WO2022237735A1 - 一种资源指示方法及装置 - Google Patents

一种资源指示方法及装置 Download PDF

Info

Publication number
WO2022237735A1
WO2022237735A1 PCT/CN2022/091779 CN2022091779W WO2022237735A1 WO 2022237735 A1 WO2022237735 A1 WO 2022237735A1 CN 2022091779 W CN2022091779 W CN 2022091779W WO 2022237735 A1 WO2022237735 A1 WO 2022237735A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
terminal device
value
resource indication
indication value
Prior art date
Application number
PCT/CN2022/091779
Other languages
English (en)
French (fr)
Inventor
刘哲
余政
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022237735A1 publication Critical patent/WO2022237735A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a resource indication method and device.
  • a terminal device establishes a connection with a network device through a random access process.
  • a random access process it generally involves the following process: the terminal device sends a preamble; the network device sends a random access response (random access response, RAR) message; the terminal device sends message 3; the network device sends Contention resolution message.
  • RAR random access response
  • the network device can indicate to the terminal device the starting resource block (resource block, RB) and the number of RBs included in the resource of the message to be sent or received through the resource indication value (resource indication value, RIV).
  • the RIV may be used to indicate the starting RB of the resource corresponding to the message 3 and the number of included RBs.
  • the specific value of the RIV is determined according to the initial (initial) uplink (uplink, UL) bandwidth part (bandwidth part, BWP) configured by the network device for the terminal device.
  • a communication system such as an NR system
  • a legacy terminal device in addition to supporting a legacy (legacy) terminal device, it also supports a terminal device with a lower capability than the legacy terminal device, that is, a reduced capability (reduced capability, REDCAP) terminal device.
  • the main feature of REDCAP terminal equipment is the reduction or limitation of terminal capabilities. For example, the bandwidth capability is limited. Compared with traditional terminal equipment, the maximum channel bandwidth will be reduced to 20MHz.
  • the uplink channel bandwidth may be limited by the network equipment within its bandwidth capability, for example, the network equipment only configures 20MHz initial uplink BWP for the REDCAP terminal equipment.
  • the network device Since the network device cannot identify the type of the terminal device through the message sent by the terminal device during the random access process, the network device considers the type of the terminal device to be a traditional terminal device, and determines the RIV according to the initial uplink BWP of the traditional terminal device.
  • the bandwidth size of its initial uplink BWP is different from that of traditional terminal equipment, and the starting position may also be different. Therefore, REDCAP terminal equipment determines the initial RB and RB number according to RIV, and network equipment through RIV The actual indicated starting RB and the number of RBs are different, resulting in random access failure.
  • the present application provides a resource indication method and device, which are used to align the understanding of the RIV by terminal equipment and network equipment, and accurately obtain resources indicated by the RIV.
  • the present application provides a resource indication method, which is applicable to a scenario where a first type terminal device and a second type terminal device coexist in a network.
  • the execution subject of the method is a terminal device or a chip or a module in the terminal device, and the description here takes the terminal device as an execution subject as an example.
  • the method includes: the terminal device acquires a resource indication value from a network device, and the resource indication value is associated with M, S, and L, where M is the number of resource blocks contained in the first bandwidth, and S is used to determine the start of the first transmission resource
  • the index of the resource block, L is the resource block length of the first transmission resource; according to the resource indication value and the analysis method, determine S and/or the resource block length L; the analysis method is used to resolve S and/or L from the resource indication value; Perform transmission in the first transmission resource according to S and/or L; wherein, the maximum value of L is the first threshold; or, the maximum value of L is related to M, and the maximum value of L does not exceed N, and N is the terminal device supports The number of resource blocks corresponding to the maximum channel bandwidth of L; or, the maximum value of L does not exceed N, and the resolution method is related to M; wherein, the terminal device is the first type of terminal device, and the first bandwidth is the operating range of the second type of terminal device Channel bandwidth, the maximum channel bandwidth supported
  • the network device may determine the resource indication value used to indicate the initial RB and the number of RBs of the resource in the same way without distinguishing the type of the terminal device.
  • S and/or the resource block length L may be determined by a preset analysis method, so as to determine the first transmission resource corresponding to the resource indication value according to S and/or the resource block length L.
  • the maximum value of L is the first threshold, or the maximum value of L is related to M
  • the complexity of resource allocation can be simplified by limiting the maximum value of the RB number L for resource allocation.
  • the maximum value of L is not limited, the maximum value of L does not exceed N.
  • the index of the starting resource block of the first transmission resource is S; or, the index of the starting resource block of the first transmission resource is S1, and S1 is determined according to S and the first offset parameter.
  • S1 is determined according to S and the first offset parameter.
  • the first threshold is determined according to at least one of M and N.
  • the maximum value of L is related to M, including: when M belongs to the first numerical range, the maximum value of L is equal to Lmax1; or, when M belongs to the second numerical range, the maximum value of L is equal to Lmax2 ; Among them, Lmax2 is smaller than Lmax1.
  • the analysis method is related to M, including: M belongs to the first numerical range, and S and/or L is determined according to the first analysis method; M belongs to the second numerical range, and S is determined according to the second analysis method And/or L; wherein, the first analysis method and the second analysis method are different analysis methods.
  • the parsing method is related to M. When M belongs to different value ranges, the resource indication value can be parsed according to different parsing methods, which can improve the flexibility of resource allocation.
  • M belongs to the first numerical range, including: M is greater than or equal to the value of the first parameter; or, M belongs to the second numerical range, including: M is less than the value of the first parameter.
  • the first parameter can be determined according to N, for example, the first parameter can be 2N-2, or 2N, or 2N-1, and so on.
  • the first parsing method includes: S, M and the resource indication value satisfy the first relationship, and L, M and the resource indication value satisfy the second relationship; and/or, the second parsing method includes: if L is less than or equal to the second threshold, S, M and the resource indication value satisfy the first relationship, L, M and the resource indication value satisfy the second relationship; if L is greater than the second threshold, S, M and the resource indication value satisfy the third relationship , L, M and the resource indication value satisfy the fourth relationship.
  • the resource indication value is carried in a random access response message or downlink control information.
  • the resource indication value may be used to indicate the resource bearing the message 3, so that the first type terminal device can successfully complete the random access procedure.
  • the transmission in the first transmission resource according to S and/or L includes: sending the message 3 in the random access process to the network device through the first transmission resource; or, using the first transmission resource
  • the resource sends the physical uplink shared channel to the network device; or, receives the physical downlink shared channel from the network device through the first transmission resource.
  • the terminal device may also acquire at least one of M, the index of the starting resource block of the first bandwidth, the index of the starting resource block of the second bandwidth, and N, where the second bandwidth is The channel bandwidth on which the first type of terminal equipment works.
  • the present application further provides a communication device, where the communication device implements any method provided in the first aspect above.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, where the processor is configured to support the communication device to execute corresponding functions of the terminal device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and equipment such as network equipment.
  • the communication device includes corresponding functional modules, respectively configured to implement the steps in the above method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the above method examples.
  • these units can perform corresponding functions in the above method examples.
  • the present application provides a resource indication method, which is applicable to a scenario where a first-type terminal device and a second-type terminal device coexist in a network.
  • the execution subject of the method is the network device or a chip or a module in the network device, and the network device is used as the execution subject for description here.
  • the method includes: the network device determines the resource indication value according to M, S, and L, wherein M is the number of resource blocks contained in the first bandwidth, S is used to determine the index of the starting resource block of the first transmission resource, and L is the first The resource block length of the transmission resource; sending the resource indication value to the terminal device; wherein, the maximum value of L is the first threshold; or, the maximum value of L is related to M, and the maximum value of L does not exceed N, and N is the terminal device supports The number of resource blocks corresponding to the maximum channel bandwidth of L; or, the maximum value of L does not exceed N, and the resolution method is related to M; wherein, the terminal device is the first type of terminal device, and the first bandwidth is the operating range of the second type of terminal device Channel bandwidth, the maximum channel bandwidth supported by the second type of terminal equipment is greater than the maximum channel bandwidth supported by the first type of terminal equipment.
  • the index of the starting resource block of the first transmission resource is S; or, the index of the starting resource block of the first transmission resource is S1, and S1 is determined according to S and the first offset parameter.
  • the first threshold is determined according to at least one of M and N.
  • the maximum value of L is related to M, including: when M belongs to the first numerical range, the maximum value of L is equal to Lmax1; or, when M belongs to the second numerical range, the maximum value of L is equal to Lmax2 ; Among them, Lmax2 is smaller than Lmax1.
  • the analysis method is related to M, including: M belongs to the first numerical range, and S and/or L is determined according to the first analysis method; M belongs to the second numerical range, and S is determined according to the second analysis method And/or L; wherein, the first analysis method and the second analysis method are different analysis methods.
  • M belongs to the first numerical range, including: M is greater than or equal to the value of the first parameter; or, M belongs to the second numerical range, including: M is less than the value of the first parameter.
  • the first parsing method includes: S, M and the resource indication value satisfy the first relationship, and L, M and the resource indication value satisfy the second relationship; and/or, the second parsing method includes: if L is less than or equal to the second threshold, S, M and the resource indication value satisfy the first relationship, L, M and the resource indication value satisfy the second relationship; if L is greater than the second threshold, S, M and the resource indication value satisfy the third relationship , L, M and the resource indication value satisfy the fourth relationship.
  • the resource indication value is carried in a random access response message or downlink control information.
  • the method further includes: performing transmission with the terminal device through the first transmission resource.
  • the method further includes: receiving the message 3 in the random access process from the terminal device in the first transmission resource; or receiving the physical uplink shared channel from the terminal device in the first transmission resource; Or, receive the physical downlink shared channel from the terminal device in the first transmission resource.
  • At least one of M, the index of the starting resource block of the first bandwidth, the index of the starting resource block of the second bandwidth, and N is sent to the terminal device, where the second bandwidth is The channel bandwidth on which the first type of terminal equipment works.
  • the present application further provides a communication device, and the communication device implements any method provided in the third aspect above.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communications device includes: a processor, where the processor is configured to support the communications device to execute corresponding functions of the network device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and devices such as terminal equipment.
  • the communication device includes corresponding functional modules, respectively configured to implement the steps in the above method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the above method examples.
  • these units can perform corresponding functions in the above method examples.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is configured to execute the computer program or instruction stored in the memory to implement the method in any possible implementation manner of the foregoing first aspect.
  • the apparatus further includes a memory in which computer programs or instructions are stored.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is configured to execute the computer program or instruction stored in the memory to implement the method in any possible implementation manner of the aforementioned third aspect.
  • the apparatus further includes a memory in which computer programs or instructions are stored.
  • a computer-readable storage medium in which a computer program or an instruction is stored, and when the computer program or instruction is run on a computer, the computer is enabled to implement the aforementioned first aspect A method in any possible implementation of .
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is run on a computer, the computer realizes the aforementioned third aspect A method in any possible implementation of .
  • a computer program product storing computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are run on a computer, the computer is made to implement the method in any possible implementation manner in the foregoing first aspect. .
  • a computer program product storing computer-readable instructions, and when the computer-readable instructions are run on a computer, the computer is made to implement the method in any possible implementation manner of the aforementioned third aspect .
  • a chip in an eleventh aspect, includes a processor, and may also include a memory, the processor is coupled to the memory, and is used to execute computer programs or instructions stored in the memory, so that the chip implements the aforementioned first aspect A method in any possible implementation of .
  • a chip in a twelfth aspect, includes a processor, and may also include a memory, the processor is coupled to the memory, and is used to execute computer programs or instructions stored in the memory, so that the chip implements the aforementioned third aspect A method in any possible implementation of .
  • a thirteenth aspect provides a communication system, where the system includes the device (such as a terminal device) described in the second aspect and the device (such as a network device) described in the fourth aspect.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an initial access provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an SSB provided in an embodiment of the present application.
  • FIG. 4 is a schematic flow diagram of a random access process provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a channel bandwidth provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another channel bandwidth provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a resource indication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a channel bandwidth provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the terminal device can be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); Deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be user equipment (user equipment, UE), where the UE includes a handheld device, a vehicle-mounted device, a wearable device, or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, etc.
  • the device for realizing the function of the terminal device may also be a device capable of supporting the terminal device to realize the function, such as a chip system, which can be installed in the terminal, and the chip system can be composed of a chip, or can be Includes chips and other discrete devices.
  • the terminal equipment in this application may be a first type terminal equipment or a second type terminal equipment, and the first type terminal equipment may refer to a reduced capability (REDCAP) terminal equipment, or, the first type terminal equipment may also refer to Low-capability terminal equipment, reduced-capacity terminal equipment, REDCAP UE, Reduced Capacity UE, narrow-band NR (narrow-band NR, NB-NR) UE, etc.
  • the second type of terminal device may refer to a terminal device with traditional capabilities, normal capabilities, or high capabilities, and may also be called a legacy (legacy) terminal device, a conventional (normal) terminal device, or an enhanced mobile broadband (eMBB) terminal device Wait.
  • the first type of terminal device and the second type of terminal device may have but not limited to at least one of the following distinguishing features:
  • the bandwidth supported by the first type of terminal device is smaller than the bandwidth supported by the second type of terminal device.
  • the number of transmitting and receiving antennas is different, for example, the number of transmitting and receiving antennas supported by the first type of terminal equipment is smaller than the number of transmitting and receiving antennas supported by the second type of terminal equipment.
  • the maximum uplink transmit power is different, for example, the maximum uplink transmit power supported by the first type of terminal device is smaller than the maximum uplink transmit power supported by the second type of terminal device.
  • the protocol version is different.
  • the first type of terminal device may be NR version 17 (release-17, Rel-17) or a terminal device in a version later than NR Rel-17.
  • the second type of terminal device may be, for example, a terminal device in NR release 15 (release-15, Rel-15) or NR release 16 (release-16, Rel-16).
  • the second type of terminal equipment may also be referred to as NR legacy (NR legacy) terminal equipment.
  • the ability to process data is different. For example, the minimum time delay between receiving downlink data and sending feedback on the downlink data by the first type terminal device is greater than the minimum time delay between receiving downlink data and sending feedback on the downlink data by the second type terminal device; and/ Or, the minimum time delay between the first type of terminal device sending the uplink data and receiving the feedback on the uplink data is greater than the minimum time delay between the second type of terminal device sending the uplink data and receiving the feedback on the uplink data.
  • the number of resources supported or configured can be RB, resource element (resource element, RE), subcarrier, RB group, resource element group (resource element group, REG) bundle, control channel element, subframe , the number of radio frames, slots, mini-slots and/or symbols.
  • the number of resources supported or configured by the first-type terminal device and the second-type terminal device are different, for example: the number of resources supported by the first-type terminal device is 48 RB, and the number of resources supported by the second-type terminal device is 96 RB.
  • the number of radio frequency channels is different from that of the second type of terminal equipment.
  • the number of radio frequency channels of the first type of terminal equipment can be 1, and the number of radio frequency channels of the second type of terminal equipment can be 2.
  • the number of hybrid automatic repeat request (HARQ) processes is different from that of the second type terminal device.
  • the number of HARQ processes supported by the first type terminal device may be 8, and the number of HARQ processes supported by the second type terminal device may be 16.
  • the maximum peak rate of the first-type terminal device and the second-type terminal device are different.
  • the maximum peak rate supported by the first-type terminal device may be 100 Mbps
  • the peak rate supported by the second-type terminal device may be 200 Mbps.
  • a duplex mode, the duplex mode includes half duplex and full duplex.
  • the first type of terminal equipment and the second type of terminal equipment adopt different duplex modes. For example, the first type of terminal equipment operates in a half-duplex mode, and the second type of terminal equipment operates in a full-duplex mode.
  • the network device may be a wireless access device of various standards in the wireless network, for example, the network device may be a radio access network (RAN) node that connects the terminal device to the wireless network, It can also be called a RAN device or a base station.
  • RAN radio access network
  • next generation base station generation Node B, gNodeB
  • transmission reception point transmission reception point, TRP
  • evolved node B evolved node B
  • evolved node B evolved node B
  • wireless network controller radio network controller, RNC
  • node B node B, NB
  • base station controller base station controller, BSC
  • base transceiver station base transceiver station, BTS
  • home base station for example, home evolved Node B, or home Node B, HNB
  • base band unit base band unit, BBU
  • wireless fidelity wireless fidelity, Wi-Fi
  • the network device may be a centralized unit (centralized unit, CU) node, a distributed unit (distributed unit, DU) node, or a network device including a CU node and a DU node.
  • the interface between the CU and the DU may be referred to as an F1 interface.
  • the CU node may be a CU-CP (control plane, control plane) node, a CU-UP (user plane, user plane) node, or a node including a CU-CP node and a CU-UP node.
  • the interface between the DU and CU-CP may be called an F1-C interface, and the interface between the DU and CU-UP may be called an F1-U interface.
  • the network device may be other devices that provide wireless communication functions for terminal devices.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • an apparatus that provides a wireless communication function for a terminal device is called a network device.
  • the device for implementing the function of the network device may be a network device; it may be a module or unit that can be applied to the network device; or it may be a device that can support the network device to realize the function, such as a chip system, the The device can be installed in the network equipment or matched with the network equipment.
  • the above-mentioned DU, CU, CU-CP, and CU-UP may be functional modules, hardware structures, or functional modules + hardware structures, without limitation.
  • FIG. 1 is a schematic diagram of a network architecture applicable to this embodiment of the present application.
  • a terminal device can access a wireless network through a network device, so as to obtain services of an external network (such as the Internet) through the wireless network, or communicate with other devices through the wireless network, such as communicating with other terminal devices.
  • an external network such as the Internet
  • the terminal device In order to realize data transmission between the terminal device and the network device, the terminal device needs to initially access the network device, and establish a wireless connection with the network device through a random access process.
