WO2021146998A1 - 一种确定初始带宽部分bwp的方法、装置及存储介质 - Google Patents

一种确定初始带宽部分bwp的方法、装置及存储介质 Download PDF

Info

Publication number
WO2021146998A1
WO2021146998A1 PCT/CN2020/073794 CN2020073794W WO2021146998A1 WO 2021146998 A1 WO2021146998 A1 WO 2021146998A1 CN 2020073794 W CN2020073794 W CN 2020073794W WO 2021146998 A1 WO2021146998 A1 WO 2021146998A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
resource
type
time
terminal device
Prior art date
Application number
PCT/CN2020/073794
Other languages
English (en)
French (fr)
Inventor
郑娟
李超君
侯海龙
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022544266A priority Critical patent/JP7407957B2/ja
Priority to KR1020227028594A priority patent/KR20220129600A/ko
Priority to CN202080088966.9A priority patent/CN114846881A/zh
Priority to PCT/CN2020/073794 priority patent/WO2021146998A1/zh
Priority to EP20916203.1A priority patent/EP4087344A4/en
Publication of WO2021146998A1 publication Critical patent/WO2021146998A1/zh
Priority to US17/870,499 priority patent/US20220361122A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to a method, device and storage medium for determining the BWP of the initial bandwidth part.
  • the new radio (NR) system is the fifth-generation (5G) mobile communication technology standard based on a new air interface design of orthogonal frequency division multiplexing (OFDM).
  • 5G fifth-generation
  • OFDM orthogonal frequency division multiplexing
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliability low-latency communication
  • mMTC massive machine-type communications.
  • NR system design The diversification of NR system services requires NR system design to meet the access requirements of terminal devices with different bandwidth capabilities. For example, terminal devices that transmit eMBB services and terminal devices that transmit URLLC services can access the NR system by determining the broadband information of the NR system, while some terminal devices that transmit mMTC services are due to considerations such as design cost and low power consumption.
  • the working bandwidth of transmission is generally not designed to be large, so it is generally only accessed through low bandwidth.
  • the NR system has a large bandwidth, at least 100MHz.
  • the maximum bandwidth supported by terminal devices is different due to different bandwidth capabilities.
  • Some terminal devices may only support 80MHz, 40MHz, or 20MHz, or even smaller bandwidths. Therefore, under normal circumstances, in order to meet the requirement of the maximum bandwidth supported by the terminal device, the concept of the downlink initial bandwidth part (BWP) is introduced in the NR.
  • BWP downlink initial bandwidth part
  • This application provides a method, device, and storage medium for the BWP of the downlink initial bandwidth part, and provides a new initial BWP design solution, which can distinguish the initial bandwidth part of different types of terminal equipment and improve the initial bandwidth of different types of terminal equipment. Access performance.
  • the first aspect of the present application provides a method for determining the initial bandwidth part BWP, which can be used in wireless communication systems, including 4.5G or 5G wireless communication systems, and further evolution systems based on NR, as well as future wireless communication systems.
  • the frequency resource of the first initial BWP may be included in the frequency resource of the second initial BWP corresponding to the second type of terminal device, and the first type of terminal device It is different from the second type of terminal equipment. Transmit signaling and/or data with the network device according to the frequency resource of the first initial BWP.
  • the terminal equipment can also be referred to as terminal, user equipment (UE), mobile station (MS), mobile terminal (MT), and so on.
  • the terminal equipment in the embodiments of this application can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, and can also be applied to virtual reality (VR) and augmented reality (AR). ), industrial control, self-driving, remote medical, smart grid, transportation safety, smart city, and smart home ) And other wireless terminals in the scene.
  • the aforementioned terminal equipment and the chips applicable to the aforementioned terminal equipment are collectively referred to as terminal equipment. It should be understood that the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the first aspect provides a new method for determining the BWP of the initial bandwidth portion, which is simple in design, inherits the original design intention of the existing second initial BWP, and reduces the complexity of the standard design.
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following: the first type terminal device and the second type terminal device.
  • Different types of terminal equipment have different bandwidth capabilities.
  • the first type of terminal equipment and the second type of terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the two types of terminal equipment correspond to different protocol versions.
  • the NR terminal equipment corresponding to Release 15 and the NR terminal equipment corresponding to Release 17 can be regarded as two types of terminal equipment.
  • the carrier aggregation capabilities supported by the two types of terminal devices are different.
  • the two types of terminal devices have different data processing time capabilities.
  • the frequency resource of the first initial BWP is determined according to the first frequency offset, and the first A frequency offset belongs to the first set, and the first set is a set of second frequency offsets.
  • the first frequency offset is the offset of the frequency resource of the first initial BWP relative to the frequency resource of the synchronization signal block SSB
  • the second frequency offset is the offset of the frequency resource of the second initial BWP relative to the frequency resource of the SSB. Shift. From the second possible implementation of the first aspect, it can be seen that the nested relationship between the frequency resources of the first initial BWP and the frequency resources of the second initial BWP can be realized, saving the system bandwidth required by the system to support diversified terminal devices. .
  • the first frequency offset is determined according to the first configuration information from the network device, and the first configuration information The frequency resource used to configure the second initial BWP. It can be seen from the third possible implementation manner of the first aspect that the network device does not need to send additional indication information for the second type terminal device to determine the frequency resource of the first initial BWP, which can save the network device sending control information overhead, and realize Energy saving of network equipment.
  • the first frequency offset is the same as the second frequency offset.
  • the first frequency offset is determined according to the first configuration information from the network device, and may include:
  • the first type of terminal device determines the first index value according to the first configuration information.
  • the terminal device of the first type determines M index values, M is a positive integer, the M index values and the first index value are used to indicate the frequency offsets that can be included in the first set, and the M index values are less than or equal to the first index The index value of the value.
  • the terminal device of the first type determines the first frequency offset according to the frequency offset indicated by any one of the M index values. It can be seen from the fifth possible implementation manner of the first aspect that a specific manner of determining the first frequency offset is given, which increases the diversity of the solutions.
  • the first frequency offset is determined according to the first configuration information from the network device, and may include: The first type of terminal device determines the first index value according to the first configuration information. The terminal device of the first type determines a second index value, the second index value is a value obtained by taking the first index value modulo a preset value, and the first index value and the second index value indicate frequency offsets that can be included in the first set quantity. The terminal device of the first type determines the first frequency offset according to the second index value. It can be seen from the sixth possible implementation manner of the first aspect that a specific method of determining the first frequency offset is given, which increases the diversity of the solutions.
  • the first frequency offset is determined according to the first number of time-frequency resources, and the first number of time-frequency resources is And the second number of time-frequency resources correspond to the frequency offsets that can be included in the first set, the first number of time-frequency resources is the number of time-frequency resources closest to the second number of time-frequency resources, and the second number of time-frequency resources is the first The number of time-frequency resources corresponding to CORESET0 of type 2 terminal equipment. It can be seen from the seventh possible implementation manner of the first aspect that a specific manner of determining the first frequency offset is provided, which increases the diversity of the solutions.
  • the method may further include: determining the first type of terminal device Corresponding to the time resource of the first control resource set 0CORESET0, the radio frame where the first time resource is located may not include the time resource for the synchronization signal block SSB transmission, or the time slot where the first time resource is located may not include the second type The time resource of the second CORESET0 corresponding to the terminal device.
  • the introduction of the first type of terminal equipment will not affect the second type of terminal equipment that may have been deployed in the system.
  • the service transmission especially when the public information transmission corresponding to the second type of terminal equipment and the SSB transmission are in the same time slot or the same radio frame, through this implementation method, the initial access to the second type of terminal equipment can be avoided Impact.
  • the method may further include: the first time resources corresponding to the same SSB are distributed continuously in one radio frame Within two time slots. It can be seen from the ninth possible implementation manner of the first aspect that joint channel estimation performance between control information for scheduling common information transmission transmitted in multiple first time resources can be guaranteed, and it is convenient for terminal equipment to achieve combined detection performance.
  • the first control resource corresponding to the first type of terminal device is determined
  • the time resources of 0CORESET0 are set, and the first time resource may be included in the second time resource. From the tenth possible implementation of the first aspect, it can be seen that a specific first-time resource design method is given, which increases the diversity of the solution.
  • the first control corresponding to the first type of terminal device is determined
  • the time resource of the resource set 0CORESET0, the first time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device Yes, the second configuration information is used to configure the second time resource. From the twelfth possible implementation of the first aspect, it can be seen that the network device does not need to send additional instruction information for the second type terminal device to determine the first time resource, which can save the network device sending control information overhead, and realize the network device Energy saving.
  • the second aspect of the present application provides a method for a downlink initial bandwidth part BWP, which may include: a first type of terminal device determines the frequency resource of the initial BWP corresponding to the first type of terminal device, the frequency resource of the first initial BWP and the second initial BWP There is no overlap between the frequency resources, and the capabilities of the first type of terminal equipment and the second type of terminal equipment are different. It can be seen from the second aspect that since there is no overlap between the frequency resources of the first initial BWP and the frequency resources of the second initial BWP, the impact on the data transmission of the second type of terminal equipment can be reduced. For a system with a relatively large system bandwidth, through this implementation method, support for diversified data services (for example, simultaneous support of eMBB services and mMTC services) can be achieved without affecting the impact on the deployed eMBB services.
  • a first type of terminal device determines the frequency resource of the initial BWP corresponding to the first type of terminal device, the frequency resource of the first initial BWP
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following: the first type terminal device and the second type terminal device.
  • Different types of terminal equipment have different bandwidth capabilities.
  • the first type terminal equipment and the second type terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device is determined, and the first The radio frame where a time resource is located may not include the time resource for the synchronization signal block SSB transmission, or the time slot where the first time resource is located may not include the time resource of the second CORESET0 corresponding to the second type of terminal device.
  • the method may further include: the first time resources corresponding to the same SSB are distributed continuously in one radio frame Within two time slots.
  • the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device is determined, and the first One time resource may be included in the second time resource.
  • the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device is determined, and the first A time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device ,
  • the second configuration information is used to configure the second time resource.
  • the third aspect of the present application provides a method for a downlink initial bandwidth part BWP, which may include: a first type of terminal device determines the frequency resource of the initial BWP corresponding to the first type of terminal device, the frequency resource of the first initial BWP and the synchronization signal block SSB There is no overlap between the frequency resources, and the capabilities of the first type of terminal equipment and the second type of terminal equipment are different. From the third aspect, it can be seen that the system frequency resources can be effectively used to realize the nesting relationship between the frequency resources of the first initial BWP and the frequency resources of the second initial BWP, which is especially suitable for services with small system bandwidth but diversified services. system.
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following: the first type terminal device and the second type terminal device.
  • Different types of terminal equipment have different bandwidth capabilities.
  • the first type of terminal equipment and the second type of terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device is determined, and the first The radio frame where a time resource is located may not include the time resource for the synchronization signal block SSB transmission, or the time slot where the first time resource is located may not include the time resource of the second CORESET0 corresponding to the second type of terminal device.
  • the method may further include: the first time resources corresponding to the same SSB are distributed continuously in one radio frame Within two time slots.
  • the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device is determined, and the first One time resource may be included in the second time resource.
  • the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device is determined, and the first A time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device ,
  • the second configuration information is used to configure the second time resource.
  • the fourth aspect of the present application provides an apparatus for determining a BWP of a downlink initial bandwidth part, which may include: a processing unit, configured to determine a frequency resource of a first initial BWP corresponding to a first type of terminal device, and the frequency resource of the first initial BWP may include Within the frequency resources of the second initial BWP corresponding to the second type of terminal equipment, the capabilities of the first type of terminal equipment and the second type of terminal equipment are different.
  • the communication unit is configured to transmit signaling and/or data to the network device according to the frequency resource of the first initial BWP.
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following: the first type terminal device and the second type terminal device.
  • Different types of terminal equipment have different bandwidth capabilities.
  • the first type terminal equipment and the second type terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the frequency resource of the first initial BWP is determined according to the first frequency offset, and the first A frequency offset belongs to the first set, and the first set is a set of second frequency offsets.
  • the first frequency offset is the offset of the frequency resource of the first initial BWP relative to the frequency resource of the synchronization signal block SSB
  • the second frequency offset is the offset of the frequency resource of the second initial BWP relative to the frequency resource of the SSB. Shift.
  • the first frequency offset is determined according to the first configuration information from the network device, and the first configuration information The frequency resource used to configure the second initial BWP.
  • the first frequency offset is the same as the second frequency offset.
  • the processing unit is specifically configured to: determine the first index value according to the first configuration information. Determine M index values, M is a positive integer, M index values and the first index value are used to indicate the frequency offsets that can be included in the first set, and the M index values are less than or equal to the index value of the first index value.
  • the first frequency offset is determined according to the frequency offset indicated by any one of the M index values.
  • the processing unit is specifically configured to: determine the first index value according to the first configuration information.
  • the second index value is determined, the second index value is a value obtained by modulating the first index value with the preset value, and the first index value and the second index value indicate the frequency offset that can be included in the first set.
  • the first frequency offset is determined according to the second index value.
  • the processing unit is further configured to: determine the first type of terminal The time resource of the first control resource set 0CORESET0 corresponding to the device, the radio frame where the first time resource is located may not include the time resource for the synchronization signal block SSB transmission, or the time slot where the first time resource is located may not include the second The time resource of the second CORESET0 corresponding to the type of terminal device.
  • the first time resources corresponding to the same SSB are distributed in two consecutive time slots in one radio frame.
  • the processing unit is further configured to: determine the first type of terminal For the time resource of the first control resource set 0CORESET0 corresponding to the device, the first time resource may be included in the second time resource.
  • the processing unit is further configured to: determine the first type The time resource of the first control resource set OCORESET0 corresponding to the terminal device, the first time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device Yes, the second configuration information is used to configure the second time resource.
  • the fifth aspect of the present application provides an apparatus for determining a BWP of a downlink initial bandwidth part, which may include: a processing unit, configured to determine the frequency resource of the initial BWP corresponding to the first type of terminal device, the frequency resource of the first initial BWP and the second initial BWP There is no overlap between the frequency resources of the BWP, and the capabilities of the first type of terminal equipment and the second type of terminal equipment are different.
  • the communication unit transmits signaling and/or data to the network device according to the frequency resource of the first initial BWP.
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following: the first type terminal device and the second type terminal device.
  • Different types of terminal equipment have different bandwidth capabilities.
  • the first type of terminal equipment and the second type of terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the processing unit is further configured to determine the first control resource set corresponding to the first type of terminal device The time resource of 0CORESET0.
  • the radio frame where the first time resource is located may not include the time resource for the synchronization signal block SSB transmission, or the time slot where the first time resource is located may not include the second CORESET0 corresponding to the second type of terminal device. Time resources.
  • the first time resources corresponding to the same SSB are distributed in two consecutive time slots in a radio frame.
  • the processing unit is further configured to determine the first control resource set corresponding to the first type of terminal device For the time resource of 0CORESET0, the first time resource may be included in the second time resource.
  • the processing unit is further configured to determine the first control resource set corresponding to the first type of terminal device
  • the time resource of 0CORESET0, the first time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device ,
  • the second configuration information is used to configure the second time resource.
  • a sixth aspect of the present application provides an apparatus for determining a BWP of a downlink initial bandwidth portion, which may include: a processing unit, configured to determine the frequency resource of the initial BWP corresponding to the first type of terminal device, the frequency resource of the first initial BWP and the synchronization signal block There is no overlap between the frequency resources of the SSB, and the capabilities of the first type of terminal equipment and the second type of terminal equipment are different.
  • the communication unit transmits signaling and/or data to the network device according to the frequency resource of the first initial BWP.
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following: the first type terminal device and the second type terminal device.
  • Different types of terminal equipment have different bandwidth capabilities.
  • the first type of terminal equipment and the second type of terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the processing unit is further configured to determine the first control resource set corresponding to the first type of terminal device The time resource of 0CORESET0.
  • the radio frame where the first time resource is located may not include the time resource for the synchronization signal block SSB transmission, or the time slot where the first time resource is located may not include the second CORESET0 corresponding to the second type of terminal device. Time resources.
  • the first time resources corresponding to the same SSB are distributed in two consecutive time slots in one radio frame.
  • the processing unit is further configured to determine the first control resource set corresponding to the first type of terminal device For the time resource of 0CORESET0, the first time resource may be included in the second time resource.
  • the processing unit is further configured to determine the first control resource set corresponding to the first type of terminal device
  • the time resource of 0CORESET0, the first time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device ,
  • the second configuration information is used to configure the second time resource.
  • the seventh aspect of the present application provides an apparatus for determining the BWP of the downlink initial bandwidth portion, which may include: a processor, configured to execute a program stored in the memory, and when the program stored in the memory is executed, the processor is configured to determine the first type of terminal
  • the frequency resource of the first initial BWP corresponding to the device, the frequency resource of the first initial BWP may be included in the frequency resource of the second initial BWP corresponding to the second type of terminal equipment, the capabilities of the first type of terminal equipment and the second type of terminal equipment different.
  • the communication interface is coupled with the processor, and is used to transmit signaling and/or data to the network device according to the frequency resource of the first initial BWP.
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following: the first type terminal device and the second type terminal device.
  • Different types of terminal equipment have different bandwidth capabilities.
  • the first type of terminal equipment and the second type of terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the frequency resource of the first initial BWP is determined according to the first frequency offset, and the first A frequency offset belongs to the first set, and the first set is a set of second frequency offsets.
  • the first frequency offset is the offset of the frequency resource of the first initial BWP relative to the frequency resource of the synchronization signal block SSB
  • the second frequency offset is the offset of the frequency resource of the second initial BWP relative to the frequency resource of the SSB. Shift.
  • the first frequency offset is determined according to the first configuration information from the network device, and the first configuration information The frequency resource used to configure the second initial BWP.
  • the first frequency offset is the same as the second frequency offset.
  • the processor is specifically configured to: determine the first index value according to the first configuration information. Determine M index values, M is a positive integer, M index values and the first index value are used to indicate the frequency offsets that can be included in the first set, and the M index values are less than or equal to the index value of the first index value.
  • the first frequency offset is determined according to the frequency offset indicated by any one of the M index values.
  • the processor is specifically configured to: determine the first index value according to the first configuration information.
  • the second index value is determined, the second index value is a value obtained by modulating the first index value with the preset value, and the first index value and the second index value indicate the frequency offset that can be included in the first set.
  • the first frequency offset is determined according to the second index value.
  • the first frequency offset is determined according to the first number of time-frequency resources, and the first number of time-frequency resources is And the second number of time-frequency resources correspond to the frequency offsets that can be included in the first set, the first number of time-frequency resources is the number of time-frequency resources closest to the second number of time-frequency resources, and the second number of time-frequency resources is the first The number of time-frequency resources corresponding to CORESET0 of type 2 terminal equipment.
  • the processor is further configured to: determine the first type of terminal The time resource of the first control resource set 0CORESET0 corresponding to the device, the radio frame where the first time resource is located may not include the time resource for the synchronization signal block SSB transmission, or the time slot where the first time resource is located may not include the second The time resource of the second CORESET0 corresponding to the type of terminal device.
  • the first time resources corresponding to the same SSB are distributed in two consecutive time slots in one radio frame.
  • the processor is further configured to: determine the first type of terminal For the time resource of the first control resource set 0CORESET0 corresponding to the device, the first time resource may be included in the second time resource.
  • the processor is further configured to: determine the first type The time resource of the first control resource set OCORESET0 corresponding to the terminal device, the first time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device Yes, the second configuration information is used to configure the second time resource.
  • the eighth aspect of the present application provides an apparatus for determining the BWP of the downlink initial bandwidth portion, which may include a processor, configured to execute a program stored in the memory, and when the program stored in the memory is executed, the processor is configured to determine the first type of terminal
  • the communication interface is coupled with the processor, and is used to transmit signaling and/or data to the network device according to the frequency resource of the first initial BWP.
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following: the first type terminal device and the second type terminal device.
  • Different types of terminal equipment have different bandwidth capabilities.
  • the first type terminal equipment and the second type terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the processor is further configured to determine the first control resource set corresponding to the first type of terminal device The time resource of 0CORESET0.
  • the radio frame where the first time resource is located may not include the time resource for the synchronization signal block SSB transmission, or the time slot where the first time resource is located may not include the second CORESET0 corresponding to the second type of terminal device. Time resources.
  • the first time resources corresponding to the same SSB are distributed in two consecutive time slots in one radio frame.
  • the processor is further configured to determine a first control resource set corresponding to the first type of terminal device For the time resource of 0CORESET0, the first time resource may be included in the second time resource.
  • the processor is further configured to determine the first control resource set corresponding to the first type of terminal device
  • the time resource of 0CORESET0, the first time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device ,
  • the second configuration information is used to configure the second time resource.
  • the ninth aspect of the present application provides an apparatus for determining the BWP of the downlink initial bandwidth portion, which may include: a processor, configured to execute a program stored in the memory, and when the program stored in the memory is executed, the processor is configured to determine the first type of terminal
  • the frequency resources of the initial BWP corresponding to the device, there is no overlap between the frequency resources of the first initial BWP and the frequency resources of the synchronization signal block SSB, and the capabilities of the first type of terminal equipment and the second type of terminal equipment are different.
  • the communication interface is coupled with the processor, and is used to transmit signaling and/or data to the network device according to the frequency resource of the first initial BWP.
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following: the first type terminal device and the second type terminal device.
  • Different types of terminal equipment have different bandwidth capabilities.
  • the first type of terminal equipment and the second type of terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the processor is further configured to determine the first control resource set corresponding to the first type of terminal device The time resource of 0CORESET0.
  • the radio frame where the first time resource is located may not include the time resource for the synchronization signal block SSB transmission, or the time slot where the first time resource is located may not include the second CORESET0 corresponding to the second type of terminal device. Time resources.
  • the first time resources corresponding to the same SSB are distributed in two consecutive time slots in a radio frame.
  • the processor is further configured to determine the first control resource set corresponding to the first type of terminal device
  • the time resource of 0CORESET0, the first time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device ,
  • the second configuration information is used to configure the second time resource.
  • the tenth aspect of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can execute the first aspect or any one of the possible implementations of the first aspect.
  • Method of determining the BWP of the initial downlink bandwidth is a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can execute the first aspect or any one of the possible implementations of the first aspect.
  • the eleventh aspect of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can execute any one of the second aspect or the second aspect described above.
  • the method for determining the BWP of the initial downlink bandwidth is a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can execute any one of the second aspect or the second aspect described above.
  • a twelfth aspect of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can execute the third aspect or any one of the third aspects mentioned above.
  • the method for determining the BWP of the initial downlink bandwidth is a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can execute the third aspect or any one of the third aspects mentioned above.
  • the thirteenth aspect of the present application provides a computer program product containing instructions that, when it runs on a computer, enables the computer to execute the determination of the downlink initial bandwidth part BWP in the first aspect or any one of the possible implementation manners of the first aspect. method.
  • the fourteenth aspect of the present application provides a computer program product containing instructions that, when it runs on a computer, enables the computer to execute the second aspect or any one of the possible implementation manners of the second aspect to determine the downlink initial bandwidth part BWP method.
  • the fifteenth aspect of the present application provides a computer program product containing instructions, which when running on a computer, enables the computer to execute the determination of the downlink initial bandwidth part BWP in the third aspect or any one of the possible implementation manners of the third aspect. method.
  • beneficial effects of the fourth aspect, the seventh aspect, the tenth aspect, and the thirteenth aspect of the present application can be considered to be the same as the beneficial effects described in the first aspect.
  • beneficial effects of the sixth aspect, the ninth aspect, the twelfth aspect, and the fifteenth aspect of this application can be considered to be the same as the beneficial effects described in the third aspect.
  • a sixteenth aspect of the present application provides a communication system.
  • the communication system may include a terminal device and a network device.
  • the terminal device may be regarded as the terminal device described in any one of the first to third aspects.
  • a seventeenth aspect of the present application provides a chip, which includes a processor and a communication interface, wherein the processor and the communication interface are coupled, and the processor is configured to execute the initial BWP determination provided by any one of the first to third aspects. method.
  • the solution provided in this application provides a new method for determining BWP, which saves the system bandwidth required by the system to support different types of terminal devices.
  • Fig. 1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application
  • Fig. 2 is a schematic diagram of another wireless communication system applicable to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a method for determining an initial BWP provided by an embodiment of the application
  • Figure 4 is a schematic diagram of RBs of different frequency resources
  • FIG. 5 is a schematic diagram of another method for determining the initial BWP provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a table for designing a frequency resource of the first initial BWP provided by an embodiment of the application;
  • FIG. 7 is a schematic flowchart of a method for determining a BWP of a downlink initial bandwidth part provided by an embodiment of this application;
  • FIG. 8 is a schematic flowchart of another method for determining the BWP of the downlink initial bandwidth part provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another method for determining an initial BWP provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of another method for determining an initial BWP provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of another method for determining an initial BWP provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another method for determining an initial BWP provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of another method for determining an initial BWP provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of another method for determining an initial BWP provided by an embodiment of the application.
