WO2022206346A1 - 一种随机接入方法及装置 - Google Patents

一种随机接入方法及装置 Download PDF

Info

Publication number
WO2022206346A1
WO2022206346A1 PCT/CN2022/080453 CN2022080453W WO2022206346A1 WO 2022206346 A1 WO2022206346 A1 WO 2022206346A1 CN 2022080453 W CN2022080453 W CN 2022080453W WO 2022206346 A1 WO2022206346 A1 WO 2022206346A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency range
message
terminal device
information
random access
Prior art date
Application number
PCT/CN2022/080453
Other languages
English (en)
French (fr)
Inventor
张云昊
侯海龙
金哲
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206346A1 publication Critical patent/WO2022206346A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a random access method and device.
  • a communication system such as a new radio (NR) system
  • a new radio (NR) system in addition to supporting legacy (legacy) terminal equipment, it also supports terminal equipment with lower capabilities than traditional terminal equipment, that is, reduced capability (REDCAP) terminal equipment.
  • REDCAP terminal equipment The main feature of REDCAP terminal equipment is the reduction or limitation of terminal capabilities. For example, the bandwidth capability is limited. Compared with traditional terminal equipment, the maximum bandwidth will be reduced to 20MHz.
  • the upstream channel bandwidth may be limited by the network device within its bandwidth capability.
  • the network device only configures a 20MHz upstream initial bandwidth part (BWP) for the REDCAP terminal device.
  • BWP upstream initial bandwidth part
  • the uplink channel in the random access process within a wider bandwidth (such as 50MHz, 100MHz), such as random access. Message 3 in the process.
  • the REDCAP terminal device When the frequency range of frequency hopping transmission exceeds the bandwidth capability of the REDCAP terminal device, for example, when the frequency hopping range of the physical uplink shared channel (PUSCH) carrying message 3 exceeds 20MHz, the REDCAP terminal device needs to pass the radio frequency (radio frequency, RF) retuning to support the transmission of the wideband channel after frequency hopping. Frequent RF re-tuning increases the energy consumption and complexity of terminal equipment, and during the RF re-tuning process, the terminal equipment cannot perform data transmission, resulting in increased transmission delay and waste of resources. Therefore, when REDCAP terminal equipment utilizes broadband resources for data transmission, RF retuning should be minimized.
  • RF radio frequency
  • Embodiments of the present application provide a random access method and apparatus, so as to reduce the number of times of RF retuning during data transmission.
  • the present application provides a random access method, which is used to implement functions on the side of a terminal device.
  • the method can be applied to a terminal device or a chip in a terminal device.
  • the embodiments of the present application are not limited to the specifics of the method. executor.
  • the method may be jointly implemented by multiple functional modules on the terminal device side, and the method executed by each functional module is also within the protection scope of the present application.
  • the terminal device receives a random access response from a network device; the preamble corresponding to the random access response is transmitted within the first frequency range, and the random access response It includes first information, where the first information indicates a second frequency range; the first frequency range is used to transmit the first part of the message 3 corresponding to the random access response, and the second frequency range is used to transmit the second part of the message 3 .
  • the present application provides a random access method, which is used to implement functions on the side of a terminal device.
  • the method can be applied to a terminal device or a chip in the terminal device.
  • the embodiments of the present application are not limited to the specifics of the method. executor.
  • the method may be jointly implemented by multiple functional modules on the terminal device side, and the method executed by each functional module is also within the protection scope of the present application.
  • the terminal device sends a preamble to the network device within a first frequency range; the terminal device receives a random access response from the network device; the random access response includes the first information, The first information indicates the second frequency range; the second frequency range is used to transmit the second part of the message 3; the terminal device sends the first part of the message 3 to the network device within the first frequency range, and sends the first part of the message 3 to the network device within the second frequency range. the second part.
  • the terminal device transmits the preamble, it transmits the first part of message 3 in the same frequency range, the radio frequency position of the radio frequency channel of the terminal device does not need to be changed, and radio frequency readjustment is not required, thereby reducing the Energy consumption of terminal equipment, improve resource utilization, and reduce data transmission delay.
  • the random access response further includes second information, where the second information is used to indicate that the first part of the message 3 is transmitted using the first frequency range.
  • Indication by the second information can ensure that the terminal device and the network device have the same understanding of the frequency range of the first part of the transmission message 3, and prevent the network device from being unable to receive the first part of the message 3 in the corresponding frequency range.
  • the first part of the feedback message of message 4 is sent in the second frequency range, and the second part of the feedback message is sent in the third frequency range, and the feedback message uses To indicate whether message 4 was received correctly, message 4 is a response message to message 3.
  • the radio frequency position of the radio frequency channel of the terminal device does not need to be changed, and radio frequency readjustment is not required, which reduces the random access process of the terminal device.
  • the number of internal radio frequency retunings can be reduced, thereby reducing the energy consumption of terminal equipment, improving resource utilization, and reducing data transmission delay.
  • the third frequency range is indicated by the second information; or, the third frequency range is indicated by the third information, and the third information is located in the scheduling information of the scheduling message 4 .
  • the third information is carried by a downlink allocation index field in the scheduling information.
  • the first information is carried by at least one of the following fields in message 3: reserved field; physical uplink shared channel frequency domain resource allocation field; frequency hopping identification field.
  • the random access response is transmitted in the first frequency range.
  • the number of radio frequency re-tuning of the terminal device during the random access process is significantly reduced, thereby reducing the energy consumption of the terminal device and improving the resources. Utilization, reduce data transmission delay.
  • the message 4 is transmitted in the second frequency range. Since message 4, the first part of the feedback message and the second part of message 3 are transmitted in the same frequency range, the number of radio frequency re-tuning of the terminal device in the random access process is significantly reduced, thereby reducing the energy consumption of the terminal device. Improve resource utilization and reduce data transmission delay.
  • the message 4 if in the second frequency range, the message 4 is not received in the listening window corresponding to the message 4, then switch to the first frequency range, and the message 4 Response message for message 3.
  • the method further includes: receiving system information from the network device, the system information indicating the location of the first frequency range.
  • an embodiment of the present application provides a random access method, which is used to implement a function on the network device side, for example, can be applied to a network device or a chip in a network device, and the embodiment of the present application is not limited to the specificity of the method executor.
  • the method may be implemented by a plurality of functional modules on the network device side interactively, and the method executed by each functional module is also within the protection scope of the present application.
  • the network device sends a random access response to the terminal device; the preamble corresponding to the random access response is transmitted within the first frequency range, and the random access response includes The first information indicates the second frequency range; the first frequency range is used to transmit the first part of the message 3 corresponding to the random access response, and the second frequency range is used to transmit the second part of the message 3 .
  • an embodiment of the present application provides a random access method, which is used to implement a function on the network device side, for example, can be applied to a network device or a chip in a network device, and the embodiment of the present application is not limited to the specificity of the method executor.
  • the method may be implemented by a plurality of functional modules on the network device side interactively, and the method executed by each functional module is also within the protection scope of the present application.
  • the network device receives a preamble from a terminal device within a first frequency range; the network device sends a random access response to the terminal device; the random access response includes the first information , the first information indicates the second frequency range; the second frequency range is used to transmit the second part of the message 3; the network device receives the first part of the message 3 from the terminal device in the first frequency range, and receives it in the second frequency range The second part of message 3 from the terminal device.
  • the random access response further includes second information, where the second information is used to indicate that the first part of the message 3 is transmitted using the first frequency range.
  • the method further includes: receiving the first part of the feedback message of the message 4 from the terminal device in the second frequency range, and receiving the feedback message from the terminal device in the third frequency range
  • the second part of the feedback message of the device, the feedback message is used to indicate whether the message 4 is received correctly, and the message 4 is the response message of the message 3.
  • the third frequency range is indicated by the second information; or, the third frequency range is indicated by the third information, and the third information is located in the scheduling information of the scheduling message 4 .
  • the third information is carried by a downlink allocation index field in the scheduling information.
  • the first information is carried by at least one of the following fields in message 3: reserved field; physical uplink shared channel frequency domain resource allocation field; frequency hopping identification field.
  • the random access response is transmitted in the first frequency range.
  • the message 4 is transmitted in the second frequency range.
  • the method further includes: sending system information to the terminal device, where the system information indicates the location of the first frequency range.
  • the method described in the third aspect or the fourth aspect corresponds to the method described in the first aspect or the second aspect.
  • an embodiment of the present application provides a communication device, where the communication device may be a terminal device, a module capable of implementing functions on the terminal device side, or a chip capable of being provided inside the terminal device.
  • the communication device has the function of implementing the first aspect or the second aspect.
  • the communication device includes a module or unit or means corresponding to performing some or all of the steps involved in the first aspect or the second aspect.
  • the functions or units or means may be implemented by software, or by hardware, or by executing corresponding software by hardware.
  • the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to realize communication between the communication device and other devices, for example, the communication unit is used to receive data from Configuration information of the network device; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations involved in the first aspect or the second aspect.
  • the communication apparatus includes a processor, and may further include a transceiver, where the transceiver is used for transmitting and receiving signals, and the processor utilizes the transceiver to accomplish the above-mentioned first aspect or the second aspect method in any possible design or implementation.
  • the communication device may further include one or more memories, which are used for coupling with the processor, and the memories may store computer programs or instructions for implementing the functions involved in the first aspect or the second aspect.
  • the processor can execute the computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, make the communication apparatus implement any of the possible designs or implementations of the first aspect or the second aspect. method.
  • the communication device includes a processor, which may be operative to couple with the memory.
  • the memory may store computer programs or instructions that implement the functions involved in the first aspect or the second aspect above.
  • the processor can execute the computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, make the communication apparatus implement any of the possible designs or implementations of the first aspect or the second aspect. method.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit, and execute any possible design or implementation of the first aspect or the second aspect above method in method.
  • an embodiment of the present application provides a communication device, where the communication device may be a network device, a module capable of implementing functions on the network device side, or a chip that can be provided inside the network device.
  • the communication device has the function of implementing the third aspect or the fourth aspect.
  • the communication device includes a module or unit or means corresponding to performing part or all of the operations involved in the third aspect or the fourth aspect. Either unit or means may be implemented by software, or by hardware, or by executing corresponding software by hardware.
  • the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to implement communication between the communication device and other devices, for example, the communication unit is used to receive data from Uplink information of the terminal equipment; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations involved in the third aspect or the fourth aspect.
  • the communication apparatus includes a processor, and may further include a transceiver, where the transceiver is used for transmitting and receiving signals, and the processor utilizes the transceiver to accomplish the third aspect or the fourth aspect above method in any possible design or implementation.
  • the communication apparatus may further include one or more memories, the memories are used for coupling with the processor, and the memories may store computer programs or instructions for implementing the functions involved in the third aspect or the fourth aspect.
  • the processor can execute the computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, make the communication device implement any of the possible designs or implementations of the third aspect or the fourth aspect. method.
  • the communication device includes a processor, which may be operative to couple with the memory.
  • the memory may store computer programs or instructions for implementing the functions involved in the third aspect or the fourth aspect above.
  • the processor can execute the computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, make the communication device implement any of the possible designs or implementations of the third aspect or the fourth aspect. method.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit, and execute any possible design or implementation of the third aspect or the fourth aspect above method in method.
  • the processor may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory.
  • the above processors may be one or more, and the memory may be one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor. In a specific implementation process, the memory and the processor may be integrated on the same chip, or may be separately provided on different chips. The embodiment of the present application does not limit the type of the memory and the manner of setting the memory and the processor.
  • an embodiment of the present application provides a communication system, where the communication system includes the communication device described in the fifth aspect and the communication device described in the sixth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where computer-readable instructions are stored in the computer storage medium, and when a computer reads and executes the computer-readable instructions, the computer realizes the above-mentioned first The method in any possible design of the aspect to the fourth aspect.
  • an embodiment of the present application provides a computer program product that, when a computer reads and executes the computer program product, enables the computer to implement the method in any possible design of the first to fourth aspects.
  • an embodiment of the present application provides a chip, where the chip includes a processor, and the processor is coupled to a memory and configured to read and execute a software program stored in the memory, so as to implement the above-mentioned first aspect or The method in any possible design of the second aspect.
  • a communication device comprising a processor and an interface circuit
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or transfer signals from the processor Sent to other communication devices other than the communication device
  • the processor is used to implement any one of the first aspect or the second aspect, and any possible implementation manner of any aspect through a logic circuit or executing a computer program or instruction method in .
  • a twelfth aspect provides a communication device, comprising a processor and an interface circuit, the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or transfer signals from the processor Sent to other communication devices other than the communication device, the processor is used to implement any one of the foregoing third aspect or the fourth aspect, and any possible implementation manner of any one aspect through a logic circuit or executing a computer program or instruction method in .
  • a communication apparatus comprising a processor and a memory, the processor and the memory being coupled, the processor being configured to execute a computer program or instructions stored in the memory, so that the communication apparatus A method in any of the preceding first or second aspects, and any possible implementation of either aspect is implemented.
  • a communication device comprising a processor and a memory, the processor and the memory being coupled, the processor being configured to execute a computer program or instructions stored in the memory, so that the communication device A method in any of the preceding third or fourth aspects, and any possible implementation of either aspect is implemented.
  • FIG. 1 is a schematic diagram of a network architecture suitable for an embodiment of the present application
  • FIG. 2 is a schematic diagram of an initial access process provided by an embodiment of the present application.
  • Fig. 3 is the SSB structure schematic diagram in the prior art
  • FIG. 5 is a schematic diagram of random access according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a random access method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a MAC CE provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of bandwidth occupation of messages in a random access process according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of bandwidth occupation of messages in a random access process according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of bandwidth occupation of messages in a random access process according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of bandwidth occupation of messages in a random access process according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of bandwidth occupation of messages in a random access process according to an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a random access method provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • NR NR systems
  • the terminal device and the network device may support at least one of TDD, half duplex (HD)-FDD, and full duplex (FD)-FDD.
  • Terminal equipment which can be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft , balloons, satellites, etc.).
  • the terminal device may be a user equipment (user equipment, UE), wherein the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, and the like.
  • the device for realizing the function of the terminal device may also be a device capable of supporting the terminal device to realize the function, such as a chip system, the device may be installed in the terminal, the chip system may be composed of chips, or Including chips and other discrete devices.
  • the terminal device in this application may be a first type terminal device or a second type terminal device, and the first type terminal device may refer to a reduced capability (REDCAP) terminal device, or, the first type terminal device may also refer to Low-capacity terminal equipment, reduced-capacity terminal equipment, REDCAP UE, Reduced Capacity UE, narrow-band NR (narrow-band NR, NB-NR) UE, etc.
  • the second type of terminal equipment may refer to traditional or normal or high-capability terminal equipment, and may also be referred to as legacy (legacy) terminal equipment or normal (normal) terminal equipment.
  • the second type of terminal equipment and the first type of terminal equipment have But not limited to the above-mentioned distinguishing features.
  • the terminal equipment of the first type and the terminal equipment of the second type may have at least one of the following distinguishing features:
  • the bandwidth capabilities are different. For example, the bandwidth supported by the first type of terminal equipment is smaller than the bandwidth supported by the second type of terminal equipment.
  • the number of transceiver antennas is different. For example, the number of transceiver antennas supported by the first type of terminal equipment is smaller than the number of transceiver antennas supported by the second type of terminal equipment.
  • the maximum uplink transmit power is different.
  • the maximum uplink transmit power supported by the terminal equipment of the first type is smaller than the maximum transmit power supported by the terminal equipment of the second type.
  • the terminal device of the first type may be a terminal device in NR release 17 (release-17, Rel-17) or a later version of NR Rel-17.
  • the second type of terminal device may be, for example, a terminal device in NR release 15 (release-15, Rel-15) or NR release 16 (release-16, Rel-16).
  • the second type of terminal equipment may also be referred to as NR legacy (NR legacy) terminal equipment.
  • the minimum delay between receiving downlink data and sending feedback on the downlink data by the first type terminal equipment is greater than the minimum delay between receiving the downlink data and sending feedback on the downlink data by the second type terminal equipment; and/ Or, the minimum delay between sending uplink data and receiving feedback on the uplink data by the first type terminal equipment is greater than the minimum delay between sending uplink data and receiving feedback on the uplink data by the second type terminal equipment.
  • the network device may be a wireless access device in various modes in the wireless network, for example, the network device may be a RAN node that accesses the terminal device to the wireless network, and may also be referred to as a RAN device or a base station.
  • Some examples of network equipment are: generation Node B (gNodeB), transmission reception point (TRP), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved Node B, or home Node B, HNB ), base band unit (BBU), or wireless fidelity (wireless fidelity, Wi-Fi) access point (access point, AP), etc.
  • generation Node B gNodeB
  • TRP transmission reception point
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved Node B, or home Node B, HNB
  • BBU base band unit
  • wireless fidelity wireless fidelity, Wi-Fi
  • the network device may be a centralized unit (centralized unit, CU) node, a distributed unit (distributed unit, DU) node, or a network device including a CU node and a DU node.
  • the interface between the CU and the DU may be referred to as the F1 interface.
  • the CU node may be a CU-CP (control plane, control plane) node, a CU-UP (user plane, user plane) node, or a node including a CU-CP node and a CU-UP node.
  • the interface between the DU and the CU-CP may be called the F1-C interface, and the interface between the DU and the CU-UP may be called the F1-U interface.
  • the network device may be other devices that provide wireless communication functions for the terminal device.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device. For convenience of description, in this embodiment of the present application, a device that provides a wireless communication function for a terminal device is referred to as a network device.
  • the apparatus for implementing the function of the network device may be a network device; it may be a module or unit that can be applied to the network device; or it may be a device capable of supporting the network device to implement the function, such as a chip system, which The apparatus can be installed in the network equipment or used in conjunction with the network equipment.
  • the foregoing DU, CU, CU-CP and CU-UP may be functional modules, hardware structures, or functional modules+hardware structures, which are not limited.
  • the CU and DU can be divided according to the protocol layer of the wireless network: for example, the functions of the packet data convergence layer protocol (PDCP) layer and above are set in the CU, and the functions of the protocol layers below the PDCP layer are set.