  • the NR system As an example, as shown in FIG. 2 , it is a schematic flowchart of an initial access process of a terminal device, which may specifically include the following steps.
  • Step 1 The terminal device acquires a synchronous signal/physical broadcast channel block (SS/PBCH block, SSB) broadcast by the network device.
  • SS/PBCH block synchronous signal/physical broadcast channel block
  • the SSB may include at least one of a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS) and a physical broadcast channel (physical broadcast channel, PBCH).
  • primary synchronization signal primary synchronization signal
  • secondary synchronization signal secondary synchronization signal
  • PBCH physical broadcast channel
  • OFDM orthogonal frequency division multiplexing
  • the PSS is located on the middle 127 subcarriers of symbol 0 and the SSS is located on the middle 127 subcarriers of symbol 2.
  • the protection subcarriers are not used to carry signals, and subcarriers are reserved on both sides of the PSS and SSS as protection subcarriers, as shown in Figure 3.
  • the blank areas on both sides of the SSS are protection subcarriers.
  • PBCH occupies all the subcarriers of symbol 1 and symbol 3, and occupies all subcarriers of symbol 2 except for the subcarriers occupied by SSS. subcarriers other than the carrier).
  • OFDM symbols are simply referred to as symbols.
  • Step 2 The terminal device acquires a master system information block (master information block, MIB) from the PBCH in the SSB.
  • MIB master information block
  • the terminal device determines a common search space (common search space, CSS) according to the MIB, and determines a control resource set (control resource set, CORESET) #0.
  • a common search space common search space, CSS
  • CORESET control resource set
  • the bandwidth of CORESET#0 is the bandwidth of the initial downlink bandwidth part (BWP).
  • Step 3 The terminal device blindly detects downlink control information (DCI) scrambled by system information radio network temporary indicator (SI-RNTI) from CORESET#0 and CSS.
  • DCI downlink control information
  • SI-RNTI system information radio network temporary indicator
  • Step 4 The terminal device acquires system information, such as system information block 1 (system information block 1, SIB1), according to the instruction of the DCI.
  • system information block 1 system information block 1, SIB1
  • the terminal device can obtain the configuration information of the uplink initial BWP, the configuration information of the random access resource, the configuration information of the paging resource, etc. from the SIB1.
  • the frequency range of the uplink BWP is specified by the SIB, and the bandwidth does not exceed the bandwidth capability of traditional terminal equipment.
  • the uplink initial BWP and the downlink initial BWP are in different frequency bands; in the TDD system, the center frequencies of the uplink and downlink BWPs are aligned, and the bandwidth may be inconsistent.
  • SIB1 also indicates resources such as a physical random access channel (physical random access channel, PRACH) for terminal equipment to perform random access.
  • PRACH physical random access channel
  • the terminal device can perform a random access procedure through the PRACH resource indicated by SIB1.
  • a random access procedure through the PRACH resource indicated by SIB1.
  • FIG. 4 it is a schematic diagram of an existing random access process.
  • the terminal device sends a preamble (preamble) to the network device through the PRACH.
  • the preamble may also be referred to as message 1 of the random access procedure.
  • the preamble may be a sequence, and its function is to notify the network device that there is a random access request, and enable the network device to estimate the transmission delay between the terminal device and the network device, so that the network device can calibrate the terminal device Uplink timing (uplink timing), and the calibration information is notified to the terminal device through a timing advance (TA) command.
  • TA timing advance
  • the network device sends a random access response (random access response, RAR) to the terminal device.
  • RAR random access response
  • RAR is also called message 2.
  • RAR can contain the received preamble identification, timing advance (timing advance, TA), uplink grant (uplink grant, UL grant) and temporary cell radio network temporary identification (temporary cell radio network temporary identifier, TC-RNTI).
  • timing advance timing advance
  • uplink grant uplink grant
  • UL grant temporary cell radio network temporary identification
  • TC-RNTI temporary cell radio network temporary identifier
  • the terminal device sends a message 3 to the network device through the resource location indicated by the message 2.
  • the network device receives message 3, and sends a contention resolution (contention resolution) message to the terminal device that has successfully accessed.
  • the conflict resolution message may also be referred to as message 4.
  • the downlink control information (DCI) used to schedule the message 4 is scrambled with the TC-RNTI carried in the RAR, and the network device can perform RRC configuration on the terminal device through the message 4.
  • DCI downlink control information
  • PUSCH resource allocation type 1 type1
  • PDSCH physical downlink shared channel
  • Allocate continuous resource blocks (resource block, RB) for the terminal device and the number of allocated resource blocks is within the range of the total number of RBs in the bandwidth part (BWP) of the terminal device;
  • the index of the starting RB of the resource and the length of the resource block (that is, the number of continuously allocated RBs) are indicated by the RIV, and the determination method of the RIV value is as follows:
  • RB start is the index of the starting RB
  • L RBs is the resource block length
  • the value of the RIV is related to the total number of RBs, the index of the starting RB, and the length of the resource block.
  • the terminal equipment is defaulted as traditional terminal equipment, so the value of RIV sent to the terminal equipment is based on the traditional terminal equipment.
  • the total number of RBs of the BWP that the device works is determined, which will cause the REDCAP terminal device to be unable to determine the starting RB and the number of RBs actually indicated by the network device according to the RIV.
  • the network device cannot be distinguished by the preamble
  • PRACH occasion, RO PRACH occasion
  • the BWP configured by the network device as a traditional terminal device and a REDCAP terminal device respectively may be as shown in FIG. 5 or FIG. 6 .
  • the frequency alignment between the starting RB of BWP working on traditional terminal equipment and the starting RB of BWP working on REDCAP terminal equipment is taken as an example; in Figure 6, the starting RB of BWP working on traditional terminal equipment is aligned with the starting RB of An example is that the starting RBs of the BWP that the terminal equipment works are not aligned in frequency.
  • the total number of RBs of the BWP that the traditional terminal equipment works is greater than the total number of RBs of the BWP that the REDCAP terminal equipment works.
  • the RIV included in the UL grant in the message 3 sent by the network device is determined according to the total number of RBs of the BWP that the traditional terminal device works on. If the terminal device that initiates random access is a REDCAP terminal device, since the total number of RBs of the BWP of the REDCAP terminal device is different from the total number of RBs of the BWP of the traditional terminal device, the REDCAP terminal device cannot be accurately determined according to the RIV in the UL grant The resource location used to transmit message 3. For example, as shown in FIG.
  • the resource location indicated by the network device through the RIV is location 1, but the resource location determined by the terminal device according to the RIV may be at location 2.
  • the resource allocation of the RAR received by the RedCap UE, the resource allocation of the message 3 sent by the RedCap UE, and the resource allocation of the message 4 received by the RedCap UE One or more items are indicated according to the RIV value of the traditional terminal equipment; if the network equipment reports the terminal equipment capability in the connected state to distinguish the type of terminal equipment, the resource allocation of the RAR received by the RedCap UE, and the message sent by the RedCap UE 3 resource allocation, message 4 received by the RedCap UE, resource allocation of the physical uplink shared channel sent by the RedCap UE, and one or more of the resource allocation of the physical downlink shared channel received by the RedCap UE is based on the RIV value of the traditional terminal equipment Instructed.
  • the present application provides a method for aligning the understanding of the RIV by the terminal device and the network device, so that the terminal device can accurately determine the resources indicated by the RIV.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • FIG. 7 it is a schematic flowchart of a resource indication method provided by the embodiment of the present application. The method includes:
  • the network device determines a resource indication value according to M, S, and L.
  • M, N, and L are all integers;
  • M is the number of resource blocks included in the first bandwidth, and can also be understood as the total number of resource blocks included in the first bandwidth, and the first bandwidth is the channel bandwidth for the second type of terminal equipment to work;
  • S is used to determine the index of the starting resource block of the first transmission resource, and specifically may be used to determine the index of the starting resource block of the first transmission resource in the second bandwidth, and S may refer to the starting resource of the first transmission resource Index of the block in the first bandwidth.
  • the second bandwidth is a channel bandwidth in which the first type of terminal equipment works.
  • the index of the start resource block of the first transmission resource in the first bandwidth and the start resource block of the first transmission resource may be the same or different.
  • L is the resource block length of the first transmission resource, that is, the number of resource blocks included in the first transmission resource, and the first transmission resource is a resource allocated by the network device to the terminal device.
  • the same RIV numbering rule is used for both the first type terminal device and the second type terminal device, that is, the RIV is determined according to M RBs.
  • the network device sends a resource indication value to the terminal device.
  • the network device sends the resource indication value specifically.
  • the network device sends a resource indication value to the terminal device through downlink control information; in another possible implementation, when the embodiment of the present application is applied to the random access process, the network device can pass the resource The indication value indicates to the terminal device the resource used to bear the message 3 in the random access process. In this implementation, the network device may send the resource indication value through a random access response message.
  • S703 The terminal device acquires the resource indication value from the network device.
  • the terminal device may also obtain at least one of M, the index of the starting resource block of the first bandwidth, the index of the starting resource block of the second bandwidth, and N, where N is the first type of terminal device supports N is the total number of resource blocks corresponding to the maximum channel bandwidth supported by the first type of terminal equipment or, N is the number of resource blocks corresponding to the channel bandwidth of the first type of terminal equipment, or It is understood that N is the total number of resource blocks corresponding to the channel bandwidth of the first type of terminal equipment, and the channel bandwidth of the first type of terminal equipment does not exceed the maximum channel bandwidth supported by the first type of terminal equipment, M and N are both greater than 0 Integer, M greater than N.
  • the channel bandwidth in which the first type of terminal equipment works is an initial uplink bandwidth part, or an initial downlink bandwidth part, or an uplink bandwidth part, or a downlink bandwidth part in which the first type terminal device works.
  • Network devices can broadcast M and N through system information.
  • terminal devices can obtain M and N through system information.
  • system information can be MIB, or SIB1, or a field in SIB1, or a scheduling bearer of SIB1.
  • the maximum channel bandwidth supported by the second type of terminal equipment is greater than the maximum channel bandwidth supported by the first type of terminal equipment.
  • the maximum channel bandwidth supported by the second type of terminal equipment is 100MHz
  • the maximum channel bandwidth supported by the first type of terminal equipment is The channel bandwidth is 20MHz, or 10MHz, or 5MHz.
  • S704 The terminal device determines S and/or L according to the resource indication value and the parsing method, and transmits in the first transmission resource according to S and/or L.
  • the parsing method is used to parse out S and/or L from the resource indication value, and the parsing method may be a formula, a table, or a function, and the specific implementation method will be described in detail later.
  • the terminal device determines S and/or L according to the resource indication value and the analysis method, and transmits in the first transmission resource according to S and/or L.
  • the transmission can be sending or receiving, that is, the terminal device determines the S and/or L according to the resource indication value and the analysis method Determine S and/or L, and transmit the physical uplink shared channel in the first transmission resource according to S and/or L, or, the terminal device determines S and/or L according to the resource indication value and the analysis method, and transmits the physical uplink shared channel according to S and/or L receives the physical downlink shared channel in the first transmission resource.
  • how the network device specifically determines the resource indication value, and correspondingly, how the terminal device determines S and/or L according to the resource indication value there may be multiple implementations, which will be described respectively below.
  • the embodiment of the present application can be applied to the following two situations.
  • the initial resource block of the channel bandwidth (hereinafter referred to as the second bandwidth) where the terminal device works is the same as the channel bandwidth where the second type of terminal device works.
  • start resource blocks are aligned in frequency; in the second case, the start resource blocks of the second bandwidth are not aligned in frequency with the start resource blocks of the first bandwidth.
  • the difference between Case 1 and Case 2 mainly lies in the way of determining the index of the starting resource block of the first transmission resource, and other aspects may refer to each other.
  • the maximum value of L is the first threshold, that is, the maximum value of the number L of resource blocks included in the first transmission resource allocated by the network device to the terminal device is the first threshold, and the first threshold may be less than N.
  • the first threshold may be configured by the network device, and the first threshold may also be determined in other ways, for example, the first threshold may be determined according to at least one of M and N. For example, the first threshold is equal to N/2; or the first threshold is equal to M/2; or the first threshold is equal to M/4+N/4.
  • the first threshold can be equal to
  • the first threshold can also be equal to is or The above is just an example, and the first threshold can also be determined in other ways, which will not be repeated here.
  • the network device defaults the type of the terminal device to be the second type.
  • the network device may determine the resource indication value according to the working channel bandwidth of the second type of terminal device. For example, when the index of the starting resource block of the first transmission resource allocated by the network device to the terminal device is ST, and the resource length of the first transmission resource is L, the network device may determine the resource indication value RIV in the following manner:
  • the terminal device when the terminal device is the first type of terminal device, the terminal device may determine S and/or L according to the first analysis manner.
  • the first parsing method may include a first relationship and a second relationship, wherein S, M, and resource indication values satisfy the first relationship, and L, M, and resource indication values satisfy the second relationship.
  • the specific forms of the first relationship and the second relationship are not limited in this embodiment of the present application.
  • S can be determined according to M and the resource indication value RIV.
  • the first relationship can be of the form:
  • MOD represents a remainder operation
  • L can also be determined according to M and the resource indication value RIV, at this time the second relationship can be in the following form:
  • the first relationship and the second relationship included in the first resolution method may be pre-agreed in the protocol, or may be indicated to the terminal device by the network device.
  • the first relationship and the second relationship provided above when the resource indication value is determined according to the number M of resource blocks included in the channel bandwidth of the second type of terminal equipment, the first type of terminal equipment can still be able to indicate The value determines the index of the starting resource block and the length of the resource block of the resource allocated by the network device, so that when the first type of terminal device and the second type of terminal device coexist, the network device uses the same method to send different types of terminal devices Perform resource indication to reduce the complexity of network device resource indication.
  • L may be used as the resource length of the first transmission resource.
  • the terminal device may determine the index of the starting resource block of the first transmission resource. Specifically, in case one, since the index of the start resource block of the first bandwidth is the same as the index of the start resource block of the second bandwidth, the index of the start resource block of the first transmission resource may be equal to S; in case two In , since the index of the start resource block of the first bandwidth is different from the index of the start resource block of the second bandwidth, the index of the start resource block of the first transmission resource can be equal to S1, and S1 is based on S and the first offset The parameters are determined. Specifically, S1 and S satisfy a linear relationship. For example, S1 can satisfy the following formula:
  • P is the first offset parameter
  • A is the second offset parameter
  • the embodiment of the present application compensates the difference between the start resource block of the second bandwidth and the start resource block of the first bandwidth through the first offset parameter.
  • the frequency offset of the starting resource block of the first bandwidth enables the terminal device to obtain an accurate first transmission resource.
  • the first offset parameter may be determined according to the index of the starting resource block of the first bandwidth and the index of the starting resource block of the second bandwidth. For example, as shown in FIG. 8, the starting resource block of the first bandwidth The index of the resource block is ST1, the index of the starting resource block of the second bandwidth is ST2, and the first offset parameter P may satisfy the following formula:
  • the first offset parameter can be a positive number, 0 or a negative number.
  • the first offset parameter is 0, it means that the starting resource block of the first bandwidth and the starting resource block of the second bandwidth are aligned in frequency.
  • the first offset parameter may be indicated by the network device through high-layer signaling, for example, the high-layer signaling may be SIB1.
  • the first offset parameter may also be determined by the terminal device according to the first bandwidth and the second bandwidth.
  • the network device can carry RIV through DCI or RAR UL grant, and the frequency domain resource allocation value field in DCI or RAR UL grant includes RIV, and the RIV corresponds to the physical uplink shared channel or the physical downlink shared channel The index S of the starting resource block and the number L of consecutively allocated resource blocks.
  • the RIV indicates the index S+S1 of the starting resource block of the physical uplink shared channel or the physical downlink shared channel and the number L of consecutively allocated resource blocks, where L does not exceed first threshold.
  • the complexity of resource allocation can be simplified by limiting the maximum value of the number L of RBs for resource allocation.
  • the network device can not distinguish the type of the terminal device, and the terminal device determines the initial RB and RB number of resource allocation according to the method of this embodiment, which is beneficial to the traditional terminal device and RedCap UE in the network. coexist.
  • the network device may determine the resource indicator value RIV through the formula (1).
  • RIV resource indicator value
  • the resource indication value corresponding to the first transmission resource allocated to the terminal device in the second bandwidth needs to be determined according to the number M of resource blocks included in the first bandwidth, the value of M will affect the The maximum value of L indicated by the determined resource indication value.
  • the correspondence between the maximum value of L and M can be established, Avoid the situation that L indicated by the resource indication value cannot be obtained according to the resource indication value determined by M.
  • the maximum value of L may be related to M, and in addition, the maximum value of L does not exceed N. That is to say, in this implementation manner, there is a corresponding relationship between the maximum value of L and M.
  • the correspondence between the maximum value of L and M may be stipulated in the protocol or configured by the network device, which is not limited in this embodiment of the present application.
  • the correspondence between the maximum value of L and M may be realized in various manners, for example, the correspondence between the maximum value of L and the numerical range to which M belongs may be established. For example, when M belongs to the first value range, the maximum value of L is equal to Lmax1; when M belongs to the second value range, the maximum value of L is equal to Lmax2; Lmax2 may be smaller than Lmax1. There may be no intersection between the first numerical range and the second numerical range. For example, when M belongs to the first numerical range, it means that M is greater than or equal to the value of the first parameter; when M belongs to the second numerical range, it means that M is smaller than the value of the first parameter.
  • M belongs to the first numerical range it means that M is greater than the value of the first parameter; when M belongs to the second numerical range, it means that M is less than or equal to the value of the first parameter.
  • M belongs to the first numerical range it means that M is greater than the value of the first parameter; when M belongs to the second numerical range, it means that M is less than or equal to the value of the first parameter.
  • the maximum value of L is determined according to the numerical range to which M belongs, that is, according to the first bandwidth including
  • the upper limit of the resource indication value is determined by the number of resource blocks, which can save signaling resources while ensuring the resource indication function.
  • the values of the first parameter, Lmax1 and Lmax2, may be indicated by the network device or defined by the protocol.
  • the first parameter can be determined according to N, for example, the first parameter can be 2N-2, or 2N, or 2N-1, and so on.
  • Lmax1 can be determined according to N, for example, Lmax1 can be equal to N. Lmax1 may also be equal to the number of RBs corresponding to the maximum channel bandwidth supported by the first type of terminal equipment.
  • Lmax2 can be determined according to at least one of M and N, for example, Lmax2 is equal to N/2; or Lmax2 is equal to M/2; or Lmax2 is equal to M/4+N/4.
  • Lmax2 can be equal to
  • the first threshold can also be equal to is or The above is just an example, and the values of the first parameter, Lmax1 and Lmax2 may also be determined in other ways, which will not be repeated here.
