WO2022193927A1 - 一种传输信息的方法及其装置 - Google Patents

一种传输信息的方法及其装置 Download PDF

Info

Publication number
WO2022193927A1
WO2022193927A1 PCT/CN2022/077812 CN2022077812W WO2022193927A1 WO 2022193927 A1 WO2022193927 A1 WO 2022193927A1 CN 2022077812 W CN2022077812 W CN 2022077812W WO 2022193927 A1 WO2022193927 A1 WO 2022193927A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
bandwidth
resource
indication information
terminal device
Prior art date
Application number
PCT/CN2022/077812
Other languages
English (en)
French (fr)
Inventor
刘哲
余政
温容慧
张永平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023556929A priority Critical patent/JP2024511017A/ja
Priority to KR1020237035078A priority patent/KR20230156774A/ko
Priority to EP22770282.6A priority patent/EP4297515A1/en
Publication of WO2022193927A1 publication Critical patent/WO2022193927A1/zh
Priority to US18/467,785 priority patent/US20240007235A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • H04L5/26Arrangements affording multiple use of the transmission path using time-division multiplexing combined with the use of different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment

Definitions

  • This application relates to the field of communications. In particular, it relates to a method and device for transmitting information.
  • the working frequencies corresponding to two adjacent uplink transmissions are different, or the working frequencies corresponding to two adjacent downlink receptions are different, resulting in the communication device's service being sent before the adjacent uplink transmission.
  • Frequency tuning is performed between adjacent downlink receivers, or the service of the communication device is frequency tuned between adjacent downlink receivers, and frequent switching of operating frequencies causes huge power consumption of the communication device.
  • the present application provides a method and apparatus for transmitting information, which can avoid frequent switching of operating frequencies of communication equipment, save power consumption, and improve the flexibility of information transmission.
  • a first aspect provides a method for transmitting information, the method may include: acquiring first information by a first terminal device, where the first information is used to indicate M bandwidth resources, where M is a positive integer, and the first terminal The device is a first-type terminal device, and the size of each bandwidth resource in the M bandwidth resources is equal to or less than the maximum channel bandwidth supported by the first terminal device; the first terminal device obtains a first parameter, and the first parameter is The number of random access channel opportunities for frequency division multiplexing in one time unit; the first terminal device determines the first bandwidth resource among the M bandwidth resources according to the first information and the first parameter; the first terminal device Send uplink information or receive downlink information in the first bandwidth resource.
  • the first information may be system information, such as SIB1, and the first parameter may be carried in the random access channel configuration information.
  • the first terminal device is a first-type terminal device, and the first-type terminal device may be a low-complexity terminal device (reduced capability UE, REDCAP UE).
  • the bandwidth of the first-type terminal device, the number of resources supported or configured, and the transmit antenna port and/or the number of receiving antenna ports, the number of radio frequency channels, the number of hybrid automatic repeat request (HARQ) processes, the peak rate supported, the delay requirements, the processing capacity and other characteristics compared to the second type of terminal equipment (can be legacy UE) presents a lower level.
  • the sizes of the M bandwidth resources may be the same or different, which is not limited in this application.
  • At least one bandwidth resource whose size is within the range of the maximum bandwidth channel supported by the first terminal device is configured, and the first terminal device determines the first bandwidth resource according to the first information and the first parameter, so that the first terminal device can be prevented from working over frequency frequent switching, saving power consumption.
  • the value of the first parameter is greater than 4,
  • the bandwidth resource is the first bandwidth resource
  • the first bandwidth resource includes predefined resources of N random access channel opportunities, wherein the first parameter random access channel opportunities includes the N random access channel opportunities.
  • access channel opportunity, N is a positive integer
  • the bandwidth resource is the first bandwidth resource
  • the initial resource block of the first bandwidth resource is the same as the initial resource block of the first random access channel opportunity
  • the first random access channel opportunity is indicated by the first indication information
  • each of the M bandwidth resources includes resources corresponding to at least one random access channel opportunity.
  • the value of the first parameter is 8, and the random access channel opportunities are arranged in a first order with indices ranging from 0 to 7, and the first order Include frequencies in ascending order.
  • the first order can also be understood as the order of the positions of the random access channel opportunities in the frequency domain from low to high.
  • the first terminal device obtains the first indication information
  • the first indication information includes 1 bit, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 0, 4 ⁇ ,
  • the first indication information includes 2 bits, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 1, 2, 3, 4 ⁇ ,
  • the first indication information includes 3 bits, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 0, 1, 2, 3, 4 ⁇ ,
  • the first indication information includes 3 bits, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ ,
  • the first terminal device has not acquired the first indication information, and the index of the first random access channel opportunity is 0.
  • the first indication information includes 3 bits, an index of ⁇ 0, 1, 2, 3, 4 ⁇ can be indicated, and the bandwidth resources corresponding to the 5 random access channel opportunities can cover the maximum channel supported by the first terminal device bandwidth.
  • the first indication information may also indicate the indices of the 8 random access channel opportunities.
  • the first terminal device does not acquire the first indication information, it may be that the first terminal device has not received the first indication information, or the network device is not configured.
  • the resources include resources of random access channel opportunities ⁇ 0, 1, 2, 3 ⁇ , and another bandwidth resource of the bandwidth resources includes resources of random access channel opportunities ⁇ 4, 5, 6, 7 ⁇ , or, the M>1, the remaining M-1 bandwidth resources are determined according to the first candidate bandwidth resource, and the first candidate bandwidth resource is indicated by the first signaling.
  • the size of the M bandwidth resources may be predefined, or may be determined according to the resources of the random access channel opportunity, or may be determined according to the random access channel opportunity to determine an initial bandwidth resource, and other bandwidths Resources can be arranged in sequence with this resource as the starting point.
  • the first terminal device receives second indication information, and the second indication information is used to indicate the second bandwidth resource;
  • the random access preamble is sent in a bandwidth resource;
  • the first terminal device sends the message 3 in the random access process in the second bandwidth resource, or sends the physical uplink control channel for feedback of the contention resolution message.
  • the second bandwidth resource may also be indicated by the indication information, and the first terminal device sends information in the first bandwidth resource and the second bandwidth resource.
  • the second indication information is carried in the random access response message, the downlink control information of the scheduling random access response message, the contention resolution message, and the downlink control of the scheduling contention resolution message. and/or, the second indication information is carried in the uplink grant of each medium access control random access response in the random access response message.
  • the first terminal device sends a random access preamble in the first bandwidth resource; the first terminal device receives third indication information, the third indication information Bandwidth resources of the physical uplink control channel used to instruct the first terminal device to send message 3 in the random access process and/or send feedback on the contention resolution message.
  • the first terminal device When the bit state of the third indication information is the first bit state, the first terminal device sends the message 3 in the random access process in the first bandwidth resource, and/or sends the contention resolution message feedback message in the first bandwidth resource physical uplink control channel;
  • the first terminal device When the bit state of the third indication information is the second bit state, the first terminal device sends the message 3 in the random access process in the second bandwidth resource, and/or sends the contention resolution message feedback message in the second bandwidth resource Physical uplink control channel.
  • the message 3 in the random access process and/or the bandwidth resource of the physical uplink control channel for sending feedback on the contention resolution message can be indicated by the bit state of the third indication information.
  • bit state of the third indication information is not a limitation.
  • the first terminal device acquires fourth indication information, where the fourth indication information is used to indicate that the association configuration between the SSB and random access is the first association configuration, or, the second association configuration; or, if the first terminal device obtains the fourth indication information, the fourth indication information is used to indicate that the association configuration between the SSB and random access is the second association configuration, if the first terminal device does not obtain the fourth indication information , the association configuration between the SSB and random access is the first association configuration.
  • the type of the associated configuration may be indicated by the content of the fourth indication information, or the type of the associated configuration may be indicated by the presence or absence of the fourth indication information.
  • a method for determining bandwidth resources may include: a network device sending first information to a first terminal device, where the first information is used to indicate M bandwidth resources, where M is a positive integer and M bandwidths The size of each bandwidth resource in the resources is equal to or smaller than the maximum channel bandwidth supported by the first terminal device.
  • the first terminal device is a first type of terminal device; the network device sends a first parameter, and the first parameter is a frequency division complex in a time unit.
  • the number of random access channel opportunities used; the network device receives uplink information sent by the first terminal device or sends downlink information to the first terminal device in the first bandwidth resource, and the first bandwidth resource is the first terminal device according to the first
  • the information and the first parameter are determined in the M bandwidth resources.
  • the first terminal device can be prevented from working by configuring at least one bandwidth resource whose size is within the range of the maximum bandwidth channel supported by the first terminal device, and sending the first information and the first parameter to enable the first terminal device to determine the first bandwidth resource. Frequent switching over frequency saves power consumption.
  • the value of the first parameter is greater than 4,
  • the M bandwidth resources are the first bandwidth resources, and the first bandwidth resources include predefined resources of N random access channel opportunities, wherein the first parameter random access channel opportunities includes the N random access channel opportunities, N is a positive integer,
  • the network device sends first indication information, where the first indication information is used to indicate the first random access channel opportunity, and the initial resource block of the first bandwidth resource is the same as the first random access channel opportunity.
  • the initial resource blocks of the channel entry opportunities are the same, and the M bandwidth resources are the first bandwidth resources,
  • each of the M bandwidth resources includes resources corresponding to at least one random access channel opportunity.
  • the value of the first parameter is 8
  • the random access channel opportunities are arranged in a first order with indices ranging from 0 to 7, and the first order includes frequencies In order from smallest to largest.
  • the first indication information includes 1 bit, and the first indication information indicates an index of the first random access channel opportunity in an index ⁇ 0, 4 ⁇ . index,
  • the first indication information includes 2 bits, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 1, 2, 3, 4 ⁇ ,
  • the first indication information includes 3 bits, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 0, 1, 2, 3, 4 ⁇ ,
  • the first indication information includes 3 bits, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ ,
  • the network device does not send the first indication information, and the index of the first random access channel opportunity is 0.
  • the size of each bandwidth resource in the M bandwidth resources is predefined
  • one of the bandwidth resources includes the random access channel opportunity ⁇ 0, 1, 2, 3 ⁇ resource, and the other bandwidth resource includes the random access channel opportunity ⁇ 4, 5, 6, 7 ⁇ Resources,
  • the network device sends the first signaling, where the first signaling is used to indicate the first candidate bandwidth resource, and the remaining M-1 bandwidth resources are determined according to the first candidate bandwidth resource.
  • the network device sends second indication information, where the second indication information is used to indicate a second bandwidth resource;
  • the random access preamble is received in the resource;
  • the network device receives the message 3 in the random access process in the second bandwidth resource, or receives the physical uplink control channel that feeds back the contention resolution message.
  • the second indication information is carried in the random access response message, the downlink control information of the scheduling random access response message, the contention resolution message, and the scheduling contention resolution message. in one or more pieces of downlink control information; and/or, the second indication information is carried in the uplink grant of each medium access control random access response in the random access response message.
  • the network device receives a random access preamble in the first bandwidth resource; the network device sends third indication information, The third indication information is used to instruct the first terminal device to send the message 3 in the random access process and/or send the bandwidth resource of the physical uplink control channel for feedback on the contention resolution message.
  • the network device When the bit state of the third indication information is the first bit state, the network device receives message 3 in the random access process in the first bandwidth resource, and/or receives in the first bandwidth resource The physical uplink control channel fed back to the contention resolution message,
  • the network device When the bit state of the third indication information is the second bit state, the network device receives message 3 in the random access process in the second bandwidth resource, and/or receives in the second bandwidth resource Physical uplink control channel for feedback of contention resolution messages.
  • the network device sends fourth indication information, where the fourth indication information is used to indicate that the association configuration between the SSB and random access is the first association configuration, or , configured for the second association.
  • the fourth indication information is used to indicate that the association configuration between the SSB and random access is the first association configuration, and if the network device does not send the fourth indication information, the SSB The association configuration with random access is the second association configuration,
  • the fourth indication information is used to indicate that the association configuration between SSB and random access is the second association configuration, and if the network device does not send the fourth indication information, the The association configuration between the SSB and random access is the first association configuration.
  • a method for transmitting information may include: a first terminal device determining a first resource according to a first reference point and a first bandwidth, where the first reference point is used to determine the value of the first resource. location, the first bandwidth is the bandwidth of the first resource; the first terminal device sends and/or receives information on the first resource, the first terminal device is a first type terminal device, the first resource is equal to or smaller than the maximum channel bandwidth supported by the first terminal device; the first terminal device sends uplink information in the first resource, and/or the first terminal device receives downlink information in the first resource.
  • the method provides the determined reference point and bandwidth, avoids that the first terminal device can determine the first resource after multiple detections, reduces the computational complexity of the first terminal device, and saves power consumption.
  • the first bandwidth may be determined according to one or more of the subband size reported by the CSI, the subcarrier spacing, and the maximum channel bandwidth supported by the first terminal device .
  • the first resource may also be determined according to the first reference point and the first offset, and the first offset may also be determined according to the subband size, subcarrier spacing, and the maximum channel bandwidth supported by the first terminal device reported by the CSI one or more of the .
  • the maximum channel bandwidth supported by the first terminal device may be the transmission bandwidth, and the transmission bandwidth may be the number of resource blocks corresponding to the maximum channel bandwidth under different subcarrier intervals.
  • association relationship may be indicated by indication information, or may be predefined.
  • the first bandwidth may be determined according to a positive integer multiple of the maximum channel bandwidth size supported by the first terminal device.
  • the first terminal device may be determined according to the common multiple of the size of the subband size reported by the CSI, the subcarrier spacing, and the maximum channel bandwidth supported by the first terminal device. Bandwidth, or, determine the first offset.
  • the first terminal device may receive indication information, where the indication information is used to indicate the first reference point, and the first reference point may be the first RB of the second resource, One or more of the center frequency or center subcarrier of the second resource, the last RB of the second resource, common resource block 0, Point A, or,
  • the second resource is a resource configured for the second terminal device, and the number of resource blocks included in the second resource can be greater than the number of resource blocks corresponding to the maximum channel bandwidth of the first terminal device.
  • the indication information may be carried in SIB1, SIB1 PDCCH.
  • the first reference point may be indicated by the indication information, or may be predefined.
  • the location of the first resource may be determined according to the first reference point and the first offset.
  • the first offset may be N RBs spaced between the first resource and the common resource block 0.
  • the location of the first resource may be MOD(first reference point + first offset, BW); or, MOD(BW, reference point of the first resource - first offset), where BW is the bandwidth of the second resource , or the carrier bandwidth.
  • the first offset has an associated relationship with the subcarrier interval, which may be indicated by the indication information or may be predefined.
  • Second information is received, the second information indicating at least two of a first bandwidth, a first reference point, and a first offset.
  • a method for transmitting information may include: a network device may send a first reference point and a first bandwidth to a first terminal device, where the first reference point is used to determine the information of the first resource location, the first bandwidth is the bandwidth of the first resource; the network device sends and/or receives information on the first resource, and the first resource is determined by the first terminal device according to the first reference point and the first bandwidth, and the The first terminal device is a first type of terminal device, and the size of the first resource is equal to or smaller than the maximum channel bandwidth supported by the first terminal device.
  • the method provides the determined reference point and bandwidth, avoids that the first terminal device can determine the first resource after multiple detections, reduces the computational complexity of the first terminal device, and saves power consumption.
  • the network device may send the first reference point and the first bandwidth, and the first reference point and the first bandwidth may also be predefined.
  • the first bandwidth may be determined by one or more of the subband size reported by the CSI, the subcarrier spacing, and the maximum channel bandwidth supported by the first terminal device.
  • the first bandwidth may also be determined according to the first reference point and the first offset, and the first offset may also be determined according to the subband size reported by the CSI, the subcarrier spacing, and the maximum channel bandwidth supported by the first terminal device one or more of the .
  • the maximum channel bandwidth supported by the first terminal device may be a transmission bandwidth, and the transmission bandwidth may be the number of resource blocks corresponding to the maximum channel bandwidth under different subcarrier intervals.
  • association relationship may be indicated by the indication information sent by the network device, or may be predefined.
  • the network device may determine the first bandwidth according to a positive integer multiple of the maximum channel bandwidth size supported by the first terminal device.
  • the network device may determine the common multiple of the size of the subband size reported by the CSI, the subcarrier spacing, and the maximum channel bandwidth supported by the first terminal device.
  • the first bandwidth or, determines the first offset.
  • the network device may send indication information, where the indication information is used to indicate the first reference point, the first reference point may be the first RB of the second resource, the second One or more of the center frequency or center subcarrier of the resource, the last RB of the second resource, the common resource block 0, and Point A, wherein the second resource is a resource configured for the second terminal device, and The number of resource blocks included in the second resource can be greater than the number of resource blocks corresponding to the maximum channel bandwidth of the first terminal device.
  • the indication information may be carried in SIB1, SIB1 PDCCH.
  • the first reference point may be indicated by the indication information, or may be predefined.
  • the network device may send the first reference point and the first offset, and the location of the first resource may be determined according to the first reference point and the first offset.
  • the first offset may be N RBs spaced between the first resource and the common resource block 0 .
  • the location of the first resource may be MOD(first reference point + first offset, BW); or, MOD(BW, reference point of the first resource - first offset), where BW is the bandwidth of the second resource , or the carrier bandwidth.
  • the first offset has an associated relationship with the subcarrier interval, which may be indicated by the indication information sent by the network device, or may be predefined.
  • a communication device may include:
  • a transceiver unit configured to receive first information, where the first information is used to indicate M bandwidth resources, where M is a positive integer, and the size of each bandwidth resource in the M bandwidth resources is equal to or smaller than the first type the maximum channel bandwidth supported by the terminal device; the transceiver unit is further configured to receive a first parameter, where the first parameter is the number of frequency-division multiplexed random access channel opportunities within a time unit;
  • a processing unit configured to determine a first bandwidth resource from among the M bandwidth resources according to the first information and the first parameter
  • the transceiver unit is further configured to send uplink information or receive downlink information in the first bandwidth resource.
  • the value of the first parameter is greater than 4,
  • the M bandwidth resources are the first bandwidth resources, and the first bandwidth resources include predefined resources of N random access channel opportunities, wherein the first parameter random access channel opportunities includes the N random access channel opportunities, N is a positive integer,
  • the M bandwidth resources are the first bandwidth resources
  • the transceiver unit is specifically configured to receive first indication information, where the first indication information is used to indicate the first random access channel opportunity, so the starting resource block of the first bandwidth resource is the same as the starting resource block of the first random access channel opportunity
  • each of the M bandwidth resources includes resources corresponding to at least one random access channel opportunity.
  • the value of the first parameter is 8, and the random access channel opportunities are arranged in a first order with indices ranging from 0 to 7, and the first order Include frequencies in ascending order.
  • the transceiver unit receives the first indication information, the first indication information includes 1 bit, and the first indication information is at index ⁇ 0 , 4 ⁇ indicating the index of the first random access channel opportunity, or the first indication information includes 2 bits, and the first indication information indicates in the index ⁇ 1, 2, 3, 4 ⁇ the index of the first random access channel opportunity, or the first indication information includes 3 bits, and the first indication information indicates the first random access opportunity in indices ⁇ 0, 1, 2, 3, 4 ⁇
  • the index of the access channel opportunity, or the first indication information includes 3 bits, and the first indication information indicates the first indication in the index ⁇ 0,1,2,3,4,5,6,7 ⁇
  • An index of a random access channel opportunity, or the transceiver unit does not receive the first indication information, and the index of the first random access channel opportunity is 0.
  • the size of each bandwidth resource in the M bandwidth resources is predefined
  • one of the bandwidth resources includes the random access channel opportunity ⁇ 0, 1, 2, 3 ⁇ resource
  • the other bandwidth resource of the bandwidth resources includes the random access channel opportunity ⁇ 4, 5,6,7 ⁇ resources
  • the processing unit is specifically configured to receive the first signaling, and the first signaling is used to indicate the first candidate bandwidth resource, and the processing unit is specifically configured to determine the remaining M according to the first candidate bandwidth resource. -1 bandwidth resource.
  • the transceiver unit is specifically configured to receive second indication information, where the second indication information is used to indicate a second bandwidth resource, and the transceiver unit is further configured to send a random access preamble in the first bandwidth resource;
  • the transceiver unit is further configured to send the message 3 in the random access process in the second bandwidth resource, or send the physical uplink control channel for feedback of the contention resolution message.
  • the second indication information is carried in the random access response message, the downlink control information of the scheduling random access response message, the contention resolution message, and the scheduling contention resolution message. in one or more pieces of downlink control information; and/or, the second indication information is carried in the uplink grant of each medium access control random access response in the random access response message.
  • the transceiver unit is specifically configured to send a random access preamble in the first bandwidth resource, and receive the third indication information, so The third indication information is used to instruct the transceiver unit to send the message 3 in the random access process and/or send the bandwidth resource of the physical uplink control channel for feedback of the contention resolution message.
  • the transceiver unit when the bit state of the third indication information is the first bit state, the transceiver unit sends the random access process in the first bandwidth resource message 3, and/or send a physical uplink control channel for feedback of the contention resolution message in the first bandwidth resource;
  • the transceiver unit When the bit state of the third indication information is the second bit state, the transceiver unit sends the message 3 in the random access process in the second bandwidth resource, and/or sends the message 3 in the second bandwidth resource Physical uplink control channel for feedback of contention resolution messages.
  • the transceiver unit receives fourth indication information, where the fourth indication information is used to indicate that the association configuration between the SSB and the random access channel opportunity is the first association configuration , or a second association configuration, where the association configuration is an association configuration between the SSB and the number of random access channel opportunities.
  • the fourth indication information is used to indicate that the association configuration between the SSB and the random access channel opportunity is the first an association configuration, if the transceiver unit does not receive the fourth indication information, the association configuration between the SSB and the random access channel opportunity is the second association configuration,
  • the fourth indication information is used to indicate that the SSB and the random access channel opportunity association configuration is the second association configuration, if the transceiver unit does not receive the fourth indication information, Then the association configuration between the SSB and the random access channel opportunity is the first association configuration.
  • the first parameter is carried in the random access channel configuration information.
  • the first information includes system information.
  • a sixth aspect provides a communication apparatus, the apparatus may include a transceiver unit for sending a first parameter to a first terminal device, where the first parameter is a frequency-division multiplexed random access channel opportunity within a time unit. number; a processing unit, configured to configure M bandwidth resources, and the size of each bandwidth resource in the M bandwidth resources is equal to or smaller than the maximum channel bandwidth supported by the first terminal device; the transceiver unit is further configured to Receive uplink information sent by the first terminal device or send downlink information to the first terminal device in the first bandwidth resource, where the first bandwidth resource is the first terminal device according to the first information and the The first parameter is determined in the M bandwidth resources.
  • the value of the first parameter is greater than 4,
  • the M bandwidth resources are the first bandwidth resources, and the first bandwidth resources include predefined resources of N random access channel opportunities, wherein the first parameter random access channel opportunities includes the N random access channel opportunities, N is a positive integer,
  • the transceiver unit sends first indication information, where the first indication information is used to indicate the first random access channel opportunity, and the initial resource block of the first bandwidth resource is the same as the first random access channel opportunity.
  • the initial resource blocks of the channel entry opportunities are the same, and the M bandwidth resources are the first bandwidth resources,
  • each of the M bandwidth resources includes resources corresponding to at least one random access channel opportunity.
  • the value of the first parameter is 8
  • the random access channel opportunities are arranged in a first order with indices ranging from 0 to 7, and the first order Include frequencies in ascending order.
  • the first indication information includes 1 bit, and the first indication information indicates the first random access channel in an index ⁇ 0,4 ⁇ index of opportunities,
  • the first indication information includes 2 bits, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 1, 2, 3, 4 ⁇ ,
  • the first indication information includes 3 bits, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 0, 1, 2, 3, 4 ⁇ ,
  • the first indication information includes 3 bits, and the first indication information indicates the index of the first random access channel opportunity in the index ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ ,
  • the transceiver unit does not send the first indication information, and the index of the first random access channel opportunity is equal to 0.
  • the first information is used to indicate M bandwidth resources, characterized in that:
  • the size of each bandwidth resource in the M bandwidth resources is predefined
  • one of the bandwidth resources includes the random access channel opportunity ⁇ 0, 1, 2, 3 ⁇ resource
  • the other bandwidth resource of the bandwidth resources includes the random access channel opportunity ⁇ 4, 5,6,7 ⁇ resources
  • the transceiver unit is further configured to send the first signaling, the first signaling is used to indicate the first candidate bandwidth resources, and the remaining M-1 bandwidth resources are determined according to the first candidate bandwidth resources. .
  • the transceiver unit is further configured to send second indication information, where the second indication information is used to indicate the second bandwidth resource, where The random access preamble is received in the first bandwidth resource, the message 3 in the random access process is received in the second bandwidth resource, or the physical uplink control channel fed back to the contention resolution message is received.
  • the second indication information is carried in the random access response message, the downlink control information of the scheduling random access response message, the contention resolution message, and the scheduling contention resolution message.
  • the second indication information is carried in the uplink grant of each medium access control random access response in the random access response message.
  • the transceiver unit is specifically configured to receive the random access preamble in the first bandwidth resource, and send the third indication information, so The third indication information is used to instruct the first terminal device to send the message 3 in the random access process and/or to send the bandwidth resources of the physical uplink control channel that is fed back to the contention resolution message.
  • the transceiver unit when the bit state of the third indication information is the first bit state, the transceiver unit receives the random access process in the first bandwidth resource. message 3, and/or the physical uplink control channel for receiving feedback on the contention resolution message in the first bandwidth resource,
  • the transceiver unit When the bit state of the third indication information is the second bit state, the transceiver unit receives the message 3 in the random access process in the second bandwidth resource, and/or receives the message 3 in the second bandwidth resource Physical uplink control channel for feedback of contention resolution messages.
  • the transceiver unit is further configured to send fourth indication information, where the fourth indication information is used to indicate that the association configuration between the SSB and the random access channel opportunity is the first An association configuration, or, a second association configuration.
  • the fourth indication information is used to indicate that the association between the SSB and the random access channel opportunity is configured as the first association configuration, if the transceiver unit does not send the fourth indication information, the association configuration between the SSB and the random access channel opportunity is the second association configuration,
  • the fourth indication information is used to indicate that the association configuration between the SSB and the random access channel opportunity is the second association configuration, and if the transceiver unit does not send the fourth indication information, the The association configuration between the SSB and the random access channel opportunity is the first association configuration.
  • the first parameter is carried in the random access channel configuration information.
  • the first information includes system information.
  • a communication device is provided, the communication device is used to implement the first aspect or the third aspect or, any possible implementation manner of the first aspect or the third aspect, or, the first aspect or the third aspect Methods for all possible implementations in the aspect.
  • a communication device is provided, and the communication device is used to implement the second aspect or the fourth aspect, or, any possible implementation manner of the second aspect or the fourth aspect, or, the second aspect or the first aspect Methods of all possible implementations in the four aspects.
  • a communication device comprising: a memory for storing a program; a processor for executing the program stored in the memory, when the program stored in the memory is executed, the processor uses For performing the first aspect or the third aspect and the method performed by the first terminal device in any implementation manner of the first aspect or the third aspect.
  • a communication device comprising: a memory for storing a program; a processor for executing the program stored in the memory, when the program stored in the memory is executed, the processor uses For performing the second aspect or the fourth aspect and the method performed by the network device in any implementation manner of the second aspect or the fourth aspect.
  • a computer-readable medium stores program codes for execution by a device, the program codes comprising a program code for executing any one of the first aspect or the third aspect. The method performed by the first terminal device.
  • a computer-readable medium stores program code for execution by a device, the program code includes a program code for executing any one of the implementation manners of the second aspect or the fourth aspect The method performed by the network device.
  • a thirteenth aspect provides a computer program product comprising instructions, when the computer program product runs on a computer, the computer causes the computer to execute the method in any one of the implementation manners of the first aspect or the second aspect.
  • a fourteenth aspect provides a chip, the chip includes a processor and a data interface, the processor reads an instruction stored in a memory through the data interface, and executes the first aspect or the second aspect or the third aspect or the method in any one of the implementation manners of the fourth aspect.
  • a fifteenth aspect provides a system, the system includes any possible implementation manner of the fifth aspect or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect or the tenth aspect, or, the fifth aspect Or the sixth aspect or the seventh aspect or the eighth aspect or the ninth aspect or the tenth aspect all possible implementation manners.
  • the chip may further include a memory, in which instructions are stored, the processor is configured to execute the instructions stored in the memory, and when the instructions are executed, the The processor is configured to execute the method in any one of the first aspect or the second aspect or the third aspect or the fourth aspect.
  • the above chip may specifically be a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC).
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • FIG. 1 is a schematic structural diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 shows a schematic flowchart of a method for transmitting information according to an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of a method for transmitting information, which is applicable to an embodiment of the present application.
  • FIG. 4 shows a schematic diagram of another method for transmitting information, which is applicable to the embodiment of the present application.
  • FIG. 5 shows a schematic diagram of a resource distribution suitable for an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of a resource suitable for this embodiment of the present application.
