately precedes the reception of the second downlink information, the m1, m2, n1, n2, k, and w are all positive integers
  • the first terminal device is a first-type
  • the solution improves the success rate of information transmission during frequency modulation, further improves the success rate of the random access procedure of the first terminal equipment, and avoids the need for communication equipment Power consumption due to random access failure.
  • the first uplink information includes a random access sequence
  • the first downlink information includes a random access response message
  • the w is 1
  • the k is greater than 1.
  • the k is 3 time units, or the k is the number of time units corresponding to the first time interval, or k is the time corresponding to the first time interval
  • the number of units and the first time interval includes q time units, or the k is the sum of the number of time units corresponding to the first time interval and the q time units.
  • the first uplink information includes uplink data scheduled by an uplink grant carried in a random access response message, and the first downlink information includes a contention resolution message,
  • the w is 0, and the k is greater than 0.
  • the k is 3 time units, or the k is the number of time units corresponding to the first time interval, or k is the time corresponding to the first time interval
  • the number of units and the first time interval includes q time units, or the k is the sum of the number of time units corresponding to the first time interval and the q time units.
  • the scheme gives the specific transmission message type, and provides the uplink and downlink switching time interval when transmitting the message type, which can effectively improve the success rate of information transmission.
  • k can be a certain time interval value, such as 140 microseconds, or the number of time units corresponding to 140 microseconds, such as the number of symbols, or a specific time interval value and corresponding time
  • the number of units for example, may be 80 microseconds + 2 symbols, or may be the sum of the number of time units, such as 2 symbols + 2 time slots.
  • the first time interval may be predefined, or the first time interval may be reported through the capability of the terminal device, wherein the the first time interval is the same as the value of an element in the third set;
  • the third set includes at least one value of ⁇ 35 microseconds, 140 microseconds, 210 microseconds, 300 microseconds, 500 microseconds ⁇ , or , the third set includes the number of symbols corresponding to 35 microseconds, the number of symbols corresponding to 140 microseconds, the number of symbols corresponding to 210 microseconds, the number of symbols corresponding to 300 microseconds, the number of symbols corresponding to 500 microseconds ⁇ at least one value.
  • a method for transmitting information may include: the first terminal device receiving second downlink information in the first downlink bandwidth; the first terminal device sending the second uplink information in the first uplink bandwidth, The reception of the second downlink information immediately precedes the transmission of the first uplink information, the last time unit in which the first terminal device monitors the second downlink information is the time unit s1, and the first terminal device sends the
  • the starting time unit of the second uplink information is the time unit t1
  • the minimum interval between the time unit s1 and the time unit t1 is r time units
  • the r is greater than p
  • the p is the second terminal equipment monitoring
  • the minimum number of time units between the last time unit s2 of the second downlink information and the start time unit t2 of sending the second uplink information, and the reception of the second downlink information immediately precedes the transmission of the second uplink information, the s1 , s2, t1, t2, r, and p are all positive integers
  • the first terminal device is a
  • the solution improves the success rate of information transmission during frequency modulation, further improves the success rate of the random access procedure of the first terminal equipment, and avoids the need for communication equipment Power consumption due to random access failure.
  • the second downlink information includes the uplink grant carried in the random access response message
  • the second uplink information includes the uplink carried in the random access response message
  • the p is the sum of the number of time units corresponding to 0.5 milliseconds and N1 time units and N2 time units
  • the r is greater than the p
  • N1 is the second terminal equipment processing downlink Information processing time
  • N2 is the time for the second terminal device to process and prepare uplink information.
  • the r is greater than p by 2 time units, or r is greater than p by the number of time units corresponding to the first time interval, or r is greater than p by increasing the first time
  • the number of time units corresponding to the interval and the first time interval includes q time units, or r is greater than p by the sum of the number of time units corresponding to the first time interval and the q time units.
  • the second downlink information includes a first downlink control channel
  • the second uplink information includes uplink data scheduled by the downlink control information
  • the p is N2 time units
  • the r is greater than the p
  • N2 is the processing time for the second terminal device to process and prepare the uplink information.
  • the r is greater than p by 2 time units, or r is greater than p by the number of time units corresponding to the first time interval, or r is greater than p by increasing the first time
  • the number of time units corresponding to the interval and the first time interval includes q time units, or r is greater than p by the sum of the number of time units corresponding to the first time interval and the q time units.
  • the second downlink information includes a contention resolution message
  • the second uplink information is HARQ feedback corresponding to the contention resolution message
  • the p is corresponding to 0.5 milliseconds
  • N1 is the processing time for the second terminal device to process the uplink information.
  • the r is greater than p by 2 time units, or r is greater than p by the number of time units corresponding to the first time interval, or r is greater than p by increasing the first time
  • the number of time units corresponding to the interval and the first time interval includes q time units, or r is increased from p to the sum of the number of time units corresponding to the first time interval and q time units
  • the scheme gives the specific transmission message type, and provides the uplink and downlink switching time interval when transmitting the message type, which can effectively improve the success rate of information transmission.
  • r can be a certain time interval value, such as 140 microseconds, or the number of time units corresponding to 140 microseconds, such as the number of symbols, or a specific time interval value and corresponding time.
  • the number of units for example, may be 80 microseconds + 2 symbols, or may be the sum of the number of time units, such as 2 symbols + 2 time slots.
  • the first time interval may be predefined, or the first time interval may be reported through the capability of the terminal device.
  • the first time interval is the same as the value of an element in the third set; the third set includes at least one of ⁇ 35 microseconds, 140 microseconds, 210 microseconds, 300 microseconds, 500 microseconds ⁇ A value, or the third set includes ⁇ the number of symbols corresponding to 35 microseconds, the number of symbols corresponding to 140 microseconds, the number of symbols corresponding to 210 microseconds, the number of symbols corresponding to 300 microseconds, the number of symbols corresponding to 500 microseconds number ⁇ at least one value.
  • a ninth aspect provides a method for transmitting information, which is executed in a communication system including a network device, a first terminal device, and a second terminal device, and there is a time interval A between uplink transmission and downlink transmission of the second terminal device , the maximum channel bandwidth supported by the first terminal device is smaller than the maximum channel bandwidth supported by the second terminal device, and the method may include: the first terminal device sends the first uplink information through the first uplink resource during the first period; The first terminal device receives the first downlink information through the first downlink resource in the second time period, wherein the frequency range corresponding to the first uplink resource and the first downlink resource is larger than that of the first terminal device The maximum supported channel bandwidth, there is a time interval B between the first period and the second period, the time interval B is greater than the time interval A, and the second period is the first period after the first period. a time period for the communication between the first terminal device and the network device.
  • the solution improves the success rate of information transmission during frequency modulation, further improves the success rate of the random access procedure of the first terminal equipment, and avoids the need for communication equipment Power consumption due to random access failure.
  • the method may further include: the The first terminal device receives first indication information, where the first indication information is used to indicate the time interval B or the second time period.
  • the method may further include: the The first terminal device reports capability information, where the capability information includes a time interval B or a second time period.
  • time interval B or the second time period may be indicated by the network device, may also be reported by the capability of the first terminal device, or may be predetermined, which is not limited in this application.
  • the time interval B includes at least one of the following values: 35 microseconds, 140 microseconds, 210 microseconds, 300 microseconds, and 500 microseconds , or, the number of symbols corresponding to 35 microseconds, the number of symbols corresponding to 140 microseconds, the number of symbols corresponding to 210 microseconds, the number of symbols corresponding to 300 microseconds, and the number of symbols corresponding to 500 microseconds.
  • time interval is not limited to the listed values, and the time interval may be a certain time interval value, such as 140 microseconds, or the number of time units corresponding to 140 microseconds, such as the number of symbols or time.
  • the number of slots can also be a specific time interval value and the number of corresponding time units, for example, it can be 80 microseconds + 2 symbols, or it can be the sum of the number of time units, such as 2 symbols + 2 time slot. This application does not limit this.
  • a communication device is provided, the communication device is used to implement the first aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or, the first aspect or the fifth aspect or the seventh aspect Aspect or any of the possible implementations of the eighth or ninth aspect, or, the method of all possible implementations of the first or third or fifth or seventh or seventh or eighth or ninth aspects .
  • a communication device is provided, the communication device is used to implement the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or, the second aspect or the sixth aspect or or any of the possible implementations of the seventh aspect or the eighth aspect or the ninth aspect, or the method of all possible implementations of the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect .
  • an embodiment of the present application provides a communication device, including a transmitter and a processor, where the transmitter and the processor are configured to implement the first aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect aspect, or, any possible implementation of the first aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or, the first aspect or the third aspect or the fifth aspect or the seventh aspect or the Methods of all possible implementations of the eighth aspect or the ninth aspect.
  • an embodiment of the present application provides a communication device, including a receiver and a processor, where the receiver and the processor are configured to implement the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the first aspect
  • the ninth aspect, or the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect, any of the possible implementations, or, the second aspect or the sixth aspect or the seventh aspect or the eighth aspect Aspect or methods of all possible implementations of the ninth aspect.
  • an embodiment of the present application provides a computer-readable medium, where the computer-readable medium stores program code for execution by a terminal device, where the program code includes a program code for executing the first aspect or the fifth aspect or The seventh aspect or the eighth aspect or the ninth aspect, or, the first aspect or the fifth aspect or the seventh aspect or any possible implementation of the eighth aspect or the ninth aspect, or, the first aspect or the third aspect Or the instruction of the communication method in the method of all possible implementations of the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect.
  • an embodiment of the present application provides a computer-readable medium, where the computer-readable medium stores program code for execution by a network device, the program code includes a program code for executing the second aspect or the sixth aspect or or the seventh aspect or the eighth aspect or the ninth aspect, or, the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect any possible implementation manner, or, the second aspect or the Instructions for the method of all possible implementations of the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect.
  • a sixteenth aspect provides a computer program product comprising instructions, which, when run on a computer, cause the computer to execute the first aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or, the first aspect Any possible implementation of the one aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or, the first aspect or the third aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect Methods for all possible implementations in the aspect.
  • a seventeenth aspect provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the above-mentioned second aspect or sixth aspect or or seventh aspect or eighth aspect or ninth aspect, or, Any possible implementation of the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or, the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect methods in all possible implementations.
  • a communication system comprising a device that implements the first aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or, the first aspect or the fifth aspect or the first aspect
  • a device that implements the first aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or, the first aspect or the fifth aspect or the first aspect
  • Any of the possible implementations of the seventh aspect or the eighth aspect or the ninth aspect, or all possible implementations of the first aspect or the third aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect Method and apparatus of various possibly designed functions and second or sixth or seventh or eighth or ninth, or, second or sixth or or seventh or eighth aspect Or any possible implementation manner of the ninth aspect, or, the second aspect or the sixth aspect or or the seventh aspect or the eighth aspect or the ninth aspect all possible implementation manner methods and various possible designed functions device.
  • a nineteenth aspect provides a processor, coupled with a memory, for performing the above-mentioned first aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or, the first aspect or the fifth aspect aspect or any possible implementation of the seventh aspect or the eighth aspect or the ninth aspect, or all possible implementations of the first aspect or the third aspect or the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect method in the implementation.
  • a processor coupled with a memory, for executing the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or the second aspect or the first aspect Any possible implementation of the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect, or all possible implementations of the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect method in method.
  • a twenty-first aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is used to communicate with an external device or an internal device, and the processor is used to implement the first aspect or the fifth aspect or the seventh aspect aspect or the eighth aspect or the ninth aspect, or, the first aspect or the fifth aspect or the seventh aspect or any possible implementation of the eighth aspect or the ninth aspect, or, the first aspect or the third aspect or the A method in all possible implementations of the fifth aspect or the seventh aspect or the eighth aspect or the ninth aspect.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute the instructions stored in the memory or derived from other instructions.
  • the processor is configured to implement the method of the first aspect or any possible implementations thereof.
  • the chip can be integrated on the terminal.
  • a twenty-second aspect provides a chip, where the chip includes a processor and a communication interface, where the communication interface is used to communicate with an external device or an internal device, and the processor is used to implement the second aspect or the sixth aspect or the first
  • the seventh aspect or the eighth aspect or the ninth aspect, or the second aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect any possible implementation manner, or, the second aspect or the sixth aspect Or the method in all possible implementations of the seventh aspect or the eighth aspect or the ninth aspect.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute the instructions stored in the memory or derived from other instructions.
  • the processor is configured to implement the method of the second aspect above or any possible implementation thereof.
  • the chip can be integrated on the access network device.
  • FIG. 1 is a schematic structural diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 shows a schematic flowchart of a method for transmitting information and a schematic diagram of occupied resources according to an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of a method for determining resources applicable to an embodiment of the present application.
  • FIG. 4 shows a schematic diagram of another method for determining resources applicable to this embodiment of the present application.
  • FIG. 5 shows a schematic diagram of another method for determining resources applicable to this embodiment of the present application.
  • FIG. 6 shows a schematic diagram of resources suitable for the embodiments of the present application.
  • FIG. 7 shows a schematic diagram of another resource suitable for this embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of another method for transmitting information according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a method for transmitting information applicable to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of yet another method for transmitting information, which is applicable to this embodiment of the present application.
  • FIG. 11 shows a schematic diagram of yet another method for transmitting information, which is applicable to this embodiment of the present application.
  • FIG. 12 shows a schematic diagram of yet another method for transmitting information, which is applicable to this embodiment of the present application.
  • FIG. 13 shows a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 14 shows a schematic block diagram of another communication device according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various communication systems, such as a wireless local area network system (Wireless Local Area Network, WLAN), a narrowband Internet of Things system (Narrow Band-Internet of Things, NB-IoT), a global system for mobile communications (Global System for Mobile Communications, GSM), Enhanced Data rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 (Code Division Multiple Access) Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (Long Term Evolution, LTE), satellite communications, 5th generation (5G) system or a new communication system that will appear in the future.
  • WLAN Wireless Local Area Network
  • NB-IoT narrowband Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • the International Telecommunication Union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), ultra-reliable and low-latency communication communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communication communications
  • mMTC massive machine type communications
  • Typical eMBB services include ultra-high-definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main features of these services are large amount of data transmission and high transmission rate.
  • Typical URLLC businesses include: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and tactile interaction applications such as remote repair and remote surgery.
  • the main features of these services are ultra-reliable requirements. high reliability, low latency, small amount of transmitted data, and burstiness.
  • Typical mMTC services include: smart grid power distribution automation, smart city, etc.
  • the main features are the huge number of networked devices, the small amount of data transmitted, and the insensitivity of data to transmission delay. These mMTC terminals need to meet low cost and very long standby time. time requirements.
  • the user equipment (UE) of the mMTC service is called a low-complexity UE (reduced capability UE, REDCAP UE) in the standard, or a narrow-bandwidth user equipment, or an IoT device, or a low-end smart handheld terminal.
  • This type of UE may be less complex than other UEs in terms of bandwidth, power consumption, and number of antennas, such as narrower bandwidth, lower power consumption, and fewer antennas.
  • This type of UE may also be called a lightweight version of the terminal equipment (NR light, NRL).
  • the maximum bandwidth supported by the mMTC user equipment is less than 100MHz. It should be noted that the mMTC user equipment in this application is not only a device for machine-type communication, but also an intelligent handheld terminal.
  • the mobile communication system includes a wireless access network device 120 ie a network device 120 and at least one terminal device (such as the terminal device 130 , the terminal device 140 and the terminal device 150 in FIG. 1 ).
  • the terminal equipment is connected to the wireless access network equipment in a wireless manner, and the wireless access network equipment is connected with the core network equipment in a wireless or wired manner.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminal devices included in the mobile communication system.
  • the information sending end in the communication system of the present application may be a network device or a terminal device, and the information receiving end may be a network device or a terminal device, which is not limited in this application.
  • Type terminal equipment can participate in the communication.
  • This embodiment of the present application describes the solution by taking the network device and the first terminal device as an example of two interacting parties, which is not limited thereto.
  • the wireless access network equipment is the access equipment that the terminal equipment wirelessly accesses to the mobile communication system.
  • a terminal device may also be referred to as a terminal (Terminal), a user equipment UE, a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, industrial control (industrial control) wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • VR Virtual Reality
  • AR Augmented Reality
  • industrial control industrial control
  • Radio access network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of the wireless access network device and the terminal device.
  • the embodiments of the present application may be applicable to downlink signal transmission, uplink signal transmission, and device to device (device to device, D2D) signal transmission.
  • the sending device is a wireless access network device
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is a wireless access network device.
  • D2D signal transmission the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • Communication between wireless access network equipment and terminal equipment and between terminal equipment and terminal equipment can be performed through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum). Licensed spectrum for communication. Communication between wireless access network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through the spectrum below 6G, or through the spectrum above 6G, and can also use the spectrum below 6G and above 6G at the same time. to communicate.
  • the embodiments of the present application do not limit the spectrum resources used between the radio access network device and the terminal device.
  • the random access procedure is as follows:
  • the terminal device searches for the synchronization signal and the physical broadcast channel (Synchronization Signal and PBCH, SSB).
  • the terminal device obtains the master information block (MIB) sent by the network device by searching the SSB.
  • the terminal device obtains the time domain resources and frequency domain resources of the control resource set (CORESET) according to the MIB, and the terminal device can detect the downlink control information (Downlink control information) of the scheduling system information block (SIB) on the CORESET , DCI), receive SIB1 at the time-frequency position indicated by DCI, so that the initial uplink bandwidth part (initial uplink bandwidth part, Initial UL BWP) indicated in SIB1, the initial downlink bandwidth part (initial downlink bandwidth part) can be received bandwidth part, Initial DL BWP), random access preamble list, random access timing list and other information.
  • MIB master information block
  • CORESET control resource set
  • the terminal device sends the physical random access channel (physical random-access channel, PRACH, namely Msg1) carrying the random access sequence in the random access opportunity (RACH occasion, RO) resource associated with the SSB;
  • PRACH physical random-access channel
  • the base station If the base station successfully receives the random access sequence and allows the UE to access, within the window (window) of the preconfigured random access response (Random access response, RAR), the base station sends the RAR to the UE, namely Msg2;
  • the UE monitors the downlink control information (DCI) transmitted on the physical layer downlink control channel (PDCCH) in the preconfigured RAR window, and the DCI is used to instruct the UE to share from the physical downlink.
  • the RAR information is obtained from the Media Access Control (Media Access Control, MAC) protocol data unit (Protocol Data Unit, PDU) carried by the channel (Physical downlink shared channel, PDSCH).
  • Media Access Control Media Access Control
  • PDU Protocol Data Unit
  • the base station if the base station cannot receive the preamble sequence due to the conflict of random access sequences selected between different UEs or poor channel conditions, the base station will not send RAR information, and the UE will not detect in the RAR window. To DCI and MAC RAR, then this random access fails.
  • the terminal After the terminal successfully detects the DCI, it receives the random access response RAR (that is, Msg2), and sends the physical uplink shared channel (Physical Uplink Shared CHannel, PUSCH, that is, Msg3) according to the time-frequency resources indicated by the uplink grant UL grant in the random access response. ), the network device sends the DCI to the terminal device, the DCI indicates the time-frequency resource that bears the contention resolution message, that is, Msg4, and the terminal device detects the DCI and receives the Msg4.
  • RAR that is, Msg2
  • PUSCH Physical Uplink Shared CHannel
  • Radio Resource Control RRC
  • the UE needs to receive in CORESET 0: PDCCH for scheduling SIB1, PDSCH for scheduling SIB1, PDCCH for scheduling SI, PDSCH for carrying SI, scheduling Msg2
  • the PDCCH of Msg2 is the PDSCH that carries the Msg2, the PDCCH that schedules the Msg3, the PDCCH that schedules the Msg4, and the PDSCH that carries the Msg4.
  • the UE needs to send the PUSCH carrying Msg1 and the PUSCH carrying Msg3 in the initial UL BWP.
  • the UE in this application can be divided into a first type of terminal equipment and a second type of terminal equipment.
  • the first type of terminal equipment is, for example, a low-complexity UE (reduced capability UE, REDCAP UE), and the second type of terminal equipment can be.
  • legacy UE such as eMBB UE.
  • the characteristics of the first type of terminal equipment and the second type of terminal equipment are different, and the characteristics include one or more of the following:
  • Bandwidth number of resources supported or configured, number of transmit antenna ports and/or number of receive antenna ports, number of radio frequency channels, number of hybrid automatic repeat request (HARQ) processes, supported peak rates, application scenarios, time delay requirements, processing capabilities, protocol versions, duplex modes, services, etc.
  • HARQ hybrid automatic repeat request
  • Bandwidth, or channel bandwidth, or the maximum channel bandwidth supported or configured by the terminal device The bandwidth of the first type terminal device and the second type terminal device are different.
  • the bandwidth of the first type terminal device can be 20MHz or 10MHz or 5MHz.
  • the bandwidth of the second type of terminal equipment may be 100MHz. It can be understood that with the development of communication technology, the maximum channel bandwidth supported by the first type terminal equipment may no longer be 20MHz, 10MHz or 5MHz, but evolve into wider or narrower bandwidths such as 3MHz, 25MHz, and 50MHz.
  • the number of resources supported or configured which can be the number of RBs, REs, subcarriers, RB groups, REG bundles, control channel elements, subframes, radio frames, time slots, mini-slots and/or symbols, the first
  • the number of resources supported or configured by the type terminal equipment and the terminal equipment of the second type are different, for example, the number of resources supported by the terminal equipment of the first type is 48 RB, and the number of resources supported by the terminal equipment of the second type is 96 RB.
  • the number of transmit antenna ports and/or the number of receive antenna ports is different from that of the second type of terminal equipment, for example: the number of transmit antenna ports of the first type of terminal equipment It may be 1, the number of ports of the receiving antenna may be 2, the number of ports of the transmitting antenna of the second type terminal device may be 2, and the number of ports of the receiving antenna may be 4.
  • the number of radio frequency channels that is, the number of radio frequency channels of the first type terminal equipment is different from that of the second type terminal equipment, for example: the number of radio frequency channels of the first type terminal equipment can be 1, and the number of radio frequency channels of the second type terminal equipment can be 2 indivual.
  • the number of HARQ processes that is, the number of HARQ processes supported by the first type of terminal equipment is different from that of the second type of terminal equipment.
  • the number of HARQ processes of the first type of terminal equipment may be 8, and the number of HARQ processes of the second type of terminal equipment may be 16 .
  • the supported peak rate that is, the maximum peak rate of the first type terminal equipment and the second type terminal equipment are different, for example: the maximum peak rate supported by the first type terminal equipment can be 100Mbps, and the peak rate supported by the second type terminal equipment can be 200Mbps.
  • Application scenarios that is, the first type of terminal equipment and the second type of terminal equipment serve different application scenarios, for example: the first type of terminal equipment is used in industrial wireless sensing, video surveillance, wearable devices, etc., the second type of terminal equipment Applied to mobile communication, video Internet access, etc.
  • Delay requirement that is, the first type terminal equipment and the second type terminal equipment have different requirements for transmission delay, for example: the delay requirement of the first type terminal equipment can be 500 milliseconds, and the delay requirement of the second type terminal equipment can be is 100 milliseconds.
  • the processing capability, and the processing speed of the channel or data processing timing of the first type terminal equipment and the second type terminal equipment under different subcarrier space (SCS) conditions for example: the first type terminal equipment Does not support complex operations, the complex operations may include: artificial intelligence (artificial intelligence, AI), virtual reality (virtual reality, VR) rendering, the second type of terminal device supports complex operations, or understood as, the first type The processing capability of the terminal equipment is lower than that of the second type of terminal equipment.
  • SCS subcarrier space
  • Protocol version that is, the first type terminal device and the second terminal device belong to terminal devices of different protocol versions, for example: the protocol version supported by the first type terminal device is Release 17 and the protocol version after Release 17, and the second type terminal device supports The protocol version is the protocol version before Release 17, such as Release 15 or Release 16.
  • the duplex mode includes half-duplex and full-duplex, for example, the first type of terminal equipment works in half-duplex mode, and the second type of terminal equipment works in full-duplex mode.
  • the services include but are not limited to IoT applications, such as video surveillance, mobile broadband MBB, etc.
  • IoT applications such as video surveillance, mobile broadband MBB, etc.
  • the services supported by the first type of terminal equipment are video surveillance
  • the services supported by the second type of terminal equipment are mobile broadband MBB. This embodiment of the present application does not limit this.
  • the first terminal device in this application may be an example of a first type of terminal device, and the second terminal device may be an example of a second type of terminal device.
  • Initial downlink bandwidth part Initial DL BWP: Indicated in SIB1, the frequency range includes CORESET, but it will take effect after the reception of Msg4 is completed.
  • Initial uplink bandwidth part (initial uplink bandwidth part, Initial UL BWP): indicated in SIB1, the uplink channel PRACH, Msg3, Msg4 HARQ-ACK feedback involved in the initial access process are all within the scope of the initial UL BWP conduct.
  • CORESET Control resource collection.
  • the terminal equipment is receiving downlink control information or downlink data information in CORESET.
  • the frequency range of the downlink control channel and the downlink data channel is CORESET 0.
  • a low-complexity terminal device is a relative concept, which is not limited in this application.
  • a new type of terminal equipment that may be developed in the future has more complex features than the existing legacy UE in at least one aspect such as bandwidth, number of antennas, and power consumption of the equipment.
  • the legacy UE will be used as the first type of terminal in this application.
  • the new type of terminal equipment will be used as the second type of terminal equipment in this application, and the embodiments of this application are still applicable and within the protection scope of this application.
  • Center frequency the center frequency of a resource block, or the resource block with the index as the center in the bandwidth
  • Start resource block (Resource block, RB): The resource block with the smallest index in the bandwidth, or the first resource block in the bandwidth.
  • End resource block (Resource block, RB): The resource block with the largest index in the bandwidth, or the last resource block in the bandwidth.
  • resources in this application may be symbols, or time slots, or mini-slots, or subframes, and so on.
  • the resources in this application may also be subcarriers, or resource blocks, or carriers, or channel control elements, and the like.
  • the resource unit may be a time slot, or a short time slot, or a subframe.
  • the resource unit is a resource block, or a carrier, or a channel control element or the like.
  • the first resource and the first bandwidth are different expressions for resources in the same frequency range.
  • the first resource or the first bandwidth may be an uplink BWP; for example, the first resource or the first bandwidth may be a downlink BWP; for example, the first resource or the first bandwidth may be an initial downlink BWP; for example, the first resource or the first bandwidth
  • the bandwidth may be the initial uplink BWP; for example, the first resource or the first bandwidth may be a resource whose size is equal to or smaller than the maximum channel bandwidth supported by the first terminal device.
  • the first control resource set is expressed as CORESET a, for example, before the RRC connection is established, CORESET a is CORESET 0; for example, before the RRC connection is established or after the RRC connection is established, CORESET a can also be a public CORESET, at least one of the public CORESETs RB may not be within the scope of CORESET 0, that is, CORESET a and CORESET 0 may be different CORESETs.
  • the size of the first resource or the first bandwidth is equal to or smaller than the maximum channel bandwidth supported by the first terminal device, and the size may be predefined or indicated by the network device.
  • the size can be 5MHz, or the number of RBs corresponding to 5MHz at different subcarrier intervals, or 10MHz, or the number of RBs corresponding to 10MHz at different subcarrier intervals, or 20MHz, or 20MHz at different subcarrier intervals The corresponding RB number below.
  • the first resource or the first bandwidth may be understood as a resource independently configured by the network device for the first terminal device, and the resource includes a frequency bandwidth range (for example, the number of RBs) and/or a location on a frequency.