  • the terminal device when the terminal device is the first type of terminal device, the terminal device may determine S and/or L according to the first analysis manner.
  • the first parsing manner may include the first relationship and the second relationship, and the specific forms of the first relationship and the second relationship may refer to the description in Implementation Mode 1, which will not be repeated here.
  • L may be used as the resource length of the first transmission resource.
  • the terminal device may determine the index of the starting resource block of the first transmission resource. Specifically, in case 1, the index of the starting resource block of the first transmission resource may be equal to S; in case 2, the index of the starting resource block of the first transmission resource may be equal to S1, and S1 may be equal to S1 according to S and the first bias
  • S may be equal to S1 according to S and the first bias
  • the network device can carry RIV through DCI or RAR UL grant, and the frequency domain resource allocation value field in DCI or RAR UL grant includes RIV, and the RIV corresponds to the physical uplink shared channel or the physical downlink shared channel The index S of the starting resource block and the number L of consecutively allocated resource blocks.
  • the RIV indicates the index S+S1 of the starting resource block of the physical uplink shared channel or the physical downlink shared channel and the number L of continuously allocated resource blocks; if M is less than the first The value of the parameter, then L does not exceed Lmax1; if M is greater than or equal to the value of the first parameter, then L does not exceed Lmax2.
  • the complexity of resource allocation can be simplified, and on the other hand, resource allocation restrictions can be avoided when M belongs to a specific value range.
  • the index of the starting resource block of the resource allocated by the network device consider whether the starting RBs of the first bandwidth and the second bandwidth are aligned in frequency, and determine the starting resource block in different ways in different situations. The index of the resource block makes the solution of this application applicable to all scenarios.
  • the network device does not distinguish the type of terminal device, and the terminal device determines the initial RB and RB number of resource allocation according to the method of this embodiment, which is conducive to the coexistence of traditional terminal devices and RedCap UEs in the network .
  • the network device can determine the resource indicator value RIV through the formula (1), and the formula (1) can refer to the first implementation description and will not be repeated here.
  • the network device may determine the resource indication value RIV according to formula (1).
  • L may also be smaller than the second threshold, but not equal to the second threshold.
  • the network device can determine the resource indication value RIV by the following formula:
  • the second threshold can be determined according to M, for example, the second threshold can be equal to
  • the maximum value of L is related to M.
  • the value of L can be determined by the network device according to the amount of data to be transmitted by the terminal device, but the maximum value of L does not exceed N.
  • the analytical method for determining S and/or L may be related to M, specifically, if M belongs to the first numerical range, determine S and/or L according to the first analytical method; if M belongs to the second numerical range , determine S and/or L according to the second analysis method.
  • the first analysis method and the second analysis method are different analysis methods.
  • the terminal device may determine S and/or L according to the first analysis manner.
  • the first parsing method may include the first relationship and the second relationship.
  • S, M and the resource indication value may satisfy the first relationship.
  • the first relationship may be In the following form:
  • MOD represents a remainder operation
  • L, M and the resource indication value satisfy the second relationship, and the second relationship can be in the following form:
  • the terminal device may determine S and/or L according to the second analysis manner.
  • the second analysis method may include a first relationship, a second relationship, a third relationship and a fourth relationship.
  • S, M and the resource indication value can satisfy the first relationship, and the first relationship can refer to the description in formula (7), which will not be repeated here; L, M and the resource indication The value satisfies the second relationship, and the second relationship can refer to the description in formula (8), which will not be repeated here.
  • S, M, and the resource indication value may satisfy a third relationship, and the third relationship may be in the following form:
  • the network device indicates to the terminal device the relationship between S, L, M and the resource indication value, for example, when L is less than or equal to the second threshold, the network device can indicate to the terminal device Indicate that S, M, and the resource indication value satisfy the first relationship, and L, M, and the resource indication value satisfy the second relationship; when L is greater than the second threshold, the network device may indicate to the terminal device that S, M, and the resource indication value satisfy the third relationship , L, M and the resource indication value satisfy the fourth relationship.
  • the network device indicates the value range of L to the terminal device, for example, when L is less than or equal to the second threshold, the network device may indicate to the terminal device that L is less than or equal to the second threshold , at this time, the terminal device can determine that S, M and the resource indicator value satisfy the first relationship, and L, M and the resource indicator value satisfy the second relationship; when L is greater than the second threshold, the network device can indicate to the terminal device that L is greater than the second threshold , at this time, the terminal device may determine that S, M, and the resource indication value satisfy the third relationship, and that L, M, and the resource indication value satisfy the fourth relationship.
  • the network device may not indicate to the terminal device the relationship between S, L, M and the resource indication value or the value range of L.
  • the terminal device can respectively determine two values of S according to the first relationship and the third relationship, respectively determine two values of L according to the second relationship and the fourth relationship, and determine the value range of S and L according to , from which the correct values of S and L can be determined.
  • the terminal device may determine L and/or S according to the first analysis manner.
  • L may be used as the resource length of the first transmission resource.
  • the terminal device may determine the index of the starting resource block of the first transmission resource.
  • the index of the starting resource block of the first transmission resource may be equal to S; in case 2, the index of the starting resource block of the first transmission resource may be equal to S1, and S1 may be equal to S1 according to S and the first bias
  • S may be equal to S1 according to S and the first bias
  • the subcarrier spacing of the first bandwidth and the subcarrier spacing of the second bandwidth are both 15kHz, the first bandwidth is 40MHz, and the second bandwidth is 20MHz, assuming that the starting resource block of the first bandwidth It is aligned in frequency with the start resource block of the second bandwidth, that is, the first offset value is equal to 0.
  • the number M of RBs included in the first bandwidth is 216; the number N of RBs included in the second bandwidth is 106.
  • the value of RIV determined by the network device can be shown in Table 1:
  • the terminal device may determine S according to formula (7), and determine L according to formula (8).
  • the S and L determined by the terminal device can be:
  • the S and L determined by the terminal device may be:
  • the embodiment of this application provides The method can ensure that the network device and the terminal device have the same understanding of the resource indication value, and the first type of terminal device can accurately determine the resources allocated by the network device according to the resource indication value.
  • the value of the first parameter is 2N
  • the subcarrier spacing of the first bandwidth and the subcarrier spacing of the second bandwidth are both 15kHz
  • the first bandwidth is 25MHz
  • the second bandwidth is 20MHz
  • the starting resource block of and the starting resource block of the second bandwidth are aligned in frequency, that is, the first offset value is equal to 0.
  • the number M of RBs included in the first bandwidth is 133; the number N of RBs included in the second bandwidth is 106.
  • the value of RIV determined by the network device can be shown in Table 2:
  • the terminal device may determine S according to formula (7), and determine L according to formula (8).
  • the terminal device may determine S according to formula (9), and determine L according to formula (10).
  • the S and L determined by the terminal device may be:
  • the S and L determined by the terminal device may be:
  • the embodiment of this application provides The method can ensure that the network device and the terminal device have the same understanding of the resource indication value, and the first type of terminal device can accurately determine the resources allocated by the network device according to the resource indication value.
  • the network device can carry RIV through DCI or RAR UL grant, and the frequency domain resource allocation value field in DCI or RAR UL grant includes RIV, and the RIV value corresponds to the physical uplink shared channel or the physical downlink shared channel.
  • the RIV indicates the index S+S1 of the starting resource block of the physical uplink shared channel or the physical downlink shared channel and the number L of continuously allocated resource blocks.
  • the terminal device when the second bandwidth is 20MHz and the first bandwidth is greater than or equal to 40MHz, the terminal device only needs to determine S and/or L according to the first analysis method, wherein the first bandwidth can be 40MHz, 50MHz, 60MHz, 70MHz, 80MHz, 90MHz, and 100MHz; or, when the second bandwidth is 20MHz corresponding to RBs under a specific subcarrier spacing, when the first bandwidth is greater than or equal to 40MHz corresponding to RBs under a specific subcarrier spacing, the terminal device Determine S and/or L according to a first resolution method, wherein the specific subcarrier spacing of the subcarrier spacing of the first bandwidth and the second bandwidth is the same, and the first bandwidth may be 40MHz, 50MHz, 60MHz, 70MHz, 80MHz, 90MHz, and 100MHz.
  • the terminal device determines S and/or L according to the second analysis method; or, for the second bandwidth of 20MHz under a specific subcarrier spacing For the corresponding RB, when the first bandwidth is 25MHz or 30MHz and the corresponding RB under a specific subcarrier spacing, the terminal device determines S and/or L according to the second analysis method, wherein the subcarrier spacing of the first bandwidth and the second bandwidth The specific subcarrier spacing of the two is the same.
  • the index of the starting resource block is determined in different ways in different situations, so that the solution of this application can be applied to all scenarios.
  • the terminal device may send data or messages to the network device in the first transmission resource, and may also receive data or messages sent from the network device in the first transmission resource. For example, if the resource indication value is carried by message 2 in the random access process, then the terminal device can send message 3 in the random access process to the network device through the first transmission resource, and correspondingly, the network device The resource receives message 3 from the random access procedure of the terminal device.
  • the terminal device may send the physical uplink shared channel to the network device through the first transmission resource, or receive the physical downlink shared channel from the network device through the first transmission resource, correspondingly, The network device receives the physical uplink shared channel or the physical downlink shared channel from the terminal device in the first transmission resource.
  • the access network device, the terminal device or the above-mentioned communication device may include a hardware structure and/or a software module, and a combination of a hardware structure, a software module, or a hardware structure plus a software module form to achieve the above-mentioned functions. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the embodiment of the present application further provides a device 900 .
  • the communication apparatus 900 may be the terminal device in FIG. 1 , and is configured to implement the method for the terminal device in the foregoing method embodiments.
  • the communication device may also be the network device in FIG. 1 , configured to implement the method corresponding to the network device in the foregoing method embodiments.
  • the apparatus 900 may include: a processing unit 901 and a communication unit 902 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively used to perform the sending and receiving steps of the network device or terminal device in the above method embodiments.
  • the communication device provided by the embodiment of the present application will be described in detail with reference to FIG. 9 to FIG. 10 .
  • the behaviors and functions of the terminal device in the foregoing method embodiments may be implemented by the communication apparatus 900, for example, implementing the method performed by the terminal device in the embodiment in FIG. 7 .
  • the communication apparatus 900 may be a terminal device, may also be a component (such as a chip or a circuit) applied in the terminal device, or may be a chip or a chipset in the terminal device, or a part of the chip for performing related method functions.
  • the communication unit 902 may be used to perform receiving or sending operations performed by the terminal device in the embodiment shown in FIG. operations other than operations.
  • the communication unit 902 is configured to obtain a resource indication value from a network device, and the resource indication value is associated with M, S, and L, where M is the number of resource blocks included in the first bandwidth , the S is used to determine the index of the starting resource block of the first transmission resource, and the L is the resource block length of the first transmission resource;
  • a processing unit configured to determine S and/or resource block length L according to the resource indication value and an analysis method; the analysis method is used to resolve S and/or L from the resource indication value; the communication unit, for performing transmission in the first transmission resource according to the S and/or L;
  • the maximum value of L is the first threshold; or, the maximum value of L is related to the M, and the maximum value of L does not exceed N, and the N corresponds to the maximum channel bandwidth supported by the terminal device.
  • the number of resource blocks; or, the maximum value of L does not exceed N, and the resolution method is related to M;
  • the terminal device is a first-type terminal device
  • the first bandwidth is a channel bandwidth for a second-type terminal device to work
  • the maximum channel bandwidth supported by the second-type terminal device is greater than that supported by the first-type terminal device. the maximum channel bandwidth.
  • the index of the starting resource block of the first transmission resource is S; or, the index of the starting resource block of the first transmission resource is S1, and the index of S1 according to the S and the first offset parameter are determined.
  • the first threshold is determined according to at least one of M and N.
  • the maximum value of L is related to the M, including:
  • the maximum value of the L is equal to Lmax1;
  • the maximum value of the L is equal to Lmax2;
  • the Lmax2 is smaller than the Lmax1.
  • the parsing manner is related to the M, including:
  • the M belongs to the first numerical range, and S and/or L are determined according to the first analytical method
  • the M belongs to the second numerical range, and S and/or L are determined according to the second analytical method
  • the first analysis method and the second analysis method are different analysis methods.
  • the M belongs to the first numerical range, including: the M is greater than or equal to the value of the first parameter; or, the M belongs to the second numerical range, including: the M is smaller than the first parameter value The value of a parameter.
  • the first parsing manner includes:
  • the S, the M, and the resource indication value satisfy a first relationship, and the L, the M, and the resource indication value satisfy a second relationship; and/or, the second parsing method includes: if L less than or equal to a second threshold, the S, the M, and the resource indication value satisfy a first relationship, and the L, the M, and the resource indication value satisfy a second relationship;
  • the S, the M, and the resource indication value satisfy a third relationship
  • the L, the M, and the resource indication value satisfy a fourth relationship
  • the behaviors and functions of the network device in the above method embodiments can be implemented by the communication device 900, for example, the method performed by the first access network device or the second access network device in the embodiment of FIG. 7 .
  • the communication device 900 may be an access network device, or a component (such as a chip or a circuit) applied in an access network device, or a chip or a chipset or a chip in a terminal device for performing related method functions a part of.
  • the communication unit 902 may be used to perform the receiving or sending operation performed by the first access network device or the second access network device in the embodiment shown in FIG. 7
  • the processing unit 901 may be used to perform the operation shown in FIG. 7
  • the communication unit 902 is a processing unit configured to determine a resource indication value according to M, S, and L, where M is the number of resource blocks included in the first bandwidth, and S is used to determine the An index of a starting resource block of a transmission resource, the L being the length of a resource block of the first transmission resource; a communication unit configured to send the resource indication value to a terminal device; wherein the maximum value of the L is A first threshold; or, the maximum value of L is related to the M, and the maximum value of L does not exceed N, and the N is the number of resource blocks corresponding to the maximum channel bandwidth supported by the terminal device; or , the maximum value of the L does not exceed N, and the resolution method is related to the M; wherein, the terminal device is a first type of terminal device, and the first bandwidth is the channel bandwidth for the second type of terminal device to work , the maximum channel bandwidth supported by the second-type terminal device is greater than the maximum channel bandwidth supported by the first-type terminal device.
  • the index of the starting resource block of the first transmission resource is S; or, the index of the starting resource block of the first transmission resource is S1, and the index of S1 according to the S and the first offset parameter are determined.
  • the first threshold is determined according to at least one of M and N.
  • the maximum value of L is related to the M, including: when the M belongs to the first numerical range, the maximum value of L is equal to Lmax1; or, the M belongs to the second In the numerical range, the maximum value of L is equal to Lmax2; wherein, the Lmax2 is smaller than the Lmax1.
  • the parsing manner is related to the M, including:
  • the M belongs to the first numerical range, and S and/or L are determined according to the first analytical method
  • the M belongs to the second numerical range, and S and/or L are determined according to the second analytical method
  • the first analysis method and the second analysis method are different analysis methods.
  • the M belongs to the first numerical range, including: the M is greater than or equal to the value of the first parameter; or, the M belongs to the second numerical range, including: the M is smaller than the first parameter value The value of a parameter.
  • the first parsing manner includes:
  • the S, the M, and the resource indication value satisfy a first relationship, and the L, the M, and the resource indication value satisfy a second relationship; and/or, the second parsing method includes:
  • the S, the M, and the resource indication value satisfy the first relationship, and the L, the M, and the resource indication value satisfy the second relationship; if L is greater than the second For a threshold value, the S, the M, and the resource indication value satisfy a third relationship, and the L, the M, and the resource indication value satisfy a fourth relationship.
  • the description of the device embodiment corresponds to the description of the method embodiment.
  • the structure of the device used to realize the terminal device and the access network device in FIG. For the sake of brevity, the foregoing method embodiments are not described in detail here.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiving device, or the like.
  • a processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the communication unit 902 for realizing the receiving function may be regarded as a receiving unit
  • the device in the communication unit 902 for realizing the sending function may be regarded as a sending unit, that is, the communication unit 902 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit and the like.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit can sometimes be called a transmitter, a transmitter or a transmitting circuit, etc.
  • processing unit 901 and the communication unit 902 may also perform other functions.
  • processing unit 901 and the communication unit 902 may also perform other functions.
  • FIG. 10 shows an apparatus 1000 provided in the embodiment of the present application.
  • the apparatus shown in FIG. 10 may be a hardware circuit implementation manner of the apparatus shown in FIG. 9 .
  • the communication device may be applicable to the flow chart shown above, and execute the functions of the terminal device or the network device in the above method embodiments. For ease of illustration, FIG. 10 only shows the main components of the communication device.
  • a communication device 1000 includes a processor 1010 and an interface circuit 1020 .
  • the processor 1010 and the interface circuit 1020 are coupled to each other.
  • the interface circuit 1020 may be a transceiver or an input-output interface.
  • the communication device 1000 may further include a memory 1030 for storing instructions executed by the processor 1010 or storing input data required by the processor 1010 to execute the instructions or storing data generated by the processor 1010 after executing the instructions.
  • the processor 1010 is used to implement the functions of the above processing unit 901
  • the interface circuit 1020 is used to implement the functions of the above communication unit 902 .
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), and the information is sent to the terminal device by the access network device; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules) module or antenna) to send information, which is sent by the terminal device to the access network device.
  • the access network equipment chip When the above communication device is a chip applied to access network equipment, the access network equipment chip implements the functions of the network equipment in the above method embodiments.
  • the access network device chip receives information from other modules (such as radio frequency modules or antennas) in the access network device, and the information is sent by the terminal device to the network device; or, the access network device chip sends information to the access network device Other modules (such as radio frequency modules or antennas) of the system send information, and the information is sent by the access network equipment to the terminal equipment.
  • modules such as radio frequency modules or antennas
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • memory can be random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable Programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Processors and storage media may also exist in network devices or terminal devices as discrete components.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源指示方法及装置,方法包括:终端设备获取来自网络设备的资源指示值,资源指示值与M、S、和L关联,根据资源指示值和解析方式,确定S和/或资源块长度L;根据S和/或L在第一传输资源中进行传输;通过该方法,网络设备可以不区分终端设备的类型,统一按照相同的方法确定用于指示资源的起始RB和RB数的资源指示值。对于终端设备,获取到资源指示值时,可以通过预设的解析方式确定S和/或资源块长度L,从而根据S和/或资源块长度L确定资源指示值对应的第一传输资源。其中,在L的最大值为第一阈值,或L的最大值与M有关时,通过限制资源分配的RB数L的最大值,可以简化资源分配的复杂度。