  • FIG. 7 shows a schematic diagram of a resource suitable for an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a resource distribution suitable for an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a method for determining a resource location applicable to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a resource location suitable for an embodiment of the present application.
  • FIG. 11 shows a schematic flowchart of a method for transmitting information according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of a resource suitable for this embodiment of the present application.
  • FIG. 13 shows a schematic diagram of a method for determining a resource location applicable to an embodiment of the present application.
  • FIG. 14 shows a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 15 shows a schematic block diagram of another communication device according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various communication systems, such as a wireless local area network system (Wireless Local Area Network, WLAN), a narrowband Internet of Things system (Narrow Band-Internet of Things, NB-IoT), a global system for mobile communications (Global System for Mobile Communications, GSM), Enhanced Data rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 (Code Division Multiple Access) Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (Long Term Evolution, LTE), satellite communications, 5th generation (5G) system or a new communication system that will appear in the future.
  • WLAN Wireless Local Area Network
  • NB-IoT narrowband Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • the International Telecommunication Union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), ultra-reliable and low-latency communication (ultra reliable and low latency) communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communication
  • mMTC massive machine type communications
  • Typical eMBB services include ultra-high-definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main features of these services are large amount of data transmission and high transmission rate.
  • Typical URLLC businesses include: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and tactile interaction applications such as remote repair and remote surgery.
  • the main features of these services are ultra-reliable requirements. high reliability, low latency, small amount of transmitted data, and burstiness.
  • Typical mMTC services include: smart grid power distribution automation, smart city, etc.
  • the main features are the huge number of networked devices, the small amount of data transmitted, and the insensitivity of data to transmission delay. These mMTC terminals need to meet low cost and very long standby time. time requirements.
  • the user equipment (UE) of the mMTC service is called a low-complexity UE (reduced capability UE, REDCAP UE) in the standard, or a narrow-bandwidth user equipment, or an IoT device, or a low-end smart handheld terminal.
  • This type of UE may be less complex than other UEs in terms of bandwidth, power consumption, and number of antennas, such as narrower bandwidth, lower power consumption, and fewer antennas.
  • This type of UE may also be called a lightweight version of the terminal equipment (NR light, NRL).
  • the maximum bandwidth supported by the mMTC user equipment is less than 100MHz. It should be noted that the mMTC user equipment in this application is not only a device for machine-type communication, but also an intelligent handheld terminal.
  • the mobile communication system includes a wireless access network device 120 ie a network device 120 and at least one terminal device (such as the terminal device 130 , the terminal device 140 and the terminal device 150 in FIG. 1 ).
  • the terminal equipment is connected to the wireless access network equipment in a wireless manner, and the wireless access network equipment is connected with the core network equipment in a wireless or wired manner.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminal devices included in the mobile communication system.
  • the information sending end in the communication system of the present application may be a network device or a terminal device, and the information receiving end may be a network device or a terminal device, which is not limited in this application.
  • Type terminal equipment can participate in the communication.
  • This embodiment of the present application describes the solution by taking the network device and the first terminal device as an example of two interacting parties, which is not limited thereto.
  • the wireless access network equipment is the access equipment that the terminal equipment wirelessly accesses to the mobile communication system.
  • a terminal device may also be referred to as a terminal (Terminal), a user equipment UE, a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, industrial control (industrial control) wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • VR Virtual Reality
  • AR Augmented Reality
  • industrial control industrial control
  • Radio access network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of the wireless access network device and the terminal device.
  • the embodiments of the present application may be applicable to downlink signal transmission, uplink signal transmission, and device to device (device to device, D2D) signal transmission.
  • the sending device is a wireless access network device
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is a wireless access network device.
  • D2D signal transmission the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • Communication between wireless access network equipment and terminal equipment and between terminal equipment and terminal equipment can be performed through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum). Licensed spectrum for communications. Communication between wireless access network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through the spectrum below 6G, or through the spectrum above 6G, and can also use the spectrum below 6G and above 6G at the same time. to communicate.
  • the embodiments of the present application do not limit the spectrum resources used between the radio access network device and the terminal device.
  • the random access procedure is as follows:
  • the terminal device searches for the synchronization signal and the physical broadcast channel (Synchronization Signal and PBCH, SSB).
  • the terminal device obtains the master information block (MIB) sent by the network device by searching the SSB.
  • the terminal device obtains the time domain resources and frequency domain resources of the control resource set (CORESET) according to the MIB, and the terminal device can detect the downlink control information (Downlink control information) of the scheduling system information block (SIB) on the CORESET , DCI), receive SIB1 at the time-frequency position indicated by DCI, so that the initial uplink bandwidth part (initial uplink bandwidth part, Initial UL BWP) indicated in SIB1, the initial downlink bandwidth part (initial downlink bandwidth part) can be received bandwidth part, Initial DL BWP), random access preamble list, random access timing list and other information.
  • MIB master information block
  • CORESET control resource set
  • the terminal device sends the physical random access channel (physical random-access channel, PRACH, namely Msg1) carrying the random access preamble in the random access opportunity (RACH occasion, RO) resource associated with the SSB;
  • PRACH physical random-access channel
  • the base station If the base station successfully receives the random access preamble and allows the UE to access, within the window (window) of the pre-configured random access response (Random access response, RAR), the base station sends the RAR, that is, Msg2, to the UE;
  • the UE monitors the downlink control information (DCI) transmitted on the physical layer downlink control channel (PDCCH) in the preconfigured RAR window, and the DCI is used to instruct the UE to share from the physical downlink.
  • the RAR information is obtained from the Media Access Control (Media Access Control, MAC) protocol data unit (Protocol Data Unit, PDU) carried by the channel (Physical downlink shared channel, PDSCH).
  • Media Access Control Media Access Control
  • PDU Protocol Data Unit
  • the base station if the base station cannot receive the preamble preamble due to the conflict of random access preambles selected between different UEs or poor channel conditions, the base station will not send RAR information, and the UE will not detect in the RAR window. To DCI and MAC RAR, then this random access fails.
  • the terminal After the terminal successfully detects the DCI, it receives the random access response RAR (that is, Msg2), and sends the physical uplink shared channel (Physical Uplink Shared CHannel, PUSCH, that is, Msg3) according to the time-frequency resources indicated by the uplink grant UL grant in the random access response. ), the network device sends the DCI to the terminal device, the DCI indicates the time-frequency resource that bears the contention resolution message, that is, Msg4, and the terminal device detects the DCI and receives the Msg4.
  • RAR that is, Msg2
  • PUSCH Physical Uplink Shared CHannel
  • Radio Resource Control RRC
  • the UE needs to receive in CORESET 0: PDCCH for scheduling SIB1, PDSCH for scheduling SIB1, PDCCH for scheduling SI, PDSCH for carrying SI, scheduling Msg2
  • the PDCCH of Msg2 is the PDSCH that carries the Msg2, the PDCCH that schedules the Msg3, the PDCCH that schedules the Msg4, and the PDSCH that carries the Msg4.
  • the UE needs to send Msg1, PUSCH carrying Msg3, and PUCCH feedback to Msg4 in the initial UL BWP.
  • the UE in this application can be divided into a first type of terminal equipment and a second type of terminal equipment.
  • the first type of terminal equipment is, for example, a low-complexity UE (reduced capability UE, REDCAP UE), and the second type of terminal equipment can be.
  • legacy UE such as eMBB UE.
  • the characteristics of the first type of terminal equipment and the second type of terminal equipment are different, and the characteristics include one or more of the following:
  • Bandwidth number of resources supported or configured, number of transmit antenna ports and/or number of receive antenna ports, number of radio frequency channels, number of hybrid automatic repeat request (HARQ) processes, supported peak rates, application scenarios, time delay requirements, processing capabilities, protocol versions, duplex modes, services, etc.
  • HARQ hybrid automatic repeat request
  • Bandwidth, or channel bandwidth, or the maximum channel bandwidth supported or configured by the terminal device The bandwidth of the first type terminal device and the second type terminal device are different.
  • the bandwidth of the first type terminal device can be 20MHz or 10MHz or 5MHz.
  • the bandwidth of the second type of terminal equipment may be 100MHz. It can be understood that with the development of communication technology, the maximum channel bandwidth supported by the first type terminal equipment may no longer be 20MHz, 10MHz or 5MHz, but evolve into wider or narrower bandwidths such as 3MHz, 25MHz, and 50MHz.
  • the number of resources supported or configured which can be the number of RBs, REs, subcarriers, RB groups, REG bundles, control channel elements, subframes, radio frames, time slots, mini-slots and/or symbols, the first
  • the number of resources supported or configured by the type terminal equipment and the terminal equipment of the second type are different, for example, the number of resources supported by the terminal equipment of the first type is 48 RB, and the number of resources supported by the terminal equipment of the second type is 96 RB.
  • the number of transmit antenna ports and/or the number of receive antenna ports is different from that of the second type of terminal equipment, for example: the number of transmit antenna ports of the first type of terminal equipment It may be 1, the number of ports of the receiving antenna may be 2, the number of ports of the transmitting antenna of the second type terminal device may be 2, and the number of ports of the receiving antenna may be 4.
  • the number of radio frequency channels that is, the number of radio frequency channels of the first type terminal equipment is different from that of the second type terminal equipment, for example: the number of radio frequency channels of the first type terminal equipment can be 1, and the number of radio frequency channels of the second type terminal equipment can be 2 indivual.
  • the number of HARQ processes that is, the number of HARQ processes supported by the first type of terminal equipment is different from that of the second type of terminal equipment.
  • the number of HARQ processes of the first type of terminal equipment may be 8, and the number of HARQ processes of the second type of terminal equipment may be 16 .
  • the supported peak rate that is, the maximum peak rate of the first type terminal equipment and the second type terminal equipment are different, for example: the maximum peak rate supported by the first type terminal equipment can be 100Mbps, and the peak rate supported by the second type terminal equipment can be 200Mbps.
  • Application scenarios that is, the first type of terminal equipment and the second type of terminal equipment serve different application scenarios, for example: the first type of terminal equipment is used in industrial wireless sensing, video surveillance, wearable devices, etc., the second type of terminal equipment Applied to mobile communication, video Internet access, etc.
  • Delay requirement that is, the first type terminal equipment and the second type terminal equipment have different requirements for transmission delay, for example: the delay requirement of the first type terminal equipment can be 500 milliseconds, and the delay requirement of the second type terminal equipment can be is 100 milliseconds.
  • the processing capability, and the processing speed of the channel or data processing timing of the first type terminal equipment and the second type terminal equipment under different subcarrier space (SCS) conditions for example: the first type terminal equipment Does not support complex operations, the complex operations may include: artificial intelligence (artificial intelligence, AI), virtual reality (virtual reality, VR) rendering, the second type of terminal device supports complex operations, or understood as, the first type The processing capability of the terminal equipment is lower than that of the second type of terminal equipment.
  • SCS subcarrier space
  • Protocol version that is, the first type terminal device and the second terminal device belong to terminal devices of different protocol versions, for example: the protocol version supported by the first type terminal device is Release 17 and the protocol version after Release 17, and the second type terminal device supports The protocol version is the protocol version before Release 17, such as Release 15 or Release 16.
  • the duplex mode includes half-duplex and full-duplex, for example, the first type of terminal equipment works in half-duplex mode, and the second type of terminal equipment works in full-duplex mode.
  • the services include but are not limited to IoT applications, such as video surveillance, mobile broadband MBB, etc.
  • IoT applications such as video surveillance, mobile broadband MBB, etc.
  • the services supported by the first type of terminal equipment are video surveillance
  • the services supported by the second type of terminal equipment are mobile broadband MBB. This embodiment of the present application does not limit this.
  • the first terminal device in this application may be an example of a first type of terminal device, and the second terminal device may be an example of a second type of terminal device.
  • Initial downlink bandwidth part Initial DL BWP: Indicated in SIB1, the frequency range includes CORESET, but it will take effect after the reception of Msg4 is completed.
  • Initial uplink bandwidth part (initial uplink bandwidth part, Initial UL BWP): indicated in SIB1, the uplink channel PRACH, Msg3, Msg4 HARQ-ACK feedback involved in the initial access process are all within the scope of the initial UL BWP conduct.
  • CORESET Control resource collection.
  • the terminal equipment is receiving downlink control information or downlink data information in CORESET.
  • the frequency range for receiving the downlink control channel and the downlink data channel is CORESET 0.
  • Downlink bandwidth part After the terminal device is connected to the network device, the network device configures the downlink working bandwidth for the terminal device.
  • Uplink bandwidth part After the terminal device is connected to the network device, the network device configures the uplink working bandwidth for the terminal device.
  • a low-complexity terminal device is a relative concept, which is not limited in this application.
  • a new type of terminal equipment that may be developed in the future has more complex features than the existing legacy UE in at least one aspect such as bandwidth, number of antennas, and power consumption of the equipment.
  • the legacy UE will be used as the first type of terminal in this application.
  • the new type of terminal equipment will be used as the second type of terminal equipment in this application, and the embodiments of this application are still applicable and within the protection scope of this application.
  • Center frequency the center frequency of a resource block, or the resource block with the index as the center in the bandwidth
  • Start resource block (Resource block, RB): The resource block with the smallest index in the bandwidth, or the first resource block in the bandwidth.
  • End resource block (Resource block, RB): The resource block with the largest index in the bandwidth, or the last resource block in the bandwidth.
  • resources in this application may be symbols, or time slots, or mini-slots, or subframes, and so on.
  • the resources in this application may also be subcarriers, or resource blocks, or carriers, or channel control elements, and the like.
  • the resource unit may be a time slot, or a short time slot, or a subframe.
  • the resource unit is a resource block, or a carrier, or a channel control element or the like.
  • Various embodiments of this application have different descriptions for resources, for example, a first resource, and another example, a bandwidth resource.
  • the first resource may be an uplink BWP, may be a downlink BWP, may be an initial downlink BWP, and may be an initial uplink BWP.
  • the size of the first resource is equal to or smaller than the maximum channel bandwidth supported by the first terminal device.
  • the first control resource set is expressed as CORESET a, for example, before the RRC connection is established, CORESET a is CORESET 0; for example, before the RRC connection is established or after the RRC connection is established, CORESET a can also be a public CORESET, at least one of the public CORESETs RB may not be within the scope of CORESET 0, that is, CORESET a and CORESET 0 may be different CORESETs.
  • the bandwidth resource may be a BWP, or a block of resources whose size is equal to or smaller than the maximum channel bandwidth supported by the first terminal device.
  • the bandwidth resource may be the initial uplink BWP.
  • the bandwidth resource may be the uplink BWP.
  • the bandwidth resource may be downlink BWP.
  • the bandwidth resource may be the initial downlink BWP.
  • the bandwidth resource in this application is the bandwidth resource of the low-complexity terminal device.
  • the size of the bandwidth resource is equal to or smaller than the maximum channel bandwidth supported by the first terminal device, and the size of the bandwidth resource may be predefined or indicated by the network device.
  • the size can be 5MHz, or the number of RBs corresponding to 5MHz at different subcarrier intervals, or 10MHz, or the number of RBs corresponding to 10MHz at different subcarrier intervals, or 20MHz, or 20MHz at different subcarrier intervals The corresponding RB number below.
  • first resource and the bandwidth resource may be equivalent, and the method for determining the resource in each embodiment is applicable to both the first resource and the bandwidth resource.
  • the time unit can be any of subframe, radio frame, slot, mini-slot, symbol, microsecond, millisecond, second.
  • Uplink information including random access channel (random access preamble), message 3 in the random access process, and one or more of the physical uplink control channels fed back to the contention resolution message.
  • Message 3 in the random access process including the first transmission of the PUSCH carrying Msg3 (the initial transmission of Msg3), the first hop transmission of the first transmission of the PUSCH carrying Msg3 (the first hop transmission of the initial transmission of Msg3) ), the second hop transmission of the first transmission of the PUSCH carrying the Msg3 (the second hop transmission of the initial transmission of the Msg3), the transmission after the first transmission of the PUSCH carrying the Msg3 (the retransmission of the Msg3 or the repetition of the Msg3) , the first hop transmission of the transmission after the first transmission of the PUSCH carrying Msg3 (the retransmission of Msg3 or the repeated first hop transmission of the Msg3), the second hop of the transmission after the first transmission of the PUSCH carrying the Msg3 One or more of transmissions (retransmission of Msg3 or repeated second hop transmission of Msg3).
  • the physical uplink control channel fed back to the contention resolution message including the first transmission (initial transmission) of the PUCCH bearing Msg4, the first hop transmission of the first transmission of the PUCCH bearing the Msg4, and the first transmission of the PUCCH bearing the Msg4
  • the second hop transmission the transmission (retransmission or repetition) after the first transmission of the PUCCH carrying Msg4, the first hop transmission of the transmission after the first transmission of the PUCCH carrying the Msg4, the first hop transmission of the PUCCH carrying the Msg4
  • the UE receives one or more of downlink control information, downlink shared channel, demodulation reference signal, positioning reference signal, etc. in the downlink BWP.
  • the UE sends one or more of the uplink control channel, the uplink shared channel, the random access channel, the uplink demodulation reference signal, and the sounding reference signal in the uplink BWP.
  • the UE sends uplink information on the uplink BWP and simultaneously receives downlink information on the downlink BWP, and the frequency ranges of the uplink BWP and the uplink BWP may be different.
  • a frequency division multiplexed FDD UE is capable of simultaneous downlink reception and uplink transmission.
  • a UE with TDD uplink and downlink decoupling is capable of simultaneous downlink reception and uplink transmission.
  • the UE needs to send one or more of Msg1, the PUSCH carrying Msg3, the PUSCH carrying the retransmission of Msg3, and the PUCCH fed back to Msg4 in the initial UL BWP.
  • the UE sends a random access preamble in a random access channel opportunity (RACH occasion, RO).
  • RACH occasion For a PRACH transmission opportunity, up to 8 RACH occasions can be configured by frequency division multiplexing. Taking the subcarrier interval of PRACH as 30KHz as an example, an RO bandwidth is 4.32MHz, and the total frequency division multiplexing of 8 ROs is The bandwidth is 34.56MHz.
  • Every two ROs are mapped to the same SSB as For example, the subcarrier spacing is 30KHz, the number of ROs for frequency division multiplexing is 8, and the number of SSBs is 8.
  • the frequency range of the 8 ROs for frequency division multiplexing may exceed the maximum channel bandwidth supported by the low-complexity terminal equipment.
  • the UE accesses the cell, it will obtain one of the SSBs, and send PRACH at the RO corresponding to the SSB. For example, after the UE sends PRACH, it will send the PUSCH carrying Msg3 immediately.
  • the total frequency range corresponding to the frequency exceeds the maximum channel bandwidth of the UE , it is necessary to perform frequency tuning after sending PRACH, and then send the PUSCH bearing Msg3.
  • the reception of adjacent downlink information also has the problem of frequency tuning for FDD UEs or UEs with TDD uplink and downlink decoupling.
  • Frequency tuning reduces the symbols available for data transmission, reduces resource utilization efficiency, increases UE power consumption and UE implementation complexity.
  • any RB can be used as the starting RB of the bandwidth resource, and any resource size can be used as the length of the bandwidth resource to configure the bandwidth resource, since the maximum channel bandwidth supported by the low-complexity terminal device is smaller than the carrier bandwidth, the low Complexity End devices need to store all possible configurations. In this way, the complexity of the UE computing bandwidth resources will be too high.
  • an embodiment of the present application proposes a method for transmitting information, as shown in FIG. 2 ,
  • the network device indicates information to the first terminal device, the indication information may be used to indicate the first resource, the indication information may include a first reference point or a first bandwidth, and the first reference point may be used to determine the size of the first resource. Location, the first bandwidth may be the size of the bandwidth of the first resource.
  • the first terminal device determines a first resource according to the first reference point and/or the first bandwidth, and the size of the first resource is equal to or smaller than the maximum channel bandwidth supported by the first terminal device;
  • the first terminal device sends uplink information or receives downlink information in the first resource.
  • the indication information may indicate the first reference point and the first bandwidth at one time, as shown in FIG. 3 , or may be indicated in stages, as shown in FIG. 4 . It may be that one indication information indicates the first reference point and the other indication information indicates the first bandwidth, or one indication information indicates the first bandwidth and the other indication information indicates the first reference point, or only the first reference point is indicated, or Only the first bandwidth may be indicated.
  • the network device may first receive channel state information (Channel State Information, CSI) of the first terminal device, the CSI includes size information of the subband, and the network device determines the first resource of the first terminal device according to the size of the subband bandwidth.
  • CSI Channel State Information
  • first reference point may be used as the location of the first resource, and the location of the first resource may also be determined according to the first reference point and the first offset.
  • the first bandwidth, the first offset and the first reference point may also be predefined, which are not limited in this application.
  • the first bandwidth may be determined according to one or more of the subband size reported by the CSI, the subcarrier interval, and the bandwidth supported by the first terminal device.
  • the first offset may also be determined according to one or more of the subband size reported by the CSI, the subcarrier spacing, and the first bandwidth supported by the first terminal device.
  • the first bandwidth may be configured by the first configuration information
  • the first offset may be configured by the second configuration information
  • the first reference point may be configured by the third configuration information.
  • the first configuration information, the second configuration information, and the third configuration information may be carried in different information. It can also be carried in the same information, for example, it can be carried in SIB1.
  • the first resource is determined according to the bandwidth supported by the first terminal device.
  • the bandwidth supported by the first terminal device may be a channel bandwidth, or may be a transmission bandwidth corresponding to the channel bandwidth.
  • the bandwidth supported by the first terminal device may be 5MHz, 10MHz, 20MHz, or 5MHz, 10MHz, and 20MHz, and the number of RBs corresponds to different subcarrier intervals.
  • the first channel bandwidth is one of the maximum channel bandwidths supported by the first terminal device.
  • the first channel bandwidth may be the smallest bandwidth among the maximum channel bandwidths supported by the first terminal device.
  • the maximum channel bandwidth reported by the first terminal device may be 5MHz, 10MHz, 15MHz, and 20MHz, and the first channel bandwidth may be one of 5MHz, 10MHz, 15MHz, and 20MHz, and the maximum supported channel reported by the first terminal device
  • the minimum bandwidth among the bandwidths is 5MHz, that is, the first channel bandwidth may also be 5MHz.
  • the first bandwidth may be determined according to a positive integer multiple of the bandwidth supported by the first terminal device.
  • the first bandwidth is determined according to a positive integer multiple of 5MHz.
  • the bandwidth supported by the first terminal device may be the first transmission bandwidth, and the first transmission bandwidth is the number of resource blocks corresponding to the first channel bandwidth under different subcarrier intervals. For example, under different subcarrier intervals, the corresponding relationship between the first channel bandwidth and the first transmission bandwidth is shown in Table 1.
  • the first transmission bandwidth is 25 RBs.
  • the first bandwidth may be determined according to a positive integer multiple of 25 RBs, such as 25 RBs, 50 RBs, 75 RBs, 100 RBs, and so on.
  • the subcarrier spacing is 30KHz, and the first transmission bandwidth corresponding to 5MHz is 11 RBs
  • the first bandwidth can be determined according to a positive integer multiple of 11 RBs.
  • the first bandwidth may be determined according to a positive integer multiple of 10 RBs.
  • the subcarrier spacing is 60KHz
  • the first transmission bandwidth corresponding to 10MHz is 11 RBs. Then the bandwidth can be determined according to a positive integer multiple of 11 RBs.
  • Table 1 The relationship between the subcarrier spacing and the number of RBs corresponding to the bandwidth supported by the first terminal device
  • the method for determining the first offset is the same as the method in the foregoing embodiment, and details are not described herein again.
  • resource blocks other than a positive integer multiple of the first transmission bandwidth are used for sending the first control channel.
  • the resource blocks other than the positive integer multiple of the first transmission bandwidth include the first transmission resource and/or the second transmission resource.
  • the first transmission resource is the M1 resource blocks with the smallest index of the second resource, so
  • the second transmission resource is M2 resource blocks with the largest index of the second resource; wherein, M1 and M2 are positive integers, and the second resource is the BWP of the second type of terminal equipment, or the corresponding carrier bandwidth at different subcarrier intervals .
  • the first control channel may include the first hop transmission of the PUCCH fed back to Msg4, or may be the second hop transmission of the PUCCH fed back to the Msg4.
  • the first control channel may also be the first-hop transmission and the second-hop transmission of the PUCCH feedback to Msg4.
  • the first transmission bandwidth corresponding to 5MHz is 25 RBs
  • the number of RBs corresponding to the maximum channel bandwidth of 50MHz is 270 RBs
  • the positive integer multiple of the first transmission bandwidth is used as the first bandwidth
  • the first A positive integer multiple of the transmission bandwidth is used as the first offset.
  • the first bandwidth can be 25 RBs
  • the first offset can be 25 RBs
  • a maximum of 10 first bandwidths can be configured , a total of 250 RBs, the number of RBs corresponding to the maximum channel bandwidth of 50MHz is 270 RBs, and the remaining 20 RBs are distributed at both ends of the carrier.
  • the first transmission resource may be M1 resource blocks with the smallest index in the second resource
  • the second transmission resource may be M2 resource blocks with the largest index in the second resource.
  • the above solution takes the first bandwidth as the granularity, on the one hand, the optional range of the bandwidth can be greatly reduced, and on the other hand, it can be used as the minimum bandwidth configured when the UE saves energy consumption.
  • the first resource and/or the first offset is determined according to the subband size reported by the CSI.
  • the size of the subband reported by the CSI is a multiple of 4 RBs.
  • the network device determines the first bandwidth based on the size of the subband reported by the CSI, and the first bandwidth may be a multiple of 4 RBs. As shown in FIG. 6 , the first bandwidth may be 4 RBs. It can also be 8 RBs, 16 RBs, and so on.
  • the network device determines the first offset according to the size of the subband reported by the CSI, and the first offset may be a multiple of 4 RBs, and may be 4 RBs, 8 RBs, 16 RBs, and so on.
  • the number of subbands reported by the UE is reduced, which reduces the complexity of the UE reporting.
  • the first resource and/or the first offset is determined according to the subband size reported by the CSI and the resource allocation granularity of the control resource set.
  • the first resource and/or the first offset may be determined according to the common multiple of the subband size reported by the CSI and the resource allocation granularity of the control resource set.
  • the subband size reported by CSI may be 4 RBs
  • the CORESET resource allocation granularity may be 6 RBs.
  • a multiple of 12 RBs may be used as the first bandwidth, and/ or as the first offset.
  • the first resource and/or the first offset may be determined according to the subband size and resource block group granularity reported by the CSI.
  • the first resource and/or the first offset is determined according to the common multiple of the subband size reported by the CSI and the granularity size of the resource block group.
  • the size of the subband reported by CSI may be 4 RBs
  • the resource block group may include RBs to the power of 2
  • the common multiple of the number of RBs included in the above two items for example, may be multiples of 4 RBs as the first bandwidth , and/or as the first offset.
  • the first resource and/or the first offset is determined according to the size of the subband reported by the CSI, controlling the resource allocation granularity of the resource set and the granularity of the resource block group.
  • the first resource and/or the first offset is determined according to the subband size reported by the CSI, the resource allocation granularity of the control resource set, and the common multiple of the granularity of the resource block group.
  • the size of the subband reported by CSI may be 4 RBs
  • the CORESET resource allocation granularity may be 6 RBs
  • the resource block group may include RBs to the power of 2
  • the above items include a common multiple of the number of RBs, for example, you can is a multiple of 12 RBs as the first bandwidth, and/or as the first offset.
  • the above solution determines the bandwidth of the first resource according to the size of the subband reported by the CSI, solves the problem that the mismatch between the bandwidth of the subband and the first resource will lead to an increase in the number of subbands reported by the UE, and increases the CORESET resource allocation granularity and resource block group.
  • the basis for configuring the first bandwidth at the same time, it avoids the mismatch between the first bandwidth and the subband size reported by CSI, the resource allocation of CORESET, and the resource allocation of data channel type 0, which avoids the waste of resources, as shown in Figure 7, The complexity of UE reporting CSI is reduced.
  • a multiple of 12 may be used as the first offset, for example, 24 RBs, which can avoid the mismatch problem described above and reduce the bandwidth indication range.
  • the first bandwidth and the first offset in the above embodiment may be associated with the subcarrier spacing.
  • the first bandwidth and the subcarrier spacing have a first correlation; and/or, the first offset has a second correlation with the subcarrier spacing.
  • the first association relationship may be: the larger the subcarrier spacing, the smaller the first bandwidth.
  • the second association relationship may be: the larger the subcarrier spacing is, the smaller the first offset is.
  • the first association relationship may also be: the larger the subcarrier spacing is, the size of the first resource decreases proportionally, and for another example, the second association relationship may be: the larger the subcarrier spacing is, the first offset decreases proportionally.
  • the first offset may be 24 RBs, for 30KHz, the first offset may be 12 RBs, for 60Khz, the first offset may be 6 RBs, and so on.
  • the first offset may be 24 RBs, for 30KHz, the first offset may be 6 RBs, for 60Khz, the first offset may be 4 RBs, and so on.
  • the first offset may be 12 RBs, for 30KHz, the first offset may be 6 RBs, for 60Khz, the first offset may be 4 RBs, and so on.
  • This scheme considers that when the subcarrier spacing is different, the number of RBs contained in the same bandwidth is different.
  • the scheme of the present application can also be used to configure the first resource.
  • the first terminal device determines the first resource according to the first reference point.
  • the first terminal device may receive indication information, the indication information indicates a first reference point, and the first reference point may be the first RB of the second resource, the center frequency or center subcarrier of the second resource, and the second resource.
  • the indication information may be carried in SIB1 or PDCCH of scheduling SIB1.
  • the second resource is a resource configured for the terminal device of the second type, and the number of resource blocks included in the second resource can be greater than the number of resource blocks corresponding to the maximum channel bandwidth of the first terminal device.
  • the second resource is the carrier bandwidth or the number of RBs corresponding to the carrier at different subcarrier intervals, and the second resource may also be the BWP of the second type of terminal equipment.
  • the first terminal device may also determine the first reference point in a predefined manner, and the first reference point may be the first RB of the second resource, the center frequency or center subcarrier of the second resource, the second resource One or more of the last RB, common resource block 0, and Point A.
  • the positions of the start RB and the end RB of the second resource can be indicated by signaling. As shown in FIG. 8 , there may be 2 candidate bandwidths in the multiple candidate bandwidths, and the end RB of the second resource can be used as a reference. point, and the other three candidate bandwidths can use the starting RB of the second resource as a reference point.
  • the position of the start RB or the position of the end RB of the second resource may be indicated through signaling, and the candidate bandwidths may be sequentially determined through the indicated reference point.
  • Another possible implementation manner may use CRB 0 (Point A) as a reference point, and determine the starting point of the first resource according to the reference point.
  • This solution provides a reference point for the configuration of the first resource, and can avoid the resource waste caused by the first resource occupying less than one RB in some frequency domains.
  • the position of the second resource and the starting position of the CRB are jointly considered to determine the reference point, and the frequency that can be aligned with the CRB resource can be determined.
  • the position is used as a reference point.
  • the reference point is not necessarily the start or end RB position of the second resource.
  • This solution can flexibly determine the starting position of the first resource, reduces the indication overhead, and avoids the problem of resource allocation mismatch.
  • Another possible implementation is based on one of the subband size (subband size) reported by the CSI, the CORESET resource allocation granularity, the resource block group (RBG), the subcarrier spacing, and the minimum channel bandwidth supported by the first terminal device.
  • Multiple frequency domain offsets for configuring the first resource where the offset may be an RB whose starting position of the first resource is offset from the position of the second resource.
  • the starting position of the first resource may be MOD(Start_RB+first offset volume, BW),
  • Start_RB is the position of the end RB of the second resource
  • the start position of the first resource may be MOD(Start_RB+first offset, BW), or MOD(BW, Start_RB ⁇ first offset).
  • BW is the bandwidth of the second resource, or the bandwidth of the carrier.
  • the first reference point and the first offset may be determined according to the solutions in the foregoing embodiments, and details are not described herein again.
  • the first offset can be an integer multiple of 25 RBs
  • the RB position of Start_RB+the first offset can be index*25
  • the Index is ⁇ 0,1,2,3,4,5,6,7, 8,9,10 ⁇ .
  • Start_RB is taken as the starting position of the first resource by default.
  • the first terminal device receives second information sent by the network device, where the second information indicates at least two of the first bandwidth, the first reference point, and the first offset. That is, the network device performs joint coding on at least two of the first bandwidth, the first reference point, and the first offset.
  • the first bandwidth can be 5MHz, 10Mhz, 20MHz (or 25RB, 50RB, 100RB), and the first offset is an integer multiple of 25 RBs, then a total of 30 states need to be indicated, and 5 bits are required
  • the complexity and flexibility of the indication are comprehensively considered, and the bit overhead for the first resource can be reduced, and the computational complexity of the UE can be reduced at the same time.