  • the resource is indicated by a field in the higher layer signaling or the physical layer signaling, and the field in the higher layer signaling or the physical layer signaling is dedicated to the first terminal device.
  • the first control resource set is CORESET 0, the first resource or the first bandwidth is the initial uplink BWP, and the first terminal device determines the position of the initial uplink BWP according to the position of CORESET 0, which can be understood as: the initial uplink BWP is used for the first uplink BWP.
  • a resource for a terminal device to send uplink information the resource may be shared with the second type terminal device or not shared with the second type terminal device (ie the initial uplink BWP is an initial uplink BWP dedicated to the first type terminal device).
  • the first terminal device For a first terminal device that is not capable of performing downlink reception and uplink transmission at the same time, the first terminal device needs to perform downlink reception and uplink transmission in a time-division manner.
  • the first terminal device is a time division multiplexed TDD UE that is not capable of simultaneous downlink reception and uplink transmission.
  • the first terminal device is half-duplex and the first terminal device is not capable of simultaneous downlink reception and uplink transmission. It is assumed that after the first terminal equipment performs downlink reception in the first control resource set, it is to perform uplink transmission in the initial first resource immediately thereafter.
  • the first terminal device needs to perform frequency tuning after downlink reception, and then perform frequency tuning within the first resource. Perform upstream transmission.
  • the first terminal device After the first terminal device performs uplink transmission in the first resource, it will immediately perform downlink reception in the first control resource set. If the frequency range corresponding to the frequency range of the first resource and the frequency range of the first control resource set exceeds the maximum channel bandwidth of the first terminal device, the first terminal device needs to perform frequency tuning after uplink transmission, and then perform frequency tuning in the first terminal device. Downlink reception is performed in a control resource set.
  • Frequency tuning reduces symbols available for data transmission, reduces resource utilization efficiency, increases power consumption of the first control resource set, and increases the complexity of the implementation of the first control resource set.
  • the network device configures the first control resource set
  • step 200 is optional, and the first control resource set may also be predefined.
  • the network device may configure the first control resource set for the terminal device through signaling such as a master information block (Master Information Block, MIB).
  • MIB Master Information Block
  • the first terminal device determines a first control resource set
  • the information of the first control resource set may be predefined, or may be indicated by the network device to the first terminal device through signaling. This application does not limit this.
  • the first terminal device determines the size and location of the first control resource set, for example, determines the size and location of the first control resource set through MIB signaling.
  • the first terminal device determines the location of the first resource according to the location of the first control resource set, where the first resource may include the first downlink resource and/or the first uplink resource.
  • the first terminal device sends the uplink information through the first resource
  • 204 The first terminal device receives the downlink information through the first resource.
  • the total frequency range corresponding to the frequency range of the first resource and the frequency range of the first control resource set in frequency does not exceed the maximum channel bandwidth of the first terminal device.
  • the first terminal device determines the position of the first resource according to the position of the first control resource set, which may be to determine the position of the first resource according to the position of the first control resource set and the first offset.
  • the location of the first control resource set may be the A-th RB of the first control resource set, or the starting subcarrier of the A-th RB of the first control resource set, or the center of the first control resource set frequency (or center subcarrier), or the center frequency (or center subcarrier) of the Ath RB of the first control resource set, or the last subcarrier of the Ath RB of the first control resource set, or The starting CCE of the first control resource set, or the starting REG of the first control resource set, or the starting symbol of the first control resource set, or the starting time slot of the first control resource set, or the like.
  • X is the size of the first control resource set, and the unit is RB.
  • the location of the first control resource set may be the first RB of the first control resource set, and may be the start subcarrier or the center subcarrier or the last subcarrier of the first RB of the first control resource set.
  • the A-th RB of the first control resource set is an RB whose RB index of the first control resource set is A-1.
  • the location of the first resource may be the Zth RB of the first resource, or the starting subcarrier of the Zth RB of the first resource, or the center frequency (or center subcarrier) of the first resource, or the first resource.
  • L is the size of the first resource, and the unit is RB.
  • L is the number of RBs included in the first resource
  • X is the number of RBs included in the first control resource set.
  • the location of the first resource may be the first RB of the first resource, or may be the start subcarrier or the center subcarrier or the last subcarrier of the first RB of the first resource.
  • the Zth RB of the first resource is an RB whose RB index of the first resource is Z-1.
  • the first offset refers to the interval between the position of the first control resource set and the position of the first resource.
  • the offset is 0, that is, the selected position reference point of the first control resource set (ie , the first position) is aligned with the position reference point (that is, the second position) of the selected first resource, for example, the positions of the first RB of the first control resource and the second RB of the first resource may be the same;
  • the offset is not 0, that is, the position of the selected first control resource set is not aligned with the position of the selected first resource, for example, it can be the first RB of the first control resource and the sixth RB of the first resource different locations.
  • the value of the offset depends on the selection of the location of the first control resource set and the location of the first resource. For example, when the center frequency and size of the first control resource and the first resource are the same, the center frequency of the first control resource set is selected as the location of the first control resource set, and the center frequency of the first resource is selected as the location of the first resource , the offset is 0; for another example, when the third RB of the first control resource set is selected as the position of the first control resource set, and the first RB of the first resource is selected as the position of the first resource, the offset The shift amount is not 0.
  • a location herein may be a general term for a location reference point.
  • the location of the first control resource set may be a general term for location reference points of the first control resource set
  • the location of the first resource may be a general term for location reference points of the first resource.
  • the selection of the location reference point of the first control resource set may be different from the selection of the location reference point of the first resource, that is, Z and A may be different, that is, the location of the first control resource set may be the first control resource.
  • the first RB of the set, the location of the first resource may be the third RB of the first resource.
  • Z can be equal to A.
  • Z may not be equal to A.
  • the total frequency range corresponding to the frequency range of the first control resource set and the frequency range of the first resource is less than or equal to the maximum channel bandwidth of the first terminal device, it can be expressed as, the starting position of the first control resource set (may be The bandwidth between the first RB) and the end position of the first resource (which may be the last RB) is less than or equal to the maximum bandwidth supported by the first terminal device, or the end position of the first control resource set (which may be the last RB) The bandwidth between one RB) and the starting position of the first resource (which may be the first RB) is less than or equal to the maximum bandwidth supported by the first terminal device.
  • first control resource set may or may not overlap with the first resource, and the first control resource set may be CORESET 0.
  • the first offset may be defined as an interval between the first position of the first control resource set and the second position of the first resource.
  • the first offset is N RBs.
  • the first position of the first control resource set is the first RB
  • the position of the second position of the first resource may be determined directly through the first position of the first control resource set.
  • N may be predefined, or N is indicated by the network device to the first terminal device through the first signaling, which is not limited in this application.
  • the first signaling may be SIB1.
  • the value of N may be determined according to at least one of the size of the first control resource set, the size of the first bandwidth, and the maximum channel bandwidth supported by the first terminal device.
  • N may be a predefined integer, including 0, a positive integer, and a negative integer.
  • the first position of the first control resource set is the first RB of the first control resource set
  • the second position of the first resource is the first RB of the first resource
  • the value of N is equal to 0 ((a) in Figure 3).
  • the offset between the first RB of the first control resource set and the first RB of the first resource is 0, and when the frequency range of the first resource includes the frequency range of the first control resource set, the first The position of the last RB of the resource is the upper bound of the frequency. From the perspective of the network device, there are more resources for information transmission, which increases the flexibility of scheduling. From the perspective of the terminal device, it can avoid the frequency modulation caused by Increased power consumption of end equipment.
  • the value of N is equal to X-L ((c) in FIG. 3).
  • the offset is X-L
  • the frequency range of the first resource includes the frequency range of the first control resource set in frequency X-L corresponds to the lower bound on the frequency of the position of the first RB of the first resource. From the perspective of the network device, there are more resources for information transmission, which increases the flexibility of scheduling. From the perspective of the terminal device, it avoids frequency modulation caused by increase in power consumption of end devices.
  • the value of N is equal to (X-L)/2 or floor((X-L)/2) ((b) in Figure 3).
  • the offset is (X-L)/2 or floor((X-L)/2)
  • the frequency range of the first resource is on the frequency
  • the location of the first control resource set is in the center of the first resource, and from the perspective of the network device, there are more resources for information transmission, which increases the flexibility of scheduling, and from the terminal From the perspective of the device, avoid the increase in the power consumption of the terminal device caused by frequency modulation.
  • the value of N is equal to -L ((d) in Figure 3).
  • the frequency range of the first resource does not overlap with the first control resource set in frequency, which can avoid the problem of limited allocation of resources in the first control resource set or use congestion.
  • the value of N is equal to X ((e) in FIG. 3).
  • the frequency range of the first resource does not overlap with the first control resource set in frequency, which can avoid the problem of limited allocation of resources in the first control resource set or use congestion.
  • the value of N can also be any positive or negative integer, for example, the value of N can be divisible by the power of 2.
  • N may be a predefined integer, including 0, a positive integer, and a negative integer.
  • the value of N is the same as the value of an element in the first set.
  • the first set includes at least one or more values of ⁇ 0, X-L, (X-L)/2, -L, X ⁇ , or the first set includes at least ⁇ 0, X-L, floor((X-L)/2), - One or more values of L, X ⁇ .
  • the first set includes ⁇ 0,X-L) ⁇ .
  • the possible value range of N is the set
  • the frequency range of the first resource includes the frequency range of the first control resource set in frequency
  • the first set is the maximum frequency range that can be covered. From the perspective of the network device, more resources are used for information transmission, which increases the flexibility of scheduling, and from the perspective of the terminal device, the increase in the power consumption of the terminal device caused by frequency modulation is avoided.
  • the first set includes ⁇ 0,(X-L)/2,(X-L) ⁇ , or the first set includes ⁇ 0,floor((X-L)/2),(X-L) ⁇ .
  • the possible value range of N is the set
  • the frequency range of the first resource includes the frequency range of the first control resource set in frequency
  • the first set is the maximum frequency range that can be covered. From the perspective of the network device, more resources are used for information transmission, which increases the flexibility of scheduling, and from the perspective of the terminal device, the increase in the power consumption of the terminal device caused by frequency modulation is avoided.
  • the first set includes ⁇ 0,(X-L)/2,(X-L),X ⁇ , or the first set includes ⁇ 0,floor((X-L)/2),(X-L),X ⁇ .
  • the first set includes ⁇ 0,(X-L)/2,(X-L),-L ⁇ , or the first set includes ⁇ 0,floor((X-L)/2),(X-L),-L ⁇ .
  • the first set includes ⁇ 0,(X-L)/2,(X-L),X,-L ⁇ , or the first set includes ⁇ 0,floor((X-L)/2),(X-L),X,-L ⁇ .
  • the value of N in the first set satisfies: the frequency range of the first resource includes the frequency range of the first control resource set in frequency, and the frequency range of the first resource is in frequency A frequency range including the first control resource set.
  • the network equipment has more resources for information transmission and can obtain the maximum scheduling flexibility. From the perspective of terminal equipment, the increase in power consumption of the terminal equipment caused by frequency modulation is avoided.
  • N may be indicated by the network device to the first terminal device through the first signaling.
  • the network device indicates the value of N among the K values through the first signaling.
  • At least T values of the K values are the same as the values of the T elements in the first set, where K is a positive integer, T is a positive integer, and K is greater than or equal to T.
  • the first set includes at least one or more values of ⁇ 0,X-L,(X-L)/2,-L,X ⁇ , or the first set includes at least ⁇ 0,X-L,floor((X-L)/2),- One or more of the values in L,X ⁇ .
  • K-T elements in the K values can be the same as ⁇ 0,X-L,(X-L)/2,-L,X ⁇ or ⁇ 0,X-L,floor((X-L)/2),-L ,X ⁇ in different values.
  • the value of the K-T elements may be a positive integer multiple of a power of two, or may be a negative integer multiple of a power of two.
  • the K values are all values in ⁇ 0,X-L,(X-L)/2,-L,X ⁇ , or the K values are all ⁇ 0,X-L,floor((X-L )/2),-L,X ⁇ .
  • the set indicated to the first terminal device should include at least one value that N can take.
  • N is indicated by the network device to the first terminal device through the first signaling.
  • the network device indicates the value of N in the second set through the first signaling.
  • the second set includes at least one or more values of ⁇ 0,X-L,(X-L)/2,-L,X ⁇ , or the second set includes at least ⁇ 0,X-L,floor((X-L)/2),- One or more values of L, X ⁇ .
  • the second set includes ⁇ 0, X-L ⁇ ; the network device uses 1 bit to indicate the value of N in the second set.
  • the second set includes ⁇ 0, X-L, (X-L)/2 ⁇ , or the second set includes ⁇ 0, X-L, floor((X-L)/2) ⁇ ; the network device uses 2 bits to indicate N in the second set value of .
  • the second set includes ⁇ 0, X-L, (X-L)/2, -L ⁇ , or the second set includes ⁇ 0, X-L, floor((X-L)/2), -L ⁇ ; the network device uses 2 bits in the The value of N is indicated in the second set.
  • the second set includes ⁇ 0,X-L,(X-L)/2,-L,X ⁇ , or the second set includes ⁇ 0,X-L,floor((X-L)/2),-L,X ⁇ ; network device
  • the value of N is indicated in the second set using 3 bits. It should be understood that the value or value set of the above N may be indicated by the network device to the first terminal device through signaling, or may be predefined. If the first terminal device does not receive the first signaling, the default value of N is adopted, and the default value of N can be 0, X-L, (X-L)/2, floor((X-L)/2), -L, A value in X.
  • the first signaling may indicate the value of N, the index corresponding to the value of N, or the index of the row in the table composed of the value of N (in the table composed of the value of N, the row is not simultaneously N The value of N is different), or the index of the column (in the table composed of the value of N, the value of N is different when the row is different).
  • the elements in the table formed by the value of N are the above values of N, or the first signaling may indicate the index corresponding to the set in the table formed by the value set of N, which is not limited in this application.
  • the first offset is related to the reference subcarrier spacing, and the first offset may be determined according to the reference subcarrier spacing.
  • the reference subcarrier spacing may be the subcarrier spacing of the first control resource set, or may be the smaller subcarrier spacing among the first control resource set and the subcarrier spacing of the first resource, or may be the first control resource set and the first control resource set and the subcarrier spacing of the first resource.
  • the larger subcarrier spacing among the subcarrier spacings of a resource may be the subcarrier spacing of the first control resource set, or may be the smaller subcarrier spacing among the first control resource set and the subcarrier spacing of the first resource, or may be the first control resource set and the first control resource set and the subcarrier spacing of the first resource.
  • the subcarrier spacing of the first control resource set is less than or equal to the subcarrier spacing of the first resource, for example, the subcarrier spacing of the first resource is 2 to the nth power of the subcarrier spacing of the first control resource set.
  • the reference subcarrier spacing is the subcarrier spacing of the first control resource set
  • the value of N includes 0, a positive integer, and a negative integer; for example, the value of N is equal to 0 (see Figure 4(a) below).
  • N is equal to X-2 n *L (as in (c) in Figure 4); for example, the value of N is equal to (X-2 n *L)/2 (as in (b) in Figure 4); for example, The value of N is equal to -2n *L (as in (d) in Figure 4); for example, the value of N is equal to X (as in (e) in Figure 4).
  • the value of N may be 0, a positive integer, or a negative integer; for example, the value of N is equal to 0 ((a) in FIG. 5 ).
  • the value of N is equal to 2- n *XL ((c) in FIG. 5).
  • the value of N is equal to (2- n *XL)/2 ((b) in FIG. 5).
  • the value of N is equal to -L ((d) in FIG. 5).
  • the value of N is equal to 2- n *X ((e) in FIG. 5).
  • the subcarrier spacing of the first resource is less than or equal to the subcarrier spacing of the first control resource set.
  • the subcarrier spacing of the first control resource set is the nth power of 2 of the subcarrier spacing of the first resource.
  • the value of N includes 0, a positive integer, and a negative integer; for example, the value of N is equal to 0 ((a) in Figure 5 below); for example, N The value of N is equal to 2 -n *XL (as in (c) in Figure 5); for example, the value of N is equal to (2 -n *XL)/2 (as in (b) in Figure 5); for example, the value of N is equal to -L (as in (d) in Figure 5); for example, the value of N is equal to 2- n *X (as in (e) in Figure 5).
  • the value of N includes 0, a positive integer, and a negative integer; for example, the value of N is equal to 0 ((a) in FIG. 4 ).
  • the value of N is equal to X-2 n *L (as in (c) in Figure 4); for example, the value of N is equal to (X-2 n *L)/2 (as in (b) in Figure 4); for example, The value of N is equal to -2n *L (as in (d) in Figure 4); for example, the value of N is equal to X (as in (e) in Figure 4).
  • N may be predefined, or may be indicated by a network device, and the indication method is similar to the previous one, which will not be repeated here.
  • the first terminal device determines the location of the first resource according to the location of the first control resource set and the first association relationship.
  • the first association relationship refers to the association relationship between the position of the first control resource set and the first offset corresponding to it.
  • the location and the first association relationship of the first control resource set may be indicated by the network device to the first terminal device through signaling. If the first terminal device does not receive the first signaling, the default value of N is used. , the default value of N is 0, one of X-L, (X-L)/2, floor((X-L)/2), -L, X.
  • the location of the first control resource set and the first association relationship may also be predefined.
  • the first terminal device determines the location of the first control resource set, and may determine the location of the first resource set according to the first association relationship.
  • the first association relationship may include the value of the first offset, may also include a value set of the first offset, or may include the value or value of the first offset when referring to the subcarrier spacing gather.
  • the frequency range corresponding to the frequency range of the first resource and the frequency range of the first control resource set does not exceed the maximum channel bandwidth supported by the first terminal device.
  • the present application indicates the offset in the form of RB, and the first terminal device can directly determine the position of the first resource through the RB index or the number of offset RBs, and the terminal implementation is simpler.
  • the frequency range corresponding to the frequency range of the first resource and the frequency range of the first control resource set does not exceed the maximum channel bandwidth of the first terminal device, which can also be understood as: the center frequency of the first control resource set is covered by the center The frequency range of the maximum channel bandwidth supported by the first terminal device, including the frequency range of the first resource.
  • the first terminal device determines the location of the first resource according to the location of the first control resource set, which may specifically include: the first terminal device determines the first resource according to the location of the first control resource set and the second association relationship.
  • the second association relationship may be that the location of the first control resource set is aligned with the location of the first resource.
  • the second association relationship may be association relationship 1: the position of the first RB of the first control resource set is the same as the position of the first RB of the first resource, or the predefined association relationship is the first control resource
  • the position of the first RB index of the set is the same as the position of the first RB index of the first resource, or, the predefined association relationship is that the position of the starting subcarrier of the first RB of the first control resource set is the same as the position of the first RB index of the first control resource set.
  • the position of the starting subcarrier of the first RB of a resource is the same, as described in (a) in Figure 3, and (a) in Figure 3 uses CORESET 0 and initial UL BWP as examples to explain association relationship 1.
  • the position of the last RB of the first resource is on the upper bound of the frequency, and from the perspective of the network device, more resources are used for Information transmission, increase the flexibility of scheduling, and avoid the increase in power consumption of terminal equipment caused by frequency modulation from the perspective of terminal equipment
  • the second association relationship may be association relationship 2: the center frequency of the first control resource set and the center frequency (center subcarrier) of the first resource are located at the same location, or, the X/2th of the first control resource set The positions of the RB and the L/2 th RB of the first resource are the same, or, the center frequency (center subcarrier) of the X/2 th RB of the first control resource set and the L/2 th RB of the first resource set The center frequencies (center subcarriers) are located the same. (b) in Fig. 3 explains association 2 by taking CORESET 0 and initial UL BWP as examples.
  • the location of the first control resource set is at the center of the first resource, and from the perspective of the network device, there are more resources for information transmission , to increase the flexibility of scheduling, and from the perspective of terminal equipment, to avoid the increase in power consumption of terminal equipment caused by frequency modulation.
  • the second association relationship may be association relationship 3: the position of the RB with the largest index of the first control resource set and the RB with the largest index of the first resource are the same, or, the Xth RB of the first control resource set is the same as the first control resource set.
  • the position of the Lth RB of a resource is the same.
  • Figure 3(c) illustrates association 3 by taking CORESET 0 and initial UL BWP as examples.
  • the position of the first RB of the first resource is at the lower bound in frequency, and from the perspective of the network device, more resources are used for Information transmission increases the flexibility of scheduling, and from the perspective of terminal equipment, avoids the increase in power consumption of terminal equipment caused by frequency modulation.
  • the second association relationship may be that the association relationship is association relationship 4: there are N RBs between the position of the first control resource set and the position of the first resource, and the value of N is 0.
  • the position of the first RB of the first control resource set is adjacent to the Lth RB of the first resource.
  • (d) in Figure 3 explains the association relationship 4 by taking CORESET 0 and initial UL BWP as examples.
  • the frequency range of the first resource does not overlap with the first control resource set in frequency
  • the lower bound of the location of the first resource from the perspective of the network device, has more resources for information transmission, which increases the flexibility of scheduling, From the perspective of terminal equipment, the increase in power consumption of the terminal equipment caused by frequency modulation is avoided.
  • the frequency range of the first resource does not overlap with the first control resource set in frequency, which can avoid the problem of limited allocation of resources of the first control resource set or use congestion.
  • the second association relationship may be that the association relationship is association relationship 5: there are N RBs between the position of the first control resource set and the position of the first resource, and the value of N is 0.
  • the position of the Xth RB of the first control resource set is adjacent to the first RB of the first resource.
  • (e) in Figure 3 explains the association relationship 5 by taking CORESET 0 and initial UL BWP as examples.
  • the frequency range of the first resource does not overlap with the first control resource set in frequency
  • the upper bound of the location of the first resource allows more resources to be used for information transmission from the perspective of the network device, increasing the flexibility of scheduling , from the perspective of the terminal equipment, to avoid the increase in the power consumption of the terminal equipment caused by frequency modulation.
  • the frequency range of the first resource does not overlap with the first control resource set in frequency, which can avoid the problem of limited allocation of resources of the first control resource set or use congestion.
  • the above-mentioned second association relationship may be predefined, or may be indicated by the network device through signaling, and the signaling may be SIB1.
  • the network device indicates the second association relationship through signaling.
  • the network device can indicate the association relationship through 1 bit. For example, the network device indicates the second association relationship in the association relationship 1 and the association relationship 3 . Alternatively, the network device indicates the second association relationship in the association relationship 4 and the association relationship 5 .
  • the frequency range of the first resource includes the frequency range of the first control resource set in frequency
  • the first set is the largest frequency range that can be covered. From the perspective of the network device, more resources are used for information transmission, which increases the flexibility of scheduling, and from the perspective of the terminal device, the increase in the power consumption of the terminal device caused by frequency modulation is avoided.
  • the network device indicates the association relationship through 2 bits.
  • the network device indicates the first association in associations 1, 2, and 3.
  • the frequency range of the first resource includes the frequency range of the first control resource set in frequency
  • the first set is the largest frequency range that can be covered. From the perspective of the network device, more resources are used for information transmission, which increases the flexibility of scheduling, and from the perspective of the terminal device, the increase in the power consumption of the terminal device caused by frequency modulation is avoided.
  • the network device indicates the association relationship through 2 bits.
  • the network device indicates the first association relationship in association relationships 1, 2, 3, and 4, or indicates the second association relationship in association relationships 1, 2, 3, and 5.
  • the frequency range of the first resource includes in frequency the frequency range of the first control resource set, and the frequency range of the first resource includes in frequency the frequency range of the first control resource set.
  • the network equipment has more resources for information transmission and can obtain the maximum scheduling flexibility. From the perspective of terminal equipment, the increase in power consumption of the terminal equipment caused by frequency modulation is avoided.
  • the network device indicates the association relationship through 3 bits.
  • the network device indicates the second association in associations 1, 2, 3, 4, and 5.
  • the frequency range of the first resource includes in frequency the frequency range of the first control resource set, and the frequency range of the first resource includes in frequency the frequency range of the first control resource set.
  • the network equipment has more resources for information transmission and can obtain the maximum scheduling flexibility. From the perspective of terminal equipment, the increase in power consumption of the terminal equipment caused by frequency modulation is avoided.
  • the first terminal device may determine the location of the first resource according to the second association relationship.
  • the first terminal device determines the location of the first resource from the locations of multiple candidate resources, which can also be understood as the terminal device determining the first resource from multiple candidate resources.
  • the network device can configure multiple candidate bandwidths for the first terminal device, and more resources can be used for downlink data transmission, thereby improving the flexibility of resource allocation and avoiding resource congestion.
  • the terminal device has multiple candidate bandwidths that can be used to transmit information, and the terminal device can determine the location of one of the first resources according to the rules, thereby improving the flexibility of the terminal device to transmit information.
  • the terminal equipment in the terminal equipment of the first type can be divided into multiple subtypes, the first terminal equipment belongs to one of the subtypes, the candidate resources corresponding to different subtypes are different, and the corresponding relationship can be predefined or
  • the network device is indicated by the third signaling. For example, the terminal equipment of the first type is divided into two subtypes, the terminal equipment of the subtype 1 corresponds to the candidate resource 1, and the terminal equipment of the subtype 2 corresponds to the candidate resource 2.
  • the positions of the M candidate resources are determined according to the positions of the first control resource set and the M offsets.
  • M offsets correspond to the M candidate resources.
  • the indices of the M candidate resources may be 0, 1, ..., M-1, and the indices of the M offsets may be 0, 1, ..., M-1.
  • the M candidate bandwidths include at least two second resources, and the sizes of the two second resources are the same and N are different.
  • the M candidate bandwidths include 3 second resources, the size of the second resource with an index of 1 is 5MHz or the number of RBs corresponding to 5MHz, the size of the second resource with an index of 2 is 20MHz or the number of RBs corresponding to 20MHz, and the index
  • the size of the second resource with an index of 3 is 20MHz or the number of RBs corresponding to 20MHz, the offset of the second resource with an index of 1 is N 1 , the offset of the second resource with an index of 2 is N 2 , and the index is 3
  • the offset of the second resource is N 3 , and N 2 is not equal to N 3 .
  • N 2 and N 3 can correspond to different frequency positions. From the network side, more resources can be used to transmit information, thereby improving the flexibility of resource allocation.
  • the first terminal device receives the second signaling indicated by the network device.
  • the second signaling indicates the value of M.
  • the size of each candidate resource in the M candidate resources is predefined, and the size of each candidate resource in the M candidate resources is equal to or smaller than the maximum channel bandwidth supported by the first terminal device.
  • the size of each candidate resource in the M candidate resources is 5MHz, or 10MHz, or 20MHz, or the number of RBs corresponding to 5MHz, or the number of RBs corresponding to 10MHz, or the number of RBs corresponding to 20MHz.
  • the second signaling indicates the value of M and the size of the M candidate resources.
  • the M offsets may be indicated by the first signaling.
  • the value of at least one of the M offsets is indicated by the first signaling, and the value of at least one of the M offsets is predefined.
  • the M offsets are 3 offsets, wherein 1 offset is indicated by the first signaling, and 2 offsets are predefined. In another possible way, or the M offsets are all predefined.
  • Candidate bandwidths of the same size may correspond to different offsets, and the positions of the candidate bandwidths are different, which facilitates more flexible resource allocation and reduces resource congestion.
  • the first terminal device receives a third signaling sent by the network, the third signaling instructs the first terminal device to determine the first resource among the M candidate resources, and the first terminal device controls the resource according to the first The position of the set and the offset corresponding to the first resource determine the position of the first resource used by the first terminal device.
