WO2023151258A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023151258A1
WO2023151258A1 PCT/CN2022/114140 CN2022114140W WO2023151258A1 WO 2023151258 A1 WO2023151258 A1 WO 2023151258A1 CN 2022114140 W CN2022114140 W CN 2022114140W WO 2023151258 A1 WO2023151258 A1 WO 2023151258A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
random access
terminal device
bwp
frequency domain
Prior art date
Application number
PCT/CN2022/114140
Other languages
English (en)
French (fr)
Inventor
温容慧
余政
金哲
铁晓磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023151258A1 publication Critical patent/WO2023151258A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • the International Telecommunication Union has defined three major application scenarios for 5G and future mobile communication systems, namely enhanced mobile broadband (eMBB), ultra reliable and low latency communication (ultra reliable and low latency communications, URLLC) and massive machine type communications (massive machine type communications, mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra reliable and low latency communications
  • mMTC massive machine type communications
  • Typical eMBB services include ultra-high-definition video, augmented reality (augmented reality, AR) and virtual reality (virtual reality, VR), etc.
  • the main characteristics of these services are large amount of transmitted data and high transmission rate.
  • Typical URLLC services include wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and unmanned aircraft, and tactile interaction applications such as remote repair and remote surgery.
  • the main feature of these services is the requirement of ultra-high reliability , low latency, and less data transfer.
  • Typical mMTC services include smart grid power distribution automation and smart cities. The main features are the huge number of networked devices, the small amount of transmitted data, and the data is not sensitive to transmission delay. These mMTC terminal devices need to meet low cost and very long standby time. time demands.
  • the frequency domain resources that terminal equipment can use are less and less.
  • the terminal device Before the terminal device communicates with the access network device, it first needs to access the access network device through a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the reduction of frequency domain resources makes the frequency domain resources available for the terminal equipment to transmit information less and less, so that the resources cannot meet the transmission requirements of the PRACH.
  • the embodiment of the present application discloses a communication method and device, which are used to ensure that there are enough resources to transmit the PRACH to ensure the communication between the terminal equipment and the access network equipment.
  • the present application discloses a communication method, which can be applied to a terminal device or to a module (for example, a chip) in the terminal device.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the communication method may include: the terminal device determines random access resources, and the number of frequency domain resources of the random access resources is greater than the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the terminal device sends the PRACH on the random access resource.
  • the terminal device can determine random access resources. resources to transmit the PRACH, so that the terminal device can access the access network device through the PRACH, thereby ensuring the communication between the terminal device and the access network device.
  • the terminal device may determine the random access resource according to the first parameter and the first reference point.
  • the first reference point may be a carrier resource, may also be Point A, may also be a common resource block (common resource block, CRB) 0, and may also be a bandwidth part (bandwidth part, BWP) resource of the terminal device.
  • the first parameter may be used to indicate an offset value between the random access resource and the first reference point, and may also be used to indicate a positional relationship between the random access resource and the first reference point.
  • the random access resource used to transmit the PRACH can be accurately determined according to the first parameter and the first reference point, and the random access resource can be improved. Determined accuracy.
  • the meaning of the first parameter, the first parameter and the first reference point it can be guaranteed that the random access resources determined by the terminal device and the access network device are the same, thereby ensuring that the terminal device can be successfully accessed when sending PRACH received by the network device.
  • the first reference point is a frequency domain resource in the prior art, rather than an additionally determined frequency domain resource, which can improve compatibility with the prior art.
  • the random access resource may not be limited to the BWP of the terminal device, but within the range of the carrier resource, which can increase the selection range of the random access resource, thereby improving the random access resource.
  • Resource determination flexibility In the case where the first reference point is Point A (or CRB0), the random access resources may not be limited to the BWP of the carrier and the terminal equipment, but within the scope of system resources, which can improve the selection range of random access resources, Therefore, the flexibility of determining random access resources can be improved.
  • the terminal device since there is overlap between the random access resource and the BWP of the terminal device, the terminal device does not need to perform tuning between the PRACH and the data channel, which can reduce the power consumption, improve the transmission efficiency of the PRACH, and shorten the transmission delay of the PRACH.
  • the communication method may further include: the terminal device receiving a first parameter.
  • the first parameter may be configured or indicated by the access network device, and the terminal device may determine the first parameter according to the configuration or indication of the access network device, and then determine the random access resource for transmitting the PRACH according to the first parameter.