  • the first reference point as the reference point of the first bandwidth location, may be the location of the first random access resource, that is, the location of the first resource is determined according to the location of the first random access resource,
  • the first terminal device sends the first uplink information in the first resource.
  • the size of the first resource (ie, the first bandwidth) is equal to or smaller than the maximum channel bandwidth supported by the first terminal device; the first random access resource is a random access resource available to the first terminal device.
  • the random access resources available to the first terminal device may be random access resources configured by the network device to the first terminal device.
  • the first uplink information includes all uplink information sent in the random access phase; or, the first uplink information includes the first transmission of the PUSCH carrying Msg3 (the initial transmission of Msg3), and the first transmission of the PUSCH carrying Msg3 for the first time
  • the first hop transmission (the first hop transmission of the initial transmission of Msg3), the transmission after the first transmission of the PUSCH carrying the Msg3 (the transmission after the initial transmission of the Msg3, including the retransmission of the Msg3 or the repetition of the Msg3), the PUSCH carrying the Msg3
  • the first hop transmission of the transmission after the first transmission of the Msg3 (the first hop transmission of the transmission after the initial transmission of Msg3), the first transmission of the PUCCH of the Msg4 (the first transmission of the PUCCH of the Msg4), the first transmission of the PUCCH of the Msg4
  • the first hop transmission of the secondary transmission (the first hop transmission of the initial transmission of the PUCCH
  • the location of the first random access resource includes the first RB of the first random access resource; or, the location of the first random access resource includes the last RB of the first random access resource; or, the first random access resource
  • the location of the resource includes the central RB of the first random access resource; or, the location of the first random access resource includes the first subcarrier of the first RB of the first random access resource; or, the first random access resource
  • the location of the resource includes the first subcarrier of the last RB of the first random access resource; or, the location of the first random access resource includes the first subcarrier of the central RB of the first random access resource; or,
  • the location of the first random access resource includes the last subcarrier of the first RB of the first random access resource; or, the location of the first random access resource includes the last subcarrier of the last RB of the first random access resource subcarrier; or, the location of the first random access resource includes the last subcarrier of the central RB of the first random access resource.
  • the size of the first random access resource may be predefined.
  • the position of the first resource includes the first RB of the first resource; or, the position of the first resource includes the last RB of the first resource; or, the position of the first resource includes the central RB of the first resource; or, the first The location of the resource includes the first subcarrier of the first RB of the first resource; or, the location of the first resource includes the first subcarrier of the last RB of the first resource; or, the location of the first resource includes the first subcarrier of the last RB of the first resource.
  • the first subcarrier of the central RB of a resource; or, the position of the first resource includes the last subcarrier of the first RB of the first resource; or, the position of the first resource includes the last subcarrier of the last RB of the first resource.
  • the last subcarrier; or, the position of the first resource includes the last subcarrier of the center RB of the first resource.
  • the present application uses the first location to represent the reference location of the first resource.
  • the location of the first random access resource may be predefined or indicated by signaling.
  • the first terminal device determines the location of the first resource according to the predefined location of the first random access resource.
  • the position of the predefined first random access resource may be the position of the nth random access resource, the index of the corresponding random access resource is n-1, and n is a positive integer.
  • the position of the predefined first random access resource may be the last RB of the fourth random access resource or the last subcarrier of the last RB.
  • the location of the predefined first random access resource may also be the first RB of the fifth random access resource or the first subcarrier of the first RB.
  • the location of the first resource may take the location of the predefined first random access resource as a starting location.
  • the first RB of the fifth random access resource or the first subcarrier of the first RB is determined to be the first RB of the first resource or the first subcarrier of the first RB.
  • the location of the first resource may also take the predefined location of the first random access resource as the ending location.
  • the location of the first random access resource may also be indicated by the first signaling.
  • the first signaling can be carried in System Information Block 1 (SIB1), the DCI of the scheduling SIB1, the random access response (Random access response, RAR), the DCI of the scheduling RAR, the scheduling Msg3 uplink grant, the Msg3, the contention resolution message, the scheduling competition One of the DCIs that resolves the message.
  • SIB1 System Information Block 1
  • RAR Random access response
  • the first signaling may also be bits or bit states in the above information.
  • An embodiment of the present application provides a method for transmitting information, as shown in Figure 11:
  • the network device sends first information and a first parameter to the first terminal device, where the first information is used to indicate M bandwidth resources, where M is a positive integer, and the first parameter is a random access frequency division multiplexing within a time unit.
  • the number of channel entry opportunities, the first terminal device is a first type of terminal device, and the size of each bandwidth resource in the M bandwidth resources is equal to or smaller than the maximum channel bandwidth supported by the first terminal device.
  • 1101 is optional, and the first information and the first parameter may also be predefined.
  • the first terminal device acquires the first information and the first parameter, and the first terminal device determines the first bandwidth resource according to the first information and the first parameter;
  • the first information may be system information.
  • system information block 1 system information block 1, SIB1.
  • the first terminal device sends uplink information or receives downlink information in the first bandwidth resource.
  • the first parameter may be included in the random access channel configuration information.
  • the random access channel configuration information may also include other PRACH information.
  • the random access channel opportunity is PRACH transmission occasion, and the first terminal device sends the random access preamble through PRACH transmission occasion.
  • the time slot that the first terminal device can send the PRACH can include one or more PRACH transmission occasions in the time domain, and each PRACH transmission occasion is a time unit.
  • the first parameter may indicate the number of PRACH transmission occasions that can be frequency-division multiplexed in frequency within one PRACH occasion.
  • a time slot may include one or more time units. When a time slot includes multiple time units, a time unit may be s symbols, where s is a positive integer greater than 1, and the first parameter may indicate the time unit within a time unit.
  • the number of PRACH transmission occurrences that can be frequency-division multiplexed in frequency, the value of the first parameter may be 1, or 2, or 4, or 8, etc.
  • the number of random access channel opportunities for frequency division multiplexing in one time unit is 8, and these 8 random access channel opportunities can be sorted in order of frequency resources from low to high.
  • the indices are arranged from 0 to 7.
  • the size of each bandwidth resource in the M bandwidth resources may be predefined, or may be indicated by the network device.
  • the size of each bandwidth resource can be 5MHz, or the number of RBs corresponding to 5MHz at different subcarrier intervals, or 10MHz, or the number of RBs corresponding to 10MHz at different subcarrier intervals, or 20MHz, or 20MHz The number of RBs corresponding to different subcarrier intervals.
  • M 2
  • one of the 2 bandwidth resources includes the random access channel opportunity ⁇ 0, 1, 2, 3 ⁇ resource
  • the other bandwidth resource includes the random access channel opportunity ⁇ 4 ,5,6,7 ⁇ resources.
  • the two bandwidth resources can include all the resources of the random access channel opportunity, and the first terminal device can determine according to the bandwidth resources.
  • the center frequency when transmitting PRACH can reduce the number of frequency tuning.
  • the first terminal device can obtain the first signaling, the first signaling indicates the first bandwidth resource in the M bandwidth resources, and the other M- One bandwidth resource is determined according to the first bandwidth resource.
  • the first bandwidth resource is a bandwidth resource with the lowest position when the positions of the frequency resources are arranged in ascending order.
  • the first bandwidth resource can be configured by configuring the starting position and configuring the resource size.
  • the remaining M-1 bandwidth resources can be sequenced by taking the ending resource block of the first bandwidth resource as the starting resource block, so that the M bandwidth resources can be determined in sequence.
  • the configuration of bandwidth resources does not need to consider the location of the RO, and is more flexible.
  • the bandwidth resource is the first bandwidth resource of the first terminal device, and the first bandwidth resource may include predefined N random connections.
  • the bandwidth resource is the first bandwidth resource of the first terminal device.
  • the first bandwidth resource may include predefined resources of N random access channel opportunities, the resources of the N random access channel opportunities belong to the first parameter random access channel opportunities, and N is a positive integer.
  • the resources of the predefined N random access channel opportunities need to include the resources of the random access channel opportunities where the random access preamble transmission is located.
  • the first bandwidth resource is determined according to the resource of the random access channel opportunity where the random access preamble transmission is located.
  • the first bandwidth resource is a resource starting from the first RB of the resource of the random access channel opportunity where the random access preamble transmission is located or the first subcarrier of the first RB; or, according to the random access preamble transmission
  • the resource of the random access channel opportunity where the random access channel opportunity is located, and the first bandwidth resource is determined, and the first bandwidth resource is the last RB or the last subcarrier of the last RB of the resource of the random access channel opportunity where the random access preamble transmission is located. end resource.
  • Possible scenarios of this solution the first type terminal device and the second type terminal device receive the same system information, receive the same first parameter, and only configure one bandwidth resource.
  • the bandwidth resource is the first bandwidth resource of the first terminal device, and the first terminal device also obtains first indication information
  • the first indication The information may indicate the first random access channel opportunity.
  • the starting resource block of the first bandwidth resource is the same as the starting resource block of the first random access channel opportunity. For example, if the value of the first parameter is 8, and the first information is that only one bandwidth resource is configured for the first terminal device, the bandwidth resource is the first bandwidth resource of the first terminal device.
  • the starting resource block of the first bandwidth resource may be determined according to the first indication information.
  • the first random access channel opportunity is the random access channel opportunity with index r, where r is an integer greater than or equal to 0.
  • the starting resource block of the first bandwidth resource is the same as the starting resource block of the first random access channel opportunity, and it can also be understood that the frequency position of the starting resource block of the first bandwidth resource is the same as the starting resource block of the first random access channel opportunity.
  • the first indication information may include 1 bit, and the first indication information may indicate the index of the first random access channel opportunity in the random access channel opportunity index ⁇ 0, 4 ⁇ . If the first indication information indicates that the index is 0, the first bandwidth resource may include a resource whose random access channel opportunity index is ⁇ 0, 1, 2, 3 ⁇ . If the first indication information indicates index 4, the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 4, 5, 6, 7 ⁇ . For example, the first bandwidth resource is indicated according to the resource of the random access channel opportunity where the random access preamble transmission is located.
  • the first bandwidth resource is a resource starting from the first RB of the resource of the random access channel opportunity where the random access preamble transmission is located or the first subcarrier of the first RB; or, according to the random access preamble transmission
  • the resource of the random access channel opportunity where the random access channel opportunity is located, and the first bandwidth resource is determined, and the first bandwidth resource is the last RB or the last subcarrier of the last RB of the resource of the random access channel opportunity where the random access preamble transmission is located. end resource.
  • the positions of the two possible first bandwidth resources indicated by this solution can include all random access channel opportunity resources, which can ensure that the transmission of the random access preamble does not require frequency tuning, thereby reducing the frequency of frequency tuning.
  • the first indication information may include 2 bits, and the first indication information indicates the index of the first random access channel opportunity in the random access channel opportunity index ⁇ 1, 2, 3, 4 ⁇ . If the first indication information indicates index 1, the first bandwidth resource may include resources with random access channel opportunity index ⁇ 1, 2, 3, 4 ⁇ . If the first indication information indicates index 2, the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 2, 3, 4, 5 ⁇ . If the first indication information indicates index 3, the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 3, 4, 5, 6 ⁇ . If the first indication information indicates index 4, the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 4, 5, 6, 7 ⁇ .
  • the positions of the four possible first bandwidth resources indicated by this solution can include all the resources of the random access channel opportunity, which can ensure that the transmission of the random access preamble does not require frequency tuning, reduces the number of frequency tunings, and the indication is more flexible .
  • the first indication information may further include 3 bits, and the first indication information indicates the index of the first random access channel opportunity in the random access channel opportunity index ⁇ 0, 1, 2, 3, 4 ⁇ . If the first indicator indicates that the index is 0, the first bandwidth resource may include a resource whose random access channel opportunity index is ⁇ 0, 1, 2, 3 ⁇ . If the first indication information indicates index 1, the first bandwidth resource may include resources with random access channel opportunity index ⁇ 1, 2, 3, 4 ⁇ . If the first indication information indicates index 2, the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 2, 3, 4, 5 ⁇ . If the first indication information indicates index 3, the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 3, 4, 5, 6 ⁇ .
  • the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 4, 5, 6, 7 ⁇ .
  • the positions of the five possible first bandwidth resources indicated by this solution can include all the resources of the random access channel opportunity, which can ensure that the transmission of the random access preamble does not require frequency tuning, reduces the number of frequency tunings, and the indication is more flexible .
  • the first indication information includes 3 bits, and the first indication information may further indicate the first random access channel in the random access channel opportunity index ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ Index of opportunities. If the first indicator indicates that the index is 0, the first bandwidth resource may include a resource whose random access channel opportunity index is ⁇ 0, 1, 2, 3 ⁇ . If the first indication information indicates index 1, the first bandwidth resource may include resources with random access channel opportunity index ⁇ 1, 2, 3, 4 ⁇ . If the first indication information indicates index 2, the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 2, 3, 4, 5 ⁇ . If the first indication information indicates index 3, the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 3, 4, 5, 6 ⁇ .
  • the first bandwidth resource may include resources with random access channel opportunity indices of ⁇ 4, 5, 6, 7 ⁇ . If the first indication information indicates that the index is 5, the first bandwidth resource may include a resource whose random access channel opportunity index is ⁇ 5, 6, 7 ⁇ . If the first indication information indicates an index of 6, the first bandwidth resource may include a resource whose random access channel opportunity index is ⁇ 6, 7 ⁇ . If the first indication information indicates index 7, the first bandwidth resource may include a resource whose random access channel opportunity index is ⁇ 7 ⁇ .
  • the positions of the eight possible first bandwidth resources indicated by this solution can include all random access channel opportunity resources, which can ensure that the transmission of the random access preamble does not require frequency tuning, reduces the number of frequency tunings, and is more flexible in indication .
  • the index of the first random access channel opportunity may also be determined by the presence or absence of the first indication information.
  • the absence of the first indication information can also be understood as the fact that the first terminal device has not acquired the first indication information.
  • the first indication information may be defaulted. If the first indication information is defaulted, the first random access channel opportunity is the random access channel opportunity with an index of 0.
  • This solution can be combined with the foregoing embodiments. For example, this solution can be applied together with the first indication information including 2 bits. If the first indication information is default, the first random access channel opportunity is the random access channel opportunity with index 0; If 2 bits are included, the first indication information indicates the index of the first random access channel opportunity in the random access channel opportunity index ⁇ 1, 2, 3, 4 ⁇ .
  • each bandwidth resource in the M bandwidth resources includes one or more random access channel opportunities of the first parameter.
  • the resource of the channel access opportunity the first terminal device determines the first bandwidth resource among the M bandwidth resources. Possible scenarios of this solution: the first type terminal device and the second type terminal device receive the same system information, receive the same first parameter, and configure multiple bandwidth resources.
  • bandwidth resources among the M bandwidth resources contain different random access channel opportunity resources.
  • the value of the first parameter is 8, and the first information configures 2 bandwidth resources for the first terminal device, and each of the 2 bandwidth resources includes one or more of the 8 random access channel opportunities Resources of random access channel opportunities, for example, as shown in Figure 13, one of the two bandwidth resources contains the resources of random access channel opportunities with indexes ⁇ 0, 1, 2, 3 ⁇ , and the other bandwidth resource Resources containing random access channel opportunities with indices ⁇ 4, 5, 6, 7 ⁇ .
  • the first terminal device may determine the first bandwidth resource among the two bandwidth resources.
  • the first bandwidth resource may be a bandwidth resource with an index of ⁇ 0, 1, 2, 3 ⁇ .
  • the first bandwidth resource may also be a bandwidth resource with an index of ⁇ 4, 5, 6, 7 ⁇ .
  • the first bandwidth resource may be determined according to the resource of the random access channel opportunity where the random access preamble transmission is located.
  • the first terminal device receives the second indication information, and the second indication information may indicate the second bandwidth resource among the M bandwidth resources.
  • the second bandwidth resource may be different from the first bandwidth resource, that is, the resource of the random access channel opportunity included in the second bandwidth resource is not exactly the same as the resource of the random access channel opportunity included in the first bandwidth resource.
  • the second bandwidth resource may also be the same as the first bandwidth resource, that is, the resource of the random access channel opportunity included in the second bandwidth resource is the same as the resource of the random access channel opportunity included in the first bandwidth resource.
  • the second indication information may be composed of a random access response message (Random access response, RAR), downlink control information for scheduling a random access response message, a contention resolution message (Msg4), and downlink control information for scheduling a contention resolution message.
  • RAR random access response message
  • Msg4 contention resolution message
  • One or more bearers, and/or the second indication information is included in the uplink grant (UL grant) of each medium access control random access response (MAC RAR) in the random access response message.
  • the second indication information may indicate the second channel bandwidth for each of the terminal devices of the first type, and the second indication information may be included in the UL grant of the MAC RAR.
  • the second indication information may indicate the second channel bandwidth resource for a group of terminal equipments of the first type, and the second indication information may be included in RAR, DCI for scheduling RAR, Msg4, and DCI for scheduling Msg4.
  • the second indication information can be carried by two kinds of information respectively, for example, carried in the DCI of the scheduling Msg4 and the UL grant of the MAC RAR at the same time, to instruct the first terminal device to send the message 3 in the random access process in the second bandwidth resource , or send a physical uplink control channel for feedback of contention resolution messages.
  • the first terminal device sends the random access preamble in the first bandwidth resource.
  • the first terminal device sends the message 3 in the random access process in the second bandwidth resource, or sends the physical uplink control channel for feedback of the contention resolution message.
  • the bandwidth resource for sending the random access preamble by the first terminal device may be different from the bandwidth resource for sending the message 3 in the random access process.
  • the bandwidth resource for sending the random access preamble by the first terminal device may be different from the bandwidth resource for sending the physical uplink control channel feedback on the contention resolution message.
  • the bandwidth resource for sending the random access preamble by the first terminal device may be different from the bandwidth resource for sending message 3 in the random access process and the physical uplink control channel for feeding back the contention resolution message.
  • the bandwidth resource of the first terminal device for sending the message 3 in the random access process may be different from the bandwidth resource of the physical uplink control channel for sending feedback on the contention resolution message.
  • the fifth indication information may be carried by one or more of the RAR, the DCI of the scheduled RAR, Msg4, the DCI of the scheduled Msg4, and the UL grant of the MAC RAR, indicating the third bandwidth resource, and the first terminal device is in the second
  • the message 3 in the random access process is sent in the bandwidth resource, and the first terminal device sends the physical uplink control channel for feedback of the contention resolution message in the third bandwidth resource.
  • the third bandwidth resource is the same as or different from the first bandwidth resource, and the third bandwidth The resource is the same as or different from the second bandwidth resource.
  • the first terminal device sends the random access preamble in the first bandwidth resource, and the second indication information is the DCI of the scheduling RAR, indicating the second bandwidth resource, then the first terminal device sends the random access preamble in the second bandwidth resource.
  • message 3 in the incoming process or send the physical uplink control channel for feedback of the contention resolution message.
  • the first terminal device may also receive fifth indication information, where the fifth indication information is the DCI of the scheduling Msg4 and indicates the third bandwidth resource, then the first terminal device sends the physical information for the feedback of the contention resolution message in the third bandwidth resource. Uplink control channel.
  • the first terminal device can send all uplink information in the first bandwidth resource, which can ensure that frequency tuning does not need to be performed during the uplink transmission process, thereby reducing the frequency of frequency tuning.
  • the first terminal device can also send the random access preamble on the first bandwidth resource, and send the message 3 in the random access process and the physical uplink control channel for the contention resolution message feedback on the second bandwidth, which can reduce the frequency tuning times.
  • load balancing On the basis of load balancing.
  • the first terminal device may also send the random access preamble on the first bandwidth resource, send the first hop transmission of message 3 in the random access process on the second bandwidth resource, and send the message in the random access process on the third bandwidth resource
  • the second hop transmission of 3 and the physical uplink control channel for feedback of the contention resolution message are beneficial for the first terminal device to obtain the frequency diversity gain of message 3 in the random access process.
  • the first terminal device may also send the random access preamble on the first bandwidth resource, send message 3 in the random access process and the first hop transmission of the physical uplink control channel fed back to the contention resolution message on the second bandwidth resource, and send the first hop transmission on the physical uplink control channel on the second bandwidth resource.
  • the three-resource transmission is the second hop transmission of the physical uplink control channel fed back by the contention resolution message, which is beneficial to the frequency diversity gain of the physical uplink control channel and solves the resource fragmentation problem caused by the resource allocation of the physical uplink control channel.
  • the first terminal device sends the random access preamble in the first bandwidth resource, and the first terminal device receives the third indication information.
  • the resource for sending the information by the first terminal device may be determined according to the bit state of the third indication information.
  • the first terminal device only needs to detect the third indication information to determine whether the second bandwidth resource/third bandwidth resource exists, and if not, it does not need to detect the configuration information, which reduces the complexity of the terminal device.
  • the bit state of the third indication information is the first bit state, and the first terminal device sends message 3 in the random access process in the first bandwidth resource, and/or sends feedback on the contention resolution message in the first bandwidth resource physical uplink control channel;
  • the bit state of the third indication information is the second bit state, and the first terminal device sends the message 3 in the random access process in the second bandwidth resource, and/or sends the message 3 in the second bandwidth resource Physical uplink control channel for contention resolution message feedback.
  • the bit state of the third indication information is the second bit state
  • the first terminal device sends the message 3 in the random access process in the second bandwidth resource, and sends the physical message feedback for the contention resolution message in the third bandwidth resource.
  • Uplink control channel Uplink control channel.
  • the third indication information may be identification information, and the identification information may be included in DCI or in higher layer signaling.
  • the third indication information may be carried by one or more of RAR, DCI scheduling RAR, Msg4, DCI scheduling Msg4, and UL grant of MAC RAR.
  • the third indication information is the DCI of the scheduled RAR, and the third indication information applies the available bits in the DCI to indicate the resources for the first terminal device to send the information.
  • the first terminal device when the bit state is the first bit state, the first terminal device sends the message 3 in the random access process, and/or sends the bandwidth resources of the physical uplink control channel for the feedback of the contention resolution message and the number of the random access preamble.
  • a bandwidth resource is the same.
  • the first terminal device when the bit state is the second bit state, the first terminal device sends the message 3 in the random access process, and/or sends the bandwidth resources of the physical uplink control channel for feedback on the contention resolution message and sends the random access preamble.
  • the first bandwidth resources are different.
  • the first terminal device when the bit state is the second bit state, the first terminal device sends message 3 in the random access process, and/or sends the bandwidth resource of the physical uplink control channel for feedback on the contention resolution message and the first terminal device for sending the random access preamble.
  • a bandwidth resource is different.
  • the application of the random access channel configuration information is associated with the value of the first parameter.
  • the random access channel configuration information is used for the first type of terminal equipment and for the second type of terminal equipment.
  • the random access channel configuration information is only used for the first type of terminal equipment.
  • the random access channel configuration information cannot be used only for the terminal equipment of the first type. Since the maximum channel bandwidth supported by the terminal device of the first type is smaller than the size of the resources of the random access channel opportunity corresponding to the value of the first parameter greater than 4, when the value of the first parameter is greater than 4, the random access channel configuration information cannot only be For the first type of terminal equipment, it is beneficial to the coexistence of the first type of terminal equipment and the second type of terminal equipment under the coverage of the same network equipment.
  • the configuration of the M bandwidth resources is only used for the terminal equipment of the first type.
  • the M bandwidth resources are M uplink BWPs or M downlink BWPs.
  • the configuration of the M bandwidth resources is independently configured for the terminal equipment of the first type.
  • the configuration of the M bandwidth resources is independently configured for the terminal equipment of the first type. It can be understood that the configuration is performed through an independent field or an independent parameter. The fields or parameters are different, or the content of the independent field or the configuration of the independent parameter is different from the content of the field or parameter configuration of the terminal device of the second type.
  • the downlink information includes the PDCCH that schedules SIB1, the PDSCH that schedules SIB1, the PDCCH that schedules SI, the PDSCH that schedules SI, the PDCCH that schedules Msg2, the PDSCH that schedules Msg2, the PDCCH that schedules Msg3, the PDCCH that schedules Msg4, and the PDSCH that schedules Msg4. or more.
  • the first terminal equipment when the random access channel configuration information is used for the first type of terminal equipment and the second type of terminal equipment, and the value of the first parameter is greater than 4, the first terminal equipment sends the uplink information in the first bandwidth resource. or receive downlink information.
  • the random access channel configuration information is configured jointly by the terminal device of the first type and the terminal device of the second type, that is, it is not independently configured for the terminal device of the first type.
  • the value of the first parameter is 8.
  • the first terminal equipment when the random access channel configuration information is used for the first type of terminal equipment and for the second type of terminal equipment, and the value of the first parameter is greater than 4, the first terminal equipment sends in the second bandwidth resource Uplink information or receive downlink information.
  • the random access channel configuration information is configured jointly by the terminal device of the first type and the terminal device of the second type, that is, it is not independently configured for the terminal device of the first type.
  • the first terminal equipment contains the first parameter random access channel.
  • the random access channel configuration information is configured jointly by the terminal device of the first type and the terminal device of the second type, that is, it is not independently configured for the terminal device of the first type.
  • the value of the first parameter is 1 or 2 or 4.
  • the bandwidth resources of the first parameter random access channel opportunities may be predetermined resources of the first parameter random access channel opportunities, or may be the first bandwidth resources determined by the first indication information.
  • the random access channel configuration information is only used for the first type of terminal equipment, the first information indicates a first bandwidth resource, and the first terminal equipment sends uplink information or receives downlink information in the first bandwidth resource.
  • the random access channel configuration information is independently configured for the terminal equipment of the first type. For example, if the first bandwidth resource is configured in the system information, the first terminal device sends uplink information or receives downlink information in the first bandwidth resource.
  • the first terminal device obtains indication information, the indication information is used to indicate the association configuration of SSB and random access, and the first terminal device determines the association configuration of SSB and random access according to the indication information.
  • the association configuration of SSB and random access may represent the number of SSBs associated with a random access channel opportunity (RO).
  • the association configuration may be the first association configuration, or the association configuration may be the second association configuration.
  • the first bit state of the fourth indication information is the first associated configuration
  • the second bit state of the fourth indication information is the second associated configuration.
  • the first association configuration is the association configuration of the new SSB and the random access channel opportunity, that is, the first association configuration is different from the association configuration of the SSB and the random access channel opportunity of the terminal device of the second type.
  • the type of association configuration may be determined according to the presence or absence of indication information.
  • the first terminal device determines that the association configuration between the SSB and the random access channel opportunity is the first association configuration; if the indication information does not appear, the first terminal device determines that the association configuration between the SSB and the random access channel opportunity is the second association configuration.
  • the indication information is optional. If the indication information is configured, that is, the indication information appears, the association configuration between the SSB and the random access channel opportunity is the first association configuration. If the indication information is not configured, that is, the indication information does not appear, the SSB is configured. The association configuration with the random access channel opportunity is the second association configuration.
  • the indication information is identification information and includes 1 bit.
  • this solution can avoid RF retuning between uplink transmissions in the initial access phase by determining the frequency domain location and bandwidth of the first resource.
  • the total frequency range where two adjacent uplink transmissions are located, or the total frequency range where two adjacent downlink receptions are located is within the maximum supported by the terminal equipment.
  • the channel bandwidth range to avoid frequent frequency tuning between uplink transmissions, and/or avoid frequent frequency tuning between downlink receptions, thereby increasing the available symbols for data transmission, improving resource utilization efficiency, and avoiding increasing UE power consumption And reduce the complexity of UE implementation.
  • the network device or the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 1300 for implementing the functions of the network device or the terminal device in the above method.
  • the apparatus may be a software module or a system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1300 may include: a processing unit 1310 and a communication unit 1320 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively configured to perform the sending and receiving steps of the network device or the terminal device in the above method embodiments.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiver, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the communication unit 1320 may be regarded as a receiving unit, and the device for implementing the transmitting function in the communication unit 1320 may be regarded as a transmitting unit, that is, the communication unit 1320 includes a receiving unit and a transmitting unit.
  • a communication unit may also sometimes be referred to as a transceiver, transceiver, or interface circuit, or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • a processing unit configured to determine the resource for transmitting information according to the downlink information of the network device or according to the predefined
  • the communication unit is used for sending and receiving information.
  • a processing unit that configures resources or determines resources according to a predefined definition.
  • the communication unit is used to send and receive information.
  • processing unit 1310 and the communication unit 1320 may also perform other functions.
  • processing unit 1310 and the communication unit 1320 may also perform other functions.
  • FIG. 15 shows an apparatus 1400 provided in this embodiment of the present application.
  • the apparatus shown in FIG. 15 may be a hardware circuit implementation of the apparatus shown in FIG. 14 .
  • the communication apparatus can be applied to the flow chart shown above to perform the functions of the terminal device or the network device in the above method embodiments.
  • FIG. 14 only shows the main components of the communication device.
  • the communication device 1400 includes a processor 1410 and an interface circuit 1420 .
  • the processor 1410 and the interface circuit 1420 are coupled to each other.
  • the interface circuit 1420 can be a transceiver or an input-output interface.
  • the communication apparatus 1400 may further include a memory 1430 for storing instructions executed by the processor 1410 or input data required by the processor 1410 to execute the instructions or data generated after the processor 1410 executes the instructions.
  • the processor 1410 is used to implement the functions of the above-mentioned processing unit 1310
  • the interface circuit 1420 is used to implement the functions of the above-mentioned communication unit 1320 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the processor may be a random access memory (Random Access Memory, RAM), a flash memory, a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable memory
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Programmable ROM
  • EEPROM Electrically erasable programmable read-only memory
  • registers hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信息的方法和装置,该传输信息的方法包括:第一终端设备根据第一参考点和第一带宽确定第一资源,第一参考点用于确定所述第一资源的位置,第一带宽为所述第一资源的大小,第一资源的大小等于或小于第一终端设备支持的最大信道带宽,第一终端设备为第一类型终端设备;所述第一终端设备在所述第一资源上发送和/或接收信息,解决了通信设备在接入网络的过程中工作频率频繁切换的问题,有效节省了通信设备的功耗,提高了信息传输的灵活性。