  • 15 is a schematic diagram of another method for determining the initial BWP provided by an embodiment of the application.
  • 16 is a schematic diagram of another method for determining the initial BWP provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of the hardware structure of a terminal device provided by an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • FIG. 1 and FIG. 2 are schematic diagrams of a wireless communication system applicable to embodiments of the present application.
  • the wireless communication system may include a single or multiple network devices, or as shown in FIG. 2, the wireless communication system may include a single or multiple terminal devices.
  • the wireless communication system is sometimes referred to as a communication system in this application. .
  • a single network device can transmit data or control signaling to a single or multiple terminal devices. Multiple network devices can also transmit data or control signaling for a single terminal device at the same time.
  • the wireless communication system can support coordinated multiple points transmission (CoMP), that is, multiple cells or multiple network devices can cooperate to participate in the data transmission of one terminal device or jointly receive data sent by one terminal device, or multiple A cell or multiple network devices perform coordinated scheduling or coordinated beamforming.
  • CoMP coordinated multiple points transmission
  • the multiple cells may belong to the same network device or different network devices, and may be selected according to channel gain or path loss, received signal strength, received signal instruction, and the like.
  • FIG. 1 or FIG. 2 is only for ease of understanding, and schematically shows network equipment and terminal equipment, but this should not constitute any limitation to this application.
  • the wireless communication system may also include more or less numbers of networks. Devices can also include a larger number of terminal devices.
  • the network devices communicating with different terminal devices can be the same network device or different network devices.
  • the number of network devices communicating with different terminal devices can be the same. It can also be different, and this application includes but is not limited to this.
  • a terminal device when a terminal device is connected to a wireless communication system, for example, when a terminal device is connected to a long term evolution (LTE) system or an NR system, it needs to synchronize with the network device under the wireless communication system first, that is, pass the detection network first.
  • the synchronizing signal sent by the device determines the synchronization information for data transmission with the network device, including time synchronization and/or frequency synchronization information, and then determines the broadcast information carried by the network device in the PBCH according to the determined synchronization information, and according to requirements Further read system information (SI), for example, first read system information included in system information block type 1 (SIB1), and then obtain system information necessary for data transmission with network devices.
  • SI Further read system information
  • SIB1 system information block type 1
  • the information included in the SIB1 may be, for example, random access channel (random access cHannel, RACH) configuration information or scheduling information corresponding to other system messages SI. It should be noted that the name of SIB1 may be different in different systems.
  • the terminal device detects the PBCH sent by the network device, in order to transmit data with the network device, the first detected network device
  • the system messages sent are all called SIB1.
  • SIB1 the remaining minimum system information (RMSI) sent by the network equipment can also be understood as SIB1.
  • SIB1 system information that meets the above characteristics is SIB1.
  • the system bandwidth of NR is relatively large, at least 100MHz.
  • the maximum bandwidth supported is also different.
  • Some terminal devices may only support 80MHz, 40MHz, or 20MHz, or even smaller bandwidths. Therefore, under normal circumstances, in order to meet the requirements of the maximum bandwidth supported by the terminal equipment, the concept of BWP is introduced in NR.
  • the BWP is currently configured for the terminal device to adapt to the maximum bandwidth that the terminal device can support.
  • the network device broadcasts a synchronous signal block (SSB) so that the terminal device can reside.
  • the SSB carries a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS), and a physical broadcast channel (physical broadcast channel, PBCH).
  • the PBCH carries a master system information block (master information block, MIB).
  • MIB includes control resource set (CORESET) 0 configuration information (for example, CORESET0 bandwidth size, frequency domain position, time-frequency resources, etc.), and SIB1 physical downlink control channel (physical downlink control channel, PDCCH) configuration Information (for example, PDCCH time domain configuration information, etc.).
  • CORESET control resource set
  • PDCCH physical downlink control channel
  • the terminal device determines that the bandwidth of the initial BWP (initial BWP) is the bandwidth of CORESET0, then receives the scheduling information of SIB1 on the initial BWP, and receives SIB1 on the initial BWP according to the scheduling information of SIB1.
  • the MIB carried in the PBCH includes the information pdcch-ConfigSIB1, which includes 8 bits and is used to indicate the configuration information of CORESET for scheduling SIB1.
  • the downlink initial BWP is the initial BWP of the terminal device in an idle state or an inactive state.
  • the location and size of the frequency resource corresponding to CORESET0 used to schedule SIB1 can be considered as the initial downlink bandwidth part BWP corresponding to the terminal device in an idle state or in an inactive state.
  • the system design of NR mainly considers the terminal equipment for transmitting eMBB service and the terminal equipment for transmitting URLLC service.
  • the terminal equipment for transmitting mMTC service no special design has been made.
  • the NR system design mainly considers the frequency resources of the initial BWP of the terminal equipment that transmits eMBB services and the terminal equipment that transmits URLLC services, and the time resources of CORESET0 of the terminal equipment that transmits eMBB services and the terminal equipment that transmits URLLC services.
  • the initial downlink BWP bandwidth notified by NR through the PBCH may be greater than the bandwidth capability of some terminal devices that transmit mMTC services, so that some terminal devices that transmit mMTC services cannot access the NR system.
  • this application provides a method for determining the initial BWP.
  • the second type of terminal equipment can support up to the simultaneous use of frequency resources with a bandwidth of 100MHz and network equipment for data transmission on one carrier, while the first type of terminal equipment can support up to the simultaneous use of a bandwidth of 20MHz or 10MHz or 5MHz on one carrier. Frequency resources and network equipment for data transmission.
  • the number of transmitting and receiving antennas is different.
  • the second type terminal device may support 4 receiving and 2 sending, or 4 receiving and 1 sending.
  • the first type of terminal device supports a maximum of 2 receptions and 1 transmission, or a maximum of 1 reception and 1 transmission. That is, terminal devices that support different numbers of transmitting antennas and/or different numbers of receiving antennas can be regarded as different types of terminal devices.
  • the maximum uplink transmit power is different.
  • the maximum uplink transmission power of the second type terminal device can be 23 dBm or 26 dBm, while the maximum uplink transmission power of the first type terminal device can only be one value from 4 dBm to 20 dBm.
  • the second type of terminal equipment is NR Release 17 (or the first terminal equipment is NR Release 17 and NR Release 17 and later versions), and the first type of terminal equipment is NR Release. 15 and/or NR Release 16 terminal equipment.
  • NR Release 16 and terminal devices before NR Release 16 may also be referred to as NR backward compatible (NR-Legacy) terminal devices.
  • the supported carrier aggregation capabilities are different.
  • the second type of terminal equipment can support carrier aggregation, but the first type does not support carrier aggregation; for example, both types of terminal equipment can support carrier aggregation, but the second type of terminal equipment
  • the maximum number of carrier aggregations supported at the same time is greater than the maximum number of carrier aggregations supported by the terminal equipment of the first type at the same time.
  • the terminal equipment of the second type can support the aggregation of 5 carriers or 32 carriers at the same time at the same time, while the terminal equipment of the first type
  • the device supports the aggregation of up to 2 carriers at the same time.
  • the duplex capability is different.
  • the second type terminal device supports full-duplex FDD, or the second type terminal device supports both full-duplex FDD and half-duplex FDD, while the first type terminal device supports only half-duplex FDD.
  • the data processing time capability is different.
  • a terminal device with strong data processing time capability can be considered as the second type of terminal device, and a terminal device with weak data processing time capability can be considered as the first type of terminal device.
  • the difference in processing time capabilities can be represented by the relationship between the minimum time delay for two types of terminal equipment to process data, or by the relationship between the maximum time delay for two types of terminal equipment to process data, or through a type of terminal Express the relationship between the minimum time delay of a device processing data and the maximum time delay of another type of terminal device processing data.
  • the data processing delay can be expressed in at least one of the following ways: the delay between receiving downlink data and sending feedback on the downlink data, the delay between sending uplink data and receiving the feedback on the uplink data, The time delay between receiving control information and sending uplink data according to the control information.
  • the minimum delay between receiving downlink data and sending feedback on the downlink data for a type of terminal device is less than the minimum delay between receiving downlink data and sending feedback for the downlink data by another type of terminal device, and/or ,
  • the minimum delay between one type of terminal equipment sending uplink data and receiving feedback on the uplink data is less than the minimum time delay between another type of terminal equipment sending uplink data and receiving feedback on the uplink data, and/or one
  • the minimum time delay between receiving control information and sending uplink data according to the control information is less than the minimum time delay between receiving control information by another type of terminal equipment and sending uplink data according to the control information.
  • the processing capability of the terminal device may include at least one of the following: the number of hybrid automatic repeat request (HARQ) processes supported by uplink data transmission and/or downlink data transmission, the size of soft buffer, The highest quadrature amplitude modulation (quadrature amplitude modulation, QAM) supported by uplink data transmission and/or downlink data transmission, etc.
  • HARQ hybrid automatic repeat request
  • QAM quadrature amplitude modulation
  • a terminal device with strong processing capability can be considered as a terminal device of the second type
  • a terminal device with weak processing capability can be regarded as a terminal device of the first type.
  • the first aspect is how to determine the frequency resource of the initial BWP.
  • the second aspect is how to determine the time resource of CORESET0, and the third aspect is how to determine the period of the first time resource.
  • this application specifically provides three design methods for the frequency resources of the BWP.
  • the first method is: the frequency resources of the first initial BWP corresponding to the first type of terminal equipment are included in Within the frequency resource of the second initial BWP corresponding to the second type of terminal device.
  • the second way is: there is no overlap between the frequency resources of the first initial BWP corresponding to the first type of terminal equipment and the frequency resources of the second initial BWP corresponding to the second type of terminal equipment.
  • the third method is: there is no overlap between the frequency resources of the first initial BWP corresponding to the first type of terminal equipment and the frequency resources of the synchronization signal block SSB.
  • the second aspect is how to determine the time resource of CORESET0.
  • This application specifically provides three design methods. It needs to be explained that any of the three time resource design methods can be compared with the above three frequency design methods. Any one of the resource design methods is combined with the application. Regarding the third aspect, this application provides two design methods. It should be noted that how the third aspect determines the period of the first time resource can be combined with any of the three time resource design methods provided by the second aspect application.
  • the method for determining the initial BWP provided by the embodiment of the present application will be specifically introduced below.
  • the initial BWP can be understood as the BWP including the transmission of public information.
  • the transmission of public information may include at least one of the following:
  • the system information may include scheduling system information block type 1 (system information block type 1, SIB1) or other system information (system information, SI).
  • Random access response (RAR) information broadcast by network equipment.
  • the public information included in the first initial BWP corresponds to the first type of terminal equipment
  • the public information included in the second initial BWP corresponds to the second type of terminal equipment.
  • the public information included in the first initial BWP corresponds to both the first type of terminal device and the second type of terminal device
  • the public information included in the second initial BWP corresponds to the first type of terminal device. It also corresponds to the second type of terminal equipment.
  • a BWP is composed of resource blocks (resource blocks, RBs) contiguous in frequency, where one RB includes 12 subcarriers, and the frequency bandwidth of the BWP is not greater than the frequency bandwidth corresponding to the carrier that includes the BWP.
  • resource blocks resource blocks, RBs
  • the frequency bandwidth of the BWP is not greater than the frequency bandwidth corresponding to the carrier that includes the BWP.
  • the initial BWP is understood as a frequency resource notified through MIB, such as a frequency resource notified through pdcch-ConfigSIB1 included in MIB, or a frequency resource configured in SIB1 information, where SIB1 information includes control information for scheduling SIB1 transmission , And/or SIB1 system information transmitted through a physical downlink shared channel (PDSCH).
  • MIB such as a frequency resource notified through pdcch-ConfigSIB1 included in MIB
  • SIB1 information includes control information for scheduling SIB1 transmission
  • PDSCH physical downlink shared channel
  • FIG. 3 it is a schematic diagram of a method for determining an initial BWP provided by an embodiment of this application.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the figure respectively shows the time-frequency resource range of SSB transmission, the time-frequency resource range corresponding to the first type of terminal equipment, and the time-frequency resource range corresponding to the second type of terminal equipment.
  • the time-frequency resource range corresponding to the first type of terminal equipment can be understood as the time-frequency resource range, including data transmission corresponding to the first type of terminal equipment.
  • the data transmission corresponds to the first type of terminal equipment and passes through physical downlink.
  • PDCCH physical downlink control channel
  • the time-frequency resource range corresponding to the second-type terminal device can be understood as the time-frequency resource range, including the data transmission corresponding to the second-type terminal device.
  • the data transmission corresponds to the second-type terminal device and passes through the PDCCH.
  • the frequency resource of the first initial BWP corresponding to the first type of terminal device is determined.
  • the frequency resource of the first initial BWP is included in the frequency resource of the second initial BWP corresponding to the second type of terminal device.
  • the capabilities of the type terminal equipment and the second type terminal equipment are different. Included in this application means that the frequency resource range of the second initial BWP corresponding to the second type terminal device covers the frequency resource range of the first initial BWP corresponding to the first type terminal device, which will be described in detail below.
  • the initial BWP frequency resource corresponding to the terminal device of the low-capability type is included in the initial BWP frequency resource corresponding to the terminal device of the non-low-capability type, even for a network device with a relatively small system bandwidth.
  • it supports data transmission of different types of terminal equipment to realize diversified data transmission. For example, it can support eMBB service and mMTC service at the same time, thereby increasing the competitiveness of network deployment.
  • the frequency resource of the first initial BWP is determined according to the first frequency offset
  • the first frequency offset belongs to the first set
  • the first set is the second frequency offset set.
  • the first frequency offset is the offset of the frequency resource of the first initial BWP relative to the frequency resource of the synchronization signal block SSB
  • the second frequency offset is the offset of the frequency resource of the second initial BWP relative to the frequency resource of the SSB. Shift.
  • the set corresponding to the frequency offset between the frequency resource of the first initial BWP and the frequency resource of the SSB corresponds to the frequency offset between the frequency resource of the second initial BWP and the frequency resource of the SSB.
  • the synchronization signal block corresponding to the first frequency offset may be the SSB corresponding to the first type of terminal equipment, or the SSB corresponding to the second type of terminal equipment, and the SSB corresponding to the second frequency offset is the first SSB corresponding to Type 2 terminal equipment.
  • the second type terminal device is a non-NR REDCAP terminal device, and the SSB corresponding to the non-NR REDCAP terminal device is Release 15 SSB.
  • the SSB corresponding to the first frequency offset is also Release 15 SSB.
  • the value of the first frequency offset corresponds to the system bandwidth, the sub-carrier spacing (SCS) corresponding to the SSB transmission corresponding to the first frequency offset, and the SCS corresponding to the data transmission included in the initial BWP
  • the SSB corresponding to the first frequency offset indicates the SSB used to determine the first frequency offset.
  • the SCS corresponding to the data transmission included in the initial BWP may be represented by the SCS corresponding to the public information transmission included in the initial BWP. It should be noted that the SCS corresponding to public information transmission can be represented by the SCS corresponding to the control information for scheduling public information transmission, or it can be directly represented by the SCS corresponding to the public information transmission.
  • the SCS corresponding to the control information can be understood as a network device
  • the SCS used when transmitting the control information has the same description for the SCS corresponding to the public information transmission, and will not be repeated.
  • the SCS corresponding to the control information for scheduling common information transmission may also be represented by the PDCCH SCS that carries the control information.
  • the PDCCH SCS here is, for example, the SCS corresponding to the control channel carrying the SIB1 scheduling information, or the SCS corresponding to the Type 0-PDCCH search space set (Type 0-PDCCH search space set) that includes the SIB1 scheduling information.
  • SIB1 scheduling information can be understood as control information for scheduling SIB1 transmission.
  • the following uses PDCCH SCS to indicate the SCS corresponding to the data transmission included in the initial BWP as an example for description.
  • the combination of ⁇ 15, 15 ⁇ , ⁇ 15, 30 ⁇ , ⁇ 30, 15 ⁇ , ⁇ 30, 30 ⁇ kHz is a combination that can be used below 6 GHz; ⁇ 120, 60 ⁇ , ⁇
  • the combination of 120, 120 ⁇ , ⁇ 240, 60 ⁇ , ⁇ 240, 120 ⁇ kHz is a combination that can be used when the frequency is higher than 6GHz.
  • the frequency bandwidth of the first initial BWP may be a bandwidth that matches the bandwidth capability of the first type of terminal device. For example, if the bandwidth capability of the first type of terminal device is 5 MHz, the frequency of the first initial BWP The bandwidth is also 5MHz; for another example, if the first type of terminal equipment includes multiple bandwidth capabilities, for example, NR REDCAP terminal equipment includes terminal equipment with bandwidth capabilities of 5MHz, 10MHz, and 20MHz, then the frequency bandwidth of the first initial BWP can be based on different The first type of terminal equipment is determined separately, or it may be determined according to the minimum bandwidth capability of the first type of terminal equipment, such as 5 MHz in this example.
  • the first initial BWP bandwidth may also be other values, which are not specifically limited in this application.
  • the size of the first initial BWP bandwidth may be pre-configured, for example, it may be 5 MHz or 10 MHz, and in terms of RB, it may be, for example, 24 (resource block, RB), or 48 RBs.
  • one RB is composed of an integer number of continuous subcarriers, for example, composed of 12 continuous subcarriers; or, the first initial BWP bandwidth is the main information carried in the physical broadcast channel (physical broadcast channel, PBCH) Block (master information block, MIB) notification, or other methods, as long as it is ensured that the first type of terminal device can support the bandwidth of the first initial BWP, specifically how the first type of terminal device obtains the bandwidth of the first initial BWP ,
  • the bandwidth of the first initial BWP can also be described by the bandwidth of control resource set 0 (CORESET0) including Type 0 PDCCH search space set.
  • the terminal device at least detects the control information scrambled by the system information radio network temporary identity (SI-RNTI).
  • SI-RNTI system information radio network temporary identity
  • the set of second frequency offsets is ⁇ 0, 2, 4, 12, 16, 38 ⁇ , where the unit of ⁇ 0, 2, 4, 12, 16, 38 ⁇ corresponds to RB .
  • the first frequency offset belongs to the first set, the first set is the set of the second frequency offset, then the first frequency offset is any of the sets ⁇ 0, 2, 4, 12, 16, 38 ⁇ item.
  • the second type terminal device can only determine a second frequency offset.
  • the first set referred to in this application refers to the set of frequency offsets that the second type terminal may use. , This will not be repeated in the following.
  • the first initial BWP bandwidth corresponding to the first terminal device is 24 RBs
  • the second initial BWP bandwidth is 48 RBs
  • the second frequency offset is 12 or 16
  • the first frequency offset is 0 or 4 .
  • the first frequency offset is 2.
  • the first initial BWP bandwidth corresponding to the first terminal device is 48 RBs, and the first frequency offset is any item in the set ⁇ 12, 16, 38 ⁇ .
  • the first initial BWP bandwidth corresponding to the first terminal device is 96 RBs, and the first frequency offset is 38.
  • the subcarrier interval corresponding to the RB is the subcarrier interval corresponding to the initial BWP, or the same description can be expressed by the PDCCH subcarrier interval .
  • the PDCCH subcarrier interval can be understood as the subcarrier interval corresponding to the initial BWP.
  • the frequency offset between one frequency resource A and another frequency resource B can be the RB position corresponding to the start position of frequency resource A and the start position of frequency resource B
  • the difference in the number of RBs between the corresponding RB positions can also be expressed by the difference in the number of RBs between the RB position corresponding to the end position of the frequency resource A and the RB position corresponding to the end position of the frequency resource B, where the frequency
  • the RB corresponding to the start position of the resource may be the RB corresponding to the lowest frequency or the highest frequency of the frequency resource.
  • the RB corresponding to the end position of the frequency resource may be the RB corresponding to the highest frequency or the lowest frequency of the frequency resource.
  • the subcarrier intervals corresponding to different frequency resources may be different or the same, and are not limited.
  • the number of RBs corresponding to the frequency offset between the different frequency resources can be represented by the RB of any one of the frequency resources.
  • the RB boundaries of different frequency resources may not be aligned.
  • the frequency offset between frequency resource A and frequency resource B is less than one RB, and one RB has 12 consecutive subcarriers in frequency. It can be considered that the frequency in the case shown in a in Figure 4 is The frequency offset between resource A and frequency resource B is 0 RBs. As shown in b in Figure 4, the frequency offset between frequency resource A and frequency resource B is greater than one RB and less than two RBs.
  • the RB boundaries of different frequency resources are not aligned, it can be considered that the frequency offset in b in Figure 4 In the case shown, the frequency offset between frequency resource A and frequency resource B is 1 RB.
  • the set of second frequency offset is ⁇ 5,6,7,8,18,20 ⁇ , where the unit of ⁇ 5,6,7,8,18,20 ⁇ corresponds to RB .
  • the first frequency offset belongs to the first set, and the first set is the set of the second frequency offset, then the first frequency offset is the set, and the first frequency offset is the set ⁇ 5,6,7, Any one of 8, 18, 20 ⁇ .
  • the first frequency offset is any one of ⁇ 5, 6 ⁇ .
  • the first frequency offset is any one of ⁇ 7, 8 ⁇ .
  • the first initial BWP bandwidth corresponding to the first terminal device is 48 RBs, and the first frequency offset is any item in the set ⁇ 18, 20 ⁇ .
  • the set of second frequency offsets is ⁇ 2, 6, 28 ⁇ , where the unit of ⁇ 2, 6, 28 ⁇ corresponds to RB.
  • the first frequency offset belongs to the first set, the first set is a set of second frequency offsets, and the first frequency offset is any item in the set ⁇ 2, 6, 28 ⁇ .
  • the first frequency offset is 2 RBs.
  • the first initial BWP bandwidth corresponding to the first type of terminal device is 96 RBs, and the first frequency offset is 28.
  • the set of second frequency offsets is ⁇ 0,1,2,3,4,12,17,16 ⁇ , where ⁇ 0,1,2,3,4,12,17,
  • the unit of 16 ⁇ corresponds to RB.
  • the first frequency offset belongs to the first set, the first set is the set of the second frequency offset, then the first frequency offset is the set ⁇ 0,1,2,3,4,12,17,16 ⁇ Any one of them.
  • the bandwidth of the second initial BWP is 48 RBs, and the second frequency offset is 12, 17, and 16, the first frequency offset is 0, 2, and 4, respectively.
  • the first initial BWP bandwidth corresponding to the first type of terminal device is 48 RBs, and the first frequency offset is any item in the set ⁇ 12, 17, 16 ⁇ .
  • the set of second frequency offsets is ⁇ 4, 0, 56 ⁇ , where The unit of ⁇ 4, 0, 56 ⁇ corresponds to RB.
  • the first frequency offset belongs to the first set, and the first set is a set of second frequency offsets, and the first frequency offset is any item in the set ⁇ 4, 0, 56 ⁇ .
  • the first initial BWP bandwidth corresponding to the first type of terminal device is 96 RBs, and the first frequency offset is any one of ⁇ 0, 56 ⁇ .
  • the set of second frequency offsets is ⁇ 0, 4, 28 ⁇ , where the unit of ⁇ 0, 4, 28 ⁇ corresponds to RB.
  • the first frequency offset belongs to the first set, and the first set is a set of second frequency offsets, and the first frequency offset is any item in the set ⁇ 0, 4, 28 ⁇ .
  • the first initial BWP bandwidth corresponding to the first type of terminal device is 48 RBs, and the first frequency offset set is any one of ⁇ 0, 28 ⁇ .
  • the design refers to The different values of the second frequency offset determine the specific value of the first frequency offset, and the second frequency offset is designed to take into account the effects of different system bandwidths and synchronization grids of different synchronization signal blocks, so The specific value of the first frequency offset determined according to different values of the second frequency offset can inherit the benefits of the second frequency offset design and can reduce the standard design complexity.
  • the frequency offset between the frequency resource of the first initial BWP and the frequency resource of the second initial BWP is 0, or the frequency resource of the first initial BWP and the frequency resource of the second initial BWP are different from each other.
  • the frequency offset between the two is the frequency resource size of the second initial BWP minus the frequency resource size of the first initial BWP.
  • the RB position corresponding to the start position of the frequency resource of the first initial BWP is the same as the RB position corresponding to the start position of the frequency resource of the second initial BWP, or as shown in Fig. 5
  • the RB position corresponding to the end position of the frequency resource of the first initial BWP is the same as the RB position corresponding to the end position of the frequency resource of the second initial BWP.
  • the first-type terminal device may determine the frequency resource of the first initial BWP in a pre-configured manner, and the first-type terminal device may also determine the frequency resource of the first initial BWP through the instruction information sent by the network device.
  • the indication information may be the frequency resource used to configure the first initial BWP, or the frequency resource used to configure the second initial BWP, which will be described separately in the following.
  • the first initial BWP may include the uplink initial BWP and the downlink initial BWP.
  • the following initial BWP is taken as an example to determine the first type of terminal equipment The method of the frequency resource of the first initial BWP will be described in detail.
  • the frequency resource of the first initial BWP is determined by pre-configuration.
  • the first-type terminal device pre-stores the frequency resource configuration information of the first initial BWP.
  • the first type of terminal device accesses the wireless system, and may determine the frequency resource configuration information of the first initial BWP according to the pre-configuration information.
  • This embodiment will be described below in conjunction with FIG. 6.
  • the several specific design methods given above can be presented in the form of a table.
  • the table shown in a in Fig. 6 is several specific design methods given in the scene corresponding to category one
  • the table shown in b in Fig. 6 is in the scene corresponding to category two.
  • the configuration information of the first type of terminal device can be pre-defined.
  • the first type of terminal device can save the table shown in FIG. 6 in advance.
  • the first type of terminal device accesses the wireless system, it can follow the table shown in FIG. 6 Determine the frequency resource configuration information of the first initial BWP.
  • the first type of terminal device may only save configuration information of the first frequency offset, and the bandwidth of the first type of terminal device may be pre-configured.
  • the first type of terminal device may also only save the first frequency offset and the bandwidth of the first type of terminal device, but not the bandwidth of the second type of terminal device and the second frequency offset.
  • the terminal device of the first type determines the frequency resource of the first initial BWP through the instruction information sent by the network device, and the instruction information is used to configure the frequency resource of the first initial BWP.
  • the frequency resource design of the first initial BWP, or the size of the first frequency offset, is the invention of this embodiment.
  • the network device sends instruction information how does the terminal device determine the frequency of the first initial BWP according to the instruction information Resources, all the solutions in the prior art can be used in this solution.
  • the first-type terminal device determines the frequency resource of the first initial BWP through the instruction information sent by the network device, and the instruction information is used to configure the frequency resource of the second initial BWP.
  • the first frequency offset is determined according to the first configuration information from the network device, and the first configuration information is used to configure the frequency resource of the second initial BWP.
  • the first configuration information is used to configure the frequency resource of the second initial BWP.
  • the instruction information sent by the network device is used to configure the frequency resource of the second initial BWP, and the first type terminal device determines the frequency resource of its first initial BWP according to the instruction information.
  • the network device There is no need to send additional indication information for the second type of terminal equipment to determine the frequency resource of the first initial BWP, which can save the network equipment’s overhead for sending control information and achieve energy saving of the network equipment.
  • this method is used in the prior art. On the basis of less changes. Several specific ways are given below to discuss how the first type of terminal device determines the frequency resource of the first initial BWP according to the instruction information sent by the network device.
  • FIG. 7 it is a schematic flowchart of a method for determining the BWP of the initial bandwidth portion provided by an embodiment of this application.
  • the method for determining the BWP of the initial bandwidth portion may include the following steps:
  • a first type terminal device receives first configuration information sent by a network device.
  • the first configuration information is the frequency resource used to configure the second initial BWP.
  • the terminal device of the first type determines a first index value according to the first configuration information.
  • the indication information is a MIB message.
  • the PDCCH-ConfigSIB1 in the MIB indicates the index of a table.
  • the minimum system bandwidth is 5MHz or 10MHz
  • PDCCH-ConfigSIB1 Indicate the index of Table 1 below.
  • the offset of the last column in the table is the second offset.
  • Table 1 includes the number of RBs (number of RBs) and the number of symbols (number of symbols), where number of RBs is used to indicate the bandwidth of the second initial BWP, and number of symbols is used to indicate the time resources occupied by CORESET0 in time, It should be noted that the time resources occupied by CORESET0 in time may appear periodically, where number of symbols represents the time resources of CORESET0 in a cycle, that is, the number of symbols occupied in time. Table 1 may also include SS/PBCH block and PDCCH CORESET multiplexing mode (SS/PBCH block and CORESET multiplexing pattern), which is not shown in Table 1 because it has little to do with this application.
  • SS/PBCH block and PDCCH CORESET multiplexing mode SS/PBCH block and CORESET multiplexing pattern
  • the terminal device of the first type determines the first index value according to the first configuration information. For example, the corresponding value of pdcch-ConfigSIB1 is 7, that is, the index is determined to be 7, that is, the first index value is 7. Table 1:
  • the terminal device of the first type determines M index values, and the frequency offset indicated by any one of the M index values determines the first frequency offset.
  • M is a positive integer.
  • the M index values and the first index value are used to indicate the frequency offset included in the first set.
  • the first set is ⁇ 0, 2, 4, 12, 16, 38 ⁇ .
  • the M index values are less than or equal to the index value of the first index value.