  • a DU may include a radio link control (RLC) layer, a media access control (MAC) layer, and a physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the CU-CP may include a radio resource control (radio resource control, RRC) layer and a PDCP layer
  • the CU-UP may include a service data adaptation (service data adaptation protocol, SDAP) layer and a PDCP layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • the PDCP layer in CU-CP may be referred to as PDCP-C
  • the PDCP layer in CU-UP may be referred to as PDCP-U.
  • the DU may include the functions of the RLC layer and the MAC layer, and part of the functions of the PHY layer.
  • the DU may include functions of higher layers in the PHY layer or functions implemented by software modules.
  • the functions of the upper layers in the PHY layer may include CRC checking, channel coding, rate matching, scrambling, modulation, and layer mapping; or, the functions of the upper layers in the PHY layer may include CRC checking, channel coding, rate matching, adding scrambling, modulation, layer mapping and precoding.
  • the functions of the lower layers in the PHY layer can be implemented by another network element independent from the DU, wherein the functions of the lower layers in the PHY layer can include precoding, resource mapping, physical antenna mapping and radio frequency functions; or, the functions of the lower layers in the PHY layer can be Includes resource mapping, physical antenna mapping, and radio frequency functions.
  • This embodiment of the present application does not limit the function division of the upper layer and the lower layer in the PHY layer.
  • the above-mentioned division of the processing functions of CU and DU according to the protocol layer is only an example, and can also be divided in other ways, for example, the functions of the protocol layer above the RLC layer are set in the CU, and the functions of the RLC layer and the following protocol layers are set.
  • the function is set in the DU.
  • the CU or DU can be divided into functions with more protocol layers, and for example, the CU or DU can also be divided into partial processing functions with protocol layers.
  • some functions of the RLC layer and functions of the protocol layers above the RLC layer are placed in the CU, and the remaining functions of the RLC layer and the functions of the protocol layers below the RLC layer are placed in the DU.
  • the functions of the CU or DU can also be divided according to the service type or other system requirements, for example, by the delay, the functions whose processing time needs to meet the delay requirements are set in the DU, and do not need to meet the delay.
  • the required functionality is set in the CU.
  • the CU may also have one or more functions of the core network.
  • the CU can be set on the network side to facilitate centralized management; the DU can have multiple radio functions, or the radio functions can be set remotely. This embodiment of the present application does not limit this.
  • the above-mentioned CU, DU, CU-CP, or CU-UP can be either a software module, a hardware structure, or a software module+hardware structure, which is not limited. Each module and the method for executing it are also within the protection scope of the embodiments of the present application.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of the present application is applied.
  • a terminal device can access a wireless network through a network device to obtain services from an external network (eg, the Internet) through the wireless network, or communicate with other devices through the wireless network, such as with other terminal devices.
  • an external network eg, the Internet
  • the terminal device In order to realize data transmission between a terminal device and a network device, the terminal device needs to initially access the network device and establish a wireless connection with the network device through a random access procedure.
  • the NR system As an example, as shown in FIG. 2 , it is a schematic flowchart of an initial access process of a terminal device.
  • Step 1 The terminal device obtains the synchronous signal block/synchronous signal broadcast channel block (synchronous signal/physical broadcast channel block, SS/PBCH block, SSB) broadcast by the network device.
  • synchronous signal block/synchronous signal broadcast channel block synchronous signal/physical broadcast channel block, SS/PBCH block, SSB
  • the SSB may include at least one of a primary synchronization signal (primary synchronisation signal, PSS), a secondary synchronization signal (secondary synchronisation signal, SSS), and a physical broadcast channel (physical broadcast channel, PBCH).
  • primary synchronisation signal primary synchronisation signal
  • secondary synchronization signal secondary synchronisation signal
  • PBCH physical broadcast channel
  • OFDM orthogonal frequency division multiplexing
  • PSS is located on the middle 127 sub-carriers of symbol 0
  • SSS is located on the middle 127 sub-carriers of symbol 2.
  • the guard sub-carriers are not used to carry signals, and sub-carriers are respectively reserved on both sides of the PSS and SSS as guard sub-carriers. As shown in Figure 3, the blank areas on both sides of the SSS are guard sub-carriers.
  • PBCH occupies all sub-carriers of symbol 1 and symbol 3, and occupies a part of the remaining sub-carriers in all sub-carriers of symbol 2 except the sub-carriers occupied by SSS (that is, the remaining sub-carriers except the guard sub-carriers) subcarriers other than the carrier).
  • SSS sub-carriers except the guard sub-carriers
  • Step 2 The terminal device obtains a master system information block (master information block, MIB) from the PBCH in the SSB.
  • MIB master information block
  • the terminal device determines a common search space (common search space, CSS) according to the MIB, and determines a control resource set (control resource set, CORESET) #0.
  • a common search space common search space, CSS
  • CORESET control resource set
  • the bandwidth of CORESET#0 is the bandwidth of the initial downlink bandwidth part (bandwidth part, BWP).
  • Step 3 The terminal device blindly detects the downlink control information (DCI) scrambled by the system information radio network temporary indicator (SI-RNTI) from CORESET#0 and the CSS.
  • DCI downlink control information
  • SI-RNTI system information radio network temporary indicator
  • Step 4 The terminal device obtains system information, such as system information block 1 (system information block 1, SIB1), according to the instruction of the DCI.
  • system information block 1 system information block 1, SIB1
  • the terminal device can obtain the configuration information of the uplink initial BWP, the configuration information of the random access resource, the configuration information of the paging resource, and the like from the SIB1.
  • the frequency range of the uplink BWP is specified by the SIB, and the bandwidth does not exceed the bandwidth capability of traditional terminal equipment, that is, 100MHz.
  • the initial uplink BWP and the downlink initial BWP are in different frequency bands; in the TDD system, the center frequencies of the uplink and downlink BWPs are aligned, and the bandwidths may be inconsistent.
  • SIB1 also indicates resources such as a physical random access channel (PRACH) used for random access by terminal devices.
  • PRACH physical random access channel
  • the terminal device may perform a random access procedure through the PRACH resource indicated by SIB1.
  • a random access procedure through the PRACH resource indicated by SIB1.
  • FIG. 4 it is a schematic diagram of an existing random access process.
  • the terminal device sends a preamble (preamble) to the network device through the PRACH.
  • the preamble may also be referred to as message 1 of the random access process.
  • the preamble can be a sequence, the function of which is to notify the network device that there is a random access request, and enable the network device to estimate the transmission delay between the terminal device and the network device, so that the network device can calibrate the terminal device's transmission delay.
  • Uplink timing uplink timing
  • TA timing advance
  • the network device sends a random access response (random access response, RAR) to the terminal device.
  • RAR random access response
  • RAR is also known as message 2 of the random access process.
  • RAR may include the identifier of the received preamble, timing advance (TA), uplink grant (UL grant) and temporary cell wireless network temporary identifier ( temporary cell radio network temporary identifier, TC-RNTI).
  • TA is used for the terminal equipment to adjust the uplink timing to ensure uplink synchronization.
  • the UL grant may indicate the resource location of the physical uplink shared channel (PUSCH) used to transmit message 3.
  • PUSCH physical uplink shared channel
  • the terminal device sends the message 3 to the network device through the PUSCH indicated by the message 2.
  • the network device receives the message 3, and sends a conflict resolution message (contention resolution) to the terminal device that has successfully accessed.
  • the conflict resolution message may also be referred to as message 4.
  • the DCI used for scheduling message 4 is scrambled with the TC-RNTI carried in the RAR, and the network device can perform RRC configuration on the terminal device through message 4.
  • the DCI scrambled by the TC-RNTI carries the indication information of the physical uplink control channel (PUCCH) used by the terminal to feed back acknowledgement (ACK)/negative acknowledgement (NACK).
  • PUCCH physical uplink control channel
  • ACK negative acknowledgement
  • NACK negative acknowledgement
  • the terminal device If the terminal device receives message 4 correctly, it feeds back ACK to the network device through PUCCH according to the indication information in the DCI, and if it fails to receive message 4 correctly, it feeds back NACK to the network device through PUCCH.
  • the network device can resend message 4 when it does not receive an ACK/NACK within a time window.
  • the PUSCH corresponding to message 3 supports intra-slot frequency hopping (frequency hopping) transmission.
  • frequency hopping frequency hopping
  • the terminal device selects one RO to send the message 1 from a maximum of 8 frequency division multiplexed PRACH occasions (PRACH occasion, RO).
  • the PUSCH corresponding to message 3 sent by the terminal device supports intra-slot frequency hopping transmission, that is, the PUSCH is evenly divided into two parts in a time slot, and the frequency position of the second part changes relative to the frequency position of the first part.
  • the frequency hopping range of the PUSCH is indicated by the frequency domain offset (frequency offset) field in the UL grant, and the frequency hopping range indicated by the frequency domain offset field may be as shown in Table 1.
  • the second part of the PUSCH is frequency hopping compared to the first part is rounded down.
  • PUCCH Another uplink channel in FIG. 5 is PUCCH, which is used to transmit the feedback message for message 4 to the network device, that is, transmit ACK/NACK.
  • the configuration information of the PUCCH is indicated by the SIB, and the PUCCH also supports frequency hopping transmission.
  • the frequency hopping range is at both ends of the uplink initial BWP, and the frequency hopping range is agreed by the protocol.
  • the physical downlink control channel (PDCCH)/physical downlink shared channel (PDSCH) for transmitting message 2 and the PDCCH/PDSCH for transmitting message 4 are also shown. According to the provisions of the existing protocol, these channels are all located in the upstream initial BWP frequency range.
  • the terminal device needs to support frequency hopping through RF retuning. Transmission over a wideband channel. Frequent RF re-tuning increases the energy consumption and overhead of the terminal device, and some resources of the terminal device cannot be used for sending data during the RF re-tuning process, resulting in a waste of resources.
  • the embodiment of the present application optimizes the transmission of message 3 in the random access process, reduces the number of times that the terminal device performs RF retuning, and improves the flexibility of data transmission.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the interaction between a network device and a terminal device is used as an example for description.
  • the operations performed by the network device may also be performed by a chip or module inside the network device, and the operations performed by the terminal device may also be performed by a chip inside the terminal device.
  • module execution where the terminal device can be a REDCAP terminal device or a legacy terminal device.
  • FIG. 6 a schematic flowchart of a random access method provided by an embodiment of the present application, the method includes:
  • S600 The terminal device receives system information from the network device.
  • the system information may refer to SIB1, or may refer to other types of system information, which is not limited in this application.
  • the system information may indicate PRACH resources, and the PRACH resources may include RO for transmitting a preamble and the like.
  • the system information can also indicate the location of the first frequency range, the location of the second frequency range, and the location of the third frequency range. It refers to BWP or carrier or sub-carrier, etc. Among them, one frequency range can be used for uplink transmission, can be used for downlink transmission, or can be used for both uplink and downlink transmission.
  • the network device specifically indicates the locations of multiple frequency ranges is not limited in this embodiment of the present application.
  • the total bandwidth of the multiple frequency ranges is 100 MHz, and the bandwidth of each frequency range is 20 MHz.
  • the network device may configure 5 frequency ranges for the terminal device.
  • the radio frequency channel of the terminal device needs to be adapted to the frequency range, so it can be considered that each frequency range corresponds to a radio frequency point or radio frequency of the radio frequency channel of the terminal device (also called the radio frequency position) .
  • a network device may indicate the location of multiple frequency ranges in any of the following ways:
  • Method 1 Configure the absolute frequency position or relative frequency position of each frequency range, for example, configure the absolute frequency position of frequency range 1 to 3500MHz, the absolute frequency position of frequency range 2 to 3540MHz, and so on for other frequency ranges.
  • the network device may also directly configure the center frequency point of each frequency range, so that the terminal device can determine each frequency range according to the center frequency point.
  • Method 2 Configure the starting position and bandwidth of each frequency range.
  • the starting PRB position (the number of offset PRBs relative to Point A) and the occupied PRB length can be configured for each frequency range.
  • the frequency position of Point A is indicated by RRC signaling absolute frequency point A (absolute frequency pointA).
  • the location and bandwidth of the BWP are indicated by the RRC signaling location and bandwidth (locationAndBandwidth) to indicate the frequency starting location and bandwidth of the BWP on the carrier.
  • Mode 3 Configure the starting position and bandwidth of a frequency range, which can be called a reference frequency range. Configure the frequency offset of other frequency ranges relative to the reference frequency range.
  • the starting PRB position and occupied PRB length of the reference frequency range can be configured as frequency range 1.
  • the frequency position of frequency range 2 is shifted by +40MHz compared to the frequency position of frequency range 1, or shifted by 50 PRBs, and so on for other frequency ranges.
  • the radio frequency position at which the terminal device works may correspond to the center frequency point of the working frequency range, or may correspond to other frequency bands of the working frequency range, which is not limited in this application.
  • the terminal device sends a preamble to the network device within the first frequency range.
  • the preamble can also be called message 1, and its function is to notify the network device that there is a random access request.
  • the terminal device may send the preamble through the dedicated RO, that is to say, the first frequency range includes the dedicated RO for sending the preamble, and the dedicated RO is hereinafter referred to as the RO for short.
  • the bandwidth of the first frequency range may be less than or equal to the bandwidth supported by the terminal device, for example, the terminal device is a REDCAP terminal device, then the bandwidth of the first frequency range may be 20 MHz.
  • the location of the first frequency range may be indicated by the network device through system information, for example, the system information may indicate the center frequency point of the first frequency range, or a frequency offset value relative to other frequency ranges. If the system information indicates the locations of multiple frequency ranges, one of the frequency ranges may also be indicated as the first frequency range, or the terminal device may autonomously select one frequency range as the first frequency range.
  • the position of the RO is located at the center of the legacy uplink initial BWP (legacy UL initial BWP).
  • the terminal device may use the frequency range corresponding to the center position of the traditional uplink initial BWP as the first frequency range.
  • the frequency range may be used as the first frequency range. If multiple frequency domain multiplexed ROs are located in at least two frequency ranges, for example, the bandwidth of an 8FDMed RO is 34.56MHz, and the bandwidth of one frequency range is 20MHz, then the terminal device can use a frequency range including the RO as the first frequency range.
  • the position of the RO of the REDCAP terminal equipment may not be located in the central position of the traditional upstream initial BWP.
  • the terminal device is a REDCAP terminal device
  • the network device is required to indicate a frequency range including RO, and the terminal device selects a frequency range from the frequency range including RO as the first frequency range.
  • the network device receives the preamble from the terminal device, and sends a random access response to the terminal device.
  • the random access response may also be referred to as message 2.
  • the preamble corresponding to the random access response is transmitted in the first frequency range.
  • the random access response may include a preamble identifier, and the preamble corresponding to the random access response may refer to the preamble corresponding to the preamble identifier in the random access response.
  • a medium access control (medium access control, MAC) control element (control element, CE) of the RAR may be as shown in FIG. 7 .
  • the MAC CE of the RAR includes: a reserved (reserved, R) field, a timing advance command (timing advance command), an uplink grant (UL grant) and a TC-RNTI.
  • the RAR may also include other contents, such as a preamble identifier, etc., which are not shown one by one here.
  • the timing advance command is used for the terminal equipment to adjust the uplink timing to ensure uplink synchronization.
  • the UL grant indicates the uplink resource for sending message 3.
  • the specific content included in the UL grant can be shown in Table 2.
  • the 14 bits in the PUSCH FDRA field can indicate the frequency location information of 180 RBs (corresponding to 100MHz bandwidth).
  • the bits indicate 90 RBs (15 kHz subcarrier spacing) or 50 RBs (30 kHz subcarrier spacing), and the remaining 2 bits can be used to indicate other information.
  • message 3 scheduled by the UL grant supports frequency hopping transmission within a time slot
  • the random access response may include first information, the first information indicating a second frequency range, and the second frequency range is used to transmit the first frequency of message 3. part two.
  • the first part of the message 3 can be transmitted in the same frequency range as the preamble, that is, in the first frequency range, so that the terminal equipment is sending the preamble.
  • the radio frequency position of the radio frequency channel of the terminal device does not need to be changed, and no radio frequency re-tuning is required, which reduces the energy consumption of the terminal device, improves resource utilization, and reduces the Data transmission delay.
  • the first part of message 3 can be transmitted in the same frequency range as the preamble by default, or it can be specified in the protocol that the first part of message 3 can be transmitted in the same frequency range as the preamble.
  • the random access response further includes second information, where the second information indicates that the first part of the message 3 is transmitted using the first frequency range.
  • the first information and the second information may also be referred to as frequency hopping/carrier hopping indication information, and their names are not limited in this embodiment of the present application.
  • the first information and the second information can be carried by the UL grant in message 3, for example, the first information and the second information can be carried by at least one of the following fields:
  • At least one of 2 bits in the PUSCH FDRA field, 1 bit in the frequency hopping identification field, and 1 bit in the reserved field can be redefined, and the redefined bits can be used to carry the first information and the first information. at least one of the two pieces of information.
  • the network device configures 5 frequency ranges for the terminal device, which are frequency range 1 to frequency range 5 respectively. Assuming that the first frequency range is frequency range 3, the first information is passed through the PUSCH FDRA field. 2-bit bearer, then the frequency range indicated by the first information may be as shown in Table 3.
  • the indicated second frequency range is frequency range 2.
  • the frequency range indicated by the second information may be as shown in Table 4.
  • the specific location of the PUSCH carrying message 3 may be determined by the PUSCH FDRA field and the PUSCH time domain resource allocation field in the UL grant, and will not be repeated here. Repeat.
  • the terminal device receives the random access response from the network device, and sends the first part of the message 3 to the network device in the first frequency range, and sends the second part of the message 3 to the network device in the second frequency range.
  • the network device receives the first part of the message 3 from the terminal device in the first frequency range, receives the second part of the message 3 from the terminal device in the second frequency range, and sends the message 4 to the terminal device.
  • the message 4 is a response message of the message 3, that is, the message 4 may refer to a contention resolution message in the random access process.
  • the terminal device receives the message 4 from the network device, and sends a feedback message to the network device.
  • the feedback message is used to indicate whether the message 4 is correctly received, and the feedback message can be ACK/NACK.
  • the terminal device sends an ACK to the network device; when the message 4 is not received correctly, the terminal device sends an ACK to the network device.
  • the network device sends a NACK.
  • the feedback message is transmitted through the PUCCH and supports frequency hopping transmission.
  • the terminal device may send the first part of the feedback message in the second frequency range, and send the second part of the feedback message in the third frequency range. Since the first part of the feedback message and the second part of the message 3 are transmitted in the same frequency range, the terminal device transmits the first part of the feedback message in the same frequency range after sending the second part of the message 3, and the terminal device's The radio frequency position of the radio frequency channel does not need to be changed, so there is no need to perform radio frequency readjustment, which reduces the energy consumption of terminal equipment, improves resource utilization, and reduces data transmission delay.
  • the third frequency range may be indicated by the second information, and in this case, the second information may indicate the second frequency range and the third frequency range at the same time.
  • the network device configures 5 frequency ranges for the terminal device, ranging from frequency range 1 to frequency range 5.
  • the center frequency point of frequency range 1 is the smallest, and the center frequency point of frequency range 5 is the smallest.
  • the maximum, that is, the PUCCH carrying the feedback message needs to be frequency hopping in frequency range 1 and frequency range 5.
  • the frequency range indicated by the second information can be as shown in Table 5.
  • the third frequency range may be indicated by the third indication information, and the third information may be located in the scheduling information of the scheduling message 4 .
  • the scheduling information of the scheduling message 4 may refer to the DCI of the scheduling message 4, which is scrambled with TC-RNTI.
  • the downlink allocation index field in the scheduling information may be redefined, and the downlink allocation index field may be used to carry the third indication information, or other existing fields or newly introduced fields may be used to carry the third indication information.
  • the terminal device performing the random access procedure is a REDCAP terminal device.
  • the REDCAP terminal device and the traditional terminal device share RO as an example for description, and in Example 5, the REDCAP terminal device and the traditional terminal device do not share RO for description.
  • the uplink and downlink of the terminal equipment use different frequency ranges
  • the uplink and downlink of the terminal equipment use different radio frequency channels
  • the FDMed RO configured by the network equipment does not exceed the maximum supported by the terminal equipment. bandwidth.
  • Uplink and downlink use different radio frequency channels, for example, uplink and downlink can use different RF crystal oscillator sources, phase-locked loops, etc. to process uplink and downlink signals.
  • the terminal device supports a maximum bandwidth of 20MHz.
  • the traditional initial upstream (legacy initial UL) BWP bandwidth configured by the network equipment for the traditional terminal equipment is 100MHz