  • the access network device can configure or indicate different first parameters in different situations, different scenarios or at different times, instead of configuring or indicating fixed first parameters, which can improve the flexibility of first parameter configuration or indication, and can improve Applicability of the first parameter.
  • the BWP of the terminal device does not include the A frequency domain resources with the highest sequence numbers in the carrier, the starting resources of the random access resources are the same as the starting resources of the BWP of the terminal device, and the random access resources
  • the end resource of the incoming resource is located after the end resource of the BWP of the terminal device; or, the BWP of the terminal device includes A frequency domain resources with the highest sequence numbers in the carrier, and the start resource of the random access resource is located at the beginning of the BWP of the terminal device Before the start resource, the end resource of the random access resource is the same as the end resource of the BWP of the terminal device; or, the BWP of the terminal device does not include A frequency domain resources with the lowest sequence numbers in the carrier, and the start resource of the random access resource
  • the start resource is located before the start resource of the BWP of the terminal device, and the end resource of the random access resource is the same as the end resource of the BWP of the terminal device; or, the BWP of the terminal device includes A
  • the terminal device can determine the carrier information and the BWP information of the terminal device according to the information broadcast by the access network device, Then, according to the information of the carrier and the BWP information of the terminal device, determine whether the BWP of the terminal device includes A frequency domain resources with the lowest or highest sequence number in the carrier, and then determine the random access resources used to transmit the PRACH, so that random access resources can be guaranteed.
  • Access resources are within the transmission bandwidth of the carrier, but not within the guard band of the carrier, which can avoid interference with adjacent frequencies/neighboring cells.
  • the terminal device can accurately determine random access resources according to whether the BWP of the terminal device includes A frequency domain resources with the lowest or highest sequence number in the carrier, no additional configuration or other information needs to be sent by the access network device, and the transmission information can be reduced. The amount or frequency of information can save transmission resources.
  • the BWP of the terminal device does not include the A frequency domain resources with the highest sequence numbers in the carrier, which can be understood as the BWP of the terminal device is not located at the upper edge of the carrier.
  • the BWP of the terminal device may be located at the lower edge or middle of the carrier.
  • the BWP of the terminal device includes A frequency domain resources with the highest sequence number in the carrier, which can be understood as the BWP of the terminal device is located at the upper edge of the carrier.
  • the BWP of the terminal device does not include A frequency domain resources with the lowest serial number in the carrier, which can be understood as the BWP of the terminal device is not located at the lower edge of the carrier.
  • the BWP of the terminal device may be located at the upper edge or middle of the carrier.
  • the BWP of the terminal device includes A frequency domain resources with the lowest sequence numbers in the carrier, which can be understood as the BWP of the terminal device is located at the lower edge of the carrier.
  • the number of frequency domain resources of random access resources may include the number of frequency domain resources of the first resource and the number of frequency domain resources of the second resource
  • the random access preamble sequence is carried on the PRACH
  • the terminal device Sending the PRACH on the random access resources may include: sending the first PRACH on frequency domain resources corresponding to the number of frequency domain resources of the first resource; sending the second PRACH on frequency domain resources corresponding to the number of frequency domain resources of the second resource.
  • the first part of the random access preamble is carried on the first PRACH
  • the second part of the random access preamble is carried on the second PRACH
  • the first part and the second part are parts of the random access preamble or all.
  • the frequency domain resource number of random access resources can be set to Split into two parts, the frequency domain resources corresponding to the number of frequency domain resources in each part are used to transmit a PRACH, and each PRACH carries a partial sequence of the random access preamble sequence, so that the access network device can receive the random access preamble sent by the terminal device.
  • the terminal device Enter the preamble sequence, and then allow the terminal device to access according to the random access preamble sequence, so as to ensure the normal access of the terminal device when the number of frequency domain resources of the transmission resources required by the PRACH is greater than the number of frequency domain resources of the BWP of the terminal device .
  • the number of frequency domain resources of each part can be less than or equal to the number of frequency domain resources of the BWP of the terminal equipment, which can ensure that the resources of the BWP of the terminal equipment are sufficient to transmit each PRACH, and then ensure that the PRACH can be used in the terminal equipment.
  • BWP transmission which can improve compatibility with existing protocols.