Description

一种传输信息的方法及其装置
本申请要求于2021年03月17日提交中国专利局、申请号为202110286882.2、申请名称为“一种传输信息的方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域。尤其涉及一种传输信息的方法及其装置。
背景技术
通信设备在接入网络设备的过程中,两次相邻的上行发送对应的工作频率不同,或两次相邻的下行接收对应的工作频率不同,导致通信设备的业务在相邻的上行发送之间进行频率调谐,或者,导致通信设备的业务在相邻的下行接收之间进行频率调谐,工作频率的频繁切换造成了通信设备巨大的功耗。
发明内容
本申请提供一种传输信息的方法及装置,能够避免通信设备工作频率的频繁切换,节省功耗,提高信息传输的灵活性。
第一方面,提供了一种传输信息的方法,该方法可以包括:第一终端设备获取第一信息,所述第一信息用于指示M个带宽资源,其中M是正整数,所述第一终端设备为第一类型终端设备,所述M个带宽资源中的每个带宽资源的大小等于或小于所述第一终端设备支持的最大信道带宽;第一终端设备获取第一参数,第一参数为一个时间单元内频分复用的随机接入信道机会的个数;第一终端设备根据所述第一信息和第一参数在所述M个带宽资源中确定第一带宽资源;第一终端设备在所述第一带宽资源中发送上行信息或接收下行信息。
第一信息可以是系统信息,比如SIB1,第一参数可以承载在随机接入信道配置信息中。第一终端设备是第一类型终端设备,第一类型终端设备可以是低复杂度终端设备(reduced capability UE,REDCAP UE),第一类型终端设备的带宽、支持或配置的资源数、发射天线端口数和/或接收天线端口数、射频通道数、混合自动重传请求(hybrid automatic repeat request,HARQ)进程数、支持的峰值速率、时延要求、处理能力等特征相比于第二类型终端设备(可以是legacy UE)呈现较低的水平。
应理解,M个带宽资源的大小可以相同,也可以不同,本申请对此不做限定。
该方法通过配置至少一个大小在第一终端设备支持的最大带宽信道范围内的带宽资源,第一终端设备通过第一信息和第一参数确定第一带宽资源,能够避免第一终端设备工作过频率的频繁切换,节省了功耗。
结合第一方面,在第一方面的某些实现方式中,所述第一参数的值大于4,
M=1时,该带宽资源即为第一带宽资源,第一带宽资源包括预定义的N个随机接入信 道机会的资源,其中第一参数个随机接入信道机会包括所述N个随机接入信道机会,N为正整数,
或者,
M=1时,该带宽资源即为第一带宽资源,所述第一带宽资源的起始资源块与第一随机接入信道机会的起始资源块相同,所述第一随机接入信道机会是由第一指示信息指示的,
或者,
M>1时,所述M个带宽资源中的每个带宽资源包括至少一个随机接入信道机会对应的资源。
结合第一方面,在第一方面的某些实现方式中,所述第一参数的值为8,所述随机接入信道机会按照第一顺序排列的索引为0~7,所述第一顺序包括频率从小到大的顺序。
应理解,第一顺序也可以理解为随机接入信道机会在频域上的位置的从低到高的顺序。
所述第一终端设备获取第一指示信息,
所述第一指示信息包括1个比特,所述第一指示信息在索引{0,4}中指示所述第一随机接入信道机会的索引,
或者,
所述第一指示信息包括2个比特,所述第一指示信息在索引{1,2,3,4}中指示所述第一随机接入信道机会的索引,
或者,
所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4}中指示所述第一随机接入信道机会的索引,
或者,
所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4,5,6,7}中指示所述第一随机接入信道机会的索引,
或者,
所述第一终端设备未获取第一指示信息,所述第一随机接入信道机会的索引为0。
应理解,当第一指示信息包括3个比特,可以指示{0,1,2,3,4}的索引,5个随机接入信道机会对应的带宽资源可以覆盖第一终端设备支持的最大信道带宽。第一指示信息也可以指示8个随机接入信道机会的索引。
应理解,第一终端设备未获取第一指示信息,可以是第一终端设备未接收到第一指示信息,也可以是网络设备未配置。
结合第一方面,在第一方面的某些实现方式中,所述M个带宽资源中的每个带宽资源的大小是预定义的,或者,所述M=2,所述带宽资源中一个带宽资源包括随机接入信道机会{0,1,2,3}的资源,所述带宽资源中另一个带宽资源包括随机接入信道机会{4,5,6,7}的资源,或者,所述M>1,剩余M-1个带宽资源是根据第一候选带宽资源确定的,所述第一候选带宽资源是第一信令指示的。
应理解,M个带宽资源的大小可以都是预定义的,也可以是根据随机接入信道机会的资源来确定的,也可以是根据随机接入信道机会确定一个起始带宽资源,其他的带宽资源可以以该资源为起点,依次排列。
结合第一方面,在第一方面的某些实现方式中,M>1,第一终端设备接收第二指示信息,第二指示信息用于指示第二带宽资源;第一终端设备在所述第一带宽资源中发送随机接入前导;第一终端设备在所述第二带宽资源中发送随机接入过程中的消息3,或发送对竞争解决消息反馈的物理上行控制信道。
即,M>1时,也可以通过指示信息来指示第二带宽资源,第一终端设备在第一带宽资源和第二带宽资源中发送信息。
结合第一方面,在第一方面的某些实现方式中,第二指示信息承载在随机接入响应消息、调度随机接入响应消息的下行控制信息、竞争解决消息、调度竞争解决消息的下行控制信息中的一种或多种信息中;和/或,所述第二指示信息承载在随机接入响应消息中的每个媒体接入控制随机接入响应的上行授权中。
结合第一方面,在第一方面的某些实现方式中,M>1,第一终端设备在第一带宽资源中发送随机接入前导;第一终端设备接收第三指示信息,第三指示信息用于指示第一终端设备发送随机接入过程中的消息3和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源。
第三指示信息的比特状态是第一比特状态时,第一终端设备在第一带宽资源中发送随机接入过程中的消息3,和/或在第一带宽资源中发送对竞争解决消息反馈的物理上行控制信道;
第三指示信息的比特状态是第二比特状态时,第一终端设备在第二带宽资源中发送随机接入过程中的消息3,和/或在第二带宽资源中发送对竞争解决消息反馈的物理上行控制信道。
也即可以通过第三指示信息的比特状态来指示随机接入过程中的消息3和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源。
应理解,第三指示信息的比特状态与指示的带宽资源的关系不作为一种限定。
结合第一方面,在第一方面的某些实现方式中,第一终端设备获取第四指示信息,第四指示信息用于指示SSB和随机接入的关联配置为第一关联配置,或者,为第二关联配置;或者,若第一终端设备获取第四指示信息,第四指示信息用于指示SSB和随机接入的关联配置为第二关联配置,若第一终端设备未获取第四指示信息,则SSB和随机接入的关联配置为第一关联配置。
即,可以由第四指示信息的内容来指示关联配置的类型,也可以由第四指示信息的有无来指示关联配置的类型。
第二方面,提供了一种确定带宽资源的方法,该方法可以包括:网络设备向第一终端设备发送第一信息,第一信息用于指示M个带宽资源,其中M是正整数,M个带宽资源中的每个带宽资源的大小等于或小于第一终端设备支持的最大信道带宽第一终端设备为第一类型终端设备;网络设备发送第一参数,第一参数为一个时间单元内频分复用的随机接入信道机会的个数;网络设备在第一带宽资源中接收第一终端设备发送的上行信息或向第一终端设备发送下行信息,第一带宽资源是第一终端设备根据第一信息和第一参数在所述M个带宽资源中确定的。
该方法通过配置至少一个大小在第一终端设备支持的最大带宽信道范围内的带宽资源,发送第一信息和第一参数以使第一终端设备确定第一带宽资源,能够避免第一终端设 备工作过频率的频繁切换,节省了功耗。
结合第二方面,在第二方面的某些实现方式中,所述第一参数的值大于4,
M=1时,所述M个带宽资源为所述第一带宽资源,所述第一带宽资源包括预定义的N个随机接入信道机会的资源,其中第一参数个随机接入信道机会包括所述N个随机接入信道机会,N为正整数,
或者,
M=1时,所述网络设备发送第一指示信息,所述第一指示信息用于指示第一随机接入信道机会,所述第一带宽资源的起始资源块与所述第一随机接入信道机会的起始资源块相同,所述M个带宽资源为所述第一带宽资源,
或者,
M>1时,所述M个带宽资源中的每个带宽资源包括至少一个随机接入信道机会对应的资源。
结合第二方面,在第二方面的某些实现方式中,第一参数的值为8,所述随机接入信道机会按照第一顺序排列的索引为0~7,所述第一顺序包括频率从小到大的顺序。
结合第二方面,在第二方面的某些实现方式中,第一指示信息包括1个比特,所述第一指示信息在索引{0,4}中指示所述第一随机接入信道机会的索引,
或者,
所述第一指示信息包括2个比特,所述第一指示信息在索引{1,2,3,4}中指示所述第一随机接入信道机会的索引,
或者,
第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4}中指示第一随机接入信道机会的索引,
或者,
第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4,5,6,7}中指示第一随机接入信道机会的索引,
或者,
网络设备未发送第一指示信息,所述第一随机接入信道机会的索引为0。
结合第二方面,在第二方面的某些实现方式中,所述M个带宽资源中的每个带宽资源的大小是预定义的,
或者,
M=2,带宽资源中一个带宽资源包括随机接入信道机会{0,1,2,3}的资源,带宽资源中另一个带宽资源包括随机接入信道机会{4,5,6,7}的资源,
或者,
M>1,网络设备发送第一信令,第一信令用于指示第一候选带宽资源,剩余M-1个带宽资源是根据第一候选带宽资源确定的。
结合第二方面,在第二方面的某些实现方式中,所述网络设备发送第二指示信息,所述第二指示信息用于指示第二带宽资源;所述网络设备在所述第一带宽资源中接收随机接入前导;所述网络设备在所述第二带宽资源中接收随机接入过程中的消息3,或接收对竞争解决消息反馈的物理上行控制信道。
结合第二方面,在第二方面的某些实现方式中,所述第二指示信息承载在随机接入响应消息、调度随机接入响应消息的下行控制信息、竞争解决消息、调度竞争解决消息的下行控制信息中的一种或多种信息中;和/或,所述第二指示信息承载在随机接入响应消息中的每个媒体接入控制随机接入响应的上行授权中。
结合第二方面,在第二方面的某些实现方式中,所述M>1,所述网络设备在所述第一带宽资源中接收随机接入前导;所述网络设备发送第三指示信息,所述第三指示信息用于指示所述第一终端设备发送随机接入过程中的消息3和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源。
所述第三指示信息的比特状态是第一比特状态时,所述网络设备在所述第一带宽资源中接收随机接入过程中的消息3,和/或在所述第一带宽资源中接收对竞争解决消息反馈的物理上行控制信道,
所述第三指示信息的比特状态是第二比特状态时,所述网络设备在所述第二带宽资源中接收随机接入过程中的消息3,和/或在所述第二带宽资源中接收对竞争解决消息反馈的物理上行控制信道。
结合第二方面,在第二方面的某些实现方式中,所述网络设备发送第四指示信息,所述第四指示信息用于指示SSB和随机接入的关联配置为第一关联配置,或者,为第二关联配置。
若所述网络设备发送第四指示信息,所述第四指示信息用于指示SSB和随机接入的关联配置为第一关联配置,若所述网络设备未发送第四指示信息,则所述SSB和随机接入的关联配置为第二关联配置,
或者,若所述网络设备发送第四指示信息,所述第四指示信息用于指示SSB和随机接入的关联配置为第二关联配置,若所述网络设备未发送第四指示信息,则所述SSB和随机接入的关联配置为第一关联配置。
应理解,在上述第一方面中对相关内容的扩展、限定、解释和说明也适用于第二方面中相同的内容。
第三方面,提供一种传输信息的方法,该方法可以包括:第一终端设备根据第一参考点和第一带宽确定第一资源,所述第一参考点用于确定所述第一资源的位置,所述第一带宽为所述第一资源的带宽;第一终端设备在所述第一资源上发送和/或接收信息,所述第一终端设备为第一类型终端设备,第一资源的大小等于或小于第一终端设备支持的最大信道带宽;第一终端设备在所述第一资源内发送上行信息,和/或,第一终端设备在第一资源内接收下行信息。
该方法提供了确定的参考点和带宽,避免了第一终端设备经过多次检测才能确定第一资源,降低了第一终端设备计算的复杂度,节省了功耗。
结合第三方面,在第三方面的某些实现方式中,第一带宽可以根据CSI上报的子带大小、子载波间隔、第一终端设备支持的最大信道带宽中的一项或多项来确定。
应理解,第一资源还可以根据第一参考点和第一偏移量来确定,第一偏移量也可以根据CSI上报的子带大小、子载波间隔、第一终端设备支持的最大信道带宽中的一项或多项来确定。
应理解,第一终端设备支持的最大信道带宽可以是传输带宽,传输带宽可以是最大信 道带宽在不同的子载波间隔下对应的资源块数。
结合第三方面,在第三方面的某些实现方式中,第一终端设备支持的最大信道带宽与子载波间隔存在关联关系。
应理解,关联关系可以由指示信息来指示,也可以是预定义的。
结合第三方面,在第三方面的某些实现方式中,可以根据第一终端设备支持的最大信道带宽大小的正整数倍确定第一带宽。
结合第三方面,在第三方面的某些实现方式中,可以根据CSI上报的子带大小、子载波间隔、第一终端设备支持的最大信道带宽中的多项的大小的公倍数来确定第一带宽,或者,确定第一偏移量。
结合第三方面,在第三方面的某些实现方式中,第一终端设备可以接收指示信息,指示信息用于指示第一参考点,第一参考点可以是第二资源的第一个RB,第二资源的中心频率或中心子载波,第二资源的最后一个RB,公共资源块0,Point A中的一种或多种,或者,
其中,所述第二资源是为第二终端设备配置的资源,且所述第二资源包含的资源块数能够大于所述第一终端设备的最大信道带宽对应的资源块数。
应理解,指示信息可以承载在SIB1,SIB1PDCCH中。
还应理解,第一参考点可以是由指示信息指示的,也可以是预定义的。
结合第三方面,在第三方面的某些实现方式中,第一资源的位置可以根据第一参考点和第一偏移量确定。
结合第三方面,在第三方面的某些实现方式中,第一偏移量可以是所述第一资源与公共资源块0之间间隔的N个RB。第一资源的位置可以是MOD(第一参考点+第一偏移量,BW);或者,MOD(BW,第一资源的参考点-第一偏移量),BW为第二资源的带宽,或者为载波带宽。
应理解,第一偏移量与子载波间隔存在关联关系,可以是指示信息指示的,也可以是预定义的。
接收第二信息,所述第二信息指示第一带宽,第一参考点,第一偏移量中的至少两种。
第四方面,提供一种传输信息的方法,该方法可以包括:网络设备可以向第一终端设备发送第一参考点和第一带宽,所述第一参考点用于确定所述第一资源的位置,所述第一带宽为第一资源的带宽;网络设备在第一资源上发送和/或接收信息,第一资源是第一终端设备根据第一参考点和第一带宽确定的,所述第一终端设备为第一类型终端设备,第一资源的大小等于或小于第一终端设备支持的最大信道带宽。
该方法提供了确定的参考点和带宽,避免了第一终端设备经过多次检测才能确定第一资源,降低了第一终端设备计算的复杂度,节省了功耗。
应理解,网络设备发送第一参考点和第一带宽是可选的,第一参考点和第一带宽也可以是预定义的。
结合第四方面,在第四方面的某些实现方式中,第一带宽可以CSI上报的子带大小、子载波间隔、第一终端设备支持的最大信道带宽中的一项或多项来确定。
应理解,第一带宽还可以根据第一参考点和第一偏移量来确定,第一偏移量也可以根据CSI上报的子带大小、子载波间隔、第一终端设备支持的最大信道带宽中的一项或多项 来确定。
应理解,第一终端设备支持的最大信道带宽可以是传输带宽,传输带宽可以是最大信道带宽在不同的子载波间隔下对应的资源块数。
结合第四方面,在第四方面的某些实现方式中,第一终端设备支持的最大信道带宽与子载波间隔存在关联关系。
应理解,关联关系可以由网络设备发送指示信息来指示,也可以是预定义的。
结合第四方面,在第四方面的某些实现方式中,网络设备可以根据第一终端设备支持的最大信道带宽大小的正整数倍确定第一带宽。
结合第四方面,在第四方面的某些实现方式中,网络设备可以根据CSI上报的子带大小、子载波间隔、第一终端设备支持的最大信道带宽中的多项的大小的公倍数来确定第一带宽,或者,确定第一偏移量。
结合第四方面,在第四方面的某些实现方式中,网络设备可以发送指示信息,指示信息用于指示第一参考点,第一参考点可以是第二资源的第一个RB,第二资源的中心频率或中心子载波,第二资源的最后一个RB,公共资源块0,Point A中的一种或多种,其中,所述第二资源是为第二终端设备配置的资源,且所述第二资源包含的资源块数能够大于所述第一终端设备的最大信道带宽对应的资源块数。
应理解,指示信息可以承载在SIB1,SIB1PDCCH中。
还应理解,第一参考点可以是由指示信息指示的,也可以是预定义的。
结合第四方面,在第四方面的某些实现方式中,网络设备可以发送第一参考点和第一偏移量,第一资源的位置可以根据第一参考点和第一偏移量确定。
结合第四方面,在第四方面的某些实现方式中,第一偏移量可以是第一资源与公共资源块0之间间隔的N个RB。第一资源的位置可以是MOD(第一参考点+第一偏移量,BW);或者,MOD(BW,第一资源的参考点-第一偏移量),BW为第二资源的带宽,或者为载波带宽。
应理解,第一偏移量与子载波间隔存在关联关系,可以是网络设备发送指示信息指示的,也可以是预定义的。
第五方面,提供了一种通信装置,该装置可以包括:
收发单元,用于接收第一信息,所述第一信息用于指示M个带宽资源,其中M是正整数,所述M个带宽资源中的每个带宽资源的大小等于或小于所述第一类型终端设备支持的最大信道带宽;所述收发单元还用于接收第一参数,所述第一参数为一个时间单元内频分复用的随机接入信道机会的个数;
处理单元,用于根据所述第一信息和所述第一参数在所述M个带宽资源中确定第一带宽资源;
所述收发单元还用于在所述第一带宽资源中发送上行信息或接收下行信息。
结合第五方面,在第五方面的某些实现方式中,所述第一参数的值大于4,
M=1时,所述M个带宽资源为所述第一带宽资源,所述第一带宽资源包括预定义的N个随机接入信道机会的资源,其中第一参数个随机接入信道机会包括所述N个随机接入信道机会,N为正整数,
或者,
M=1时,所述M个带宽资源为所述第一带宽资源,所述收发单元具体用于接收第一指示信息,所述第一指示信息用于指示第一随机接入信道机会,所述第一带宽资源的起始资源块与所述第一随机接入信道机会的起始资源块相同,
或者,
M>1时,所述M个带宽资源中的每个带宽资源包括至少一个随机接入信道机会对应的资源。
结合第五方面,在第五方面的某些实现方式中,所述第一参数的值为8,所述随机接入信道机会按照第一顺序排列的索引为0~7,所述第一顺序包括频率从小到大的顺序。
结合第五方面,在第五方面的某些实现方式中,所述收发单元接收到所述第一指示信息,所述第一指示信息包括1个比特,所述第一指示信息在索引{0,4}中指示所述第一随机接入信道机会的索引,或者,所述第一指示信息包括2个比特,所述第一指示信息在索引{1,2,3,4}中指示所述第一随机接入信道机会的索引,或者,所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4}中指示所述第一随机接入信道机会的索引,或者,所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4,5,6,7}中指示所述第一随机接入信道机会的索引,或者,所述收发单元未接收到第一指示信息,所述第一随机接入信道机会的索引为0。
结合第五方面,在第五方面的某些实现方式中,所述M个带宽资源中的每个带宽资源的大小是预定义的,
或者,
所述M=2,所述带宽资源中一个带宽资源包括随机接入信道机会{0,1,2,3}的资源,所述带宽资源中另一个带宽资源包括随机接入信道机会{4,5,6,7}的资源,
或者,
所述M>1,所述处理单元具体用于接收第一信令,所述第一信令用于指示第一候选带宽资源,所述处理单元具体用于根据第一候选带宽资源确定剩余M-1个带宽资源。
结合第五方面,在第五方面的某些实现方式中,所述M>1,
所述收发单元具体用于接收第二指示信息,所述第二指示信息用于指示第二带宽资源,所述收发单元还用于在所述第一带宽资源中发送随机接入前导;
所述收发单元还用于在所述第二带宽资源中发送随机接入过程中的消息3,或发送对竞争解决消息反馈的物理上行控制信道。
结合第五方面,在第五方面的某些实现方式中,所述第二指示信息承载在随机接入响应消息、调度随机接入响应消息的下行控制信息、竞争解决消息、调度竞争解决消息的下行控制信息中的一种或多种信息中;和/或,所述第二指示信息承载在随机接入响应消息中的每个媒体接入控制随机接入响应的上行授权中。
结合第五方面,在第五方面的某些实现方式中,所述M>1,所述收发单元具体用于在所述第一带宽资源中发送随机接入前导,接收第三指示信息,所述第三指示信息用于指示所述收发单元发送随机接入过程中的消息3和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源。
结合第五方面,在第五方面的某些实现方式中,所述第三指示信息的比特状态是第一比特状态时,所述收发单元在所述第一带宽资源中发送随机接入过程中的消息3,和/或在 所述第一带宽资源中发送对竞争解决消息反馈的物理上行控制信道;
所述第三指示信息的比特状态是第二比特状态时,所述收发单元在所述第二带宽资源中发送随机接入过程中的消息3,和/或在所述第二带宽资源中发送对竞争解决消息反馈的物理上行控制信道。
结合第五方面,在第五方面的某些实现方式中,所述收发单元接收第四指示信息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第一关联配置,或者,为第二关联配置,所述关联配置为SSB和随机接入信道机会个数之间的关联配置。
结合第五方面,在第五方面的某些实现方式中,若所述收发单元接收到第四指示信息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第一关联配置,若所述收发单元未接收到第四指示信息,则所述SSB和随机接入信道机会的关联配置为第二关联配置,
或者,
若所述收发单元接收到第四指示信息,所述第四指示信息用于指示SSB和随机接入的信道机会关联配置为第二关联配置,若所述收发单元未接收到第四指示信息,则所述SSB和随机接入信道机会的关联配置为第一关联配置。
结合第五方面,在第五方面的某些实现方式中,所述第一参数承载在所述随机接入信道配置信息中。
结合第五方面,在第五方面的某些实现方式中,所述第一信息包括系统信息。
第六方面,提供一种通信装置,该装置可以包括收发单元,用于向第一终端设备发送第一参数,所述第一参数为一个时间单元内频分复用的随机接入信道机会的个数;处理单元,用于配置M个带宽资源,所述M个带宽资源中的每个带宽资源的大小等于或小于所述第一终端设备支持的最大信道带宽;所述收发单元还用于在第一带宽资源中接收所述第一终端设备发送的上行信息或向所述第一终端设备发送下行信息,所述第一带宽资源是所述第一终端设备根据所述第一信息和所述第一参数在所述M个带宽资源中确定的。
结合第六方面,在第六方面的某些实现方式中,所述第一参数的值大于4,
M=1时,所述M个带宽资源为所述第一带宽资源,所述第一带宽资源包括预定义的N个随机接入信道机会的资源,其中第一参数个随机接入信道机会包括所述N个随机接入信道机会,N为正整数,
或者,
M=1时,所述收发单元发送第一指示信息,所述第一指示信息用于指示第一随机接入信道机会,所述第一带宽资源的起始资源块与所述第一随机接入信道机会的起始资源块相同,所述M个带宽资源为所述第一带宽资源,
或者,
M>1时,所述M个带宽资源中的每个带宽资源包括至少一个随机接入信道机会对应的资源。
结合第六方面,在第六方面的某些实现方式中,所述第一参数的值为8,所述随机接入信道机会按照第一顺序排列的索引为0~7,所述第一顺序包括频率从小到大的顺序。
结合第六方面,在第六方面的某些实现方式中,所述第一指示信息包括1个比特,所述第一指示信息在索引{0,4}中指示所述第一随机接入信道机会的索引,
或者,
所述第一指示信息包括2个比特,所述第一指示信息在索引{1,2,3,4}中指示所述第一随机接入信道机会的索引,
或者,
所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4}中指示所述第一随机接入信道机会的索引,
或者,
所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4,5,6,7}中指示所述第一随机接入信道机会的索引,
或者,
所述收发单元未发送第一指示信息,所述第一随机接入信道机会的索引等于0。
结合第六方面,在第六方面的某些实现方式中,所述第一信息用于指示M个带宽资源,其特征在于,
所述M个带宽资源中的每个带宽资源的大小是预定义的,
或者,
所述M=2,所述带宽资源中一个带宽资源包括随机接入信道机会{0,1,2,3}的资源,所述带宽资源中另一个带宽资源包括随机接入信道机会{4,5,6,7}的资源,
或者,
所述M>1,所述收发单元还用于发送第一信令,所述第一信令用于指示第一候选带宽资源,剩余M-1个带宽资源是根据第一候选带宽资源确定的。
结合第六方面,在第六方面的某些实现方式中,所述M>1,所述收发单元还用于发送第二指示信息,所述第二指示信息用于指示第二带宽资源,在所述第一带宽资源中接收随机接入前导,在所述第二带宽资源中接收随机接入过程中的消息3,或接收对竞争解决消息反馈的物理上行控制信道。
结合第六方面,在第六方面的某些实现方式中,所述第二指示信息承载在随机接入响应消息、调度随机接入响应消息的下行控制信息、竞争解决消息、调度竞争解决消息的下行控制信息中的一种或多种信息中,和/或,所述第二指示信息承载在随机接入响应消息中的每个媒体接入控制随机接入响应的上行授权中。
结合第六方面,在第六方面的某些实现方式中,所述M>1,所述收发单元具体用于在所述第一带宽资源中接收随机接入前导,发送第三指示信息,所述第三指示信息用于指示所述第一终端设备发送随机接入过程中的消息3和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源。