  • the terminal device of the first type determines the first frequency offset according to the frequency offset indicated by any one of the M index values.
  • the terminal device of the first type determines that the first index value is 7 according to the first configuration information, in the above table 1, the index values with the index value less than 7 are 0 to 6, so M is 7, and the index value 0 indicates The frequency offset is 0, the frequency offset indicated by index value 1 is 2, the frequency offset indicated by index value 2 is 4, the frequency offset indicated by index value 3 is 0, and the frequency offset indicated by index value 4
  • the shift amount is 2, the frequency offset indicated by the index value 5 is 4, and the frequency offset indicated by the index value 6 is 12, so the first frequency offset may be any of ⁇ 0,2,4,12 ⁇ One item.
  • FIG. 8 it is a schematic flowchart of another method for determining the BWP of the initial bandwidth portion provided by an embodiment of this application.
  • the method for determining the BWP of the downlink initial bandwidth portion may include the following steps:
  • a first type terminal device receives first configuration information sent by a network device.
  • the terminal device of the first type determines a first index value according to the first configuration information.
  • Step 801 and step 802 can be understood with reference to steps 701 and 702 in the embodiment corresponding to FIG. 7, and details are not repeated here.
  • the terminal device of the first type determines the first frequency offset according to the second index value, where the second index value is a value obtained by modulo the first index value to a preset value.
  • the terminal device of the first type determines a second index value, the second index value is a value obtained by taking the first index value modulo the preset value, and the first index value and the second index value indicate the frequency offset included in the first set .
  • the corresponding value of pdcch-ConfigSIB1 is the first index value, and the first index value modulates the preset value.
  • the preset value may be that the initial BWP bandwidth included in the table where the first index value is located is not greater than the total configured number of first initial BWP bandwidths corresponding to the first type of terminal device.
  • the preset value may be 6 (that is, all configuration information corresponding to the corresponding index value of 0 to 5).
  • the terminal device of the first type may determine the frequency resource distribution of the first initial BWP according to the result of the modulus in combination with Table 1. For example, if the first index value is 9, and the 9 mod 6 is 3, the first type terminal device can determine that the first frequency offset is the index value 3, which corresponds to the frequency offset in Table 1. Is 0.
  • the preset value may be 12 (that is, all configurations corresponding to index values of 0 to 11).
  • the terminal device of the first type may determine the frequency resource distribution of the first initial BWP according to the result of the modulus in combination with Table 1. For example, if the first index value is 13, 13 mod 12 is used to obtain 1, then the first type terminal device can determine that the first frequency offset is the frequency offset corresponding to the index value 1 in Table 1. , Which is 2 RBs.
  • the first type of terminal device determines according to pdcch-ConfigSIB1 that the number of second time-frequency resources corresponding to CORESET0 included in the second initial BWP is 48 RBs*1 OFDM symbols. Assuming that the bandwidth of the first type of terminal device is 24 RBs, pass Table 1. When the first terminal device can determine that the number of first time-frequency resources corresponding to CORESET0 included in the first initial BWP is 24 RB*2 OFDM symbols, the number of first time-frequency resources is closest to the number of second time-frequency resources.
  • the corresponding frequency offset (offset in the table) can be 0, 2, 4, and the first A frequency offset can be any value in ⁇ 0, 2, 4 ⁇ .
  • the first frequency offset can be pre-configured as the frequency offset corresponding to the smallest index value in ⁇ 0, 2, 4 ⁇
  • the offset may be the minimum value of the frequency offset, for example, the first frequency offset is pre-configured to be 0.
  • the first-type terminal device determines from pdcch-ConfigSIB1 that the time-frequency resource corresponding to CORESET0 included in the second initial BWP is 48 RB*2 OFDM symbols, or the corresponding time-frequency resource is more, the first-type terminal device It can be determined that the number of time-frequency resources corresponding to CORESET0 included in the first initial BWP is 24 RB*3 OFDM symbols.
  • the corresponding frequency offset (offset in the table) can be 0, 2, 4
  • the first frequency offset can be any value in ⁇ 0,2,4, ⁇ .
  • the first frequency offset can be pre-configured as ⁇ 0,2, 4, ⁇
  • the frequency offset corresponding to the minimum index value or the minimum of the frequency offsets for example, the first frequency offset is to be configured as 0.
  • FIG. 9 a schematic diagram of a method for determining an initial BWP provided by an embodiment of this application.
  • the first type of terminal device determines the frequency resource of the initial BWP corresponding to the first type of terminal device. There is no overlap between the frequency resource of the first initial BWP and the frequency resource of the second initial BWP.
  • the terminal device and the second type terminal device have different capabilities.
  • the first initial BWP bandwidth may be predefined as the bandwidth of the first type of terminal device, for example, 5 MHz.
  • the frequency offset between the first initial BWP frequency resource and the second initial BWP frequency resource may be predefined, or may be implemented in other ways, and is not specifically limited.
  • the frequency offset between the first initial BWP frequency resource and the second initial BWP frequency resource is 1 RB, so that it can support diversified data services as described above, or support diversified data services at the same time. The system bandwidth is minimized.
  • the first initial BWP may include an uplink initial BWP and a downlink initial BWP.
  • FIG. 10 it is a schematic diagram of a method for determining an initial BWP provided by an embodiment of this application.
  • the first type terminal device determines the frequency resource of the initial BWP corresponding to the first type terminal device, and there is no overlap between the frequency resource of the first initial BWP and the frequency resource of the synchronization signal block SSB, and the first type terminal device It is different from the capabilities of the second type of terminal equipment.
  • the system frequency resources can be effectively used, and it is especially suitable for systems with small system bandwidth but diversified services.
  • the frequency offset between the frequency resource of the first initial BWP and the frequency resource of the SSB may be predefined, and the bandwidth of the first initial BWP may be predefined as the bandwidth of the first type of terminal device, For example, it is 5MHz, but other values are also possible, and there is no specific limitation.
  • the frequency resource of the first initial BWP can be understood as including the frequency resource location of the first initial BWP, which specifically can be through the frequency start point of the first initial BWP and the bandwidth of the first initial BWP, or The frequency end point of the first initial BWP and the bandwidth of the first initial BWP are represented.
  • the same description is given for the second initial BWP, which is not specifically limited in the embodiments of the present application.
  • the method for determining the first initial BWP frequency resource with the NR carrier frequency greater than 6 GHz may also adopt the foregoing implementation manner.
  • CORESET0 can be understood as not only as above, but also as a control resource set CORESET including the transmission of scheduling information, where the scheduling information is used to schedule the transmission of public information included in the initial BWP. Control information.
  • CORESET0 is a time-frequency resource set including SIB1 PDCCH transmission, and/or a time-frequency resource set including Paging PDCCH transmission, and/or a time-frequency resource set including RAR PDCCH transmission.
  • SIB1 PDCCH is a physical downlink control channel that carries control information for scheduling SIB1 transmission
  • Paging PDCCH is a physical downlink control channel that carries control information for scheduling Paging transmission
  • RAR is a physical downlink control channel that carries information for scheduling RAR.
  • the frequency resource of CORESET0 can be equivalent to the frequency resource of the initial BWP
  • the time resource of CORESET0 can be represented by the time position where the PDCCH search space (search space, SS or PDCCH search space set search space set) associated with the CORESET0 appears.
  • the PDCCH SS or PDCCH search space set associated with the CORESET0 can be understood as including the PDCCH SS or PDCCH search space set configuration in the frequency resource corresponding to the CORESET0, where the search space set can be understood as including a group of terminal devices that need to be detected A set of PDCCH candidates.
  • the terminal device On the PDCCH candidate, the terminal device may or may not detect the control information for scheduling the data transmission of the terminal device. This depends on whether the network device sends the scheduling of the terminal on the PDCCH candidate. Control information for device data transmission.
  • the control information here may be cell-specific control information or terminal device-specific control information, which is not specifically limited in the embodiment of the present application.
  • the time resource of CORESET0 can be understood as, for example, the time resource notified by the pdcch-ConfigSIB1 included in the MIB, that is, the time resource corresponding to the Type0-PDCCH search space set.
  • time resources corresponding to CORESET0 are used to describe the following.
  • the radio frame where the time resource of the first CORESET0 corresponding to the first type terminal device is located does not include the time resource for the synchronization signal block SSB transmission, or the second type terminal device is not included in the slot where the first time resource is located The time resource of the corresponding second CORESET0.
  • the first time resources corresponding to different beam directions are preferentially mapped in the radio frame that does not include the time resources for SSB transmission, and are mapped to the slot index according to the associated SSB index in ascending order.
  • the time slot to which the first time resource is mapped does not include the time resource of the second CORESET0.
  • the beam directions corresponding to the first time resources located at different time positions may be the same or different, and are not specifically limited.
  • the first time resources corresponding to the same SSB are distributed in two consecutive time slots in a radio frame.
  • multiple first time resources that have the same quasi colocation (QCL) relationship with one SSB are distributed in consecutive time slots in one radio frame.
  • the first time resources corresponding to different beam directions can be understood as: different SSB indexes associated with CORESET0 correspond to different beam directions. That is, different beam directions can be distinguished by the SSB index. If the SSB index is different, the beam direction corresponding to CORESET0 associated with the SSB is considered to be different. Even in practice, the data of the same beam direction sent by the network device through different SSB indexes can also be considered as different beam directions in this application.
  • the first time resource is determined according to second configuration information from the network device, and the second configuration information is used to configure the second time resource.
  • second configuration information is used to configure the second time resource.
  • the first time resource can be determined by the following formula:
  • the second configuration information may be a MIB message, and the manner of determining each parameter is as follows:
  • the parameter O and the parameter M can be directly determined according to the pdcch-ConfigSIB1 indication included in the MIB.
  • L is the maximum number of SSBs that can be transmitted in the frequency band where the SSB is located.
  • the SSB will be sent periodically in a half-frame of 5 ms.
  • the half-frame period including the SSB can be ⁇ 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms ⁇ .
  • the SSB can be repeated multiple times in a half frame, and the maximum number of repetitions is L times.
  • the value of L is determined by the frequency band where the NR carrier is located.
  • Offset' represents the time offset, which is a pre-configured value or indicated by the second configuration information.
  • i is the index of the SSB corresponding to the time resource of the first CORESET0.
  • M'can be the same as M.
  • u corresponds to different subcarrier intervals or different parameter sets (numerology), the value of u can refer to Table 2
  • the radio frame index in which the slot is obtained by the above calculation can be determined by the parity corresponding to the slot index, or the slot obtained by the above calculation is preferentially included in the radio frame that does not include NR SSB transmission.
  • the time resource (for example, time slot) where the first time resource is located can also be determined by the following formula:
  • the first type of terminal device determines the O and M parameters in the above formula according to the pdcch-ConfigSIB1 included in the MIB, and then determines the slot where the first time resource is located according to the predefined time offset and n0 calculated by the above formula ,
  • the time offset here can be understood as corresponding to the same SSB index, the time offset between the first time resource and the second time resource. For example, if the O indicated by pdcch-ConfigSIB1 is 0, the predefined time offset The shift amount can be 5; for another example, no matter what the specific value of O indicated by pdcch-ConfigSIB1 is, the time offset can be 5.
  • the terminal device of the first type determines the values of the O and M parameters in the above formula according to the control information, and combines the predefined values
  • the value of the first time resource directly determines the slot where the first time resource is located.
  • the embodiment of the present application does not specifically limit the specific transmission mode of the control information and the transmission channel carried.
  • the radio frame index in which the slot is calculated in this way can be determined by the parity corresponding to the slot index, or the slot calculated by the above calculation is prioritized in the radio frame that does not include NR SSB transmission.
  • the first configuration information and the second configuration information may be the same information, and the first configuration information and the second configuration information may also be different information, but are carried in the same
  • the downlink data transmission channel may include, but is not limited to, broadcast channels, downlink control information, and downlink shared channels, which will not be repeated in the following.
  • the first time resource and the time resource including SSB transmission may be time domain multiplexing (TDM), that is, the first time resource and the time resource including SSB transmission are between There is no overlap in time.
  • TDM time domain multiplexing
  • the time resource including the SSB transmission is different from the time slot corresponding to the first time resource, or the corresponding OFDM symbol is different.
  • the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device is determined, and the first time resource is included in the second time resource.
  • this embodiment can be used in conjunction with the frequency resource of the first initial BWP determined by the first or second frequency design in the above description.
  • the first time resource and the time resource including SSB transmission may be TDM, that is, the first time resource and the time resource including SSB transmission do not overlap in time.
  • the time resource including the SSB transmission is different from the time slot corresponding to the first time resource, or the corresponding OFDM symbol is different.
  • the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device is determined, and the first time resource is included in the time resource of the synchronization signal block SSB.
  • the SSB corresponding to the terminal device of the first type and the SSB corresponding to the terminal device of the second type may be the same or different, which is not specifically limited in this application.
  • any one of the three time resource design methods can be combined with any one of the above-mentioned three frequency resource design methods.
  • the first frequency resource design method can be combined with the first CORESET0 time resource design method, which can be specifically understood with reference to the schematic diagram shown in FIG. 3.
  • the design method of the first frequency resource can be combined with the design method of the second CORESET0 time resource.
  • the first frequency resource design method can be combined with the third CORESET0 time resource design method, and the specific design method can be understood with reference to the schematic diagram shown in FIG. 12.
  • the second frequency resource design method can be used in combination with the first CORESET0 time resource design method, which can be specifically understood with reference to the schematic diagram shown in FIG. 13.
  • the second way of designing frequency resources can be combined with the second way of designing time resources of CORESET0, which can be specifically understood with reference to the schematic diagram shown in FIG. 9.
  • the second frequency resource design method can be combined and applied with the third CORESET0 time resource design method, which can be specifically understood with reference to the schematic diagram shown in FIG. 14.
  • the third frequency resource design method can be used in combination with the first CORESET0 time resource design method, which can be specifically understood with reference to the schematic diagram shown in FIG. 15.
  • the third frequency resource design method can be used in combination with the second CORESET0 time resource design method, which can be specifically understood with reference to the schematic diagram shown in FIG. 16.
  • the third frequency resource design method can be combined with the third CORESET0 time resource design method.
  • the specific design method can be understood with reference to the schematic diagram shown in FIG. 10.
  • the network device can flexibly configure the above-mentioned combination mode according to its own business requirements.
  • the network device can be configured with X types of configurations, and the X types of configurations include at least one of the above-mentioned combination modes.
  • the network device is configured with only one configuration, then this configuration can be one of the aforementioned combinations, or the network device can be configured with two configurations, and the two configurations are at least two of the aforementioned combinations.
  • the specific configuration used by the terminal device to determine the frequency resource and time resource (CORESET0 time resource) of the first initial BWP can be implemented in other ways, and this application does not specifically limit it.
  • the above describes the method of determining the initial BWP from how to determine the frequency resource of the initial BWP and how to determine the time resource of CORESET0. It should be noted that the first time resource can occur periodically. The following will combine specific examples to compare the first The cycle design method of time resources is explained.
  • the period of the first time resource may be the same as the period of the second time resource, or the period of the first time resource and the second time resource may be different.
  • the period of the first time resource may be an integer multiple or a fractional multiple of the period of the second time resource.
  • the period of the first time resource and the second time resource are different, which can facilitate the network equipment to adaptively design appropriate time resources to carry the transmission of public information according to the capabilities of different types of terminal devices, which is particularly important in ensuring the performance of public information transmission. While covering performance, it ensures the efficiency of resource use and avoids unnecessary resource overhead on the network equipment side.
  • the first cycle design method of the first time resource provided in this application can be applied separately, or it can be combined with the three initial BWP frequency resource design methods and the three CORESET0 time resource design methods described above. Combined use, specifically, when the first time resource cycle design method is combined with any CORESET0 time resource design method, the first time resource design method for each cycle and CORESET0 time resource design The same way.
  • the first cycle design method of the first time resource can be combined with the second CORESET0 time resource design method.
  • the first time resource is included in the second time resource, which may include at least one of the following understandings:
  • the period of the first time resource is the same as the period of the second time resource.
  • the second time resource where the second CORESET0 appears includes the time resource of the first CORESET0.
  • the time resource of the second CORESET0 corresponds to The range of time resources included in the M1-th OFDM symbol to the M2-th OFDM (including the M1-th and M2-th OFDM symbols) in a slot, then the time resource of the first CORESET0 can correspond to the M3-th to the M3-th in the slot M4 OFDM symbols (including M3 and M4 OFDM symbols), where M3 is not less than M1, and M4 is not greater than M2.
  • the period of the first time resource is different from the period of the second time resource, and the period of the first time resource is an integer multiple of the period of the second time resource, and the time resource where the first time resource overlaps with the second time resource Above, the first time resource is included in the second time resource.
  • the first time resource can also satisfy: the period of the first time resource is different from the period of the second time resource, and the period of the first time resource is a fractional multiple of the period of the second time resource, and the For time resources where a time resource and a second time resource overlap, the first time resource is included in the second time resource.
  • the period of the second time resource is 10 ms
  • the period of the first time resource is 5 ms.
  • this implementation manner can also be understood as the first time resource included in the second time resource.
  • the first time resource may be the same as the period of the time resource of the SSB corresponding to the first type of terminal device, or the first time resource may be the same as the period of the time resource of the SSB corresponding to the first type of terminal device Not the same.
  • the period of the first time resource may be an integer multiple or a fractional multiple of the period of the time resource of the SSB.
  • the first time resource is different from the SSB transmission cycle, which can facilitate the network equipment to adaptively design appropriate time resources to carry the transmission of public information according to the coverage performance of different data, which ensures the efficiency of resource use and avoids failures on the network equipment side. Necessary resource expenditure.
  • the terminal device can ensure the transmission performance of the SSB by means of energy accumulation, and for the first time resource including the transmission of public information, a transmission period different from that of the SSB can be set to ensure the transmission performance of the public information.
  • the second cycle design method of the first time resource can be applied separately, or it can be combined with the three initial BWP frequency resource design methods and the three CORESET0 time resource design methods described above. Combined use, specifically, when the second time resource cycle design method is combined with any CORESET0 time resource design method, the second time resource design method for each cycle and CORESET0 time resource design The same way.
  • the first time resource is included in the time resource of the SSB, which may include at least one of the following understandings:
  • the period of the first time resource is the same as the period of the time resource of the SSB.
  • the time resource in which the SSB appears includes the time resource of the first CORESET0.
  • the time resource of the SSB corresponds to the first time resource in a time slot.
  • M1 OFDM symbol to M2 OFDM include the time resource range, then the time resource of the first CORESET0 can correspond to the M3 to M4 OFDM symbols (including M3 and M4 OFDM symbols), where M3 is not less than M1, and M4 is not greater than M2.
  • the period of the first time resource is different from the period of the time resource of the SSB, and the period of the first time resource is an integer multiple of the period of the time resource of the SSB, and the first time resource coincides with the time resource of the SSB
  • the first time resource is included in the time resource of the SSB.
  • the first time resource can also satisfy: the period of the first time resource is different from the SSB transmission period, and the period of the first time resource is a fractional multiple of the SSB transmission period, and the period of the first time resource is a fraction of the SSB transmission period.
  • the first time resource is included in the SSB time resource.
  • the transmission period of the SSB is 10 ms
  • the period of the first time resource is 5 ms.
  • the first time resource is also included in the SSB time resource, so this implementation manner can also be understood as the first time resource is included in the SSB time resource.
  • the probability that the network device turns off the symbol can be increased, and the network device can reduce the transmission of public information. And SSB required power consumption.
  • the period of the first time resource or the period of the time resource including the transmission of public information or the period of the first CORESET0 time resource may be the default period of the terminal device, such as 20 ms, or it may be The period during which the network device sends public information or the period during which it actually sends public information.
  • the period during which the network device sends public information can be 5ms, 10ms, 20ms, 40ms,..., and the period during which the network device actually sends public information can be sent by the network device. Any value in the period of the public information. The same description is also given for the period of the second time resource, and will not be repeated.
  • the SSB transmission period can also be the default period of the terminal device, or the period of the network device sending the SSB or the period of actually sending the SSB, for example, the period of the network device sending the SSB. It can be 5ms, 10ms, 20ms, 40ms,..., and the period when the network device actually sends the SSB can be any one of the periods when the network device sends public information.
  • the method for determining the initial BWP provided by this application has been introduced from the three aspects of frequency resource design method, CORESET0 time resource design method, and time resource cycle design method.
  • the design method provided by this application is simple in design and inherits the current situation.
  • the original intention of some second initial BWP is to reduce the complexity of standard design.
  • the above-mentioned first-type terminal device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the first type terminal device in Figures 3 to 16 can be implemented by one physical device, or can be implemented by multiple physical devices, or a logical function module in one physical device.
  • the embodiment does not specifically limit this.
  • the first type of terminal equipment or terminal equipment may also be referred to as a device for determining the BWP of the downlink initial bandwidth part, which may be implemented by the communication equipment in FIG. 17.
  • FIG. 17 shows a schematic diagram of the hardware structure of a terminal device provided by an embodiment of the application. It includes a communication interface 1701 and a processor 1702, and may also include a memory 1703.
  • the communication interface 1701 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the processor 1702 includes, but is not limited to, a central processing unit (CPU), a network processor (NP), an application-specific integrated circuit (ASIC) or a programmable logic device (programmable logic device, PLD) one or more.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • the processor 1702 is responsible for the communication line 1704 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1703 may be used to store data used by the processor 1702 when performing operations.
  • the memory 1703 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, Optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can Any other medium accessed by the computer, but not limited to this.
  • the memory may exist independently, and is connected to the processor 1702 through a communication line 1704.
  • the memory 1703 may also be integrated with the processor 1702. If the memory 1703 and the processor 1702 are independent devices, the memory 1703 and the processor 1702 are connected, for example, the memory 1703 and the processor 1702 may communicate through a communication line.
  • the communication interface 1701 and the processor 1702 may communicate through a communication line, and the communication interface 1701 may also be directly connected to the processor 1702.
  • the communication line 1704 may include any number of interconnected buses and bridges, and the communication line 1704 links various circuits including one or more processors 1702 represented by the processor 1702 and memories represented by the memory 1703 together.
  • the communication line 1704 can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, this application will not further describe them.
  • the terminal device may include: a processor, configured to execute the program stored in the memory, and when the program stored in the memory is executed, the processor is configured to determine the first terminal device corresponding to the first type of terminal device.
  • the frequency resource of the initial BWP, the frequency resource of the first initial BWP may be included in the frequency resource of the second initial BWP corresponding to the second type of terminal device, and the capabilities of the first type of terminal device and the second type of terminal device are different.
  • the communication interface is coupled with the processor, and is used to transmit signaling and/or data to the network device according to the frequency resource of the first initial BWP.
  • it may include: a processor, configured to determine the frequency resource of the initial BWP corresponding to the first type of terminal device, where there is no overlap between the frequency resource of the first initial BWP and the frequency resource of the second initial BWP, The first type of terminal equipment and the second type of terminal equipment have different capabilities.
  • the communication interface is coupled with the processor, and is used to transmit signaling and/or data to the network device according to the frequency resource of the first initial BWP.
  • it may include: a processor, configured to determine the frequency resource of the initial BWP corresponding to the first type of terminal device, where there is no overlap between the frequency resource of the first initial BWP and the frequency resource of the synchronization signal block SSB, The first type of terminal equipment and the second type of terminal equipment have different capabilities.
  • the communication interface is coupled with the processor, and is used to transmit signaling and/or data to the network device according to the frequency resource of the first initial BWP.
  • the capabilities of the first type terminal device and the second type terminal device are different, which may include at least one of the following: the first type terminal device and the second type terminal device have different bandwidth capabilities.
  • the first type terminal equipment and the second type terminal equipment have different numbers of transmitting and receiving antennas.
  • the first type of terminal equipment and the second type of terminal equipment have different uplink maximum transmit powers.
  • the first frequency offset is determined according to the first configuration information from the network device, and the first configuration information is used to configure the frequency resource of the second initial BWP.
  • the first frequency offset is the same as the second frequency offset.
  • the processor is specifically configured to: determine the first index value according to the first configuration information. Determine M index values, M is a positive integer, M index values and the first index value are used to indicate the frequency offsets that can be included in the first set, and the M index values are less than or equal to the index value of the first index value.
  • the first frequency offset is determined according to the frequency offset indicated by any one of the M index values.
  • the processor is specifically configured to: determine the first index value according to the first configuration information.
  • the second index value is determined, the second index value is a value obtained by modulating the first index value with the preset value, and the first index value and the second index value indicate the frequency offset that can be included in the first set.
  • the first frequency offset is determined according to the second index value.
  • the first frequency offset is determined according to the first number of time-frequency resources, and the first number of time-frequency resources and the second number of time-frequency resources correspond to the frequency offsets that can be included in the first set
  • the first number of time-frequency resources is the number of time-frequency resources closest to the number of second time-frequency resources
  • the second number of time-frequency resources is the number of time-frequency resources corresponding to CORESET0 of the second type of terminal device.
  • the processor is further configured to: determine the time resource of the first control resource set 0CORESET0 corresponding to the first type of terminal device, and the radio frame where the first time resource is located may not include synchronization signal block SSB transmission Or, the time slot in which the first time resource is located may not include the time resource of the second CORESET0 corresponding to the second type of terminal device.
  • the first time resources corresponding to the same SSB are distributed in two consecutive time slots in a radio frame.
  • the processor is further configured to determine the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device, and the first time resource may be included in the second time resource.
  • the processor is further configured to determine the time resource of the first control resource set OCORESET0 corresponding to the first type of terminal device, and the first time resource may be included in the time resource of the synchronization signal block SSB.
  • the first time resource is determined according to the second configuration information from the network device Yes, the second configuration information is used to configure the second time resource.
  • the communication interface can be regarded as the transceiver unit of the terminal device
  • the processor with processing function can be regarded as the processing unit of the terminal device
  • the memory can be regarded as the storage unit of the terminal device.
  • the terminal device includes a transceiving unit 1810, a processing unit 1820, and a storage unit 1830.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1810 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1810 can be regarded as the sending unit, that is, the transceiving unit 1810 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiving unit 1810 is configured to perform the transceiving operations on the terminal device side of the first type in FIGS. 3 to 15.
  • the processing unit 1820 is configured to execute the processing steps on the terminal device side of the first type in FIG. 3 to FIG. 15.
  • the storage unit 1830 is configured to execute the storage steps on the side of the first type terminal device in FIG. 3 to FIG. 15.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the program can be stored in a computer-readable storage medium, and the storage medium can include: ROM, RAM, magnetic disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种确定初始带宽部分BWP的方法及装置,其中方法包括:确定第一初始BWP的频率资源,其中第一初始BWP的频率资源包括在第二初始BWP的频率资源内,第一初始BWP的频率资源对应于第一类型终端设备,第二初始BWP的频率资源对应于第二类型终端设备,两种类型终端设备的能力不同。本申请实施例提供的方案提供了一种新的确定BWP的方法,实现系统支持不同类型的终端设备的同时节省所需要的系统带宽。