  • the random access resource may include a first resource and a second resource
  • the frequency domain resource number of the random access resource may include the frequency domain resource number of the first resource and the The number of frequency domain resources of the second resource, the time domain resource of the first resource and the time domain resource of the second resource differ by k time units, where k is an integer greater than or equal to 1.
  • the time domain resources for transmitting the resources of the two PRACHs may differ by k time units, which can be used for the terminal device when transmitting the first PRACH and the second PRACH A guard time is reserved between them, so as to avoid the situation that only part of the PRACH can be transmitted due to the limited channel bandwidth of the terminal equipment.
  • the communication method can be applied to access network equipment, and can also be applied to modules (for example, chips) in the access network equipment.
  • the following description is made by taking the execution subject as an example of an access network device.
  • the communication method may include: the access network device determines random access resources, the number of frequency domain resources of the random access resources is greater than the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the access network device receives the PRACH on random access resources.
  • the access network device may determine the random access resource according to the first parameter and the first reference point.
  • the first reference point may be a carrier resource, may also be Point A, may also be CRB 0, and may also be a BWP resource of the terminal device.
  • the first parameter may be used to indicate an offset value between the random access resource and the first reference point, and may also be used to indicate a positional relationship between the random access resource and the first reference point.
  • the communication method may further include: the access network device sending the first parameter.
  • the BWP of the terminal device does not include A frequency domain resources with the highest sequence numbers in the carrier, and the start resource of the random access resource is the same as the start resource of the BWP of the terminal device, and the random access resource
  • the end resource of the terminal device is located after the end resource of the BWP of the terminal device; or, the BWP of the terminal device includes A frequency domain resources with the highest sequence numbers in the carrier, and it is determined that the start resource of the random access resource is located before the start resource of the BWP of the terminal device , the end resource of the random access resource is the same as the end resource of the BWP of the terminal device; or, the BWP of the terminal device does not include A frequency domain resources with the lowest sequence numbers in the carrier, and it is determined that the start resource of the random access resource is located in the terminal Before the start resource of the BWP of the device, the end resource of the random access resource is the same as the end resource of the BWP of the terminal device; or, the BWP of the terminal
  • the number of frequency domain resources of random access resources may include the number of frequency domain resources of the first resource and the number of frequency domain resources of the second resource
  • the random access preamble sequence is carried on the PRACH
  • the device receiving the PRACH on the random access resource includes: receiving the first PRACH on the frequency domain resource corresponding to the frequency domain resource number of the first resource; receiving the second PRACH on the frequency domain resource corresponding to the frequency domain resource number of the second resource .
  • the first part of the random access preamble is carried on the first PRACH
  • the second part of the random access preamble is carried on the second PRACH
  • the first part and the second part are parts of the random access preamble or all.
  • the random access resource may include a first resource and a second resource
  • the frequency domain resource number of the random access resource may include the frequency domain resource number of the first resource and the The number of frequency domain resources of the second resource, the time domain resource of the first resource and the time domain resource of the second resource may differ by k time units, where k is an integer greater than or equal to 1.
  • the present application discloses a communication method, which can be applied to a terminal device, and can also be applied to a module (for example, a chip) in the terminal device.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the communication method may include: determining random access resources, where the number of frequency domain resources of the random access resources is equal to the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the terminal device sends the PRACH on the random access resource.
  • the terminal device can determine that the number of frequency domain resources of random access resources is equal to the number of frequency domain resources of the maximum bandwidth of the terminal device, so that the bandwidth resources can meet the resource requirements for transmitting PRACH , ensuring the communication between the terminal device and the access network device.
  • the number of frequency domain resources of random access resources equal to the number of frequency domain resources of the maximum transmission bandwidth of the terminal device may include: the number of frequency domain resources of random access resources and the frequency domain resource number of BWP of the terminal device The number is the same, or the random access resource is the same as the BWP resource of the terminal device.
  • the number of frequency domain resources of the BWP of the terminal device is 12 resource blocks (resource block, RB).
  • the present application discloses a communication method, and the beneficial effect may refer to the description of the third aspect, which will not be repeated here.
  • the communication method can be applied to access network equipment, and can also be applied to modules (for example, chips) in the access network equipment. The following description is made by taking the execution subject as an example of an access network device.
  • the communication method may include: the access network device determines random access resources, and the number of frequency domain resources of the random access resources is equal to the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the access network device receives the PRACH on random access resources.