  • the upstream channel frequency range of the REDCAP terminal equipment is the same as the legacy initial UL BWP bandwidth of the traditional terminal equipment.
  • the network device configures 5 frequency ranges for the REDCAP terminal device, and the bandwidth of each frequency range can be 20MHz.
  • the five frequency ranges configured by the network device are in descending order of frequency range 5 to frequency range 1 according to the size of the center frequency point.
  • frequency range 3 At the center of legacy initial UL BWP. Assuming that the REDCAP terminal equipment and the traditional terminal equipment share the RO, the FDMed RO can be at the center of the legacy initial UL BWP. Since the bandwidth of the FDMed RO does not exceed 20MHz, the frequency range 3 includes 4 FDMed ROs.
  • a frequency range including RO may be used as the first frequency range, that is, the first frequency range is frequency range 3 .
  • frequency range 3 includes 4 FDMed ROs, and the terminal device selects one RO from the 4 FDMed ROs in frequency range 3 to send the preamble.
  • the terminal device transmits the message 3 by frequency hopping, it may send the first part of the message 3 within the frequency range 3, that is, send the first hop of the message 3 within the frequency range 3.
  • the terminal device can send the second part of message 3 within frequency range 5, that is, send the second hop of message 3 within frequency range 5.
  • the third frequency range indicated by the third indication information is the frequency range 1, and the terminal device can send the feedback message in the frequency range 5 when transmitting the feedback message of the message 4
  • the first part of the first hop that sends the feedback message in frequency range 5.
  • the terminal device may send the second part of the feedback message in frequency range 1, that is, the second hop of the feedback message in frequency range 1.
  • the uplink and downlink of the terminal device use different radio frequency channels, and the uplink and downlink can use different frequency ranges.
  • the terminal device sends uplink messages and receives downlink messages independently of each other.
  • the terminal device receives message 2 and message 4
  • the sending of the message 3 and the feedback message by the terminal device will not be affected. Therefore, the embodiment of the present application does not limit the frequency range in which the terminal device receives the message 2 and the message 4.
  • the terminal device only performs radio frequency re-tuning twice during the random access process, which reduces the number of radio frequency re-tuning and improves resource utilization.
  • Example 2 taking the TDD or FDD system as an example, the uplink and downlink of the terminal device use different frequency ranges.
  • the FDMed RO configured by the network device exceeds the maximum bandwidth supported by the terminal device. It is assumed that the terminal device supports the maximum bandwidth.
  • the bandwidth is 20MHz, and the bandwidth corresponding to 8 FDMed ROs configured by the network device is 34.56MHz.
  • the traditional initial upstream BWP bandwidth configured by the network equipment for the traditional terminal equipment is 100MHz, and the upstream channel frequency range of the REDCAP terminal equipment is the same as the legacy initial UL BWP bandwidth of the traditional terminal equipment.
  • the network equipment configures 5 frequency ranges for the REDCAP terminal equipment, and the bandwidth of each frequency range can be 20MHz.
  • the five frequency ranges configured by the network device are frequency range 5 to frequency range 1 in descending order according to the size of the center frequency point.
  • frequency range 3 At the center of legacy initial UL BWP. Assuming that the REDCAP terminal equipment and the traditional terminal equipment share the RO, the FDMed RO can be in the center of the legacy initial UL BWP, and the frequency range 3 and frequency range 4 include a total of 8 FDMed ROs.
  • the terminal device selects one RO from multiple FDMed ROs in frequency range 3 to send the preamble.
  • the terminal device transmits the message 3 by frequency hopping, it may send the first part of the message 3 within the frequency range 3, that is, send the first hop of the message 3 within the frequency range 3.
  • the terminal device can send the second part of message 3 within frequency range 5, that is, send the second hop of message 3 within frequency range 5.
  • the third frequency range indicated by the third indication information is the frequency range 1, and the terminal device can send the feedback message in the frequency range 5 when transmitting the feedback message of the message 4
  • the first part of the first hop that sends the feedback message in frequency range 5.
  • the terminal device may send the second part of the feedback message in frequency range 1, that is, the second hop of the feedback message in frequency range 1.
  • Example 1 and Example 2 are also applicable to scenarios where REDCAP terminal equipment and traditional terminal equipment do not share RO, that is, the RO frequency range of the REDCAP terminal equipment does not exceed the bandwidth capability of the REDCAP terminal equipment. If the RO is not used, it can be considered that the RO may not be at the center of the legacy initial UL BWP, but the methods of frequency hopping transmission message 3 and feedback messages are still the same. For details, please refer to the above description, which will not be repeated here.
  • Example 2 similar to Example 1, the uplink and downlink of the terminal device use different radio frequency channels, the terminal device sends uplink messages and receives downlink messages independently of each other, and in which frequency range does the terminal device receive message 2 and message 4,
  • the embodiments of the present application are not limited.
  • Example 3 taking the TDD system as an example, the uplink and downlink of the terminal device use the same frequency range, and the uplink and downlink of the terminal device use the same set of radio frequency channels, that is, the radio frequency position when the terminal device sends a message and the radio frequency position when it receives a message. can be the same.
  • the FDMed RO configured by the network device does not exceed the maximum bandwidth supported by the terminal device, and the REDCAP terminal device and the traditional terminal device share the RO.
  • the traditional initial upstream BWP bandwidth configured by the network equipment for the traditional terminal equipment is 100MHz, and the upstream channel frequency range of the REDCAP terminal equipment is the same as the legacy initial UL BWP bandwidth of the traditional terminal equipment.
  • the network equipment configures 5 frequency ranges for the REDCAP terminal equipment, and the bandwidth of each frequency range can be 20MHz.
  • the five frequency ranges configured by the network device are frequency range 5 to frequency range 1 in descending order according to the size of the center frequency point.
  • frequency range 3 At the center of legacy initial UL BWP. Assuming that the REDCAP terminal equipment and the traditional terminal equipment share the RO, the FDMed RO can be in the center of the legacy initial UL BWP, and the frequency range 3 includes 4 FDMed ROs.
  • the terminal device selects one RO from the 4 FDMed ROs in frequency range 3 to send the preamble.
  • the network equipment can send a random access response to the terminal equipment within the frequency range of transmitting the preamble, that is, in the first Send a random access response to the terminal device within a frequency range.
  • the preamble is transmitted in frequency range 3
  • the random access response is also transmitted in frequency range 3, so that the terminal device can also keep the radio frequency position unchanged when receiving the random access response, not RF retuning is required to receive a random access response.
  • the random access response and the preamble are transmitted in the same frequency range, which may be default, may be specified by a protocol, or may be configured by a network, and this application does not limit how it is implemented.
  • the terminal device when the terminal device transmits the message 3 by frequency hopping, it can send the first part of the message 3 in the frequency range 3, that is, send the first hop of the message 3 in the frequency range 3.
  • the terminal equipment does not need to change the radio frequency position when receiving the random access response. Assuming that the second frequency range indicated by the network device through the first indication information is frequency range 5, the terminal device can send the second part of message 3 within frequency range 5, that is, send the second hop of message 3 within frequency range 5.
  • the network device may send the message 4 to the terminal device within the frequency range for transmitting the second part of the message 3, that is, send the message 4 to the terminal device within the second frequency range.
  • the network device may send the message 4 to the terminal device within the frequency range for transmitting the second part of the message 3, that is, send the message 4 to the terminal device within the second frequency range.
  • message 4 since the second part of message 3 is transmitted in frequency range 5, message 4 is also transmitted in frequency range 5, so the terminal device can also keep the radio frequency position unchanged when receiving message 4, not RF retuning is required to receive message 4.
  • the third frequency range indicated by the third indication information is the frequency range 1, and the terminal device can send the feedback message in the frequency range 5 when transmitting the feedback message of the message 4
  • the first part of the first hop that sends the feedback message in frequency range 5.
  • the terminal device may send the second part of the feedback message in frequency range 1, that is, the second hop of the feedback message in frequency range 1.
  • the working frequency range of the terminal device can be adjusted back to the first frequency range, or can be kept in the third frequency range, which is not limited in the embodiment of the present application, and can be predefined by the protocol or configured in the SIB.
  • Example 3 may also need to consider the situation that message 4 is not correctly detected. For example, after the second part of message 3 is sent, the terminal device stays in the second frequency range to monitor message 4 , if the terminal device fails to receive the DCI of scheduling message 4 in the PDCCH within the listening window corresponding to message 4 due to PDCCH performance problems, such as poor channel quality, correspondingly, the network device fails to detect within the listening window. to the PUCCH including the feedback message, the terminal device can continue to work in the second frequency range, or it can switch to other frequency ranges, such as the first frequency range, and re-initiate the random access procedure.
  • the behavior of the terminal device can be determined by the network in It is pre-configured in the protocol or in the SIB, and can also be switched to the first frequency range by default. After the time window is exceeded, the network device may send the message 4 to the terminal device again, or may not send the message 4 again, which is not limited in this embodiment of the present application.
  • the listening window corresponding to message 4 is specified by the protocol, and the terminal device may start a timer when sending message 3, and the timing duration of the timer is the duration of the listening window corresponding to message 4.
  • the timing duration of the timer is the duration of the listening window corresponding to message 4.
  • Example 4 taking the TDD system as an example, the uplink and downlink of the terminal equipment use the same frequency range, and the uplink and downlink of the terminal equipment use the same set of radio frequency channels.
  • the FDMed RO configured by the network device exceeds the maximum bandwidth supported by the terminal device, and the REDCAP terminal device and the traditional terminal device share the RO.
  • Example 4 The difference between Example 4 and Example 3 is that the FDMed RO exceeds the maximum bandwidth supported by the terminal device, so the terminal device needs to select one frequency range from multiple frequency ranges including the RO as the first frequency range.
  • the traditional initial upstream BWP bandwidth configured by the network equipment for the traditional terminal equipment is 100MHz
  • the upstream channel frequency range of the REDCAP terminal equipment is the same as the legacy initial UL BWP bandwidth of the traditional terminal equipment.
  • the network device configures 5 frequency ranges for the REDCAP terminal device, and the bandwidth of each frequency range can be 20MHz.
  • the five frequency ranges configured by the network device are frequency range 5 to frequency range 1 in descending order according to the size of the center frequency point.
  • frequency range 3 is within the legacy initial UL BWP. Central location. Assuming that the REDCAP terminal equipment and the traditional terminal equipment share the RO, the FDMed RO can be in the center of the legacy initial UL BWP, and the frequency range 3 and frequency range 4 include a total of 8 FDMed ROs.
  • frequency range 3 may be used as the first frequency range, and the terminal device sends the preamble in frequency range 3.
  • the network device sends a random access response in frequency range 3 .
  • the terminal device transmits the first part of the message 3 in the frequency range 3 .
  • the terminal device may send the second part of message 3 in frequency range 1.
  • the network device may send message 4 in frequency range 1 .
  • the terminal device may send the first part of the feedback message in frequency range 1 and the second part of the feedback message in frequency range 5 .
  • the uplink and downlink of the terminal equipment use the same frequency range, and the uplink and downlink of the terminal equipment use the same set of radio frequency channels, that is, the radio frequency position when the terminal equipment sends a message and the radio frequency position when it receives a message. can be the same.
  • REDCAP terminal equipment and traditional terminal equipment do not share RO.
  • the FDMed RO configured on the network equipment does not exceed the maximum bandwidth supported by the terminal equipment.
  • REDCAP terminal equipment and traditional terminal equipment do not share RO, then REDCAP terminal equipment has its own RO, and the RO can not be located in the center of legacy UL initial BWP, and the bandwidth of FDMed RO will not exceed the bandwidth capability of REDCAP terminal equipment.
  • the traditional initial upstream BWP bandwidth configured by the network equipment for the traditional terminal equipment is 100MHz
  • the upstream channel frequency range of the REDCAP terminal equipment is the same as the legacy initial UL BWP bandwidth of the traditional terminal equipment.
  • the network device configures 5 frequency ranges for the REDCAP terminal equipment, and the bandwidth of each frequency range can be 20MHz.
  • the five frequency ranges configured by the network device are frequency range 5 to frequency range 1 in descending order according to the size of the center frequency point. Among them, frequency range 3 is within the legacy initial UL BWP. Central location. It is assumed that the RO dedicated to the REDCAP terminal device is located in frequency range 5, which includes 4 FDMed ROs.
  • the terminal device may use frequency range 5 as the first frequency range.
  • the terminal device transmits the preamble in frequency range 5.
  • the network device sends a random access response in frequency range 5.
  • the terminal device transmits the first part of the message 3 in the frequency range 5 .
  • the terminal device may send the second part of message 3 in frequency range 1.
  • the network device may send message 4 in frequency range 1 .
  • the terminal device may send the first part of the feedback message in frequency range 1 and the second part of the feedback message in frequency range 5 .
  • the embodiment of the present application also provides a method, which can avoid the problem that the terminal device cannot support the frequency hopping transmission of the message 3.
  • a schematic flowchart of a random access method provided by an embodiment of the present application, the method includes:
  • the terminal device sends a preamble to the network device within the first frequency range.
  • the network device receives the preamble from the terminal device, and sends a random access response to the terminal device.
  • the random access response may instruct the terminal device to send the message 3 in the fourth frequency range, or the terminal device may also send the message 3 in the fourth frequency range by default.
  • the terminal device receives the random access response from the network device, and sends message 3 to the network device within the fourth frequency range.
  • the network device receives the message 3 from the terminal device in the fourth frequency range, and sends the message 4 to the terminal device.
  • the terminal device receives the message 4 from the network device, and sends a feedback message to the network device.
  • the network device can use the fourth indication information to instruct the terminal device not to use frequency hopping to send message 3, then the bandwidth of the PUSCH resource without frequency hopping is within the bandwidth capability of the REDCAP terminal device, and the REDCAP terminal device can The scheduled PUSCH resource sends message 3.
  • the fourth indication information instructs the terminal device to send by frequency hopping, and indicates that the REDCAP terminal device is allowed to send the first part and the second part of the message 3 through the same PUSCH resource. At this time, the terminal device does not send the second part of the message 3. hop, only the first hop of message 3 is sent.
  • the fourth indication information instructs the terminal device to send the message 3 in a frequency hopping manner, and indicates that the REDCAP terminal device is not allowed to send the first part and the second part of the message 3 through the same PUSCH resource, and the terminal device does not send the message 3 at this time.
  • the fourth indication information may be carried by a reserved field in the random access response, or may be carried by a reserved field in the scheduling information of the scheduling random access response.
  • the scheduling information for scheduling the random access response may be DCI scrambled by random access radio network temporary identity (RA-RNTI).
  • the network device configures 5 frequency ranges for the terminal device, and the bandwidth of each frequency range is 20MHz. According to the size of the center frequency point, it is frequency range 5 to frequency range 1 in descending order. Assuming that the frequency range including the RO is frequency range 3, the terminal device may use frequency range 3 as the first frequency range.
  • the terminal device transmits the preamble in frequency range 3.
  • the network device sends a random access response, wherein the random access response instructs the terminal device to send message 3 within frequency range 1, and instructs the terminal device not to use frequency hopping to send message 3 through the fourth indication information.
  • the terminal device sends message 3 in frequency range 1. After receiving the message 4 from the network device, the terminal device may send the first part of the feedback message in the frequency range 1 and the second part of the feedback message in the frequency range 5 .
  • the modulation and coding scheme (MCS) of message 3 also needs to be changed accordingly.
  • the MCS table of the network device scheduling the message 3 may be as shown in Table 6 below.
  • the MCS table of the network device scheduling the message 3 may be as shown in Table 7 below.
  • MCS Index modulation order code rate 0 q 240/q 1 q 314/q 2 4 386 3 4 502 4 4 616 5 4 758 6 4 898 7 4 1052 8 4 1204 9 4 1358 10 8 680 11 8 756 12 8 868 13 8 980 14 8 1106 15 8 1232 16 8 1316
  • the REDCAP terminal device can determine the MCS of message 3 according to Table 7.
  • an offset value can be predefined, and the REDCAP terminal device uses the MCS offset by the offset value in Table 6. For example, the MCS index indicated by the network device is 3 and the offset value is 7, then the REDCAP terminal The device uses the MCS whose MCS index is 10 in Table 6 as the MCS of message 3.
  • the network device can distinguish different types of terminal devices according to the PUSCH pilot resource, so that the demodulation message 3 can be sent correspondingly.
  • the network device can configure dedicated PUSCH pilot resources for the REDCAP terminal device, thereby distinguishing the REDCAP terminal device from the traditional terminal device.
  • the network device may configure different PUSCH pilot resources for the REDCAP terminal device and the traditional terminal device respectively.
  • the PUSCH pilot resource of the REDCAP terminal device is different from the PUSCH pilot resource of the traditional terminal device by at least one of the following:
  • Demodulation reference signal (demodulation reference signal, DMRS) port; DMRS sequence; cyclic shift value of the DMRS sequence.
  • DMRS Demodulation reference signal
  • the terminal device sends the dedicated PUSCH pilot resource.
  • the network device determines, according to the dedicated PUSCH pilot resource, that the terminal device that sends the dedicated PUSCH pilot resource is a REDCAP terminal device, it can be determined that the terminal device only sends one-hop message 3, then The message 3 can be demodulated according to the demodulation mode corresponding to the REDCAP terminal device.
  • Examples 1 to 5 can refer to each other.
  • step numbers of the flowcharts described in Example 1 to Example 5 are only an example of the execution flow, and do not constitute a restriction on the sequence of execution of the steps.
  • the steps in the embodiments of the present application have no time-series dependencies with each other. There is no strict order of execution between.
  • not all the steps shown in each flowchart are steps that must be executed, and some steps may be added or deleted on the basis of each flowchart according to actual needs.
  • the network device or the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides a communication apparatus for implementing the functions of the network device or the terminal device in the above method.
  • the communication device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 1500 may include: a processing unit 1501 and a communication unit 1502 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively configured to perform the sending and receiving steps of the network device or the terminal device in the above method embodiments.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiver, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the communication unit 1502 may be regarded as a receiving unit, and the device for implementing the sending function in the communication unit 1502 may be regarded as a transmitting unit, that is, the communication unit 1502 includes a receiving unit and a transmitting unit.
  • a communication unit may also sometimes be referred to as a transceiver, transceiver, or transceiver circuit, or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • a communication unit configured to receive a random access response from a network device; a preamble corresponding to the random access response is transmitted within a first frequency range, the random access response includes first information, and the first A piece of information indicates a second frequency range; the first frequency range is used to transmit the first part of the message 3 corresponding to the random access response, and the second frequency range is used to transmit the second part of the message 3 .
  • a communication unit configured to send a random access response to the terminal device; a preamble corresponding to the random access response is transmitted within a first frequency range, the random access response includes first information, and the first The information indicates a second frequency range; the first frequency range is used to transmit the first part of the message 3 corresponding to the random access response, and the second frequency range is used to transmit the second part of the message 3 .
  • processing unit 1501 and the communication unit 1502 may also perform other functions.
  • processing unit 1501 and the communication unit 1502 may also perform other functions.
  • FIG. 16 shows a communication apparatus provided by an embodiment of the present application, and the communication apparatus shown in FIG. 16 may be an implementation of a hardware circuit of the communication apparatus shown in FIG. 15 .
  • the communication apparatus can be applied to the flow chart shown above to perform the functions of the terminal device or the network device in the above method embodiments. For convenience of explanation, FIG. 16 only shows the main components of the communication device.
  • the communication device 1600 includes a processor 1610 and an interface circuit 1620 .
  • the processor 1610 and the interface circuit 1620 are coupled to each other.
  • the interface circuit 1620 can be a transceiver, a pin, an interface circuit or an input/output interface.
  • the communication apparatus 1600 may further include a memory 1630 for storing instructions executed by the processor 1610 or input data required by the processor 1610 to execute the instructions or data generated after the processor 1610 executes the instructions.
  • the processor 1610 is used to implement the function of the above-mentioned processing unit 1501
  • the interface circuit 1620 is used to implement the function of the above-mentioned communication unit 1502 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • processors in the embodiments of the present application may be a central processing unit, and may also be other general-purpose processors, digital signal processors, application-specific integrated circuits, or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the memory in the embodiments of the present application may be random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, registers, hard disks, A removable hard disk or any other form of storage medium known in the art.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种随机接入方法及装置,其中方法包括:终端设备接收来自网络设备的随机接入响应;随机接入响应对应的前导码是在第一频率范围内被传输的,随机接入响应包括第一信息,第一信息指示第二频率范围;第一频率范围用于传输随机接入响应对应的消息3的第一部分,所述第二频率范围用于传输所述消息3的第二部分。这样终端设备在发送前导码之后,在同一个频率范围内传输消息3的第一部分,终端设备的射频通道的射频位置不需要改变,也就不需要进行射频重调,从而可以降低终端设备的能耗,提高资源利用率,降低数据传输时延。