  • the first terminal device determines the first resource among the M candidate resources according to a predefined rule, and the first terminal device determines the first resource according to the position of the first control resource set and the offset corresponding to the first resource amount to determine the location of the first resource of the first terminal device.
  • the positions of the M candidate resources may also be determined according to the positions of the first control resource set and the Y offsets.
  • the Y offsets correspond to the M candidate resources.
  • the indices of the M candidate resources may be 0, 1, ..., M-1, and the indices of the Y offsets may be 0, 1, ..., Y-1.
  • the M candidate resources include at least two candidate resources with different sizes but the same N, and may also include at least two candidate resources with different sizes but the same offset N.
  • the M candidate resources include 3 candidate resources whose index is 1, the size of these 3 resources is 5MHz or the number of RBs corresponding to 5MHz, the size of the candidate resource whose index is 2 is 20MHz or the number of RBs corresponding to 20MHz, and the index is The size of the candidate resource of 3 is 20MHz or the number of RBs corresponding to 20MHz, the offset of the candidate resource with index 1 is N 1 , the offset of the third bandwidth with index 2 is N 1 , and the offset of the third bandwidth with index 3 is N 1 .
  • the offset of the resource is N 2 , and N 1 is not equal to N 2 .
  • the first terminal device can transmit information through the candidate resource with index 1 or the candidate resource with index 2, and the candidate resource with smaller size can use In a scenario where the first terminal device needs to save power consumption, it is beneficial to reduce the power consumption of the first terminal device.
  • Candidate resources with different locations but the same size, or candidate resources with different sizes but the same location can be selected, which expands the selection range of the first resource, facilitates flexible allocation of resources, and reduces resource congestion.
  • the first terminal device receives the second signaling indicated by the network device.
  • the second signaling indicates the value of M.
  • the size of each candidate resource in the M candidate resources is predefined, and the size of each candidate resource in the M candidate resources is equal to or smaller than the maximum channel resource supported by the first terminal device.
  • the size of each candidate resource in the M candidate resources is 5MHz, or 10MHz, or 20MHz, or the number of RBs corresponding to 5MHz, or the number of RBs corresponding to 10MHz, or the number of RBs corresponding to 20MHz.
  • the second signaling indicates the value of M and the size of the M candidate resources.
  • At least one of the Y offsets corresponds to more than one candidate resource, that is, candidate bandwidths with different sizes may have the same position. For example, if one of the Y offsets corresponds to two candidate resources, the offsets of the two candidate resources are the same, and the size of the candidate resources may be different.
  • the value of the Y offsets is indicated by the first signaling.
  • the value of at least one of the Y offsets is indicated by the first signaling, and the value of at least one of the Y offsets is predefined.
  • the Y offsets are 3 offsets, wherein 1 offset is indicated by the first signaling, and 2 offsets are predefined. In another possible way, or the Y offsets are all predefined.
  • the value of N can be determined or indicated by the above method, and details are not repeated here.
  • the first terminal device receives third signaling indicated by the network, the third signaling indicates the first resource among the M candidate resources, and the first terminal device controls the resource set according to the position and The offset corresponding to the first resource determines the position of the first resource of the first terminal device.
  • the first terminal device determines the first resource among the M candidate resources according to a predefined rule, and the first terminal device determines the first resource according to the position of the first control resource set and the offset corresponding to the first resource amount to determine the location of the first resource.
  • the first signaling, the second signaling, and the third signaling may be different fields in the same signaling; or, the first signaling, the second signaling, and the third signaling may be different signaling.
  • a signaling may be SIB1, scheduling PDCCH of SIB1, scheduling PDCCH of Msg2, Msg2, scheduling PDCCH of Msg3, scheduling PDCCH of Msg4.
  • the second signaling may be SIB1, scheduling PDCCH of SIB1, scheduling PDCCH of Msg2, Msg2, scheduling PDCCH of Msg3, scheduling PDCCH of Msg4.
  • the third signaling may be SIB1, scheduling PDCCH of SIB1, scheduling PDCCH of Msg2, Msg2, scheduling PDCCH of Msg3, and scheduling PDCCH of Msg4.
  • the third signaling may indicate receiving the first resource of Msg2 and/or Msg4, and/or sending the first resource of Msg3.
  • the third signaling may indicate receiving the first resource of Msg4 and/or Msg4, and/or sending the first resource of Msg3.
  • at least two of the first signaling, the second signaling, and the third signaling are different fields in the same signaling, for example, the first signaling and the second signaling are SIB1, and the third signaling
  • the third signaling may indicate receiving the first resource of Msg4. This application does not limit this.
  • the network device since Msg4 is information dedicated to terminal devices, the network device will send Msg4 to each terminal device, which occupies more resources. Therefore, the network device instructs the terminal device to receive the Msg4 resource or resource location, which can avoid resource congestion.
  • the candidate bandwidth has the same meaning as the candidate resource.
  • the size of each candidate resource in the multiple candidate resources is greater than or equal to the size of the first control resource, or the frequency range of each candidate resource in the multiple candidate resources includes the first control resource.
  • the multiple candidate resources may be the initial DL BWP
  • the first control resource may be CORESET 0, as shown in (a) in FIG. 6
  • the multiple candidate resources may include the frequency range of the first control resource in the frequency range
  • the multiple candidate resources may include the position range corresponding to the frequency of the first control resource in the position range corresponding to the frequency.
  • the network device can configure multiple candidate bandwidths for the first terminal device, and more resources can be used for downlink data transmission, thereby improving the flexibility of resource allocation and avoiding resource congestion.
  • the terminal device has multiple candidate bandwidths that can be used to transmit information, and the terminal device can determine the location of one of the first resources according to the rules, thereby improving the flexibility of the terminal device to transmit information.
  • the first terminal device After determining the location of the first resource, the first terminal device receives downlink information through the first resource.
  • the first control resource may be CORESET 0, and the first resource may be the initial DL BWP.
  • CORESET 0 is included in the initial DL BWP.
  • the UE needs to receive in CORESET 0: PDCCH for scheduling SIB1, PDSCH for scheduling SIB1, PDCCH for scheduling SI, PDSCH for scheduling SI, PDCCH for scheduling Msg2, PDSCH for scheduling Msg2, and PDSCH for scheduling Msg3 PDCCH, which schedules the PDCCH of Msg4, carries the PDSCH of Msg4.
  • CORESET 0 occupies a lot of resources, which may lead to limited allocation of CORESET 0 resources or congestion. Especially when the number of UEs is large, the allocation of CORESET 0 resources is restricted or the usage is congested.
  • the downlink data is not limited to transmission in CORESET 0, but is transmitted in the initial DL BWP, more resources can be used for transmission of downlink data, which can reduce the resource occupation of CORESET 0 and reduce congestion. From the network side, more resources can be used for downlink data transmission, thereby improving the flexibility of resource allocation.
  • the downlink data may be one or more of system information, random access response Msg2, contention resolution message Msg4, and paging messages.
  • the UE still receives the control channel in CORESET 0.
  • downlink data may be received on the first resource, or downlink control information may be received on the first resource, or both downlink data and downlink control information may be received on the first resource.
  • the downlink control information may include one or more of control information for scheduling system information, random access response messages, contention resolution messages, and paging messages.
  • the downlink data may include one or more of PDSCH carrying system information block 1, PDSCH carrying system information, PDSCH carrying Msg2, and PDSCH carrying Msg4.
  • the downlink data and downlink control information are received in the first resource, where the first resource is the initial downlink BWP.
  • the first resource and the first control resource set do not have overlapping resources.
  • the downlink control information is received in the first control resource set, and the data is received in the second bandwidth, where the RB included in the second bandwidth is the first resource
  • the included RBs are excluding RBs included in the first control resource set, as shown in FIG. 7 , that is, the first resource and the first control resource set have an overlapping portion, and data is received in a non-overlapping portion.
  • the downlink control information is received in the first control resource set, and the data is received in the first resource or the second bandwidth.
  • the information received within the first resource or the second bandwidth may be determined by predefining the threshold value of the bandwidth of the first resource or according to the transmission content.
  • the downlink information takes data as an example, and the data may be received in the first resource or the second bandwidth by predefining the threshold value of the bandwidth of the first control resource set.
  • the first terminal device receives data in the first resource; when the bandwidth of the first control resource set is less than the threshold value, the first terminal device receives data in the second bandwidth .
  • the threshold value is 10 MHz or the number of RBs corresponding to 10 MHz.
  • the frequency range of the second bandwidth is small, which limits the resource allocation of data, so data is received in the first resource; when the bandwidth of the first control resource set is less than the threshold At the limit, the frequency range of the second bandwidth is larger, so data is received within the second bandwidth.
  • the network device It is determined by the transmission content that the downlink information is received within the first resource or the second bandwidth. For example, SIB1 and/or Msg2 are received in the first resource and Msg4 is received in the second bandwidth. Since Msg4 is dedicated information for terminal devices, the network device will send Msg4 to each terminal device, which occupies a lot of resources. Therefore, the network device sends Msg4 in the second bandwidth, and the first terminal device receives Msg4 in the second bandwidth, which can avoid The resource congestion of the first control resource set.
  • the frequency range for receiving downlink information on the first resource or the first control resource set may also be indicated by signaling.
  • the SIB1 indicates the resource range of the transmission after the SIB1, or the resource range of the current transmission is indicated in the downlink control information corresponding to the current transmission.
  • the downlink data is received in the first resource, and it is necessary to consider the resources occupied by the downlink information within the frequency range of the first resource.
  • the bandwidth of the first resource does not exceed the maximum channel bandwidth of the first terminal device.
  • the first row of the table is the subcarrier spacing of CORESET 0
  • the second row of the table corresponds to the bandwidth (number of RBs) of the maximum channel bandwidth of the first terminal equipment corresponding to different subcarrier intervals and the number of bits required for frequency resource allocation
  • the third row of the table corresponds to the subcarrier interval
  • the fourth row of the table is the maximum number of extra bits required in this embodiment
  • the calculation method of the extra required maximum number of bits can be the number of bits in the second row minus the bits in the third row number.
  • bits that need to be added are carried by using the available bits of DCI in different scrambling modes.
  • the DCI of different scrambling modes includes: DCI scrambled by P-RNTI; DCI scrambled by SI-RNTI; DCI scrambled by RA-RNTI; DCI scrambled by TC-RNTI.
  • P-RNTI scrambled DCI has 6 bits available; SI-RNTI scrambled DCI has 15 bits available; RA-RNTI scrambled DCI has 16 bits available; TC-RNTI scrambled The scrambled DCI has 2 bits available.
  • the downlink data resources can be allocated by using the available bits of the DCI in different scrambling modes and the predefined resource allocation granularity.
  • the predefined resource allocation granularity may be N RBs, where N is a positive integer.
  • the predefined resource allocation granularity may be determined according to the available bits and/or the maximum number of bits to be added.
  • the resource allocation granularity corresponding to the number of bits that need to be added at most 4 may be 4 RBs.
  • the embodiments of the present application can avoid frequent frequency tuning between uplink transmission and downlink reception, and/or avoid frequent frequency tuning between downlink reception and uplink transmission, increase available symbols for data transmission, improve resource utilization efficiency, and reduce UE implementation complexity, reducing the power consumption of the UE.
  • a network device can be configured with multiple DL/UL BWPs, and each DL/UL BWP includes CORESET 0. From the network side, more resources can be used for downlink/uplink transmission, thereby improving the flexibility of resource allocation.
  • Another embodiment of the present application proposes a method for transmitting information, as shown in FIG. 8
  • the first terminal device sends first uplink information in the first uplink bandwidth
  • the first terminal device receives the first downlink information in the first downlink bandwidth, and the sending of the first uplink information immediately precedes the reception of the first downlink information; immediately preceded means that the first downlink information is sent in the first downlink There is no other uplink and downlink information between the information and the first uplink information.
  • the last time unit for sending the first uplink information is the time unit n1, and the starting time unit for monitoring the first downlink information is the time unit m1.
  • the time unit n1 and the time unit The minimum interval between m1 is k time units, the k is greater than w, and the w is the minimum time unit n2 between the last time unit n2 for sending the second uplink information by the second terminal device and the starting time unit m2 for monitoring the second downlink information
  • the number of time units, and the transmission of the second uplink information immediately precedes the reception of the second downlink information, the m1, m2, n1, n2, k, w are all positive integers, and the first terminal device is the first terminal device.
  • One type of terminal equipment, the second terminal equipment is a second type of terminal equipment.
  • the frequency range corresponding to the frequency range of the first uplink bandwidth and the frequency range of the first downlink bandwidth in frequency exceeds the maximum channel bandwidth of the UE.
  • the first terminal device may send uplink information through UL BWP, and may receive downlink information through CORESET a, for example, CORESET a may be CORESET 0.
  • the sending of the first uplink information immediately precedes the reception of the first downlink information means that no other uplink information is sent between the sending of the first uplink information and the reception of the first downlink information, and there is no other downlink information.
  • the transmission of the second uplink information immediately precedes the reception of the second downlink information means: between the reception of the second downlink information and the transmission of the second uplink information, no other uplink information is sent, and there is no other downlink information. reception.
  • the first downlink information is the first information exchanged between the network device and the first terminal device after the first uplink information; similarly, the second uplink information is the interaction between the network device and the first terminal device after the second downlink information the first information.
  • the last time unit refers to the last time unit in the time unit occupied by the sending of uplink information, or the last time unit in the time unit occupied by the reception of the downlink information.
  • the starting time unit refers to: the first time unit in the time unit occupied by the sending of the uplink information, or the first time unit in the time unit occupied by the reception of the downlink information.
  • the first uplink bandwidth can be understood as UL BWP
  • the first downlink bandwidth can be understood as DL BWP.
  • the positional relationship of UL/DL BWP may be: UL BWP and DL BWP include CORESET 0, that is, the range of UL BWP in the frequency domain completely covers the range of CORESET 0 in the frequency domain.
  • the first terminal device After the first terminal device sends the uplink information in the UL BWP, if the next transmission is that the first terminal device receives the downlink information in CORESET 0, the first terminal device sends the uplink information in the UL BWP after at least the first time interval , the first terminal device receives downlink information at CORESET 0.
  • the frequency range corresponding to the frequency range of CORESET 0 and the frequency range of UL BWP in frequency exceeds the maximum channel bandwidth of the first terminal device.
  • the time unit may be any one of a subframe, a radio frame, a time slot, a mini-slot, a symbol, a microsecond, a millisecond, or a second.
  • the time unit is a symbol
  • the time unit n is the last symbol n of the first uplink information
  • the time unit m is the first first symbol m of the first downlink information.
  • the minimum interval of k time units may be k subframes, k radio frames, k slots, k minislots, k symbols, k microseconds, k milliseconds, k seconds.
  • the q time units may be q subframes, q radio frames, q slots, q minislots, q symbols, q microseconds, q milliseconds, q seconds.
  • the first uplink information may be a random access sequence
  • the first downlink information may be a DCI for scheduling a random access response.
  • the last time unit for sending the random access sequence is the time unit n1, that is, the last symbol of the random access opportunity where the random access sequence is sent is the time unit n1.
  • the starting time unit for monitoring the first downlink information is the time unit m1, or the starting symbol position of the DCI for monitoring the scheduling random access response is the time unit m1, or the starting symbol position of the RAR window configured by the high layer is the time unit m1 .
  • the interval between the time unit n1 and the time unit m1 is at least k time units, and k is greater than w.
  • the starting time unit for monitoring the first downlink information is the time unit for starting to detect the DCI scheduling the random access response, and the DCI may not be successfully detected at this time.
  • w is 1 symbol, and the time length of the k time units is greater than 1 symbol.
  • k is 2 symbols added to w, that is, k time units are 3 symbols.
  • k is the number of time units corresponding to adding the first time interval in different subcarrier intervals on the basis of w.
  • the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • 2 symbols, or the first time interval is used for frequency modulation of the first terminal device from the first uplink bandwidth to the first downlink bandwidth, where frequency modulation refers to adjusting the working frequency of the first terminal device; 2 symbols, or the first time interval.
  • a time interval can ensure that the first terminal device successfully receives the first downlink information in the first downlink bandwidth, and avoids power consumption caused by failure to receive the first downlink information.
  • k is the number of time units corresponding to the first time interval at different subcarrier intervals. For example, when the first time interval is 140 microseconds and the subcarrier interval is 15KHz, the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • the first time interval is used by the first terminal device to perform frequency modulation from the first uplink bandwidth to the first downlink bandwidth. The first time interval can ensure that the first terminal device successfully receives the first downlink information in the first downlink bandwidth, and avoids the Power consumption caused by failure to receive downlink information.
  • k is the number of time units corresponding to the first time interval, and the first time interval includes q time units.
  • q time units are 2 symbols
  • the first time interval is 210 microseconds
  • 210 microseconds includes q time units.
  • the q time units are extra processing time caused by switching from the first uplink bandwidth to the first downlink bandwidth
  • the first time interval is defined to include q time units.
  • the first time interval is used for the first terminal device to frequency modulate from the first uplink bandwidth to the first downlink bandwidth; the first time interval can ensure that the first terminal device successfully receives the first downlink information in the first downlink bandwidth, and avoids Power consumption caused by failure to receive downlink information.
  • q time units are used for the processing time required for frequency modulation, and the first time interval includes q time units to satisfy the processing time required for frequency modulation, one of the frequency modulation time, or to satisfy the processing time required for frequency modulation and sum of FM times.
  • k is the sum of the number of time units corresponding to the first time interval at different subcarrier intervals and q time units.
  • the first time interval is used for the first terminal device to frequency modulate from the first uplink bandwidth to the first downlink bandwidth; the first time interval can ensure that the first terminal device successfully receives the first downlink information in the first downlink bandwidth, and avoids Power consumption caused by failure to receive downlink information.
  • the q time units are used for the processing time required for frequency modulation, and the frequency modulation time and processing time required for frequency modulation are satisfied by the sum of the first time interval and the q time units.
  • the first terminal device can not successfully receive the DCI of the scheduled random access response due to frequency modulation, causing the random access process to fail and the power consumption caused by the first terminal device to re-initiate the random access. loss.
  • the first uplink information may be uplink data scheduled by the uplink grant carried in the random access response message, that is, Msg3.
  • Msg3 may be the first transmission of Msg3, or retransmission (retransmission performed when the first transmission fails), or repeated transmission (multiple transmissions with the same content).
  • the first downlink information may be scheduling information DCI in response to the contention resolution message of Msg3.
  • the last time unit in which Msg3 is sent is time unit n1, or the last symbol in which Msg3 is sent is time unit n1, or the last symbol in the PUSCH carrying Msg3 is time unit n1.
  • the starting time unit for monitoring the first downlink information is the time unit m1, or the time unit m1 when the contention resolution timer is started.
  • the interval between the time unit n1 and the time unit m1 is at least k time units, and k is greater than w.
  • the starting time unit for monitoring the first downlink information is the time unit for starting to detect the DCI of the scheduling contention resolution message, and the DCI may not be successfully detected at this time.
  • w is 0 symbols
  • the time length of k time units is greater than 0 symbols
  • k is an increase of 2 symbols on the basis of w, that is, k time units are 2 symbols.
  • k is the number of time units corresponding to the first time interval at different subcarrier intervals. For example, when the first time interval is 140 microseconds and the subcarrier interval is 15KHz, the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • k is the number of time units corresponding to adding the first time interval at different subcarrier intervals on the basis of w.
  • the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • 2 symbols, or the first time interval is used for the first terminal device to frequency-modulate from the first uplink bandwidth to the first downlink bandwidth; 2 symbols, or the first time interval, can ensure that the first terminal device succeeds in the first downlink bandwidth
  • the first downlink information is received to avoid power consumption caused by re-initiation of the access process due to failure to receive the first downlink information.
  • k is the number of time units corresponding to the first time interval, and the first time interval includes q time units.
  • q time units are 2 symbols
  • the first time interval is 210 microseconds
  • 210 microseconds includes q time units.
  • the q time units are extra processing time caused by switching from the first uplink bandwidth to the first downlink bandwidth
  • the first time interval is defined to include q time units.
  • the first time interval is used for the first terminal device to frequency modulate from the first uplink bandwidth to the first downlink bandwidth; the first time interval can ensure that the first terminal device successfully receives the first downlink information in the first downlink bandwidth, and avoids The power consumption caused by the re-initiation of the access process caused by the failure to receive downlink information.
  • q time units are used for the processing time required for frequency modulation, and the first time interval includes q time units to satisfy the processing time required for frequency modulation, one of the frequency modulation time, or to satisfy the processing time required for frequency modulation and sum of FM times.
  • k is the sum of the number of time units corresponding to the first time interval at different subcarrier intervals and q time units. For example, when the first time interval is 140 microseconds and the subcarrier interval is 15KHz, the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • the q time units are 2 symbols.
  • the first time interval is used for the first terminal device to frequency modulate from the first uplink bandwidth to the first downlink bandwidth; the first time interval can ensure that the first terminal device successfully receives the first downlink information in the first downlink bandwidth, and avoids The power consumption caused by the re-initiation of the access process caused by the failure to receive downlink information.
  • the q time units are used for the processing time required for frequency modulation, and the frequency modulation time and processing time required for frequency modulation are satisfied by the sum of the first time interval and the q time units.
  • the first terminal device can not successfully receive the scheduling information DCI of the contention resolution message due to frequency modulation, causing the random access process to fail and the power consumption caused by the first terminal device to re-initiate the random access. loss.
  • the first time interval is predefined, or the first time interval is reported by the capability of the terminal device, or the network device indicates one value among multiple first time intervals reported by the terminal capability.
  • the first time interval is the same as the value of an element in the third set; the third set includes at least one of ⁇ 35 microseconds, 140 microseconds, 210 microseconds, 300 microseconds, 500 microseconds ⁇ A value, or the third set includes ⁇ the number of symbols corresponding to 35 microseconds, the number of symbols corresponding to 140 microseconds, the number of symbols corresponding to 210 microseconds, the number of symbols corresponding to 300 microseconds, the number of symbols corresponding to 500 microseconds number ⁇ at least one value.
  • the first time interval may be bound to the first terminal device, and different terminal devices in the first type of terminal device may predefine different values of the first time interval.
  • the first terminal device may report two values, and the network device indicates the used first time interval through signaling.
  • the q time units may be predefined positive integers, for example, q may be 2.
  • the corresponding time interval may also be set between adjacent receiving downlink information and transmitting uplink information, as shown in FIG. 12 .
  • the first terminal device receives the second downlink information in the first downlink bandwidth.
  • the first terminal device sends the second uplink information in the first uplink bandwidth, and the reception of the second downlink information immediately precedes the transmission of the second uplink information. Immediately prior means that there is no other uplink or downlink information between the second downlink information and the first uplink information.
  • the second downlink information may be the uplink grant carried in the random access response message
  • the second uplink information may be uplink data scheduled by the uplink grant carried in the random access response message, that is, Msg3.
  • the last time unit for receiving the uplink grant carried in the random access response message is the time unit s1, that is, the last symbol of receiving the PDSCH carrying the random access response is the time unit s1.
  • the starting time unit for sending the Msg3 is the time unit t1, or the first symbol of the PUSCH carrying the Msg3 is sent as the time unit t1.
  • the interval between time unit s1 and time unit t1 is at least r time units, and r is greater than p.
  • NT ,1 is the time length corresponding to the PDSCH processing time
  • NT ,2 is the time length corresponding to the PUSCH preparation time.
  • the PDSCH processing time and the PUSCH preparation time may be the processing time corresponding to the processing capability 1 of the terminal device or the processing capability 2 of the terminal device.
  • the time length of the r time units is greater than p.
  • the r time units are 2 symbols added to p, or a time length corresponding to 2 symbols.
  • 2 symbols are used for the first terminal equipment to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; 2 symbols can ensure that the first terminal equipment successfully receives the second uplink information in the first uplink bandwidth, and avoids due to the second uplink information being received.
  • r is adding the first time interval on the basis of p, or increasing the number of time units corresponding to the first time interval at different subcarrier intervals. For example, when the first time interval is 140 microseconds and the subcarrier interval is 15KHz, the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • the first time interval is used for frequency modulation of the first terminal device from the first downlink bandwidth to the first uplink bandwidth. The first time interval can ensure that the first terminal device successfully receives the second uplink information in the first uplink bandwidth, and avoids Power consumption caused by re-initiation of the access procedure caused by the failure to receive information.
  • r is greater than p by a number of time units corresponding to the first time interval, and the first time interval includes q time units.
  • q time units are 2 symbols
  • the first time interval is 210 microseconds
  • 210 microseconds includes q time units.
  • the q time units are extra processing time caused by switching from the first uplink bandwidth to the first downlink bandwidth
  • the first time interval is defined to include q time units.
  • the first time interval is used for the first terminal device to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; the first time interval can ensure that the first terminal device successfully receives the second uplink information in the first uplink bandwidth, and avoids Power consumption caused by re-initiation of the access procedure caused by the failure to receive information.
  • q time units are used for the processing time required for frequency modulation, and the first time interval includes q time units to satisfy the processing time required for frequency modulation, one of the frequency modulation time, or to satisfy the processing time required for frequency modulation and sum of FM times.
  • r is greater than p by the sum of the number of time units corresponding to the first time interval at different subcarrier intervals and the q time units. For example, when the first time interval is 140 microseconds and the subcarrier interval is 15KHz, the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • the q time units are 2 symbols.
  • the first time interval is used for the first terminal device to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; the first time interval can ensure that the first terminal device successfully receives the second uplink information in the first uplink bandwidth, and avoids Power consumption caused by re-initiation of the access procedure caused by the failure to receive information.
  • the q time units are used for the processing time required for frequency modulation, and the frequency modulation time and processing time required for frequency modulation are satisfied by the sum of the first time interval and the q time units.
  • the second downlink information may be the first downlink control channel
  • the second uplink information may be uplink data scheduled by the downlink control information, such as retransmission of Msg3.
  • the last time unit for receiving the first downlink control channel is the time unit s1, that is, the last symbol of the first downlink control channel is the time unit s1.
  • the starting time unit for sending the retransmission of Msg3 is time unit t1, or the first symbol of sending the PUSCH carrying the retransmission of Msg3 is time unit t1.
  • the interval between time unit s1 and time unit t1 is at least r time units, and r is greater than p.
  • p N2, where N2 is the number of symbols required for the PUSCH preparation time.
  • the PUSCH preparation time may be the processing time corresponding to the processing capability 1 of the first terminal device or the processing capability 2 of the first terminal device.
  • the time length of the r time units is greater than p.
  • the r time units are 2 symbols added to p, or a time length corresponding to 2 symbols.
  • 2 symbols are used for the first terminal equipment to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; 2 symbols can ensure that the first terminal equipment successfully receives the second uplink information in the first uplink bandwidth, and avoids due to the second uplink information being received.
  • the r time units are the addition of the first time interval on the basis of p, or the increase of the number of time units corresponding to the first time interval at different subcarrier intervals.
  • the first time interval is 140 microseconds and the subcarrier interval is 15KHz
  • the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • the first time interval is used for the first terminal device to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; the first time interval can ensure that the first terminal device successfully receives the second uplink information in the first uplink bandwidth, and avoids Power consumption caused by re-initiation of the access procedure caused by the failure to receive information.
  • r is greater than p by a number of time units corresponding to the first time interval, and the first time interval includes q time units.
  • q time units are 2 symbols
  • the first time interval is 210 microseconds
  • 210 microseconds includes q time units.
  • the q time units are extra processing time caused by switching from the first uplink bandwidth to the first downlink bandwidth
  • the first time interval is defined to include q time units.