  • the number of frequency domain resources of random access resources equal to the number of frequency domain resources of the maximum transmission bandwidth of the terminal device may include: the number of frequency domain resources of random access resources and the frequency domain resource number of BWP of the terminal device The number is the same, or the random access resource is the same as the BWP resource of the terminal device.
  • the number of frequency domain resources of the BWP of the terminal device is 12 RBs.
  • the present application discloses a communication method, which can be applied to a terminal device or to a module (for example, a chip) in the terminal device.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the communication method may include: the terminal device determines the first resource according to a second parameter and a second offset, and the second offset is a physical resource block (physical resource block) when calculating a transmission resource of a physical uplink control channel (physical uplink control channel, PUCCH). , PRB) offset.
  • the terminal device sends the PUCCH on the first resource.
  • the second parameter can be 0, 2, 3, 4, -2, -3, -4, one or more of the .
  • r PUCCH represents the index of the transmission resource of PUCCH
  • N CS represents the number of cyclic indexes included in 1 RB
  • Msg 4 is used for contention resolution.
  • the resources for transmitting the feedback information of Msg4 are determined according to the second parameter and the second offset, and the offset of the second parameter is added on the existing basis, and the possibility of the value of the second parameter is given, which can be as far as possible It is ensured that the resource for transmitting the feedback information of Msg4 by a terminal device with reduced capability (reduced capability, RedCap) and the resource for transmitting the feedback information of Msg4 by a non-RedCap terminal device are staggered, so as to avoid resource conflict.
  • reduced capability reduced capability
  • the terminal device may determine the first resource according to the second parameter, the second offset, r PUCCH , and N CS .
  • the terminal device can be based on r PUCCH , the second parameter of N CS and the second offset determine the first resource.
  • the present application discloses a communication method, and the beneficial effects may refer to the description of the fifth aspect, which will not be repeated here.
  • the communication method can be applied to access network equipment, and can also be applied to modules (for example, chips) in the access network equipment. The following description is made by taking the execution subject as an example of an access network device.
  • the communication method may include: the access network device determines the first resource according to the second parameter and the second offset, and the second offset is the offset of the PRB when calculating the transmission resource of the PUCCH; receive the PUCCH on the Exemplarily, the second parameter can be 0, 2, 3, 4, -2, -3, -4, one or more of the .
  • r PUCCH represents the index of the transmission resource of PUCCH
  • N CS represents the number of cyclic indexes included in 1 RB
  • Msg4 is used for contention resolution.
  • the access network device may determine the first resource according to the second parameter, the second offset, r PUCCH , and N CS .
  • the terminal device can be based on r PUCCH , the second parameter of N CS and the second offset determine the first resource.
  • the present application discloses a communication device, and the beneficial effects may refer to the description of the first aspect (or the third aspect), and no further details are given here.
  • the communication device has the function of implementing the actions in the method example of the first aspect (or the third aspect) above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing module, configured to determine a random access resource; and a transceiver module, configured to send a PRACH on the random access resource.
  • the present application discloses a communication device, and the beneficial effects may refer to the description of the second aspect (or the fourth aspect), which will not be repeated here.
  • the communication device has the function of implementing the behaviors in the method example of the second aspect (or the fourth aspect) above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing module, configured to determine a random access resource; and a transceiver module, configured to receive a PRACH on the random access resource. These modules can perform the corresponding functions in the method example of the second aspect (or the fourth aspect) above. For details, refer to the detailed description in the method example, which will not be repeated here.
  • the present application discloses a communication device, and the beneficial effect may refer to the description of the fifth aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the fifth aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing module, configured to determine the first resource according to the second parameter and the second offset; and a transceiver module, configured to send the PUCCH on the first resource.
  • the present application discloses a communication device, and the beneficial effects may refer to the description of the sixth aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the sixth aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing module, configured to determine the first resource according to the second parameter and the second offset; and a transceiver module, configured to receive the PUCCH on the first resource.
  • the present application discloses a communication device.
  • the communication device may be the terminal device in the above method embodiment, or a chip provided in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the communication interface.
  • the communication device executes the method performed by the terminal device in the above method embodiments.
  • the present application discloses a communication device.
  • the communication device may be the access network device in the above method embodiment, or a chip set in the access network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the communication interface.