Description

一种随机接入方法及装置
相关申请的交叉引用
本申请要求在2021年04月02日提交中国国家知识产权局、申请号为202110361882.4、申请名称为“一种随机接入方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种随机接入方法及装置。
背景技术
在新空口(new radio,NR)系统等通信系统中,除了支持传统(legacy)终端设备以外,还支持比传统终端设备的能力低的终端设备,即低能力(reduced capability,REDCAP)终端设备。REDCAP终端设备主要特征是终端能力的降低或受限,例如,带宽能力受限,相比于传统终端设备,最大带宽将降低至20MHz。
对于REDCAP终端设备,上行信道带宽可能会被网络设备限制在其带宽能力之内,例如网络设备只给REDCAP终端设备配置20MHz的上行初始带宽部分(bandwidth part,BWP)。而REDCAP终端设备在随机接入过程中,为获取跳频增益以及避免频谱资源碎片化,需要在一个较宽带(例如50MHz、100MHz)范围内发送随机接入过程中的上行信道,例如随机接入过程中的消息3。
当跳频传输的频率范围超过REDCAP终端设备的带宽能力时,例如承载消息3的物理上行共享信道(physical uplink shared channel,PUSCH)跳频范围超过20MHz时,REDCAP终端设备需要通过射频(radio frequency,RF)重调(retuning)来支持跳频后宽带信道的发送。频繁的RF重调使终端设备能耗开销增大、复杂度提升,且RF重调过程中,终端设备无法进行数据传输,导致传输时延增大,资源浪费。因此,REDCAP终端设备利用宽带资源进行数据传输时,应尽可能减少RF重调。
发明内容
本申请实施例提供一种随机接入方法及装置,用以减少在数据传输过程中,RF重调的次数。
第一方面,本申请提供一种随机接入方法,该方法用于实现终端设备侧的功能,例如该方法可以应用于终端设备或者终端设备中的芯片,本申请实施例不限该方法的具体的执行主体。可选的,该方法可以由终端设备侧的多个功能模块共同实现,各功能模块执行的方法也在本申请的保护范围。以该方法应用于终端设备为例,在该方法中,终端设备接收来自网络设备的随机接入响应;随机接入响应对应的前导码是在第一频率范围内被传输的,随机接入响应包括第一信息,第一信息指示第二频率范围;第一频率范围用于传输随机接入响应对应的消息3的第一部分,第二频率范围用于传输消息3的第二部分。
第二方面,本申请提供一种随机接入方法,该方法用于实现终端设备侧的功能,例如该方法可以应用于终端设备或者终端设备中的芯片,本申请实施例不限该方法的具体的执 行主体。可选的,该方法可以由终端设备侧的多个功能模块共同实现,各功能模块执行的方法也在本申请的保护范围。以该方法应用于终端设备为例,在该方法中,终端设备在第一频率范围内向网络设备发送前导码;终端设备接收来自网络设备的随机接入响应;随机接入响应包括第一信息,第一信息指示第二频率范围;第二频率范围用于传输消息3的第二部分;终端设备在第一频率范围内向网络设备消息3的第一部分,在第二频率范围内向网络设备消息3的第二部分。
通过实施上面的方法,终端设备在发送前导码之后,在同一个频率范围内传输消息3的第一部分,终端设备的射频通道的射频位置不需要改变,可以不需要进行射频重调,从而可以降低终端设备的能耗,提高资源利用率,降低数据传输时延。
结合第一方面或第二方面,在一种可能的设计中,随机接入响应还包括第二信息,第二信息用于指示采用第一频率范围传输消息3的第一部分。
通过第二信息进行指示,可以保证终端设备和网络设备的对传输消息3的第一部分的频率范围理解一致,避免网络设备无法在相应的频率范围接收消息3的第一部分。
结合第一方面或第二方面,在一种可能的设计中,在第二频率范围内发送消息4的反馈消息的第一部分,在第三频率范围内发送反馈消息的第二部分,反馈消息用于指示是否正确接收到消息4,消息4是消息3的响应消息。
由于反馈消息的第一部分和消息3的第二部分在同一个频率范围内传输,终端设备的射频通道的射频位置不需要改变,可以不需要进行射频重调,减少了终端设备在随机接入过程内射频重调的次数,从而可以降低终端设备的能耗,提高资源利用率,降低数据传输时延。
结合第一方面或第二方面,在一种可能的设计中,第三频率范围通过第二信息指示;或者,第三频率范围通过第三信息指示,第三信息位于调度消息4的调度信息中。
结合第一方面或第二方面,在一种可能的设计中,第三信息通过调度信息中的下行分配索引字段承载。
通过该方法,可以降低信令开销。
结合第一方面或第二方面,在一种可能的设计中,第一信息通过消息3中的以下至少一个字段承载:保留字段;物理上行共享信道频域资源分配字段;跳频标识字段。
通过该方法,可以降低信令开销。
结合第一方面或第二方面,在一种可能的设计中,随机接入响应是在第一频率范围内被传输的。
由于随机接入响应、前导码以及消息3的第一部分在同一个频率范围内传输,显著减少了终端设备在随机接入过程内射频重调的次数,从而可以降低终端设备的能耗,提高资源利用率,降低数据传输时延。
结合第一方面或第二方面,在一种可能的设计中,消息4是在第二频率范围内被传输的。由于消息4、反馈消息的第一部分和消息3的第二部分在同一个频率范围内传输,显著减少了终端设备在随机接入过程内射频重调的次数,从而可以降低终端设备的能耗,提高资源利用率,降低数据传输时延。
结合第一方面或第二方面,在一种可能的设计中,若在第二频率范围内,在消息4对应的监听窗内未接收到消息4,则切换至第一频率范围内,消息4为消息3的响应消息。
结合第一方面或第二方面,在一种可能的设计中,方法还包括:接收来自网络设备的 系统信息,系统信息指示第一频率范围的位置。
第三方面,本申请实施例提供一种随机接入方法,该方法用于实现网络设备侧的功能,例如可以应用于网络设备或者网络设备中的芯片,本申请实施例不限该方法的具体的执行主体。可选的,该方法可以由网络设备侧的多个功能模块共同交互实现,各功能模块执行的方法也在本申请的保护范围。以该方法应用于网络设备为例,在该方法中,网络设备向终端设备发送随机接入响应;随机接入响应对应的前导码是在第一频率范围内被传输的,随机接入响应包括第一信息,第一信息指示第二频率范围;第一频率范围用于传输随机接入响应对应的消息3的第一部分,第二频率范围用于传输消息3的第二部分。
第四方面,本申请实施例提供一种随机接入方法,该方法用于实现网络设备侧的功能,例如可以应用于网络设备或者网络设备中的芯片,本申请实施例不限该方法的具体的执行主体。可选的,该方法可以由网络设备侧的多个功能模块共同交互实现,各功能模块执行的方法也在本申请的保护范围。以该方法应用于网络设备为例,在该方法中,网络设备在第一频率范围内接收来自终端设备的前导码;网络设备向终端设备发送随机接入响应;随机接入响应包括第一信息,第一信息指示第二频率范围;第二频率范围用于传输消息3的第二部分;网络设备在第一频率范围内接收来自终端设备的消息3的第一部分,在第二频率范围内接收来自终端设备的消息3的第二部分。
结合第三方面或第四方面,在一种可能的设计中,随机接入响应还包括第二信息,第二信息用于指示采用第一频率范围传输消息3的第一部分。
结合第三方面或第四方面,在一种可能的设计中,方法还包括:在第二频率范围内接收来自终端设备的消息4的反馈消息的第一部分,在第三频率范围内接收来自终端设备的反馈消息的第二部分,反馈消息用于指示是否正确接收到消息4,消息4是消息3的响应消息。
结合第三方面或第四方面,在一种可能的设计中,第三频率范围通过第二信息指示;或者,第三频率范围通过第三信息指示,第三信息位于调度消息4的调度信息中。
结合第三方面或第四方面,在一种可能的设计中,第三信息通过调度信息中的下行分配索引字段承载。
结合第三方面或第四方面,在一种可能的设计中,第一信息通过消息3中的以下至少一个字段承载:保留字段;物理上行共享信道频域资源分配字段;跳频标识字段。
结合第三方面或第四方面,在一种可能的设计中,随机接入响应是在第一频率范围内被传输的。
结合第三方面或第四方面,在一种可能的设计中,消息4是在第二频率范围内被传输的。
结合第三方面或第四方面,在一种可能的设计中,方法还包括:向终端设备发送系统信息,系统信息指示第一频率范围的位置。
上述第三方面或第四方面所描述的方法与第一方面或第二方面所描述的方法相对应,第三方面或第四方面所描述的方法中相关技术特征的有益效果可以参见第一方面或第二方面的描述,具体不再赘述。
第五方面,本申请实施例提供一种通信装置,所述通信装置可以为终端设备、能够实现终端设备侧功能的模块、或者能够设置于终端设备内部的芯片。所述通信装置具备实现上述第一方面或第二方面的功能,比如,所述通信装置包括执行上述第一方面或第二方面 涉及的部分或全部步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元和通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自网络设备的配置信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面或第二方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器利用所述收发器,以完成上述第一方面或第二方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,所述存储器可以保存实现上述第一方面或第二方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第二方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面或第二方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第二方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面或第二方面任意可能的设计或实现方式中的方法。
第六方面,本申请实施例提供一种通信装置,所述通信装置可以为网络设备、能够实现网络设备侧功能的模块、或者能够设置于网络设备内部的芯片。所述通信装置具备实现上述第三方面或第四方面的功能,比如,所述通信装置包括执行上述第三方面或第四方面涉及部分或全部操作所对应的模块或单元或手段,所述模块或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自终端设备的上行信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第三方面或第四方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器利用所述收发器,以完成上述第三方面或第四方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,所述存储器可以保存实现上述第三方面或第四方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第三方面或第四方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第三方面或第四方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第三方面或第四方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第三方面或第四方面任意可能的设计或实现方式中的方法。
可以理解地,上述第三方面或第四方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第七方面,本申请实施例提供一种通信系统,该通信系统包括上述第五方面所述的通信装置和上述第六方面所述的通信装置。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机实现上述第一方面至第四方面的任一种可能的设计中的方法。
第九方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机实现上述第一方面至第四方面的任一种可能的设计中的方法。
第十方面,本申请实施例提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面或第二方面的任一种可能的设计中的方法。
第十一方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器用于通过逻辑电路或执行计算机程序或指令,实现前述第一方面或第二方面中任一方面、以及任一方面中任意可能的实现方式中的方法。
第十二方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器用于通过逻辑电路或执行计算机程序或指令,实现前述第三方面或第四方面中任一方面、以及任一方面中任意可能的实现方式中的方法。
第十三方面,提供了一种通信装置,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现前述第一方面或第二方面中任一方面、以及任一方面中任意可能的实现方式中的方法。
第十四方面,提供了一种通信装置,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现前述第三方面或第四方面中任一方面、以及任一方面中任意可能的实现方式中的方法。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为适用于本申请实施例的一种网络架构示意图;
图2为本申请实施例提供的一种初始接入流程示意图;
图3为现有技术中的SSB结构示意图;
图4为现有技术中的随机接入过程中消息的带宽占用示意图;
图5为本申请实施例提供的一种随机接入示意图;
图6为本申请实施例提供的一种随机接入方法流程示意图;
图7为本申请实施例提供的一种MAC CE结构示意图;
图8为本申请实施例提供的随机接入过程中消息的带宽占用示意图;
图9为本申请实施例提供的随机接入过程中消息的带宽占用示意图;
图10为本申请实施例提供的随机接入过程中消息的带宽占用示意图;
图11为本申请实施例提供的随机接入过程中消息的带宽占用示意图;
图12为本申请实施例提供的随机接入过程中消息的带宽占用示意图;
图13为本申请实施例提供的一种随机接入方法流程示意图;
图14为本申请实施例提供的随机接入过程中消息的带宽占用示意图;
图15为本申请实施例提供的一种通信装置结构示意图;
图16为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)以及NR系统等,在此不做限制。
本申请实施例中,终端设备和网络设备可以支持TDD、半双工(half duplex,HD)-FDD和全双工(full duplex,FD)-FDD中的至少一种制式。
终端设备,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端等。本申请实施例中,用于实现终端设备的功能的装置也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请中的终端设备可以为第一类型终端设备或第二类型终端设备,第一类型终端设备可以是指低能力(reduced capability,REDCAP)终端设备,或者,第一类型终端设备还可以是指低能力终端设备、降低能力终端设备、REDCAP UE、Reduced Capacity UE、窄带NR(narrow-band NR,NB-NR)UE等。第二类型终端设备可以是指传统能力或正常能力或高能力的终端设备,也可以称为传统(legacy)终端设备或者常规(normal)终端设备,第二类型终端设备与第一类型终端设备具有但不限于上述区别特征。第一类型终端设备和第二类型终端设备可以具备下述至少一项区别特征:
1、带宽能力不同,例如,第一类型终端设备支持的带宽小于第二类型终端设备支持的带宽。
2、收发天线数不同,例如,第一类型终端设备支持的收发天线数小于第二类型终端 设备支持的收发天线数。
3、上行最大发射功率不同,例如,第一类型终端设备支持的上行最大发射功率小于第二类型终端设备支持的上行最大发射功率。
4、协议版本不同。例如,第一类型终端设备可以是NR版本17(release-17,Rel-17)或者NR Rel-17以后版本中的终端设备。第二类型终端设备例如可以是NR版本15(release-15,Rel-15)或NR版本16(release-16,Rel-16)中的终端设备。第二类型终端设备也可以称为NR传统(NR legacy)终端设备。
5、对数据的处理能力不同。例如,第一类型终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延大于第二类型终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延;和/或,第一类型终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延大于第二类型终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延。