Description

一种确定初始带宽部分BWP的方法、装置及存储介质 技术领域
本申请涉及通信领域,尤其涉及一种确定初始带宽部分BWP的方法、装置及存储介质。
背景技术
新无线(new radio,NR)系统,是基于正交频分复用(orthogonal frequency division multiplexing,OFDM)的全新空口设计的第五代(the fifth-generation,5G)移动通信技术的标准,也是下一代非常重要的蜂窝移动技术基础。NR系统业务非常多样,可以包括面向增强型移动宽带(enhanced mobile broadband,eMBB)业务、超可靠低延时通信(ultra-reliability low-latency communication,URLLC)业务以及大规模机器通信(massive machine-type communication,mMTC)业务。
NR系统业务的多样化,需要NR系统设计可以满足不同带宽能力终端设备的接入需求。例如,传输eMBB业务的终端设备和传输URLLC业务的终端设备可以通过确定NR系统的宽带信息接入NR系统,而部分传输mMTC业务的终端设备由于设计成本、低功耗等方面的考虑,对于数据传输的工作带宽一般不会设计的很大,因此一般只通过低带宽接入。
NR系统带宽较大,至少为100MHz。而终端设备由于带宽能力不同,所支持的最大带宽也不同,某些终端设备可能只能支持80MHz、40MHz或者20MHz,甚至更小的带宽。因此,通常情况下,在NR中为了适应终端设备所支持的最大带宽的需求,引入了下行初始带宽部分(bandwidth part,BWP)的概念。
发明内容
本申请提供一种下行初始带宽部分BWP的方法、装置及存储介质,提供了一种新的初始BWP的设计方案,可以区分配置不同类型终端设备的初始带宽部分,进而提升不同类型终端设备的初始接入性能。
本申请第一方面提供一种确定初始带宽部分BWP的方法,该方法可以用于无线通信系统,包括4.5G或5G无线通信系统,以及基于NR的进一步演进系统,以及未来的无线通信系统。
可以包括:确定第一类型终端设备对应的第一初始BWP的频率资源,第一初始BWP的频率资源可以包括于第二类型终端设备对应的第二初始BWP的频率资源内,第一类型终端设备和第二类型终端设备的能力不同。根据所述第一初始BWP的频率资源与网络设备传输信令和/或数据。
本申请涉及两种类型的终端设备,关于终端设备也可以称为终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑,还可以是应用于虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)以及智慧家庭(smart home)等场景中的无线终端。本申请中将前述终端设备及可应用 于前述终端设备的芯片统称为终端设备。应理解,本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
由第一方面可知,第一方面提供了一种新的确定初始带宽部分BWP的方法,设计简单,继承现有的第二初始BWP的设计初衷,降低标准设计复杂度。
可选地,结合上述第一方面,在第一种可能的实现方式中,第一类型终端设备和第二类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。两种类型的终端设备对应的协议版本不同,例如对应Release 15的NR终端设备与对应Release 17的NR终端设备可以认为是两种类型的终端设备。两种类型的终端设备支持的载波聚合能力不同。两种类型的终端设备对数据的处理时间能力不同。
可选地,结合上述第一方面或第一方面第一种可能的实现方式,在第二种可能的实现方式中,第一初始BWP的频率资源是根据第一频率偏移量确定的,第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合。其中,第一频率偏移量为第一初始BWP的频率资源相对同步信号块SSB的频率资源的偏移量,第二频率偏移量为第二初始BWP的频率资源相对SSB的频率资源的偏移量。由第一方面第二种可能的实现方式可知,可以实现第一初始BWP的频率资源与第二初始BWP的频率资源之间的嵌套关系,节省系统为了支持多样化终端设备所需要的系统带宽。
可选地,结合上述第一方面第二种可能的实现方式,在第三种可能的实现方式中,第一频率偏移量是根据来自网络设备的第一配置信息确定的,第一配置信息用于配置第二初始BWP的频率资源。由第一方面第三种可能的实现方式可知,网络设备无需再为第二类型终端设备额外发送指示信息,用于确定第一初始BWP的频率资源,可以节省网络设备发送控制信息的开销,实现网络设备的节能。
可选地,结合上述第一方面第二种或第一方面第三种可能的实现方式,在第四种可能的实现方式中,第一频率偏移量与第二频率偏移量相同。
可选地,结合上述第一方面第三种可能的实现方式,在第五种可能的实现方式中,第一频率偏移量是根据来自网络设备的第一配置信息确定的,可以包括:第一类型终端设备根据第一配置信息确定第一索引值。第一类型终端设备确定M个索引值,M为正整数,M个索引值和第一索引值用于指示第一集合中可以包括的频率偏移量,M个索引值小于或等于第一索引值的索引值。第一类型终端设备根据M个索引值中的任意一个索引值指示的频率偏移量确定第一频率偏移量。由第一方面第五种可能的实现方式可知,给出了一种具体的确定第一频率偏移量的方式,增加了方案的多样性。
可选地,结合上述第一方面第三种可能的实现方式,在第六种可能的实现方式中,第一频率偏移量是根据来自网络设备的第一配置信息确定的,可以包括:第一类型终端设备根据第一配置信息确定第一索引值。第一类型终端设备确定第二索引值,第二索引值为第一索引值对预设值取模后的值,第一索引值和第二索引值指示第一集合中可以包括的频率偏移量。第一类型终端设备根据第二索引值确定第一频率偏移量。由第一方面第六种可能 的实现方式可知,给出了一种具体的确定第一频率偏移量的方式,增加了方案的多样性。
可选地,结合上述第一方面第二种可能的实现方式,在第七种可能的实现方式中,第一频率偏移量是根据第一时频资源数确定的,第一时频资源数和第二时频资源数对应于第一集合中可以包括的频率偏移量,第一时频资源数为最接近第二时频资源数的时频资源数,第二时频资源数为第二类型终端设备的CORESET0对应的时频资源数。由第一方面第七种可能的实现方式可知,给出了一种具体的确定第一频率偏移量的方式,增加了方案的多样性。
可选地,结合上述第一方面或第一方面第一种至第一方面第七种可能的实现方式,在第八种可能的实现方式中,该方法还可以包括:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。由第一方面第八种可能的实现方式可知,当系统开始支持第一类型终端设备业务传输时,不会因为第一类型终端设备的引入,影响系统中可能已经部署了的第二类型终端设备的业务传输,特别是当对应第二类型终端设备的公共信息传输与SSB传输在相同的时隙或者相同的无线帧内时,通过这种实现方式,可以避免对第二类型终端设备初始接入的影响。
可选地,结合上述第一方面第八种可能的实现方式,在第九种可能的实现方式中,该方法还可以包括:对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。由第一方面第九种可能的实现方式可知,可以保证在多个第一时间资源内传输的调度公共信息传输的控制信息之间的联合信道估计性能,便于终端设备实现合并检测性能。
可选地,结合上述第一方面或第一方面第一种至第一方面第七种可能的实现方式,在第十种可能的实现方式中,确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于第二时间资源内。由第一方面第十种可能的实现方式可知,给出了一种具体的第一时间资源的设计方式,增加了方案的多样性。
可选地,结合上述第一方面或第一方面第一种至第一方面第七种可能的实现方式,在第十一种可能的实现方式中,确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。由第一方面第十一种可能的实现方式可知,给出了一种具体的第一时间资源的设计方式,增加了方案的多样性。
可选地,结合上述第一方面第八种至第一方面第十种可能的实现方式,在第十二种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。由第一方面第十二种可能的实现方式可知,网络设备无需再为第二类型终端设备额外发送指示信息,用于确定第一时间资源,可以节省网络设备发送控制信息的开销,实现网络设备的节能。
本申请第二方面提供一种下行初始带宽部分BWP的方法,可以包括:第一类型终端设备确定第一类型终端设备对应的初始BWP的频率资源,第一初始BWP的频率资源与第二初始BWP的频率资源之间无重叠,第一类型终端设备和第二类型终端设备的能力不同。由第二方面可知,由于第一初始BWP的频率资源与第二初始BWP的频率资源之间没有重叠,因 此可以减小对第二类型终端设备数据传输的影响。对于系统带宽比较大的系统而言,通过这种实现方式,既可以实现对多样化数据业务的支持(例如同时支持eMBB业务和mMTC业务),又不影响对已经部署的eMBB业务的影响。
可选地,结合上述第二方面,在第一种可能的实现方式中,第一类型终端设备和第二类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
可选地,结合上述第二方面或第二方面第一种可能的实现方式,在第二种可能的实现方式中,确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。
可选地,结合上述第二方面第二种可能的实现方式,在第三种可能的实现方式中,该方法还可以包括:对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。
可选地,结合上述第二方面或第二方面第一种可能的实现方式,在第四种可能的实现方式中,确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于第二时间资源内。
可选地,结合上述第二方面或第二方面第一种可能的实现方式,在第五种可能的实现方式中,确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。
可选地,结合上述第二方面第二种至第二方面第四种可能的实现方式,在第六种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。
本申请第三方面提供一种下行初始带宽部分BWP的方法,可以包括:第一类型终端设备确定第一类型终端设备对应的初始BWP的频率资源,第一初始BWP的频率资源与同步信号块SSB的频率资源之间无重叠,第一类型终端设备和第二类型终端设备的能力不同。由第三方面可知,可以有效利用系统频率资源,实现第一初始BWP的频率资源与第二初始BWP的频率资源之间的嵌套关系,尤其适用于系统带宽较小但又需要服务多样化业务的系统。
可选地,结合上述第三方面,在第一种可能的实现方式中,第一类型终端设备和第二类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
可选地,结合上述第三方面或第三方面第一种可能的实现方式,在第二种可能的实现方式中,确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。
可选地,结合上述第三方面第二种可能的实现方式,在第三种可能的实现方式中,该方法还可以包括:对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。
可选地,结合上述第三方面或第三方面第一种可能的实现方式,在第四种可能的实现方式中,确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于第二时间资源内。
可选地,结合上述第三方面或第三方面第一种可能的实现方式,在第五种可能的实现方式中,确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。
可选地,结合上述第三方面第二种至第三方面第四种可能的实现方式,在第六种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。
本申请第四方面提供一种确定下行初始带宽部分BWP的装置,可以包括:处理单元,用于确定第一类型终端设备对应的第一初始BWP的频率资源,第一初始BWP的频率资源可以包括于第二类型终端设备对应的第二初始BWP的频率资源内,第一类型终端设备和第二类型终端设备的能力不同。通信单元,用于根据第一初始BWP的频率资源与网络设备传输信令和/或数据。
可选地,结合上述第四方面,在第一种可能的实现方式中,第一类型终端设备和第二类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
可选地,结合上述第四方面或第四方面第一种可能的实现方式,在第二种可能的实现方式中,第一初始BWP的频率资源是根据第一频率偏移量确定的,第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合。其中,第一频率偏移量为第一初始BWP的频率资源相对同步信号块SSB的频率资源的偏移量,第二频率偏移量为第二初始BWP的频率资源相对SSB的频率资源的偏移量。
可选地,结合上述第四方面第二种可能的实现方式,在第三种可能的实现方式中,第一频率偏移量是根据来自网络设备的第一配置信息确定的,第一配置信息用于配置第二初始BWP的频率资源。
可选地,结合上述第四方面第二种或第四方面第三种可能的实现方式,在第四种可能的实现方式中,第一频率偏移量与第二频率偏移量相同。
可选地,结合上述第四方面第三种可能的实现方式,在第五种可能的实现方式中,处理单元,具体用于:根据第一配置信息确定第一索引值。确定M个索引值,M为正整数,M个索引值和第一索引值用于指示第一集合中可以包括的频率偏移量,M个索引值小于或等于第一索引值的索引值。根据M个索引值中的任意一个索引值指示的频率偏移量确定第一频率偏移量。
可选地,结合上述第四方面第三种可能的实现方式,在第六种可能的实现方式中,处理单元,具体用于:根据第一配置信息确定第一索引值。确定第二索引值,第二索引值为第一索引值对预设值取模后的值,第一索引值和第二索引值指示第一集合中可以包括的频率偏移量。根据第二索引值确定第一频率偏移量。
可选地,结合上述第四方面第二种可能的实现方式,在第七种可能的实现方式中,第一频率偏移量是根据第一时频资源数确定的,第一时频资源数和第二时频资源数对应于第一集合中可以包括的频率偏移量,第一时频资源数为最接近第二时频资源数的时频资源数,第二时频资源数为第二类型终端设备的CORESET0对应的时频资源数。
可选地,结合上述第四方面或第四方面第一种至第四方面第七种可能的实现方式,在第八种可能的实现方式中,处理单元,还用于:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。
可选地,结合上述第四方面第八种可能的实现方式,在第九种可能的实现方式中,对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。
可选地,结合上述第四方面或第四方面第一种至第四方面第七种可能的实现方式,在第十种可能的实现方式中,处理单元,还用于:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于第二时间资源内。
可选地,结合上述第四方面或第四方面第一种至第四方面第七种可能的实现方式,在第十一种可能的实现方式中,处理单元,还用于:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。
可选地,结合上述第四方面第八种至第四方面第十种可能的实现方式,在第十二种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。
本申请第五方面提供一种确定下行初始带宽部分BWP的装置,可以包括:处理单元,用于确定第一类型终端设备对应的初始BWP的频率资源,第一初始BWP的频率资源与第二初始BWP的频率资源之间无重叠,第一类型终端设备和第二类型终端设备的能力不同。通信单元,根据第一初始BWP的频率资源与网络设备传输信令和/或数据。
可选地,结合上述第五方面,在第一种可能的实现方式中,第一类型终端设备和第二类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
可选地,结合上述第五方面或第五方面第一种可能的实现方式,在第二种可能的实现方式中,处理单元,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。
可选地,结合上述第五方面第二种可能的实现方式,在第三种可能的实现方式中,对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。
可选地,结合上述第五方面或第五方面第一种可能的实现方式,在第四种可能的实现方式中,处理单元,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的 时间资源,第一时间资源可以包括于第二时间资源内。
可选地,结合上述第五方面或第五方面第一种可能的实现方式,在第五种可能的实现方式中,处理单元,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。
可选地,结合上述第五方面第二种至第五方面第四种可能的实现方式,在第六种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。
本申请第六方面提供一种确定下行初始带宽部分BWP的装置,可以包括:处理单元,用于确定第一类型终端设备对应的初始BWP的频率资源,第一初始BWP的频率资源与同步信号块SSB的频率资源之间无重叠,第一类型终端设备和第二类型终端设备的能力不同。通信单元,根据第一初始BWP的频率资源与网络设备传输信令和/或数据。
可选地,结合上述第六方面,在第一种可能的实现方式中,第一类型终端设备和第二类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
可选地,结合上述第六方面或第六方面第一种可能的实现方式,在第二种可能的实现方式中,处理单元,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。
可选地,结合上述第六方面第二种可能的实现方式,在第三种可能的实现方式中,对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。
可选地,结合上述第六方面或第六方面第一种可能的实现方式,在第四种可能的实现方式中,处理单元,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于第二时间资源内。
可选地,结合上述第六方面或第六方面第一种可能的实现方式,在第五种可能的实现方式中,处理单元,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。
可选地,结合上述第六方面第二种至第六方面第四种可能的实现方式,在第六种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。
本申请第七方面提供一种确定下行初始带宽部分BWP的装置,可以包括:处理器,用于执行所述存储器存储的程序,当存储器存储的程序被执行时,处理器用于确定第一类型终端设备对应的第一初始BWP的频率资源,第一初始BWP的频率资源可以包括于第二类型终端设备对应的第二初始BWP的频率资源内,第一类型终端设备和第二类型终端设备的能力不同。通信接口,通信接口与处理器耦合,用于根据第一初始BWP的频率资源与网络设备传输信令和/或数据。
可选地,结合上述第七方面,在第一种可能的实现方式中,第一类型终端设备和第二类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
可选地,结合上述第七方面或第七方面第一种可能的实现方式,在第二种可能的实现方式中,第一初始BWP的频率资源是根据第一频率偏移量确定的,第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合。其中,第一频率偏移量为第一初始BWP的频率资源相对同步信号块SSB的频率资源的偏移量,第二频率偏移量为第二初始BWP的频率资源相对SSB的频率资源的偏移量。
可选地,结合上述第七方面第二种可能的实现方式,在第三种可能的实现方式中,第一频率偏移量是根据来自网络设备的第一配置信息确定的,第一配置信息用于配置第二初始BWP的频率资源。
可选地,结合上述第七方面第二种或第七方面第三种可能的实现方式,在第四种可能的实现方式中,第一频率偏移量与第二频率偏移量相同。
可选地,结合上述第七方面第三种可能的实现方式,在第五种可能的实现方式中,处理器,具体用于:根据第一配置信息确定第一索引值。确定M个索引值,M为正整数,M个索引值和第一索引值用于指示第一集合中可以包括的频率偏移量,M个索引值小于或等于第一索引值的索引值。根据M个索引值中的任意一个索引值指示的频率偏移量确定第一频率偏移量。
可选地,结合上述第七方面第三种可能的实现方式,在第六种可能的实现方式中,处理器,具体用于:根据第一配置信息确定第一索引值。确定第二索引值,第二索引值为第一索引值对预设值取模后的值,第一索引值和第二索引值指示第一集合中可以包括的频率偏移量。根据第二索引值确定第一频率偏移量。
可选地,结合上述第七方面第二种可能的实现方式,在第七种可能的实现方式中,第一频率偏移量是根据第一时频资源数确定的,第一时频资源数和第二时频资源数对应于第一集合中可以包括的频率偏移量,第一时频资源数为最接近第二时频资源数的时频资源数,第二时频资源数为第二类型终端设备的CORESET0对应的时频资源数。
可选地,结合上述第七方面或第七方面第一种至第七方面第七种可能的实现方式,在第八种可能的实现方式中,处理器,还用于:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。
可选地,结合上述第七方面第八种可能的实现方式,在第九种可能的实现方式中,对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。
可选地,结合上述第七方面或第七方面第一种至第七方面第七种可能的实现方式,在第十种可能的实现方式中,处理器,还用于:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于第二时间资源内。
可选地,结合上述第七方面或第七方面第一种至第七方面第七种可能的实现方式,在第十一种可能的实现方式中,处理器,还用于:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。
可选地,结合上述第七方面第八种至第七方面第十种可能的实现方式,在第十二种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。
本申请第八方面提供一种确定下行初始带宽部分BWP的装置,可以包括:处理器,用于执行所述存储器存储的程序,当存储器存储的程序被执行时,处理器用于确定第一类型终端设备对应的初始BWP的频率资源,第一初始BWP的频率资源与第二初始BWP的频率资源之间无重叠,第一类型终端设备和第二类型终端设备的能力不同。通信接口,通信接口与处理器耦合,用于根据第一初始BWP的频率资源与网络设备传输信令和/或数据。
可选地,结合上述第八方面,在第一种可能的实现方式中,第一类型终端设备和第二类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
可选地,结合上述第八方面或第八方面第一种可能的实现方式,在第二种可能的实现方式中,处理器,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。
可选地,结合上述第八方面第二种可能的实现方式,在第三种可能的实现方式中,对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。
可选地,结合上述第八方面或第八方面第一种可能的实现方式,在第四种可能的实现方式中,处理器,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于第二时间资源内。
可选地,结合上述第八方面或第八方面第一种可能的实现方式,在第五种可能的实现方式中,处理器,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。
可选地,结合上述第八方面第二种至第八方面第四种可能的实现方式,在第六种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。
本申请第九方面提供一种确定下行初始带宽部分BWP的装置,可以包括:处理器,用于执行所述存储器存储的程序,当存储器存储的程序被执行时,处理器用于确定第一类型终端设备对应的初始BWP的频率资源,第一初始BWP的频率资源与同步信号块SSB的频率资源之间无重叠,第一类型终端设备和第二类型终端设备的能力不同。通信接口,通信接口与处理器耦合,用于根据第一初始BWP的频率资源与网络设备传输信令和/或数据。
可选地,结合上述第九方面,在第一种可能的实现方式中,第一类型终端设备和第二 类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
可选地,结合上述第九方面或第九方面第一种可能的实现方式,在第二种可能的实现方式中,处理器,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。
可选地,结合上述第九方面第二种可能的实现方式,在第三种可能的实现方式中,对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。
可选地,结合上述第九方面或第九方面第一种可能的实现方式,在第四种可能的实现方式中,处理器,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于第二时间资源内。
可选地,结合上述第九方面或第九方面第一种可能的实现方式,在第五种可能的实现方式中,处理器,还用于确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。
可选地,结合上述第九方面第二种至第九方面第四种可能的实现方式,在第六种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。
本申请第十方面提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面或第一方面任意一种可能实现方式的确定下行初始带宽部分BWP的方法。
本申请第十一方面提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第二方面或第二方面任意一种可能实现方式的确定下行初始带宽部分BWP的方法。
本申请第十二方面提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第三方面或第三方面任意一种可能实现方式的确定下行初始带宽部分BWP的方法。
本申请第十三方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或第一方面任意一种可能实现方式的确定下行初始带宽部分BWP的方法。
本申请第十四方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面或第二方面任意一种可能实现方式的确定下行初始带宽部分BWP的方法。
本申请第十五方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第三方面或第三方面任意一种可能实现方式的确定下行初始带宽部分BWP的方法。
本申请第四方面,第七方面,第十方面,第十三方面的有益效果可以认为与第一方面描述的有益效果相同。
本申请第五方面,第八方面,第十一方面,第十四方面的有益效果可以认为与第二方面描述的有益效果相同。
本申请第六方面,第九方面,第十二方面,第十五方面的有益效果可以认为与第三方面描述的有益效果相同。
本申请第十六方面提供一种通信系统,该通信系统可以包括终端设备和网络设备,其中该终端设备可以认为是上述第一方面至第三方面中任意一个方面所描述的终端设备。
本申请第十七方面提供一种芯片,该芯片包括处理器和通信接口,其中处理器和通信接口耦合,处理器用于执行上述第一方面至第三方面中任意一个方面提供的确定初始BWP的方法。
本申请提供的方案提供了一种新的确定BWP的方法,节省系统为了支持不同类型的终端设备所需要的系统带宽。
附图说明
图1为适用于本申请实施例的一个无线通信系统的示意图;
图2为适用于本申请实施例的另一个无线通信系统的示意图;
图3为本申请实施例提供的一种确定初始BWP的方法的示意图;
图4为不同频率资源的RB示意图;
图5为本申请实施例提供的另一种确定初始BWP的方法的示意图;
图6为本申请实施例提供的第一初始BWP的频率资源的设计方式的表格示意图;
图7为本申请实施例提供的一种确定下行初始带宽部分BWP的方法的流程示意图;
图8为本申请实施例提供的另一种确定下行初始带宽部分BWP的方法的流程示意图;
图9为本申请实施例提供的另一种确定初始BWP的方法的示意图;
图10为本申请实施例提供的另一种确定初始BWP的方法的示意图;
图11为本申请实施例提供的另一种确定初始BWP的方法的示意图;
图12为本申请实施例提供的另一种确定初始BWP的方法的示意图;
图13为本申请实施例提供的另一种确定初始BWP的方法的示意图;
图14为本申请实施例提供的另一种确定初始BWP的方法的示意图;
图15为本申请实施例提供的另一种确定初始BWP的方法的示意图;
图16为本申请实施例提供的另一种确定初始BWP的方法的示意图;
图17为本申请实施例提供的终端设备的硬件结构示意图;
图18为本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、 “第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于理解本申请实施例,以图1和图2中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1和图2是适用于本申请实施例的无线通信系统的示意图。图1所示,该无线通信系统可以包括单个或多个网络设备,或者如图2所示,该无线通信系统可以包括单个或多个终端设备,本申请有时也将无线通信系统简称为通信系统。单个网络设备可以向单个或多个终端设备传输数据或控制信令。多个网络设备也可以同时为单个终端设备传输数据或控制信令。该无线通信系统可支持协作多点传输(coordinated multiple points transmission,CoMP),即,多个小区或多个网络设备可以协同参与一个终端设备的数据传输或者联合接收一个终端设备发送的数据,或者多个小区或多个网络设备进行协作调度或者协作波束成型。其中,该多个小区可以属于相同的网络设备或者不同的网络设备,并且可以根据信道增益或路径损耗、接收信号强度、接收信号指令等来选择。
应理解图1或图2仅为便于理解,示意性地示出了网络设备和终端设备,但这不应对本申请构成任何限定,该无线通信系统中还可以包括更多或更少数量的网络设备,也可以包括更多数量的终端设备,与不同的终端设备通信的网络设备可以是相同的网络设备,也可以是不同的网络设备,与不同的终端设备通信的网络设备的数量可以相同,也可以不同,本申请包括但不限于此。