  • the communication device is made to execute the method performed by the access network device in the above method embodiment. method.
  • the present application discloses a computer program product, the computer program product including: computer program code, when the computer program code runs, the method performed by the terminal device in the above aspects is executed.
  • the present application discloses a computer program product, the computer program product including: computer program code, when the computer program code is executed, the method performed by the access network device in the above aspects is executed implement.
  • the present application discloses a system on chip, where the system on chip includes a processor, configured to implement the functions of the terminal device in the methods of the above aspects.
  • the chip system further includes a memory, configured to store program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application discloses a chip system, where the chip system includes a processor, configured to implement the functions of the access network device in the methods of the foregoing aspects.
  • the chip system further includes a memory, configured to store program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application discloses a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is run, the method performed by the terminal device in the above aspects is implemented.
  • the present application discloses a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is run, the method performed by the access network device in the above aspects is implemented.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic diagram between a random access resource disclosed in an embodiment of the present application and a first reference point;
  • FIG. 4 is a schematic diagram between another random access resource disclosed in the embodiment of the present application and the first reference point;
  • FIG. 5 is a schematic diagram of a random access resource disclosed in an embodiment of the present application and a BWP of a terminal device;
  • FIG. 6 is a schematic diagram between another random access resource disclosed in the embodiment of the present application and the BWP of the terminal device;
  • Fig. 7 is a schematic diagram between another random access resource disclosed in the embodiment of the present application and the BWP of the terminal device;
  • Fig. 8 is a schematic diagram of 2 disclosed in the embodiment of the present application.
  • Fig. 9 is a schematic diagram of -7 disclosed in the embodiment of the present application.
  • Fig. 10 is a schematic diagram of -4 disclosed in the embodiment of the present application.
  • Fig. 11 is a schematic diagram of 0 disclosed in the embodiment of the present application.
  • Fig. 12 is another schematic diagram of 2 disclosed in the embodiment of the present application.
  • Fig. 13 is a schematic diagram of determining random access resources according to the first rule disclosed in the embodiment of the present application.
  • Fig. 14 is a schematic diagram of merging two ROs into one RO disclosed in the embodiment of the present application.
  • FIG. 15 is a schematic diagram of time-domain resource cross-mapping disclosed in an embodiment of the present application.
  • Fig. 16 is a schematic diagram of a time-domain resource of a first resource and a time-domain resource of a second resource disclosed in an embodiment of the present application;
  • Fig. 17 is a schematic diagram of another time-domain resource of the first resource and a time-domain resource of the second resource disclosed in the embodiment of the present application;
  • Fig. 18 is a schematic flowchart of another communication method disclosed in the embodiment of the present application.
  • FIG. 19 is a schematic diagram of PUCCH transmission through frequency hopping disclosed in the embodiment of the present application.
  • FIG. 20 is a schematic diagram of a frequency domain resource of a PUCCH resource disclosed in an embodiment of the present application on the BWP side of a terminal device;
  • Fig. 21 is a schematic flowchart of another communication method disclosed in the embodiment of the present application.
  • Fig. 22 is a schematic diagram of a terminal device's BWP starting resource as a reference point disclosed in the embodiment of the present application;
  • Fig. 23 is a schematic diagram with the end resource of the BWP of the terminal device as a reference point disclosed in the embodiment of the present application;
  • Fig. 24 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • Fig. 25 is a schematic structural diagram of another communication device disclosed in the embodiment of the present application.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • the network architecture may include one or more terminal devices 101 , access network devices 102 and core network devices 103 .
  • the terminal device 101 may be connected to the access network device 102 in a wireless manner, and the access network device 102 may be connected to the core network device 103 in a wireless or wired manner.
  • the core network device 103 and the access network device 102 may be separate physical devices, or the functions of the core network device 103 and the logical functions of the access network device 102 may be integrated on the same physical device, or they may be one
  • the physical device integrates part of the functions of the core network device 103 and part of the functions of the access network device 102 .
  • the location of the terminal device 101 may be fixed or mobile.
  • a terminal device may be a wireless terminal device capable of receiving access network device scheduling and instruction information, and a wireless terminal device may be a device that provides voice and/or data connectivity to users, or a handheld device with a wireless connection function, or a connected other processing equipment to the wireless modem.