  • the first time interval is used for the first terminal device to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; the first time interval can ensure that the first terminal device successfully receives the second uplink information in the first uplink bandwidth, and avoids Power consumption caused by re-initiation of the access procedure caused by the failure to receive information.
  • q time units are used for the processing time required for frequency modulation, and the first time interval includes q time units to satisfy the processing time required for frequency modulation, one of the frequency modulation time, or to satisfy the processing time required for frequency modulation and sum of FM times.
  • r is greater than p by the sum of the number of time units corresponding to the first time interval at different subcarrier intervals and the q time units. For example, when the first time interval is 140 microseconds and the subcarrier interval is 15KHz, the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • the q time units are 2 symbols.
  • the first time interval is used for the first terminal device to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; the first time interval can ensure that the first terminal device successfully receives the second uplink information in the first uplink bandwidth, and avoids Power consumption caused by re-initiation of the access procedure caused by the failure to receive information.
  • the q time units are used for the processing time required for frequency modulation, and the frequency modulation time and processing time required for frequency modulation are satisfied by the sum of the first time interval and the q time units.
  • the second downlink information may be a contention resolution message
  • the second uplink information may be HARQ feedback corresponding to the contention resolution message.
  • the last time unit for receiving the contention resolution message is the time unit s1, that is, the last symbol of the PDSCH carrying the contention resolution message is the time unit s1.
  • the first symbol in which the PUCCH carrying HARQ feedback is sent is time unit t1.
  • the interval between time unit s1 and time unit t1 is at least r time units, and r is greater than p.
  • p NT ,1 +0.5ms, where NT ,1 is the time length corresponding to the PDSCH processing time.
  • the PUSCH preparation time may be the processing time corresponding to the processing capability 1 of the terminal device or the processing capability 2 of the terminal device.
  • the time length of the r time units is greater than p.
  • the r time units are 2 symbols added to p, or a time length corresponding to 2 symbols.
  • 2 symbols are used for the first terminal equipment to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; 2 symbols can ensure that the first terminal equipment successfully receives the second uplink information in the first uplink bandwidth, and avoids due to the second uplink information being received.
  • r is adding the first time interval on the basis of p, or increasing the number of time units corresponding to the first time interval at different subcarrier intervals. For example, when the first time interval is 140 microseconds and the subcarrier interval is 15KHz, the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • the first time interval is used for the first terminal device to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; the first time interval can ensure that the first terminal device successfully receives the second uplink information in the first uplink bandwidth, and avoids Power consumption caused by re-initiation of the access procedure caused by the failure to receive information.
  • r is the number of time units corresponding to the first time interval added on the basis of p, and the first time interval includes q time units.
  • q time units are 2 symbols
  • the first time interval is 210 microseconds
  • 210 microseconds includes q time units.
  • the q time units are extra processing time caused by switching from the first uplink bandwidth to the first downlink bandwidth
  • the first time interval is defined to include q time units.
  • the first time interval is used for the first terminal device to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; the first time interval can ensure that the first terminal device successfully receives the second uplink information in the first uplink bandwidth, and avoids Power consumption caused by re-initiation of the access procedure caused by the failure to receive information.
  • q time units are used for the processing time required for frequency modulation, and the first time interval includes q time units to satisfy the processing time required for frequency modulation, one of the frequency modulation time, or to satisfy the processing time required for frequency modulation and sum of FM times.
  • r is greater than p by the sum of the number of time units corresponding to the first time interval at different subcarrier intervals and the q time units. For example, when the first time interval is 140 microseconds and the subcarrier interval is 15KHz, the number of symbols corresponding to 140 microseconds is 2 symbols; for example, when the subcarrier interval is 30KHz, the number of symbols corresponding to 140 microseconds is 4 symbols .
  • the q time units are 2 symbols.
  • the first time interval is used for the first terminal device to frequency modulate from the first downlink bandwidth to the first uplink bandwidth; the first time interval can ensure that the first terminal device successfully receives the second uplink information in the first uplink bandwidth, and avoids Power consumption caused by re-initiation of the access procedure caused by the failure to receive information.
  • the q time units are used for the processing time required for frequency modulation, and the frequency modulation time and processing time required for frequency modulation are satisfied by the sum of the first time interval and the q time units.
  • the first time interval may be predefined, or the first time interval may be reported through the capability of the terminal device, or the network device indicates a value among multiple first time intervals for reporting the capability of the terminal .
  • the first time interval is the same as the value of an element in the third set; the third set includes at least one of ⁇ 35 microseconds, 140 microseconds, 210 microseconds, 300 microseconds, 500 microseconds ⁇ A value, or the third set includes ⁇ number of symbols corresponding to 35 microseconds, number of symbols corresponding to 140 microseconds, number of symbols corresponding to 210 microseconds, number of symbols corresponding to 300 microseconds, number of symbols corresponding to 500 microseconds number ⁇ at least one value.
  • the first time interval may be bound to the first terminal device, and different terminal devices in the first type of terminal device may predefine different values of the first time interval.
  • the first terminal device may report two values, and the network device indicates the used first time interval through signaling.
  • the q time units may be predefined positive integers, eg, q is 2.
  • the network device may indicate the first time interval to the terminal device, or indicate an additional time interval, and the first time interval may be the sum of w and the additional time interval.
  • the network device may also indicate a specific value of the first time interval or the additional time interval, or may indicate a selectable value of the time interval or the additional time interval, which is not limited in this application.
  • first time interval of the first terminal device or the optional range of the first time interval, or the additional time interval or the optional range of the additional time interval may also be predefined, which is not limited in this application.
  • each handover has a certain time interval, and each time interval may be the first time interval, or may be different time intervals, which are not limited in this application.
  • This embodiment ensures that the first terminal device can successfully receive downlink information and send uplink information by adding switching time in the protocol, so as to ensure the successful completion of the initial access process, which can save UE energy consumption to a certain extent.
  • the network device or the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 1300 for implementing the functions of the network device or the terminal device in the above method.
  • the apparatus may be a software module or a system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1300 may include: a processing unit 1310 and a communication unit 1320 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively configured to perform the sending and receiving steps of the network device or the terminal device in the above method embodiments.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiver, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the communication unit 1320 may be regarded as a receiving unit, and the device for implementing the transmitting function in the communication unit 1320 may be regarded as a transmitting unit, that is, the communication unit 1320 includes a receiving unit and a transmitting unit.
  • a communication unit may also sometimes be referred to as a transceiver, transceiver, or interface circuit, or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • a processing unit configured to determine the resource for transmitting information according to the downlink information of the network device or according to the predefined
  • the communication unit is used for sending and receiving information.
  • a processing unit that configures resources or determines resources according to a predefined definition.
  • the communication unit is used to send and receive information.
  • processing unit 1310 and the communication unit 1320 may also perform other functions.
  • processing unit 1310 and the communication unit 1320 may also perform other functions.
  • FIG. 14 shows an apparatus 1400 provided in this embodiment of the present application.
  • the apparatus shown in FIG. 14 may be a hardware circuit implementation of the apparatus shown in FIG. 13 .
  • the communication apparatus can be applied to the flow chart shown above to perform the functions of the terminal device or the network device in the above method embodiments.
  • FIG. 14 only shows the main components of the communication device.
  • the communication device 1400 includes a processor 1410 and an interface circuit 1420 .
  • the processor 1410 and the interface circuit 1420 are coupled to each other.
  • the interface circuit 1420 can be a transceiver or an input-output interface.
  • the communication apparatus 1400 may further include a memory 1430 for storing instructions executed by the processor 1410 or input data required by the processor 1410 to execute the instructions or data generated after the processor 1410 executes the instructions.
  • the processor 1410 is used to implement the functions of the above-mentioned processing unit 1310
  • the interface circuit 1420 is used to implement the functions of the above-mentioned communication unit 1320 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the processor may be a random access memory (Random Access Memory, RAM), a flash memory, a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable memory
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Programmable ROM
  • EEPROM Electrically erasable programmable read-only memory
  • registers hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信息的方法和装置,该传输信息的方法包括:第一终端设备确定用于传输信息的第一资源,以使第一资源与第一控制资源集在频域上对应的总频率范围小于或等于第一终端设备支持的最大信道带宽;第一终端设备在第一资源传输信息,解决了通信设备在接入网络的过程中工作频率频繁切换的问题,有效节省了通信设备的功耗,提高了信息传输的灵活性。

Description

一种传输信息的方法及装置
本申请要求于2021年03月08日提交中国专利局、申请号为202110251248.5、申请名称为“一种传输信息的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域。尤其涉及一种传输信息的方法及装置。
背景技术
对于没有能力同时进行下行接收和上行传输的通信设备在接入网络设备的过程中,接收下行信息的工作频率和发送上行信息的工作频率不同,导致通信设备的业务从上行向下行切换,或者,从下行向上行切换时,中心频点需要随之进行切换,通信设备的工作频率的频繁切换造成了通信设备巨大的功耗,而且在参与通信的设备的数量较多的情况下,可能导致资源拥塞。
发明内容
本申请提供一种传输信息的方法及装置,可以解决通信设备在接入网络设备的过程中工作频率频繁切换的问题,节省了通信设备的功耗。
第一方面,提供了一种传输信息的方法,该方法可以包括:确定第一控制资源集的位置,根据所述第一控制资源集的位置和第一偏移量确定所述第一带宽的位置,其中所述第一带宽的大小等于或小于第一终端设备支持的最大信道带宽;所述第一偏移量为N个资源块RB,所述第一偏移量为第一控制资源集的第一位置与第一带宽的第二位置之间的间隔,所述N是预定义的整数,或者所述N是第一信令指示的值;在所述第一带宽内接收下行信息,和/或在所述第一带宽内发送上行信息。
该方案通过通过第一控制资源集的位置和第一偏移量确定第一带宽的位置,即第一带宽的位置与第一控制资源集的位置相关,避免了终端设备频率频繁切换问题,有利于降低终端设备的功耗。
结合第一方面,在第一方面的某些实现方式中,所述第一控制资源集的频率资源和所述第一带宽的频率资源在频率上对应的总频率范围小于等于终端设备支持的最大带宽。
应理解,上述频率资源也可以理解为频域资源。
结合第一方面,在第一方面的某些实现方式中,可以根据所述第一控制资源集的位置和M个偏移量确定M个候选带宽的位置,所述M个偏移量包括所述第一偏移量,所述M个偏移量与所述M个候选带宽对应;从所述M个候选带宽的位置中确定所述第一带宽的位置,其中,所述M是大于1的正整数;或者,根据所述第一控制资源集的位置和Y个偏移量确定M个候选带宽的位置,所述M个偏移量包括所述第一偏移量,所述Y个偏移 量与所述M个候选带宽对应,其中Y小于M,从所述M个候选带宽的位置中确定所述第一带宽的位置,其中,所述M是大于1的正整数,所述Y是正整数。
应理解,第一信令可以直接指示第一带宽,或者第一信令用于指示第一偏移量,也可以同时指示第一控制资源集的位置和第一偏移量,也可以指示多个候选带宽的位置,也可以指示第一控制资源集的位置和多个偏移量,偏移量的个数可以小于候选带宽个数,即不同带宽对应用一个偏移量,偏移量的个数也可以与候选带宽个数相同,即带宽与偏移量一一对应。
应理解,上述指示内容也可以预定义。
该技术方案通过多个候选带宽的位置确定第一带宽的位置,提供了确定第一带宽的位置的灵活性。
结合第一方面,在第一方面的某些实现方式中,所述M个候选带宽包括至少两个第二带宽,所述至少两个第二带宽的大小相同且N不同,或者,所述M个候选带宽包括至少两个第三带宽,所述至少两个第三带宽的大小不同且N相同。
应理解,多个候选带宽中可以包括至少两个偏移量不同的带宽,也可以包括至少两个大小不同的带宽。
该方案确定了多个候选带宽并非完全重叠,并且位置相同的带宽的大小可以不同,大小相同的带宽的位置可以不同,扩大了第一带宽的选择范围。
结合第一方面,在第一方面的某些实现方式中,所述M的值可以是所述第二信令指示的,所述M个偏移量的值是所述第一信令指示的,或者,所述M个偏移量中至少有一个偏移量的值是所述第一信令指示的,所述M个偏移量中至少有一个偏移量的值是预定义的,或者,所述M个偏移量是预定义的,第二信令也可以指示M个候选带宽的大小。
M的取值和偏移量可以是指示的,也可以是预定义的。
结合第一方面,在第一方面的某些实现方式中,可以接收第三信令,所述第三信令用于指示所述M个候选带宽中的所述第一带宽,或者无需其他信令,第一终端设备根据预定义规则从所述M个候选带宽中确定所述第一带宽。根据所述第一控制资源集的位置和所述第一带宽对应的N值,确定所述第一带宽的位置,或者根据所述第一控制资源集的位置和所述第一带宽对应的N值,确定所述第一带宽的位置。
结合第一方面,在第一方面的某些实现方式中,第一偏移量与第一控制资源集的大小、所述第一带宽的大小、所述第一终端设备支持的最大信道带宽中的至少一种相关。
结合第一方面,在第一方面的某些实现方式中,所述第一偏移量的取值可以是以下取值中的一个:0,X-L,(X-L)/2,-L,X,其中所述L是所述第一带宽包含的RB数,所述X是所述第一控制资源集包含的RB数。
应理解,第一偏移量的取值范围可以以集合的形式体现,例如{0,X-L}或{0,X-L,(X-L)/2}或{0,X-L,(X-L)/2,-L}或{0,X-L,(X-L)/2,-L,X}。
应理解,第一偏移量的取值也可以是上述数值之外的可以取到的值,比如,对应不同的子载波间隔,相同带宽的RB数对应不同。
结合第一方面,在第一方面的某些实现方式中,未建立无线资源控制RRC连接时,在所述第一带宽内接收下行数据和下行控制信息,其中所述第一带宽是初始下行BWP;或者,没有建立无线资源控制RRC连接时,在所述第一控制资源集内接收下行控制信息, 在第二带宽内接收第一信息,其中所述第二带宽包括的RB是所述第一带宽包括的RB中除去所述第一控制资源集包括的RB外的RB,所述第一信息是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