通常终端设备在接入一个无线通信系统时,例如终端设备接入长期演进(long term evolution,LTE)系统或者NR系统时,需要先和该无线通信系统下的网络设备同步,即先通过检测网络设备发送的同步信号(synchronizing signal)确定与网络设备数据传输的同步信息,包括时间同步和/或频率同步信息,再根据确定的同步信息,确定网络设备承载在PBCH中的广播信息,并根据需求进一步读取系统信息(system information,SI),例如先读取系统信息块类型1(system information block type 1,SIB1)包括的系统信息,进而获得与网络设备数据传输必要的系统信息。SIB1中包括的信息例如可以是随机接入信道(random access cHannel,RACH)的配置信息或者其他系统消息SI对应的调度信息。需要说明的是,在不同的系统中,SIB1的名称可能不同,在这里,为了便于描述,将终端设备检测网络设备发送的PBCH之后,为了与网络设备进行数据传输,第一个检测的网络设备发送的系统消息都称为SIB1,例如在NR系统中,网络设备发送的剩余最小系统信息(remaining minimum system information,RMSI)也可以理解为SIB1,而对于LTE系统,满足上述特征的系统信息就是SIB1。
下面以NR系统为例,对终端设备接入无线系统进行具体的介绍。NR的系统带宽较大,至少为100MHz。而终端设备由于能力不同,所支持的最大带宽也不同,某些终端设备可能只能支持80MHz、40MHz或者20MHz,甚至更小的带宽。因此,通常情况下,在NR中为了 适应终端设备所支持的最大带宽的需求,引入了BWP的概念。具体的,目前通过为终端设备配置BWP,以适应终端设备能够支持的最大带宽。当前,处于无线资源控制(radio resource control,RRC)空闲态(idle state)或者非活跃态(inactive state)的终端设备,需要接收(system information,SI),才能根据SI进入无线资源控制连接态(RRC-connected)。具体的,网络设备通过广播同步信号块(synchronous signal block,SSB)以便终端设备进行驻留。SSB中携带主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)。PBCH中携带主系统信息块(master information block,MIB)。MIB包括控制资源集合(control resource set,CORESET)0的配置信息(例如CORESET0的带宽大小、频域位置、时频资源等)、和SIB1的物理下行控制信道(physical downlink control channel,PDCCH)的配置信息(例如PDCCH的时域配置信息等)。终端设备在接收到MIB后,确定初始BWP(initial BWP)的带宽为CORESET0的带宽,然后在初始BWP上接收SIB1的调度信息,并根据SIB1的调度信息在初始BWP上接收SIB1。在目前的NR系统中,承载在PBCH中MIB包括信息pdcch-ConfigSIB1,该信息包括8比特,用来指示调度SIB1的CORESET的配置信息。在本申请中,为了简化描述,除非有特殊说明,下行初始BWP为终端设备处于空闲态或者非活跃态的初始BWP。在NR中,用于调度SIB1的CORESET0对应的频率资源位置及大小可以认为是终端设备处于空闲态或者非活跃态对应的下行初始带宽部分BWP。
目前,NR的系统设计主要考虑的是传输eMBB业务的终端设备和传输URLLC业务的终端设备,针对传输mMTC业务的终端设备,还没有做特别的设计。具体的,NR的系统设计主要考虑的是传输eMBB业务的终端设备和传输URLLC业务的终端设备的初始BWP的频率资源,以及传输eMBB业务的终端设备和传输URLLC业务的终端设备的CORESET0的时间资源,针对传输mMTC业务的终端设备的初始BWP的频率资源以及时域资源,还没有做特别的设计。此外,在某些场景下,NR通过PBCH通知的下行初始BWP带宽可能会大于部分传输mMTC业务的终端设备的带宽能力,因此导致部分传输mMTC业务的终端设备无法接入NR系统。
为了解决上述技术问题,本申请提供一种确定初始BWP的方法。
本申请涉及两种类型的终端设备,本文将这两种类型的终端设备称为第一类型终端设备和第二类型终端设备。第一类型终端设备和第二类型终端设备的能力不同。具体的,两种类型终端设备可以具备下述一项或者多项区别特征:
(1)带宽能力不同。例如第二类型终端设备最大可以支持在一个载波上同时使用带宽为100MHz的频率资源和网络设备进行数据传输,而第一类型终端设备最大可以支持在一个载波上同时使用带宽为20MHz或者10MHz或者5MHz的频率资源和网络设备进行数据传输。
(2)收发天线数不同。例如第二类型终端设备可以支持4收2发,或者4收1发。而第一类型终端设备最大支持2收1发,或者最大支持1收1发。即支持发送天线个数不同和/或接收天线个数不同的终端设备都可以看为不同类型的终端设备。
(3)上行最大发射功率不同。例如第二类型终端设备的上行最大发射功率可以为23dBm或者26dBm,而第一类型终端设备的上行最大发射功率只能为4dBm~20dBm中的一个值。
(4)协议版本不同,例如第二类型终端设备为NR Release 17的终端设备(或者,第一终端设备为NR Release 17以及NR Release 17之后版本的终端设备),第一类型终端设备为NR Release 15和/或NR Release 16的终端设备。在本申请中,NR Release 16以及NR Release 16之前的终端设备还可以称为NR后向兼容(NR-Legacy)终端设备。
(5)支持的载波聚合能力不同,例如,第二类型终端设备可以支持载波聚合,而第一类型不支持载波聚合;又例如,两类终端设备都可以支持载波聚合,但是第二类型终端设备同时支持的载波聚合的最大个数大于第一类型终端设备同时支持的载波聚合的最大个数,例如第二类型终端设备可以最多同时支持5个载波或者32个载波的聚合,而第一类型终端设备最多同时支持2个载波的聚合。
(6)双工能力不同。例如,第二类型终端设备支持全双工FDD,或者第二类型终端设备既支持全双工FDD也支持半双工FDD,而第一类型终端设备仅支持半双工FDD。
(7)对数据的处理时间能力不同,对数据的处理时间能力强的终端设备可以认为是第二类型的终端设备,对数据的处理时间能力弱的终端设备可以认为是第一类型的终端设备。处理时间能力不同可以通过两类终端设备处理数据的最小时延之间的关系来表示,也可以通过两类终端设备处理数据的最大时延之间的关系来表示,或者也可以通过一类终端设备处理数据的最小时延与另外一类终端设备处理数据的最大时延之间的关系来表达。其中数据处理的时延又可以用如下至少一种方式表示:接收下行数据与发送对该下行数据的反馈之间的时延,发送上行数据与接收对该上行数据的反馈之间的时延,接收控制信息与根据该控制信息发送上行数据之间的时延。例如,一类终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延小于另外一类终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延,和/或,一类终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延小于另外一类终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延,和/或一类终端设备接收控制信息与根据该控制信息发送上行数据之间的最小时延小于另外一类终端设备接收控制信息与根据该控制信息发送上行数据之间的最小时延。
(8)处理能力不同。这里的终端设备处理能力可以包括以下至少一项:上行数据传输和/或下行数据传输所支持的混合自动重传请求(hybrid automatic repeat request,HARQ)进程个数,软缓存(soft buffer)大小,上行数据传输和/或下行数据传输所支持的最高正交振幅调制(quadrature amplitude modulation,QAM)等。其中,处理能力强的终端设备可以认为是第二类型的终端设备,处理能力弱的终端设备可以认为是第一类型的终端设备。
(9)上行数据传输峰值速率和/或下行数据传输峰值速率不同。
具体的,在本申请中,两种类型的终端设备中的第一类型终端设备为NR-light终端设备、第二类型终端设备为非NR-Light终端设备或者为兼具NR-light与非NR-Light功能的终端设备(例如,NR Release 15,和/或NR Release 16的终端设备,也可以是未来无线通信系统中演进的终端设备,不限于LTE终端设备、以及NR终端设备),其中,NR-Light终端设备可以对应如上区别特征描述中能力较低的终端设备;或者,两种类型的终端设备可以同为NR-light终端设备,但是两种终端设备之间存在如上区别特征,同为NR-light 终端设备,一种终端设备在一个载波上的数据传输带宽最大可以为20MHz,另外一种终端设备在一个载波上的数据传输带宽最大为10MHz。此外,NR-light终端设备也可以理解为NR低能力(NR reduced capability,NR REDCAP)终端设备。
本申请将从三个方面对本申请提供的确定初始BWP的方法进行说明,第一方面为如何确定初始BWP的频率资源。第二方面为如何确定CORESET0的时间资源,第三方面为如何确定第一时间资源的周期。其中,关于第一方面如何确定BWP的频率资源,本申请具体给出三种BWP的频率资源的设计方式,第一种方式为:第一类型终端设备对应的第一初始BWP的频率资源包括于第二类型终端设备对应的第二初始BWP的频率资源内。第二种方式为:第一类型终端设备对应的第一初始BWP的频率资源与第二类型终端设备对应的第二初始BWP的频率资源之间无重叠。第三种方式为:第一类型终端设备对应的第一初始BWP的频率资源与同步信号块SSB的频率资源之间无重叠。其中,关于第二方面为如何确定CORESET0的时间资源,本申请具体给出三种设计方式,需要说明的,这三种时间资源的设计方式的任意一种设计方式都可以与上述的三种频率资源的设计方式中的任意一种设计方式结合应用。关于第三方面,本申请提供两种设计方式,需要说明的是,第三方面如何确定第一时间资源的周期可以和第二方面提供的三种时间资源的设计方式的任意一种设计方式结合应用。下面将对本申请实施例提供的一种确定初始BWP的方法进行具体的介绍。
需要说明的是,在本申请中,初始BWP可以理解为包括公共信息传输的BWP。其中公共信息传输可以包括以下至少一项:
(1)网络设备广播的系统信息System Information和/或调度该系统信息传输的控制信息。系统信息可以包括调度系统信息块类型1(system information block type 1,SIB1)或者其他系统信息(system information,SI)。
(2)网络设备广播的寻呼(paging)信息和/或调度该寻呼信息传输的控制信息。
(3)网络设备广播的随机接入响应(random access response,RAR)信息。
特别地,第一初始BWP中包括的公共信息对应第一类型终端设备,第二初始BWP中包括的公共信息对应第二类型终端设备,当第一类型终端设备与第二类型终端设备使用相关的公共信息时,也可以理解,第一初始BWP中包括的公共信息既对应第一类型终端设备也对应第二类型终端设备,或者,第二初始BWP中包括的公共信息既对应第一类型终端设备也对应第二类型终端设备。
在本申请中,一个BWP由频率上连续的资源块(resource block,RB)组成,其中一个RB包括12个子载波(subcarrier),BWP的频率带宽不大于包括该BWP的载波对应的频率带宽。目前在NR系统中,在一个载波或者一个服务小区上,终端设备和网络设备之间的数据传输在一个激活的BWP内实现,网络设备可以为终端设备配置最多4个BWP。
更具体的,例如初始BWP理解为通过MIB通知的频率资源,例如通过MIB中包括的pdcch-ConfigSIB1通知的频率资源,或者在SIB1信息中配置的频率资源,这里SIB1信息包括调度SIB1传输的控制信息,和/或通过物理下行共享信道(physical downlink shared channel,PDSCH)传输的SIB1系统信息。
(一)第一种频率资源的设计方式
如图3所示,为本申请实施例提供的一种确定初始BWP的方法的示意图。
其中,横轴代表时间,纵轴代表频率。图中分别展示了SSB传输的时频资源范围,第一类型终端设备对应的时频资源范围以及第二类型终端设备对应的时频资源范围。这里,第一类型终端设备对应的时频资源范围可以理解为在该时频资源范围内,包括第一类型终端设备对应的数据传输,数据传输例如为对应于第一类型终端设备且通过物理下行控制信道(physical downlink control channel,PDCCH)传输的系统信息调度信息和/或通过PDSCH传输的系统信息。同理,第二类型终端设备对应的时频资源范围可以理解为在该时频资源范围内,包括第二类型终端设备对应的数据传输,数据传输例如为对应于第二类型终端设备且通过PDCCH传输的系统信息调度信息和/或通过PDSCH传输的系统信息。
在本种实施方式中,确定第一类型终端设备对应的第一初始BWP的频率资源,第一初始BWP的频率资源包括于第二类型终端设备对应的第二初始BWP的频率资源内,第一类型终端设备和第二类型终端设备的能力不同。本申请所指的包括于是指第二类型终端设备对应的第二初始BWP的频率资源范围涵盖第一类型终端设备对应的第一初始BWP的频率资源范围,以下对此进行详细说明。通过这种实施方式,可以实现低能力类型的终端设备对应的初始BWP频率资源包含于非低能力类型的终端设备对应的初始BWP频率资源,即使对于系统带宽比较小的网络设备而言,也可以同时支持不同类型终端设备的数据传输,实现多样化数据传输,例如可以同时支持eMBB业务和mMTC业务,进而增加网络部署竞争力。
在一个具体的实施方式中,第一初始BWP的频率资源是根据第一频率偏移量确定的,第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合。其中,第一频率偏移量为第一初始BWP的频率资源相对同步信号块SSB的频率资源的偏移量,第二频率偏移量为第二初始BWP的频率资源相对SSB的频率资源的偏移量。换句话说,第一初始BWP的频率资源与SSB的频率资源之间的频率偏移量所对应的集合,为第二初始BWP的频率资源SSB的频率资源之间的频率偏移量所对应的集合的子集。需要说明的是,第一频率偏移量对应的同步信号块可以为第一类型终端设备对应的SSB,也可以为第二类型终端设备对应的SSB,第二频率偏移量对应的SSB为第二类型终端设备对应的SSB。例如第二类型终端设备为非NR REDCAP终端设备,非NR REDCAP终端设备对应的SSB为Release 15 SSB,此时,第一频率偏移量对应的SSB也为Release 15 SSB。
可选的,第一频率偏移量的取值与系统带宽、第一频率偏移量对应的SSB传输对应的子载波间隔(sub-carrier spacing,SCS)以及初始BWP包括的数据传输对应的SCS有关,其中第一频率偏移量对应的SSB,表示用于确定第一频率偏移量时参考的SSB。初始BWP包括的数据传输对应的SCS,可以用初始BWP包括的公共信息传输对应的SCS来表示。需要说明的是,公共信息传输对应的SCS,可以用调度公共信息传输的控制信息对应的SCS表示,也可以用公共信息传输对应的SCS直接表示,这里,控制信息对应的SCS可以理解为网络设备传输该控制信息时所采用的SCS,对于公共信息传输对应的SCS也有相同说明,不作赘述。其中,调度公共信息传输的控制信息对应的SCS还可以用承载该控制信息的PDCCH SCS表示。可选地,这里的PDCCH SCS例如是承载SIB1调度信息的控制信道对应的SCS,或者是包括SIB1调度信息的类型0 PDCCH搜索空间集合(Type0-PDCCH search space  set)对应的SCS。这里,SIB1调度信息可以理解为调度SIB1传输的控制信息。为了简化描述,下述用PDCCH SCS表示初始BWP包括的数据传输对应的SCS为例进行说明。
目前,在5G NR系统中,SSB的子载波间隔(sub-carrier spacing,SCS)和初始BWP的SCS支持的组合包括:{SSB SCS,PDCCH SCS}={{15,15},{15,30},{30,15},{30,30},{120,60},{120,120},{240,60},{240,120}}kHz。其中,{{15,15},{15,30},{30,15},{30,30}}kHz的组合,是低于6GHz情况下可以使用的组合;{{120,60},{120,120},{240,60},{240,120}}kHz的组合,是高于6GHz情况下可以使用的组合。下面以低于6GHz情况下可以使用的组合对第一种频率资源的设计方式进行说明。
在本申请提供的实施方式中,第一初始BWP的频率带宽可以为与第一类型终端设备带宽能力匹配的带宽,例如如果第一类型终端设备的带宽能力为5MHz,则第一初始BWP的频率带宽也为5MHz;又例如如果第一类型终端设备包括多种带宽能力,例如NR REDCAP终端设备包括带宽能力分别为5MHz、10MHz、20MHz的终端设备,则第一初始BWP的频率带宽可以根据不同的第一类型终端设备分别确定,也可以根据第一类型终端设备的最小带宽能力确定,如该例中的5MHz。第一初始BWP带宽还可以为其他值,本申请不作具体限定。第一初始BWP带宽(带宽能力)大小可以是预配置的,例如可以为5MHz,或者10MHz,用RB表示的话,例如可以为24个(resource block,RB),或者为48个RB。在本发明中,一个RB由整数个连续的子载波组成,例如由12个连续的子载波组成;或者,第一初始BWP带宽是通过物理广播信道(physical broadcast channel,PBCH)中承载的主信息块(master information block,MIB)通知,或者也可以通过其他方式,只要确保第一类型终端设备能够支持该第一初始BWP的带宽即可,具体第一类型终端设备如何获取第一初始BWP的带宽,本申请不作具体限定,以下对此不再重复赘述。此外,在本申请中,第一初始BWP的带宽还可以用用包括Type0 PDCCH search space set的控制资源集合0(control resource set 0,CORESET0)的带宽描述,其中,在Type0 PDCCH search space set中,终端设备至少检测由系统信息无线网络临时标识(system information radio network temporary identity,SI-RNTI)加扰的控制信息。
分类一:当系统最小带宽为5MHz或者10MHz,{SSB SCS,PDCCH SCS}={15kHz,15kHz}时:
在分类一的场景下,第二频率偏移量的集合为{0,2,4,12,16,38},其中{0,2,4,12,16,38}的单位对应的是RB。第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合,则第一频率偏移量为集合{0,2,4,12,16,38}中的任一项。需要说明的是,在实际应用场景中,第二类型终端设备只会确定一个第二频率偏移量,本申请所指的第一集合是指第二类型终端可能采用的频率偏移量的集合,以下对此不再重复赘述。下面给出此种分类场景下的几种具体的设计方式:
第一终端设备对应的第一初始BWP带宽为24个RB,第二初始BWP的带宽为48个RB,且第二频率偏移量为12或16时,第一频率偏移量为0或者4。
第一终端设备对应的第一初始BWP带宽为24个RB,第二初始BWP的带宽为96个RB且第二频率偏移量为38时,第一频率偏移量为2。
第一终端设备对应的第一初始BWP带宽为48个RB,第一频率偏移量为集合{12,16,38}中的任一项。
第一终端设备对应的第一初始BWP带宽为96个RB,第一频率偏移量为38。
需要说明的是,在本申请中,第一初始BWP的带宽为24个RB时,这里的RB对应的子载波间隔为初始BWP对应的子载波间隔,或者同前描述可以用PDCCH子载波间隔表示。在本申请中,PDCCH子载波间隔可以理解为初始BWP对应的子载波间隔。上述说明对于下述实施方式同样有效,即使第一类型终端设备对应的第一初始BWP带宽不为24个RB,以下不再重复赘述。
需要说明的是,在本申请中,一种频率资源A与另外一种频率资源B之间的频率偏移量可以用频率资源A的起始位置对应的RB位置与频率资源B的起始位置对应的RB位置之间的RB个数差来表示,也可以用频率资源A的结束位置对应的RB位置与频率资源B的结束位置对应的RB位置之间的RB个数差来表示,其中频率资源的起始位置对应的RB可以为该频率资源的最低频率或最高频率对应的RB,相应地,该频率资源的结束位置对应的RB可以为该频率资源的最高频率或最低频率对应的RB。在描述不同频率资源之间的频率偏移量时,不同频率资源的起始位置采用相同的度量方法,例如都采用频率资源的最低频率对应的RB,或者最高频率对应的RB来确定。
需要说明的是,在本申请中,不同频率资源对应的子载波间隔可以不同,也可以相同,不作限定。当不同频率资源对应的子载波间隔不同时,不同频率资源之间的频率偏移所对应的RB个数可以用其中任一一个频率资源的RB表示。
另外,需要说明的是,不同频率资源的RB边界可能有不对齐的情况。如图4中的a所示,频率资源A和频率资源B之间的频率偏移量不足一个RB,一个RB在频率上连续12个子载波,可以认为图4中的a所示的情况中频率资源A与频率资源B之间的频率偏移量为0个RB。如图4中的b所示,频率资源A和频率资源B之间的频率偏移量大于一个RB且不足两个RB,虽然不同频率资源的RB边界不对齐,可以认为图4中的b所示的情况中,频率资源A与频率资源B之间的频率偏移量为1个RB。上述说明对于本申请其他部分内容同样有效,以下不再重复赘述。
分类二:当系统最小带宽为5MHz或者10MHz,{SSB SCS,PDCCH SCS}={15kHz,30kHz}时:
在分类二的场景下第二频率偏移量的集合为{5,6,7,8,18,20},其中,{5,6,7,8,18,20}的单位对应的是RB。第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合,则第一频率偏移量为集合,则第一频率偏移量为集合{5,6,7,8,18,20}中的任意一项。下面给出此种分类场景下的几种具体的设计方式:
第二初始BWP的带宽为48个RB且第二频率偏移量为18个RB时,第一频率偏移量为{5,6}中任一个。
第二初始BWP的带宽为48个RB,且第二频率偏移量为20个RB时,第一频率偏移量为{7,8}中的任一个。
第一终端设备对应的第一初始BWP带宽为48个RB,第一频率偏移量为集合{18,20} 中的任一项。
分类三:当系统最小带宽为5MHz或者10MHz,{SSB SCS,PDCCH SCS}={30kHz,15kHz}时:
在分类三的场景下,第二频率偏移量的集合为{2,6,28},其中{2,6,28}的单位对应的是RB。第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合,则第一频率偏移量为集合{2,6,28}中的任一项。下面给出此种分类场景下的几种具体的设计方式:
第二初始BWP的带宽为96个RB,且第二频率偏移量为28个RB时,第一频率偏移量为2个RB。
第一类型终端设备对应的第一初始BWP带宽为96个RB,第一频率偏移量为28。
分类四:当系统最小带宽为5MHz或者10MHz,{SSB SCS,PDCCH SCS}={30kHz,30kHz}时:
在分类四的场景下,第二频率偏移量的集合为{0,1,2,3,4,12,17,16},其中{0,1,2,3,4,12,17,16}的单位对应的是RB。第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合,则第一频率偏移量为集合{0,1,2,3,4,12,17,16}中的任一项。下面给出此种分类场景下的几种具体的设计方式:
第二初始BWP的带宽为48个RB,且第二频率偏移量分别为12、17、16时,第一频率偏移量分别为0、2、4。
第一类型终端设备对应的第一初始BWP带宽为48个RB,第一频率偏移量为集合{12,17,16}中的任一项。
分类五:当系统最小带宽为40MHz,{SSB SCS,PDCCH SCS}={30kHz,15kHz}时:在分类五的场景下,第二频率偏移量的集合为{4,0,56},其中{4,0,56}的单位对应的是RB。第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合,则第一频率偏移量为集合{4,0,56}中的任一项。下面给出此种分类场景下的几种具体的设计方式:
第一类型终端设备对应的第一初始BWP带宽为96个RB,第一频率偏移量为{0,56}中的任一项。
分类六:当系统最小带宽为40MHz,{SSB SCS,PDCCH SCS}={30kHz,30kHz}时:
在分类六的场景下,第二频率偏移量的集合为{0,4,28},其中{0,4,28}的单位对应的是RB。第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合,则第一频率偏移量为集合{0,4,28}中的任一项。下面给出此种分类场景下的几种具体的设计方式:
第一类型终端设备对应的第一初始BWP带宽为48个RB,第一频率偏移量集合为{0,28}中的任一项。
通过上述实施方式,不仅可以实现第一初始BWP的频率资源与第二初始BWP的频率资源之间的嵌套关系,节省系统为了支持多样化终端设备所需要的系统带宽,而且由于设计中参考了第二频率偏移量的不同取值确定了第一频率偏移量的具体值,而第二频率偏移量在设计上兼顾了不同系统带宽以及不同同步信号块的同步栅格等影响,因此根据第二频率偏移量的不同取值确定的第一频率偏移量的具体值可以继承第二频率偏移量设计的好处,且可以降低标准设计复杂度。
在一个具体的实施方式中,第一初始BWP的频率资源与第二初始BWP的频率资源之间的频率偏移量为0,或者第一初始BWP的频率资源与第二初始BWP的频率资源之间的频率偏移量为第二初始BWP的频率资源大小减去第一初始BWP的频率资源大小。换句话说,如图5中的a所示,第一初始BWP的频率资源的起始位置对应的RB位置与第二初始BWP的频率资源的起始位置对应的RB位置相同,或者如图5中的b所示,第一初始BWP的频率资源的结束位置对应的RB位置与第二初始BWP的频率资源的结束位置对应的RB位置相同。
需要说明的是,第一类型终端设备可以通过预配置的方式确定第一初始BWP的频率资源,第一类型终端设备也可以通过网络设备发送的指示信息,确定第一初始BWP的频率资源,该指示信息可以是用于配置第一初始BWP的频率资源,也可以是用于配置第二初始BWP的频率资源,下面将分别针对这几种情况进行说明。
需要说明的是,在第一种第一初始BWP的频率资源的设计方式中,第一初始BWP可以包括上行初始BWP和下行初始BWP,下面以下行初始BWP为例,对第一类型终端设备确定第一初始BWP的频率资源的方式进行具体的说明。
(1)通过预配置的方式确定第一初始BWP的频率资源。
在这种方式中,第一类型终端设备预先保存第一初始BWP的频率资源配置信息。第一类型终端设备接入无线系统,可以按照预配置信息确定第一初始BWP的频率资源配置信息。下面结合图6对这种实施方式进行介绍。上述在论述不同分类场景下,给出了几种具体的设计方式,如图6中所示,可以以表格形式呈现上述给出的几种具体的设计方式。示例性的,如图6中的a所示的表格,是分类一对应的场景中给出的几种具体的设计方式,如图6中的b所示的表格,是分类二对应的场景中给出的几种具体的设计方式。可以预先规定第一类型终端设备的配置信息,比如第一类型终端设备可以预先保存图6中所示的表格,当第一类型终端设备接入无线系统时,可以按照图6中所示的表格确定第一初始BWP的频率资源配置信息。
需要说明的是,第一类型终端设备可以只保存第一频率偏移量这一种配置信息,第一类型终端设备的带宽可以是预配置的。第一类型终端设备也可以只保存第一频率偏移量和第一类型终端设备的带宽,而不保存第二类型终端设备的带宽以及第二频率偏移量。
(2)第一类型终端设备通过网络设备发送的指示信息确定第一初始BWP的频率资源,该指示信息用于配置第一初始BWP的频率资源。
第一初始BWP的频率资源设计,或者说第一频率偏移量的大小为这种实施方式的发明点,至于网络设备如何发送指示信息,终端设备如何根据指示信息确定出第一初始BWP的频率资源,现有技术中的方案本方案均可以采用。
(3)第一类型终端设备通过网络设备发送的指示信息确定第一初始BWP的频率资源,该指示信息用于配置第二初始BWP的频率资源。
第一频率偏移量是根据来自网络设备的第一配置信息确定的,第一配置信息用于配置所述第二初始BWP的频率资源。上面在论述第一种频率资源的设计方式中,给出了第一类型终端设备对应的第一初始BWP的频率资源与第二类型终端设备对应的第二初始BWP的频率资源的关系,在本种实施方式中,网络设备发送的指示信息,用于配置第二初始BWP的 频率资源,第一类型终端设备根据该指示信息确定自身的第一初始BWP的频率资源,这种实施方式,网络设备无需再为第二类型终端设备额外发送指示信息,用于确定第一初始BWP的频率资源,可以节省网络设备发送控制信息的开销,实现网络设备的节能,同时使用这种方式,在现有技术的基础上改动少。下面给出几种具体的方式论述第一类型终端设备如何根据网络设备发送的指示信息确定第一初始BWP的频率资源。应当理解的是,除了下面论述的几种具体的实现方式,只要满足第一初始BWP的频率资源包括于第二类型终端设备对应的第二初始BWP的频率资源内的范围,第一类型终端设备根据指示信息确定第一初始BWP的频率资源的方式,都应当属于本申请的保护范围。
如图7所示,为本申请实施例提供的一种确定初始带宽部分BWP的方法的流程示意图。
本申请提供的一种确定初始带宽部分BWP的方法可以包括如下步骤:
701、第一类型终端设备接收网络设备发送的第一配置信息。
该第一配置信息是用于配置第二初始BWP的频率资源。
702、第一类型终端设备根据第一配置信息确定第一索引值。
比如该指示信息是MIB消息。MIB中的PDCCH-ConfigSIB1指示一个表格的索引(index),比如,在分类一的场景下,即系统最小带宽为5MHz或者10MHz,{SSB SCS,PDCCH SCS}={15kHz,15kHz},PDCCH-ConfigSIB1指示下面表1的index,表中最后一列偏移量(offset)就是第二偏移量。表1中包括RB的数目(number of RBs),符号数目(number of symbols),其中number of RBs用于指示第二初始BWP的带宽,number of symbols用于指示CORESET0在时间上占用的时间资源,需要说明的是,CORESET0在时间上占用的时间资源可以是周期出现的,这里的number of symbols表示在一个周期内CORESET0的时间资源,即在时间上占用的符号个数。表1中还可以包括SS/PBCH block和PDCCH CORESET复用模式(SS/PBCH block and CORESET multiplexing pattern),因为与本申请关系不大,所以并未在表1中示出。
第一类型终端设备根据第一配置信息确定第一索引值,比如pdcch-ConfigSIB1对应值为7,即确定index为7,即第一索引值为7。表1:
Figure PCTCN2020073794-appb-000001
Figure PCTCN2020073794-appb-000002
703、第一类型终端设备确定M个索引值,M个索引值中的任意一个索引值指示的频率偏移量确定第一频率偏移量。
M为正整数。M个索引值和第一索引值用于指示第一集合中包括的频率偏移量,比如以表1为例,第一集合为{0,2,4,12,16,38}。M个索引值小于或等于第一索引值的索引值。第一类型终端设备根据M个索引值中的任意一个索引值指示的频率偏移量确定第一频率偏移量。举例说明,如果第一类型终端设备根据第一配置信息确定第一索引值为7,在上述表1中,索引值小于7的索引值为0到6,所以M为7,索引值0指示的频率偏移量为0,索引值1指示的频率偏移量为2,索引值2指示的频率偏移量为4,索引值3指示的频率偏移量为0,索引值4指示的频率偏移量为2,索引值5指示的频率偏移量为4,索引值6指示的频率偏移量为12,所以第一频率偏移量可能为{0,2,4,12}中的任意一项。
如图8所示,为本申请实施例提供的另一种确定初始带宽部分BWP的方法的流程示意图。
本申请提供的一种确定下行初始带宽部分BWP的方法可以包括如下步骤:
801、第一类型终端设备接收网络设备发送的第一配置信息。
802、第一类型终端设备根据第一配置信息确定第一索引值。
步骤801和步骤802可以参阅图7对应的实施例中的步骤701和702进行理解,此处不再重复赘述。
803、第一类型终端设备根据第二索引值确定第一频率偏移量,第二索引值为第一索引值对预设值取模后的值。
第一类型终端设备确定第二索引值,第二索引值为第一索引值对预设值取模后的值,第一索引值和第二索引值指示第一集合中包括的频率偏移量。
下面以分类一描述的场景为例,对这一实施方式举例说明。pdcch-ConfigSIB1对应值即为第一索引值,第一索引值对预设值取模。可选地,在这种实现方式下,预设值可以为第一索引值所在表格中包括的初始BWP带宽不大于第一类型终端设备对应的第一初始BWP带宽的总配置个数。
例如,在分类一对应的场景下,假设第一初始BWP带宽为24个RB。则如表1中所示,预设值可以为6(即对应索引值为0至5对应的所有配置信息)。第一类型终端设备可以根据取模的结果结合表格1,确定第一初始BWP的频率资源分布。例如第一索引值为9,9对6取模(9 mod 6)为3,则第一类型终端设备可以确定第一频率偏移量为索引值3在表1中对应的频率偏移量即为0。
在分类一对应的场景下,假设第一初始BWP带宽为不大于48个RB,则如表1中所示, 预设值可以为12(即对应索引值为0至11对应的所有配置)。第一类型终端设备可以根据取模的结果结合表格1,确定第一初始BWP的频率资源分布。例如第一索引值为13,13对12取模(13 mod 12),得到1,则第一类型终端设备可以确定第一频率偏移量为索引值1在表1中对应的频率偏移量,即为2个RB。
在一个具体的实施方式中,第一频率偏移量是根据第一时频资源数确定的,第一时频资源数和第二时频资源数对应于第一集合中包括的频率偏移量,第一时频资源数为最接近第二时频资源数的时频资源数,第二时频资源数为第二类型终端设备的CORESET0对应的时频资源数。
下面以分类一描述的场景为例,对这一实施方式举例说明。第一类型终端设备根据pdcch-ConfigSIB1确定第二初始BWP包括的CORESET0对应的第二时频资源数为48个RB*1个OFDM符号,假设第一类型终端设备的带宽为24个RB,则通过表1,第一终端设备可以确定第一初始BWP包括的CORESET0对应的第一时频资源数为24个RB*2个OFDM符号时,第一时频资源数最接近第二时频资源数。结合表1,当初始BWP包括的CORESET0对应的时频资源数为24个RB*2个OFDM符号时,对应的频率偏移量(表中的offset)可以为0、2、4,此时第一频率偏移量可以为{0,2,4}中的任意一个值,可选地,例如可以预配置第一频率偏移量为{0,2,4}中最小索引值对应的频率偏移量或者为频率偏移量中的最小值,例如预配置第一频率偏移量为0。
又例如,第一类型终端设备根据pdcch-ConfigSIB1确定第二初始BWP包括的CORESET0对应的时频资源为48个RB*2个OFDM符号,或者对应的时频资源更多时,第一类型终端设备可以确定第一初始BWP包括的CORESET0对应的时频资源数为24个RB*3个OFDM符号。结合上表1,当第一初始BWP包括的CORESET0对应的时频资源数为24个RB*3个OFDM符号时,对应的频率偏移量为(表中的offset)可以为0、2、4,此时第一频率偏移量可以为{0,2,4,}中的任意一个值,例如,在一个具体的实施方式中,可以预配置第一频率偏移量为{0,2,4,}最小索引值对应的频率偏移量或者为频率偏移量中的最小值,例如欲配置第一频率偏移量为0。
(二)第二种频率资源的设计方式
如图9所示,为本申请实施例提供的一种确定初始BWP的方法的示意图。
第一类型终端设备确定所述第一类型终端设备对应的初始BWP的频率资源,所述第一初始BWP的频率资源与所述第二初始BWP的频率资源之间无重叠,所述第一类型终端设备和所述第二类型终端设备的能力不同。
通过这种实施方式,由于第一初始BWP的频率资源与第二初始BWP的频率资源之间没有重叠,因此可以减小对第二类型终端设备数据传输的影响。对于系统带宽比较大的系统而言,通过这种实现方式,既可以实现对多样化数据业务的支持(例如同时支持eMBB业务和mMTC业务),又不影响对已经部署的eMBB业务的影响。
在一个具体的实施方式中,第一初始BWP带宽可以预定义为第一类型终端设备的带宽,例如为5MHz。第一初始BWP频率资源与第二初始BWP频率资源之间的频率偏移量可以是预定义的,也可以通过其他方式实现,不作具体限定。例如,第一初始BWP频率资源与第二 初始BWP频率资源之间的频率偏移量为1个RB,这样既可以如上描述实现对多样化数据业务的支持,也可以实现同时支持多样化数据业务的系统带宽最小化。
需要说明的是,在第二种第一初始BWP的频率资源的设计方式中,第一初始BWP可以包括上行初始BWP和下行初始BWP。
(三)第三种频率资源的设计方式
如图10所示,为本申请实施例提供的一种确定初始BWP的方法的示意图。
第一类型终端设备确定所述第一类型终端设备对应的初始BWP的频率资源,所述第一初始BWP的频率资源与同步信号块SSB的频率资源之间无重叠,所述第一类型终端设备和所述第二类型终端设备的能力不同。
进一步可选地,在这种实现方式下,第一初始BWP的频率资源不仅与SSB的频率资源之间无重叠,而且还包括于第二初始BWP的频率资源之内。
通过这种实现方式,可以有效利用系统频率资源,尤其适用于系统带宽较小但又需要服务多样化业务的系统。
在一个具体的实施方式中,第一初始BWP的频率资源与SSB频率资源之间的频率偏移量可以是预定义的,第一初始BWP的带宽可以预定义为第一类型终端设备的带宽,例如为5MHz,也可以为其他值,不作具体限定。
需要说明的是,在本申请中,第一初始BWP的频率资源可以理解为包括第一初始BWP的频率资源位置,具体的可以通过第一初始BWP的频率起点和第一初始BWP的带宽,或者第一初始BWP的频率终点和第一初始BWP的带宽表示。对于第二初始BWP有相同的说明,本申请实施例中不作具体限定。
需要说明的是,对于NR载波频率大于6GHz的第一初始BWP频率资源确定方法也可以采用上述实现方式。
以上对本申请实施例提供的三种频率资源的设计方式进行了介绍,下面对如何确定CORESET0的时间资源进行介绍。
需要说明的是,在本申请实施例中,CORESET0除了可以如上理解为,还可以理解为包括调度信息传输的控制资源集合CORESET,其中该调度信息为用于调度初始BWP内包括的公共信息传输的控制信息。例如CORESET0为包括SIB1 PDCCH传输的时频资源集合、和/或为包括Paging PDCCH传输的时频资源集合、和/或为包括RAR PDCCH传输的时频资源集合。其中SIB1 PDCCH为承载调度SIB1传输的控制信息的物理下行控制信道,Paging PDCCH为承载调度Paging传输的控制信息的物理下行控制信道,RAR为承载调度RAR信息的物理下行控制信道。CORESET0的频率资源可以等价于初始BWP的频率资源,CORESET0的时间资源可以用与该CORESET0相关联的PDCCH搜索空间(search space,SS或者PDCCH搜索空间集合search space set出现的时间位置表示。这里,与该CORESET0相关联的PDCCH SS或者PDCCH搜索空间集合,可以理解为该CORESET0对应的频率资源内包括PDCCH SS或者PDCCH搜索空间集合配置,其中搜索空间集合可以理解为,包括一组终端设备需要检测的PDCCH备选的集合,在PDCCH备选上,终端设备可能检测到调度该终端设备数据传输的控制信息,也可能没有检测到,这取决于网络设备是否在该PDCCH备选上发送了调度该终端 设备数据传输的控制信息,这里的控制信息可以是小区特定的控制信息,也可以是终端设备特定的控制信息,在本申请实施例中不作具体限定。
更为具体的,CORESET0的时间资源例如可以理解为通过MIB中包括的pdcch-ConfigSIB1通知的时间资源,即Type0-PDCCH search space set对应的时间资源。
为了简化描述,下述均用CORESET0对应的时间资源描述。
(一)第一种CORESET0的时间资源的设计方式
在该实施方式下,第一初始BWP对应的CORESET0对应的时间资源
第一类型终端设备对应的第一CORESET0的时间资源所在的无线帧内不包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙(slot)内不包括第二类型终端设备对应的第二CORESET0的时间资源。
可选地,不同波束方向对应的第一时间资源优先在不包括SSB传输的时间资源的无线帧内映射,并按照与其关联的SSB索引,按照从小到大的顺序,依次映射在时隙索引按照从小到大顺序排列的时隙中,第一时间资源映射到的时隙中不包括第二CORESET0的时间资源。需要说明的是,位于不同时间位置的第一时间资源对应的波束方向可以相同,也可以不相同,不作具体限定。这样实现的好处在于,当系统开始支持第一类型终端设备业务传输时,不会因为第一类型终端设备的引入,影响系统中可能已经部署了的第二类型终端设备的业务传输,特别是当对应第二类型终端设备的公共信息传输与SSB传输在相同的时隙或者相同的无线帧内时,通过这种实现方式,可以避免对第二类型终端设备初始接入的影响。这里例如第一类型终端设备为NR REDCCAP终端设备,第二类型终端设备为NR已经部署的eMBB终端设备(例如NR R15/R16版本的终端设备)。
当不包括SSB传输的时间资源的无线帧内,不包括第二CORESET0的时间资源的时隙个数不足以支持所有波束方向对应的第一时间资源映射时,未映射完的第一时间资源继续在包括SSB传输的时间资源的无线帧内且不包括第二CORESET0的时间资源的时隙内映射。
在一个具体的实施方式中,对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。或者说,与一个SSB具有相同准共址(quasi colocation,QCL)关系的多个第一时间资源分布在一个无线帧内连续的时隙内。通过这种实现方式,可以保证在多个第一时间资源内传输的调度公共信息传输的控制信息之间的联合信道估计性能,便于终端设备实现合并检测性能。例如,如果对应同一个SSB索引的第一时间资源分布在连续两个时隙内,则优选地,对应同一个SSB索引的第一时间资源所在的时隙在相同的无线帧内,分布在连续的两个时隙内,便于终端设备在时间上连续检测对应相同SSB索引的CORESET0内包括的SIB1控制信息,保证信道估计性能。
在本申请中,不同波束方向对应的第一时间资源可以理解为:CORESET0关联的SSB索引不同,则对应不同的波束方向。即不同的波束方向可以通过SSB索引来区分,SSB索引不同,则与SSB关联的CORESET0对应的波束方向就认为是不同的。即使实际中,网络设备通过不同的SSB索引发送的相同波束方向的数据,在本申请中,也可以认为是不同波束方向。
在一个具体的实施方式中,第一时间资源是根据来自网络设备的第二配置信息确定的, 所述第二配置信息用于配置所述第二时间资源。下面结合一个具体的实例对此进行说明:
第一时间资源可以通过下述公式确定:
Figure PCTCN2020073794-appb-000003
其中,第二配置信息可以是MIB消息,各参数确定方式如下:
参数O和参数M可以根据MIB中包括的pdcch-ConfigSIB1指示直接确定。
L为SSB所在频段所能支持传输SSB的最大个数。在NR系统中,SSB将以一个半帧5 ms为单位,进行周期发送,包含SSB的半帧周期可为{5 ms,10 ms,20 ms,40 ms,80 ms,160ms}。一个半帧中SSB可以重复多次发送,最大的重复次数为L次。L的值由NR载波所在的频段决定。
Offset’代表时间偏移量,为预配置的值,或者通过第二配置信息指示。
i为第一CORESET0的时间资源所对应的SSB的index。
M’取值可以与M相同。
u对应不同的子载波间隔或者不同的参数集(numerology),u的取值可以参考表2
表2:
μ 子载波间隔Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
通过上述计算得到的slot所在的无线帧索引可以通过slot索引对应的奇偶来确定,或者通过上述计算得到的slot优先在不包含NR SSB传输的无线帧内。
在一个具体的实施方式中,第一时间资源所在的时间资源(例如时隙)还可以通过下述公式确定:
Figure PCTCN2020073794-appb-000004
第一类型终端设备根据MIB中包括的pdcch-ConfigSIB1,确定上述公式中的O、M参数,再根据预定义的时间偏移量,结合上述公式计算得到的n0,确定第一时间资源所在的slot,这里的时间偏移量可以理解为对应相同的SSB索引,第一时间资源与第二时间资源之间的时间偏移量,例如如果pdcch-ConfigSIB1指示的O为0,则预定义的时间偏移量可以为5;又例如,无论pdcch-ConfigSIB1指示的O具体值是多少,时间偏移量都可以为5。或者,第一类型终端设备根据控制信息确定上述公式中的O、M参数取值,结合预定义的
Figure PCTCN2020073794-appb-000005
值,直接确定第一时间资源所在的slot,本申请实施例对该控制信息具体传输方式、以及承载的传输信道不作具体限定。同样地,通过这种方式计算得到的slot所在的无线帧索引可以通过slot索引对应的奇偶来确定,或者通过上述计算得到的slot优先在不包含NR SSB传输的无线帧内。
需要说明的是,在本申请提供的技术方案中,第一配置信息和第二配置信息可以是相 同的信息,第一配置信息和第二配置信息也可以是不同的信息,但承载在相同的下行数据传输信道中,例如下行数据传输信道可以包括但不限于广播信道、下行控制信息、下行共享信道,以下对此不再重复赘述。
需要说明的是,在本申请实施例中,第一时间资源与包括SSB传输的时间资源可以是时分复用(time domain multiplexing,TDM)的,即第一时间资源与包括SSB传输的时间资源在时间上是没有重叠的。例如包括SSB传输的时间资源与第一时间资源对应的时隙不同,或者对应的OFDM符号不同。
(二)第二种CORESET0的时间资源的设计方式
确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源包括于第二时间资源内。
在一个优选的实施方式中,该实施方式可以与上述描述中通过第一种或第二种频率的设计方式确定的第一初始BWP的频率资源联合使用。
需要说明的是,在本申请实施例中,第一时间资源与包括SSB传输的时间资源可以是TDM的,即第一时间资源与包括SSB传输的时间资源在时间上是没有重叠的。例如包括SSB传输的时间资源与第一时间资源对应的时隙不同,或者对应的OFDM符号不同。
(三)第三种CORESET0的时间资源的设计方式
确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源包括于同步信号块SSB的时间资源内。
需要说明的是,第一类型终端设备对应的SSB与第二类型终端设备对应的SSB可以相同,也可以不相同,本申请对此不作具体限定。
需要说明的是,这三种时间资源的设计方式的任意一种设计方式都可以与上述的三种频率资源的设计方式中的任意一种设计方式结合应用。比如,第一种频率资源的设计方式可以与第一种CORESET0的时间资源的设计方式结合应用,具体可以参照图3所示的示意图进行理解。第一种频率资源的设计方式可以与第二种CORESET0的时间资源的设计方式结合应用,具体可以参照图11所示的示意图进行理解。第一种频率资源的设计方式可以与第三种CORESET0的时间资源的设计方式结合应用,具体可以参照图12所示的示意图进行理解。第二种频率资源的设计方式可以与第一种CORESET0的时间资源的设计方式结合应用,具体可以参照图13所示的示意图进行理解。第二种频率资源的设计方式可以与第二种CORESET0的时间资源的设计方式结合应用,具体可以参照图9所示的示意图进行理解。第二种频率资源的设计方式可以与第三种CORESET0的时间资源的设计方式结合应用,具体可以参照图14所示的示意图进行理解。第三种频率资源的设计方式可以与第一种CORESET0的时间资源的设计方式结合应用,具体可以参照图15所示的示意图进行理解。第三种频率资源的设计方式可以与第二种CORESET0的时间资源的设计方式结合应用,具体可以参照图16所示的示意图进行理解。第三种频率资源的设计方式可以与第三种CORESET0的时间资源的设计方式结合应用,具体可以参照图10所示的示意图进行理解。可选地,网络设备通过自身的业务需求,可以灵活配置上述组合方式,比如网络设备可以配置X种配置,X种配置中至少包括一种上述组合方式。具体的,例如网络设备只配置1种配置,则这种配置可以为上 述组合中的一种,或者网络设备配置2种配置,这2种配置为上述组合中的至少两种。具体终端设备通过哪种配置确定第一初始BWP的频率资源和时间资源(CORESET0时间资源),可以通过其他方式实现,本申请不作具体限定。
以上从如何确定初始BWP的频率资源以及如何确定CORESET0的时间资源对确定初始BWP的方法进行了介绍,需要说明的是,第一时间资源可以是周期出现的,下面将结合具体的实例对第一时间资源的周期设计方法进行说明。
(一)第一种第一时间资源的周期设计方式
由于第二时间资源可以是周期出现的,第一时间资源的周期可以与第二时间资源的周期相同,或者第一时间资源与第二时间资源的周期不同。比如,在一个具体的实施方式中,第一时间资源的周期可以为第二时间资源的周期的整数倍或者分数倍。第一时间资源与第二时间资源的周期不同,可以便于网络设备根据不同类型终端设备的能力,适配性地设计合适的时间资源用来承载公共信息的传输,在保证公共信息传输的性能特别是覆盖性能的同时,保证了资源使用的效率,避免网络设备侧不必要的资源开销。需要说明的是,本申请提供的第一种第一时间资源的周期设计方式可以单独应用,也可以和上述介绍的三种初始BWP的频率资源的设计方式以及三种CORESET0的时间资源的设计方式结合使用,具体的,当第一种时间资源的周期设计方式与任意一种CORESET0的时间资源的设计方式结合使用时,第一种时间资源的每一个周期的设计方式与CORESET0的时间资源的设计方式相同。
在一个具体的实施方式中,第一种第一时间资源的周期设计方式可以和第二种CORESET0的时间资源的设计方式结合应用,当和第二种CORESET0的时间资源的设计方式结合应用时,第一时间资源包括于第二时间资源内,可以包括以下至少一种理解:
(1)第一时间资源的周期与第二时间资源的周期相同,在第二CORESET0出现的第二时间资源内包括第一CORESET0的时间资源,例如在一个周期内,第二CORESET0的时间资源对应一个时隙中的第M1个OFDM符号~第M2个OFDM(包括第M1个和第M2个OFDM符号)包括的时间资源范围,则第一CORESET0的时间资源可以对应该时隙中的第M3~M4个OFDM符号(包括第M3和第M4个OFDM符号),其中M3不小于M1,M4不大于M2。
(2)第一时间资源的周期与第二时间资源的周期不同,且第一时间资源的周期为第二时间资源周期的整数倍,并且在第一时间资源与第二时间资源重合的时间资源上,第一时间资源包括于第二时间资源内。
此外,可选地,第一时间资源还可以满足:第一时间资源的周期与第二时间资源的周期不同,且第一时间资源的周期为第二时间资源周期的分数倍,并且在第一时间资源与第二时间资源重合的时间资源上,第一时间资源包括于第二时间资源内。例如第二时间资源的周期为10ms,而第一时间资源的周期为5ms。在本申请实施例中,由于在重合的资源上,第一时间资源也是包括与第二时间资源内的,因此这种实施方式也可以理解为第一时间资源包括于第二时间资源内。
通过上述的实施方式,由于第一时间资源可以包括于第二时间资源内(如(1)和(2)),或者说,部分第一时间资源可以包括于第二时间资源内(如(3)),因此网络设备可以在第二时间资源范围内传输第一类型终端设备对应的公共信息,另一方面,网络设备在第二 时间资源内还会传输第二类型终端设备对应的公共信息,因此,网络设备在为不同类型终端设备发送公共信息时,网络设备可以增加关断符号的概率(例如被关断的符号可以是承载第一类型终端设备和第二类型终端设备对应的公共信息传输的符号),进而减少网络设备传输数据所需的功耗。
(二)第二种第一时间资源的周期设计方式
由于SSB的时间资源是周期出现的,第一时间资源可以与第一类型终端设备对应的SSB的时间资源的周期相同,或者第一时间资源与第一类型终端设备对应的SSB的时间资源的周期不相同。在一个具体的实施方式中,第一时间资源的周期可以为SSB的时间资源的周期的整数倍或者分数倍。第一时间资源与SSB传输周期不同,可以便于网络设备根据不同数据的覆盖性能,适配性地设计合适的时间资源用来承载公共信息的传输,保证了资源使用的效率,避免网络设备侧不必要的资源开销。例如SSB传输,终端设备可以通过能量累加的方式,保证SSB传输性能,而对于包括公共信息传输的第一时间资源,可以通过设置与SSB不同的传输周期,来保证公共信息的传输性能。
需要说明的是,本申请提供的第二种第一时间资源的周期设计方式可以单独应用,也可以和上述介绍的三种初始BWP的频率资源的设计方式以及三种CORESET0的时间资源的设计方式结合使用,具体的,当第二种时间资源的周期设计方式与任意一种CORESET0的时间资源的设计方式结合使用时,第二种时间资源的每一个周期的设计方式与CORESET0的时间资源的设计方式相同。
在一个具体的实施方式中,当和第三种CORESET0的时间资源的设计方式结合应用时,第一时间资源包括于SSB的时间资源内,可以包括以下至少一种理解:
(1)第一时间资源的周期与SSB的时间资源的周期相同,在SSB出现的时间资源内包括第一CORESET0的时间资源,例如在一个周期内,SSB的时间资源对应一个时隙中的第M1个OFDM符号~第M2个OFDM(包括第M1个和第M2个OFDM符号)包括的时间资源范围,则第一CORESET0的时间资源可以对应该时隙中的第M3~M4个OFDM符号(包括第M3和第M4个OFDM符号),其中M3不小于M1,M4不大于M2。
(2)第一时间资源的周期与SSB的时间资源的周期不同,且第一时间资源的周期为SSB的时间资源周期的整数倍,并且在第一时间资源与SSB的时间资源重合的时间资源上,第一时间资源包括于SSB的时间资源内。
(3)此外,可选地,第一时间资源还可以满足:第一时间资源的周期与SSB传输周期不同,且第一时间资源的周期为SSB传输周期的分数倍,并且在第一时间资源与第二时间资源重合的时间资源上,第一时间资源包括于SSB时间资源内。例如SSB的传输周期为10ms,而第一时间资源的周期为5ms。在本申请实施例中,由于在重合的资源上,第一时间资源也是包括与SSB时间资源内的,因此这种实施方式也可以理解为第一时间资源包括于SSB时间资源内。
通过(3)的方式,由于第一时间资源包括于的SSB时间资源内,或者部分第一时间资源包括于SSB时间资源内,因此可以增加网络设备关掉符号的概率,降低网络设备传输公共信息和SSB时所需的功耗。
需要说明的是,对于NR载波频率大于6GHz的第一时间资源也可以具有上述特征。
需要说明的是,在本申请实施例中,第一时间资源的周期或者包括公共信息传输的时间资源的周期或者第一CORESET0时间资源的周期可以是终端设备默认的周期,例如20ms,也可以是网络设备发送公共信息的周期或者实际发送公共信息的周期,例如网络设备发送公共信息的周期可以为5ms,10ms,20ms,40ms,……,而网络设备实际发送公共信息的周期可以是网络设备发送公共信息的周期中的任意一个取值。对于第二时间资源的周期也有相同说明,不作赘述,此外,SSB传输周期也可以是终端设备默认的周期,或者是网络设备发送SSB的周期或者实际发送SSB的周期,例如网络设备发送SSB的周期可以为5ms,10ms,20ms,40ms,……,而网络设备实际发送SSB的周期可以是网络设备发送公共信息的周期中的任意一个取值。
以上分别从频率资源的设计方式、CORESET0的时间资源的设计方式以及时间资源的周期设计方式三个方面对本申请提供的确定初始BWP的方法进行了介绍,本申请提供的设计方式设计简单,继承现有的第二初始BWP的设计初衷,降低标准设计复杂度。
可以理解的是,上述第一类型终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
从硬件结构上来描述,图3至图16中的第一类型终端设备可以由一个实体设备实现,也可以由多个实体设备共同实现,还可以是一个实体设备内的一个逻辑功能模块,本申请实施例对此不作具体限定。
例如,第一类型终端设备或者说终端设备,也可以称为确定下行初始带宽部分BWP的装置,可以通过图17中的通信设备来实现。图17所示为本申请实施例提供的终端设备的硬件结构示意图。包括:通信接口1701和处理器1702,还可以包括存储器1703。
通信接口1701可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
处理器1702包括但不限于中央处理器(central processing unit,CPU),网络处理器(network processor,NP),专用集成电路(application-specific integrated circuit,ASIC)或者可编程逻辑器件(programmable logic device,PLD)中的一个或多个。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器1702负责通信线路1704和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节,电源管理以及其他控制功能。存储器1703可以用于存储处理器1702在执行操作时所使用的数据。
存储器1703可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的 其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically er服务器able programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1704与处理器1702相连接。存储器1703也可以和处理器1702集成在一起。如果存储器1703和处理器1702是相互独立的器件,存储器1703和处理器1702相连,例如存储器1703和处理器1702可以通过通信线路通信。通信接口1701和处理器1702可以通过通信线路通信,通信接口1701也可以与处理器1702直连。
通信线路1704可以包括任意数量的互联的总线和桥,通信线路1704将包括由处理器1702代表的一个或多个处理器1702和存储器1703代表的存储器的各种电路链接在一起。通信线路1704还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本申请不再对其进行进一步描述。
在一个具体的实施方式中,该终端设备,可以包括:处理器,用于执行所述存储器存储的程序,当存储器存储的程序被执行时,处理器用于确定第一类型终端设备对应的第一初始BWP的频率资源,第一初始BWP的频率资源可以包括于第二类型终端设备对应的第二初始BWP的频率资源内,第一类型终端设备和第二类型终端设备的能力不同。通信接口,通信接口与处理器耦合,用于根据第一初始BWP的频率资源与网络设备传输信令和/或数据。
在一个具体的实施方式中,可以包括:处理器,用于确定第一类型终端设备对应的初始BWP的频率资源,第一初始BWP的频率资源与第二初始BWP的频率资源之间无重叠,第一类型终端设备和第二类型终端设备的能力不同。通信接口,通信接口与处理器耦合,用于根据第一初始BWP的频率资源与网络设备传输信令和/或数据。
在一个具体的实施方式中,可以包括:处理器,用于确定第一类型终端设备对应的初始BWP的频率资源,第一初始BWP的频率资源与同步信号块SSB的频率资源之间无重叠,第一类型终端设备和第二类型终端设备的能力不同。通信接口,通信接口与处理器耦合,用于根据第一初始BWP的频率资源与网络设备传输信令和/或数据。
在一个具体的实施方式中,第一类型终端设备和第二类型终端设备的能力不同,可以包括以下至少一项:第一类型终端设备和第二类型终端设备的带宽能力不同。第一类型终端设备和第二类型终端设备的收发天线数目不同。第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
在一个具体的实施方式中,第一初始BWP的频率资源是根据第一频率偏移量确定的,第一频率偏移量属于第一集合,第一集合为第二频率偏移量的集合。其中,第一频率偏移量为第一初始BWP的频率资源相对同步信号块SSB的频率资源的偏移量,第二频率偏移量为第二初始BWP的频率资源相对SSB的频率资源的偏移量。
在一个具体的实施方式中,第一频率偏移量是根据来自网络设备的第一配置信息确定 的,第一配置信息用于配置第二初始BWP的频率资源。
在一个具体的实施方式中,第一频率偏移量与第二频率偏移量相同。
在一个具体的实施方式中,处理器,具体用于:根据第一配置信息确定第一索引值。确定M个索引值,M为正整数,M个索引值和第一索引值用于指示第一集合中可以包括的频率偏移量,M个索引值小于或等于第一索引值的索引值。根据M个索引值中的任意一个索引值指示的频率偏移量确定第一频率偏移量。
在一个具体的实施方式中,处理器,具体用于:根据第一配置信息确定第一索引值。确定第二索引值,第二索引值为第一索引值对预设值取模后的值,第一索引值和第二索引值指示第一集合中可以包括的频率偏移量。根据第二索引值确定第一频率偏移量。
在一个具体的实施方式中,第一频率偏移量是根据第一时频资源数确定的,第一时频资源数和第二时频资源数对应于第一集合中可以包括的频率偏移量,第一时频资源数为最接近第二时频资源数的时频资源数,第二时频资源数为第二类型终端设备的CORESET0对应的时频资源数。
在一个具体的实施方式中,处理器,还用于:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源所在的无线帧内不可以包括同步信号块SSB传输的时间资源,或者,第一时间资源所在的时隙内不可以包括第二类型终端设备对应的第二CORESET0的时间资源。
在一个具体的实施方式中,对应同一个SSB的第一时间资源分布在一个无线帧内的连续两个时隙内。
在一个具体的实施方式中,处理器,还用于:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于第二时间资源内。
在一个具体的实施方式中,处理器,还用于:确定第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,第一时间资源可以包括于同步信号块SSB的时间资源内。
可选地,结合上述第七方面第八种至第七方面第十种可能的实现方式,在第十二种可能的实现方式中,第一时间资源是根据来自网络设备的第二配置信息确定的,第二配置信息用于配置第二时间资源。
在本申请实施例中,可以将通信接口视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元,将存储器视为终端设备的存储单元。如图18所示,终端设备包括收发单元1810和处理单元1820和存储单元1830。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1810中用于实现接收功能的器件视为接收单元,将收发单元1810中用于实现发送功能的器件视为发送单元,即收发单元1810包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
在一个具体的实施方式中,收发单元1810用于执行图3至图15中的第一类型终端设备侧的收发操作。处理单元1820,用于执行图3至图15中的第一类型终端设备侧中的处理步骤。存储单元1830,用于执行图3至图15中的第一类型终端设备侧中的存储步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本申请实施例所提供的确定下行初始带宽部分BWP的方法、装置以及存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (27)