  • the terminal device can communicate with one or more core networks or the Internet via a radio access network (radio access network, RAN).
  • radio access network radio access network
  • the terminal device 101 and the access network device 102 can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airplanes, balloons and satellites in the air. This application does not limit the application scenarios of the terminal device 101 and the access network device 102 .
  • the terminal equipment may be called user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) and so on.
  • the terminal device can be a handheld terminal, a customer premise equipment (CPE) notebook computer, a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a computing device, a wireless data card, a personal digital Personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), session initiation protocol (session initiation protocol, SIP) phone, cordless phone ( cordless phone) or wireless local loop (wireless local loop, WLL) station, machine type communication (machine type communication, MTC) terminal, wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle equipment ( Such as automobiles, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), VR equipment, AR equipment, wireless terminals in industrial control (industrial
  • the terminal device may also be a terminal device in a future communication system (such as a sixth generation mobile communication technology (6G) communication system, etc.) or a future evolved public land mobile network (public land mobile network, PLMN) in the terminal equipment, etc.
  • a future communication system such as a sixth generation mobile communication technology (6G) communication system, etc.
  • a future evolved public land mobile network public land mobile network, PLMN
  • the 6G network can further expand the form and function of 5G communication terminal equipment.
  • 6G terminal equipment includes but is not limited to vehicles, cellular network terminal equipment (integrated satellite terminal functions), drones, Internet of things (Internet of things, IoT ).
  • the access network device is a device that provides wireless access for terminal devices, and can be responsible for wireless resource management, quality of service (QoS) flow management, data compression and encryption, and other functions on the air interface side.
  • the access network device can be a base transceiver station (BTS) in the global system for mobile communications (GSM) system or code division multiple access (CDMA), or a broadband code division multiple access (CDMA) system.
  • BTS base transceiver station
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • CDMA broadband code division multiple access
  • the access network device can be a relay station, access point, vehicle-mounted device, wearable device, access network device in a 5G network, or an access network device in a future evolved PLMN network Network access equipment, one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or it can also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (baseband unit, BBU), or, Distributed unit (distributed unit, DU), etc., are not limited in this embodiment of the application.
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the access network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into access network devices in the RAN, and the CU can also be divided into access network devices in the core network (core network, CN), which is not limited in this application.
  • Core network equipment refers to the equipment in the CN that provides service support for terminal equipment. It is mainly responsible for call connection, billing, mobility management, providing user connection, user management, and carrying out services.
  • Core network devices may correspond to different devices in different communication systems.
  • 4G fourth generation mobile communication technology
  • MME mobility management entity
  • S-GW serving gateway
  • AMF access and mobility management function
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • next-generation communication system or future communication equipment it may be one or more network elements, equipment or entities that provide service support for terminal equipment.
  • the network architecture shown in Figure 1 is not limited to include only the terminal equipment, access network equipment, and core network equipment shown in the figure, but may also include wireless relay equipment and wireless backhaul equipment. No longer list them here.
  • the embodiments of the present application do not limit the number of core network devices, radio access network devices, and terminal devices.
  • the above network architecture can be applied to narrow band-internet of things (NB-IoT), global system for mobile communications (GSM), enhanced data rate GSM evolution system (enhanced data rate for GSM evolution, EDGE), wideband code division multiple access system (wideband code division multiple access, WCDMA), code division multiple access 2000 system (code division multiple access, CDMA2000), time division synchronous code division multiple access system (time division-synchronization code division Multiple access, TD-SCDMA), WiFi system, LTE, 5G system, and communication system evolved after 5G such as 6G.
  • NB-IoT narrow band-internet of things
  • GSM global system for mobile communications
  • GSM evolution system enhanced data rate for GSM evolution, EDGE
  • wideband code division multiple access system wideband code division multiple access, WCDMA
  • code division multiple access 2000 system code division multiple access, CDMA2000
  • time division synchronous code division multiple access system time division-synchronization code division Multiple access, TD-SCDMA
  • WiFi system LTE
  • 5G system 5G
  • RedCap terminal equipment that is, terminal equipment with low complexity or low capability.
  • RedCap terminal equipment may be less complex than other terminal equipment in terms of bandwidth, power consumption, and number of antennas, such as narrower bandwidth, lower power consumption, and fewer antennas.
  • RedCap terminal equipment can also be called light new wireless (new radio, NR) (NR light, NRL) terminal equipment, that is, a lightweight version of the terminal equipment.