结合第六方面,在第六方面的某些实现方式中,所述第三指示信息的比特状态是第一比特状态时,所述收发单元在所述第一带宽资源中接收随机接入过程中的消息3,和/或在所述第一带宽资源中接收对竞争解决消息反馈的物理上行控制信道,
所述第三指示信息的比特状态是第二比特状态时,所述收发单元在所述第二带宽资源中接收随机接入过程中的消息3,和/或在所述第二带宽资源中接收对竞争解决消息反馈的物理上行控制信道。
结合第六方面,在第六方面的某些实现方式中,所述收发单元还用于发送第四指示信 息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第一关联配置,或者,为第二关联配置。
结合第六方面,在第六方面的某些实现方式中,若所述收发单元发送第四指示信息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第一关联配置,若所述收发单元未发送第四指示信息,则所述SSB和随机接入信道机会的关联配置为第二关联配置,
或者,
若所述收发单元发送第四指示信息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第二关联配置,若所述收发单元未发送第四指示信息,则所述SSB和随机接入信道机会的关联配置为第一关联配置。
结合第六方面,在第六方面的某些实现方式中,所述第一参数承载在所述随机接入信道配置信息中。
结合第六方面,在第六方面的某些实现方式中,所述第一信息包括系统信息。
第七方面,提供了一种通信装置,所述通信装置用于实现第一方面或第三方面或,第一方面或第三方面中任一可能的实现方式,或,第一方面或第三方面中所有可能的实现方式的方法。
第八方面,提供了一种通信装置,所述通信装置用于实现第二方面或第四方面,或,第二方面或第四方面中任一可能的实现方式,或,第二方面或第四方面中所有可能的实现方式的方法。
第九方面,提供了一种通信装置,该装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的程序,当所述存储器存储的程序被执行时,所述处理器用于执行第一方面或第三方面以及第一方面或第三方面中任意一种实现方式中的第一终端设备所执行的方法。
第十方面,提供了一种通信装置,该装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的程序,当所述存储器存储的程序被执行时,所述处理器用于执行第二方面或第四方面以及第二方面或第四方面中的任意一种实现方式中的网络设备所执行的方法。
第十一方面,提供一种计算机可读介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行第一方面或第三方面中的任意一种实现方式中的第一终端设备所执行的方法。
第十二方面,提供一种计算机可读介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行第二方面或第四方面中的任意一种实现方式中的网络设备所执行的方法。
第十三方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面中的任意一种实现方式中的方法。
第十四方面,提供一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行上述第一方面或第二方面或第三方面或第四方面中的任意一种实现方式中的方法。
第十五方面,提供一种系统,所述系统包括第五方面或第六方面或第七方面或第八方 面或第九方面或第十方面中任一可能的实现方式,或,第五方面或第六方面或第七方面或第八方面或第九方面或第十方面中所有可能的实现方式的装置。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行第一方面或第二方面或第三方面或第四方面中的任意一种实现方式中的方法。
上述芯片具体可以是现场可编程门阵列(field-programmable gate array,FPGA)或者专用集成电路(application-specific integrated circuit,ASIC)。
附图说明
图1是适用于本申请实施例的一种通信系统的架构示意图。
图2示出了本申请实施例的一种传输信息的方法的示意性流程图。
图3示出了适用于本申请实施例的一种传输信息的方法示意图。
图4示出了适用于本申请实施例的另一种传输信息的方法示意图。
图5示出了适用于本申请实施例的一种资源分布的示意图。
图6示出了适用于本申请实施例的一种资源的示意图。
图7示出了适用于本申请实施例的一种资源的示意图。
图8示出了适用于本申请实施例的一种资源分布的示意图。
图9示出了适用于本申请实施例的确定资源位置的方法的示意图。
图10示出了适用于本申请实施例的一种资源位置的示意图。
图11示出了本申请实施例的一种传输信息的方法的示意性流程图。
图12示出了适用于本申请实施例的一种资源的示意图。
图13示出了适用于本申请实施例的一种确定资源位置的方法的示意图。
图14示出了本申请实施例的一种通信装置的示意性框图。
图15示出了本申请实施例的另一种通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(Wireless Local Area Network,WLAN)、窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、卫星通信、第五代(5th generation,5G)系统或者将来出现的新的通信系统等。
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,5G移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景: 增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。
不同业务对移动通信系统的需求不同,如何更好地同时支持多种不同业务的数据传输需求,是当前5G移动通信系统所需要解决的技术问题。例如,如何同时支持mMTC业务和eMBB业务,或者同时支持URLLC业务和eMBB业务。
5G标准对mMTC的研究还没有广泛开展。
目前,标准中将mMTC业务的用户设备(user equipment,UE)称为低复杂度的UE(reduced capability UE,REDCAP UE),或窄带宽用户设备,或物联设备,或低端智能手持终端。该类UE可能在带宽、功耗、天线数等方面比其他UE复杂度低一些,如带宽更窄、功耗更低、天线数更少等。该类UE也可以称为轻量版的终端设备(NR light,NRL)。mMTC用户设备支持的最大带宽小于100MHz。需要说明的是,本申请中的mMTC用户设备不只是机器类通信的设备,也可以是智能手持终端。
本申请实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括无线接入网设备120即网络设备120和至少一个终端设备(如图1中的终端设备130和终端设备140和终端设备150)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
应理解,本申请通信系统中的信息发送端可以是网络设备,也可以是终端设备,信息接收端可以是网络设备,也可以是终端设备,本申请对此不作限定,通信系统中有第一类型终端设备参与通信即可。
本申请实施例以网络设备与第一终端设备作为交互双方为例进行方案陈述,对此不作限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站(Evolved Node B,eNodeB)、5G移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端(Terminal)、用户设备UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
为了便于理解本申请,对随机接入过程进行简单描述。随机接入过程如下:
终端设备搜索同步信号和物理广播信道(Synchronization Signal and PBCH,SSB),终端设备通过搜索SSB,获取网络设备发送的主信息块(Master information block,MIB)。终端设备根据MIB获取控制资源集合(Control resource set,CORESET)的时域资源与频域资源,终端设备可以在CORESET上检测调度系统信息块(System information block,SIB)的下行控制信息(Downlink control information,DCI),在DCI指示的时频位置上接收SIB1,如此,即可接收SIB1中指示的初始上行链路带宽部分(initial uplink bandwidth part,Initial UL BWP),初始下行链路带宽部分(initial downlink bandwidth part,Initial DL BWP),随机接入前导列表,随机接入时机列表等信息。
根据SIB1,终端设备在与SSB关联的随机接入时机(RACH occasion,RO)资源中发送承载随机接入前导的物理随机接入信道信道,(physical random-access channel,PRACH,即Msg1);
如果基站成功接收到了随机接入前导并且允许UE接入,则在预配置的随机接入响应(Random access response,RAR)的窗口(window)内,给UE发送RAR,即Msg2;
同时,UE在预配置的RAR window内,监听在物理层下行控制信道(Physical downlink control channel,PDCCH)上传输的下行控制信息(Downlink control information,DCI),该DCI用于指示UE从物理下行共享信道(Physical downlink shared channel,PDSCH)承载的媒体接入控制(Media Access Control,MAC)协议数据单元(Protocol Data Unit,PDU) 中获取RAR信息。
应理解,如果由于不同UE之间选择的随机接入前导冲突,或者信道条件差等原因,导致基站无法接收到preamble前导,则基站不会发送RAR信息,那么UE在RAR window中就不会检测到DCI和MAC RAR,那么本次随机接入失败。
终端在成功检测到DCI后,接收随机接入响应RAR(即Msg2),按照随机接入响应中的上行授权UL grant指示的时频资源发送物理上行共享信道(Physical Uplink Shared CHannel,PUSCH,即Msg3),网络设备再向终端设备发送DCI,该DCI指示承载竞争解决消息,即Msg4,的时频资源,终端设备检测检测该DCI,并接收Msg4。
需要注意的是,在无线资源控制(Radio Resource Control,RRC)建立连接之前,UE需要在CORESET 0内接收:调度SIB1的PDCCH,承载SIB1的PDSCH,调度SI的PDCCH,承载SI的PDSCH,调度Msg2的PDCCH,承载Msg2的PDSCH,调度Msg3的PDCCH,调度Msg4的PDCCH,承载Msg4的PDSCH。在无线资源控制(Radio Resource Control,RRC)建立连接之前,UE需要在initial UL BWP内发送Msg1,和承载Msg3的PUSCH,以及对Msg4反馈的PUCCH。
为了方便理解本申请实施例,下面对本申请涉及到的相关概念作简单介绍:
1.本申请中的UE可以分为第一类型终端设备和第二类型终端设备,第一类型终端设备例如为低复杂度的UE(reduced capability UE,REDCAP UE),第二类型终端设备可以为legacy UE,如eMBB UE。
第一类型终端设备和第二类型终端设备的特征不同,所述特征包括以下一种或者多种:
带宽、支持或配置的资源数、发射天线端口数和/或接收天线端口数、射频通道数、混合自动重传请求(hybrid automatic repeat request,HARQ)进程数、支持的峰值速率、应用场景、时延要求、处理能力、协议版本、双工方式、业务等。以下对第一特征进行详细描述。
带宽,或者信道带宽,或者终端设备支持或配置的最大信道带宽,第一类型终端设备和第二类型终端设备的带宽不同,例如:第一类型终端设备的带宽可以是20MHz或10MHz或5MHz,第二类型终端设备的带宽可以是100MHz。可以理解,随着通信技术的发展,第一类型终端设备支持的最大信道带宽可能不再是20MHz或10MHz或5MHz,而是演变成更宽或者更窄的带宽例如3MHz,25MHz,50MHz。
支持或配置的资源数,所述资源数可以是RB,RE,子载波,RB组,REG bundle,控制信道元素,子帧,无线帧,时隙,迷你时隙和/或符号数目,第一类型终端设备和第二类型终端设备支持或配置的资源数不同,例如:第一类型终端设备支持的资源数为48RB,第二类型终端设备支持的资源数为96RB。
发射天线端口数和/或接收天线端口数,即第一类型终端设备的发射天线端口数和/或接收天线端口数与第二类型终端设备不同,例如:第一类型终端设备的发射天线端口数可以是1,接收天线的端口数可以是2,第二类型终端设备的发射天线端口数可以是2,接收天线的端口数可以是4。
射频通道数,即第一类型终端设备的射频通道数与第二类型终端设备不同,例如:第一类型终端设备的射频通道数可以是1个,第二类型终端设备的射频通道数可以是2个。
HARQ进程数,即第一类型终端设备支持的HARQ进程数与第二类型终端设备不同,例如:第一类型终端设备的HARQ进程数可以是8,第二类型终端设备的HARQ进程数可以是16。
支持的峰值速率,即第一类型终端设备和第二类型终端设备的最大峰值速率不同,例如:第一类型终端设备支持的最大峰值速率可以是100Mbps,第二类型终端设备支持的峰值速率可以是200Mbps。
应用场景,即第一类型终端设备和第二类型终端设备是针对不同应用场景服务的,例如:第一类型终端设备应用于工业无线传感,视频监控,可穿戴设备等,第二类型终端设备应用于移动通信,视频上网等。
时延要求,即第一类型终端设备和第二类型终端设备对传输时延的要求不同,例如:第一类型终端设备的时延要求可以是500毫秒,第二类型终端设备的时延要求可以是100毫秒。
处理能力,及第一类型终端设备和第二类型终端设备在不同的子载波间隔(subcarrier space,SCS)条件下,对于信道或数据的处理时序,处理速度不同,例如:第一类型终端设备的不支持复杂的运算,所述复杂的运算可以包括:人工智能(artificial intelligence,AI)、虚拟现实(virtual reality,VR)渲染,第二类型终端设备支持复杂的运算,或者理解为,第一类型终端设备的处理能力低于第二类型终端设备。
协议版本,即第一类型终端设备和第二终端设备属于不同协议版本的终端设备,例如:第一类型终端设备支持的协议版本为Release 17及Release 17之后的协议版本,第二类型终端设备支持的协议版本为Release 17之前的协议版本,例如Release 15或Release 16。
双工方式,所述双工方式包括半双工和全双工,例如:第一类型终端设备采用半双工的模式工作,第二类型终端设备采用全双工的模式工作。
业务,所述业务包括但不限于物联应用,例如视频监控,移动宽带MBB等,例如:第一类型终端设备支持的业务为时视频监控,第二类型终端设备支持的业务为移动宽带MBB。本申请实施例对此不做限定。
应理解,其他类型的,或未来新类型的同样支持本申请技术方案的终端设备也在本申请保护范围之内。
本申请中的第一终端设备可以是第一类型终端设备中的一例,第二终端设备可以是第二类型终端设备中的一例。
2.初始下行链路带宽部分(initial downlink bandwidth part,Initial DL BWP):在SIB1中指示,频率范围包含CORESET,但是在Msg4接收完成之后才会生效。
3.初始上行链路带宽部分(initial uplink bandwidth part,Initial UL BWP):在SIB1中指示,初始接入过程中涉及的上行信道PRACH,Msg3,Msg4的HARQ-ACK反馈都在initial UL BWP的范围进行。
4.CORESET:控制资源集合。终端设备正在CORESET内接收下行控制信息或下行数据信息。在终端设备与对端设备没有建立RRC连接时,下行控制信道和下行数据信道的接收的频率范围在CORESET 0。
5.下行链路带宽部分(downlink bandwidth part,DL BWP):终端设备连接到网络设备之后,网络设备为终端设备配置的下行工作带宽。
6.上行链路带宽部分(uplink bandwidth part,UL BWP):终端设备连接到网络设备之后,网络设备为终端设备配置的上行工作带宽。
应理解,低复杂度终端设备是相对的概念,本申请对此不做限制。示例地,未来可能发展出的新型终端设备,其在带宽、天线数量、设备功耗等其中至少一个方面的特征比现有的legacy UE复杂,届时legacy UE将作为本申请中的第一类型终端设备,所述新型终端设备将作为本申请中的第二类型终端设备,本申请的实施例依然适用,在本申请保护范围之内。
7.中心频率:一个资源块的中心频率,或带宽内索引为中心的资源块
起始资源块(Resource block,RB):带宽内索引最小的资源块,或带宽内的第一个资源块。
结束资源块(Resource block,RB):带宽内索引最大的资源块,或带宽内的最后一个资源块。
应理解,本申请中的资源可以是符号,或者时隙,或者迷你时隙,或者是子帧等。本申请中的资源还可以是子载波,或者是资源块,或者是载波,或者是信道控制元素等。
本申请中的资源是符号时,资源单元可以是时隙,或者是短时隙,或者是子帧。本申请中的资源是子载波时,资源单元是资源块,或者是载波,或者是信道控制元素等。
为了便于理解本申请实施例,提前对相关名词作一解释。
本申请各实施例中对于资源有不同的描述,比如,第一资源,又如,带宽资源。
第一资源可以是上行BWP,可以是下行BWP,可以是初始下行BWP,可以是初始上行BWP。第一资源的大小等于或小于第一终端设备支持的最大信道带宽。第一控制资源集表述为CORESET a,例如,在RRC连接建立之前,CORESET a为CORESET 0;例如,在RRC连接建立之前或RRC连接建立之后,CORESET a也可以是公共CORESET,公共CORESET的至少一个RB可以不在CORESET 0的范围内,即CORESET a和CORESET 0可以为不同的CORESET。
带宽资源可以是BWP,或者是资源大小等于或小于第一终端设备支持的最大信道带宽的一块资源。例如,带宽资源可以是初始上行BWP。例如,带宽资源可以是上行BWP。例如,带宽资源可以是下行BWP。例如,带宽资源可以是初始下行BWP。本申请中的带宽资源是低复杂度终端设备的带宽资源。
本申请中带宽资源的大小等于或小于第一终端设备支持的最大信道带宽,带宽资源的大小可以是预定义的或网络设备指示的。例如大小可以是5MHz,或是5MHz在不同子载波间隔下对应的RB数,或是10MHz,或是10MHz在不同子载波间隔下对应的RB数,或是20MHz,或是20MHz在不同子载波间隔下对应的RB数。
应理解,第一资源与带宽资源可以等同,各实施例中确定资源的方法对于第一资源和带宽资源均可以适用。
时间单元可以是子帧,无线帧,时隙,迷你时隙,符号,微秒,毫秒,秒中的任一种。
上行信息:包括随机接入信道(随机接入前导),随机接入过程中的消息3,对竞争解决消息反馈的物理上行控制信道中的一种或多种。
随机接入过程中的消息3:包括承载Msg3的PUSCH的第一次传输(Msg3的初传),承载Msg3的PUSCH的第一次传输的第一跳传输(Msg3的初传的第一跳传输),承载 Msg3的PUSCH的第一次传输的第二跳传输(Msg3的初传的第二跳传输),承载Msg3的PUSCH的第一次传输之后的传输(Msg3的重传或Msg3的重复),承载Msg3的PUSCH的第一次传输之后的传输的第一跳传输(Msg3的重传或Msg3的重复的第一跳传输),承载Msg3的PUSCH的第一次传输之后的传输的第二跳传输(Msg3的重传或Msg3的重复的第二跳传输)中的一种或多种。
对竞争解决消息反馈的物理上行控制信道:包括承载Msg4的PUCCH的第一次传输(初传),承载Msg4的PUCCH的第一次传输的第一跳传输,承载Msg4的PUCCH的第一次传输的第二跳传输,承载Msg4的PUCCH的第一次传输之后的传输(重传或重复),承载Msg4的PUCCH的第一次传输之后的传输的第一跳传输,承载Msg4的PUCCH的第一次传输之后的传输的第二跳传输中的一种或多种。
UE在下行BWP中接收下行控制信息、下行共享信道、解调参考信号、定位参考信号等中的一种或多种。UE在上行BWP中发送上行控制信道、上行共享信道、随机接入信道、上行解调参考信号、探测参考信号中的一种或多种。对于有能力同时进行下行接收和上行传输的UE,该UE在上行BWP发送上行信息,同时在下行BWP接收下行信息,上行BWP和上行BWP的频率范围可以不同。例如,频分复用FDD UE有能力同时进行下行接收和上行传输。例如,TDD上下行解耦的UE有能力同时进行下行接收和上行传输。以UE在RRC建立连接之前为例,UE需要在initial UL BWP内发送Msg1,承载Msg3的PUSCH,承载Msg3的重传的PUSCH,对Msg4反馈的PUCCH中的一种或多种。
UE在随机接入信道机会(RACH occasion,RO)中发送随机接入前导。时域上,对于一个PRACH传输机会,最多可以频分复用配置8个RACH occasion,以PRACH的子载波间隔为30KHz为例,一个RO带宽为4.32MHz,频分复用的8个RO的总带宽为34.56MHz。SSB与RO存在映射关系,每个SSB的RO数会通过系统信息块1中的参数来配置,并且SSB按照先时域后频域的方式映射到RO,以每2个RO映射同一个SSB为例,子载波间隔为30KHz,频分复用的RO数为8个,SSB的数量为8个。频分复用的8个RO的频率范围可能会超过低复杂度终端设备支持的最大信道带宽。UE接入小区时会获取其中一个SSB,并且在该SSB对应的RO发送PRACH。例如,UE发送PRACH之后,其后紧接着要发送承载Msg3的PUSCH,若发送Msg1所在的的频率范围与发送承载Msg3的PUSCH所在的频率范围在频率上对应的总频率范围超过UE的最大信道带宽,则需要在发送PRACH后进行频率调谐,进而发送承载Msg3的PUSCH。相邻的下行信息的接收,对于FDD UE或TDD上下行解耦的UE同样存在频率调谐的问题。
频率调谐会降低数据传输可用的符号、降低资源利用效率、增加UE的功耗和UE实现的复杂度。另外,若按照任意RB都可以作为带宽资源的起始RB,并且任意资源大小都可以作为带宽资源的长度的方式来配置带宽资源,由于低复杂度终端设备支持的最大信道带宽小于载波带宽,低复杂度终端设备需要存储所有的可能的配置。这样会造成UE计算带宽资源的复杂度过高。
为解决上述问题,本申请的一个实施例,提出了一种传输信息的方法,如图2所示,
200:网络设备向第一终端设备指示信息,指示信息可以用于指示第一资源,指示信息可以包括第一参考点,也可以包括第一带宽,第一参考点可以用于确定第一资源的位置,第一带宽可以是第一资源的带宽的大小。
应理解,200是可选的,第一参考点和第一带宽也可以是预定义的,本申请对此不作限定。
201:第一终端设备根据第一参考点和/或第一带宽确定第一资源,第一资源的大小等于或小于第一终端设备支持的最大信道带宽;
202:第一终端设备在第一资源中发送上行信息或接收下行信息。
应理解,指示信息可以一次指示第一参考点和第一带宽,如图3,也可以分次指示,如图4。可以是一个指示信息指示第一参考点,另一个指示信息指示第一带宽,或者,一个指示信息指示第一带宽,另一个指示信息指示第一参考点,也可以只指示第一参考点,也可以只指示第一带宽。
应理解,也可以将第一参考点和/或第一带宽的信息携带在其它信息中,其他等效的替代方案也在本申请的保护范围之内。
示例地,网络设备可以先接收第一终端设备的信道状态信息(Channel State Information,CSI),CSI中包括有子带的大小信息,网络设备根据该子带的大小确定第一终端设备第一资源的带宽。
应理解,第一参考点可以作为第一资源的位置,也可以根据第一参考点和第一偏移量确定第一资源的位置。
第一带宽,第一偏移量和第一参考点也可以是预定义的,本申请对此不作限定。
第一带宽可以根据CSI上报的子带大小、子载波间隔、第一终端设备支持的带宽中的一项或多项确定。
其中,第一偏移量也可以根据CSI上报的子带大小、子载波间隔、第一终端设备支持的第一带宽中的一项或多项确定。
具体地,可以通过第一配置信息配置第一带宽,第二配置信息配置第一偏移量,第三配置信息配置第一参考点。第一配置信息,第二配置信息,第三配置信息可以承载于不同的信息。也可以承载于同一个信息,比如,可以承载于SIB1。
一种可能的实现方式,根据第一终端设备支持的带宽,确定第一资源。
第一终端设备支持的带宽可以是信道带宽,也可以是信道带宽对应的传输带宽。比如,第一终端设备支持的带宽可以是5MHz,10MHz,20MHz,或者5MHZ,10MHz,20MHz,在不同子载波间隔下对应RB数。
第一终端设备支持的带宽为第一信道带宽时,第一信道带宽为第一终端设备支持的最大信道带宽中的一个带宽。例如,第一信道带宽可以是第一终端设备支持的最大信道带宽中的最小带宽。比如,第一终端设备上报支持的最大信道带宽可以是5MHz,10MHz,15MHz,20MHz,第一信道带宽可以是5MHz,10MHz,15MHz,20MHz中的一个带宽,其中第一终端设备上报支持的最大信道带宽中的最小带宽为5MHz,即第一信道带宽也可以是5MHz。
一种可能的实现方式,可以根据第一终端设备支持的带宽的正整数倍确定第一带宽。例如,根据5MHz的正整数倍,确定第一带宽。第一终端设备支持的带宽可以是第一传输带宽,第一传输带宽为第一信道带宽在不同子载波间隔下对应的资源块数。例如,不同子载波间隔下,第一信道带宽和第一传输带宽的对应关系如表格一所示。
子载波间隔为15KHz时,对应5MHz的带宽,第一传输带宽为25个RB。对应地, 可以根据25个RB的正整数倍,比如25个RB,50个RB,75个RB,100个RB等,确定第一带宽。又如,子载波间隔为30KHz时,5MHz对应的第一传输带宽为11个RB,则可以根据11个RB的正整数倍,确定第一带宽。又如,可以根据10个RB的正整数倍,确定第一带宽。又如,子载波间隔为60KHz时,10MHz对应的第一传输带宽为11个RB。则可以根据11个RB的正整数倍确定带宽。