  1. 一种确定初始带宽部分BWP的方法,其特征在于,包括:
    确定第一类型终端设备对应的第一初始BWP的频率资源,所述第一初始BWP的频率资源包括于第二类型终端设备对应的第二初始BWP的频率资源内,所述第一类型终端设备和所述第二类型终端设备的能力不同;
    根据所述第一初始BWP的频率资源与网络设备传输信令和/或数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一类型终端设备和所述第二类型终端设备的能力不同,包括以下至少一项:
    所述第一类型终端设备和所述第二类型终端设备的带宽能力不同;
    所述第一类型终端设备和所述第二类型终端设备的收发天线数目不同;
    所述第一类型终端设备和所述第二类型终端设备的上行最大发射功率不同。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一初始BWP的频率资源是根据第一频率偏移量确定的,所述第一频率偏移量属于第一集合,所述第一集合为第二频率偏移量的集合;
    其中,所述第一频率偏移量为所述第一初始BWP的频率资源相对同步信号块SSB的频率资源的偏移量,所述第二频率偏移量为所述第二初始BWP的频率资源相对所述SSB的频率资源的偏移量。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一频率偏移量是根据来自网络设备的第一配置信息确定的,所述第一配置信息用于配置所述第二初始BWP的频率资源。
  5. 根据权利要求3或4所述的方法,其特征在于,
    所述第一频率偏移量与所述第二频率偏移量相同。
  6. 根据权利要求4所述的方法,其特征在于,所述第一频率偏移量是根据来自网络设备的第一配置信息确定的,包括:
    所述第一类型终端设备根据所述第一配置信息确定第一索引值;
    所述第一类型终端设备确定M个索引值,所述M为正整数,所述M个索引值和所述第一索引值用于指示所述第一集合中包括的频率偏移量,所述M个索引值小于或等于所述第一索引值的索引值;
    所述第一类型终端设备根据所述M个索引值中的任意一个索引值指示的所述频率偏移量确定所述第一频率偏移量。
  7. 根据权利要求4所述的方法,其特征在于,所述第一频率偏移量是根据来自网络设备的第一配置信息确定的,包括:
    所述第一类型终端设备根据所述第一配置信息确定第一索引值;
    所述第一类型终端设备确定第二索引值,所述第二索引值为所述第一索引值对预设值取模后的值,所述第一索引值和所述第二索引值指示所述第一集合中包括的频率偏移量;
    所述第一类型终端设备根据所述第二索引值确定所述第一频率偏移量。
  8. 根据权利要求3所述的方法,其特征在于,
    所述第一频率偏移量是根据第一时频资源数确定的,所述第一时频资源数和所述第二时频资源数对应于所述第一集合中包括的频率偏移量,所述第一时频资源数为最接近所述第二时频资源数的时频资源数,第二时频资源数为所述第二类型终端设备的CORESET0对应的时频资源数。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述方法还包括:
    确定所述第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,所述第一时间资源所在的无线帧内不包括同步信号块SSB传输的时间资源,或者,所述第一时间资源所在的时隙内不包括所述第二类型终端设备对应的第二CORESET0的时间资源。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    对应同一个所述SSB的所述第一时间资源分布在一个无线帧内的连续两个时隙内。
  11. 根据权利要求1至8任一项所述的方法,其特征在于,
    确定所述第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,所述第一时间资源包括于第二时间资源内,所述第二时间资源为所述第二类型终端设备对应的第二CORESET0的时间资源。
  12. 根据权利要求1至8任一项所述的方法,其特征在于,
    确定所述第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,所述第一时间资源包括于同步信号块SSB的时间资源内。
  13. 根据权利要求9至11任一项所述的方法,其特征在于,
    所述第一时间资源是根据来自网络设备的第二配置信息确定的,所述第二配置信息用于配置所述第二时间资源。
  14. 一种确定初始带宽部分BWP的装置,其特征在于,包括:
    处理单元,用于确定第一类型终端设备对应的第一初始BWP的频率资源,所述第一初始BWP的频率资源包括于第二类型终端设备对应的第二初始BWP的频率资源内,所述第一类型终端设备和所述第二类型终端设备的能力不同;
    通信单元,用于根据所述第一初始BWP的频率资源与网络设备传输信令和/或数据。
  15. 根据权利要求14所述的装置,其特征在于,所述第一类型终端设备和所述第二类型终端设备的能力不同,包括以下至少一项:
    所述第一类型终端设备和所述第二类型终端设备的带宽能力不同;
    所述第一类型终端设备和所述第二类型终端设备的收发天线数目不同;
    所述第一类型终端设备和所述第二类型终端设备的上行最大发射功率不同。
  16. 根据权利要求14或15所述的装置,其特征在于,
    所述第一初始BWP的频率资源是根据第一频率偏移量确定的,所述第一频率偏移量属于第一集合,所述第一集合为第二频率偏移量的集合;
    其中,所述第一频率偏移量为所述第一初始BWP的频率资源相对同步信号块SSB的频率资源的偏移量,所述第二频率偏移量为所述第二初始BWP的频率资源相对所述SSB的频率资源的偏移量。
  17. 根据权利要求16所述的装置,其特征在于,
    所述第一频率偏移量是根据来自网络设备的第一配置信息确定的,所述第一配置信息用于配置所述第二初始BWP的频率资源。
  18. 根据权利要求16或17所述的装置,其特征在于,
    所述第一频率偏移量与所述第二频率偏移量相同。
  19. 根据权利要求17所述的装置,其特征在于,所述处理单元,具体用于:
    根据所述第一配置信息确定第一索引值;
    确定M个索引值,所述M为正整数,所述M个索引值和所述第一索引值用于指示所述第一集合中包括的频率偏移量,所述M个索引值小于或等于所述第一索引值的索引值;
    根据所述M个索引值中的任意一个索引值指示的所述频率偏移量确定所述第一频率偏移量。
  20. 根据权利要求17所述的装置,其特征在于,所述处理单元,具体用于:
    根据所述第一配置信息确定第一索引值;
    确定第二索引值,所述第二索引值为所述第一索引值对预设值取模后的值,所述第一索引值和所述第二索引值指示所述第一集合中包括的频率偏移量;
    根据所述第二索引值确定所述第一频率偏移量。
  21. 根据权利要求16所述的装置,其特征在于,
    所述第一频率偏移量是根据第一时频资源数确定的,所述第一时频资源数和所述第二时频资源数对应于所述第一集合中包括的频率偏移量,所述第一时频资源数为最接近所述第二时频资源数的时频资源数,第二时频资源数为所述第二类型终端设备的CORESET0对应的时频资源数。
  22. 根据权利要求14至21任一项所述的装置,其特征在于,所述处理单元,还用于:
    确定所述第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,所述第一时间资源所在的无线帧内不包括同步信号块SSB传输的时间资源,或者,所述第一时间资源所在的时隙内不包括所述第二类型终端设备对应的第二CORESET0的时间资源。
  23. 根据权利要求22所述的装置,其特征在于,
    对应同一个所述SSB的所述第一时间资源分布在一个无线帧内的连续两个时隙内。
  24. 根据权利要求14至21任一项所述的装置,其特征在于,所述处理单元,还用于:
    确定所述第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,所述第一时间资源包括于所述第二时间资源内。
  25. 根据权利要求14至21任一项所述的装置,其特征在于,所述处理单元,还用于:
    确定所述第一类型终端设备对应的第一控制资源集合0CORESET0的时间资源,所述第一时间资源包括于同步信号块SSB的时间资源内。
  26. 根据权利要求22至24任一项所述的装置,其特征在于,
    所述第一时间资源是根据来自网络设备的第二配置信息确定的,所述第二配置信息用于配置所述第二时间资源。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至13中 任意一项所述的方法。
PCT/CN2020/073794 2020-01-22 2020-01-22 一种确定初始带宽部分bwp的方法、装置及存储介质 WO2021146998A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022544266A JP7407957B2 (ja) 2020-01-22 2020-01-22 初期帯域幅部bwp及び記憶媒体を決定するための方法及び装置
KR1020227028594A KR20220129600A (ko) 2020-01-22 2020-01-22 초기 대역폭 부분(bwp)을 결정하는 방법 및 장치 그리고 저장 매체
CN202080088966.9A CN114846881A (zh) 2020-01-22 2020-01-22 一种确定初始带宽部分bwp的方法、装置及存储介质
PCT/CN2020/073794 WO2021146998A1 (zh) 2020-01-22 2020-01-22 一种确定初始带宽部分bwp的方法、装置及存储介质
EP20916203.1A EP4087344A4 (en) 2020-01-22 2020-01-22 METHOD AND APPARATUS FOR DETERMINING AN INITIAL BANDWIDTH PART (BWP) AND STORAGE MEDIUM
US17/870,499 US20220361122A1 (en) 2020-01-22 2022-07-21 Method and apparatus for determining initial bandwidth part bwp, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073794 WO2021146998A1 (zh) 2020-01-22 2020-01-22 一种确定初始带宽部分bwp的方法、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/870,499 Continuation US20220361122A1 (en) 2020-01-22 2022-07-21 Method and apparatus for determining initial bandwidth part bwp, and storage medium