  • NR new wireless
  • the resource block (resource block, RB) number N RB corresponding to the configured maximum transmission bandwidth may be as shown in Table 1:
  • N RB corresponding to the maximum transmission bandwidth configured in Table 1
  • Transmission channels may include uplink channels, downlink channels, uplink signals and downlink signals.
  • the uplink channel or uplink signal may include a synchronization signal, PRACH, PUCCH, PUSCH, sounding reference signal (sounding reference signal, SRS), demodulation reference signal (demodulation reference signal, DMRS), etc.
  • the downlink channel or downlink signal may include a physical broadcast channel (physical broadcast channel, PBCH), a physical downlink control channel (physical downlink control channel, PDCCH), a physical downlink shared channel (physical downlink share channel, PDSCH), DMRS, random access response ( random access response, RAR), paging (paging), etc.
  • PBCH physical broadcast channel
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • DMRS random access response
  • RAR random access response
  • paging paging
  • the NR protocol also specifies the frequency domain resource occupancy of PRACH.
  • the frequency domain resource occupancy of PRACH can be shown in Table 2:
  • L RA in Table 2 is the length of the random access preamble.
  • ⁇ f RA of PRACH is SCS of PRACH.
  • ⁇ f of PUSCH is the SCS of PUSCH.
  • the number of RBs required to transmit the resources of the PRACH. For example, It can be determined according to the SCS of the PUSCH. is the index of the starting subcarrier in the starting resource (RB) of PRACH.
  • the number of frequency-domain resources required for PRACH transmission resources is greater than the number of frequency-domain resources for the maximum transmission bandwidth of the terminal device, that is, the number of frequency-domain resources required for PRACH transmission resources does not match the number of frequency-domain resources for the maximum transmission bandwidth of the terminal device , so that the terminal equipment cannot transmit the PRACH within the maximum transmission bandwidth of the terminal equipment. Therefore, how to determine the resources used to transmit the PRACH is very important.
  • the present application provides a communication method.
  • this application sets the frequency domain resources of the maximum transmission bandwidth of the terminal equipment and the frequency domain resources required for PRACH transmission, so that the frequency domain resources required for PRACH transmission can meet the requirements of PRACH transmission, thereby ensuring that the terminal equipment and Communication between access network devices.
  • FIG. 2 is a schematic flowchart of a communication method disclosed in an embodiment of the present application. As shown in Fig. 2, the communication method may include the following steps.
  • the terminal device determines random access resources.
  • the random access resource is greater than the maximum transmission bandwidth of the terminal device.
  • the fact that the random access resource is greater than the maximum transmission bandwidth of the terminal device may be understood as that the number of frequency domain resources of the random access resource may be greater than the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the terminal device may determine random access resources.
  • the number of frequency domain resources of the random access resources may be greater than the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the terminal device may be at least one of the following: a low-complexity terminal device, a low-complexity terminal device specified in R18, a terminal device with a maximum channel bandwidth of 5 MHz, or a terminal device with a maximum channel bandwidth less than 5 MHz.
  • the granularity of the frequency domain resources may be RB, subcarriers, subbands, Hz, or other frequency domain resources or frequency domain units that can represent the size of the frequency domain resources.
  • the number of frequency domain resources can be understood as the number of frequency domain resources, which can be the number of RBs, the number of subcarriers, the number of subbands, or Hz, or the frequency domain resources that can represent the size of frequency domain resources or the number of frequency domain units, which is not limited here.
  • the number of frequency domain resources of the random access resources may be understood as the number of frequency domain resources that can be used to transmit information among the frequency domain resources included in the random access resources. For example, the number of RBs, the number of subcarriers, or the number of subbands included in the random access resource.
  • the maximum transmission bandwidth of a terminal device limits the maximum value of the bandwidth of a signal received or sent by the terminal device. For example, assuming that the maximum transmission bandwidth of the frequency domain resource used by the terminal device to receive or send signals is 5MHz, then the bandwidth of the terminal device to receive or send signals should be less than or equal to 5MHz; The maximum transmission bandwidth of the frequency domain resources is 10MHz, and the bandwidth of receiving or sending signals of the terminal equipment should be less than or equal to 10MHz.