表一 子载波间隔与第一终端设备支持的带宽对应的RB数的关系表
Figure PCTCN2022077812-appb-000001
应理解,表一只是一种示例,本申请对此不做限定。
一种可能的实现方式,根据第一参考点和第一偏移量确定第一资源的额位置时,第一偏移量的确定方法与上述实施例的方法相同,此处不再赘述。
另一种可能的实现方式,第一终端设备支持的带宽为第一传输带宽时,第一传输带宽的正整数倍之外的资源块用于发送第一控制信道。第一传输带宽的正整数倍之外的资源块包括第一传输资源和/或第二传输资源,如图5所示,第一传输资源为第二资源的索引最小的M1个资源块,所述第二传输资源为第二资源的索引最大的M2个资源块;其中,M1和M2为正整数,第二资源为第二类型的终端设备的BWP,或者不同子载波间隔时对应的载波带宽。
示例地,第一控制信道可以包括对Msg4的反馈的PUCCH的第一跳传输,也可以是对Msg4的反馈的PUCCH的第二跳传输。第一控制信道也可以是对Msg4的反馈的PUCCH的第一跳传输和第二跳传输。
具体地,子载波间隔为15KHz时,对应5MHz的第一传输带宽为25个RB,最大信道带宽50MHz对应的RB数为270个RB,第一传输带宽的正整数倍作为第一带宽,第一传输带宽的正整数倍作为第一偏移量,例如,第一带宽可以是25个RB,第一偏移量可以是25个RB,子载波间隔为15KHz时,最多能够配置10个第一带宽,共250个RB,最大信道带宽50MHz对应的RB数为270个RB,剩余的20个RB分布在载波的两端。则第一传输资源可以是第二资源中索引最小的M1个资源块,第二传输资源可以是第二资源中索引最大的M2个资源块。
上述方案以第一带宽为粒度,一方面可以大程度减小带宽的可选范围,另一方面可以作为UE节约能耗情况下配置的最小带宽。
一种可能的实现方式,根据CSI上报的子带大小确定第一资源和/或第一偏移量。
示例地,CSI上报的子带的大小为4个RB的倍数。例如,网络设备以CSI上报的子带的大小确定第一带宽,第一带宽可以是4个RB的倍数,如图6所示,可以是4个RB。也可以是8个RB、16个RB等等。又如,网络设备以CSI上报的子带的大小确定第一偏移量,第一偏移量可以是4个RB的倍数,可以是4个RB、8个RB、16个RB等等。
相比于非4个RB的倍数的带宽,UE上报子带数减少,减少UE上报的复杂度。
一种可能的实现方式,根据CSI上报的子带大小和控制资源集资源分配粒度大小,确定第一资源和/或第一偏移量。可以根据CSI上报的子带大小和控制资源集资源分配粒度大小的公倍数,确定第一资源和/或第一偏移量。例如,CSI上报的子带大小可以是4个RB,CORESET资源分配粒度可以是6个RB,根据以上两项的RB数的公倍数,比如,可以是12的倍数个RB作为第一带宽,和/或作为第一偏移量。
一种可能的实现方式,可以根据CSI上报的子带大小和资源块组粒度大小,确定第一资源和/或第一偏移量。根据CSI上报的子带大小和资源块组粒度大小的公倍数,确定第一资源和/或第一偏移量。例如,CSI上报的子带大小可以是4个RB,资源块组可以包括2的幂次方个RB,以上两项包含的RB数的公倍数,比如,可以是4的倍数个RB作为第一带宽,和/或作为第一偏移量。
又一可能的实现方式,根据CSI上报的子带大小,控制资源集资源分配粒度大小,和资源块组粒度大小,确定第一资源和/或第一偏移量。根据CSI上报的子带大小,控制资源集资源分配粒度大小,和资源块组粒度大小的公倍数,确定第一资源和/或第一偏移量。例如,CSI上报的子带大小可以是4个RB,CORESET资源分配粒度可以是6个RB,资源块组可以包括2的幂次方个RB,以上几项包含的RB数的公倍数,比如,可以是12的倍数个RB作为第一带宽,和/或作为第一偏移量。
上述方案根据CSI上报的子带大小确定第一资源的带宽,解决了子带与第一资源的带宽不匹配会导致UE上报的子带数增加的问题,增加了CORESET资源分配粒度和资源块组作为配置第一带宽的依据,同时避免了第一带宽与CSI上报的子带大小,CORESET的资源分配,数据信道type 0的资源分配出现不匹配的情况,避免了资源的浪费,如图7,降低了UE上报CSI的复杂度。
应理解,上述方案可以与前文所述的实现方式相互结合。比如,在25个RB范围内,可以采用12的倍数作为第一偏移量,例如24个RB,可以避免前文所述的不匹配问题,且可以减小带宽指示范围。
一种可能的实现方式,上述实施例中的第一带宽和第一偏移量可以与子载波间隔相关联。第一带宽与子载波间隔存在第一关联关系;和/或,第一偏移量与子载波间隔存在第二关联关系。例如,第一关联关系可以是:子载波间隔越大,第一带宽越小。又如,第二关联关系可以是:子载波间隔越大,第一偏移量越小。第一关联关系还可以是:子载波间隔越大,第一资源的大小成比例减小,又如,第二关联关系可以是:子载波间隔越大,第一偏移量成比例减小。
示例地,对于15KHz,第一偏移量可以为24个RB,对于30KHz,第一偏移量可以为12个RB,对于60Khz第一偏移量可以为6个RB,等等。例如,对于15KHz,第一偏移量可以为24个RB,对于30KHz,第一偏移量可以为6个RB,对于60Khz第一偏移量可以为4个RB,等等。例如,对于15KHz,第一偏移量可以为12个RB,对于30KHz,第一偏移量可以为6个RB,对于60Khz第一偏移量可以为4个RB,等等。
该方案考虑了子载波间隔不同时,相同带宽包含的RB数不同,当NR支持不同子载波间隔的场景下,也可以用本申请的方案配置第一资源。
一种可能的实现方式,第一终端设备根据第一参考点确定第一资源。
示例地,第一终端设备可以接收指示信息,指示信息指示第一参考点,第一参考点是 可以是第二资源的第一个RB,第二资源的中心频率或中心子载波,第二资源的最后一个RB,公共资源块0,Point A中的一种或多种。指示信息可以承载于SIB1或调度SIB1的PDCCH中。
第二资源是为第二类型终端设备配置的资源,且第二资源包含的资源块数能够大于第一终端设备的最大信道带宽对应的资源块数。例如,第二资源是载波带宽或载波在不同子载波间隔时对应的RB数,第二资源也可以是第二类型终端设备的BWP。
应理解,第一终端设备也可以通过预定义的方式确定第一参考点,第一参考点可以是是第二资源的第一个RB,第二资源的中心频率或中心子载波,第二资源的最后一个RB,公共资源块0,Point A中的一种或多种。
一种可能的实现方式,可以通过信令指示第二资源起始RB和结束RB的位置,如图8所示,多个候选带宽中可以有2个候选带宽以第二资源的结束RB作为参考点,另外3个候选带宽可以以第二资源的起始RB作为参考点。
另一可能的实现方式,可以通过信令指示第二资源起始RB的位置,或者结束RB的位置,通过指示的该参考点依次确定候选带宽。
应理解,此处的个数,以及个数与起始RB、结束RB的对应关系只是一种示例,对此不作限定。
另一种可能的实现方式,可以采用CRB 0(Point A)作为参考点,根据参考点确定第一资源的起点。
该方案为第一资源的配置提供了参考点,能够避免第一资源在某些频域上占用不足一个RB造成的资源浪费的情况。
又一种可能的实现方式,在第一终端设备与第二终端设备共享BWP的情况下,联合考虑第二资源的位置与CRB的起始位置来确定参考点,可以将与CRB资源对齐的频率位置作为参考点,例如图9中的(a)所示,参考点不一定是第二资源的起始或结束RB位置。
该方案能够灵活确定第一资源起始位置,降低了指示的开销,并且避免了资源分配不匹配的问题。
再一种可能的实现方式,根据CSI上报的子带大小(subband size),CORESET资源分配粒度,资源块组(RBG),子载波间隔,第一终端设备支持的最小信道带宽中的一种或多种配置第一资源的频域偏移量,该偏移量可以是第一资源的起始位置相对于第二资源的位置偏移的RB。
示例地,如图9中的(b)所示,当第一参考点(Start_RB)为第二资源的起始RB的位置时,第一资源的起始位置可以是MOD(Start_RB+第一偏移量,BW),
当Start_RB为第二资源的结束RB的位置时,第一资源的起始位置可以是MOD(Start_RB+第一偏移量,BW),或者MOD(BW,Start_RB-第一偏移量)。其中,BW为第二资源的带宽,或者为载波带宽。
其中,第一参考点和第一偏移量可以根据前文的实施例中的方案来确定,在此不再赘述。例如,第一偏移量可以是25个RB的整数倍,Start_RB+第一偏移量的RB位置可以为index*25,Index为{0,1,2,3,4,5,6,7,8,9,10}。
若没有指示第一偏移量,则默认以Start_RB为第一资源的起始位置。
第一终端设备接收网络设备发送的第二信息,第二信息指示第一带宽,第一参考点,第一偏移量中的至少两种。即网络设备对第一带宽,第一参考点,第一偏移量中的至少两种进行联合编码。例如,第一带宽可选5MHz,10Mhz,20MHz(或者25RB,50RB,100RB),第一偏移量为25个RB的整数倍,则共需指示30个状态,需要5bit
本方案综合考虑指示的复杂度与灵活性,可以降低用于第一资源的比特开销,同时降低UE的计算复杂度。
本申请的另一实施例,第一参考点作为第一带宽位置的参考点,可以是第一随机接入资源的位置,也即根据第一随机接入资源的位置确定第一资源的位置,第一终端设备在第一资源内发送第一上行信息。
其中,第一资源的大小(也即第一带宽)等于或小于第一终端设备支持的最大信道带宽;第一随机接入资源为第一终端设备可用的随机接入资源。第一终端设备可用的随机接入资源可以是网络设备配置给第一终端设备的随机接入资源。
具体地,第一上行信息包括随机接入阶段发送的所有上行信息;或者,第一上行信息包括承载Msg3的PUSCH的第一次传输(Msg3初次传输),承载Msg3的PUSCH的第一次传输的第一跳传输(Msg3初次传输的第一跳传输),承载Msg3的PUSCH的第一次传输之后的传输(Msg3初次传输之后的传输,包括Msg3的重传或Msg3的重复),承载Msg3的PUSCH的第一次传输之后的传输的第一跳传输(Msg3初次传输之后的传输的第一跳传输),Msg4的PUCCH的第一次传输(Msg4的PUCCH的初次传输),Msg4的PUCCH的第一次传输的第一跳传输(Msg4的PUCCH的初次传输的第一跳传输),Msg4的PUCCH的第一次传输之后的传输(Msg4的PUCCH的初次传输之后的传输),Msg4的PUCCH的第一次传输之后的传输的第一跳传输(Msg4的PUCCH的初次传输之后的传输的第一跳传输)中的一种或多种。
第一随机接入资源的位置包括第一随机接入资源的第一个RB;或者,第一随机接入资源的位置包括第一随机接入资源的最后一个RB;或者,第一随机接入资源的位置包括第一随机接入资源的中心RB;或者,第一随机接入资源的位置包括第一随机接入资源的第一个RB的第一个子载波;或者,第一随机接入资源的位置包括第一随机接入资源的最后一个RB的第一个子载波;或者,第一随机接入资源的位置包括第一随机接入资源的中心RB的第一个子载波;或者,第一随机接入资源的位置包括第一随机接入资源的第一个RB的最后一个子载波;或者,第一随机接入资源的位置包括第一随机接入资源的最后一个RB的最后一个子载波;或者,第一随机接入资源的位置包括第一随机接入资源的中心RB的最后一个子载波。
应理解,第一随机接入资源的大小可以是预定义的。
第一资源的位置包括第一资源的第一个RB;或者,第一资源的位置包括第一资源的最后一个RB;或者,第一资源的位置包括第一资源的中心RB;或者,第一资源的位置包括第一资源的第一个RB的第一个子载波;或者,第一资源的位置包括第一资源的最后一个RB的第一个子载波;或者,第一资源的位置包括第一资源的中心RB的第一个子载波;或者,第一资源的位置包括第一资源的第一个RB的最后一个子载波;或者,第一资源的位置包括第一资源的最后一个RB的最后一个子载波;或者,第一资源的位置包括第一资源的中心RB的最后一个子载波。
本申请用第一位置代表第一资源的参考位置。
应理解,第一随机接入资源的位置可以是预定义的,也可以是信令指示的。
示例地,第一终端设备根据预定义的第一随机接入资源的位置,确定第一资源的位置。例如,预定义的第一随机接入资源的位置可以是第n个随机接入资源的位置,对应的随机接入资源的索引为n-1,n为正整数。如图10所示,预定义的第一随机接入资源的位置可以是第4个随机接入资源的最后一个RB或最后一个RB的最后一个子载波。预定义的第一随机接入资源的位置也可以是第5个随机接入资源的第一个RB或第一个RB的第一个子载波。第一资源的位置可以是以预定义的第一随机接入资源的位置为起始位置。第5个随机接入资源的第一个RB或第一个RB的第一个子载波,确定为第一资源的第一个RB或第一个RB的第一个子载波。第一资源的位置也可以是以预定义的第一随机接入资源的位置为结束位置。
第一随机接入资源的位置也可以是第一信令指示的。第一信令可以承载于系统信息块1(SIB1),调度SIB1的DCI,随机接入响应(Random access response,RAR),调度RAR的DCI,调度Msg3上行授权,Msg3,竞争解决消息,调度竞争解决消息的DCI中的一种。第一信令也可以是以上信息中的比特或比特状态。
本申请的一个实施例,提供了一种传输信息的方法,如图11所示:
1101:网络设备向第一终端设备发送第一信息和第一参数,该第一信息用于指示M个带宽资源,其中M是正整数,第一参数为一个时间单元内频分复用的随机接入信道机会的个数,第一终端设备为第一类型终端设备,M个带宽资源中的每个带宽资源的大小等于或小于述第一终端设备支持的最大信道带宽。
应理解,1101是可选的,第一信息和第一参也可以是预定义的。
1102:第一终端设备获取第一信息和第一参数,第一终端设备根据第一信息和第一参数确定第一带宽资源;
应理解,第一信息可以是系统信息。例如,系统信息块1(system information block 1,SIB1)。
1103:第一终端设备在第一带宽资源中发送上行信息或接收下行信息。
具体地,第一参数可以包含在随机接入信道配置信息中。
随机接入信道配置信息还可以包含PRACH的其他信息。例如,随机接入信道机会为PRACH transmission occasion,第一终端设备通过PRACH transmission occasion发送随机接入前导。又如,第一终端设备能够发送PRACH的时隙,在时域能够包括一个或多个PRACH transmission occasion,每个PRACH transmission occasion为一个时间单元。
第一参数可以指示一个PRACH occasion内能够在频率上频分复用的PRACH transmission occasion的个数。一个时隙可以包括一个或多个时间单元,当一个时隙包括多个时间单元时,一个时间单元可以是s个符号,s为大于1的正整数,则第一参数可以指示一个时间单元内能够在频率上频分复用的PRACH transmission occasion的个数,第一参数的值可以是1,或2,或4,或8等。
例如,第一参数的值为8,则一个时间单元内频分复用的随机接入信道机会的个数是8,这8个随机接入信道机会可以按照频率资源从低往高的顺序将索引排列为0~7。
一种可能的实施方式,M个带宽资源中的每个带宽资源的大小可以是预定义的,也可 以是网络设备指示的。例如每个带宽资源的大小可以是5MHz,或是5MHz在不同子载波间隔下对应的RB数,或是10MHz,或是10MHz在不同子载波间隔下对应的RB数,或是20MHz,或是20MHz在不同子载波间隔下对应的RB数。
一种可能的实施方式,M=2,且2个带宽资源中一个带宽资源包含随机接入信道机会{0,1,2,3}的资源,另一个带宽资源包含随机接入信道机会{4,5,6,7}的资源。2个带宽资源中的每个带宽资源不超过第一终端设备支持的最大信道带宽的基础上,2个带宽资源能够包含所有的随机接入信道机会的资源,第一终端设备能够根据带宽资源确定发送PRACH时的中心频率,能够减少频率调谐的次数。
又一种可能的实施方式,M>1,第一终端设备可以获取第一信令,第一信令指示了M个带宽资源中的第一个带宽资源,M个带宽资源中的其他M-1个带宽资源根据所述第一个带宽资源确定。
例如,第一个带宽资源为按照频率资源的位置从低往高的顺序排列时,位置最低的一个带宽资源。可以通过配置起始位置和配置资源大小来配置第一个带宽资源。其余的M-1个带宽资源可以以第一个带宽资源的结束资源块作为起始资源块,依次排序,这样M个带宽资源可以依次确定。带宽资源的配置不需要考虑RO的位置,更加灵活。
一种可能的实现方式,第一参数的值大于4时,且M=1时,该带宽资源是第一终端设备的第一带宽资源,该第一带宽资源可以包含预定义的N个随机接入信道机会的资源,其中第一参数个随机接入信道机会包括N个随机接入信道机会,其中N是正整数。
例如,第一参数的值为8,且第一信息为第一终端设备只配置了1个带宽资源,则该带宽资源是第一终端设备的第一带宽资源。该第一带宽资源可以包含预定义的N个随机接入信道机会的资源,N个随机接入信道机会的资源属于第一参数个随机接入信道机会,N是正整数。预定义的N个随机接入信道机会的资源可以是:按照频率资源位置从低往高的资源顺序排序较低的N个随机接入信道机会的资源。具体地,N=4,第一参数的值可以是8。预定义的N个随机接入信道机会的资源需要包括随机接入前导传输所在的随机接入信道机会的资源。本方案能够节省比特开销,并且能够保证随机接入前导的传输不需要做频率调谐,减少频率调谐次数。例如,根据随机接入前导传输所在的随机接入信道机会的资源,确定第一带宽资源。第一带宽资源为以随机接入前导传输所在的随机接入信道机会的资源的第一个RB或第一个RB的第一个子载波为起始的资源;或者,根据随机接入前导传输所在的随机接入信道机会的资源,确定第一带宽资源,第一带宽资源为以随机接入前导传输所在的随机接入信道机会的资源的最后一个RB或最后一个RB的最后一个子载波为结束的资源。本方案可能的场景:第一类型终端设备和第二类型终端设备接收相同的系统信息,接收相同的第一参数,且只配置一个带宽资源。
应理解,该场景只是一种示例,本申请对此不做限定。
一种可能的实现方式,第一参数的值大于4时,且M=1时,该带宽资源是第一终端设备的第一带宽资源,第一终端设备还获取第一指示信息,第一指示信息可以指示第一随机接入信道机会。第一带宽资源的起始资源块与第一随机接入信道机会的起始资源块相同。例如,第一参数的值为8,且第一信息为第一终端设备只配置了1个带宽资源,则该带宽资源是第一终端设备的第一带宽资源。第一带宽资源的起始资源块可以是按照第一指示信息确定的。例如,第一随机接入信道机会是索引为r的随机接入信道机会,r为大于或等 于0的整数。第一带宽资源的起始资源块与第一随机接入信道机会的起始资源块相同,也可以理解为第一带宽资源的起始资源块的频率位置与第一随机接入信道机会的起始资源块的频率位置对齐。例如,N=4,第一参数的值可以是8。本方案可能的场景:第一类型终端设备和第二类型终端设备接收相同的系统信息,接收相同的第一参数,且只配置一个带宽资源。
示例地,第一指示信息可以包括1个比特,第一指示信息可以在随机接入信道机会索引{0,4}中指示所述第一随机接入信道机会的索引。如果第一指示信息指示为索引0,第一带宽资源可以包含随机接入信道机会索引为{0,1,2,3}的资源。如果第一指示信息指示为索引4,第一带宽资源可以包含随机接入信道机会索引为{4,5,6,7}的资源。例如,根据随机接入前导传输所在的随机接入信道机会的资源,指示第一带宽资源。第一带宽资源为以随机接入前导传输所在的随机接入信道机会的资源的第一个RB或第一个RB的第一个子载波为起始的资源;或者,根据随机接入前导传输所在的随机接入信道机会的资源,确定第一带宽资源,第一带宽资源为以随机接入前导传输所在的随机接入信道机会的资源的最后一个RB或最后一个RB的最后一个子载波为结束的资源。本方案指示的2种可能的第一带宽资源的位置能够包含所有的随机接入信道机会的资源,能够保证随机接入前导的传输不需要做频率调谐,减少频率调谐次数。
其中,RO的索引如图12所示。
示例地,第一指示信息可以包括2个比特,第一指示信息在随机接入信道机会索引{1,2,3,4}中指示所述第一随机接入信道机会的索引。如果第一指示信息指示为索引1,第一带宽资源可以包含随机接入信道机会索引为{1,2,3,4}的资源。如果第一指示信息指示为索引2,第一带宽资源可以包含随机接入信道机会索引为{2,3,4,5}的资源。如果第一指示信息指示为索引3,第一带宽资源可以包含随机接入信道机会索引为{3,4,5,6}的资源。如果第一指示信息指示为索引4,第一带宽资源可以包含随机接入信道机会索引为{4,5,6,7}的资源。本方案指示的4种可能的第一带宽资源的位置能够包含所有的随机接入信道机会的资源,能够保证随机接入前导的传输不需要做频率调谐,减少频率调谐次数,并且指示的更加灵活。
示例地,第一指示信息还可以包括3个比特,第一指示信息在随机接入信道机会索引{0,1,2,3,4}中指示第一随机接入信道机会的索引。如果第一指示信指示为索引0,第一带宽资源可以包含随机接入信道机会索引为{0,1,2,3}的资源。如果第一指示信息指示为索引1,第一带宽资源可以包含随机接入信道机会索引为{1,2,3,4}的资源。如果第一指示信息指示为索引2,第一带宽资源可以包含随机接入信道机会索引为{2,3,4,5}的资源。如果第一指示信息指示为索引3,第一带宽资源可以包含随机接入信道机会索引为{3,4,5,6}的资源。如果第一指示信息指示为索引4,第一带宽资源可以包含随机接入信道机会索引为{4,5,6,7}的资源。本方案指示的5种可能的第一带宽资源的位置能够包含所有的随机接入信道机会的资源,能够保证随机接入前导的传输不需要做频率调谐,减少频率调谐次数,并且指示的更加灵活。
示例地,第一指示信息包括3个比特,第一指示信息还可以在随机接入信道机会索引{0,1,2,3,4,5,6,7}中指示第一随机接入信道机会的索引。如果第一指示信指示为索引0,第一带宽资源可以包含随机接入信道机会索引为{0,1,2,3}的资源。如果第一指示信息指示为 索引1,第一带宽资源可以包含随机接入信道机会索引为{1,2,3,4}的资源。如果第一指示信息指示为索引2,第一带宽资源可以包含随机接入信道机会索引为{2,3,4,5}的资源。如果第一指示信息指示为索引3,第一带宽资源可以包含随机接入信道机会索引为{3,4,5,6}的资源。如果第一指示信息指示为索引4,第一带宽资源可以包含随机接入信道机会索引为{4,5,6,7}的资源。如果第一指示信息指示为索引5,第一带宽资源可以包含随机接入信道机会索引为{5,6,7}的资源。如果第一指示信息指示为索引6,第一带宽资源可以包含随机接入信道机会索引为{6,7}的资源。如果第一指示信息指示为索引7,第一带宽资源可以包含随机接入信道机会索引为{7}的资源。本方案指示的8种可能的第一带宽资源的位置能够包含所有的随机接入信道机会的资源,能够保证随机接入前导的传输不需要做频率调谐,减少频率调谐次数,并且指示的更加灵活。
示例地,也可以通过第一指示信息的存在与否确定第一随机接入信道机会的索引。第一指示信息不存在也可以理解为,第一终端设备未获取第一指示信息。例如,第一指示信息可以缺省,若第一指示信息缺省,则第一随机接入信道机会是索引为0的随机接入信道机会。本方案可以和前述实施例相互结合。例如,本方案可以和第一指示信息可以包括2个比特一起应用,若第一指示信息缺省,则第一随机接入信道机会是索引为0的随机接入信道机会;若第一指示信息包括2个比特,则第一指示信息在随机接入信道机会索引{1,2,3,4}中指示所述第一随机接入信道机会的索引。
一种可能的实现方式,第一参数的值大于4时,且M>1时,M个带宽资源中的每个带宽资源包含第一参数个随机接入信道机会中的一个或多个随机接入信道机会的资源,第一终端设备在M个带宽资源中确定第一带宽资源。本方案可能的场景:第一类型终端设备和第二类型终端设备接收相同的系统信息,接收相同的第一参数,且配置多个带宽资源。
应理解,该场景只是一种示例,本申请对此不做限定。
可以理解为,M个带宽资源中的不同带宽资源包含的随机接入信道机会的资源不同。例如,第一参数的值为8,且第一信息为第一终端设备配置了2个带宽资源,2个带宽资源中的每个带宽资源包含8个随机接入信道机会中的一个或多个随机接入信道机会的资源,例如,如图13所示,2个带宽资源中的一个带宽资源包含索引为{0,1,2,3}的随机接入信道机会的资源,另一个带宽资源包含索引为{4,5,6,7}的随机接入信道机会的资源。第一终端设备可以在该2个带宽资源中确定第一带宽资源。第一带宽资源可以为索引为{0,1,2,3}的带宽资源第一带宽资源也可以是索引为{4,5,6,7}的带宽资源。第一带宽资源可以根据随机接入前导传输所在的随机接入信道机会的资源来确定。本方案能够节省比特开销,并且能够保证随机接入前导的传输不需要做频率调谐,减少频率调谐次数。
一种可能的实现方式,第一终端设备接收第二指示信息,第二指示信息可以在M个带宽资源中指示第二带宽资源。第二带宽资源可以与所述第一带宽资源不同,即第二带宽资源包含的随机接入信道机会的资源与第一带宽资源包含的随机接入信道机会的资源不完全相同。第二带宽资源也可以与所述第一带宽资源相同,即第二带宽资源包含的随机接入信道机会的资源与第一带宽资源包含的随机接入信道机会的资源相同。
具体地,第二指示信息可以由随机接入响应消息(Random access response,RAR)、调度随机接入响应消息的下行控制信息、竞争解决消息(Msg4)、调度竞争解决消息的下行控制信息中的一种或多种承载,和/或,第二指示信息包含在随机接入响应消息中的 每个媒体接入控制随机接入响应(MAC RAR)的上行授权(UL grant)中。第二指示信息可以为第一类型的终端设备中的每个终端设备指示第二信道带宽,则第二指示信息可以包含在MAC RAR的UL grant中。
第二指示信息可以为第一类型的终端设备中的一组终端设备指示第二信道带宽资源,则第二指示信息可以包含在RAR,调度RAR的DCI,Msg4,调度Msg4的DCI。
第二指示信息可以由两种信息分别承载,例如在调度Msg4的DCI和MAC RAR的UL grant中同时承载,用来指示第一终端设备在第二带宽资源中发送随机接入过程中的消息3,或发送对竞争解决消息反馈的物理上行控制信道。
示例地,第一终端设备在第一带宽资源中发送随机接入前导。第一终端设备在第二带宽资源中发送随机接入过程中的消息3,或发送对竞争解决消息反馈的物理上行控制信道。