该方案提出将下行控制信息和下行数据信息都在初始下行BWP中接收,或者,将下行控制信息在第一控制资源集接收,将下行数据在初始下行BWP与第一控制资源集不重叠的部分接收,解决了资源拥塞的问题,提高了信息传输的灵活性。
结合第一方面,在第一方面的某些实现方式中,未建立RRC连接时,在所述第一控制资源集内接收下行控制信息,所述下行控制信息包括频率域资源分配字段,所述频率域资源分配字段的比特大小是ceil(L(L+1)/2)比特,其中ceil是向上取整,L是所述第一带宽包含的RB数,在所述第一带宽内接收第一信息,其中,所述第一信息可以是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
该方案给出了频率资源的分配方式,并给出了在第一带宽中接收的信息的几种可能,进一步提高了信息传输的灵活性。
结合第一方面,在第一方面的某些实现方式中,所述M个候选带宽中的每个候选带宽都包括所述第一控制资源集。
第二方面,提供了一种信息传输的方法,该方法可以包括:配置第一控制资源集,所述第一控制资源集用于第一终端设备接收下行信息;在第一带宽内向第一终端设备发送下行信息和/或在所述第一带宽内接收来自所述第一终端设备的上行信息,所述第一带宽与所述第一控制资源集的位置和第一偏移量相关,其中所述第一带宽的大小等于或小于第一终端设备支持的最大信道带宽,所述第一偏移量为N个资源块RB,所述第一偏移量为第一控制资源集的第一位置与第一带宽的第二位置之间的间隔,所述N是整数。
该方案通过配置第一控制资源集和第一带宽,在第一带宽内传输信息,解决了第一终端设备接入网络设备的过程中工作频率频繁切换的问题,节省了通信设备的功耗。
结合第二方面,在第二方面的某些实现方式中,所述第一控制资源集的频域资源和所述第一带宽的频率资源在频域上对应的总频域范围小于等于终端设备支持的最大带宽。
应理解,上述频域资源也可以理解为频率资源。
结合第二方面,在第二方面的某些实现方式中,可以向第一终端设备发送第一信令,所述第一信令用于指示第一偏移量。
结合第二方面,在第二方面的某些实现方式中,所述第一信令可以用于指示M个偏移量,所述M个偏移量包括所述第一偏移量,或者所述第一信令可以用于指示所述M个偏移量中的至少一个偏移量,所述M个偏移量与M个候选带宽对应,或者,所述第一信令用于指示Y个偏移量,所述Y个偏移量包括所述第一偏移量,或者所述第一信令用于指示所述Y个偏移量中的至少一个偏移量,所述Y个偏移量与所述M个候选带宽对应。
结合第二方面,在第二方面的某些实现方式中,所述M个候选带宽可以包括至少两个第二带宽,所述两个第二带宽的大小相同且N不同,或者,所述M个候选带宽包括至少两个第三带宽,所述两个第三带宽的大小不同且N相同。
应理解,多个候选带宽中可以包括至少两个偏移量不同的带宽,也可以包括至少两个大小不同的带宽。
应理解,第一信令可以直接指示第一带宽,或者第一信令用于指示第一偏移量,也可 以同时指示第一控制资源集的位置和第一偏移量,也可以指示多个候选带宽的位置,也可以指示第一控制资源集的位置和多个偏移量,偏移量的个数可以小于候选带宽个数,即不同带宽对应用一个偏移量,偏移量的个数也可以与候选带宽个数相同,即带宽与偏移量一一对应。
应理解,上述指示的内容也可以预定义。
该技术方案通过多个候选带宽位置确定第一带宽位置,提供了确定第一带宽位置的灵活性,提供了多个候选带宽并非完全重叠,并且位置相同的带宽大小可以不同,大小相同的带宽位置可以不同,扩大了第一带宽的选择范围。
结合第二方面,在第二方面的某些实现方式中,可以发送第二信令,所述第二信令可以用于指示所述M的值。第二信令也可以指示M个候选带宽的大小。
应理解,所述M或者所述F的值可以通过信令指示,也可以预定义。
结合第二方面,在第二方面的某些实现方式中,还可以发送第三信令,所述第三信令可以用于指示所述M个候选带宽中的所述第一带宽。
结合第二方面,在第二方面的某些实现方式中,第一偏移量与第一控制资源集的大小、所述第一带宽的大小、所述第一终端设备支持的最大信道带宽中的至少一种相关。
结合第二方面,在第二方面的某些实现方式中,所述第一偏移量的取值可以是以下取值中的一个:0,X-L,(X-L)/2,-L,X,其中所述L是所述第一带宽包含的RB数,所述X是所述第一控制资源集包含的RB数。
应理解,第一偏移量的取值范围可以以集合的形式体现,例如{0,X-L}或{0,X-L,(X-L)/2}或{0,X-L,(X-L)/2,-L}或{0,X-L,(X-L)/2,-L,X}。
应理解,第一偏移量的取值也可以是上述数值之外的可以取到的值,比如,对应不同的子载波间隔,相同带宽的RB数对应不同。
该方案提供了确定第一偏移量的参考量,以及具体的部分取值,提高了确定第一带宽的简易性。
结合第二方面,在第二方面的某些实现方式中,未建立无线资源控制RRC连接时,可以在所述第一带宽内发送下行数据和下行控制信息,其中所述第一带宽是初始下行BWP;或,没有建立无线资源控制RRC连接时,可以在所述第一控制资源集内发送下行控制信息,在第二带宽内接收第一信息,其中所述第二带宽包括的RB是所述第一带宽包括的RB中除去所述第一控制资源集包括的RB外的RB,所述第一信息可以是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
该方案提出将下行控制信息和下行数据信息都在初始下行BWP中接收,或者,将下行控制信息在第一控制资源集接收,将下行数据在初始下行BWP与第一控制资源集不重叠的部分接收,解决了资源拥塞的问题,提高了信息传输的灵活性。
结合第二方面,在第二方面的某些实现方式中,未建立RRC连接时,可以在所述第一控制资源集内发送下行控制信息,所述下行控制信息可以包括频率域资源分配字段,所述频率域资源分配字段的比特大小是ceil(L(L+1)/2)比特,其中ceil是向上取整,L是所述第一带宽包含的RB数;可以在所述第一带宽内发送第一信息,其中,所述第一信息可以是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
该方案给出了频率资源的分配方式,并给出了在第一带宽中接收的信息的几种可能, 进一步提高了信息传输的灵活性。
结合第二方面,在第二方面的某些实现方式中,所述M个候选带宽中的每个候选带宽都包括所述第一控制资源集。
第三方面,提供了一种通信装置,该装置可以包括:处理单元,所述处理单元用于确定第一控制资源集的位置,根据所述第一控制资源集的位置和第一偏移量确定所述第一带宽的位置,其中所述第一带宽的大小等于或小于第一终端设备支持的最大信道带宽;所述第一偏移量为N个资源块RB,所述第一偏移量为第一控制资源集的第一位置与第一带宽的第二位置之间的间隔,所述N是预定义的整数,或者所述N是第一信令指示的值。
收发单元,所述收发单元用于在所述第一带宽内接收下行信息,和/或在所述第一带宽内发送上行信息。
该装置支持通过第一控制资源集的位置和第一偏移量确定第一带宽的位置,即第一带宽的位置与第一控制资源集的位置相关,避免了第一终端设备接入网络设备的过程中工作频率频繁切换问题,有利于降低终端设备的功耗。
结合第三方面,在第三方面的某些实现方式中,所述第一控制资源集的频域资源和所述第一带宽的频率资源在频域上对应的总频域范围小于等于终端设备支持的最大带宽。
应理解,上述频域资源也可以理解为频率资源。
结合第三方面,在第三方面的某些实现方式中,处理单元具体用于根据所述第一控制资源集的位置和M个偏移量确定M个候选带宽的位置,所述M个偏移量包括所述第一偏移量,所述M个偏移量与所述M个候选带宽对应;从M个候选带宽的位置中确定所述第一带宽的位置;或者,根据所述第一控制资源集的位置和Y个偏移量确定M个候选带宽的位置,所述M个偏移量包括所述第一偏移量,所述Y个偏移量与所述M个候选带宽对应,其中Y小于M;从M个候选带宽的位置中确定所述第一带宽的位置,其中,所述M是大于1的正整数,所述Y是正整数。
应理解,第一信令可以直接指示第一带宽,或者第一信令用于指示第一偏移量,也可以指示第一控制资源集的位置和第一偏移量,也可以指示多个候选带宽的位置,也可以指示第一控制资源集的位置和多个偏移量,偏移量的个数可以小于候选带宽个数,即不同带宽对应用一个偏移量,偏移量的个数也可以与候选带宽个数相同,即带宽与偏移量一一对应。
应理解,上述指示内容也可以预定义。
该装置支持通过多个候选带宽位置确定第一带宽位置,提供了确定第一带宽位置的灵活性。
结合第三方面,在第三方面的某些实现方式中,所述M个候选带宽包括至少两个第二带宽,所述两个第二带宽的大小相同且N不同,或者,所述M个候选带宽包括至少两个第三带宽,所述两个第三带宽的大小不同且N相同。
应理解,多个候选带宽中可以包括至少两个偏移量不同的带宽,也可以包括至少两个大小不同的带宽。
该装置支持多个候选带宽并非完全重叠,并且位置相同的带宽大小可以不同,大小相同的带宽位置可以不同,扩大了第一带宽的选择范围。
结合第三方面,在第三方面的某些实现方式中,所述收发单元具体用于接收第一信令, 所述第一信令用于指示所述M个偏移量的值,或者,所述第一信令用于指示所述M个偏移量中至少一个偏移量的值;接收第二信令,所述第二信令用于指示所述M的值。
应理解,信令指示的内容也可以是预定义的。
结合第三方面,在第三方面的某些实现方式中,所述收发单元还用于接收第三信令,所述第三信令用于指示所述M个候选带宽中的所述第一带宽,所述处理单元根据所述所述第三信令确定所述第一带宽;或者,所述无需其他信令,处理单元根据预定义规则从所述M个候选带宽中确定所述第一带宽。
结合第三方面,在第三方面的某些实现方式中,所述处理单元还用于根据所述第一控制资源集的大小、所述第一带宽的大小、所述第一终端设备支持的最大信道带宽中的至少一种确定所述第一偏移量。
结合第三方面,在第三方面的某些实现方式中,所述第一偏移量的取值为以下取值中的一个:0,X-L,(X-L)/2,-L,X,其中所述L是所述第一带宽包含的RB数,所述X是所述第一控制资源集包含的RB数。
应理解,第一偏移量的取值范围可以以集合的形式体现,例如{0,X-L}或{0,X-L,(X-L)/2}或{0,X-L,(X-L)/2,-L}或{0,X-L,(X-L)/2,-L,X}。
应理解,第一偏移量的取值也可以是上述数值之外的可以取到的值,比如,对应不同的子载波间隔,相同带宽的RB数对应不同。
结合第三方面,在第三方面的某些实现方式中,所述收发单元具体用于在没有建立无线资源控制RRC连接时,在所述第一带宽内接收下行数据和下行控制信息,其中所述第一带宽是初始下行BWP;或者,在未建立无线资源控制RRC连接时,在所述第一控制资源集内接收下行控制信息,在第二带宽内接收第一信息,其中所述第二带宽包括的RB是所述第一带宽包括的RB中除去所述第一控制资源集包括的RB外的RB,所述第一信息是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
该装置支持将下行控制信息和下行数据信息都在初始下行BWP中接收,或者,将下行控制信息在第一控制资源集接收,将下行数据在初始下行BWP与第一控制资源集不重叠的部分接收,解决了资源拥塞的问题,提高了信息传输的灵活性。
结合第三方面,在第三方面的某些实现方式中,所述收发单元具体用于在未建立RRC连接时,在所述第一控制资源集内接收下行控制信息,所述下行控制信息包括频率域资源分配字段,所述频率域资源分配字段的比特大小是ceil(L(L+1)/2)比特,其中ceil是向上取整,L是所述第一带宽包含的RB数;所述收发单元在所述第一带宽内接收第一信息,其中,所述第一信息是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
该装置支持频率资源的分配方式,并给出了在第一带宽中接收的信息的几种可能,进一步提高了信息传输的灵活性。
结合第三方面,在第三方面的某些实现方式中,所述M个候选带宽中的每个候选带宽都包括所述第一控制资源集。
第四方面,提供一种通信装置,该装置可以包括:处理单元,用于配置第一控制资源集,所述第一控制资源集用于第一终端设备接收下行信息;收发单元,所述收发单元用于在第一带宽内向第一终端设备发送下行信息和/或在所述第一带宽内接收来自所述第一终 端设备的上行信息,所述第一带宽与第一控制资源集的位置和第一偏移量相关,其中所述第一带宽的大小等于或小于第一终端设备支持的最大信道带宽,所述第一偏移量为N个资源块RB,所述第一偏移量为第一控制资源集的第一位置与第一带宽的第二位置之间的间隔,所述N是整数。
结合第四方面,在第四方面的某些实现方式中,在所述收发单元在第一带宽内发送下行信息和/或在所述第一带宽内接收上行信息之前,所述收发单元还用于向第一终端设备发送第一信令,所述第一信令用于指示第一偏移量。
该装置支持配置第一控制资源集和第一带宽,在第一带宽内传输信息,解决了第一终端设备接入网络设备的过程中工作频率频繁切换的问题,节省了通信设备的功耗。
结合第四方面,在第四方面的某些实现方式中,所述第一控制资源集的频域资源和所述第一带宽的频率资源在频域上对应的总频域范围小于等于终端设备支持的最大带宽。
应理解,上述频域资源也可以理解为频率资源。
结合第四方面,在第四方面的某些实现方式中,所述第一信令用于指示M个偏移量,所述M个偏移量包括所述第一偏移量,或者所述第一信令用于指示所述M个偏移量中的至少一个偏移量,所述M个偏移量与M个候选带宽对应,或者,所述第一信令用于指示Y个偏移量,所述Y个偏移量包括所述第一偏移量,或者所述第一信令用于指示所述F个偏移量中的至少一个偏移量,所述Y个偏移量与所述M个候选带宽对应,其中,所述M为大于1的正整数,所述Y为正整数。
结合第四方面,在第四方面的某些实现方式中,所述M个候选带宽可以包括至少两个第二带宽,所述两个第二带宽的大小相同且N不同,或者,所述M个候选带宽包括至少两个第三带宽,所述两个第三带宽的大小不同且N相同。
应理解,多个候选带宽中可以包括至少两个偏移量不同的带宽,也可以包括至少两个大小不同的带宽。
应理解,第一信令可以直接指示第一带宽,或者第一信令用于指示第一偏移量,也可以同时指示第一控制资源集的位置和第一偏移量,也可以指示多个候选带宽的位置,也可以指示第一控制资源集的位置和多个偏移量,偏移量的个数可以小于候选带宽个数,即不同带宽对应用一个偏移量,偏移量的个数也可以与候选带宽个数相同,即带宽与偏移量一一对应。
应理解,上述指示的内容也可以预定义。
结合第四方面,在第四方面的某些实现方式中,所述M个候选带宽包括至少两个第二带宽,所述两个第二带宽的大小相同且N不同,或者,所述M个候选带宽包括至少两个第三带宽,所述两个第三带宽的大小不同且N相同。
该装置支持通过多个候选带宽位置确定第一带宽位置,提供了确定第一带宽位置的灵活性,提供了多个候选带宽并非完全重叠,并且位置相同的带宽大小可以不同,大小相同的带宽位置可以不同,扩大了第一带宽的选择范围。
结合第四方面,在第四方面的某些实现方式中,所述收发单元还用于发送第二信令,所述第二信令用于指示所述M或者所述F的值。
结合第四方面,在第四方面的某些实现方式中,所述处理单元还用于发送第三信令,所述第三信令用于指示所述M个候选带宽中的所述第一带宽。
结合第四方面,在第四方面的某些实现方式中,所处理单元可以根据所述第一控制资源集的大小、所述第一带宽的大小、第一终端设备支持的最大信道带宽中的至少一种确定的。
结合第四方面,在第四方面的某些实现方式中,所述第一偏移量的取值为以下取值中的一个:0,X-L,(X-L)/2,-L,X,其中所述L是所述第一带宽包含的RB数,所述X是所述第一控制资源集包含的RB数。
应理解,第一偏移量的取值范围可以以集合的形式体现,例如{0,X-L}或{0,X-L,(X-L)/2}或{0,X-L,(X-L)/2,-L}或{0,X-L,(X-L)/2,-L,X}。
应理解,第一偏移量的取值也可以是上述数值之外的可以取到的值,比如,对应不同的子载波间隔,相同带宽的RB数对应不同。
结合第四方面,在第四方面的某些实现方式中,所述收发单元具体用于在未建立无线资源控制RRC连接时,在所述第一带宽内发送下行数据和下行控制信息,其中所述第一带宽是初始下行BWP;或者,所述收发单元具体用于在没有建立无线资源控制RRC连接时,在所述第一控制资源集内发送下行控制信息,在第二带宽内接收第一信息,其中所述第二带宽包括的RB是所述第一带宽包括的RB中除去所述第一控制资源集包括的RB外的RB,所述第一信息可以是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
该装置支持将下行控制信息和下行数据信息都在初始下行BWP中接收,或者,将下行控制信息在第一控制资源集接收,将下行数据在初始下行BWP与第一控制资源集不重叠的部分接收,解决了资源拥塞的问题,提高了信息传输的灵活性。
结合第四方面,在第四方面的某些实现方式中,所述收发单元具体用于在未建立RRC连接时,在所述第一控制资源集内发送下行控制信息,所述下行控制信息包括频率域资源分配字段,所述频率域资源分配字段的比特大小是ceil(L(L+1)/2)比特,其中ceil是向上取整,L是所述第一带宽包含的RB数;在所述第一带宽内发送第一信息,其中,所述第一信息是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
该装置支持频率资源的分配方式,并给出了在第一带宽中接收的信息的几种可能,进一步提高了信息传输的灵活性。
结合第四方面,在第四方面的某些实现方式中,所述M个候选带宽中的每个候选带宽都包括所述第一控制资源集。
第五方面,提供一种传输信息的方法,该方法可以包括:第一终端设备可以根据第一控制资源集确定第一资源;所述第一终端设备可以通过所述第一控制资源和所述第一资源发送和/或接收信息,其中,所述第一控制资源集与所述第一资源在频率上对应的频率范围小于或等于所述第一终端设备支持的最大带宽,所述第一终端设备可以是第一类型终端设备。
该方案通过第一控制资源集的位置确定了第一带宽的位置,而且第一控制资源集和第一资源的频率范围小于第一终端设备支持的最大带宽,在第一控制资源和所述第一资源发送和/或接收信息,解决了随机接入过程中频点频繁切换的问题,节省了通信设备的功耗。
结合第五方面,在第五方面的某些实现方式中,所述第一终端设备可以根据所述第一控制资源集的位置和第一偏移量确定所述第一资源的位置,所述第一偏移量为所述第一资 源的位置相对于所述第一控制资源集的位置的偏移量;或者,所述第一终端设备可以根据第一控制资源集的位置和第一关联关系确定所述第一资源的位置,所述第一关联关系包括所述第一控制资源集的位置与所述第一资源的位置的关联关系。
应理解,所述第一终端设备可以直接根据第一控制资源集的位置和第一偏移量确定所述第一资源的位置,也可以根据第一控制资源集的位置和第一关联关系来确定。
结合第五方面,在第五方面的某些实现方式中,所述第一偏移量为N个RB,N为整数。
结合第五方面,在第五方面的某些实现方式中,所述N可以是以下取值中的一个:0,X-L,(X-L)/2,-L,X,其中,L是所述第一资源包括的RB的个数,X是所述第一控制资源集包括的RB的个数。
结合第五方面,在第五方面的某些实现方式中,所述第一终端设备根据第一控制资源集确定多个候选资源,所述多个候选资源包括所述第一资源,所述多个候选资源包括至少两个候选资源,第一候选资源与第二候选资源的大小相同且所述第一偏移量不同,或者,所述第一候选资源与所述第二候选资源的大小不同且所述第一偏移量相同。
应理解,多个候选带宽中可以包括至少两个偏移量不同的带宽,也可以包括至少两个大小不同的带宽。
该技术方案通过多个候选资源确定第一资源,提供了确定第一资源的灵活性,提供了多个候选资源并非完全重叠,并且位置相同的资源大小可以不同,扩大了第一资源的选择范围。
结合第五方面,在第五方面的某些实现方式中,所述第一控制资源集的位置和所述第一偏移量,或者,所述第一控制资源集的位置和所述第一关联关系是由信令指示的,或者,是预定义的。
结合第五方面,在第五方面的某些实现方式中,所述第一终端设备可以通过所述第一控制资源集接收控制信息;所述第一终端设备可以通过所述第一资源接收数据。
结合第五方面,在第五方面的某些实现方式中,所述第一终端设备通过所述第一控制资源集接收控制信息;所述第一终端设备通过第一资源接收数据,所述第一资源中接收数据的RB和所述第一控制资源集包括的RB不同。
该方案提出将下行控制信息在第一控制资源集接收,将下行数据在第一资源接收,或者,将下行控制信息在第一控制资源集接收,将下行数据在第一资源与第一控制资源集不重叠的部分接收,解决了资源拥塞的问题,提高了信息传输的灵活性。
第六方面,提供一种传输信息的方法,该方法可以包括:网络设备可以通过第一控制资源和第一资源向第一终端设备发送和/或接收来自第一终端设备的信息,其中,所述第一控制资源集与所述第一资源在频率上对应的频率范围小于或等于所述第一终端设备支持的最大带宽,第一资源是根据第一控制资源集确定的;所述第一终端设备可以是第一类型终端设备。
该方案通过配置第一控制资源集和第一带宽,第一控制资源集的频域资源和第一资源的频域资源在频域上对应的总频域范围小于第一终端设备支持的最大带宽,在第一控制资源和所述第一资源发送和/或接收信息,解决了第一终端设备接入网络设备的过程中工作频率频繁切换的问题,节省了通信设备的功耗。
结合第六方面,在第六方面的某些实现方式中,网络设备可以向第一终端设备发送第一信令,所述第一信令用于指示第一控制资源集的位置和第一偏移量,所述第一偏移量为所述第一资源的位置相对于所述第一控制资源集的位置的偏移量,第一信令也可以指示第一控制资源集的位置和第一关联关系,所述第一关联关系包括所述第一控制资源集的位置与所述第一资源的位置的关联关系,
应理解,第一偏移量可以用N个RB来表示。N可以取到以下值0,X-L,(X-L)/2,-L,X。其中,L是所述第一资源包括的RB的个数,X是所述第一控制资源集包括的RB的个数。
应理解,第一控制资源集的位置、第一偏移量、第一关联关系也可以是预定义的。
应理解,N的取值并不限于列举出的值,对应于不同的子载波间隔,RB数也可能发生变化。
结合第六方面,在第六方面的某些实现方式中,网络设备可以指示给第一终端设备多个候选资源,多个候选资源包括所述第一资源。
应理解,多个候选资源可以包括至少两个候选资源,第一候选资源与第二候选资源的大小相同且所述第一偏移量不同,或者,所述第一候选资源与所述第二候选资源的大小不同且所述第一偏移量相同。
应理解,多个候选带宽中可以包括至少两个偏移量不同的候选资源,也可以包括至少两个大小不同的候选资源。
该技术方案通过多个候选资源确定第一资源,提供了确定第一资源的灵活性,提供了多个候选资源并非完全重叠,并且位置相同的资源大小可以不同,大小相同的带宽位置可以不同,扩大了第一资源的选择范围。
结合第六方面,在第六方面的某些实现方式中,网络设备可以通过所述第一控制资源集发送控制信息;网络设备可以通过所述第一资源发送数据。
结合第六方面,在第六方面的某些实现方式中,网络设备通过所述第一控制资源集发送控制信息;网络设备通过第一资源发送数据,所述第一资源中接收数据的RB和所述第一控制资源集包括的RB不同。
该方案提出将下行控制信息在第一控制资源集发送,将下行数据在第一资源发送,或者,将下行控制信息在第一控制资源集发送,将下行数据在第一资源与第一控制资源集不重叠的部分发送,解决了资源拥塞的问题,提高了信息传输的灵活性。
第七方面,提供一种信息传输的方法,其特征在于,所述方法可以包括:第一终端设备在第一上行带宽中发送第一上行信息;第一终端设备在第一下行带宽中接收第一下行信息,所述第一上行信息的发送立即先于所述第一下行信息的接收;发送所述第一上行信息的最后时间单元为时间单元n1,监测所述第一下行信息的起始时间单元是时间单元m1,所述时间单元n1和所述时间单元m1之间最少间隔k个时间单元,所述k大于w,所述w是第二终端设备发送第二上行信息的最后时间单元n2和监测第二下行信息的起始时间单元m2之间的最小时间单元的个数,且第二上行信息的发送立即先于所述第二下行信息的接收,所述m1,m2,n1,n2,k,w都是正整数,所述第一终端设备是第一类型终端设备,所述第二终端设备是第二类型终端设备。
该方案通过增加第一终端设备接收下行信息与发送上行信息之间的时间间隔,提高了调频时信息传输的成功率,进一步提高了第一终端设备随机接入流程的成功率,避免了通 信设备因随机接入失败造成的功耗。
结合第七方面,在第七方面的某些实现方式中,所述第一上行信息包括随机接入序列,所述第一下行信息包括随机接入响应消息,所述w为1,所述k大于1。
结合第七方面,在第七方面的某些实现方式中,所述k为3个时间单元,或所述k为第一时间间隔对应的时间单元数,或k是第一时间间隔对应的时间单元数且第一时间间隔中包括q个时间单元,或所述k是第一时间间隔对应的时间单元数与q个时间单元的和。
结合第七方面,在第七方面的某些实现方式中,所述第一上行信息包括随机接入响应消息中携带的上行授权调度的上行数据,所述第一下行信息包括竞争解决消息,所述w为0,所述k大于0。
结合第七方面,在第七方面的某些实现方式中,所述k为3个时间单元,或所述k为第一时间间隔对应的时间单元数,或k是第一时间间隔对应的时间单元数且第一时间间隔中包括q个时间单元,或所述k是第一时间间隔对应的时间单元数与q个时间单元的和。
该方案给出了具体传输的消息类型,并给出了传输该消息类型时上下行切换时间间隔,能够有效提高信息传输的成功率。
应理解,k可以是确定的某一个时间间隔值,比如140微秒,也可以是140微秒对应的时间单元的个数,比如符号的数量,也可以是具体的时间间隔值与对应的时间单元的个数,比如,可以是80微秒+2个符号,也可以是时间单元的数量之和,比如2个符号+2个时隙。
结合第七方面,在第七方面的某些实现方式中,所述第一时间间隔可以是预定义的,或者,所述第一时间间隔可以是通过终端设备的能力上报的,其中,所述第一时间间隔与第三集合中的一个元素的值相同;所述第三集合包括{35微秒,140微秒,210微秒,300微秒,500微秒}中的至少一个值,或者,所述第三集合包括{35微秒对应的符号数,140微秒对应的符号数,210微秒对应的符号数,300微秒对应的符号数,500微秒对应的符号数}中的至少一个值。
第八方面,提供一种传输信息的方法,该方法可以包括:第一终端设备在第一下行带宽中接收第二下行信息;第一终端设备在第一上行带宽中发送第二上行信息,所述第二下行信息的接收立即先于所述第一上行信息的发送,所述第一终端设备监测所述第二下行信息的最后时间单元是时间单元s1,所述第一终端设备发送所述第二上行信息的起始时间单元是时间单元t1,所述时间单元s1和所述时间单元t1之间最少间隔r个时间单元,所述r大于p,所述p是第二终端设备监测第二下行信息的最后时间单元s2与发送第二上行信息的起始时间单元t2之间的最小时间单元个数,且第二下行信息的接收立即先于第二上行信息的发送,所述s1,s2,t1,t2,r,p都是正整数,所述第一终端设备是第一类型终端设备,所述第二终端设备是第二类型终端设备。
该方案通过增加第一终端设备接收下行信息与发送上行信息之间的时间间隔,提高了调频时信息传输的成功率,进一步提高了第一终端设备随机接入流程的成功率,避免了通信设备因随机接入失败造成的功耗。
结合第八方面,在第八方面的某些实现方式中,所述第二下行信息包括随机接入响应消息中携带的上行授权,所述第二上行信息包括随机接入响应消息中携带的上行授权调度的上行数据,所述p为0.5毫秒对应的时间单元数与N1个时间单元与N2个时间单元的和, 所述r大于所述p,其中,N1为所述第二终端设备处理下行信息的处理时间,N2为所述第二终端设备处理准备上行信息的时间。
结合第八方面,在第八方面的某些实现方式中,所述r比p增加2个时间单元,或r比p增加第一时间间隔对应的时间单元数,或r比p增加第一时间间隔对应的时间单元数且第一时间间隔中包括q个时间单元,或r比p增加第一时间间隔对应的时间单元数与q个时间单元的和。
结合第八方面,在第八方面的某些实现方式中,所述第二下行信息包括第一下行控制信道,所述第二上行信息包括所述下行控制信息调度的上行数据,所述p为N2个时间单元,所述r大于所述p,N2为所述第二终端设备处理准备上行信息的处理时间。
结合第八方面,在第八方面的某些实现方式中,所述r比p增加2个时间单元,或r比p增加第一时间间隔对应的时间单元数,或r比p增加第一时间间隔对应的时间单元数且第一时间间隔中包括q个时间单元,或r比p增加第一时间间隔对应的时间单元数与q个时间单元的和。
结合第八方面,在第八方面的某些实现方式中,所述第二下行信息包括竞争解决消息,所述第二上行信息是竞争解决消息对应的HARQ反馈,所述p是0.5毫秒对应的时间单元数与N1个时间单元的和,所述r大于所述p,N1为所述第二终端设备处理上行信息的处理时间。
结合第八方面,在第八方面的某些实现方式中,所述r比p增加2个时间单元,或r比p增加第一时间间隔对应的时间单元数,或r比p增加第一时间间隔对应的时间单元数且第一时间间隔中包括q个时间单元,或r比p增加第一时间间隔对应的时间单元数与q个时间单元的和
该方案给出了具体传输的消息类型,并给出了传输该消息类型时上下行切换时间间隔,能够有效提高信息传输的成功率。
应理解,r可以是确定的某一个时间间隔值,比如140微秒,也可以是140微秒对应的时间单元的个数,比如符号的数量,也可以是具体的时间间隔值与对应的时间单元的个数,比如,可以是80微秒+2个符号,也可以是时间单元的数量之和,比如2个符号+2个时隙。
结合第八方面,在第八方面的某些实现方式中,所述第一时间间隔可以是预定义的,或者,所述第一时间间隔可以是通过终端设备的能力上报的。其中,所述第一时间间隔与第三集合中的一个元素的值相同;所述第三集合包括{35微秒,140微秒,210微秒,300微秒,500微秒}中的至少一个值,或者,所述第三集合包括{35微秒对应的符号数,140微秒对应的符号数,210微秒对应的符号数,300微秒对应的符号数,500微秒对应的符号数}中的至少一个值。
第九方面,提供一种传输信息的方法,在包括网络设备、第一终端设备和第二终端设备的通信系统中执行,所述第二终端设备的上行传输和下行传输之间具有时间间隔A,所述第一终端设备支持的最大信道带宽小于所述第二终端设备支持的最大信道带宽,所述方法可以包括:第一终端设备在第一时段通过第一上行资源发送第一上行信息;所述第一终端设备在第二时段通过第一下行资源接收第一下行信息,其中,所述第一上行资源与所述第一下行资源对应的频率范围大于所述第一终端设备支持的最大信道带宽,所述第一时段 和所述第二时段之间具有时间间隔B,所述时间间隔B大于所述时间间隔A,所述第二时段是所述第一时段之后的首个用于所述第一终端设备和网络设备通信的时段。
该方案通过增加第一终端设备接收下行信息与发送上行信息之间的时间间隔,提高了调频时信息传输的成功率,进一步提高了第一终端设备随机接入流程的成功率,避免了通信设备因随机接入失败造成的功耗。
结合第九方面,在第九方面的某些实现方式中,在所述第一终端设备在第二时段通过第一下行资源接收第一下行信息之前,所述方法还可以包括:所述第一终端设备接收第一指示信息,所述第一指示信息用于指示时间间隔B或者第二时段。
结合第九方面,在第九方面的某些实现方式中,在所述第一终端设备在第二时段通过第一下行资源接收第一下行信息之前,所述方法还可以包括:所述第一终端设备上报能力信息,所述能力信息包括时间间隔B或第二时段。
应理解,时间间隔B或第二时段可以是网络设备指示的,也可以是第一终端设备能力上报的,也可以是预定的,本申请对此不作限定。
结合第九方面,在第九方面的某些实现方式中,所述时间间隔B包括以下取值中的至少一种:35微秒,140微秒,210微秒,300微秒,500微秒,或者,35微秒对应的符号数,140微秒对应的符号数,210微秒对应的符号数,300微秒对应的符号数,500微秒对应的符号数。
应理解,时间间隔不局限于列举出的值,时间间隔可以是确定的某一个时间间隔值,比如140微秒,也可以是140微秒对应的时间单元的个数,比如符号的数量或者时隙的数量,也可以是具体的时间间隔值与对应的时间单元的个数,比如,可以是80微秒+2个符号,也可以是时间单元的数量之和,比如2个符号+2个时隙。本申请对此不作限定。
第十方面,提供了一种通信装置,所述通信装置用于实现第一方面或第五方面或第七方面或第八方面或第九方面,或,第一方面或第五方面或第七方面或第八方面或第九方面中任一可能的实现方式,或,第一方面或第三方面或第五方面或第七方面或第八方面或第九方面中所有可能的实现方式的方法。
第十一方面,提供了一种通信装置,所述通信装置用于实现第二方面或第六方面或或第七方面或第八方面或第九方面,或,第二方面或第六方面或或第七方面或第八方面或第九方面中任一可能的实现方式,或,第二方面或第六方面或或第七方面或第八方面或第九方面中所有可能的实现方式的方法。
第十二方面,本申请实施例提供了一种通信装置,包括发送器和处理器,所述发送器和处理器用于实现第一方面或第五方面或第七方面或第八方面或第九方面,或,第一方面或第五方面或第七方面或第八方面或第九方面中任一可能的实现方式,或,第一方面或第三方面或第五方面或第七方面或第八方面或第九方面中所有可能的实现方式的方法。
第十三方面,本申请实施例提供了一种通信装置,包括接收器和处理器,所述接收器和处理器用于实现第二方面或第六方面或或第七方面或第八方面或第九方面,或,第二方面或第六方面或或第七方面或第八方面或第九方面中任一可能的实现方式,或,第二方面或第六方面或或第七方面或第八方面或第九方面中所有可能的实现方式的方法。