在本申请实施例中,网络设备可以是无线网络中各种制式下无线接入设备,例如网络设备可以是将终端设备接入到无线网络的RAN节点,又可以称为RAN设备或基站。一些网络设备的举例为:下一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU)、或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。在一种网络结构中,网络设备可以是集中单元(centralized unit,CU)节点、分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的网络设备。作为示例,CU和DU之间的接口可以称为F1接口。可选的,该CU节点可以是CU-CP(control plane,控制面)节点、CU-UP(user plane,用户面)节点、或包括CU-CP节点和CU-UP节点的节点。DU和CU-CP之间的接口可以称为F1-C接口,DU和CU-UP之间的接口可以称为F1-U接口。在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;可以是能够应用于网络设备的模块或单元;或者可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中或者与网络设备匹配使用。
可选的,上述DU、CU、CU-CP和CU-UP可以是功能模块、硬件结构、或者功能模块+硬件结构,不予限制。
可选的,CU和DU可以根据无线网络的协议层划分:比如,分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP层以下协议层的功能设置在DU,例如,DU可以包括无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层。
在一种可能的设计中,CU-CP可以包括无线资源控制(radio resource control,RRC)层和PDCP层,CU-UP可以包括业务数据适配(service data adaptation protocol,SDAP)层和PDCP层。CU-CP中的PDCP层可以称为PDCP-C,CU-UP中的PDCP层可以称为PDCP-U。
在一种可能的设计中,DU可以包括RLC层和MAC层的功能,和,PHY层的部分功能。示例性地,DU可以包括PHY层中高层的功能或者软件模块实现的功能。其中,PHY层中高层的功能可以包括CRC校验、信道编码、速率匹配、加扰、调制、和层映射;或者,PHY层中高层的功能可以包括CRC校验、信道编码、速率匹配、加扰、调制、层映射和预编码。PHY层中低层的功能可以通过另一个与DU独立的网元实现,其中,PHY层中低层的功能可以包括预编码、资源映射、物理天线映射和射频功能;或者,PHY层中低层的功能可以包括资源映射、物理天线映射和射频功能。本申请实施例对PHY层中高层和底层的功能划分不作限制。
可以理解的,上述对CU和DU的处理功能按照协议层的划分仅仅是一些举例,也可以按照其他的方式进行划分,比如RLC层以上协议层的功能设置在CU,RLC层及以下协议层的功能设置在DU,又比如可以将CU或者DU划分为具有更多协议层的功能,又比如CU或DU还可以划分为具有协议层的部分处理功能。在一种设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在另一种设计中,CU也可以具有核心网的一个或多个功能。示例性地,CU可以设置在网络侧方便集中管理;DU可以具有多个射频功能,也可以将射频功能拉远设置。本申请实施例对此并不进行限定。
上述CU、DU、CU-CP、或CU-UP等既可以是软件模块,也可以是硬件结构,或者是软件模块+硬件结构,不予限制。各模块及其执行的方法也在本申请实施例的保护范围。
为便于理解本申请实施例,首先说明适用于本申请实施例的通信系统。如图1所示,图1为本申请实施例适用的一种网络架构示意图。图1中,终端设备可通过网络设备接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。
为了实现终端设备与网络设备之间的数据传输,终端设备需要初始接入(initial access)网络设备,并通过随机接入过程建立与网络设备的无线连接。以NR系统为例,如图2所示,为一种终端设备初始接入过程的流程示意图。
步骤一:终端设备获取网络设备广播的同步信号块/同步信号广播信道块(synchronous signal/physical broadcast channel block,SS/PBCH block,SSB)。
其中,SSB可以包括主同步信号(primary synchronisation signal,PSS)、辅同步信号(secondary synchronisation signal,SSS)和物理广播信道(physical broadcast channel,PBCH)中至少一项。如图3所示,在时域上,1个SSB占用4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol),记为符号0~符号3,在频域上,1个SSB占用20个资源块(resource block,RB)(一个RB包括12个子载波),也就是240个子载波,子载波编号为0~239。PSS位于符号0的中间的127个子载波上,SSS位于符号2的中间的127个子载波上。为了保护PSS和SSS,分别有各自的保护子载波。保护子载波不用于承载信号,在PSS和SSS两侧分别留有子载波作为保护子载波,如图3中的SSS两侧的空白区域就是保护子载波。PBCH占用符号1和符号3的全部子载波,以及占用符号2的全部子载波中除了SSS所占用的子载波之外的剩余的子载波中的一部分子载波(即剩余的子载波中除了保护子载波之外的子载波)。为了描述方便,后面的描述中,将OFDM 符号简称为符号。
步骤二:终端设备从SSB中的PBCH中获取主系统信息块(master information block,MIB)。
终端设备根据MIB确定公共搜索空间(common search space,CSS),以及确定控制资源集合(control resource set,CORESET)#0。NR系统中,CORESET#0的带宽即为初始下行带宽部分(bandwidth part,BWP)的带宽。
步骤三:终端设备从CORESET#0和CSS中盲检测系统信息无线网络临时标识(system information radio network temporary indicator,SI-RNTI)加扰的下行控制信息(downlink control information,DCI)。
步骤四:终端设备根据DCI的指示,获取系统信息,例如系统信息块1(system information block 1,SIB1)。
终端设备从SIB1中可以获得上行初始BWP的配置信息,以及随机接入资源的配置信息、寻呼资源的配置信息等。上行BWP的频率范围由SIB指定,带宽不超过传统终端设备的带宽能力,即100MHz。在FDD系统中,由于上下行传输工作在不同的频段,上行初始BWP和下行初始BWP在不同的频段;在TDD系统中,上下行BWP的中心频点对齐,带宽可以不一致。除了上下行初始BWP资源外,SIB1中还指示了用于终端设备进行随机接入的物理随机接入信道(physical random access channel,PRACH)等资源。
终端设备可以通过SIB1指示的PRACH资源进行随机接入过程。示例性地,如图4所示,为现有的一种随机接入过程示意图。
S401,终端设备通过PRACH向网络设备发送前导码(preamble)。
其中,前导码也可以称为随机接入过程的消息1。
示例性地,前导码可以是一个序列,其作用是通知网络设备有一个随机接入请求,并使得网络设备能估计终端设备与网络设备之间的传输时延,以便网络设备校准该终端设备的上行定时(uplink timing),并将校准信息通过定时提前(timing advance,TA)指令告知终端设备。
S402,网络设备向终端设备发送随机接入响应(random access response,RAR)。
RAR也称为随机接入过程的消息2,RAR中可包含接收到的前导码的标识,定时提前(timing advance,TA),上行授权(uplink grant,UL grant)和临时小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI)。其中,TA用于终端设备进行上行定时调整,以保证上行同步。UL grant可以指示用于传输消息3的物理上行共享信道(physical uplink shared channel,PUSCH)的资源位置。
S403,终端设备通过消息2指示的PUSCH向网络设备发送消息3。
S404,网络设备接收消息3,并向接入成功的终端设备发送冲突解决消息(contention resolution)。
冲突解决消息也可以称为消息4。用于调度消息4的DCI用RAR中携带的TC-RNTI加扰,网络设备可以通过消息4对终端设备进行RRC配置。TC-RNTI加扰的DCI中,携带终端用于反馈确认(acknowledge,ACK)/否定应答(negative acknowledgement,NACK)的物理上行控制信道(physical uplink control channel,PUCCH)的指示信息。
终端设备正确接收消息4,则根据DCI中的指示信息,通过PUCCH向网络设备反馈ACK,若未能正确接收消息4,则通过PUCCH向网络设备反馈NACK。网络设备在一个 时间窗内未收到ACK/NACK时,可以重新发送消息4。
上述随机接入过程中,消息3对应的PUSCH支持时隙内跳频(frequency hopping)传输。具体的,如图5所示,以TDD场景为例,假设终端设备下行初始BWP的频率范围最大不超过20MHz,上行初始BWP的频率范围最大不超过100MHz。终端设备在发送消息1时,从最多8个频分复用的PRACH时机(PRACH occasion,RO)中选择一个RO发送消息1。终端设备发送的消息3对应的PUSCH支持时隙内跳频传输,即PUSCH在一个时隙中平均分为两部分,第二部分的频率位置相对于第一部分的频率位置发生变化。PUSCH的跳频范围由UL grant中的频域偏移(frequency offset)字段指示,频域偏移字段指示的跳频范围可以如表1所示。
表1
Figure PCTCN2022080453-appb-000001
结合表1,例如,如果上行初始BWP中的物理资源块(physical resource block,PRB)数量
Figure PCTCN2022080453-appb-000002
小于50,且频域偏移字段的值为“0”时,PUSCH的第二部分相比第一部分跳频
Figure PCTCN2022080453-appb-000003
为向下取整。
图5中的另一个上行信道为PUCCH,用于向网络设备传输对于消息4的反馈消息,即传输ACK/NACK。PUCCH的配置信息通过SIB指示,PUCCH也支持跳频传输,跳频范围在上行初始BWP的两端,跳频范围由协议约定。
图5中,还示意了用于传输消息2的物理下行控制信道(physical downlink control channel,PDCCH)/物理下行共享信道(physical downlink shared channel,PDSCH)和用于传输消息4的PDCCH/PDSCH,根据现有协议的规定,这几个信道均位于上行初始BWP频率范围内。
根据图5可知,当消息3对应的PUSCH跳频范围超过终端设备的带宽能力,和/或PUCCH的跳频范围超过终端设备的带宽能力时,终端设备端需要通过RF重调来支持跳频后宽带信道的发送。频繁的RF重调使终端设备能耗开销增大,且RF重调过程中终端设备的部分资源无法用于发送数据,导致资源浪费。
基于此,本申请实施例将针对随机接入过程的消息3的传输进行优化,降低终端设备进行RF重调的次数,提高数据传输的灵活度。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出 的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例中,以网络设备与终端设备之间交互为例进行说明,网络设备执行的操作也可以由网络设备内部的芯片或模块执行,终端设备执行的操作也可以由终端设备内部的芯片或模块执行,其中终端设备可以为REDCAP终端设备,也可以为legacy终端设备。如图6所示,为本申请实施例提供的一种随机接入方法流程示意图,该方法包括:
可选地,S600:终端设备接收来自网络设备的系统信息。
系统信息可以是指SIB1,也可以是指其他类型的系统信息,本申请并不限定。
系统信息可以指示PRACH资源,PRACH资源可以包括用于发送前导码的RO等。系统信息还可以指示第一频谱范围的位置,第二频率范围的位置以及第三频率范围的位置等多个频率范围的位置,每个频率范围可以包括一段连续的频域资源,例如频率范围可以是指BWP或者载波或者子载波等。其中,一个频率范围可以用于上行传输,可以用于下行传输,也可以同时由于上行和下行传输。
网络设备具体如何指示多个频率范围的位置,本申请实施例并不限定。举例来说,多个频率范围的总的带宽为100MHz,每个频率范围的带宽为20MHz,该情况下,网络设备可以给终端设备配置5个频率范围。终端设备工作在一个频率范围时,终端设备的射频通道需要适配该频率范围,因此可以认为每个频率范围对应终端设备的射频通道的一个射频频点或射频频率(也可以称为射频位置)。网络设备可以通过以下方式中的任一种方式指示多个频率范围的位置:
方式一:配置各个频率范围的绝对频率位置或相对频率位置,例如配置频率范围1的绝对频率位置为3500MHz,频率范围2的绝对频率位置为3540MHz,其它频率范围以此类推。
或者,配置频率范围1的绝对频率位置为3500MHz,频率范围2相对于频率范围1的相对频率位置为+20MHz,频率范围3相对于频率范围1的相对频率位置为-20MHz等,其它频率范围以此类推。
方式一中,网络设备也可以直接配置各个频率范围的中心频点,终端设备从而可以根据中心频点确定各个频率范围。
方式二:配置各个频率范围的起始位置和带宽。
例如,可以配置各个频率范围的起始PRB位置(相对于Point A的偏移PRB数)和占据PRB长度。Point A的频率位置由RRC信令绝对频率点A(absolute frequency pointA)指示。
本申请实施例中,现有协议中,BWP的位置和带宽由RRC信令位置和带宽(locationAndBandwidth)指示该BWP在载波上的频率起始位置和带宽。
方式三:配置一个频率范围的起始位置和带宽,该频率范围可以称为参考频率范围。配置其它频率范围相对于参考频率范围的频率偏移量。
举例来说,可以配置参考频率范围的起始PRB位置和占据PRB长度,作为频率范围1。频率范围2相比频率范围1的频率位置偏移了+40MHz,或偏移了50个PRB,其它频率范围以此类推。
本申请实施例中,终端设备工作的射频位置可以对应其工作的频率范围的中心频点,也可以对应其工作的频率范围的其它频段,本申请并不限定。
S601:终端设备在第一频率范围内向网络设备发送前导码。
如前所述,前导码也可以称为消息1,其作用是通知网络设备有一个随机接入请求。
本申请实施例中,终端设备可以通过专属RO发送前导码,也就是说第一频率范围内包括用于发送前导码的专属RO,以下将专属RO简称为RO。第一频率范围的带宽可以小于或等于终端设备支持的带宽,例如终端设备为REDCAP终端设备,那么第一频率范围的带宽可以为20MHz。
如前所述,第一频率范围的位置可以是网络设备通过系统信息指示的,例如系统信息可以指示第一频率范围的中心频点,或者相对于其他频率范围的频率偏移值等。如果系统信息指示多个频率范围的位置,还可以指示其中一个频率范围作为第一频率范围,也可以由终端设备自主从中选择一个频率范围作为第一频率范围。
举例来说,一种实现方式中,如果REDCAP终端设备与传统终端设备合用RO,在该实现方式中,RO的位置位于传统上行初始BWP(legacy UL initial BWP)的中心位置。此时,终端设备可以将传统上行初始BWP的中心位置对应的频率范围作为第一频率范围。
本申请实施例中,如果多个频域复用的(frequency domain multiplexed,FDMed)RO位于一个频率范围内,则可以将该频率范围作为第一频率范围。如果多个频域复用RO位于至少两个频率范围内,例如8FDMed RO的带宽为34.56MHz,一个频率范围的带宽为20MHz,那么终端设备可以将包括RO的一个频率范围作为第一频率范围。
另一种实现方式中,如果REDCAP终端设备与传统终端设备不合用RO,在该实现方式中,REDCAP终端设备的RO的位置可以不位于传统上行初始BWP的中心位置。如果终端设备为REDCAP终端设备,需要网络设备指示包括RO的频率范围,终端设备从包括RO的频率范围中,选择一个频率范围作为第一频率范围。