Description

一种资源指示方法及装置
相关申请的交叉引用
本申请要求在2021年05月10日提交中国专利局、申请号为202110506625.5、申请名称为“一种资源指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源指示方法及装置。
背景技术
在新空口(new radio,NR)系统等通信系统中,终端设备通过随机接入过程与网络设备建立连接。以四步随机接入过程为例,一般涉及到以下过程:终端设备发送前导码(preamble);网络设备发送随机接入响应(random access response,RAR)消息;终端设备发送消息3;网络设备发送竞争解决消息。
在随机接入过程中,网络设备可以通过资源指示值(resource indication value,RIV)向终端设备指示需要发送或接收的消息的资源的起始资源块(resource block,RB)和包括的RB数。例如,可以通过RIV指示消息3对应的资源的起始RB和包括的RB数。而RIV的具体取值,是根据网络设备为终端设备配置的初始(initial)上行(uplink,UL)带宽部分(bandwidth part,BWP)确定的。
然而,NR系统等通信系统中,除了支持传统(legacy)终端设备以外,还支持比传统终端设备的能力低的终端设备,即低能力(reduced capability,REDCAP)终端设备。REDCAP终端设备主要特征是终端能力的降低或受限,例如,带宽能力受限,相比于传统终端设备,最大信道带宽将降低至20MHz。对于REDCAP终端设备,上行信道带宽可能会被网络设备限制在其带宽能力之内,例如网络设备只给REDCAP终端设备配置20MHz的初始上行BWP。
由于在随机接入过程中,网络设备无法通过终端设备发送的消息识别终端设备的类型,因此网络设备会认为终端设备的类型为传统终端设备,从而按照传统终端设备的初始上行BWP确定RIV。对于REDCAP终端设备来说,其初始上行BWP的带宽大小和传统终端设备的带宽大小不同,起始位置也可能不同,因此REDCAP终端设备根据RIV确定的起始RB和RB数,与网络设备通过RIV实际指示的起始RB和RB数不同,导致随机接入失败。
综上所述,终端设备如何根据RIV确定网络设备实际起始RB和RB数,是一个亟待解决的问题。
发明内容
本申请提供一种资源指示方法及装置,用以对齐终端设备和网络设备对RIV的理解,准确获得RIV指示的资源。
第一方面,本申请提供一种资源指示方法,该方法适用于第一类型终端设备和第二类型终端设备在网络中共存的场景。该方法的执行主体为终端设备或终端设备中的芯片或一个模块,这里以终端设备为执行主体为例进行描述。该方法包括:终端设备获取来自网络设备的资源指示值,资源指示值与M、S、和L关联,其中M是第一带宽包含的资源块数,S用于确定第一传输资源的起始资源块的索引,L是第一传输资源的资源块长度;根据资源指示值和解析方式,确定S和/或资源块长度L;解析方式用于从资源指示值解析出S和/或L;根据S和/或L在第一传输资源中进行传输;其中,L的最大值为第一阈值;或,L的最大值与M有关,且L的最大值不超过N,N是终端设备支持的最大信道带宽对应的资源块个数;或,L的最大值不超过N,且解析方式与M有关;其中,终端设备是第一类型终端设备,第一带宽是第二类型终端设备工作的信道带宽,第二类型终端设备支持的最大信道带宽大于第一类型终端设备支持的最大信道带宽。
通过本申请实施例提供的方法,网络设备可以不区分终端设备的类型,统一按照相同的方法确定用于指示资源的起始RB和RB数的资源指示值。对于终端设备,获取到资源指示值时,可以通过预设的解析方式确定S和/或资源块长度L,从而根据S和/或资源块长度L确定资源指示值对应的第一传输资源。其中,在L的最大值为第一阈值,或L的最大值与M有关时,通过限制资源分配的RB数L的最大值,可以简化资源分配的复杂度。在不限制L的最大值时,L的最大值不超过N,此时可以存在多种解析方式,且解析方式与M有关,这样可以提高资源分配的灵活性,可以保证终端设备能够一次就可以获得足够的资源,从而完成数据传输,降低数据时延。
在一种可能的实现方式中,第一传输资源的起始资源块的索引为S;或者,第一传输资源的起始资源块的索引为S1,S1根据S和第一偏移参数确定。在确定网络设备为其分配的资源的起始资源块的索引时,考虑第一带宽和第二带宽的起始RB在频率上是否对齐的情况,在对齐的情况下,第一传输资源的起始资源块的索引为S;在不对齐的情况下,第一传输资源的起始资源块的索引为S1,使得本申请方案能够适用于所有的场景。
在一种可能的实现方式中,第一阈值根据M和N中的至少一项确定。
在一种可能的实现方式中,L的最大值与M有关,包括:M属于第一数值范围时,L的最大值等于Lmax1;或者,M属于第二数值范围时,L的最大值等于Lmax2;其中,Lmax2小于Lmax1。通过建立L的最大值与M的对应关系,简化终端设备的实现,降低终端设备的复杂度,避免无法根据由M确定的资源指示值,获取到该资源指示值指示的L的情况。
在一种可能的实现方式中,解析方式与M有关,包括:M属于第一数值范围,按照第一解析方式确定S和/或L;M属于第二数值范围,按照第二解析方式确定S和/或L;其中,第一解析方式和第二解析方式是不同的解析方式。解析方式与M有关,可以实现在M属于不同数值范围时,按照不种解析方式解析资源指示值,这样可以提高资源分配的灵活性。
在一种可能的实现方式中,M属于第一数值范围,包括:M大于或等于第一参数的值;或者,M属于第二数值范围,包括:M小于第一参数的值。第一参数可以根据N确定,例如第一参数可以是2N-2,或是2N,或是2N-1等。
在一种可能的实现方式中,第一解析方式包括:S、M和资源指示值满足第一关系,L、M和资源指示值满足第二关系;和/或,第二解析方式包括:若L小于或等于第二阈值,S、 M和资源指示值满足第一关系,L、M和资源指示值满足第二关系;若L大于第二阈值,S、M和资源指示值满足第三关系,L、M和资源指示值满足第四关系。
在一种可能的实现方式中,资源指示值承载于随机接入响应消息或下行控制信息。此时,资源指示值可以用于指示承载消息3的资源,从而使得第一类型终端设备能够成功完成随机接入过程。
在一种可能的实现方式中,根据S和/或L在第一传输资源中进行传输,包括:通过第一传输资源向网络设备发送随机接入过程中的消息3;或者,通过第一传输资源向网络设备发送物理上行共享信道;或者,通过第一传输资源接收来自网络设备的物理下行共享信道。
在一种可能的实现方式中,终端设备还可以获取M,第一带宽的起始资源块的索引,第二带宽的起始资源块的索引和N中的至少一项,其中第二带宽是第一类型终端设备工作的信道带宽。
第二方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第三方面,本申请提供一种资源指示方法,该方法适用于第一类型终端设备和第二类型终端设备在网络中共存的场景。该方法的执行主体为网络设备或网络设备中的芯片或一个模块,这里以网络设备为执行主体为例进行描述。该方法包括:网络设备根据M、S、和L确定资源指示值,其中M是第一带宽包含的资源块数,S用于确定第一传输资源的起始资源块的索引,L是第一传输资源的资源块长度;向终端设备发送资源指示值;其中,L的最大值为第一阈值;或,L的最大值与M有关,且L的最大值不超过N,N是终端设备支持的最大信道带宽对应的资源块个数;或,L的最大值不超过N,且解析方式与M有关;其中,终端设备是第一类型终端设备,第一带宽是第二类型终端设备工作的信道带宽,第二类型终端设备支持的最大信道带宽大于第一类型终端设备支持的最大信道带宽。
在一种可能的实现方式中,第一传输资源的起始资源块的索引为S;或者,第一传输资源的起始资源块的索引为S1,S1根据S和第一偏移参数确定。
在一种可能的实现方式中,第一阈值根据M和N中的至少一项确定。
在一种可能的实现方式中,L的最大值与M有关,包括:M属于第一数值范围时,L的最大值等于Lmax1;或者,M属于第二数值范围时,L的最大值等于Lmax2;其中,Lmax2小于Lmax1。
在一种可能的实现方式中,解析方式与M有关,包括:M属于第一数值范围,按照 第一解析方式确定S和/或L;M属于第二数值范围,按照第二解析方式确定S和/或L;其中,第一解析方式和第二解析方式是不同的解析方式。
在一种可能的实现方式中,M属于第一数值范围,包括:M大于或等于第一参数的值;或者,M属于第二数值范围,包括:M小于第一参数的值。
在一种可能的实现方式中,第一解析方式包括:S、M和资源指示值满足第一关系,L、M和资源指示值满足第二关系;和/或,第二解析方式包括:若L小于或等于第二阈值,S、M和资源指示值满足第一关系,L、M和资源指示值满足第二关系;若L大于第二阈值,S、M和资源指示值满足第三关系,L、M和资源指示值满足第四关系。
在一种可能的实现方式中,资源指示值承载于随机接入响应消息或下行控制信息。
在一种可能的实现方式中,还包括:通过第一传输资源与终端设备进行传输。
在一种可能的实现方式中,还包括:在第一传输资源中接收来自终端设备的随机接入过程中的消息3;或者,在第一传输资源中接收来自终端设备的物理上行共享信道;或者,在第一传输资源中接收来自终端设备的物理下行共享信道。
在一种可能的实现方式中,向终端设备发送M,第一带宽的起始资源块的索引,第二带宽的起始资源块的索引和N中的至少一项,其中,第二带宽是第一类型终端设备工作的信道带宽。
第四方面,本申请还提供一种通信装置,该通信装置具有实现上述第三方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与终端设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器用于执行所述存储器中存储的计算机程序或指令,实现前述第一方面中任意可能的实现方式中的方法。可选地,该装置还包括存储器,所述存储器中存储计算机程序或指令。
第六方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器用于执行所述存储器中存储的计算机程序或指令,实现前述第三方面的任意可能的实现方式中的方法。可选地,该装置还包括存储器,所述存储器中存储计算机程序或指令。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机实现前述第一 方面中任意可能的实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机实现前述第三方面中任意可能的实现方式中的方法。
第九方面,提供了一种存储有计算机可读指令的计算机程序产品,当所述计算机可读指令在计算机上运行时,使得所述计算机实现前述第一方面中任意可能的实现方式中的方法。
第十方面,提供了一种存储有计算机可读指令的计算机程序产品,当所述计算机可读指令在计算机上运行时,使得所述计算机实现前述第三方面中任意可能的实现方式中的方法。
第十一方面,提供一种芯片,该芯片包括处理器,还可以包括存储器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,使得芯片实现前述第一方面中任意可能的实现方式中的方法。
第十二方面,提供一种芯片,该芯片包括处理器,还可以包括存储器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,使得芯片实现前述第三方面中任意可能的实现方式中的方法。
第十三方面,提供一种通信系统,所述系统包括第二方面所述的装置(如终端设备)以及第四方面所述的装置(如网络设备)。
附图说明
图1为本申请实施例提供的一种网络架构示意图;
图2为本申请实施例提供的一种初始接入示意图;
图3为本申请实施例提供的一种SSB示意图;
图4为本申请实施例提供的一种随机接入过程流程示意图;
图5为本申请实施例提供的一种信道带宽示意图;
图6为本申请实施例提供的另一种信道带宽示意图;
图7为本申请实施例提供的一种资源指示方法流程示意图;
图8为本申请实施例提供的一种信道带宽示意图;
图9为本申请实施例提供的一种通信装置结构示意图;
图10为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、NR系统以及未来的通信系统等,在此不做限制。
本申请实施例中,终端设备,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例 性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端等。本申请实施例中,用于实现终端设备的功能的装置也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请中的终端设备可以为第一类型终端设备或第二类型终端设备,第一类型终端设备可以是指低能力(reduced capability,REDCAP)终端设备,或者,第一类型终端设备还可以是指低能力终端设备、降低能力终端设备、REDCAP UE、Reduced Capacity UE、窄带NR(narrow-band NR,NB-NR)UE等。第二类型终端设备可以是指传统能力或正常能力或高能力的终端设备,也可以称为传统(legacy)终端设备或者常规(normal)终端设备或者增强移动宽带(enhanced mobile broadband,eMBB)终端设备等。第一类型终端设备和第二类型终端设备可以具备但不限于下述至少一项区别特征:
1、带宽能力不同,例如,第一类型终端设备支持的带宽小于第二类型终端设备支持的带宽。
2、收发天线数不同,例如,第一类型终端设备支持的收发天线数小于第二类型终端设备支持的收发天线数。
3、上行最大发射功率不同,例如,第一类型终端设备支持的上行最大发射功率小于第二类型终端设备支持的上行最大发射功率。
4、协议版本不同。例如,第一类型终端设备可以是NR版本17(release-17,Rel-17)或者NR Rel-17以后版本中的终端设备。第二类型终端设备例如可以是NR版本15(release-15,Rel-15)或NR版本16(release-16,Rel-16)中的终端设备。第二类型终端设备也可以称为NR传统(NR legacy)终端设备。
5、对数据的处理能力不同。例如,第一类型终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延大于第二类型终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延;和/或,第一类型终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延大于第二类型终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延。
6、支持或配置的资源数,所述资源数可以是RB,资源元素(resource element,RE),子载波,RB组,资源元素组(resource element group,REG)bundle,控制信道元素,子帧,无线帧,时隙,迷你时隙和/或符号数目。第一类型终端设备和第二类型终端设备支持或配置的资源数不同,例如:第一类型终端设备支持的资源数为48RB,第二类型终端设备支持的资源数为96RB。
7、射频通道数。第一类型终端设备的射频通道数与第二类型终端设备不同,例如:第一类型终端设备的射频通道数可以是1个,第二类型终端设备的射频通道数可以是2个。
8、混合自动重传请求(hybrid automatic repeat request,HARQ)进程数。第一类型终端设备支持的HARQ进程数与第二类型终端设备不同,例如:第一类型终端设备的HARQ进程数可以是8,第二类型终端设备的HARQ进程数可以是16。
9、支持的峰值速率。第一类型终端设备和第二类型终端设备的最大峰值速率不同,例如:第一类型终端设备支持的最大峰值速率可以是100Mbps,第二类型终端设备支持的峰值速率可以是200Mbps。
10、双工方式,所述双工方式包括半双工和全双工。第一类型终端设备和第二类型终端设备采用不同的双工方式,例如:第一类型终端设备采用半双工的模式工作,第二类型终端设备采用全双工的模式工作。
在本申请实施例中,网络设备可以是无线网络中各种制式下无线接入设备,例如网络设备可以是将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为RAN设备或基站。一些网络设备的举例为:下一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU)、或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。在一种网络结构中,网络设备可以是集中单元(centralized unit,CU)节点、分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的网络设备。作为示例,CU和DU之间的接口可以称为F1接口。可选的,该CU节点可以是CU-CP(control plane,控制面)节点、CU-UP(user plane,用户面)节点、或包括CU-CP节点和CU-UP节点的节点。DU和CU-CP之间的接口可以称为F1-C接口,DU和CU-UP之间的接口可以称为F1-U接口。在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;可以是能够应用于网络设备的模块或单元;或者可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中或者与网络设备匹配使用。可选的,上述DU、CU、CU-CP和CU-UP可以是功能模块、硬件结构、或者功能模块+硬件结构,不予限制。
为便于理解本申请实施例,首先说明适用于本申请实施例的通信系统。如图1所示,图1为本申请实施例适用的一种网络架构示意图。图1中,终端设备可通过网络设备接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。
为了实现终端设备与网络设备之间的数据传输,终端设备需要初始接入(initial access)网络设备,并通过随机接入过程建立与网络设备的无线连接。以NR系统为例,如图2所示,为一种终端设备初始接入过程的流程示意图,具体可以包括以下步骤。
步骤一:终端设备获取网络设备广播的同步信号块/同步信号广播信道块(synchronous signal/physical broadcast channel block,SS/PBCH block,SSB)。
其中,SSB可以包括主同步信号(primary synchronisation signal,PSS)、辅同步信号(secondary synchronisation signal,SSS)和物理广播信道(physical broadcast channel,PBCH)中至少一项。如图3所示,在时域上,1个SSB占用4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol),记为符号0~符号3,在频域上,1个SSB占用20个资源块(resource block,RB)(一个RB包括12个子载波),也就是240个子载波,子载波编号为0~239。PSS位于符号0的中间的127个子载波上,SSS位于符号2的中间的127个子载波上。为了保护PSS和SSS,分别有各自的保护子载波。保护子载波不用于承载信号,在PSS和SSS两侧分别留有子载波作为保护子载波,如图3中的SSS两 侧的空白区域就是保护子载波。PBCH占用符号1和符号3的全部子载波,以及占用符号2的全部子载波中除了SSS所占用的子载波之外的剩余的子载波中的一部分子载波(即剩余的子载波中除了保护子载波之外的子载波)。为了描述方便,后面的描述中,将OFDM符号简称为符号。
步骤二:终端设备从SSB中的PBCH中获取主系统信息块(master information block,MIB)。
终端设备根据MIB确定公共搜索空间(common search space,CSS),以及确定控制资源集合(control resource set,CORESET)#0。NR系统中,CORESET#0的带宽即为初始下行带宽部分(bandwidth part,BWP)的带宽。