第十四方面,本申请实施例提供了一种计算机可读介质,所述计算机可读介质存储用于终端设备执行的程序代码,所述程序代码包括用于执行第一方面或第五方面或第七方面 或第八方面或第九方面,或,第一方面或第五方面或第七方面或第八方面或第九方面中任一可能的实现方式,或,第一方面或第三方面或第五方面或第七方面或第八方面或第九方面中所有可能的实现方式的方法中的通信方法的指令。
第十五方面,本申请实施例提供了一种计算机可读介质,所述计算机可读介质存储用于网络设备执行的程序代码,所述程序代码包括用于执行第二方面或第六方面或或第七方面或第八方面或第九方面,或,第二方面或第六方面或或第七方面或第八方面或第九方面中任一可能的实现方式,或,第二方面或第六方面或或第七方面或第八方面或第九方面中所有可能的实现方式的方法的指令。
第十六方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或第五方面或第七方面或第八方面或第九方面,或,第一方面或第五方面或第七方面或第八方面或第九方面中任一可能的实现方式,或,第一方面或第三方面或第五方面或第七方面或第八方面或第九方面中所有可能的实现方式的方法。
第十七方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面或第六方面或或第七方面或第八方面或第九方面,或,第二方面或第六方面或或第七方面或第八方面或第九方面中任一可能的实现方式,或,第二方面或第六方面或或第七方面或第八方面或第九方面中所有可能的实现方式的方法。
第十八方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面或第五方面或第七方面或第八方面或第九方面,或,第一方面或第五方面或第七方面或第八方面或第九方面中任一可能的实现方式,或,第一方面或第三方面或第五方面或第七方面或第八方面或第九方面中所有可能的实现方式的方法及各种可能设计的功能的装置和第二方面或第六方面或或第七方面或第八方面或第九方面,或,第二方面或第六方面或或第七方面或第八方面或第九方面中任一可能的实现方式,或,第二方面或第六方面或或第七方面或第八方面或第九方面中所有可能的实现方式的方法及各种可能设计的功能的装置。
第十九方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或第五方面或第七方面或第八方面或第九方面,或,第一方面或第五方面或第七方面或第八方面或第九方面中任一可能的实现方式,或,第一方面或第三方面或第五方面或第七方面或第八方面或第九方面中所有可能的实现方式中的方法。
第二十方面,提供了一种处理器,用于与存储器耦合,用于执行上述第二方面或第六方面或或第七方面或第八方面或第九方面,或,第二方面或第六方面或或第七方面或第八方面或第九方面中任一可能的实现方式,或,第二方面或第六方面或或第七方面或第八方面或第九方面中所有可能的实现方式中的方法。
第二十一方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第一方面或第五方面或第七方面或第八方面或第九方面,或,第一方面或第五方面或第七方面或第八方面或第九方面中任一可能的实现方式,或,第一方面或第三方面或第五方面或第七方面或第八方面或第九方面中所有可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在终端上。
第二十二方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第二方面或第六方面或或第七方面或第八方面或第九方面,或,第二方面或第六方面或或第七方面或第八方面或第九方面中任一可能的实现方式,或,第二方面或第六方面或或第七方面或第八方面或第九方面中所有可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第二方面或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在接入网设备上。
附图说明
图1是适用于本申请实施例的一种通信系统的架构示意图。
图2示出了本申请实施例的一种传输信息的方法的示意性流程图和占用资源的示意图。
图3示出了适用于本申请实施例的一种确定资源的方法示意图。
图4示出了适用于本申请实施例的另一种确定资源的方法示意图。
图5示出了适用于本申请实施例的另一种确定资源的方法示意图。
图6示出了适用于本申请实施例的资源的示意图。
图7示出了适用于本申请实施例的另一种资源的示意图。
图8示出了本申请实施例的另一种传输信息的方法的示意性流程图。
图9示出了适用于本申请实施例的一种传输信息的方法的示意图。
图10示出了适用于本申请实施例的又一种传输信息的方法的示意图。
图11示出了适用于本申请实施例的又一种传输信息的方法的示意图。
图12示出了适用于本申请实施例的又一种传输信息的方法的示意图。
图13示出了本申请实施例的一种通信装置的示意性框图。
图14示出了本申请实施例的另一种通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(Wireless Local Area Network,WLAN)、窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、卫星通信、第五代(5th generation,5G)系统或者将来出现的新的通信系统等。
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追 求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,5G移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。
不同业务对移动通信系统的需求不同,如何更好地同时支持多种不同业务的数据传输需求,是当前5G移动通信系统所需要解决的技术问题。例如,如何同时支持mMTC业务和eMBB业务,或者同时支持URLLC业务和eMBB业务。
5G标准对mMTC的研究还没有广泛开展。
目前,标准中将mMTC业务的用户设备(user equipment,UE)称为低复杂度的UE(reduced capability UE,REDCAP UE),或窄带宽用户设备,或物联设备,或低端智能手持终端。该类UE可能在带宽、功耗、天线数等方面比其他UE复杂度低一些,如带宽更窄、功耗更低、天线数更少等。该类UE也可以称为轻量版的终端设备(NR light,NRL)。mMTC用户设备支持的最大带宽小于100MHz。需要说明的是,本申请中的mMTC用户设备不只是机器类通信的设备,也可以是智能手持终端。
本申请实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括无线接入网设备120即网络设备120和至少一个终端设备(如图1中的终端设备130和终端设备140和终端设备150)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
应理解,本申请通信系统中的信息发送端可以是网络设备,也可以是终端设备,信息接收端可以是网络设备,也可以是终端设备,本申请对此不作限定,通信系统中有第一类型终端设备参与通信即可。
本申请实施例以网络设备与第一终端设备作为交互双方为例进行方案陈述,对此不作限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以 是基站NodeB、演进型基站(Evolved Node B,eNodeB)、5G移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端(Terminal)、用户设备UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
为了便于理解本申请,对随机接入过程进行简单描述。随机接入过程如下:
终端设备搜索同步信号和物理广播信道(Synchronization Signal and PBCH,SSB),终端设备通过搜索SSB,获取网络设备发送的主信息块(Master information block,MIB)。终端设备根据MIB获取控制资源集合(Control resource set,CORESET)的时域资源与频域资源,终端设备可以在CORESET上检测调度系统信息块(System information block,SIB)的下行控制信息(Downlink control information,DCI),在DCI指示的时频位置上接收SIB1,如此,即可接收SIB1中指示的初始上行链路带宽部分(initial uplink bandwidth part,Initial UL BWP),初始下行链路带宽部分(initial downlink bandwidth part,Initial DL BWP),随机接入前导码列表,随机接入时机列表等信息。
根据SIB1,终端设备在与SSB关联的随机接入时机(RACH occasion,RO)资源中发送承载随机接入序列的物理随机接入信道信道,(physical random-access channel,PRACH,即Msg1);
如果基站成功接收到了随机接入序列并且允许UE接入,则在预配置的随机接入响应(Random access response,RAR)的窗口(window)内,给UE发送RAR,即Msg2;
同时,UE在预配置的RAR window内,监听在物理层下行控制信道(Physical downlink  control channel,PDCCH)上传输的下行控制信息(Downlink control information,DCI),该DCI用于指示UE从物理下行共享信道(Physical downlink shared channel,PDSCH)承载的媒体接入控制(Media Access Control,MAC)协议数据单元(Protocol Data Unit,PDU)中获取RAR信息。
应理解,如果由于不同UE之间选择的随机接入序列冲突,或者信道条件差等原因,导致基站无法接收到preamble序列,则基站不会发送RAR信息,那么UE在RAR window中就不会检测到DCI和MAC RAR,那么本次随机接入失败。
终端在成功检测到DCI后,接收随机接入响应RAR(即Msg2),按照随机接入响应中的上行授权UL grant指示的时频资源发送物理上行共享信道(Physical Uplink Shared CHannel,PUSCH,即Msg3),网络设备再向终端设备发送DCI,该DCI指示承载竞争解决消息,即Msg4,的时频资源,终端设备检测检测该DCI,并接收Msg4。
需要注意的是,在无线资源控制(Radio Resource Control,RRC)建立连接之前,UE需要在CORESET 0内接收:调度SIB1的PDCCH,承载SIB1的PDSCH,调度SI的PDCCH,承载SI的PDSCH,调度Msg2的PDCCH,承载Msg2的PDSCH,调度Msg3的PDCCH,调度Msg4的PDCCH,承载Msg4的PDSCH。在无线资源控制(Radio Resource Control,RRC)建立连接之前,UE需要在initial UL BWP内发送承载Msg1的PUSCH,和承载Msg3的PUSCH。
为了方便理解本申请实施例,下面对本申请涉及到的相关概念作简单介绍:
1.本申请中的UE可以分为第一类型终端设备和第二类型终端设备,第一类型终端设备例如为低复杂度的UE(reduced capability UE,REDCAP UE),第二类型终端设备可以为legacy UE,如eMBB UE。
第一类型终端设备和第二类型终端设备的特征不同,所述特征包括以下一种或者多种:
带宽、支持或配置的资源数、发射天线端口数和/或接收天线端口数、射频通道数、混合自动重传请求(hybrid automatic repeat request,HARQ)进程数、支持的峰值速率、应用场景、时延要求、处理能力、协议版本、双工方式、业务等。以下对第一特征进行详细描述。
带宽,或者信道带宽,或者终端设备支持或配置的最大信道带宽,第一类型终端设备和第二类型终端设备的带宽不同,例如:第一类型终端设备的带宽可以是20MHz或10MHz或5MHz,第二类型终端设备的带宽可以是100MHz。可以理解,随着通信技术的发展,第一类型终端设备支持的最大信道带宽可能不再是20MHz或10MHz或5MHz,而是演变成更宽或者更窄的带宽例如3MHz,25MHz,50MHz。
支持或配置的资源数,所述资源数可以是RB,RE,子载波,RB组,REG bundle,控制信道元素,子帧,无线帧,时隙,迷你时隙和/或符号数目,第一类型终端设备和第二类型终端设备支持或配置的资源数不同,例如:第一类型终端设备支持的资源数为48RB,第二类型终端设备支持的资源数为96RB。
发射天线端口数和/或接收天线端口数,即第一类型终端设备的发射天线端口数和/或接收天线端口数与第二类型终端设备不同,例如:第一类型终端设备的发射天线端口数可以是1,接收天线的端口数可以是2,第二类型终端设备的发射天线端口数可以是2,接 收天线的端口数可以是4。
射频通道数,即第一类型终端设备的射频通道数与第二类型终端设备不同,例如:第一类型终端设备的射频通道数可以是1个,第二类型终端设备的射频通道数可以是2个。
HARQ进程数,即第一类型终端设备支持的HARQ进程数与第二类型终端设备不同,例如:第一类型终端设备的HARQ进程数可以是8,第二类型终端设备的HARQ进程数可以是16。
支持的峰值速率,即第一类型终端设备和第二类型终端设备的最大峰值速率不同,例如:第一类型终端设备支持的最大峰值速率可以是100Mbps,第二类型终端设备支持的峰值速率可以是200Mbps。
应用场景,即第一类型终端设备和第二类型终端设备是针对不同应用场景服务的,例如:第一类型终端设备应用于工业无线传感,视频监控,可穿戴设备等,第二类型终端设备应用于移动通信,视频上网等。
时延要求,即第一类型终端设备和第二类型终端设备对传输时延的要求不同,例如:第一类型终端设备的时延要求可以是500毫秒,第二类型终端设备的时延要求可以是100毫秒。
处理能力,及第一类型终端设备和第二类型终端设备在不同的子载波间隔(subcarrier space,SCS)条件下,对于信道或数据的处理时序,处理速度不同,例如:第一类型终端设备的不支持复杂的运算,所述复杂的运算可以包括:人工智能(artificial intelligence,AI)、虚拟现实(virtual reality,VR)渲染,第二类型终端设备支持复杂的运算,或者理解为,第一类型终端设备的处理能力低于第二类型终端设备。
协议版本,即第一类型终端设备和第二终端设备属于不同协议版本的终端设备,例如:第一类型终端设备支持的协议版本为Release 17及Release 17之后的协议版本,第二类型终端设备支持的协议版本为Release 17之前的协议版本,例如Release 15或Release 16。
双工方式,所述双工方式包括半双工和全双工,例如:第一类型终端设备采用半双工的模式工作,第二类型终端设备采用全双工的模式工作。
业务,所述业务包括但不限于物联应用,例如视频监控,移动宽带MBB等,例如:第一类型终端设备支持的业务为时视频监控,第二类型终端设备支持的业务为移动宽带MBB。本申请实施例对此不做限定。
应理解,其他类型的,或未来新类型的同样支持本申请技术方案的终端设备也在本申请保护范围之内。
本申请中的第一终端设备可以是第一类型终端设备中的一例,第二终端设备可以是第二类型终端设备中的一例。
2.初始下行链路带宽部分(initial downlink bandwidth part,Initial DL BWP):在SIB1中指示,频率范围包含CORESET,但是在Msg4接收完成之后才会生效。
3.初始上行链路带宽部分(initial uplink bandwidth part,Initial UL BWP):在SIB1中指示,初始接入过程中涉及的上行信道PRACH,Msg3,Msg4的HARQ-ACK反馈都在initial UL BWP的范围进行。
4.CORESET:控制资源集合。终端设备正在CORESET内接收下行控制信息或下行数据信息。在终端设备与对端设备没有建立RRC连接时,下行控制信道和下行数据信道的 接收的频率范围在CORESET 0。
应理解,低复杂度终端设备是相对的概念,本申请对此不做限制。示例地,未来可能发展出的新型终端设备,其在带宽、天线数量、设备功耗等其中至少一个方面的特征比现有的legacy UE复杂,届时legacy UE将作为本申请中的第一类型终端设备,所述新型终端设备将作为本申请中的第二类型终端设备,本申请的实施例依然适用,在本申请保护范围之内。
5.中心频率:一个资源块的中心频率,或带宽内索引为中心的资源块
起始资源块(Resource block,RB):带宽内索引最小的资源块,或带宽内的第一个资源块。
结束资源块(Resource block,RB):带宽内索引最大的资源块,或带宽内的最后一个资源块。
应理解,本申请中的资源可以是符号,或者时隙,或者迷你时隙,或者是子帧等。本申请中的资源还可以是子载波,或者是资源块,或者是载波,或者是信道控制元素等。
本申请中的资源是符号时,资源单元可以是时隙,或者是短时隙,或者是子帧。本申请中的资源是子载波时,资源单元是资源块,或者是载波,或者是信道控制元素等。
为了便于理解本申请实施例,提前对相关名词作一解释。
本申请中第一资源、第一带宽是对同一个频率范围的资源的不同表述。例如第一资源或者第一带宽可以是上行BWP;例如,第一资源或者第一带宽可以是下行BWP;例如,第一资源或者第一带宽可以是初始下行BWP;例如,第一资源或者第一带宽可以是初始上行BWP;例如,第一资源或者第一带宽可以是资源大小等于或小于第一终端设备支持的最大信道带宽的一块资源。第一控制资源集表述为CORESET a,例如,在RRC连接建立之前,CORESET a为CORESET 0;例如,在RRC连接建立之前或RRC连接建立之后,CORESET a也可以是公共CORESET,公共CORESET的至少一个RB可以不在CORESET 0的范围内,即CORESET a和CORESET 0可以为不同的CORESET。
本申请中第一资源或者第一带宽的大小等于或小于第一终端设备支持的最大信道带宽,大小可以是预定义的或网络设备指示的。例如大小可以是5MHz,或是5MHz在不同子载波间隔下对应的RB数,或是10MHz,或是10MHz在不同子载波间隔下对应的RB数,或是20MHz,或是20MHz在不同子载波间隔下对应的RB数。第一资源或者第一带宽可以理解为网络设备为第一终端设备单独配置的资源,资源包括频率带宽范围(例如RB数),和/或在频率的位置。例如,通过高层信令或物理层信令中的字段指示的资源,该高层信令或物理层信令中的字段是专用于第一终端设备的。例如,第一控制资源集为CORESET 0,第一资源或者第一带宽为初始上行BWP,第一终端设备根据CORESET 0的位置确定初始上行BWP的位置,可以理解为:初始上行BWP为用于第一终端设备发送上行信息的资源,该资源可以与第二类型终端设备共用,也可以是不与第二类型终端设备共用(即该初始上行BWP是第一类型终端设备专用的初始上行BWP)。
对于没有能力同时进行下行接收和上行传输的第一终端设备,该第一终端设备需要通过时分的方式进行下行接收和上行传输。例如,第一终端设备是时分复用TDD UE没有能力进行同时的下行接收和上行传输。再如,第一终端设备是半双工第一终端设备没有能力进行同时的下行接收和上行传输。假设第一终端设备在第一控制资源集内进行下行接收 后,其后紧接着要在初始第一资源内进行上行传输。若第一控制资源集的频率范围与第一资源的频率范围在频率上对应的频率范围超过UE的最大信道带宽,第一终端设备需要在下行接收后,进行频率调谐,进而在第一资源内进行上行传输。
类似地,第一终端设备在第一资源内进行上行传输后,其后紧接要在第一控制资源集内进行下行接收。若第一资源的频率范围与第一控制资源集的频率范围在频率上对应的频率范围超过第一终端设备的最大信道带宽,第一终端设备需要在上行传输后,进行频率调谐,进而在第一控制资源集内进行下行接收。
频率调谐会降低数据传输可用的符号、降低资源利用效率、增加第一控制资源集的功耗和第一控制资源集实现的复杂度。为了解决上述问题,本申请的一个实施例,提出了一种传输信息的方法,如图2中的(a)所示,
200:网络设备配置第一控制资源集;
应理解,步骤200是可选的,第一控制资源集也可以是预定义的。网络设备可以通过主信息块(Master Information Block,MIB)等信令为终端设备配置第一控制资源集。
201:第一终端设备确定第一控制资源集;
应理解,第一控制资源集的信息可以是预定义的,也可以是网络设备通过信令指示给第一终端设备的。本申请对此不作限定。例如,第一终端设备确定第一控制资源集的大小与位置,例如,通过MIB信令确定第一控制资源集的大小和位置。
202:第一终端设备根据第一控制资源集的位置确定第一资源的位置,第一资源可以包括第一下行资源和/或第一上行资源。
第一资源包括第一下行资源和第一上行资源时,如图2中的(b)所示,第一上行资源的频率范围与第一下行资源的频率范围在频率上对应的总频率范围不超过第一终端设备的最大信道带宽。
203:第一终端设备通过第一资源发送上行信息,或者204:第一终端设备通过第一资源接收下行信息。
其中,第一资源的频率范围与第一控制资源集的频率范围在频率上对应的总频率范围不超过第一终端设备的最大信道带宽。
第一终端设备根据第一控制资源集的位置确定第一资源的位置,可以是根据第一控制资源集的位置和第一偏移量确定第一资源的位置。
具体地,第一控制资源集的位置可以是第一控制资源集的第A个RB,或是第一控制资源集的第A个RB的起始子载波,或是第一控制资源集的中心频率(或中心子载波),或是第一控制资源集的第A个RB的中心频率(或中心子载波),或是第一控制资源集的第A个RB的最后一个子载波,或是第一控制资源集的起始CCE,或是第一控制资源集的起始REG,或是第一控制资源集的起始符号,或是第一控制资源集的起始时隙等。
其中A是正整数,或者A是预先规定的正整数。例如A=1,或A=X,或A=X/2,或A=X/2+1。其中,X是第一控制资源集的大小,且以RB为单位。
即第一控制资源集的位置可以是第一控制资源集的第1个RB,可以是第一控制资源集的第1个RB的起始子载波或中心子载波或最后一个子载波。例如,第一控制资源集的第A个RB是第一控制资源集的RB索引为A-1的RB。
第一资源的位置可以是第一资源的第Z个RB,或是第一资源的第Z个RB的起始子 载波,或是第一资源的中心频率(或中心子载波),或是第一资源的的Z个RB的中心频率(或中心子载波),或是第一资源的第Z个RB的最后一个子载波。
其中Z是正整数。例如Z=1,或Z=L,或Z=L/2,或Z=L/2+1。其中,L是第一资源的大小,且以RB为单位。其中,L是第一资源包含的RB个数,X是第一控制资源集包含的RB个数。
即第一资源的位置可以是第一资源的第1个RB,也可以是第一资源的第1个RB的起始子载波或中心子载波或最后一个子载波。例如,第一资源的第Z个RB是第一资源的RB索引为Z-1的RB。
第一偏移量是指第一控制资源集的位置与第一资源的位置之间的间隔,有两种可能:偏移量为0,即选取的第一控制资源集的位置参考点(即,第一位置)与选取的第一资源的位置参考点(即,第二位置)对齐,比如,可以是第一控制资源的第1个RB和第一资源的第2个RB的位置相同;偏移量不为0,即选取的第一控制资源集的位置与选取的第一资源的位置不对齐,比如,可以是第一控制资源的第1个RB和第一资源的第6个RB的位置不同。
应理解,偏移量的数值取决于第一控制资源集位置和第一资源的位置的选择。比如,当第一控制资源和第一资源的中心频率相同,大小相同,选择第一控制资源集的中心频率为第一控制资源集的位置,选择第一资源的中心频率为第一资源的位置时,则偏移量为0;又比如,选择第一控制资源集的第3个RB为第一控制资源集的位置,选择第一资源的第1个RB为第一资源的位置时,偏移量则不为0。
应理解,本文中的位置可以是位置参考点的统称。比如,第一控制资源集的位置可以是第一控制资源集的位置参考点的统称,第一资源的位置可以是第一资源的位置参考点的统称。
应理解,第一控制资源集的位置参考点的选取与第一资源的位置参考点的选取可以不同,即Z和A可以不同,也即,第一控制资源集的位置可以是第一控制资源集的第1个RB,第一资源的位置可以是第一资源的第3个RB。本申请对此不作限定。例如,Z可以等于A。例如,Z=A=1。但不限定的是,Z也可以不等于A。例如,Z=X,A=1。
第一控制资源集的频率范围与第一资源的频率范围在频率上对应的总频率范围小于或等于第一终端设备的最大信道带宽则可以表述为,第一控制资源集的起始位置(可以是第一个RB)与第一资源的结束位置(可以是最后一个RB)之间的带宽小于或等于第一终端设备支持的最大带宽,或者,第一控制资源集的结束位置(可以是最后一个RB)与第一资源的起始位置(可以是第一个RB)之间的带宽小于或等于第一终端设备支持的最大带宽。
应理解,第一控制资源集可以与第一资源重叠,也可以不重叠,第一控制资源集可以是CORESET 0。
第一偏移量可以定义为第一控制资源集的第一位置与第一资源的第二位置的之间的间隔。例如,第一偏移量为N个RB。如图3所述,第一控制资源集的第一位置为第1个RB,第一资源的第二位置为第1个RB,即Z=A=1。
特别地,第一偏移量为0时,可以直接通过第一控制资源集的第一位置,确定第一资源的第二位置的位置。第二位置的计算方式则可以是:第二位置的位置=第一位置的位置 +第一偏移量N。
具体地,N可以是预定义的,或者N是网络设备通过第一信令给第一终端设备指示的,本申请对此不作限定。示例地,第一信令可以是SIB1。
N的取值可以根据第一控制资源集的大小、第一带宽的大小、第一终端设备支持的最大信道带宽中的至少一种确定所述第一偏移量。
示例地,N可以是预定义的整数,包括0,正整数,负整数。
以第一控制资源集的第一位置是第一控制资源集的第1个RB,第一资源的第二位置是第一资源的第1个RB为例。
N的值等于0(如图3中的(a))。第一控制资源集的第一个RB与第一资源的第一个RB的偏移量为0,第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,第一资源的最后一个RB的位置在频率上的上界,从网络设备的角度来说有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度来说,可以避免调频引起的终端设备功耗的增加。
例如,N的值等于X-L(如图3中的(c))。第一控制资源集的最后一个RB与第一资源的最后一个RB在频率的位置相同时,偏移量为X-L,第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,X-L对应第一资源的第一个RB的位置在频率上的下界,从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。
例如,N的值等于(X-L)/2或floor((X-L)/2)(如图3中的(b))。第一控制资源集的中心RB与第一资源的中心RB在频率的位置相同时,偏移量为(X-L)/2或floor((X-L)/2),第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,第一控制资源集的位置在第一资源的中心,从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。
例如,N的值等于-L(如图3中的(d))。第一控制资源集的第一个RB与第一资源的最后一个RB相邻时,偏移量为N=-L,第一资源的频率范围在频率上与第一控制资源集不重叠的情况下,N=-L对应第一资源的位置的下界,从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。同时,第一资源的频率范围在频率上与第一控制资源集不重叠,能够避免第一控制资源集的资源的分配受限或使用拥塞的问题
例如,N的值等于X(如图3中的(e))。第一控制资源集的最后一个RB与第一资源的第一个RB相邻时,偏移量为N=-L,第一资源的频率范围在频率上与第一控制资源集不重叠的情况下,N=X对应第一资源的位置的上界,从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。同时,第一资源的频率范围在频率上与第一控制资源集不重叠,能够避免第一控制资源集的资源的分配受限或使用拥塞的问题
例如,N的值也可以是任意的正整数或负整数,例如,N的值能够被2的幂次方整除。
示例地,N可以是预定义的整数,包括0,正整数,负整数。N的值与第一集合中的一个元素的值相同。第一集合至少包括{0,X-L,(X-L)/2,-L,X}中的一个或多个值,或第一集合至少包括{0,X-L,floor((X-L)/2),-L,X}中的一个或多个值。
例如第一集合包括{0,X-L)}。N可以的取值范围为该集合时,第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,第一集合是能够覆盖的最大频率范围的。从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。
例如,第一集合包括{0,(X-L)/2,(X-L)},或第一集合包括{0,floor((X-L)/2),(X-L)}。N可以的取值范围为该集合时,第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,第一集合是能够覆盖的最大频率范围的。从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。
例如,第一集合包括{0,(X-L)/2,(X-L),X},或第一集合包括{0,floor((X-L)/2),(X-L),X}。例如,第一集合包括{0,(X-L)/2,(X-L),-L},或第一集合包括{0,floor((X-L)/2),(X-L),-L}。例如,第一集合包括{0,(X-L)/2,(X-L),X,-L},或第一集合包括{0,floor((X-L)/2),(X-L),X,-L}。N可以的取值范围为该集合时,第一集合中的N的值满足:第一资源的频率范围在频率上包括第一控制资源集的频率范围,和第一资源的频率范围在频率上包括第一控制资源集的频率范围。网络设备有更多的资源用于信息传输,能够获得最大的调度灵活性。从终端设备的角度,避免调频引起的终端设备功耗的增加。
示例地,N可以是网络设备通过第一信令给第一终端设备指示的。网络设备通过第一信令在K个取值中指示N的值。K个取值中的至少T个取值与第一集合中的T个元素的值相同,其中K是正整数,T是正整数,K大于或等于T。第一集合至少包括{0,X-L,(X-L)/2,-L,X}中的一个或多个值,或第一集合至少包括{0,X-L,floor((X-L)/2),-L,X}中的一个或多个值。应理解,K个取值中的K-T个元素的值,可以与{0,X-L,(X-L)/2,-L,X}或{0,X-L,floor((X-L)/2),-L,X}中的值不同。例如,K-T个元素的值可以是2的幂次方的正整数倍,或可以是2的幂次方的负整数倍。应理解,K等于T时,K个取值都是{0,X-L,(X-L)/2,-L,X}中的值,或K个取值都是{0,X-L,floor((X-L)/2),-L,X}中的值。
也即,指示给第一终端设备的集合中至少要包括一个N可以取到的值。
示例地,N是网络设备通过第一信令给第一终端设备指示的。网络设备通过第一信令在第二集合中指示N的值。第二集合至少包括{0,X-L,(X-L)/2,-L,X}中的一个或多个值,或第二集合至少包括{0,X-L,floor((X-L)/2),-L,X}中的一个或多个值。例如,第二集合包括{0,X-L};网络设备采用1比特在第二集合中指示N的值。例如,第二集合包括{0,X-L,(X-L)/2},或第二集合包括{0,X-L,floor((X-L)/2)};网络设备采用2比特在第二集合中指示N的值。例如,第二集合包括{0,X-L,(X-L)/2,-L},或第二集合包括{0,X-L,floor((X-L)/2),-L};网络设备采用2比特在第二集合中指示N的值。例如,第二集合包括{0,X-L,(X-L)/2,-L,X},或第二集合包括{0,X-L,floor((X-L)/2),-L,X};网络设备采用3比特在第二集合中指示N的值。应理解,上述N的取值或取值集合可以是网络设备通过信令指示给第一终端设备的,也可以是预定义的。若第一终端设备没有收到第一信令,则采用默认的N的值,默认的N的值可以是0,X-L,(X-L)/2,floor((X-L)/2),-L,X中的一个值。
应理解,第一信令可以指示N的值,也可以指示N的值对应的索引,也可以指示N的值组成的表格中的行的索引(N的值组成的表格中,行不同时N的值不同),或是列的 索引(N的值组成的表格中,行不同时N的值不同)。N的值组成的表格中的元素为以上N的取值,或者第一信令可以指示N的取值集合组成的表格中集合对应的索引,本申请对此不作限定。
一个可能的实施方式,第一偏移量与参考子载波间隔相关,第一偏移量可以根据参考子载波间隔确定。
参考子载波间隔可以是第一控制资源集的子载波间隔,或者可以是第一控制资源集和第一资源的子载波间隔中较小的子载波间隔,或者可以是第一控制资源集和第一资源的子载波间隔中较大的子载波间隔。