S602:网络设备接收来自终端设备的前导码,并向终端设备发送随机接入响应。
如前所述,随机接入响应也可以称为消息2。随机接入响应对应的前导码在第一频率范围内被传输。随机接入响应中可以包括前导码标识,随机接入响应对应的前导码,可以是指随机接入响应中前导码标识对应的前导码。
本申请实施例中,RAR的媒体接入控制(medium access control,MAC)控制元素(control element,CE)可以如图7所示。图7中,RAR的MAC CE中包括:保留(reserved,R)字段,定时提前命令(timing advance command),上行授权(UL grant)和TC-RNTI。RAR中还可以包括其他内容,例如前导码标识等,在此不一一示出。
其中,定时提前命令用于所述终端设备进行上行定时调整,以保证上行同步。UL grant指示出用于发送消息3的上行资源。UL grant包括的具体内容可以如表2所示。
表2
Figure PCTCN2022080453-appb-000004
Figure PCTCN2022080453-appb-000005
其中,对于授权频谱而言,PUSCH FDRA字段中的14个比特可以指示180个RB(对应100MHz带宽)的频率位置信息,对于REDCAP终端设备而言,由于其带宽能力最大只有20MHz,可以通过12个比特指示90个RB(15kHz的子载波间隔)或50个RB(30kHz的子载波间隔),剩余的2个比特可以用于指示其它信息。
本申请实施例中,UL grant调度的消息3支持时隙内跳频传输,随机接入响应可以包括第一信息,第一信息指示第二频率范围,第二频率范围用于传输消息3的第二部分。为了避免在随机接入过程中,终端设备多次进行射频重调,消息3的第一部分可以与前导码在同一个频率范围内传输,即在第一频率范围内传输,这样终端设备在发送前导码之后,在同一个频率范围内传输消息3的第一部分,终端设备的射频通道的射频位置不需要改变,也就不需要进行射频重调,降低终端设备的能耗,提高资源利用率,降低数据传输时延。一种实现方式中,可以默认消息3的第一部分可以与前导码在同一个频率范围内传输,也可以在协议中规定消息3的第一部分可以与前导码在同一个频率范围内传输。另一种实现方式中,随机接入响应还包括第二信息,第二信息指示采用第一频率范围传输消息3的第一部分。
其中,第一信息和第二信息也可以称为跳频/跳载波指示信息,本申请实施例对其名称并不限定。第一信息和第二信息可以通过消息3中的UL grant承载,举例来说,第一信息和第二信息可以通过以下至少一个字段承载:
保留字段;PUSCH FDRA字段;跳频标识字段。
具体的,可以对PUSCH FDRA字段中的2比特,跳频标识字段中的1比特以及保留字段中1比特中的至少一项进行重定义,重定义后的比特可以用来承载第一信息和第二信息中的至少一项。
例如,终端设备为REDCAP终端设备时,网络设备为终端设备配置了5个频率范围,分别为频率范围1至频率范围5,假设第一频率范围为频率范围3,第一信息通过PUSCH FDRA字段中的2比特承载,那么第一信息指示的频率范围可以如表3所示。
表3
FDRA字段中的2比特 指示的频率范围
00 频率范围1
01 频率范围2
10 频率范围4
11 频率范围5
结合表3,当第一信息为01时,指示的第二频率范围为频率范围2。
结合上面的例子,假设第二信息通过保留字段中1比特承载,那么第二信息指示的频率范围可以如表4所示。
表4
Figure PCTCN2022080453-appb-000006
结合表4,当第二信息为1时,指示采用第一频率范围传输消息3的第一部分,其他情况不再赘述。
本申请实施例中,在第一频率范围内以及在第二频率范围内,承载消息3的PUSCH的具体位置可以通过UL grant中的PUSCH FDRA字段和PUSCH时域资源分配字段确定,在此不再赘述。
S603:终端设备接收来自网络设备的随机接入响应,并在第一频率范围内向网络设备发送消息3的第一部分,在第二频率范围内向网络设备发送消息3的第二部分。
终端设备具体如何发送消息3,将在后面详细描述,在此不再赘述。
S604:网络设备在第一频率范围内接收来自终端设备的消息3的第一部分,在第二频率范围内接收来自终端设备的消息3的第二部分,并向终端设备发送消息4。
消息4为消息3的响应消息,即消息4可以是指随机接入过程中的竞争解决消息。
S605:终端设备接收来自网络设备的消息4,并向网络设备发送反馈消息。
其中,反馈消息用于指示是否正确接收到消息4,反馈消息可以为ACK/NACK,当正确接收到消息4时,终端设备向网络设备发送ACK;当没有正确接收到消息4时,终端设备向网络设备发送NACK。
本申请实施例中,反馈消息通过PUCCH传输,并支持跳频传输。具体的,终端设备可以在第二频率范围内发送反馈消息的第一部分,在第三频率范围内发送反馈消息的第二部分。由于反馈消息的第一部分和消息3的第二部分在同一个频率范围内传输,这样终端设备在发送消息3的第二部分之后,在同一个频率范围内传输反馈消息的第一部分,终端设备的射频通道的射频位置不需要改变,也就不需要进行射频重调,降低终端设备的能耗,提高资源利用率,降低数据传输时延。
本申请实施例中,一种可能的实现方式中,第三频率范围可以通过第二信息指示,此时第二信息可以同时指示第二频率范围和第三频率范围。举例来说,终端设备为REDCAP终端设备时,网络设备为终端设备配置了5个频率范围,分别为频率范围1至频率范围5,频率范围1的中心频点最小,频率范围5的中心频点最大,即承载反馈消息的PUCCH需要在频率范围1和频率范围5中跳频,假设第一频率范围为频率范围3,第二信息指示的频率范围可以如表5所示。
表5
Figure PCTCN2022080453-appb-000007
另一种可能的实现方式中,可以通过第三指示信息指示第三频率范围,第三信息可以位于调度消息4的调度信息中。调度消息4的调度信息可以是指调度消息4的DCI,其采用TC-RNTI加扰。本申请实施例中,可以对调度信息中的下行分配索引字段进行重定义,采用下行分配索引字段承载第三指示信息,也可以利用其他现有字段或新引入的字段承载第三指示信息。
下面结合具体的例子,给出不同场景下随机接入过程中,不同消息占用的带宽示意图。示例一至示例五中,执行随机接入过程的终端设备为REDCAP终端设备。示例一至示例四中,以REDCAP终端设备与传统终端设备共用RO为例进行说明,示例五中,以REDCAP 终端设备与传统终端设备不共用RO进行说明。
示例一:
示例一中,以TDD或FDD系统为例,终端设备的上行和下行使用不同的频率范围,终端设备的上行和下行使用不同的射频通道,网络设备配置的FDMed RO没有超过终端设备的支持的最大带宽。上行和下行使用不同的射频通道,例如上行和下行可以使用不同的射频晶振源、锁相环等处理上行信号和下行信号。
假设终端设备支持最大带宽为20MHz。上行方向,网络设备为传统终端设备配置的传统初始上行(legacy initial UL)BWP带宽为100MHz,REDCAP终端设备的上行信道频率范围与传统终端设备的legacy initial UL BWP带宽相同,如果在REDCAP终端设备的上行信道频率范围内,网络设备给REDCAP终端设备配置5个频率范围,每个频率范围的带宽可以为20MHz。如图8所示,在REDCAP终端设备的上行信道频率范围内,网络设备配置的5个频率范围按照中心频点的大小从大到小依次为频率范围5至频率范围1,其中,频率范围3处于legacy initial UL BWP的中心位置。假设REDCAP终端设备与传统终端设备合用RO,那么FDMed RO可以处于legacy initial UL BWP的中心位置,由于FDMed RO的带宽未超过20MHz,频率范围3内包括4个FDMed RO。
示例一中,可以将包括RO的频率范围作为第一频率范围,即第一频率范围为频率范围3。
如图8所示,频率范围3内包括4个FDMed RO,终端设备从频率范围3中的4个FDMed RO中选择一个RO发送前导码。终端设备在跳频传输消息3时,可以在频率范围3内发送消息3的第一部分,即在频率范围3内发送消息3的第一跳。假设网络设备通过第一指示信息指示的第二频率范围为频率范围5,终端设备可以在频率范围5内发送消息3的第二部分,即在频率范围5内发送消息3的第二跳。
假设网络设备通过调度消息4的DCI携带第三指示信息,第三指示信息指示的第三频率范围为频率范围1,终端设备在传输消息4的反馈消息时,可以在频率范围5内发送反馈消息的第一部分,即在频率范围5内发送反馈消息的第一跳。终端设备可以在频率范围1内发送反馈消息的第二部分,即在频率范围1内发送反馈消息的第二跳。
另外,在示例一中,终端设备的上行和下行使用不同的射频通道,上行和下行可以使用不同的频率范围,终端设备发送上行消息和接收下行消息相互独立,终端设备接收消息2和消息4时不会影响终端设备发送消息3和反馈消息,因此终端设备在哪个频率范围内接收消息2和消息4,本申请实施例并不限定。
通过上述过程可知,终端设备在随机接入过程中,只进行了两次射频重调,减少了射频重调的次数,提高了资源利用率。
示例二:
示例二中,以TDD或FDD系统为例,终端设备的上行和下行使用不同的频率范围,相比于示例一,网络设备配置的FDMed RO超过终端设备的支持的最大带宽,假设终端设备支持最大带宽为20MHz,网络设备配置的8个FDMed RO对应的带宽为34.56MHz。
上行方向,网络设备为传统终端设备配置的传统初始上行BWP带宽为100MHz,REDCAP终端设备的上行信道频率范围与传统终端设备的legacy initial UL BWP带宽相同,如果在REDCAP终端设备的上行信道频率范围内,网络设备给REDCAP终端设备配置5个频率范围,每个频率范围的带宽可以为20MHz。如图9所示,在REDCAP终端设备的 上行信道频率范围内,网络设备配置的5个频率范围按照中心频点的大小从大到小依次为频率范围5至频率范围1,其中,频率范围3处于legacy initial UL BWP的中心位置。假设REDCAP终端设备与传统终端设备合用RO,FDMed RO可以处于legacy initial UL BWP的中心位置,频率范围3和频率范围4内总共包括8个FDMed RO。
假设第一频率范围为频率范围3,如图9所示,终端设备从频率范围3中的多个FDMed RO中选择一个RO发送前导码。终端设备在跳频传输消息3时,可以在频率范围3内发送消息3的第一部分,即在频率范围3内发送消息3的第一跳。假设网络设备通过第一指示信息指示的第二频率范围为频率范围5,终端设备可以在频率范围5内发送消息3的第二部分,即在频率范围5内发送消息3的第二跳。
假设网络设备通过调度消息4的DCI携带第三指示信息,第三指示信息指示的第三频率范围为频率范围1,终端设备在传输消息4的反馈消息时,可以在频率范围5内发送反馈消息的第一部分,即在频率范围5内发送反馈消息的第一跳。终端设备可以在频率范围1内发送反馈消息的第二部分,即在频率范围1内发送反馈消息的第二跳。
需说明的是,示例一与示例二也可以适用于REDCAP终端设备与传统终端设备不合用RO的场景,即REDCAP终端设备的RO频率范围不会超过REDCAP终端设备的带宽能力。若不合用RO时,可以认为RO可以不在legacy initial UL BWP的中心位置上,但是跳频传输消息3和反馈消息的方法还是相同,具体可以参考上面的描述,在此不再赘述。另外,在示例二中,和示例一类似,终端设备的上行和下行使用不同的射频通道,终端设备发送上行消息和接收下行消息相互独立,终端设备在哪个频率范围内接收消息2和消息4,本申请实施例并不限定。
示例三:
示例三中,以TDD系统为例,终端设备的上行和下行使用相同的频率范围,终端设备的上行和下行使用同一套射频通道,即终端设备发送消息时的射频位置和接收消息时的射频位置可以相同。网络设备配置的FDMed RO没有超过终端设备的支持的最大带宽,且REDCAP终端设备与传统终端设备合用RO。
上行方向,网络设备为传统终端设备配置的传统初始上行BWP带宽为100MHz,REDCAP终端设备的上行信道频率范围与传统终端设备的legacy initial UL BWP带宽相同,如果在REDCAP终端设备的上行信道频率范围内,网络设备给REDCAP终端设备配置5个频率范围,每个频率范围的带宽可以为20MHz。如图10所示,在REDCAP终端设备的上行信道频率范围内,网络设备配置的5个频率范围按照中心频点的大小从大到小依次为频率范围5至频率范围1,其中,频率范围3处于legacy initial UL BWP的中心位置。假设REDCAP终端设备与传统终端设备合用RO,FDMed RO可以处于legacy initial UL BWP的中心位置,频率范围3内包括4个FDMed RO。
如图10所示,终端设备从频率范围3中的4个FDMed RO中选择一个RO发送前导码。在终端设备的上行和下行使用同一套射频通道的情况下,为了减少终端设备射频重调的次数,网络设备可以在传输前导码的频率范围内,向终端设备发送随机接入响应,即在第一频率范围内向终端设备发送随机接入响应。以图10为例,由于前导码在频率范围3内被传输,随机接入响应也在频率范围3内被传输,这样终端设备在接收随机接入响应时,也可以保持射频位置不变,不需要进行射频重调就可以接收随机接入响应。
本申请实施例中,随机接入响应和前导码在同一频率范围内传输,可以是默认的,也 可以是协议规定的,也可以是网络配置的,本申请对其如何实现并不限定。
和示例一和示例二类似,终端设备在跳频传输消息3时,可以在频率范围3内发送消息3的第一部分,即在频率范围3内发送消息3的第一跳。终端设备在接收随机接入响应时,不需要改变射频位置。假设网络设备通过第一指示信息指示的第二频率范围为频率范围5,终端设备可以在频率范围5内发送消息3的第二部分,即在频率范围5内发送消息3的第二跳。
另外,网络设备可以在传输消息3的第二部分的频率范围内,向终端设备发送消息4,即在第二频率范围内向终端设备发送消息4。以图10为例,由于消息3的第二部分在频率范围5内被传输,消息4也在频率范围5内被传输,这样终端设备在接收消息4时,也可以保持射频位置不变,不需要进行射频重调就可以接收消息4。
假设网络设备通过调度消息4的DCI携带第三指示信息,第三指示信息指示的第三频率范围为频率范围1,终端设备在传输消息4的反馈消息时,可以在频率范围5内发送反馈消息的第一部分,即在频率范围5内发送反馈消息的第一跳。终端设备可以在频率范围1内发送反馈消息的第二部分,即在频率范围1内发送反馈消息的第二跳。
随机接入过程完成后,终端设备工作的频率范围可以调回到第一频率范围,也可以保持在第三频率范围,本申请实施例并不限定,可以由协议预定义或SIB中配置。
另外,相比示例一与示例二,示例三还可能需要考虑消息4未能正确检测到的情况,例如当消息3的第二部分发送完成后,终端设备停留在第二频率范围内监听消息4时,若因PDCCH性能问题,例如信道质量较差,终端设备在消息4对应的监听窗内未能在PDCCH中收到调度消息4的DCI,相应地,网络设备未能在该监听窗内检测到包括反馈消息的PUCCH,则终端设备可以继续工作在第二频率范围内,也可以切换至其它频率范围,例如第一频率范围,并重新发起随机接入过程,终端设备的行为可以由网络在协议中或SIB中预先配置,也可以默认切换至第一频率范围。网络设备在超过时间窗后可以给终端设备再次发送消息4,也可以不再发送消息4,本申请实施例对此并不限定。
本申请实施例中,消息4对应的监听窗是由协议规定的,终端设备可以在发送消息3时,启动定时器,定时器的定时时长就是消息4对应的监听窗的时长。当定时器超时时,终端设备还没有接收到DCI,则认为网络设备没有发送消息4。
示例四:
示例四中,以TDD系统为例,终端设备的上行和下行使用相同的频率范围,终端设备的上行和下行使用同一套射频通道。网络设备配置的FDMed RO超过终端设备的支持的最大带宽,且REDCAP终端设备与传统终端设备合用RO。
示例四与示例三的区别在于,FDMed RO超过终端设备的支持的最大带宽,因此终端设备需要从包括RO的多个频率范围中选择一个频率范围作为第一频率范围。
如图11所示,上行方向,网络设备为传统终端设备配置的传统初始上行BWP带宽为100MHz,REDCAP终端设备的上行信道频率范围与传统终端设备的legacy initial UL BWP带宽相同,如果在REDCAP终端设备的上行信道频率范围内,网络设备给REDCAP终端设备配置5个频率范围,每个频率范围的带宽可以为20MHz。在REDCAP终端设备的上行信道频率范围内,网络设备配置的5个频率范围按照中心频点的大小从大到小依次为频率范围5至频率范围1,其中,频率范围3处于legacy initial UL BWP的中心位置。假设REDCAP终端设备与传统终端设备合用RO,FDMed RO可以处于legacy initial UL BWP 的中心位置,频率范围3和频率范围4内总共包括8个FDMed RO。
和示例三类似,可以将频率范围3作为第一频率范围,终端设备在频率范围3内发送前导码。相应的,网络设备在频率范围3内发送随机接入响应。
终端设备在频率范围3内发送消息3的第一部分。假设网络设备通过第一指示信息指示的第二频率范围为频率范围1,终端设备可以在频率范围1内发送消息3的第二部分。相应的,网络设备可以在频率范围1内发送消息4。终端设备可以在频率范围1内发送反馈消息的第一部分,在频率范围5内发送反馈消息的第二部分。