步骤三:终端设备从CORESET#0和CSS中盲检测系统信息无线网络临时标识(system information radio network temporary indicator,SI-RNTI)加扰的下行控制信息(downlink control information,DCI)。
步骤四:终端设备根据DCI的指示,获取系统信息,例如系统信息块1(system information block 1,SIB1)。
终端设备从SIB1中可以获得上行初始BWP的配置信息,以及随机接入资源的配置信息、寻呼资源的配置信息等。上行BWP的频率范围由SIB指定,带宽不超过传统终端设备的带宽能力。在FDD系统中,由于上下行传输工作在不同的频段,上行初始BWP和下行初始BWP在不同的频段;在TDD系统中,上下行BWP的中心频点对齐,带宽可以不一致。除了上下行初始BWP资源外,SIB1中还指示了用于终端设备进行随机接入的物理随机接入信道(physical random access channel,PRACH)等资源。
终端设备可以通过SIB1指示的PRACH资源进行随机接入过程。示例性地,如图4所示,为现有的一种随机接入过程示意图。
S401,终端设备通过PRACH向网络设备发送前导码(preamble)。
其中,前导码也可以称为随机接入过程的消息1。
示例性地,前导码可以是一个序列,其作用是通知网络设备有一个随机接入请求,并使得网络设备能估计终端设备与网络设备之间的传输时延,以便网络设备校准该终端设备的上行定时(uplink timing),并将校准信息通过定时提前(timing advance,TA)指令告知终端设备。
S402,网络设备向终端设备发送随机接入响应(random access response,RAR)。
RAR也称为消息2,RAR中可包含接收到的前导码的标识,定时提前(timing advance,TA),上行授权(uplink grant,UL grant)和临时小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI)。其中,TA用于终端设备进行上行定时调整,以保证上行同步。UL grant可以指示用于传输消息3的物理上行共享信道(physical uplink shared channel,PUSCH)的资源位置。
S403,终端设备通过消息2指示的资源位置向网络设备发送消息3。
S404,网络设备接收消息3,并向接入成功的终端设备发送冲突解决(contention resolution)消息。
冲突解决消息也可以称为消息4。用于调度消息4的下行控制信息(downlink control information,DCI)用RAR中携带的TC-RNTI加扰,网络设备可以通过消息4对终端设备进行RRC配置。
在NR协议中,PUSCH资源分配类型1(type1)和物理下行共享信道(physical downlink shared channel,PDSCH)资源分配type1的资源分配原则如下:
1)为终端设备分配连续的资源块(resource block,RB),分配的资源块数在终端设备工作的带宽部分(bandwidth part,BWP)的总RB数的范围内;
2)通过RIV指示资源的起始RB的索引和资源块长度(即连续分配的RB数),RIV取值的确定方式如下:
如果满足
Figure PCTCN2022091779-appb-000001
Figure PCTCN2022091779-appb-000002
如果
Figure PCTCN2022091779-appb-000003
Figure PCTCN2022091779-appb-000004
其中,
Figure PCTCN2022091779-appb-000005
是终端设备工作的BWP的总RB数,RB start是起始RB的索引,L RBs是资源块长度,
Figure PCTCN2022091779-appb-000006
是向下取值运算。
从以上公式可以看出,RIV的取值和总RB数、起始RB的索引以及资源块长度相关。目前,在REDCAP终端设备和传统终端设备共存的场景下,如果网络设备无法识别终端设备的类型,默认该终端设备为传统终端设备,因此向该终端设备发送的RIV的取值,是根据传统终端设备工作的BWP的总RB数确定的,这样会导致REDCAP终端设备无法根据RIV确定网络设备实际指示的起始RB和RB数。
举例来说,以上述随机接入过程为例,假如没有为REDCAP终端设备分配专属的PRACH机会(PRACH occasion,RO)且没有为REDCAP终端设备分配专属的前导码,那么网络设备无法通过前导码区分终端设备的类型。网络设备为传统终端设备和REDCAP终端设备分别配置的BWP可以如图5或图6所示。图5中,以传统终端设备工作的BWP的起始RB与REDCAP终端设备工作的BWP的起始RB在频率上对齐为例;图6中,以传统终端设备工作的BWP的起始RB与REDCAP终端设备工作的BWP的起始RB在频率上不对齐为例。图5和图6中,传统终端设备工作的BWP的总RB数大于REDCAP终端设备工作的BWP的总RB数。
结合上面的描述,由于网络设备无法区分终端设备的类型,网络设备发送的消息3中的UL grant包括的RIV,是按照传统终端设备工作的BWP的总RB数确定的。如果发起随机接入的终端设备为REDCAP终端设备,由于REDCAP终端设备工作的BWP的总RB数与传统终端设备工作的BWP的总RB数不相同,REDCAP终端设备无法准确根据UL grant中的RIV确定用于传输消息3的资源位置。例如,如图5所示,网络设备通过RIV指示的资源位置为位置1,但是终端设备根据RIV确定的资源位置可能位于位置2。示例地,若是网络设备无法通过前导码(或随机接入时机)区分终端设备的类型,则RedCap UE接收的RAR的资源分配,RedCap UE发送的消息3的资源分配,RedCap UE接收的消息4中的一项或多项是按照传统终端设备的RIV值指示的;若网络设备在连接态的终端设备能力上报才区分终端设备的类型,则RedCap UE接收的RAR的资源分配,RedCap UE发送的消息3的资源分配,RedCap UE接收的消息4,RedCap UE发送的物理上行共享信道的资源分配,RedCap UE接收的物理下行共享信道的资源分配中的一项或多项是按照传统终端设备的RIV值指示的。
为此,本申请提供一种方法,用于对齐终端设备和网络设备对RIV的理解,使得终端设备能够准确的确定RIV指示的资源。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的 限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中,以网络设备与终端设备之间交互为例进行说明,网络设备执行的操作也可以由网络设备内部的芯片或模块执行,终端设备执行的操作也可以由终端设备内部的芯片或模块执行。如图7所示,为本申请实施例提供的一种资源指示方法流程示意图。该方法包括:
S701:网络设备根据M、S、和L确定资源指示值。
其中,M,N,和L都是整数;M是第一带宽包含的资源块数,也可以理解为第一带宽包含的资源块总数,第一带宽是第二类型终端设备工作的信道带宽;S用于确定第一传输资源的起始资源块的索引,具体可以用于确定第一传输资源的起始资源块在第二带宽中的索引,S可以是指第一传输资源的起始资源块在第一带宽中的索引。第二带宽是第一类型终端设备工作的信道带宽。由于第一带宽的起始资源块和第二带宽的起始资源块的位置可能不同,因此第一传输资源的起始资源块在第一带宽中的索引和第一传输资源的起始资源块在第二带宽中的索引可能相同,也可能不同。
L是第一传输资源的资源块长度,即第一传输资源包括的资源块数量,第一传输资源是网络设备为终端设备分配的资源。
本申请实施例中,网络设备在确定资源指示值时,不管是对于第一类型终端设备还是第二类型终端设备,都使用相同的RIV编号规则,即都按照M个RB确定RIV。
S702:网络设备向终端设备发送资源指示值。
网络设备具体如何发送资源指示值,可能存在多种实现方式。一种可能的实现方式中,网络设备通过下行控制信息向终端设备发送资源指示值;另一种可能的实现方式中,当本申请实施例应用于随机接入过程中时,网络设备可以通过资源指示值向终端设备指示用于承载随机接入过程中的消息3的资源,在该实现方式中,网络设备可以通过随机接入响应消息发送资源指示值。
S703:终端设备获取来自网络设备的资源指示值。
本申请实施例中,终端设备还可以获取M,第一带宽的起始资源块的索引,第二带宽的起始资源块的索引和N中的至少一项,N是第一类型终端设备支持的最大信道带宽对应的资源块个数,N是第一类型终端设备支持的最大信道带宽对应的资源块总数或者,N是第一类型终端设备工作的信道带宽对应的资源块个数,也可以理解为N是第一类型终端设备工作的信道带宽对应的资源块总数,且第一类型终端设备工作的信道带宽不超过第一类型终端设备支持的最大信道带宽,M和N均为大于0的整数,M大于N。第一类型终端设备工作的信道带宽为第一类型终端设备工作的初始上行带宽部分,或初始下行带宽部分,或上行带宽部分,或下行带宽部分。网络设备可以通过系统信息广播M和N,相应的,终端设备可以通过系统信息获取M和N,例如,系统信息可以是MIB,或是SIB1,或是SIB1中的字段,或是调度承载SIB1的PDSCH的DCI,或是调度承载SIB1的PDSCH的DCI中的字段。
本申请实施例中,第二类型终端设备支持的最大信道带宽大于第一类型终端设备支持的最大信道带宽,例如第二类型终端设备支持的最大信道带宽为100MHz,第一类型终端设备支持的最大信道带宽为20MHz,或为10MHz,或为5MHz。
S704:终端设备根据资源指示值和解析方式确定S和/或L,并根据S和/或L在第一 传输资源中进行传输。
其中,解析方式用于从资源指示值解析出S和/或L,解析方式可以是公式,或是表格,或是函数等,具体实现方式将在后面进行详细描述。终端设备根据资源指示值和解析方式确定S和/或L,并根据S和/或L在第一传输资源中进行传输,传输可以是发送或接收,即:终端设备根据资源指示值和解析方式确定S和/或L,并根据S和/或L在第一传输资源中发送物理上行共享信道,或者,终端设备根据资源指示值和解析方式确定S和/或L,并根据S和/或L在第一传输资源中接收物理下行共享信道。
本申请实施例中,网络设备具体如何确定资源指示值,相应的,终端设备如何根据资源指示值确定S和/或L,可能存在多种实现方式,下面分别进行描述。
需要说明的是,本申请实施例可以适用于以下两种情况,情况一,终端设备工作的信道带宽(以下均称为第二带宽)的起始资源块与第二类型终端设备工作的信道带宽(以下均称为第一带宽)的起始资源块在频率上对齐;情况二,第二带宽的起始资源块与第一带宽的起始资源块在频率上不对齐。情况一和情况二的区别,主要在于第一传输资源的起始资源块的索引的确定方式,其它方面可相互参考。
实现方式一:
在实现方式一中,L的最大值为第一阈值,也就是说,网络设备分配给终端设备的第一传输资源包括的资源块的数量L的最大值为第一阈值,第一阈值可以小于N。其中,第一阈值可以是网络设备配置的,第一阈值还可以根据其他方式确定,例如第一阈值可以根据M和N中的至少一项确定。举例来说,第一阈值等于N/2;或者第一阈值等于M/2;或者第一阈值等于M/4+N/4。
再举例来说,第一阈值可以等于
Figure PCTCN2022091779-appb-000007
第一阈值还可以等于
Figure PCTCN2022091779-appb-000008
是或者
Figure PCTCN2022091779-appb-000009
以上只是示例,第一阈值还可以通过其他方式确定,在此不再赘述。
实现方式一中,网络设备默认终端设备的类型为第二类型,此时网络设备可以根据第二类型终端设备工作的信道带宽确定资源指示值。举例来说,网络设备为终端设备分配的第一传输资源的起始资源块的索引为ST,第一传输资源的资源长度为L时,网络设备可以通过以下方式确定资源指示值RIV:
RIV=M(L-1)+ST          (1)
相应的,对于终端设备为第一类型终端设备时,终端设备可以按照第一解析方式确定S和/或L。本申请实施例中,第一解析方式可以包括第一关系和第二关系,其中S、M和资源指示值满足第一关系,L、M和资源指示值满足第二关系。
第一关系和第二关系的具体形式,本申请实施例并不限定,举例来说,当网络设备根据公式(1)确定资源指示值时,S可以根据M和资源指示值RIV确定,此时第一关系可以为如下形式:
S=MOD(RIV,M)      (2)
其中,MOD表示取余运算。
当网络设备根据公式(1)确定资源指示值时,L也可以根据M和资源指示值RIV确定,此时第二关系可以为如下形式:
Figure PCTCN2022091779-appb-000010
本申请实施例中,第一解析方式包括的第一关系和第二关系,可以为协议预先约定的,也可以为网络设备指示给终端设备的。通过上面提供的第一关系和第二关系,在资源指示 值是根据第二类型终端设备工作的信道带宽包括的资源块数量M确定的情况下,使得第一类型终端设备依然能够根据该资源指示值确定网络设备为其分配的资源的起始资源块的索引以及资源块长度,实现在第一类型终端设备与第二类型终端设备共存的情况下,网络设备按照相同的方法向不同类型终端设备进行资源指示,降低网络设备资源指示的复杂度。
本申请实施例中,终端设备根据资源指示值确定L之后,可以将L作为第一传输资源的资源长度。终端设备根据资源指示值确定S之后,可以确定第一传输资源的起始资源块的索引。具体的,在情况一中,由于第一带宽的起始资源块的索引和第二带宽的起始资源块的索引相同,第一传输资源的起始资源块的索引可以等于S;在情况二中,由于第一带宽的起始资源块的索引和第二带宽的起始资源块的索引不相同,第一传输资源的起始资源块的索引可以等于S1,S1根据S和第一偏移参数确定,具体的,S1与S满足线性关系,例如S1可以满足以下公式:
S1=A*S+P       (4)
其中,P为第一偏移参数,A为第二偏移参数,A和P可以为预定义的。例如,A=1。
由于在情况二中,第二带宽的起始资源块与第一带宽的起始资源块在频率上不对齐,因此本申请实施例通过第一偏移参数补偿第二带宽的起始资源块与第一带宽的起始资源块在频率上的偏移,使得终端设备能够获得准确的第一传输资源。
本申请实施例中,第一偏移参数可以根据第一带宽的起始资源块的索引和第二带宽的起始资源块的索引确定,例如,如图8所示,第一带宽的起始资源块的索引为ST1,第二带宽的起始资源块的索引为ST2,第一偏移参数P可以满足以下公式:
P=ST2-ST1(5)
第一偏移参数可以为正数,0或者负数。当第一偏移参数为0,表示第一带宽的起始资源块和第二带宽的起始资源块在频率上对齐。
本申请实施例中,第一偏移参数可以是网络设备通过高层信令指示的,例如高层信令可以为SIB1。另一种实现方式中,第一偏移参数也可以是终端设备根据第一带宽和第二带宽确定的。
示例地,通过实现方式一可知,网络设备可以通过DCI或RAR UL grant携带RIV,DCI或RAR UL grant中的频率域资源分配值字段包括RIV,该RIV对应了物理上行共享信道或物理下行共享信道的起始资源块的索引S和连续分配的资源块的个数L。对于第一类型终端设备,例如RedCap UE,该RIV指示了物理上行共享信道或物理下行共享信道的起始资源块的索引S+S1和连续分配的资源块的个数L,其中,L不超过第一阈值。
通过本申请实施例提供的方法,通过限制资源分配的RB数L的最大值,可以简化资源分配的复杂度。另外,在确定网络设备为其分配的资源的起始资源块的索引时,考虑第一带宽和第二带宽的起始RB在频率上是否对齐的情况,在不同情况下按照不同方式确定起始资源块的索引,使得本申请方案能够适用于所有的场景。通过本申请实施例提供的方法,网络设备可以不区分终端设备的类型,终端设备按照本实施例的方法确定资源分配的起始RB和RB数,有利于传统终端设备与RedCap UE在网络中的共存。
实现方式二:
在实现方式二中,网络设备可以通过公式(1)确定资源指示值RIV,具体可以参考实现方式一中的描述,在此不再赘述。
在实现方式二中,由于需要根据第一带宽包括的资源块数量M确定在第二带宽中为终 端设备分配的第一传输资源对应的资源指示值,因此M的取值大小,会影响由M确定的资源指示值指示的L的最大值。
为了实现对第一类型终端设备和第二类型终端设备都使用相同的RIV编号规则的情况下,简化终端设备的实现,降低终端设备的复杂度,可以建立L的最大值与M的对应关系,避免无法根据由M确定的资源指示值,获取到该资源指示值指示的L的情况。
在实现方式二中,L的最大值可以与M有关,另外L的最大值不超过N。也就是说,在该实现方式中,L的最大值与M存在对应关系。L的最大值与M的对应关系,可以是协议约定的,也可以是网络设备配置的,本申请实施例并不限定。
L的最大值与M的对应关系可能存在多种实现方式,例如可以建立L的最大值与M所属的数值范围的对应关系。举例来说,M属于第一数值范围时,L的最大值等于Lmax1;M属于第二数值范围时,L的最大值等于Lmax2;Lmax2可以小于Lmax1。第一数值范围与第二数值范围可以不存在交集。例如M属于第一数值范围时,表示M大于或等于第一参数的值;M属于第二数值范围时,表示M小于第一参数的值。再例如,M属于第一数值范围时,表示M大于第一参数的值;M属于第二数值范围时,表示M小于或等于第一参数的值。通过M与第一参数的关系可以确定M所属的数值范围是第一数值范围还是第二数值范围,进一步,根据M所属的数值范围来确定L的最大值,也就是说,根据第一带宽包括的资源块数量来确定资源指示值的上限,可以在保证资源指示功能的同时节省信令资源。
第一参数、Lmax1以及Lmax2的取值,可以是网络设备指示的,也可以是协议定义的。例如,第一参数可以根据N确定,例如第一参数可以是2N-2,或是2N,或是2N-1等。
Lmax1可以根据N确定,例如,Lmax1可以等于N。Lmax1还可以等于第一类型终端设备支持的最大信道带宽对应的RB数。
Lmax2可以根据M和N中的至少一项确定,例如,Lmax2等于N/2;或者Lmax2等于M/2;或者Lmax2等于M/4+N/4。再例如,Lmax2可以等于
Figure PCTCN2022091779-appb-000011
第一阈值还可以等于
Figure PCTCN2022091779-appb-000012
是或者
Figure PCTCN2022091779-appb-000013
以上只是示例,第一参数、Lmax1以及Lmax2的取值还可以通过其他方式确定,在此不再赘述。
在实现方式二中,对于终端设备为第一类型终端设备时,终端设备可以按照第一解析方式确定S和/或L。其中,第一解析方式可以包括第一关系和第二关系,第一关系和第二关系的具体形式,可以参考实现方式一中的描述,在此不再赘述。
在实现方式二中,终端设备根据资源指示值确定L之后,可以将L作为第一传输资源的资源长度。终端设备根据资源指示值确定S之后,可以确定第一传输资源的起始资源块的索引。具体的,在情况一中,第一传输资源的起始资源块的索引可以等于S;在情况二中,第一传输资源的起始资源块的索引可以等于S1,S1根据S和第一偏移参数确定,具体可以参考实现方式一中的描述,在此不再赘述。
示例地,通过实现方式二可知,网络设备可以通过DCI或RAR UL grant携带RIV,DCI或RAR UL grant中的频率域资源分配值字段包括RIV,该RIV对应了物理上行共享信道或物理下行共享信道的起始资源块的索引S和连续分配的资源块的个数L。对于第一类型终端设备,例如RedCap UE,该RIV指示了物理上行共享信道或物理下行共享信道的起始资源块的索引S+S1和连续分配的资源块的个数L;若M小于第一参数的值,则L不超过Lmax1;若M大于或等于第一参数的值,则L不超过Lmax2。
通过本申请实施例提供的方法,根据M所属的数值范围确定是否限制资源分配的RB数L的最大值。一方面可以简化资源分配的复杂度,另一方面可以避免M所属的特定的数值范围内时避免资源分配的限制。另外,在确定网络设备为其分配的资源的起始资源块的索引时,考虑第一带宽和第二带宽的起始RB在频率上是否对齐的情况,在不同情况下按照不同方式确定起始资源块的索引,使得本申请方案能够适用于所有的场景。通过本申请实施例提供的方法,网络设备没有区分终端设备的类型,终端设备按照本实施例的方法确定资源分配的起始RB和RB数,有利于传统终端设备与RedCap UE在网络中的共存。
实现方式三:
在实现方式三中,如果M属于第一数值范围,例如M大于或等于第一参数的值,网络设备可以通过公式(1)确定资源指示值RIV,公式(1)具体可以参考实现方式一中的描述,在此不再赘述。
如果M属于第二数值范围,例如M小于第一参数的值,且L小于或等于第二阈值时,网络设备可以通过公式(1)确定资源指示值RIV。这里的L也可以小于第二阈值,不等于第二阈值。
如果M属于第二数值范围,例如M小于第一参数的值,且L大于第二阈值(这里的L也可以等于第二阈值)时,网络设备可以通过以下公式确定资源指示值RIV:
RIV=M(M-L+1)+(M-1-ST)      (6)
其中,第二阈值可以根据M确定,例如,第二阈值可以等于
Figure PCTCN2022091779-appb-000014
在实现方式三中,可以不限定L的最大值是否与M有关,此时L的取值可以由网络设备根据终端设备需要传输的数据量确定,但L的最大值不超过N。
在实现方式三中,确定S和/或L的解析方式可以与M有关,具体的,如果M属于第一数值范围,按照第一解析方式确定S和/或L;如果M属于第二数值范围,按照第二解析方式确定S和/或L。其中,第一解析方式和第二解析方式是不同的解析方式。
举例来说,如果M属于第一数值范围,例如M大于或等于第一参数的值,终端设备可以按照第一解析方式确定S和/或L。其中,第一解析方式可以包括第一关系和第二关系,当网络设备根据公式(1)确定资源指示值时,S、M和资源指示值可以满足第一关系,此时第一关系可以为如下形式:
S=MOD(RIV,M)    (7)
其中,MOD表示取余运算。
当网络设备根据公式(1)确定资源指示值时,L、M和资源指示值满足第二关系,此时第二关系可以为如下形式:
Figure PCTCN2022091779-appb-000015
如果M属于第二数值范围,例如M小于第一参数的值,终端设备可以按照第二解析方式确定S和/或L。第二解析方式可以包括第一关系、第二关系、第三关系和第四关系。
其中,当L小于或等于第二阈值时,S、M和资源指示值可以满足第一关系,第一关系可以参考公式(7)中的描述,在此不再赘述;L、M和资源指示值满足第二关系,第二关系可以参考公式(8)中的描述,在此不再赘述。
当L大于第二阈值时,S、M和资源指示值可以满足第三关系,第三关系可以为如下形式:
S=M-MOD(RIV,M)-1    (9)
当L大于第二阈值时,L、M和资源指示值满足第四关系,第四关系可以为如下形式:
Figure PCTCN2022091779-appb-000016
在实现方式三中,如果M属于第二数值范围,网络设备向终端设备指示S、L、M和资源指示值之间的关系,例如L小于或等于第二阈值时,网络设备可以向终端设备指示S、M和资源指示值满足第一关系,L、M和资源指示值满足第二关系;L大于第二阈值时,网络设备可以向终端设备指示S、M和资源指示值满足第三关系,L、M和资源指示值满足第四关系。
在实现方式三中,如果M属于第二数值范围,网络设备向终端设备指示L的取值范围,例如L小于或等于第二阈值时,网络设备可以向终端设备指示L小于或等于第二阈值,此时终端设备可以确定S、M和资源指示值满足第一关系,L、M和资源指示值满足第二关系;L大于第二阈值时,网络设备可以向终端设备指示L大于第二阈值,此时终端设备可以确定S、M和资源指示值满足第三关系,L、M和资源指示值满足第四关系。
在实现方式三中,网络设备也可以不向终端设备指示S、L、M和资源指示值之间的关系或者L的取值范围。终端设备可以根据第一关系和第三关系分别确定S的两个取值,根据第二关系和第四关系分别确定L的两个取值,并根据S的取值范围和L的取值范围,从中确定出S和L的正确取值。
在实现方式三中,如果M属于第二数值范围,L的最大值等于Lmax2,终端设备可以根据第一解析方式确定L和/或S。在实现方式三中,终端设备根据资源指示值确定L之后,可以将L作为第一传输资源的资源长度。终端设备根据资源指示值确定S之后,可以确定第一传输资源的起始资源块的索引。具体的,在情况一中,第一传输资源的起始资源块的索引可以等于S;在情况二中,第一传输资源的起始资源块的索引可以等于S1,S1根据S和第一偏移参数确定,具体可以参考实现方式一中的描述,在此不再赘述。
举例来说,结合前面的描述,假设第一带宽的子载波间隔和第二带宽的子载波间隔均为15kHz,第一带宽为40MHz,第二带宽为20MHz,假设第一带宽的起始资源块和第二带宽的起始资源块在频率上对齐,即第一偏移值等于0。第一带宽包括的RB数M为216;第二带宽包括的RB数N为106。L和S在不同取值的情况下,网络设备确定出的RIV的取值可以如表1所示:
表1
Figure PCTCN2022091779-appb-000017
Figure PCTCN2022091779-appb-000018
例如,结合表1,当网络设备在第二带宽中分配的资源,在第一带宽中的起始资源块索引S为0,资源长度为105时,RIV的取值为104*216。
假设第一参数的值为2N=212,此时M大于第一参数的值,那么S、M和资源指示值可以满足第一关系,L、M和资源指示值满足第二关系。假设第一关系可以为公式(7),第二关系可以为公式(8),终端设备可以按照公式(7)确定S,按照公式(8)确定L。
例如,假设终端设备获取到的资源指示值RIV等于105*216,那么终端设备确定出的S和L可以为:
S=MOD(105*216,216)=0;
Figure PCTCN2022091779-appb-000019
再例如,假设终端设备获取到的资源指示值RIV等于4*216+3,那么终端设备确定出的S和L可以为:
S=MOD(4*216+3,216)=3;
Figure PCTCN2022091779-appb-000020
根据上面的例子可知,终端设备根据第一关系确定出的S,以及根据第二关系确定出的L,和网络设备实际通过资源指示值指示的S和L均相同,因此通过本申请实施例提供的方法,可以保证网络设备和终端设备对资源指示值的理解一致,第一类型终端设备可以准确根据资源指示值确定网络设备分配的资源。
再举例来说,假设第一参数的值为2N,假设第一带宽的子载波间隔和第二带宽的子载波间隔均为15kHz,第一带宽为25MHz,第二带宽为20MHz,假设第一带宽的起始资源块和第二带宽的起始资源块在频率上对齐,即第一偏移值等于0。第一带宽包括的RB数M为133;第二带宽包括的RB数N为106。L和S在不同取值的情况下,网络设备确定出的RIV的取值可以如表2所示:
表2
Figure PCTCN2022091779-appb-000021
Figure PCTCN2022091779-appb-000022
例如,结合表2,当网络设备在第二带宽中分配的资源,在第一带宽中的起始资源块索引S为0,资源长度为68时,RIV的取值为66*133+132。
结合表2,第一参数的值为2N=266,此时M小于第一参数的值,假设第二阈值为M/2。
那么L小于或等于第二阈值时,S、M和资源指示值可以满足第一关系,L、M和资源指示值满足第二关系。假设第一关系可以为公式(7),第二关系可以为公式(8),终端设备可以按照公式(7)确定S,按照公式(8)确定L。
那么L大于第二阈值时,S、M和资源指示值可以满足第三关系,L、M和资源指示值满足第四关系。假设第三关系可以为公式(9),第四关系可以为公式(10),终端设备可以按照公式(9)确定S,按照公式(10)确定L。
例如,假设终端设备获取到的资源指示值RIV等于4*133+3,那么根据第一关系和第二关系,终端设备确定出的S和L可以为:
S=MOD(4*133+3,133)=3;
Figure PCTCN2022091779-appb-000023
再例如,假设终端设备获取到的资源指示值RIV等于66*133+132,那么根据第三关系和第四关系,终端设备确定出的S和L可以为:
S=133-MOD(66*133+132,133)-1=0;
Figure PCTCN2022091779-appb-000024
根据上面的例子可知,终端设备根据第一关系确定出的S,以及根据第二关系确定出的L,和网络设备实际通过资源指示值指示的S和L均相同,因此通过本申请实施例提供的方法,可以保证网络设备和终端设备对资源指示值的理解一致,第一类型终端设备可以准确根据资源指示值确定网络设备分配的资源。
示例地,通过实现方式三可知,网络设备可以通过DCI或RAR UL grant携带RIV,DCI或RAR UL grant中的频率域资源分配值字段包括RIV,该RIV值对应了物理上行共享信道或物理下行共享信道的起始资源块的索引S和连续分配的资源块的个数L。对于第一类型终端设备,例如RedCap UE,该RIV指示了物理上行共享信道或物理下行共享信道的起始资源块的索引S+S1和连续分配的资源块的个数L。
在本申请实施方式中,对于第二带宽为20MHz,第一带宽大于或等于40MHz时,终端设备只需要按照第一解析方式确定S和/或L,其中,第一带宽可以是40MHz,50MHz,60MHz,70MHz,80MHz,90MHz,和100MHz;或者,对于第二带宽为20MHz在特定 子载波间隔下对应的RB时,第一带宽大于或等于40MHz在特定子载波间隔下对应的RB时,终端设备按照第一解析方式确定S和/或L,其中,第一带宽和第二带宽的子载波间隔的特定子载波间隔相同,第一带宽可以是40MHz,50MHz,60MHz,70MHz,80MHz,90MHz,和100MHz。在本实施方式中,对于第二带宽为20MHz,第一带宽为25MHz或30MHz时,终端设备按照第二解析方式确定S和/或L;或者,对于第二带宽为20MHz在特定子载波间隔下对应的RB时,第一带宽为25MHz或30MHz在特定子载波间隔下对应的RB时,终端设备按照第二解析方式确定S和/或L,其中,第一带宽和第二带宽的子载波间隔的特定子载波间隔相同。
在上述实现方式中,不需要对分配的资源的资源长度L做任何限制,可以保证终端设备能够一次就可以获得足够的资源,从而完成数据传输,降低数据时延。另外,考虑第一带宽和第二带宽的起始RB在频率上是否对齐的情况,在不同情况下按照不同方式确定起始资源块的索引,使得本申请方案能够适用于所有的场景。
本申请实施例中,终端设备可以在第一传输资源中向网络设备发送数据或消息,也可以在第一传输资源中接收来自网络设备发送数据或消息。例如,如果资源指示值通过随机接入过程中的消息2携带,那么终端设备可以通过第一传输资源向网络设备发送随机接入过程中的消息3,相应的,网络设备在所述第一传输资源中接收来自所述终端设备的随机接入过程中的消息3。例如,如果资源指示值通过下行控制信息携带,那么终端设备可以通过第一传输资源向网络设备发送物理上行共享信道,或者,通过第一传输资源接收来自网络设备的物理下行共享信道,相应的,网络设备在所述第一传输资源中接收来自所述终端设备的物理上行共享信道或者物理下行共享信道。
上述各个实施例可以分别单独实施,或者也可以相互结合实施。上文中,在不同实施例中,侧重描述了各个实施例的区别之处,除区别之处的其它内容,不同实施例之间的其它内容可以相互参照。应理解,上述实施例所描述的各个流程图的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。此外,各个流程图中所示意的步骤并非全部是必须执行的步骤,可以根据实际需要在各个流程图的基础上增添或者删除部分步骤。
为了实现上述本申请实施例提供的方法中的各功能,接入网设备、终端设备或上述通信装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图9所示,本申请实施例还提供一种装置900。所述通信装置900可以是图1中的终端设备,用于实现上述方法实施例中对于终端设备的方法。所述通信装置也可以是图1中的网络设备,用于实现上述方法实施例中对应于网络设备的方法。具体的功能可以参见上述方法实施例中的说明。
具体的,装置900可以包括:处理单元901和通信单元902。本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施 例中网络设备或终端设备发送和接收的步骤。以下,结合图9至图10详细说明本申请实施例提供的通信装置。
一些可能的实施方式中,上述方法实施例中终端设备的行为和功能可以通过通信装置900来实现,例如实现图7的实施例中终端设备执行的方法。例如通信装置900可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路),也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。通信单元902可以用于执行图7所示的实施例中由终端设备所执行的接收或发送操作,处理单元901可以用于执行如图7所示的实施例中由终端设备所执行的除了收发操作之外的操作。
在一种可能的实现方式中,通信单元902用于获取来自网络设备的资源指示值,所述资源指示值与M、S、和L关联,其中所述M是第一带宽包含的资源块数,所述S用于确定第一传输资源的起始资源块的索引,所述L是所述第一传输资源的资源块长度;
处理单元,用于根据所述资源指示值和解析方式,确定S和/或资源块长度L;所述解析方式用于从所述资源指示值解析出S和/或L;所述通信单元,用于根据所述S和/或L在所述第一传输资源中进行传输;
其中,所述L的最大值为第一阈值;或,所述L的最大值与所述M有关,且所述L的最大值不超过N,所述N是终端设备支持的最大信道带宽对应的资源块个数;或,所述L的最大值不超过N,且所述解析方式与所述M有关;
其中,所述终端设备是第一类型终端设备,所述第一带宽是第二类型终端设备工作的信道带宽,所述第二类型终端设备支持的最大信道带宽大于所述第一类型终端设备支持的最大信道带宽。
在一种可能的实现方式中,所述第一传输资源的起始资源块的索引为S;或者,所述第一传输资源的起始资源块的索引为S1,所述S1根据所述S和第一偏移参数确定。
在一种可能的实现方式中,所述第一阈值根据M和N中的至少一项确定。
在一种可能的实现方式中,所述L的最大值与所述M有关,包括:
所述M属于第一数值范围时,所述L的最大值等于Lmax1;
或者,所述M属于第二数值范围时,所述L的最大值等于Lmax2;
其中,所述Lmax2小于所述Lmax1。
在一种可能的实现方式中,所述解析方式与所述M有关,包括:
所述M属于第一数值范围,按照第一解析方式确定S和/或L;
所述M属于第二数值范围,按照第二解析方式确定S和/或L;
其中,所述第一解析方式和所述第二解析方式是不同的解析方式。
在一种可能的实现方式中,所述M属于第一数值范围,包括:所述M大于或等于第一参数的值;或者,所述M属于第二数值范围,包括:所述M小于第一参数的值。
在一种可能的实现方式中,所述第一解析方式包括:
所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;和/或,所述第二解析方式包括:若L小于或等于第二阈值,所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;
若L大于第二阈值,所述S、所述M和所述资源指示值满足第三关系,所述L、所述M和所述资源指示值满足第四关系。
一些可能的实施方式中,上述方法实施例中网络设备的行为和功能可以通过通信装置 900来实现,例如实现图7的实施例中第一接入网设备或第二接入网设备执行的方法。例如通信装置900可以为接入网设备,也可以为应用于接入网设备中的部件(例如芯片或者电路),也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。通信单元902可以用于执行图7所示的实施例中由第一接入网设备或第二接入网设备所执行的接收或发送操作,处理单元901可以用于执行如图7所示的实施例中由第一接入网设备或第二接入网设备所执行的除了收发操作之外的操作。
在一种可能的实现方式中,通信单元902处理单元,用于根据M、S、和L确定资源指示值,其中所述M是第一带宽包含的资源块数,所述S用于确定第一传输资源的起始资源块的索引,所述L是所述第一传输资源的资源块长度;通信单元,用于向终端设备发送所述资源指示值;其中,所述L的最大值为第一阈值;或,所述L的最大值与所述M有关,且所述L的最大值不超过N,所述N是所述终端设备支持的最大信道带宽对应的资源块个数;或,所述L的最大值不超过N,且所述解析方式与所述M有关;其中,所述终端设备是第一类型终端设备,所述第一带宽是第二类型终端设备工作的信道带宽,所述第二类型终端设备支持的最大信道带宽大于所述第一类型终端设备支持的最大信道带宽。
在一种可能的实现方式中,所述第一传输资源的起始资源块的索引为S;或者,所述第一传输资源的起始资源块的索引为S1,所述S1根据所述S和第一偏移参数确定。
在一种可能的实现方式中,所述第一阈值根据M和N中的至少一项确定。
在一种可能的实现方式中,所述L的最大值与所述M有关,包括:所述M属于第一数值范围时,所述L的最大值等于Lmax1;或者,所述M属于第二数值范围时,所述L的最大值等于Lmax2;其中,所述Lmax2小于所述Lmax1。
在一种可能的实现方式中,所述解析方式与所述M有关,包括:
所述M属于第一数值范围,按照第一解析方式确定S和/或L;
所述M属于第二数值范围,按照第二解析方式确定S和/或L;
其中,所述第一解析方式和所述第二解析方式是不同的解析方式。
在一种可能的实现方式中,所述M属于第一数值范围,包括:所述M大于或等于第一参数的值;或者,所述M属于第二数值范围,包括:所述M小于第一参数的值。
在一种可能的实现方式中,所述第一解析方式包括:
所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;和/或,所述第二解析方式包括:
若L小于或等于第二阈值,所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;若L大于第二阈值,所述S、所述M和所述资源指示值满足第三关系,所述L、所述M和所述资源指示值满足第四关系。
应理解,装置实施例的描述与方法实施例的描述相互对应,如图7中的用于实现终端设备和接入网设备的装置结构也可以参照装置900,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元902中用于实现接收功能的器件视为接收单元,将通信单元902中用于实现发送功能的器件视为发送单元,即通信单元902包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射 机、发射器或者发射电路等。
以上只是示例,处理单元901和通信单元902还可以执行其他功能,更详细的描述可以参考图7所示的方法实施例中相关描述,这里不加赘述。
如图10所示为本申请实施例提供的装置1000,图10所示的装置可以为图9所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图10仅示出了该通信装置的主要部件。
如图10所示,通信装置1000包括处理器1010和接口电路1020。处理器1010和接口电路1020之间相互耦合。可以理解的是,接口电路1020可以为收发器或输入输出接口。可选的,通信装置1000还可以包括存储器1030,用于存储处理器1010执行的指令或存储处理器1010运行指令所需要的输入数据或存储处理器1010运行指令后产生的数据。
当通信装置1000用于实现图7所示的方法时,处理器1010用于实现上述处理单元901的功能,接口电路1020用于实现上述通信单元902的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是接入网设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给接入网设备的。
当上述通信装置为应用于接入网设备的芯片时,该接入网设备芯片实现上述方法实施例中网络设备的功能。该接入网设备芯片从接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该接入网设备芯片向接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是接入网设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中存储器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或 方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (35)