Publications (1)

Publication Number Publication Date
WO2021146998A1 true WO2021146998A1 (zh) 2021-07-29

Family

ID=76991972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073794 WO2021146998A1 (zh) 2020-01-22 2020-01-22 一种确定初始带宽部分bwp的方法、装置及存储介质

Country Status (6)

Country Link
US (1) US20220361122A1 (zh)
EP (1) EP4087344A4 (zh)
JP (1) JP7407957B2 (zh)
KR (1) KR20220129600A (zh)
CN (1) CN114846881A (zh)
WO (1) WO2021146998A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210250929A1 (en) * 2020-02-12 2021-08-12 Qualcomm Incorporated Coreset0 configuration and/or ss0 configuration for reduced capability ues
WO2023017206A1 (en) * 2021-08-13 2023-02-16 Nokia Technologies Oy Power saving for reduced capability devices
WO2023051488A1 (zh) * 2021-09-30 2023-04-06 华为技术有限公司 一种消息传输方法及装置
JP7423806B2 (ja) 2020-02-17 2024-01-29 中国移動通信有限公司研究院 情報伝送方法及び情報伝送装置、関連機器、並びに記憶媒体
JP7439895B2 (ja) 2020-02-13 2024-02-28 日本電気株式会社 User Equipment(UE)の方法、UE、及び基地局の方法
WO2024079796A1 (ja) * 2022-10-11 2024-04-18 株式会社Nttドコモ 端末及び通信方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651525B1 (en) * 2018-08-03 2021-11-24 LG Electronics Inc. Method for configuring reference point independent of common resource block grid, and device therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050323A1 (en) * 2017-09-08 2019-03-14 Samsung Electronics Co., Ltd. METHOD AND SYSTEM FOR MANAGING RADIO LINK MONITORING (RLM) USING BANDWIDTH PART CONFIGURATIONS (BWP)
CN110115008A (zh) * 2016-12-07 2019-08-09 Lg电子株式会社 配置无线通信系统中的nr的控制信道的方法和设备
US20190261425A1 (en) * 2018-02-17 2019-08-22 Kyungmin Park Bandwidth Part Configuration Information
US20190313412A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for bandwidth part switching

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009144A1 (ja) 2018-07-05 2020-01-09 株式会社Nttドコモ 端末及び無線通信方法
CN110475361B (zh) * 2019-08-16 2022-06-10 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115008A (zh) * 2016-12-07 2019-08-09 Lg电子株式会社 配置无线通信系统中的nr的控制信道的方法和设备
WO2019050323A1 (en) * 2017-09-08 2019-03-14 Samsung Electronics Co., Ltd. METHOD AND SYSTEM FOR MANAGING RADIO LINK MONITORING (RLM) USING BANDWIDTH PART CONFIGURATIONS (BWP)
US20190261425A1 (en) * 2018-02-17 2019-08-22 Kyungmin Park Bandwidth Part Configuration Information
US20190313412A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for bandwidth part switching

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Key points on NR Light SID", 3GPP DRAFT; RP-192788, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Sitges, Spain; 20191209 - 20191212, 2 December 2019 (2019-12-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051834380 *
MEDIATEK INC.: "Summary of Bandwidth Part Remaining Issues", 3GPP DRAFT; R1-1809929_SUMMARY OF BWP REMAINING ISSUES_R4, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 23 August 2018 (2018-08-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051517283 *
NOKIA, NOKIA SHANGHAI BELL: "On wideband operation in NR-U", 3GPP DRAFT; R1-1904194_WB OPERATION_NOKIA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051699526 *
See also references of EP4087344A4 *
VIVO: "Motivation for NR diverse UE types in Rel-17", 3GPP DRAFT; RP-191305_MOTIVATION FOR NR DIVERSE UE TYPES IN REL-17, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190603 - 20190606, 2 June 2019 (2019-06-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051747912 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210250929A1 (en) * 2020-02-12 2021-08-12 Qualcomm Incorporated Coreset0 configuration and/or ss0 configuration for reduced capability ues
US11564221B2 (en) * 2020-02-12 2023-01-24 Qualcomm Incorporated COREST0 configuration and/or SS0 configuration for reduced capability UES
JP7439895B2 (ja) 2020-02-13 2024-02-28 日本電気株式会社 User Equipment(UE)の方法、UE、及び基地局の方法
JP7423806B2 (ja) 2020-02-17 2024-01-29 中国移動通信有限公司研究院 情報伝送方法及び情報伝送装置、関連機器、並びに記憶媒体
WO2023017206A1 (en) * 2021-08-13 2023-02-16 Nokia Technologies Oy Power saving for reduced capability devices
US11800495B2 (en) 2021-08-13 2023-10-24 Nokia Technologies Oy Power saving for reduced capability devices
WO2023051488A1 (zh) * 2021-09-30 2023-04-06 华为技术有限公司 一种消息传输方法及装置
WO2024079796A1 (ja) * 2022-10-11 2024-04-18 株式会社Nttドコモ 端末及び通信方法

Also Published As

Publication number Publication date
KR20220129600A (ko) 2022-09-23
US20220361122A1 (en) 2022-11-10
JP2023511897A (ja) 2023-03-23
EP4087344A4 (en) 2023-04-05
EP4087344A1 (en) 2022-11-09
CN114846881A (zh) 2022-08-02
JP7407957B2 (ja) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2021146998A1 (zh) 一种确定初始带宽部分bwp的方法、装置及存储介质
CN109479277B (zh) 使用参数集的发送方法和装置以及调度方法和装置
US9717096B2 (en) Method and apparatus for a mobile selection based initial access scheme in a multicarrier system
US8848638B2 (en) Cellular communication system support for limited bandwidth communication devices
CN111316610A (zh) 无线通信系统中rmsi coreset配置的方法和装置
US20190141711A1 (en) Resource scheduling method and apparatus
US20230269051A1 (en) Physically separated channels for narrowband, low complexity receivers
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
CN104067640A (zh) 用于通信系统中的公共控制信道的系统和方法
RU2751788C1 (ru) Пользовательский терминал и способ радиосвязи
US10681623B2 (en) Methods and apparatus for cell access via anchor carrier
KR20180035644A (ko) 무선 통신 시스템에서 다양한 서비스를 지원하기 위한 방법 및 장치
CN111713043A (zh) 带内非连续频谱的有效宽带操作方法
CN115580938A (zh) 一种数据的传输方法及装置
WO2020048481A1 (zh) 通信方法及装置
WO2022028361A1 (zh) 一种无线接入的方法以及装置
EP4171093A1 (en) Resource configuration method and apparatus
TW202402084A (zh) 無線通訊系統中的使用者設備、供無線通訊系統中的使用者設備使用的方法、無線通訊系統中的基地台及供無線通訊系統中的基地台使用的方法
TW202139769A (zh) 側鏈路時隙配置方法與裝置
CN113170511A (zh) 基于未授权频带的带宽部分(bwp)发送和接收物理信道和信号的方法及使用该方法的设备
WO2022021241A1 (zh) 同步信号块的传输方法、装置、设备及存储介质
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2022206346A1 (zh) 一种随机接入方法及装置
CN115362744A (zh) 在无线通信系统中执行上行链路/下行链路传输的方法和设备
WO2019096147A1 (zh) 一种控制信息的检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544266

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020916203

Country of ref document: EP

Effective date: 20220803

NENP Non-entry into the national phase

Ref country code: DE