其它内容可以参考示例三的描述,在此不再赘述。
示例五:
示例五中,以TDD系统为例,终端设备的上行和下行使用相同的频率范围,终端设备的上行和下行使用同一套射频通道,即终端设备发送消息时的射频位置和接收消息时的射频位置可以相同。REDCAP终端设备与传统终端设备不合用RO,该场景下,网络设备配置的FDMed RO没有超过终端设备的支持的最大带宽。
REDCAP终端设备与传统终端设备不合用RO,那么REDCAP终端设备有专属的RO,且该RO可以不在legacy UL initial BWP的中心位置,且FDMed RO带宽不会超过REDCAP终端设备的带宽能力。
如图12所示,网络设备为传统终端设备配置的传统初始上行BWP带宽为100MHz,REDCAP终端设备的上行信道频率范围与传统终端设备的legacy initial UL BWP带宽相同,如果在REDCAP终端设备的上行信道频率范围内,网络设备给REDCAP终端设备配置5个频率范围,每个频率范围的带宽可以为20MHz。在REDCAP终端设备的上行信道频率范围内,网络设备配置的5个频率范围按照中心频点的大小从大到小依次为频率范围5至频率范围1,其中,频率范围3处于legacy initial UL BWP的中心位置。假设REDCAP终端设备专属的RO位于频率范围5内,频率范围5内包括4个FDMed RO。
示例五中,终端设备可以将频率范围5作为第一频率范围。终端设备在频率范围5内发送前导码。网络设备在频率范围5内发送随机接入响应。
终端设备在频率范围5内发送消息3的第一部分。假设网络设备通过第一指示信息指示的第二频率范围为频率范围1,终端设备可以在频率范围1内发送消息3的第二部分。相应的,网络设备可以在频率范围1内发送消息4。终端设备可以在频率范围1内发送反馈消息的第一部分,在频率范围5内发送反馈消息的第二部分。
其它内容可以参考示例三的描述,在此不再赘述。
前面的描述中,讨论了如何优化随机接入过程中的消息传输,减少终端设备的射频重调的次数。本申请实施例还提供一种方法,可以避免终端设备无法支持消息3的跳频传输的问题。
如图13所示,为本申请实施例提供的一种随机接入方法流程示意图,该方法包括:
S1301:终端设备在第一频率范围内向网络设备发送前导码。
S1302:网络设备接收来自终端设备的前导码,并向终端设备发送随机接入响应。
随机接入响应可以指示终端设备在第四频率范围内发送消息3,或者终端设备也可以默认在第四频率范围内发送消息3。
S1303:终端设备接收来自网络设备的随机接入响应,并在第四频率范围内向网络设备发送消息3。
S1304:网络设备在第四频率范围内接收来自终端设备的消息3,并向终端设备发送消息4。
S1305:终端设备接收来自网络设备的消息4,并向网络设备发送反馈消息。
图13的流程中,网络设备可通过第四指示信息指示终端设备不采用跳频方式发送消息3,则不跳频PUSCH资源带宽在REDCAP终端设备的带宽能力范围内,REDCAP终端设备可按网络设备调度的PUSCH资源发送消息3。或者说,第四指示信息指示终端设备采用跳频方式发送,且指示允许REDCAP终端设备将消息3的第一部分和第二部分通过相同的PUSCH资源发送,此时终端设备不发送消息3的第二跳,只发送消息3的第一跳。或者说,第四指示信息指示终端设备采用跳频方式发送消息3,且指示不允许REDCAP终端设备将消息3的第一部分和第二部分通过相同的PUSCH资源发送,此时终端设备不发送消息3。
第四指示信息可以通过随机接入响应中的保留字段承载,也可以通过调度随机接入响应的调度信息中的保留字段承载。其中,调度随机接入响应的调度信息可以为通过随机接入无线网络临时标识(random access radio network temporary identity,RA-RNTI)加扰的DCI。
举例来说,如图14所示,网络设备给终端设备配置5个频率范围,每个频率范围的带宽为20MHz。按照中心频点的大小从大到小依次为频率范围5至频率范围1。假设包括RO的频率范围为频率范围3,终端设备可以将频率范围3作为第一频率范围。
终端设备在频率范围3内发送前导码。网络设备发送随机接入响应,其中随机接入响应指示终端设备在频率范围1内发送消息3,并通过第四指示信息指示终端设备不采用跳频方式发送消息3。
终端设备在频率范围1内发送消息3。终端设备接收到来自网络设备的消息4之后,可以在频率范围1内发送反馈消息的第一部分,在频率范围5内发送反馈消息的第二部分。
由于传输消息3的PUSCH资源被压缩了一半,因此消息3的调制与编码策略(modulation and coding scheme,MCS)也需产生相应变化。消息3支持跳频传输时,网络设备调度消息3的MCS表格可以是下表6所示。本申请实施例中,消息3不支持跳频传输时,网络设备调度消息3的MCS表格可以是下表7所示。
表6
Figure PCTCN2022080453-appb-000008
Figure PCTCN2022080453-appb-000009
表7
MCS索引 调制阶数 码率
0 q 240/q
1 q 314/q
2 4 386
3 4 502
4 4 616
5 4 758
6 4 898
7 4 1052
8 4 1204
9 4 1358
10 8 680
11 8 756
12 8 868
13 8 980
14 8 1106
15 8 1232
16 8 1316
表7相比于表6,调制阶数变为表6的2倍,相应地码率变为表6的2倍,REDCAP终端设备可以根据表7确定消息3的MCS。
另一种实现方式中,可以预定义一个偏移值,REDCAP终端设备使用表6中偏移值偏移后的MCS,例如网络设备指示的MCS索引为3,偏移值是7,则REDCAP终端设备将表6中MCS索引为10的MCS作为消息3的MCS。
另外,由于REDCAP终端设备和传统终端设备采用不同的MCS调制消息3,网络设备不能通过前导码区分不同类型的终端设备,因此网络设备需要在收到消息3之前区分不同类型的终端设备,以便采用相应方式的解调消息3。本申请实施例中,网络设备可以根据PUSCH导频资源区分不同类型的终端设备,从而可以按照相应的发送解调消息3。在该方式中,网络设备可以给REDCAP终端设备配置专属的PUSCH导频资源,从而区分REDCAP终端设备与传统终端设备。具体的,网络设备可以分别给REDCAP终端设备与传统终端设备配置不同的PUSCH导频资源,例如REDCAP终端设备的PUSCH导频资源与传统终端设备的PUSCH导频资源存在以下至少一项不同:
解调参考信号(demodulation reference signal,DMRS)端口;DMRS序列;DMRS序列的循环移位值。
终端设备发送专属的PUSCH导频资源,网络设备根据专属的PUSCH导频资源确定发送该专属的PUSCH导频资源的终端设备为REDCAP终端设备时,可以确定该终端设备只发送一跳消息3,则可以按照REDCAP终端设备对应的解调方式解调消息3。
针对于上述示例一至示例五,本申请实施例中:
(1)上述示例一至示例五可以分别单独实施,或者也可以相互结合实施。
(2)上文中侧重描述了示例一至示例五的区别之处,除区别之处的其它内容,示例一至示例五可以相互参照。
(3)示例一至示例五所描述的各个流程图的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。此外,各个流程图中所示意的步骤并非全部是必须执行的步骤,可以根据实际需要在各个流程图的基础上增添或者删除部分步骤。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图15所示,本申请实施例还提供一种通信装置用于实现上述方法中网络设备或终端设备的功能。例如,该通信装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该通信装置1500可以包括:处理单元1501和通信单元1502。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤。
以下,结合图15至图16详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1502中用于实现接收功能的器件视为接收单元,将通信单元1502中用于实现发送功能的器件视为发送单元,即通信单元1502包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
通信装置1500执行上面实施例中图6所示的流程中终端设备的功能时:
通信单元,用于接收来自网络设备的随机接入响应;所述随机接入响应对应的前导码是在第一频率范围内被传输的,所述随机接入响应包括第一信息,所述第一信息指示第二 频率范围;所述第一频率范围用于传输所述随机接入响应对应的消息3的第一部分,所述第二频率范围用于传输所述消息3的第二部分。
通信装置1500执行上面实施例中图6所示的流程中网络设备的功能时:
通信单元,用于向终端设备发送随机接入响应;所述随机接入响应对应的前导码是在第一频率范围内被传输的,所述随机接入响应包括第一信息,所述第一信息指示第二频率范围;所述第一频率范围用于传输所述随机接入响应对应的消息3的第一部分,所述第二频率范围用于传输所述消息3的第二部分。
以上只是示例,处理单元1501和通信单元1502还可以执行其他功能,更详细的描述可以参考图6所示的方法实施例中相关描述,这里不加赘述。
如图16所示为本申请实施例提供的通信装置,图16所示的通信装置可以为图15所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图16仅示出了该通信装置的主要部件。
如图16所示,通信装置1600包括处理器1610和接口电路1620。处理器1610和接口电路1620之间相互耦合。可以理解的是,接口电路1620可以为收发器、管脚、接口电路或输入输出接口。可选的,通信装置1600还可以包括存储器1630,用于存储处理器1610执行的指令或存储处理器1610运行指令所需要的输入数据或存储处理器1610运行指令后产生的数据。
当通信装置1600用于实现图6所示的方法时,处理器1610用于实现上述处理单元1501的功能,接口电路1620用于实现上述通信单元1502的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元,还可以是其它通用处理器、数字信号处理器、专用集成电路或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的存储器可以是随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘或者本领域熟知的任何其它形式的存储介质中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或 方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种随机接入方法,其特征在于,包括:
    接收来自网络设备的随机接入响应;所述随机接入响应对应的前导码是在第一频率范围内被传输的,所述随机接入响应包括第一信息,所述第一信息指示第二频率范围;所述第一频率范围用于传输所述随机接入响应对应的消息3的第一部分,所述第二频率范围用于传输所述消息3的第二部分。
  2. 根据权利要求1所述的方法,其特征在于,所述随机接入响应还包括第二信息,所述第二信息用于指示采用所述第一频率范围传输所述消息3的第一部分。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在所述第二频率范围内发送消息4的反馈消息的第一部分,在第三频率范围内发送所述反馈消息的第二部分,所述反馈消息用于指示是否正确接收到所述消息4,所述消息4是所述消息3的响应消息。
  4. 根据权利要求3所述的方法,其特征在于,所述第三频率范围通过所述第二信息指示;或者,所述第三频率范围通过第三信息指示,所述第三信息位于调度所述消息4的调度信息中。
  5. 根据权利要求3至4任一所述的方法,其特征在于,所述第三信息通过所述调度信息中的下行分配索引字段承载。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述第一信息通过所述消息3中的以下至少一个字段承载:
    保留字段;物理上行共享信道频域资源分配字段;跳频标识字段。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述随机接入响应是在所述第一频率范围内被传输的。
  8. 根据权利要求3至7任一所述的方法,其特征在于,所述消息4是在所述第二频率范围内被传输的。
  9. 根据权利要求1至8任一所述的方法,其特征在于,所述方法还包括:
    若在所述第二频率范围内,在消息4对应的监听窗内未接收到所述消息4,则切换至所述第一频率范围内,所述消息4为所述消息3的响应消息。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的系统信息,所述系统信息指示所述第一频率范围的位置。
  11. 一种随机接入方法,其特征在于,包括:
    向终端设备发送随机接入响应;所述随机接入响应对应的前导码是在第一频率范围内被传输的,所述随机接入响应包括第一信息,所述第一信息指示第二频率范围;所述第一频率范围用于传输所述随机接入响应对应的消息3的第一部分,所述第二频率范围用于传输所述消息3的第二部分。
  12. 根据权利要求11所述的方法,其特征在于,所述随机接入响应还包括第二信息,所述第二信息用于指示采用所述第一频率范围传输所述消息3的第一部分。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    在所述第二频率范围内接收来自所述终端设备的消息4的反馈消息的第一部分,在第三频率范围内接收来自所述终端设备的所述反馈消息的第二部分,所述反馈消息用于指示 是否正确接收到所述消息4,所述消息4是所述消息3的响应消息。
  14. 根据权利要求13所述的方法,其特征在于,所述第三频率范围通过所述第二信息指示;或者,所述第三频率范围通过第三信息指示,所述第三信息位于调度所述消息4的调度信息中。
  15. 根据权利要求13至14任一所述的方法,其特征在于,所述第三信息通过所述调度信息中的下行分配索引字段承载。
  16. 根据权利要求11至15任一所述的方法,其特征在于,所述第一信息通过所述消息3中的以下至少一个字段承载:
    保留字段;物理上行共享信道频域资源分配字段;跳频标识字段。
  17. 根据权利要求11至16任一所述的方法,其特征在于,所述随机接入响应是在所述第一频率范围内被传输的。
  18. 根据权利要求13至17任一所述的方法,其特征在于,所述消息4是在所述第二频率范围内被传输的。
  19. 根据权利要求11至18任一所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送系统信息,所述系统信息指示所述第一频率范围的位置。
  20. 一种通信装置,其特征在于,包括用于执行如权利要求1至10中任一项所述方法的模块。
  21. 一种通信装置,其特征在于,包括用于执行如权利要求11至19中任一项所述方法的模块。
  22. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于执行如权利要求1至10中任一项所述的方法。
  23. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于执行如权利要求11至19中任一项所述的方法。
  24. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器利用所述接口电路实现如权利要求1至10中任一项所述的方法。
  25. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器利用所述接口电路实现如权利要求11至19中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,实现如权利要求1至10中任一项所述的方法或者如权利要求11至19中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,实现如权利要求1至10中任一项所述的方法或者如权利要求11至19中任一项所述的方法。
  28. 一种通信系统,其特征在于,包括权利要求20、22和24中任一项所述的通信装置,和权利要求21、23和25中任一项所述的通信装置。
PCT/CN2022/080453 2021-04-02 2022-03-11 一种随机接入方法及装置 WO2022206346A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110361882.4 2021-04-02
CN202110361882.4A CN115175363A (zh) 2021-04-02 2021-04-02 一种随机接入方法及装置