  1. 一种资源指示方法,其特征在于,所述方法适用于通信装置,所述通信装置为终端设备或所述终端设备中的芯片,所述方法包括:
    获取来自网络设备的资源指示值,所述资源指示值与M、S、和L关联,其中所述M是第一带宽包含的资源块数,所述S用于确定第一传输资源的起始资源块的索引,所述L是所述第一传输资源的资源块长度;
    根据所述资源指示值和解析方式,确定S和/或资源块长度L;所述解析方式用于从所述资源指示值解析出S和/或L;
    根据所述S和/或L在所述第一传输资源中进行传输;
    其中,所述L的最大值为第一阈值;或,
    所述L的最大值与所述M有关,且所述L的最大值不超过N,所述N是所述终端设备支持的最大信道带宽对应的资源块个数;或,
    所述L的最大值不超过N,且所述解析方式与所述M有关;
    其中,所述终端设备是第一类型终端设备,所述第一带宽是第二类型终端设备工作的信道带宽,所述第二类型终端设备支持的最大信道带宽大于所述第一类型终端设备支持的最大信道带宽。
  2. 根据权利要求1所述的方法,其特征在于,所述第一传输资源的起始资源块的索引为S;
    或者,所述第一传输资源的起始资源块的索引为S1,所述S1根据所述S和第一偏移参数确定。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一阈值根据M和N中的至少一项确定。
  4. 根据权利要求1或2所述的方法,其特征在于,所述L的最大值与所述M有关,包括:
    所述M属于第一数值范围时,所述L的最大值等于Lmax1;
    或者,所述M属于第二数值范围时,所述L的最大值等于Lmax2;
    其中,所述Lmax2小于所述Lmax1。
  5. 根据权利要求1或2所述的方法,其特征在于,所述解析方式与所述M有关,包括:
    所述M属于第一数值范围,按照第一解析方式确定S和/或L;
    所述M属于第二数值范围,按照第二解析方式确定S和/或L;
    其中,所述第一解析方式和所述第二解析方式是不同的解析方式。
  6. 根据权利要求4或5所述的方法,其特征在于,所述M属于第一数值范围,包括:
    所述M大于或等于第一参数的值;
    或者,所述M属于第二数值范围,包括:
    所述M小于第一参数的值。
  7. 根据权利要求5所述的方法,其特征在于,所述第一解析方式包括:
    所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;
    和/或,所述第二解析方式包括:
    若L小于或等于第二阈值,所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;
    若L大于第二阈值,所述S、所述M和所述资源指示值满足第三关系,所述L、所述M和所述资源指示值满足第四关系。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述资源指示值承载于随机接入响应消息或下行控制信息。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述S和/或L在所述第一传输资源中进行传输,包括:
    通过所述第一传输资源向所述网络设备发送随机接入过程中的消息3;或者,
    通过所述第一传输资源向所述网络设备发送物理上行共享信道;或者,
    通过所述第一传输资源接收来自所述网络设备的物理下行共享信道。
  10. 一种资源指示方法,其特征在于,所述方法适用于通信装置,所述通信装置为网络设备或所述网络设备中的芯片,所述方法包括:
    根据M、S、和L确定资源指示值,其中所述M是第一带宽包含的资源块数,所述S用于确定第一传输资源的起始资源块的索引,所述L是所述第一传输资源的资源块长度;
    向终端设备发送所述资源指示值;
    其中,所述L的最大值为第一阈值;或,
    所述L的最大值与所述M有关,且所述L的最大值不超过N,所述N是所述终端设备支持的最大信道带宽对应的资源块个数;或,
    所述L的最大值不超过N,且所述解析方式与所述M有关;
    其中,所述终端设备是第一类型终端设备,所述第一带宽是第二类型终端设备工作的信道带宽,所述第二类型终端设备支持的最大信道带宽大于所述第一类型终端设备支持的最大信道带宽。
  11. 根据权利要求10所述的方法,其特征在于,所述第一传输资源的起始资源块的索引为S;
    或者,所述第一传输资源的起始资源块的索引为S1,所述S1根据所述S和第一偏移参数确定。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一阈值根据M和N中的至少一项确定。
  13. 根据权利要求10或11所述的方法,其特征在于,所述L的最大值与所述M有关,包括:
    所述M属于第一数值范围时,所述L的最大值等于Lmax1;
    或者,所述M属于第二数值范围时,所述L的最大值等于Lmax2;
    其中,所述Lmax2小于所述Lmax1。
  14. 根据权利要求10或11所述的方法,其特征在于,所述解析方式与所述M有关,包括:
    所述M属于第一数值范围,按照第一解析方式确定S和/或L;
    所述M属于第二数值范围,按照第二解析方式确定S和/或L;
    其中,所述第一解析方式和所述第二解析方式是不同的解析方式。
  15. 根据权利要求13或14所述的方法,其特征在于,所述M属于第一数值范围,包 括:
    所述M大于或等于第一参数的值;
    或者,所述M属于第二数值范围,包括:
    所述M小于第一参数的值。
  16. 根据权利要求14所述的方法,其特征在于,所述第一解析方式包括:
    所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;
    和/或,所述第二解析方式包括:
    若L小于或等于第二阈值,所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;
    若L大于第二阈值,所述S、所述M和所述资源指示值满足第三关系,所述L、所述M和所述资源指示值满足第四关系。
  17. 根据权利要求10至16任一所述的方法,其特征在于,所述资源指示值承载于随机接入响应消息或下行控制信息。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    在所述第一传输资源中接收来自所述终端设备的随机接入过程中的消息3;或者,
    在所述第一传输资源中接收来自所述终端设备的物理上行共享信道;或者,
    在所述第一传输资源中接收来自所述终端设备的物理下行共享信道。
  19. 一种通信装置,其特征在于,包括:
    通信单元,用于获取来自网络设备的资源指示值,所述资源指示值与M、S、和L关联,其中所述M是第一带宽包含的资源块数,所述S用于确定第一传输资源的起始资源块的索引,所述L是所述第一传输资源的资源块长度;
    处理单元,用于根据所述资源指示值和解析方式,确定S和/或资源块长度L;所述解析方式用于从所述资源指示值解析出S和/或L;
    所述通信单元,用于根据所述S和/或L在所述第一传输资源中进行传输;
    其中,所述L的最大值为第一阈值;或,
    所述L的最大值与所述M有关,且所述L的最大值不超过N,所述N是终端设备支持的最大信道带宽对应的资源块个数;或,
    所述L的最大值不超过N,且所述解析方式与所述M有关;
    其中,所述终端设备是第一类型终端设备,所述第一带宽是第二类型终端设备工作的信道带宽,所述第二类型终端设备支持的最大信道带宽大于所述第一类型终端设备支持的最大信道带宽。
  20. 根据权利要求19所述的装置,其特征在于,所述第一传输资源的起始资源块的索引为S;
    或者,所述第一传输资源的起始资源块的索引为S1,所述S1根据所述S和第一偏移参数确定。
  21. 根据权利要求19或20所述的装置,其特征在于,所述第一阈值根据M和N中的至少一项确定。
  22. 根据权利要求19或20所述的装置,其特征在于,所述L的最大值与所述M有关,包括:
    所述M属于第一数值范围时,所述L的最大值等于Lmax1;
    或者,所述M属于第二数值范围时,所述L的最大值等于Lmax2;
    其中,所述Lmax2小于所述Lmax1。
  23. 根据权利要求19或20所述的装置,其特征在于,所述解析方式与所述M有关,包括:
    所述M属于第一数值范围,按照第一解析方式确定S和/或L;
    所述M属于第二数值范围,按照第二解析方式确定S和/或L;
    其中,所述第一解析方式和所述第二解析方式是不同的解析方式。
  24. 根据权利要求22或23所述的装置,其特征在于,所述M属于第一数值范围,包括:
    所述M大于或等于第一参数的值;
    或者,所述M属于第二数值范围,包括:
    所述M小于第一参数的值。
  25. 根据权利要求23所述的装置,其特征在于,所述第一解析方式包括:
    所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;
    和/或,所述第二解析方式包括:
    若L小于或等于第二阈值,所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;
    若L大于第二阈值,所述S、所述M和所述资源指示值满足第三关系,所述L、所述M和所述资源指示值满足第四关系。
  26. 一种通信装置,其特征在于,包括:
    处理单元,用于根据M、S、和L确定资源指示值,其中所述M是第一带宽包含的资源块数,所述S用于确定第一传输资源的起始资源块的索引,所述L是所述第一传输资源的资源块长度;
    通信单元,用于向终端设备发送所述资源指示值;
    其中,所述L的最大值为第一阈值;或,
    所述L的最大值与所述M有关,且所述L的最大值不超过N,所述N是所述终端设备支持的最大信道带宽对应的资源块个数;或,
    所述L的最大值不超过N,且所述解析方式与所述M有关;
    其中,所述终端设备是第一类型终端设备,所述第一带宽是第二类型终端设备工作的信道带宽,所述第二类型终端设备支持的最大信道带宽大于所述第一类型终端设备支持的最大信道带宽。
  27. 根据权利要求26所述的装置,其特征在于,所述第一传输资源的起始资源块的索引为S;
    或者,所述第一传输资源的起始资源块的索引为S1,所述S1根据所述S和第一偏移参数确定。
  28. 根据权利要求26或27所述的装置,其特征在于,所述第一阈值根据M和N中的至少一项确定。
  29. 根据权利要求26或27所述的装置,其特征在于,所述L的最大值与所述M有关, 包括:
    所述M属于第一数值范围时,所述L的最大值等于Lmax1;
    或者,所述M属于第二数值范围时,所述L的最大值等于Lmax2;
    其中,所述Lmax2小于所述Lmax1。
  30. 根据权利要求26或27所述的装置,其特征在于,所述解析方式与所述M有关,包括:
    所述M属于第一数值范围,按照第一解析方式确定S和/或L;
    所述M属于第二数值范围,按照第二解析方式确定S和/或L;
    其中,所述第一解析方式和所述第二解析方式是不同的解析方式。
  31. 根据权利要求29或30所述的装置,其特征在于,所述M属于第一数值范围,包括:
    所述M大于或等于第一参数的值;
    或者,所述M属于第二数值范围,包括:
    所述M小于第一参数的值。
  32. 根据权利要求30所述的装置,其特征在于,所述第一解析方式包括:
    所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;
    和/或,所述第二解析方式包括:
    若L小于或等于第二阈值,所述S、所述M和所述资源指示值满足第一关系,所述L、所述M和所述资源指示值满足第二关系;
    若L大于第二阈值,所述S、所述M和所述资源指示值满足第三关系,所述L、所述M和所述资源指示值满足第四关系。
  33. 一种通信装置,其特征在于,包括处理器,接口电路,和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现权利要求1至9中任意一项所述的方法,或使得所述通信装置实现权利要求10至18中任意一项所述的方法。
  34. 一种通信装置,其特征在于,包括处理器和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现权利要求1至9中任意一项所述的方法,或使得所述通信装置实现权利要求10至18中任意一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机实现如权利要求1至9中任意一项所述的方法,或者使得所述计算机实现如权利要求10至18中任意一项所述的方法。
PCT/CN2022/091779 2021-05-10 2022-05-09 一种资源指示方法及装置 WO2022237735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110506625.5 2021-05-10
CN202110506625.5A CN115334648A (zh) 2021-05-10 2021-05-10 一种资源指示方法及装置