示例地,第一控制资源集的子载波间隔小于或等于第一资源的子载波间隔,例如,第一资源的子载波间隔为第一控制资源集的子载波间隔的2的n次方。若参考子载波间隔为第一控制资源集的子载波间隔,则N的值包括0,正整数,负整数;例如,N的值等于0(如下图4(a))。N的值等于X-2 n*L(如图4中的(c));例如,N的值等于(X-2 n*L)/2(如图4中的(b));例如,N的值等于-2 n*L(如图4中的(d));例如,N的值等于X(如图4中的(e))。
若参考子载波间隔为第一资源的子载波间隔,N的值可以是0,可以是正整数,可以是负整数;例如,N的值等于0(如图5中的(a))。例如,N的值等于2 -n*X-L(如图5中的(c))。例如,N的值等于(2 -n*X-L)/2(如图5中的(b))。例如,N的值等于-L(如图5中的(d))。例如,N的值等于2 -n*X(如图5中的(e))。
示例地,第一资源的子载波间隔小于或等于第一控制资源集的子载波间隔。例如,第一控制资源集的子载波间隔为第一资源的子载波间隔的2的n次方。
若参考子载波间隔为第一控制资源集的子载波间隔,则N的值包括0,正整数,负整数;例如,N的值等于0(如下图5中的(a));例如,N的值等于2 -n*X-L(如图5中的(c));例如,N的值等于(2 -n*X-L)/2(如图5中的(b));例如,N的值等于-L(如图5中的(d));例如,N的值等于2- n*X(如图5中的(e))。
若参考子载波间隔为第一资源的子载波间隔,则N的值包括0,正整数,负整数;例如,N的值等于0(如图4中的(a))。N的值等于X-2 n*L(如图4中的(c));例如,N的值等于(X-2 n*L)/2(如图4中的(b));例如,N的值等于-2 n*L(如图4中的(d));例如,N的值等于X(如图4中的(e))。
应理解,N的值可以是预定义的,也可以是网络设备指示的,指示方法与前文类似,此处不再赘述。
又一可能的实施方式,第一终端设备根据第一控制资源集的位置和第一关联关系确定第一资源的位置。第一关联关系指的是第一控制资源集的位置和与之对应的第一偏移量的关联关系。
应理解,第一控制资源集的位置和第一关联关系可以是网络设备通过信令指示给第一终端设备的,若第一终端设备没有收到第一信令,则采用默认的N的值,默认的N的值是0,X-L,(X-L)/2,floor((X-L)/2),-L,X中的一个值。
第一控制资源集的位置和第一关联关系也可以是预定义的。
第一终端设备确定第一控制资源集的位置,可以根据第一关联关系确定第一资源集的位置。
应理解,第一关联关系可以包括第一偏移量的取值,也可以包括第一偏移量的取值集 合,也可以包括参考子载波间隔时第一偏移量的取值或取值集合。
第一资源的频率范围与第一控制资源集的频率范围在频率上对应的频率范围不超过第一终端设备支持的最大信道带宽,对于没有能力同时进行下行接收和上行传输的UE,能够避免频繁的上行发送和下行接收之间频率调谐,和/或避免频繁的下行接收和上行发送之间频率调谐,进而提升数据传输可用的符号、提升资源利用效率、避免增加终端设备的功耗和降低终端设备实现的复杂度。本申请以RB的形式指示偏移量,第一终端设备能够直接通过RB索引或偏移RB数量确定第一资源的位置,终端实现更加简单。第一资源的频率范围与第一控制资源集的频率范围在频率上对应的频率范围不超过第一终端设备的最大信道带宽,也可以理解为:第一控制资源集的中心频率为中心所覆盖的第一终端设备支持的最大信道带宽的频率范围,包括第一资源的频率范围。
又一种可能的实施方式,第一终端设备根据第一控制资源集的位置确定第一资源的位置,具体可以包括:第一终端设备根据第一控制资源集的位置和第二关联关系确定第一资源的位置,第二关联关系可以是第一控制资源集的位置与第一资源的位置对齐。
示例地,第二关联关系可以是关联关系1:第一控制资源集的第1个RB的位置和第一资源的第1个RB的位置相同,或,预定义的关联关系是第一控制资源集的第1个RB索引的位置和第一资源的第1个RB索引的位置相同,或,预定义的关联关系是第一控制资源集的第1个RB的起始子载波的位置和第一资源的第1个RB的起始子载波的位置相同,如图3中的(a)所述,图3中的(a)以CORESET 0和initial UL BWP为例,解释了关联关系1。第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,第一资源的最后一个RB的位置在频率上的上界,从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加
示例地,第二关联关系可以是关联关系2:第一控制资源集的中心频率和第一资源的中心频率(中心子载波)的位置相同,或,第一控制资源集的第X/2个RB和第一资源的第L/2个RB的位置相同,或,第一控制资源集的第X/2个RB的中心频率(中心子载波)和第一资源的第L/2个RB的中心频率(中心子载波)位置相同。图3中的(b)以CORESET 0和initial UL BWP为例,解释了关联关系2。第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,第一控制资源集的位置在第一资源的中心,从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。
示例地,第二关联关系可以是关联关系3:第一控制资源集的索引最大的RB和第一资源的索引最大的RB的位置相同,或,第一控制资源集的第X个RB和第一资源的第L个RB的位置相同。图3(c)以CORESET 0和initial UL BWP为例,解释了关联关系3。第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,第一资源的第一个RB的位置在频率上的下界,从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。
示例地,第二关联关系可以是关联关系是关联关系4:第一控制资源集的位置与第一资源的位置之间间隔N个RB,N的值为0。例如,第一控制资源集的第1个RB的位置与第一资源的第L个RB相邻。图3中的(d)以CORESET 0和initial UL BWP为例,解释了关联关系4。第一资源的频率范围在频率上与第一控制资源集不重叠的情况下,第一资 源的位置的下界,从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。同时,第一资源的频率范围在频率上与第一控制资源集不重叠,能够避免第一控制资源集的资源的分配受限或使用拥塞的问题。
示例地,第二关联关系可以是关联关系是关联关系5:第一控制资源集的位置与第一资源的位置之间间隔N个RB,N的值为0。例如,第一控制资源集的第X个RB的位置与第一资源的第1个RB相邻。图3中的(e)以CORESET 0和initial UL BWP为例,解释了关联关系5。第一资源的频率范围在频率上与第一控制资源集不重叠的情况下,第一资源的位置的上界,从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。同时,第一资源的频率范围在频率上与第一控制资源集不重叠,能够避免第一控制资源集的资源的分配受限或使用拥塞的问题。
应理解,上述第二关联关系可以是预定义的,也可以是网络设备通过信令指示的,信令可以是SIB1。
有一种可能的实施方式,网络设备通过信令指示第二关联关系。
网络设备可以通过1比特指示关联关系。例如,网络设备在关联关系1和关联关系3中指示第二关联关系。或者,网络设备在关联关系4和关联关系5中指示第二关联关系。第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,第一集合是能够覆盖的最大频率范围的。从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。
例如,网络设备通过2比特指示关联关系。例如,网络设备在关联关系1,2,3中指示第一关联关系。第一资源的频率范围在频率上包括第一控制资源集的频率范围的情况下,第一集合是能够覆盖的最大频率范围的。从网络设备的角度有更多的资源用于信息传输,增加调度的灵活性,从终端设备的角度,避免调频引起的终端设备功耗的增加。
例如,网络设备通过2比特指示关联关系。例如,网络设备在关联关系1,2,3,4中指示第一关联关系,或关联关系1,2,3,5中指示第二关联关系。第一资源的频率范围在频率上包括第一控制资源集的频率范围,和第一资源的频率范围在频率上包括第一控制资源集的频率范围。网络设备有更多的资源用于信息传输,能够获得最大的调度灵活性。从终端设备的角度,避免调频引起的终端设备功耗的增加。
例如,网络设备通过3比特指示关联关系。例如,网络设备在关联关系1,2,3,4,5中指示第二关联关系。第一资源的频率范围在频率上包括第一控制资源集的频率范围,和第一资源的频率范围在频率上包括第一控制资源集的频率范围。网络设备有更多的资源用于信息传输,能够获得最大的调度灵活性。从终端设备的角度,避免调频引起的终端设备功耗的增加。
第一终端设备接收到网络设备的指示后,可以根据第二关联关系确定第一资源的位置。
又一可能的实施方式,第一终端设备从多个候选资源的位置中确定第一资源的位置,也可以理解为终端设备从多个候选资源中确定第一资源。
从网络设备的角度,网络设备可以为第一终端设备配置多个候选带宽,有更多的资源 可以用于下行数据传输,从而提高资源分配的灵活性,避免资源拥塞。从终端设备的角度,终端设备有多个候选带宽可用于传输信息,终端设备可以根据规则来确定其中一个第一资源的位置,提高终端设备传输信息的灵活性。从终端设备来看,第一类型终端设备中的终端设备可以划分为多个子类型,第一终端设备属于其中一个子类型,不同的子类型对应的候选资源不同,对应关系可以是预定义的或网络设备通过第三信令指示的。例如,第一类型终端设备划分为2个子类型,子类型1的终端设备对应候选资源1,子类型2的终端设备对应候选资源2。
示例地,根据所述第一控制资源集的位置和M个偏移量确定M个候选资源的位置。M个偏移量与所述M个候选资源对应。M个候选资源的索引可以0,1,……M-1,M个偏移量的索引为0,1,……,M-1。第m个候选资源对应的偏移量N m-1,其中N m-1是第一控制资源集的位置与第m个候选资源的位置之间的RB数,其中m是正整数,1<=m<=M。M个候选带宽包括至少两个第二资源,两个第二资源的大小相同且N不同。例如,M个候选带宽包括3个第二资源,索引为1的第二资源的size为5MHz或5MHz对应的RB数,索引为2的第二资源的大小为20MHz或20MHz对应的RB数,索引为3的第二资源的大小为20MHz或20MHz对应的RB数,索引为1的第二资源的偏移量为N 1,索引为2的第二资源的偏移量为N 2,索引为3的第二资源的偏移量为N 3,N 2不等于N 3。大小相同的第二资源,N 2和N 3可以对应不同的频率位置,从网络侧来看,有更多的资源可以用于传输信息,从而提高资源分配的灵活性。
第一终端设备接收网络设备指示的第二信令。在一种可选的方式中,第二信令指示M的值。M个候选资源中的每个候选资源的大小为预定义的,且M个候选资源中的每个候选资源的大小等于或小于第一终端设备支持的最大信道带宽。例如,M个候选资源中的每个候选资源的大小为5MHz,或10MHz,或20MHz,或5MHz对应的RB数,或10MHz对应的RB数,或20MHz对应的RB数。在另一种可选的方式中,第二信令指示M的值和M个候选资源的大小。
在一种可能的方式中,M个偏移量可以是第一信令指示的。在另一种可能方式中,M个偏移量中至少有一个偏移量的值是第一信令指示的,M个偏移量中至少有一个偏移量的值是预定义的。例如,M个偏移量为3个偏移量,其中1个偏移量为第一信令指示的,其中2个偏移量为预定义的。在另一种可能方式中,或者M个偏移量都是预定义的。第m个候选带宽对应的偏移量N m-1,其中N m-1是第一控制资源集的位置与第m个候选带宽的位置之间的RB数,1<=m<=M。相同大小的候选带宽可对应不同的偏移量,候选带宽的位置不同,有利于更加灵活的资源分配,降低资源拥塞。
N的确定方式以及N可能的取值可以参见上述实施例中的方法,在此不再赘述。
在一种可能的方式中,第一终端设备接收网络发送的第三信令,第三信令指示第一终端设备在M个候选资源中确定第一资源,第一终端设备根据第一控制资源集的位置和第一资源对应的偏移量,确定第一终端设备所用的第一资源的位置。在另一种可能的方式中,第一终端设备根据预定义的规则,在M个候选资源中确定第一资源,第一终端设备根据第一控制资源集的位置和第一资源对应的偏移量,确定第一终端设备第一资源的位置。
示例地,还可以根据第一控制资源集的位置和Y个偏移量确定M个候选资源的位置。Y个偏移量与M个候选资源对应。M个候选资源的索引可以为0,1,……M-1,Y个偏 移量的索引可以0,1,……,Y-1。M个候选资源包括至少两个大小不同但N相同的候选资源,也可以包括至少两个大小不同但偏移量N相同的候选资源。例如,M个候选资源包括3个索引为1的候选资源,这3个资源的大小为5MHz或5MHz对应的RB数,索引为2的候选资源的大小为20MHz或20MHz对应的RB数,索引为3的候选资源的大小为20MHz或20MHz对应的RB数,索引为1的候选资源的偏移量为N 1,索引为2的第三带宽的偏移量为N 1,索引为3的第三资源的偏移量为N 2,N 1不等于N 2。对于大小不同的但具有相同的N值的候选资源,不同场景下,第一终端设备可以通过索引为1的候选资源,也可以索引为2的候选资源传输信息,大小较小的候选资源可以用于第一终端设备需要节省功耗的场景,有利于降低第一终端设备的功耗。位置不同但大小相同,或者大小不同但位置相同的候选资源都可以作为选择,扩大了第一资源的选择范围,有利于资源的灵活分配,降低资源拥塞。
第一终端设备接收网络设备指示的第二信令。在一种可选的方式中,第二信令指示M的值。M个候选资源中的每个候选资源的大小为预定义的,且M个候选资源中的每个候选资源的大小等于或小于第一终端设备支持的最大信道资源。例如,M个候选资源中的每个候选资源的大小为5MHz,或10MHz,或20MHz,或5MHz对应的RB数,或10MHz对应的RB数,或20MHz对应的RB数。在另一种可选的方式中,第二信令指示M的值和M个候选资源的大小。
在一种可能的方式中,Y个偏移量中的至少一个偏移量对应多于一个候选资源,也即大小不同的候选带宽可以有相同的位置。例如,Y个偏移量中的1个偏移量对应2个候选资源,则2个候选资源的偏移量为相同的,候选资源的大小可以不同。Y个偏移量的值是第一信令指示的。在另一种可能方式中,Y个偏移量中至少有一个偏移量的值是第一信令指示的,Y个偏移量中至少有一个偏移量的值是预定义的。例如,Y个偏移量为3个偏移量,其中1个偏移量为第一信令指示的,其中2个偏移量为预定义的。在另一种可能方式中,或者Y个偏移量都是预定义的。N的取值可以通过上述方法确定或指示,在此不再赘述。
在一种可能的方式中,第一终端设备接收网络指示的第三信令,第三信令指示在M个候选资源中的第一资源,第一终端设备根据第一控制资源集的位置和第一资源对应的偏移量,确定第一终端设备第一资源的位置。在另一种可能的方式中,第一终端设备根据预定义的规则,在M个候选资源中确定第一资源,第一终端设备根据第一控制资源集的位置和第一资源对应的偏移量,确定第一资源的位置。
第一信令,第二信令,第三信令可以是同一个信令中的不同字段;或者,第一信令,第二信令,第三信令是不同的信令,比如,第一信令可以是SIB1,调度SIB1的PDCCH,调度Msg2的PDCCH,Msg2,调度Msg3的PDCCH,调度Msg4的PDCCH。第二信令可以是SIB1,调度SIB1的PDCCH,调度Msg2的PDCCH,Msg2,调度Msg3的PDCCH,调度Msg4的PDCCH。第三信令可以是SIB1,调度SIB1的PDCCH,调度Msg2的PDCCH,Msg2,调度Msg3的PDCCH,调度Msg4的PDCCH。;或者,第一信令,第二信令,第三信令中的至少两个信令是不同的信令,例如,第一信令和第二信令为SIB1,第三信令为调度Msg2的PDCCH或Msg2;第三信令可以指示接收Msg2和/或Msg4的第一资源,和/或发送Msg3的第一资源。或者第一信令,第二信令,第三信令中的至少两个信令是同 一个信令中的不同字段,例如,第一信令和第二信令为SIB1,第三信令为调度Msg4的PDCCH;第三信令可以指示接收Msg4的第一资源。本申请对此不作限定。
另外,由于Msg4是终端设备专用的信息,网络设备会向每个终端设备发送Msg4,占用的资源较多,因此网络设备指示给终端设备接收Msg4的资源或资源位置,能够避免资源拥塞。
应理解,候选带宽与候选资源的含义相同。
一种可能的实施方式,多个候选资源中的每个候选资源的大小大于或等于第一控制资源的大小,或者多个候选资源中的每个候选资源的频率范围都包括第一控制资源的频率范围,多个候选资源可以是初始DL BWP,第一控制资源可以是CORESET 0,如图6中的(a)所示,多个候选资源可以在频率范围上包括第一控制资源的频率范围,也可以如图6中的(b)所示,多个候选资源可以在频率对应的位置范围包含第一控制资源的频率对应的位置范围。从网络设备的角度,网络设备可以为第一终端设备配置多个候选带宽,有更多的资源可以用于下行数据传输,从而提高资源分配的灵活性,避免资源拥塞。从终端设备的角度,终端设备有多个候选带宽可用于传输信息,终端设备可以根据规则来确定其中一个第一资源的位置,提高终端设备传输信息的灵活性。
第一终端设备确定第一资源的位置后,通过第一资源接收下行信息。第一控制资源可以是CORESET 0,第一资源可以是初始DL BWP。
一种可能的实施方式,CORESET 0包含在初始DL BWP中。UE的RRC链接还没有建立时,UE需要在CORESET 0内接收:调度SIB1的PDCCH,承载SIB1的PDSCH,调度SI的PDCCH,承载SI的PDSCH,调度Msg2的PDCCH,承载Msg2的PDSCH,调度Msg3的PDCCH,调度Msg4的PDCCH,承载Msg4的PDSCH。因为很多信道都在CORESET 0内传输,CORESET 0的资源占用比较多,可能会导致CORESET 0资源的分配受限或使用拥塞。特别是UE数量多的时候,更加剧了CORESET 0资源的分配受限或使用拥塞。
如果下行数据不局限在CORESET 0内传输,而是在初始DL BWP中传输,这样可以有更多的资源用于下行数据的传输,这样能减轻CORESET 0的资源占用和降低拥塞。从网络侧来看,有更多的资源可以用于下行数据传输,从而提高资源分配的灵活性。下行数据可以是系统信息、随机接入响应Msg2、竞争解决消息Msg4、寻呼消息中的一种或多种。对于控制信道,UE仍在CORESET 0内进行控制信道的接收。
应理解,可以在第一资源上接收下行数据,或者,可以在第一资源上接收下行控制信息,或者,可以在第一资源上既接收下行数据也接收下行控制信息。下行控制信息可以包括用于调度系统信息、随机接入响应消息、竞争解决消息、寻呼消息的控制信息的一种或多种。下行数据可以包括承载系统信息块1的PDSCH,承载系统信息的PDSCH,承载Msg2的PDSCH,承载Msg4的PDSCH的一种或多种。
一种可能的实施方式,没有建立无线资源控制RRC连接时,在第一资源内接收下行数据和下行控制信息,其中第一资源是初始下行BWP。
另一种可能的实施方式,第一资源与第一控制资源集没有重叠的资源。
另一种可能的实施方式,没有建立无线资源控制RRC连接时,在第一控制资源集内接收下行控制信息,在第二带宽内接收数据,其中第二带宽包括的RB是所述第一资源包括的RB中除去第一控制资源集包括的RB外的RB,如图7所示,即第一资源与第一控 制资源集有重叠部分,在非重叠部分接收数据。
另一种可能的实施方式,没有建立无线资源控制RRC连接时,在第一控制资源集内接收下行控制信息,在第一资源内或第二带宽内接收数据。
示例地,可以通过预定义第一资源的带宽的门限值或者按照传输内容确定在第一资源或第二带宽内接收信息。
一种可能的实施方式,下行信息以数据为例,可以通过预定义第一控制资源集的带宽的门限值确定在第一资源或第二带宽内接收数据。示例地,第一控制资源集的带宽大于或等于门限值时,第一终端设备在第一资源内接收数据;第一控制资源集的带宽小于门限值时,在第二带宽内接收数据。
比如,门限值为10MHz或为10MHz对应的RB数。当第一控制资源集的带宽大于或等于门限值时,第二带宽的频率范围较小,限制数据的资源分配,因此在第一资源内接收数据;当第一控制资源集的带宽小于门限值时,第二带宽的频率范围较大,因此在第二带宽内接收数据。
通过传输内容确定在第一资源或第二带宽内接收下行信息。例如,在第一资源内接收SIB1和/或Msg2,在第二带宽内接收Msg4。由于Msg4为终端设备专用的信息,网络设备会每个终端设备发送Msg4,占用的资源较多,因此网络设备在第二带宽内发送Msg4,第一终端设备在第二带宽内接收Msg4,能够避免第一控制资源集的资源拥塞。
示例地,还可以通过信令方式指示在第一资源或第一控制资源集接收下行信息的频率范围。例如,在SIB1指示SIB1之后的传输的资源范围,或在本次传输对应的下行控制信息中指示本次传输的资源范围。
另一种可能的实施方式,下行数据放在第一资源中接收,需考虑在第一资源的频率范围内指示下行信息占用的资源。
第一资源的带宽不超过第一终端设备的最大信道带宽,以第一终端设备的最大信道带宽为20MHz为例,如下表1和表2所示,表格第一行是CORESET 0的子载波间隔,表格第二行为第一终端设备的最大信道带宽对应不同的子载波间隔的带宽(RB数)以及频率资源分配需要的比特数,表格第三行为对应子载波间隔下,CORESET 0的带宽(RB数)以及现有协议中规定的比特数,表格第四行为本实施例中额外需要的最大比特数,额外需要的最大比特数的计算方法可以是第二行比特数减去第三行的比特数。
表1
Figure PCTCN2022077409-appb-000001
表2
Figure PCTCN2022077409-appb-000002
示例地,利用不同加扰方式下的DCI的可用比特来承载需要添加的比特。不同加扰方式的DCI包括:P-RNTI加扰的DCI;SI-RNTI加扰的DCI;RA-RNTI加扰的DCI;TC-RNTI加扰的DCI。
不同加扰方式的DCI的可用比特情况:P-RNTI加扰的DCI有6比特空闲;SI-RNTI加扰的DCI有15比特可用;RA-RNTI加扰的DCI有16比特可用;TC-RNTI加扰的DCI有2比特可用。
可以利用不同加扰方式下的DCI的可用比特,以及预定义的资源分配粒度分配下行数据的资源。
示例地,预定义的资源分配粒度可以是N个RB,N为正整数。预定义的资源分配粒度可以是根据可用比特和/或最多需要添加的比特数确定的。例如,最多需要添加的比特数4对应的资源分配粒度可以是4个RB。
本申请实施例能够避免频繁的上行发送和下行接收之间的频率调谐,和/或避免频繁的下行接收和上行发送之间频率调谐,增加数据传输可用的符号、提升资源利用效率、降低UE实现的复杂度,降低了UE的功耗。网络设备可以配置多个DL/UL BWP,每个DL/UL BWP都包括CORESET 0,从网络侧来看,有更多的资源可以用于下行/上行传输,从而提高资源分配的灵活性。
本申请另一个实施例,提出了一种传输信息的方法,如图8所示
801:第一终端设备在第一上行带宽中发送第一上行信息;
802:第一终端设备在第一下行带宽中接收第一下行信息,所述第一上行信息的发送立即先于所述第一下行信息的接收;立即先于是指在第一下行信息与第一上行信息之间没有其他的上下行信息。
发送所述第一上行信息的最后时间单元为时间单元n1,监测所述第一下行信息的起始时间单元是时间单元m1,如图9所示,所述时间单元n1和所述时间单元m1之间最少间隔k个时间单元,所述k大于w,所述w是第二终端设备发送第二上行信息的最后时间单元n2和监测第二下行信息的起始时间单元m2之间的最小时间单元的个数,且第二上行信息的发送立即先于所述第二下行信息的接收,所述m1,m2,n1,n2,k,w都是正整数,所述第一终端设备是第一类型终端设备,所述第二终端设备是第二类型终端设备。
第一上行带宽的频率范围与第一下行带宽的频率范围在频率上对应的频率范围超过UE的最大信道带宽。
应理解,第一终端设备可以通过UL BWP发送上行信息,可以通过CORESET a接收下行信息,示例地,CORESET a可以是CORESET 0。
应理解,第一上行信息的发送立即先于第一下行信息的接收是指:第一上行信息的发送和第一下行信息的接收之间没有其他上行信息的发送,也没有其他下行信息的接收;第二上行信息的发送立即先于所述第二下行信息的接收是指:第二下行信息的接收和第二上行信息的发送之间没有其他上行信息的发送,也没有其他下行信息的接收。
第一下行信息是第一上行信息后网络设备与第一终端设备之间交互的第一个信息;同理,第二上行信息是第二下行信息后网络设备与第一终端设备之间交互的第一个信息。
最后时间单元是指:上行信息的发送占用时间单元中的最后一个时间单元,或下行信息的接收占用的时间单元中的最后一个时间单元。
起始时间单元是指:上行信息的发送占用的时间单元中的第一个时间单元,或下行信息的接收占用的时间单元中的第一个时间单元。
第一上行带宽可以理解为UL BWP,第一下行带宽可以理解为DL BWP。UL/DL BWP的位置关系例如可以为:UL BWP与DL BWP包括CORESET 0,即UL BWP在频域上的的范围完全覆盖CORESET 0在频域上的范围。
具体地,第一终端设备在UL BWP发送上行信息后,若下一次传输为第一终端设备在CORESET 0接收下行信息,则第一终端设备在UL BWP发送上行信息后的至少第一时间间隔后,第一终端设备在CORESET 0接收下行信息。
其中,CORESET 0的频率范围与UL BWP的频率范围在频率上对应的频率范围超过第一终端设备的最大信道带宽。
具体的,时间单元可以是:子帧,无线帧,时隙,迷你时隙,符号,微秒,毫秒,秒中的任一种。例如,时间单元为符号,时间单元n是第一上行信息的最后一个符号n,时间单元m是第一下行信息的起始第一个符号m。例如,最少间隔k个时间单元可以是k个子帧,k个无线帧,k个时隙,k个迷你时隙,k个符号,k个微秒,k个毫秒,k个秒。例如,q个时间单元可以是q个子帧,q个无线帧,q个时隙,q个迷你时隙,q个符号,q个微秒,q个毫秒,q个秒。
示例地,第一上行信息可以是随机接入序列,第一下行信息可以是调度随机接入响应的DCI。发送随机接入序列的最后时间单元为时间单元n1,即发送随机接入序列所在的随机接入时机的最后一个符号为时间单元n1。监测第一下行信息的起始时间单元是时间单元m1,或监测调度随机接入响应的DCI的起始符号位置为时间单元m1,或高层配置的RAR窗的起始符号位置为时间单元m1。
如图10所示,时间单元n1和时间单元m1之间最少间隔k个时间单元,且k大于w。
应理解,监测第一下行信息的起始时间单元是开始检测调度随机接入响应的DCI的时间单元,此时可能还没有成功检测到该DCI。
在一种实施方式中,w是1个符号,k个时间单元的时间长度大于1个符号。
在一种实施方式中,k为在w的基础上增加2个符号,即k个时间单元为3个符号。或者,k为在w的基础上增加第一时间间隔在不同子载波间隔时对应的时间单元数。例如,第一时间间隔为140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。2个符号,或第一时间间隔用于第一终端设备从第一上行带宽调频到第一下行带宽,其中,调频是指对第一终端设备的工作频率进行调整;2个符号,或第一时间间隔能够保证第一终端设备在第一下 行带宽成功接收第一下行信息,避免由于第一下行信息接收失败造成的功率损耗。
在一种实施方式中,k为第一时间间隔在不同子载波间隔时对应的时间单元数。例如,第一时间间隔为140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。第一时间间隔用于第一终端设备从第一上行带宽调频到第一下行带宽,第一时间间隔能够保证第一终端设备在第一下行带宽成功接收第一下行信息,避免由于第一下行信息接收失败造成的功率损耗。
在一种实施方式中,k是第一时间间隔对应的时间单元数,且第一时间间隔中包括q个时间单元。例如,q个时间单元为2个符号,第一时间间隔为210微秒,210微秒包括q个时间单元。q个时间单元为从第一上行带宽切换到第一下行带宽引起的额外处理时间,通过定义第一时间间隔包括q个时间单元。第一时间间隔用于第一终端设备从第一上行带宽调频到第一下行带宽;第一时间间隔能够保证第一终端设备在第一下行带宽成功接收第一下行信息,避免由于第一下行信息接收失败造成的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔包括q个时间单元,来满足调频所需要的处理时间,调频时间中的一个时间,或来满足调频所需要的处理时间和调频时间的和。
在一种实施方式中,k是第一时间间隔在不同子载波间隔时对应的时间单元数与q个时间单元的和。例如,第一时间间隔是140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。q个时间单元为2个符号。第一时间间隔用于第一终端设备从第一上行带宽调频到第一下行带宽;第一时间间隔能够保证第一终端设备在第一下行带宽成功接收第一下行信息,避免由于第一下行信息接收失败造成的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔与q个时间单元的和,来满足调频所需要的调频时间和处理时间。
通过设置时间间隔k,且k大于w,避免第一终端设备因调频导致无法成功接收调度随机接入响应的DCI,引起随机接入过程失败,第一终端设备重新发起随机接入造成的功耗损失。
示例地,第一上行信息可以是随机接入响应消息中携带的上行授权调度的上行数据,即Msg3。本示例中Msg3可以是Msg3的第一次传输,或是重新传输(第一次传输失败进行的重新传输),或是重复传输(传输多次,内容相同)。以Msg3为例进行描述。第一下行信息可以是响应Msg3的竞争解决消息的调度信息DCI。发送Msg3的最后时间单元为时间单元n1,或发送Msg3的最后一个符号为时间单元n1,或承载Msg3的PUSCH的最后一个符号为时间单元n1。监测第一下行信息的起始时间单元是时间单元m1,或竞争解决定时器的启动的时间单元时时间单元m1。时间单元n1和时间单元m1之间最少间隔k个时间单元,且k大于w。
应理解,监测第一下行信息的起始时间单元是开始检测调度竞争解决消息的DCI的时间单元,此时可能还没有成功检测到该DCI。
在一种实施方式中,w是0个符号,k个时间单元的时间长度大于0个符号。
在一种实施方式中,k为在w的基础上增加2个符号,即k个时间单元为2个符号。在一种实施方式中,k为第一时间间隔在不同子载波间隔时对应的时间单元数。例如,第一时间间隔为140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。或者,k为在w的基础 上增加第一时间间隔在不同子载波间隔时对应的时间单元数。例如,第一时间间隔为140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。2个符号,或第一时间间隔用于第一终端设备从第一上行带宽调频到第一下行带宽;2个符号,或第一时间间隔能够保证第一终端设备在第一下行带宽成功接收第一下行信息,避免由于第一下行信息接收失败导致的重新发起接入过程带来的功率损耗。
在一种实施方式中,k是第一时间间隔对应的时间单元数,且第一时间间隔中包括q个时间单元。例如,q个时间单元为2个符号,第一时间间隔为210微秒,210微秒包括q个时间单元。q个时间单元为从第一上行带宽切换到第一下行带宽引起的额外处理时间,通过定义第一时间间隔包括q个时间单元。第一时间间隔用于第一终端设备从第一上行带宽调频到第一下行带宽;第一时间间隔能够保证第一终端设备在第一下行带宽成功接收第一下行信息,避免由于第一下行信息接收失败导致的重新发起接入过程带来的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔包括q个时间单元,来满足调频所需要的处理时间,调频时间中的一个时间,或来满足调频所需要的处理时间和调频时间的和。
在一种实施方式中,k是第一时间间隔在不同子载波间隔时对应的时间单元数与q个时间单元的和。例如,第一时间间隔是140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。q个时间单元为2个符号。第一时间间隔用于第一终端设备从第一上行带宽调频到第一下行带宽;第一时间间隔能够保证第一终端设备在第一下行带宽成功接收第一下行信息,避免由于第一下行信息接收失败导致的重新发起接入过程带来的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔与q个时间单元的和,来满足调频所需要的调频时间和处理时间。
通过设置时间间隔k,且k大于w,避免第一终端设备因调频导致无法成功接收竞争解决消息的调度信息DCI,引起随机接入过程失败,第一终端设备重新发起随机接入造成的功耗损失。
应理解,第一时间间隔是预定义的,或者,所述第一时间间隔是通过终端设备的能力上报的,或者,网络设备指示终端能力上报的多个第一时间间隔中的一个值。其中,所述第一时间间隔与第三集合中的一个元素的值相同;所述第三集合包括{35微秒,140微秒,210微秒,300微秒,500微秒}中的至少一个值,或者,所述第三集合包括{35微秒对应的符号数,140微秒对应的符号数,210微秒对应的符号数,300微秒对应的符号数,500微秒对应的符号数}中的至少一个值。