Publications (1)

Publication Number Publication Date
WO2022206346A1 true WO2022206346A1 (zh) 2022-10-06

Family

ID=83457928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080453 WO2022206346A1 (zh) 2021-04-02 2022-03-11 一种随机接入方法及装置

Country Status (2)

Country Link
CN (1) CN115175363A (zh)
WO (1) WO2022206346A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116848789A (zh) * 2023-04-07 2023-10-03 上海移远通信技术股份有限公司 用于无线通信的方法及装置
WO2024082190A1 (zh) * 2022-10-19 2024-04-25 北京小米移动软件有限公司 一种通信方法、装置、设备及存储介质
CN116848789B (zh) * 2023-04-07 2024-06-07 上海移远通信技术股份有限公司 用于无线通信的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600833A (zh) * 2017-09-30 2019-04-09 中国移动通信有限公司研究院 一种确定传输资源的方法及设备
WO2020059721A1 (ja) * 2018-09-21 2020-03-26 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600833A (zh) * 2017-09-30 2019-04-09 中国移动通信有限公司研究院 一种确定传输资源的方法及设备
WO2020059721A1 (ja) * 2018-09-21 2020-03-26 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Potential solutions for UE complexity reduction", 3GPP DRAFT; R1-2100230, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970862 *
ZTE: "UE complexity reduction for reduced capability NR devices", 3GPP DRAFT; R1-2100564, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970453 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082190A1 (zh) * 2022-10-19 2024-04-25 北京小米移动软件有限公司 一种通信方法、装置、设备及存储介质
CN116848789A (zh) * 2023-04-07 2023-10-03 上海移远通信技术股份有限公司 用于无线通信的方法及装置
CN116848789B (zh) * 2023-04-07 2024-06-07 上海移远通信技术股份有限公司 用于无线通信的方法及装置

Also Published As

Publication number Publication date
CN115175363A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN110049557B (zh) 随机接入方法及装置
CN106233756B (zh) 用于辅小区id选择的系统和方法
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
US20200068610A1 (en) Resource scheduling method, network device, and communications device
TWI756609B (zh) 帶內非連續頻譜的有效寬頻操作方法及使用者設備
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
KR101306741B1 (ko) 광대역 무선 접속 시스템에서 효율적인 세컨더리 캐리어 정보 갱신 방법
WO2021146998A1 (zh) 一种确定初始带宽部分bwp的方法、装置及存储介质
WO2022028311A1 (zh) 一种物理下行控制信道增强方法、通信装置及系统
CN114503744A (zh) 用于在无线通信系统中发送和接收信号的方法和装置
WO2020029973A1 (zh) 一种信息的处理方法和通信装置
WO2018082672A1 (zh) 一种上行测量参考信号传输方法、装置和系统
WO2022028361A1 (zh) 一种无线接入的方法以及装置
CN114667796A (zh) 在无线通信系统中使用一个载波中的保护频带发送和接收信道的方法及其装置
WO2022206628A1 (zh) 一种通信方法及装置
WO2022028359A1 (zh) 一种无线接入的方法以及装置
WO2022206346A1 (zh) 一种随机接入方法及装置
CN113170511A (zh) 基于未授权频带的带宽部分(bwp)发送和接收物理信道和信号的方法及使用该方法的设备
CN114095981B (zh) 一种小区状态切换方法及装置
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
US20150207603A1 (en) Apparatus for transmission on lte device to device communication
WO2023109879A1 (zh) 射频链路切换方法和通信装置
WO2022188638A1 (zh) 一种数据传输方法及装置
JP2021530895A (ja) リソーススケジューリング指示方法及びその装置、通信システム
WO2016063599A1 (ja) 端末装置、集積回路、および、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778530

Country of ref document: EP

Kind code of ref document: A1