Publications (1)

Publication Number Publication Date
WO2022237735A1 true WO2022237735A1 (zh) 2022-11-17

Family

ID=83912842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091779 WO2022237735A1 (zh) 2021-05-10 2022-05-09 一种资源指示方法及装置

Country Status (2)

Country Link
CN (1) CN115334648A (zh)
WO (1) WO2022237735A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160150533A1 (en) * 2013-08-08 2016-05-26 Sony Corporation Mobile communications network, communications device and methods
CN108633002A (zh) * 2017-03-15 2018-10-09 深圳市金立通信设备有限公司 一种资源指示方法、相关设备及系统
CN112673655A (zh) * 2018-08-10 2021-04-16 华为技术有限公司 一种tdd系统中的资源分配方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160150533A1 (en) * 2013-08-08 2016-05-26 Sony Corporation Mobile communications network, communications device and methods
CN108633002A (zh) * 2017-03-15 2018-10-09 深圳市金立通信设备有限公司 一种资源指示方法、相关设备及系统
CN112673655A (zh) * 2018-08-10 2021-04-16 华为技术有限公司 一种tdd系统中的资源分配方法和设备

Also Published As

Publication number Publication date
CN115334648A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
AU2021215138B2 (en) Method for configuring transmission direction of time-frequency resource, and apparatus
US20190281624A1 (en) Method and user equipment for transmitting random access channel signal, and method and base station for receiving random access channel signal
EP3665978B1 (en) Determining synchronization signal block positions
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
EP3917256B1 (en) Method, device and computer program product for reporting a capability for support of multiple downlink control information
CN109392129B (zh) 一种资源分配的方法,终端以及网络设备
CN111867074B (zh) 接收数据和发送数据的方法、通信装置
US10530547B2 (en) Data communication method, terminal, and base station
US8995375B2 (en) Method and apparatus for resource assignment during control channel ambiguity
EP3843479A1 (en) Communication method, apparatus, device and system, and storage medium
CN110741591A (zh) 在减少的延迟操作中用于下行链路控制物理结构的方法和设备
WO2019174584A1 (zh) 一种数据传输方法、相关设备及系统
CN114071429A (zh) 一种物理下行控制信道增强方法、通信装置及系统
CN114451033A (zh) 一种资源的动态指示方法及装置
US20210289520A1 (en) Media access control layer architecture, method for transmitting data, network-side device and terminal
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2021036942A1 (zh) 一种srs的传输方法及装置
WO2022021241A1 (zh) 同步信号块的传输方法、装置、设备及存储介质
WO2022206346A1 (zh) 一种随机接入方法及装置
JP2022530508A (ja) 送受信処理を実行するユーザ装置及び基地局
WO2022237735A1 (zh) 一种资源指示方法及装置
CN108282885B (zh) 信号传输的方法和装置
EP4124136A1 (en) Data transmission method and apparatus
CN116033558A (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
WO2020155181A1 (zh) 信道传输的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806698

Country of ref document: EP

Kind code of ref document: A1