第一终端设备发送随机接入前导的带宽资源与发送随机接入过程中的消息3的带宽资源可以不同。第一终端设备发送随机接入前导的带宽资源与发送对竞争解决消息反馈的物理上行控制信道的带宽资源可以不同。第一终端设备发送随机接入前导的带宽资源与发送随机接入过程中的消息3和对竞争解决消息反馈的物理上行控制信道的带宽资源可以不同。第一终端设备发送随机接入过程中的消息3的带宽资源与发送对竞争解决消息反馈的物理上行控制信道的带宽资源可以不同。例如,第五指示信息可以由RAR,调度RAR的DCI,Msg4,调度Msg4的DCI,MAC RAR的UL grant中的一种或多种承载,指示了第三带宽资源,第一终端设备在第二带宽资源中发送随机接入过程中的消息3,第一终端设备在第三带宽资源发送对竞争解决消息反馈的物理上行控制信道,第三带宽资源与第一带宽资源相同或不同,第三带宽资源与第二带宽资源相同或不同。又如,第一终端设备在第一带宽资源中发送随机接入前导,第二指示信息为调度RAR的DCI,指示了第二带宽资源,则第一终端设备在第二带宽资源中发送随机接入过程中的消息3,或发送对竞争解决消息反馈的物理上行控制信道。又如,第一终端设备还可以接收第五指示信息,第五指示信息是调度Msg4的DCI,指示了第三带宽资源,则第一终端设备在第三带宽资源发送对竞争解决消息反馈的物理上行控制信道。
第一终端设备可以在第一带宽资源发送所有上行信息,这样可以保证上行传输过程中不需要做频率调谐,减少频率调谐的次数。第一终端设备也可以在第一带宽资源发送随机接入前导,在第二带宽发送随机接入过程中的消息3和对竞争解决消息反馈的物理上行控制信道,这样可以在减小频率调谐次数的基础上,考虑负载均衡。第一终端设备也可以在第一带宽资源发送随机接入前导,在第二带宽资源发送随机接入过程中的消息3的第一跳传输,在第三带宽资源发送随机接入过程中的消息3的第二跳传输和对竞争解决消息反馈的物理上行控制信道,这样有利于第一终端设备获得随机接入过程中的消息3的频率分集增益。第一终端设备也可以在第一带宽资源发送随机接入前导,在第二带宽资源发送随机接入过程中的消息3和对竞争解决消息反馈的物理上行控制信道的第一跳传输,在第三资源发送对竞争解决消息反馈的物理上行控制信道的第二跳传输,这样有利于物理上行控制信道的频率分集增益,以及解决物理上行控制信道的资源分配导致的资源碎片问题。
示例地,第一终端设备在第一带宽资源中发送随机接入前导,第一终端设备接收第三指示信息。可以根据第三指示信息的比特状态来确定第一终端设备发送信息的资源。第一终端设备只需要检测第三指示信息,就可以确定是否存在第二带宽资源/第三带宽资源, 若不存在则不需要检测配置信息,降低终端设备的复杂度。
比如,第三指示信息的比特状态是第一比特状态,第一终端设备在第一带宽资源中发送随机接入过程中的消息3,和/或在第一带宽资源中发送对竞争解决消息反馈的物理上行控制信道;第三指示信息的比特状态是第二比特状态,第一终端设备在第二带宽资源中发送随机接入过程中的消息3,和/或在第二带宽资源中发送对竞争解决消息反馈的物理上行控制信道。
又如,第三指示信息的比特状态是第二比特状态,第一终端设备在第二带宽资源中发送随机接入过程中的消息3,在第三带宽资源中发送对竞争解决消息反馈的物理上行控制信道。
示例地,第三指示信息可以标识信息,该标识信息可以包含在DCI中,或高层信令中。例如,第三指示信息可以由RAR,调度RAR的DCI,Msg4,调度Msg4的DCI,MAC RAR的UL grant中的一种或多种承载。例如,第三指示信息是调度RAR的DCI,第三指示信息应用该DCI中的可用比特,指示第一终端设备发送信息的资源。
例如,比特状态是第一比特状态时,第一终端设备发送随机接入过程中的消息3,和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源与发送随机接入前导的第一带宽资源相同。
又如,比特状态是第二比特状态时,第一终端设备发送随机接入过程中的消息3,和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源与发送随机接入前导的第一带宽资源不同。例如,比特状态是第二比特状态时,第一终端设备发送随机接入过程中的消息3,和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源与发送随机接入前导的第一带宽资源不同。
一种可能的实现方式,随机接入信道配置信息的应用与第一参数的值有关联。第一参数的值大于4时,随机接入信道配置信息用于所述第一类型的终端设备和用于第二类型的终端设备。第一参数的值小于或等于4时,随机接入信道配置信息只用于第一类型的终端设备。
例如,第一参数的值大于4时,随机接入信道配置信息不能只用于所述第一类型的终端设备。由于第一类型的终端设备支持的最大信道带宽小于第一参数的值大于4对应的随机接入信道机会的资源的大小,因此第一参数的值大于4时,随机接入信道配置信息不能只用于所述第一类型的终端设备,有利于第一类型终端设备和第二类型终端设备,在同一个网络设备覆盖下的共存。
一种可能的实现方式,所述M个带宽资源的配置只用于第一类型的终端设备。例如,M个带宽资源为M个上行BWP或为M个下行BWP。例如,M个带宽资源的配置是为第一类型的终端设备独立配置的。M个带宽资源的配置是为第一类型的终端设备独立配置的,可以理解为,通过独立的字段或独立的参数来配置,该独立的字段或该独立的参数与第二类型的终端设备的字段或参数不同,或该独立的字段或该独立的参数配置的内容与第二类型的终端设备的字段或参数配置的内容不同。
下行信息包括调度SIB1的PDCCH,承载SIB1的PDSCH,调度SI的PDCCH,承载SI的PDSCH,调度Msg2的PDCCH,承载Msg2的PDSCH,调度Msg3的PDCCH,调度Msg4的PDCCH,承载Msg4的PDSCH的一种或多种。
示例地,随机接入信道配置信息用于第一类型的终端设备和用于第二类型的终端设备时,且第一参数的值大于4,第一终端设备在第一带宽资源中发送上行信息或接收下行信息。例如,随机接入信道配置信息是第一类型的终端设备和第二类型的终端设备共同配置的,即不是为第一类型的终端设备独立配置的。例如,第一参数的值为8。
示例地,随机接入信道配置信息用于第一类型的终端设备和用于第二类型的终端设备时,且第一参数的值大于4,第一终端设备在所述第二带宽资源中发送上行信息或接收下行信息。例如,随机接入信道配置信息是第一类型的终端设备和第二类型的终端设备共同配置的,即不是为第一类型的终端设备独立配置的。
示例地,随机接入信道配置信息用于第一类型的终端设备和用于第二类型的终端设备时,且第一参数的值小于等于4,第一终端设备在包含第一参数个随机接入信道机会的带宽资源中发送上行信息或接收下行信息。例如,随机接入信道配置信息是第一类型的终端设备和第二类型的终端设备共同配置的,即不是为第一类型的终端设备独立配置的。例如,第一参数的值为1或2或4。例如,第一参数个随机接入信道机会的带宽资源可以是预定的第一参数个随机接入信道机会的资源,也可以是通过第一指示信息确定的第一带宽资源。
其中,第一带宽资源、第二带宽资源的确定可以参见上述实施例中的方法,在此不再赘述。
示例地,随机接入信道配置信息只用于所述第一类型的终端设备,第一信息指示了第一带宽资源,第一终端设备在第一带宽资源中发送上行信息或接收下行信息。例如,随机接入信道配置信息是为第一类型的终端设备独立配置的。例如,系统信息中配置了第一带宽资源,则第一终端设备在第一带宽资源中发送上行信息或接收下行信息。
一种可能的实现方式,第一终端设备获取指示信息,指示信息用于指示SSB和随机接入的关联配置,第一终端设备根据指示信息确定SSB和随机接入的关联配置。SSB和随机接入的关联配置可以表示一个随机接入信道机会(RO)关联的SSB数。
示例地,关联配置可以是第一关联配置,或关联配置是第二关联配置。例如,第四指示信息的第一比特状态为第一关联配置,第四指示信息的第二比特状态为第二关联配置。例如,第一关联配置为新的SSB和随机接入信道机会的关联配置,即第一关联配置与第二类型的终端设备的SSB和随机接入信道机会的关联配置不同。
示例地,可以根据指示信息的存在与否确定关联配置的类型。
比如指示信息出现,第一终端设备确定SSB和随机接入信道机会的关联配置是第一关联配置;指示信息不出现,第一终端设备确定SSB和随机接入信道机会的关联配置是第二关联配置。例如,指示信息是可选配置的,若配置了指示信息,即指示信息出现,SSB和随机接入信道机会的关联配置是第一关联配置,若没有配置指示信息,即指示信息不出现,SSB和随机接入信道机会的关联配置是第二关联配置。例如,指示信息是标识信息,包含1比特。
应理解,上述指示信息或者指示信息的比特状态与关联配置的对应关系只是一种示例,本申请对此不做限定。
该方案对于FDD系统,或TDD上下行解耦系统来说,通过确定第一资源的频域位置和带宽,能够避免初始接入阶段上行传输之间的RF retuning。
本申请通过确定上行发送的带宽资源或下行接收的带宽资源,从而使两次相邻的上行发送所在的总频率范围,或两次相邻的下行接收所在的总频率范围在终端设备支持的最大信道带宽范围内,来避免频繁的上行发送之间的频率调谐,和/或避免频繁的下行接收之间的频率调谐,进而提升数据传输可用的符号、提升资源利用效率、避免增加UE的功耗和降低UE实现的复杂度。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图14所示,本申请实施例还提供一种装置1300用于实现上述方法中网络设备或终端设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置1300可以包括:处理单元1310和通信单元1320。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤。
以下,结合图14至图15详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1320中用于实现接收功能的器件视为接收单元,将通信单元1320中用于实现发送功能的器件视为发送单元,即通信单元1320包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或接口电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
通信装置1300执行上面实施例中图2至13任一所示的流程中第一终端设备的功能时:
处理单元,用于根据网络设备的下行信息或者根据预定义确定传输信息的资源,
通信单元用于信息的收发。
通信装置1300执行上面实施例中图2至13任一所示的流程中网络设备的功能时:
处理单元,用于配置资源或根据预定义确定资源。
通信单元,用于收发信息。
以上只是示例,处理单元1310和通信单元1320还可以执行其他功能,更详细的描述 可以参考图2至13所示的方法实施例或其他方法实施例中的相关描述,这里不加赘述。
如图15所示为本申请实施例提供的装置1400,图15所示的装置可以为图14所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图14仅示出了该通信装置的主要部件。
如图15所示,通信装置1400包括处理器1410和接口电路1420。处理器1410和接口电路1420之间相互耦合。可以理解的是,接口电路1420可以为收发器或输入输出接口。可选的,通信装置1400还可以包括存储器1430,用于存储处理器1410执行的指令或存储处理器1410运行指令所需要的输入数据或存储处理器1410运行指令后产生的数据。
当通信装置1400用于实现图2至13所示的方法时,处理器1410用于实现上述处理单元1310的功能,接口电路1420用于实现上述通信单元1320的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或 方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种传输信息的方法,其特征在于,包括:
    第一终端设备接收第一信息,所述第一信息用于指示M个带宽资源,其中M是正整数,所述第一终端设备为第一类型终端设备,所述M个带宽资源中的每个带宽资源的大小等于或小于所述第一终端设备支持的最大信道带宽;
    所述第一终设备接收第一参数,所述第一参数为一个时间单元内频分复用的随机接入信道机会的个数;
    所述第一终端设备根据所述第一信息和所述第一参数在所述M个带宽资源中确定第一带宽资源;
    所述第一终端设备在所述第一带宽资源中发送上行信息或者接收下行信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数的值大于4,
    M=1时,所述M个带宽资源为所述第一带宽资源,所述第一带宽资源包括预定义的N个随机接入信道机会的资源,其中第一参数个随机接入信道机会包括所述N个随机接入信道机会,N为正整数,
    或者,
    M=1时,所述M个带宽资源为所述第一带宽资源,所述第一带宽资源的起始资源块与第一随机接入信道机会的起始资源块相同,所述第一随机接入信道机会是由第一指示信息指示的,
    或者,
    M>1时,所述M个带宽资源中的每个带宽资源包括至少一个随机接入信道机会对应的资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一参数的值为8,所述随机接入信道机会按照第一顺序排列的索引为0~7,所述第一顺序包括频率从小到大的顺序。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一终端设备还接收第一指示信息,所述第一指示信息包括1个比特,所述第一指示信息在索引{0,4}中指示所述第一随机接入信道机会的索引,或者,所述第一指示信息包括2个比特,所述第一指示信息在索引{1,2,3,4}中指示所述第一随机接入信道机会的索引,或者,所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4}中指示所述第一随机接入信道机会的索引,或者,所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4,5,6,7}中指示所述第一随机接入信道机会的索引,
    或者,
    所述第一终端设备未接收第一指示信息,所述第一随机接入信道机会的索引为0。
  5. 根据权利要求1至4中任一项所述的方法,所述第一信息用于指示M个带宽资源,其特征在于,
    所述M个带宽资源中的每个带宽资源的大小是预定义的,
    或者,
    所述M=2,所述带宽资源中一个带宽资源包括随机接入信道机会{0,1,2,3}的资源,所述 带宽资源中另一个带宽资源包括随机接入信道机会{4,5,6,7}的资源,
    或者,
    所述M>1,剩余M-1个带宽资源是根据第一候选带宽资源确定的,所述第一候选带宽资源是第一信令指示的。
  6. 根据权利要求1所述的方法,其特征在于,所述M>1,所述方法还包括:
    所述第一终端设备接收第二指示信息,所述第二指示信息用于指示第二带宽资源;
    所述第一终端设备在所述第一带宽资源中发送随机接入前导;
    所述第一终端设备在所述第二带宽资源中发送随机接入过程中的消息3,或发送对竞争解决消息反馈的物理上行控制信道。
  7. 根据权利要求6所述的方法,其特征在于,所述第二指示信息承载在随机接入响应消息、调度随机接入响应消息的下行控制信息、竞争解决消息、调度竞争解决消息的下行控制信息中的一种或多种信息中;和/或,
    所述第二指示信息承载在随机接入响应消息中的每个媒体接入控制随机接入响应的上行授权中。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在所述第一带宽资源中发送随机接入前导;
    所述第一终端设备接收第三指示信息,所述第三指示信息用于指示所述第一终端设备发送随机接入过程中的消息3和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源。
  9. 根据权利要求8所述的方法,其特征在于,所述方法包括:
    所述第三指示信息的比特状态是第一比特状态时,所述第一终端设备在所述第一带宽资源中发送随机接入过程中的消息3,和/或在所述第一带宽资源中发送对竞争解决消息反馈的物理上行控制信道;
    所述第三指示信息的比特状态是第二比特状态时,所述第一终端设备在所述第二带宽资源中发送随机接入过程中的消息3,和/或在所述第二带宽资源中发送对竞争解决消息反馈的物理上行控制信道。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取第四指示信息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第一关联配置,或者,为第二关联配置,所述关联配置为SSB和随机接入信道机会个数之间的关联配置。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述第一终端设备接收第四指示信息,所述第四指示信息用于指示SSB和随机接入的关联配置为第一关联配置,若所述第一终端设备未接收第四指示信息,则所述SSB和随机接入的关联配置为第二关联配置,
    或者,
    若所述第一终端设备接收第四指示信息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第二关联配置,若所述第一终端设备未接收第四指示信息,则所述SSB和随机接入信道机会的关联配置为第一关联配置。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一参数承载在 所述随机接入信道配置信息中。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一信息包括系统信息。
  14. 一种传输信息的方法,其特征在于,包括:
    网络设备向第一终端设备发送第一信息,所述第一信息用于指示M个带宽资源,其中M是正整数,所述M个带宽资源中的每个带宽资源的大小等于或小于所述第一终端设备支持的最大信道带宽,所述第一终端设备为第一类型终端设备;
    所述网络设备发送第一参数,所述第一参数为一个时间单元内频分复用的随机接入信道机会的个数;
    所述网络设备在第一带宽资源中接收所述第一终端设备发送的上行信息或向所述第一终端设备发送下行信息,所述第一带宽资源是所述第一终端设备根据所述第一信息和所述第一参数在所述M个带宽资源中确定的。
  15. 根据权利要求14所述的方法,其特征在于,所述第一参数的值大于4,
    M=1时,所述M个带宽资源为所述第一带宽资源,所述第一带宽资源包括预定义的N个随机接入信道机会的资源,其中第一参数个随机接入信道机会包括所述N个随机接入信道机会,N为正整数,
    或者,
    M=1时,所述网络设备发送第一指示信息,所述第一指示信息用于指示第一随机接入信道机会,所述第一带宽资源的起始资源块与所述第一随机接入信道机会的起始资源块相同,所述M个带宽资源为所述第一带宽资源,
    或者,
    M>1时,所述M个带宽资源中的每个带宽资源包括至少一个随机接入信道机会对应的资源。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一参数的值为8,所述随机接入信道机会按照第一顺序排列的索引为0~7,所述第一顺序包括频率从小到大的顺序。
  17. 根据权利要求16所述的方法,其特征在于:
    所述第一指示信息包括1个比特,所述第一指示信息在索引{0,4}中指示所述第一随机接入信道机会的索引,
    或者,
    所述第一指示信息包括2个比特,所述第一指示信息在索引{1,2,3,4}中指示所述第一随机接入信道机会的索引,
    或者,
    所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4}中指示所述第一随机接入信道机会的索引,
    或者,
    所述第一指示信息包括3个比特,所述第一指示信息在索引{0,1,2,3,4,5,6,7}中指示所述第一随机接入信道机会的索引,
    或者,
    所述网络设备未发送第一指示信息,所述第一随机接入信道机会的索引为0。
  18. 根据权利要求14至17中任一项所述的方法,所述第一信息用于指示M个带宽资源,其特征在于,
    所述M个带宽资源中的每个带宽资源的大小是预定义的,
    或者,
    所述M=2,所述带宽资源中一个带宽资源包括随机接入信道机会{0,1,2,3}的资源,所述带宽资源中另一个带宽资源包括随机接入信道机会{4,5,6,7}的资源,
    或者,
    所述M>1,所述网络设备发送第一信令,所述第一信令用于指示第一候选带宽资源,剩余M-1个带宽资源是根据第一候选带宽资源确定的。
  19. 根据权利要求14所述的方法,其特征在于,所述M>1,所述方法还包括:
    所述网络设备发送第二指示信息,所述第二指示信息用于指示第二带宽资源;
    所述网络设备在所述第一带宽资源中接收随机接入前导;
    所述网络设备在所述第二带宽资源中接收随机接入过程中的消息3,或接收对竞争解决消息反馈的物理上行控制信道。
  20. 根据权利要求19所述的方法,其特征在于,所述第二指示信息承载在随机接入响应消息、调度随机接入响应消息的下行控制信息、竞争解决消息、调度竞争解决消息的下行控制信息中的一种或多种信息中;和/或,
    所述第二指示信息承载在随机接入响应消息中的每个媒体接入控制随机接入响应的上行授权中。
  21. 根据权利要求19或20所述的方法,其特征在于,所述M>1,所述方法还包括:
    所述网络设备在所述第一带宽资源中接收随机接入前导;
    所述网络设备发送第三指示信息,所述第三指示信息用于指示所述第一终端设备发送随机接入过程中的消息3和/或发送对竞争解决消息反馈的物理上行控制信道的带宽资源。
  22. 根据权利要求21所述的方法,其特征在于,所述方法包括:
    所述第三指示信息的比特状态是第一比特状态时,所述网络设备在所述第一带宽资源中接收随机接入过程中的消息3,和/或在所述第一带宽资源中接收对竞争解决消息反馈的物理上行控制信道,
    所述第三指示信息的比特状态是第二比特状态时,所述网络设备在所述第二带宽资源中接收随机接入过程中的消息3,和/或在所述第二带宽资源中接收对竞争解决消息反馈的物理上行控制信道。
  23. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第四指示信息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第一关联配置,或者,为第二关联配置,所述关联配置为SSB和随机接入信道机会个数之间的关联配置。
  24. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述网络设备发送第四指示信息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第一关联配置,若所述网络设备未发送第四指示信息,则所述SSB和随机接入信道机会的关联配置为第二关联配置,
    或者,
    若所述网络设备发送第四指示信息,所述第四指示信息用于指示SSB和随机接入信道机会的关联配置为第二关联配置,若所述网络设备未发送第四指示信息,则所述SSB和随机接入信道机会的关联配置为第一关联配置。
  25. 根据权利要求14至24中任一项所述的方法,其特征在于,所述第一参数承载在所述随机接入信道配置信息中。
  26. 根据权利要求14至25中任一项所述的方法,其特征在于,所述第一信息包括系统信息。
  27. 一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至13中任一项所述的方法,或者执行如权利要求14至26中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至13中任一项所述的方法,或者使得所述计算机执行如权利要求14至26中任一项所述的方法。
  29. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行如权利要求1至13中任一项所述的方法,或者执行如权利要求14至26中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括用于执行如权利要求1至13或14至26中的任一项所述方法的模块。
  31. 一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要1至13或14至26中的任一项所述的方法。
PCT/CN2022/077812 2021-03-17 2022-02-25 一种传输信息的方法及其装置 WO2022193927A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023556929A JP2024511017A (ja) 2021-03-17 2022-02-25 情報伝送方法及び装置
KR1020237035078A KR20230156774A (ko) 2021-03-17 2022-02-25 정보 송신 방법 및 장치
EP22770282.6A EP4297515A1 (en) 2021-03-17 2022-02-25 Method and apparatus for transmitting information
US18/467,785 US20240007235A1 (en) 2021-03-17 2023-09-15 Information transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110286882.2A CN115119304A (zh) 2021-03-17 2021-03-17 一种传输信息的方法及其装置
CN202110286882.2 2021-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/467,785 Continuation US20240007235A1 (en) 2021-03-17 2023-09-15 Information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2022193927A1 true WO2022193927A1 (zh) 2022-09-22