第一时间间隔可以是与第一终端设备绑定的,第一类型终端设备中的不同终端设备可以预定义不同的第一时间间隔的值。例如,第一终端设备可以上报两个值,网络设备通过信令指示所用的第一时间间隔。q个时间单元可以是预定义的正整数,例如,q可以是2。
应理解,相应的时间间隔在相邻的接收下行信息与发送上行信息之间也可以设置,如图12所示。
1:第一终端设备在第一下行带宽中接收第二下行信息。
2:第一终端设备在第一上行带宽中发送第二上行信息,第二下行信息的接收立即先 于第二上行信息的发送。立即先于是指第二下行信息与第一上行信息之间没有其他的上行或者下行信息。
示例地,第二下行信息可以是随机接入响应消息中携带的上行授权,第二上行信息可以是随机接入响应消息中携带的上行授权调度的上行数据,即Msg3。接收随机接入响应消息中携带的上行授权的最后时间单元为时间单元s1,即接收承载随机接入响应的PDSCH的最后一个符号为时间单元s1。发送Msg3的起始时间单元是时间单元t1,或发送承载Msg3的PUSCH的第一个符号为时间单元t1。时间单元s1和时间单元t1之间最少间隔r个时间单元,且r大于p。p=N T,1+N T,2+0.5ms,N T,1为PDSCH处理时间对应的时间长度,N T,2为PUSCH准备时间对应的时间长度。PDSCH处理时间和PUSCH准备时间可以是终端设备处理能力1或是终端设备处理能力2对应的处理时间。
在一种实施方式中,r个时间单元的时间长度大于p。
在一种实施方式中,r个时间单元为在p的基础上增加2个符号,或2个符号对应的时间长度。2个符号用于第一终端设备从第一下行带宽调频到第一上行带宽;2个符号能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。
在一种实施方式中,r为在p的基础上增加第一时间间隔,或增加第一时间间隔在不同子载波间隔时对应的时间单元数。例如,第一时间间隔为140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。第一时间间隔用于第一终端设备从第一下行带宽调频到第一上行带宽,第一时间间隔能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。
在一种实施方式中,r比p增加第一时间间隔对应的时间单元数,且第一时间间隔中包括q个时间单元。例如,q个时间单元为2个符号,第一时间间隔为210微秒,210微秒包括q个时间单元。q个时间单元为从第一上行带宽切换到第一下行带宽引起的额外处理时间,通过定义第一时间间隔包括q个时间单元。第一时间间隔用于第一终端设备从第一下行带宽调频到第一上行带宽;第一时间间隔能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔包括q个时间单元,来满足调频所需要的处理时间,调频时间中的一个时间,或来满足调频所需要的处理时间和调频时间的和。
在一种实施方式中,r比p增加第一时间间隔在不同子载波间隔时对应的时间单元数与q个时间单元的和。例如,第一时间间隔是140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。q个时间单元为2个符号。通过设置时间间隔r,且r大于p,避免第一终端设备因调频导致无法成功发送Msg3,引起随机接入过程失败,第一终端设备重新发起随机接入造成的功耗损失。第一时间间隔用于第一终端设备从第一下行带宽调频到第一上行带宽;第一时间间隔能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔与q个时间单元的和,来满足调频所需要的调频时 间和处理时间。
示例地,第二下行信息可以是第一下行控制信道,第二上行信息可以是下行控制信息调度的上行数据,例如Msg3的重传。接收第一下行控制信道的最后时间单元为时间单元s1,即第一下行控制信道的最后一个符号为时间单元s1。发送Msg3的重传的起始时间单元是时间单元t1,或发送承载Msg3的重传的PUSCH的第一个符号为时间单元t1。时间单元s1和时间单元t1之间最少间隔r个时间单元,且r大于p。p=N2,N2为PUSCH准备时间所需的符号数。PUSCH准备时间可以是第一终端设备处理能力1或第一终端设备处理能力2对应的处理时间。
在一种实施方式中,r个时间单元的时间长度大于p。
在一种实施方式中,r个时间单元为在p的基础上增加2个符号,或2个符号对应的时间长度。2个符号用于第一终端设备从第一下行带宽调频到第一上行带宽;2个符号能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。
在一种实施方式中,r个时间单元为在p的基础上增加第一时间间隔,或增加第一时间间隔在不同子载波间隔时对应的时间单元数。例如,第一时间间隔为140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。第一时间间隔用于第一终端设备从第一下行带宽调频到第一上行带宽;第一时间间隔能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。
在一种实施方式中,r比p增加第一时间间隔对应的时间单元数,且第一时间间隔中包括q个时间单元。例如,q个时间单元为2个符号,第一时间间隔为210微秒,210微秒包括q个时间单元。q个时间单元为从第一上行带宽切换到第一下行带宽引起的额外处理时间,通过定义第一时间间隔包括q个时间单元。第一时间间隔用于第一终端设备从第一下行带宽调频到第一上行带宽;第一时间间隔能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔包括q个时间单元,来满足调频所需要的处理时间,调频时间中的一个时间,或来满足调频所需要的处理时间和调频时间的和。
在一种实施方式中,r比p增加第一时间间隔在不同子载波间隔时对应的时间单元数与q个时间单元的和。例如,第一时间间隔是140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。q个时间单元为2个符号。通过设置时间间隔r,且r大于p,避免第一终端设备因调频导致无法成功发送Msg3的重传,引起随机接入过程失败,第一终端设备重新发起随机接入造成的功耗损失。第一时间间隔用于第一终端设备从第一下行带宽调频到第一上行带宽;第一时间间隔能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔与q个时间单元的和,来满足调频所需要的调频时间和处理时间。
示例地,第二下行信息可以是竞争解决消息,第二上行信息可以是竞争解决消息对应 的HARQ反馈。接收竞争解决消息的最后时间单元为时间单元s1,即承载竞争解决消息的PDSCH的最后一个符号为时间单元s1。发送承载HARQ反馈的PUCCH的第一个符号是时间单元t1。时间单元s1和时间单元t1之间最少间隔r个时间单元,且r大于p。p=N T,1+0.5ms,N T,1为PDSCH处理时间对应的时间长度。PUSCH准备时间可以是终端设备处理能力1或终端设备处理能力2对应的处理时间。
在一种实施方式中,r个时间单元的时间长度大于p。
在一种实施方式中,r个时间单元为在p的基础上增加2个符号,或2个符号对应的时间长度。2个符号用于第一终端设备从第一下行带宽调频到第一上行带宽;2个符号能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。
在一种实施方式中,r为在p的基础上增加第一时间间隔,或增加第一时间间隔在不同子载波间隔时对应的时间单元数。例如,第一时间间隔为140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。第一时间间隔用于第一终端设备从第一下行带宽调频到第一上行带宽;第一时间间隔能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。
在一种实施方式中,r为在p的基础上增加第一时间间隔对应的时间单元数,且第一时间间隔中包括q个时间单元。例如,q个时间单元为2个符号,第一时间间隔为210微秒,210微秒包括q个时间单元。q个时间单元为从第一上行带宽切换到第一下行带宽引起的额外处理时间,通过定义第一时间间隔包括q个时间单元。第一时间间隔用于第一终端设备从第一下行带宽调频到第一上行带宽;第一时间间隔能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔包括q个时间单元,来满足调频所需要的处理时间,调频时间中的一个时间,或来满足调频所需要的处理时间和调频时间的和。
在一种实施方式中,r比p增加第一时间间隔在不同子载波间隔时对应的时间单元数与q个时间单元的和。例如,第一时间间隔是140微秒,子载波间隔为15KHz时,140微秒对应的符号数为2个符号;例如,子载波间隔为30KHz时,140微秒对应的符号数为4个符号。q个时间单元为2个符号。通过设置时间间隔r,且r大于p,避免第一终端设备因调频导致无法成功反馈HARQ,引起随机接入过程失败,第一终端设备重新发起随机接入造成的功耗损失。第一时间间隔用于第一终端设备从第一下行带宽调频到第一上行带宽;第一时间间隔能够保证第一终端设备在第一上行带宽成功接收第二上行信息,避免由于第二上行信息接收失败导致的重新发起接入过程带来的功率损耗。q个时间单元用于调频所需的处理时间,通过第一时间间隔与q个时间单元的和,来满足调频所需要的调频时间和处理时间。
应理解,第一时间间隔可以是预定义的,或者,所述第一时间间隔可以是通过终端设备的能力上报的,或者,网络设备指示终端能力上报的多个第一时间间隔中的一个值。其中,所述第一时间间隔与第三集合中的一个元素的值相同;所述第三集合包括{35微秒,140微秒,210微秒,300微秒,500微秒}中的至少一个值,或者,所述第三集合包括{35 微秒对应的符号数,140微秒对应的符号数,210微秒对应的符号数,300微秒对应的符号数,500微秒对应的符号数}中的至少一个值。
第一时间间隔可以是与第一终端设备绑定的,第一类型终端设备中的不同终端设备可以预定义不同的第一时间间隔的值。例如,第一终端设备可以上报两个值,网络设备通过信令指示所用的第一时间间隔。q个时间单元可以是预定义的正整数,例如,q为2。
应理解,网络设备可以指示给终端设备第一时间间隔,或者指示一个附加时间间隔,第一时间间隔可以是w与附加时间间隔的和。
网络设备也可以指示具体的第一时间间隔或附加时间间隔的某一个值,也可以指示时间间隔或附加时间间隔的可选择的值,本申请对此不作限定。
应理解,第一终端设备第一时间间隔或第一时间间隔的可选范围,或者附加时间间隔或者附加时间间隔的可选范围,也可以是预定义的,本申请对此不作限定。
还应理解,在完整的随机接入流程中,各次切换均有一定的时间间隔,个时间间隔可以都是第一时间间隔,也可以是不同的时间间隔,本申请对此不作限定。
本实施例通过在协议中添加切换时间来保证第一终端设备能够成功接收下行信息以及发送上行信息,保证初始接入过程顺利完成,在一定程度上能够节约UE能耗。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图13所示,本申请实施例还提供一种装置1300用于实现上述方法中网络设备或终端设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置1300可以包括:处理单元1310和通信单元1320。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤。
以下,结合图13至图14详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1320中用于实现接收功能的器件视为接收单元,将通信单元1320中用于实现发送功能的器件视为发送单元,即通信单元1320包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或接口 电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
通信装置1300执行上面实施例中图2至12任一所示的流程中第一终端设备的功能时:
处理单元,用于根据网络设备的下行信息或者根据预定义确定传输信息的资源,
通信单元用于信息的收发。
通信装置1300执行上面实施例中图2至12任一所示的流程中网络设备的功能时:
处理单元,用于配置资源或根据预定义确定资源。
通信单元,用于收发信息。
以上只是示例,处理单元1310和通信单元1320还可以执行其他功能,更详细的描述可以参考图2至12所示的方法实施例或其他方法实施例中的相关描述,这里不加赘述。
如图14所示为本申请实施例提供的装置1400,图14所示的装置可以为图13所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图14仅示出了该通信装置的主要部件。
如图14所示,通信装置1400包括处理器1410和接口电路1420。处理器1410和接口电路1420之间相互耦合。可以理解的是,接口电路1420可以为收发器或输入输出接口。可选的,通信装置1400还可以包括存储器1430,用于存储处理器1410执行的指令或存储处理器1410运行指令所需要的输入数据或存储处理器1410运行指令后产生的数据。
当通信装置1400用于实现图2至12所示的方法时,处理器1410用于实现上述处理单元1310的功能,接口电路1420用于实现上述通信单元1320的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(FieldProgrammable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处 理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种信息传输的方法,其特征在于,包括:
    确定第一控制资源集的位置;
    根据所述第一控制资源集的位置和第一偏移量确定第一带宽的位置,其中所述第一带宽的大小等于或小于第一终端设备支持的最大信道带宽,所述第一偏移量为N个资源块RB,所述第一偏移量为第一控制资源集的第一位置与第一带宽的第二位置之间的间隔,所述N是预定义的整数,或者所述N是第一信令指示的值;
    在所述第一带宽内接收下行信息,和/或在所述第一带宽内发送上行信息。
  2. 根据权利要求1所述的方法,所述根据所述第一控制资源集的位置和第一偏移量确定第一带宽的位置包括:
    根据所述第一控制资源集的位置和M个偏移量确定M个候选带宽的位置,所述M个偏移量包括所述第一偏移量,所述M个偏移量与所述M个候选带宽对应;从所述M个候选带宽的位置中确定所述第一带宽的位置,其中,所述M是大于1的正整数;
    或者,
    根据所述第一控制资源集的位置和Y个偏移量确定M个候选带宽的位置,所述M个偏移量包括所述第一偏移量,所述Y个偏移量与所述M个候选带宽对应,其中Y小于M;从所述M个候选带宽的位置中确定所述第一带宽的位置,其中,所述M是大于1的正整数,所述Y是正整数。
  3. 根据权利要求2所述的方法,其特征在于,
    所述M个候选带宽包括至少两个第二带宽,所述至少两个第二带宽的大小相同且N不同,
    或者,
    所述M个候选带宽包括至少两个第三带宽,所述至少两个第三带宽的大小不同且N相同。
  4. 根据权利要求2或3所述的方法,其特征在于:
    所述M的值是所述第二信令指示的,
    所述M个偏移量是所述第一信令指示的,或者,所述M个偏移量中至少有一个偏移量的值是所述第一信令指示的,所述M个偏移量中至少有一个偏移量的值是预定义的,或者,所述M个偏移量是预定义的。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述从M个候选带宽的位置中确定所述第一带宽的位置包括:
    接收第三信令,所述第三信令用于指示所述M个候选带宽的位置中的所述第一带宽的位置,
    或者,
    根据预定义规则从所述M个候选带宽的位置中确定所述第一带宽的位置。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一偏移量是根据所述第一控制资源集的大小、所述第一带宽的大小、所述第一终端设备支持的最大信道带 宽中的至少一种确定的。
  7. 根据权利要求6所述的方法,其特征在于,所述第一偏移量的取值为以下中的一个:0,X-L,(X-L)/2,-L,X,
    其中,所述L是所述第一带宽包含的RB数,所述X是所述第一控制资源集包含的RB数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述在所述第一带宽内接收下行信息,所述方法包括:
    未建立无线资源控制RRC连接时,在所述第一带宽内接收下行数据和下行控制信息,其中所述第一带宽是初始下行BWP;
    或者,
    未建立无线资源控制RRC连接时,在所述第一控制资源集内接收下行控制信息,在第二带宽内接收第一信息,其中所述第二带宽包括的RB是所述第一带宽包括的RB除去所述第一控制资源集包括的RB外的RB,其中,所述第一信息是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,
    未建立RRC连接时,在所述第一控制资源集内接收下行控制信息,所述下行控制信息包括频率域资源分配字段,所述频率域资源分配字段的比特大小是ceil(L(L+1)/2)比特,其中ceil是向上取整,L是所述第一带宽包含的RB数,在所述第一带宽内接收第一信息,其中,所述第一信息是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
  10. 根据权利要求2-9中任一项所述的方法,其特征在于,所述M个候选带宽中的每个候选带宽都包括所述第一控制资源集。
  11. 一种信息传输的方法,其特征在于,包括:
    配置第一控制资源集,所述第一控制资源集用于第一终端设备接收下行信息;
    在第一带宽内向所述第一终端设备发送下行信息和/或在所述第一带宽内接收来自所述第一终端设备的上行信息,所述第一带宽的位置与所述第一控制资源集的位置和第一偏移量相关,所述第一带宽的大小等于或小于所述第一终端设备支持的最大信道带宽,所述第一偏移量为N个资源块RB,所述第一偏移量为所述第一控制资源集的第一位置与所述第一带宽的第二位置之间的间隔,所述N是整数。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第一信令,所述第一信令用于指示所述第一偏移量。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第一信令用于指示M个偏移量,所述M个偏移量包括所述第一偏移量,或者所述第一信令用于指示所述M个偏移量中的至少一个偏移量,所述M个偏移量与M个候选带宽对应,
    或者,
    所述第一信令用于指示Y个偏移量,所述Y个偏移量包括所述第一偏移量,或者所述第一信令用于指示所述Y个偏移量中的至少一个偏移量,所述Y个偏移量与所述M个候选带宽对应,
    其中,所述M是大于1的正整数,所述Y是正整数。
  14. 根据权利要求13所述的方法,其特征在于,
    所述M个候选带宽包括至少两个第二带宽,所述至少两个第二带宽的大小相同且N不同,
    或者,
    所述M个候选带宽包括至少两个第三带宽,所述至少两个第三带宽的大小不同且N相同。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第二信令,所述第二信令用于指示所述M的值。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第三信令,所述第三信令用于指示所述M个候选带宽中的所述第一带宽。
  17. 根据权利要求11至16中的任一项所述的方法,其特征在于,根据所述第一控制资源集的大小、所述第一带宽的大小、第一终端设备支持的最大信道带宽中的至少一种确定所述第一偏移量。
  18. 根据权利要求17所述的方法,其特征在于,所述第一偏移量的取值为以下中的一个:0,X-L,(X-L)/2,-L,X,
    其中所述L是所述第一带宽包含的RB数,所述X是所述第一控制资源集包含的RB数。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,所述在所述第一带宽内发送下行信息包括:
    未建立无线资源控制RRC连接时,在所述第一带宽内发送下行数据和下行控制信息,其中所述第一带宽是初始下行BWP;或者,
    未建立无线资源控制RRC连接时,在所述第一控制资源集内发送下行控制信息,在第二带宽内接收第一信息,其中所述第二带宽包括的RB是所述第一带宽包括的RB中除去所述第一控制资源集包括的RB外的RB,
    其中,所述第一信息是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,未建立RRC连接时,在所述第一控制资源集内发送下行控制信息,所述下行控制信息包括频率域资源分配字段,所述频率域资源分配字段的比特大小是ceil(L(L+1)/2)比特,其中ceil是向上取整,L是所述第一带宽包含的RB数;
    在所述第一带宽内发送第一信息,其中,所述第一信息是系统信息、随机接入响应消息、竞争解决消息、寻呼消息中的一种或多种。
  21. 根据权利要求13-20中任一项所述的方法,其特征在于,所述M个候选带宽中的每个候选带宽都包括所述第一控制资源集。
  22. 一种通信装置,其特征在于,包括:
    处理单元,所述处理单元用于确定第一控制资源集的位置,根据所述第一控制资源集的位置和第一偏移量确定第一带宽的位置,其中所述第一带宽的大小等于或小于第一终端 设备支持的最大信道带宽;所述第一偏移量为N个资源块RB,所述第一偏移量为第一控制资源集的第一位置与第一带宽的第二位置之间的间隔,所述N是预定义的整数,或者所述N是第一信令指示的值
    收发单元,所述收发单元用于在所述第一带宽内接收下行信息,和/或在所述第一带宽内发送上行信息。
  23. 根据权利要求22所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一控制资源集的位置和M个偏移量确定M个候选带宽的位置,所述M个偏移量包括所述第一偏移量,所述M个偏移量与所述M个候选带宽对应;从M个候选带宽的位置中确定所述第一带宽的位置;
    或者,
    根据所述第一控制资源集的位置和Y个偏移量确定M个候选带宽的位置,所述M个偏移量包括所述第一偏移量,所述Y个偏移量与所述M个候选带宽对应,其中Y小于M;从M个候选带宽的位置中确定所述第一带宽的位置,其中,所述M是大于1的正整数,所述Y是正整数。
  24. 根据权利要求23所述的装置,其特征在于,
    所述M个候选带宽包括至少两个第二带宽,所述至少两个第二带宽的大小相同且N不同,
    或者,
    所述M个候选带宽包括至少两个第三带宽,所述至少两个第三带宽的大小不同且N相同。
  25. 根据权利要求23或24所述的装置,其特征在于,所述收发单元具体用于:
    接收第一信令,所述第一信令用于指示所述M个偏移量的值,或者,所述第一信令用于指示所述M个偏移量中至少一个偏移量的值;
    接收第二信令,所述第二信令用于指示所述M的值。
  26. 根据权利要求23至25中任一项所述的装置,其特征在于,
    所述收发单元还用于接收第三信令,所述第三信令用于指示所述M个候选带宽中的所述第一带宽,所述处理单元根据所述所述第三信令确定所述第一带宽;
    或者,
    所述处理单元根据预定义规则从所述M个候选带宽中确定所述第一带宽。
  27. 根据权利要求22至26中任一项所述的装置,其特征在于,所述第一偏移量是根据所述第一控制资源集的大小、所述第一带宽的大小、所述第一终端设备支持的最大信道带宽中的至少一种确定的。
  28. 一种通信装置,其特征在于,包括:
    处理单元,用于配置第一控制资源集,所述第一控制资源集用于第一终端设备接收下行信息,
    收发单元,所述收发单元用于在第一带宽内发送下行信息和/或在所述第一带宽内接收上行信息,所述第一带宽与所述第一控制资源集的位置和第一偏移量相关,其中所述第一带宽的大小等于或小于所述第一终端设备支持的最大信道带宽,所述第一偏移量为N个资源块RB,所述第一偏移量为第一控制资源集的第一位置与第一带宽的第二位置之间的 间隔,所述N是整数。
  29. 根据权利要求28所述的装置,其特征在于,所述收发单元还用于向所述第一终端设备发送第一信令,所述第一信令用于指示所述第一偏移量。
  30. 根据权利要求29所述的装置,其特征在于,所述第一信令用于指示M个偏移量,所述M个偏移量包括所述第一偏移量,或者所述第一信令用于指示所述M个偏移量中的至少一个偏移量,所述M个偏移量与M个候选带宽对应,
    或者,
    所述第一信令用于指示Y个偏移量,所述Y个偏移量包括所述第一偏移量,或者所述第一信令用于指示所述Y个偏移量中的至少一个偏移量,所述Y个偏移量与所述M个候选带宽对应,
    其中,所述M为大于1的正整数,所述Y为正整数。
  31. 根据权利要求30所述的装置,其特征在于,
    所述M个候选带宽包括至少两个第二带宽,所述至少两个第二带宽的大小相同且N不同,
    或者,
    所述M个候选带宽包括至少两个第三带宽,所述至少两个第三带宽的大小不同且N相同。
  32. 根据权利要求30或31所述的装置,其特征在于,所述收发单元还用于向所述第一终端设备发送第二信令,所述第二信令用于指示所述M或者所述F的值。
  33. 根据权利要求30至32中任一项所述的装置,其特征在于,所述处理单元还用于向所述第一终端设备发送第三信令,所述第三信令用于指示所述M个候选带宽中的所述第一带宽。
  34. 根据权利要求28至33中的任一项所述的装置,其特征在于,所述处理单元还用于根据所述第一控制资源集的大小、所述第一带宽的大小、第一终端设备支持的最大信道带宽中的至少一种确定所述第一偏移量。
  35. 一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至10中任一项所述的方法,或者执行如权利要求11至21中任一项所述的方法。
  36. 一种通信系统,包括权利要求22至27中任一项所述的通信装置、以及包括权利要求28至34中任一项所述的通信装置。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法,或者使得所述计算机执行如权利要求11至21中任一项所述的方法。
  38. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行如权利要求1至10中任一项所述的方法,或者执行如权利要求11至21中任一项所述的方法。
PCT/CN2022/077409 2021-03-08 2022-02-23 一种传输信息的方法及装置 WO2022188630A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110251248.5A CN115052343A (zh) 2021-03-08 2021-03-08 一种传输信息的方法及装置
CN202110251248.5 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022188630A1 true WO2022188630A1 (zh) 2022-09-15

Family

ID=83156895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077409 WO2022188630A1 (zh) 2021-03-08 2022-02-23 一种传输信息的方法及装置

Country Status (2)

Country Link
CN (1) CN115052343A (zh)
WO (1) WO2022188630A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391964A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 小区接入信息配置方法、基站及计算机可读存储介质
CN109803396A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 资源分配的方法和装置
CN110521249A (zh) * 2019-06-28 2019-11-29 北京小米移动软件有限公司 控制资源配置、确定方法及装置、通信设备及存储介质
US20200084739A1 (en) * 2018-09-11 2020-03-12 Samsung Electronics Co., Ltd. Method and apparatus for advanced frequency offset indication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391964A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 小区接入信息配置方法、基站及计算机可读存储介质
CN109803396A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 资源分配的方法和装置
US20200084739A1 (en) * 2018-09-11 2020-03-12 Samsung Electronics Co., Ltd. Method and apparatus for advanced frequency offset indication
CN110521249A (zh) * 2019-06-28 2019-11-29 北京小米移动软件有限公司 控制资源配置、确定方法及装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN115052343A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN112335323B (zh) 上行控制数据传输涉及的用户设备和基站
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
CN111757459B (zh) 一种通信方法及装置
WO2020199734A1 (zh) 随机接入信号的发送、接收方法和装置、存储介质及电子装置
JP2022515902A (ja) 無線ネットワーク通信方法及び端末装置
KR20190017588A (ko) 비면허대역에서 상향링크 자발적 전송을 위한 채널엑세스, 데이터 자원 설정 방법, 및 재전송을 위한 장치 및 시스템
KR20180039501A (ko) 비면허대역에서 상향링크 캐리어 채널엑세스 및 데이터 전송 방법, 장치 및 시스템
WO2022194151A1 (zh) 一种通信方法及装置
KR20170127634A (ko) 비면허대역에서 상향링크 채널 및 신호 전송 방법, 장치 및 시스템
US20230247628A1 (en) Information transmission method and apparatus
CN113630878A (zh) 一种信息传输的方法、装置及系统
WO2022188630A1 (zh) 一种传输信息的方法及装置
KR20180022221A (ko) 비면허대역에서 다중 캐리어 채널엑세스 방법, 장치 및 시스템
WO2022193927A1 (zh) 一种传输信息的方法及其装置
WO2023066028A1 (zh) 一种通信方法及装置
WO2023207734A1 (zh) 通信方法、装置及系统
KR20200005456A (ko) 비면허 대역에서 상향링크 데이터를 전송하는 방법 및 그 장치
WO2023284490A1 (zh) 一种通信方法和装置
WO2024093972A1 (zh) 通信方法和装置
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2024055241A1 (zh) 通信方法、终端设备以及网络设备
WO2023151258A1 (zh) 一种通信方法及装置
US12035335B2 (en) Sidelink communication method and apparatus
WO2023143269A1 (zh) 一种通信方法及装置
WO2024032565A1 (zh) 资源排除方法和相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766156

Country of ref document: EP

Kind code of ref document: A1