Family

ID=83322016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077812 WO2022193927A1 (zh) 2021-03-17 2022-02-25 一种传输信息的方法及其装置

Country Status (6)

Country Link
US (1) US20240007235A1 (zh)
EP (1) EP4297515A1 (zh)
JP (1) JP2024511017A (zh)
KR (1) KR20230156774A (zh)
CN (1) CN115119304A (zh)
WO (1) WO2022193927A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729580A (zh) * 2018-01-12 2019-05-07 华为技术有限公司 通信方法及装置
US20190268947A1 (en) * 2018-05-11 2019-08-29 Yujian Zhang Prach resource selection
CN111867129A (zh) * 2019-08-16 2020-10-30 维沃移动通信有限公司 物理随机接入信道传输方法、终端及网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729580A (zh) * 2018-01-12 2019-05-07 华为技术有限公司 通信方法及装置
CN111512610A (zh) * 2018-01-12 2020-08-07 华为技术有限公司 通信方法及装置
US20190268947A1 (en) * 2018-05-11 2019-08-29 Yujian Zhang Prach resource selection
CN111867129A (zh) * 2019-08-16 2020-10-30 维沃移动通信有限公司 物理随机接入信道传输方法、终端及网络侧设备

Also Published As

Publication number Publication date
JP2024511017A (ja) 2024-03-12
CN115119304A (zh) 2022-09-27
KR20230156774A (ko) 2023-11-14
US20240007235A1 (en) 2024-01-04
EP4297515A1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
CN109155681B (zh) 无线蜂窝通信系统中发送/接收同步信号的方法和设备
CN107113878B (zh) 无线电接入节点、通信终端及其中执行的方法
TWI756609B (zh) 帶內非連續頻譜的有效寬頻操作方法及使用者設備
EP3917256B1 (en) Method, device and computer program product for reporting a capability for support of multiple downlink control information
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2021146998A1 (zh) 一种确定初始带宽部分bwp的方法、装置及存储介质
CN110999182B (zh) 在无线通信系统中发送pdsch的方法和装置
WO2021184354A1 (zh) 信息传输方法、装置、设备及存储介质
US11950249B2 (en) Two-stage grant for uplink data transmission in new radio-unlicensed (NR-U)
TWI816065B (zh) 供無線通訊系統中的使用者設備使用的方法、無線通訊系統中的使用者設備及供無線通訊系統中的基地台使用的方法
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN114270932A (zh) 用于在支持物联网的无线通信系统中发送和接收下行链路信息的方法及其装置
JP2022545384A (ja) モノのインターネットにサポートする無線通信システムにおいてダウンリンク情報を送受信する方法及びそのための装置
US20240188122A1 (en) System and method to determine initial bandwidth part for a reduced capacity device
CN113630878A (zh) 一种信息传输的方法、装置及系统
CN110769504B (zh) 通信方法和通信装置
US11844095B2 (en) Method and device for transmitting or receiving HARQ-ARK information in wireless communication system
JP2018170621A (ja) 無線通信装置および無線通信方法
EP4373186A2 (en) Frequency resource configuration-based wireless signal transmission or reception method and device in wireless communication system
WO2022193927A1 (zh) 一种传输信息的方法及其装置
WO2023066028A1 (zh) 一种通信方法及装置
WO2022188630A1 (zh) 一种传输信息的方法及装置
WO2022237735A1 (zh) 一种资源指示方法及装置
WO2023151258A1 (zh) 一种通信方法及装置
US11956780B2 (en) Method and device for transmitting and receiving HARQ-ACK information in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556929

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022770282

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022770282

Country of ref document: EP

Effective date: 20230921

ENP Entry into the national phase

Ref document number: 20237035078

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035078

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202306915V

Country of ref document: SG