  • the number of frequency domain resources of the maximum transmission bandwidth of the terminal device may be understood as the number of frequency domain resources that can be used to transmit information among the frequency domain resources included in the maximum transmission bandwidth of the terminal device.
  • the granularity of frequency domain resources is RB as an example for illustration.
  • the number of RBs of the random access resource is greater than the number of RBs of the maximum transmission bandwidth of the terminal device.
  • the number of RBs of the random access resources may be greater than 11, and the number of RBs of the BWP of the terminal device or other signals/channels may be 11.
  • Other signals/channels may include one or more of PUSCH, PDSCH, PUCCH, PDCCH, SRS, Paging, PBCH, synchronization signal block (synchronization signal block, SSB), RAR, DMRS, and the like. It should be understood that the bandwidth of the BWP of the terminal device is less than or equal to the maximum transmission bandwidth of the terminal device.
  • the number of frequency domain resources of the BWP of the terminal device is less than or equal to the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the number of RBs of random access resources may be equal to 12.
  • the bandwidth of the random access resource may be equal to 4.32MHz.
  • the number of RBs of the random access resources of the terminal device may be equal to 12.
  • the number of RBs of the random access resource of the terminal device may be equal to 12.
  • the number of RBs of the random access resource of the terminal device may be equal to 12.
  • the maximum channel bandwidth of the terminal device is less than or equal to 5 MHz
  • the number of RBs of the random access resource may be equal to 12. It should be understood that the above example is an exemplary illustration of a scenario where the number of RBs of the random access resource is equal to 12, and is not limited thereto.
  • the number of RBs of the random access resources may also be greater than 12, such as 13, 14, and so on.
  • BWP is relative to bandwidth.
  • the BWP is a part of continuous frequency domain resources on a carrier, usually using RB as the minimum frequency domain unit.
  • One RB may include multiple subcarriers (subcarriers).
  • one RB may include 12 subcarriers.
  • one RB may include 14 subcarriers.
  • one RB includes 12 subcarriers.
  • BWP can be divided into uplink BWP and downlink BWP, wherein, the BWP used for transmitting uplink data is called uplink BWP, and the BWP used for transmitting downlink data is called downlink BWP.
  • the foregoing is an exemplary description of the number of RBs of the random access resource being greater than the number of RBs of the maximum transmission bandwidth of the terminal device, and does not constitute a limitation thereto.
  • the number of RBs of the BWP of the terminal device and the number of RBs of the random access resources can be other values, as long as the number of RBs of the random access resources is greater than the number of RBs of the maximum transmission bandwidth of the terminal device, or the number of RBs of the random access resources It is enough that the number of RBs is greater than the number of RBs of other signal/channel bandwidths.
  • guard bands can be added on both sides of the frequency domain resources (that is, transmission bandwidth or BWP) to protect the transmitted information. . Therefore, frequency domain resources of random access resources have corresponding guard bands.
  • Table 3 The channel bandwidth of each terminal equipment and the minimum guard band of SCS
  • the minimum guardband of the channel bandwidth is 505 kHz. Since the number of frequency domain resources of the random access resources is greater than the number of frequency domain resources of the maximum channel bandwidth of the terminal device, the guard band corresponding to the random access resources may be less than 505 kHz.
  • the value after the SCS in the first row of Table 3 is the maximum channel bandwidth.
  • the guard band corresponding to the random access resource may be 325 (ie 505-180) kHz, 145 (ie 505-360) kHz, 340 (ie (5000-12*360)/2) kHz, 415 (ie (5000 -139*30)/2)kHz, 430kHz, 402.5 (ie (5000-839*5)/2)kHz, or 417.5kHz. It should be understood that the foregoing is an exemplary description of the size of the guard band corresponding to the random access resource, and does not limit the size of the guard band corresponding to the random access resource.
  • guard band here refers to the guard band on one side of the random access resource
  • the total guard band corresponding to the random access resource is the sum of the guard bands on both sides of the random access resource, that is, the random access resource Twice the guard band corresponding to the access resource, that is, the above guard band*2.
  • the granularity of the frequency domain resource is not limited.
  • the granularity of frequency domain resources may be subcarriers.
  • the terminal device may determine the random access resources in three ways, which will be described respectively below.
  • the first manner the terminal device may determine the random access resource according to the first parameter and the first reference point.
  • the first reference point may be carrier resource, Point A, CRBO, BWP resource of the terminal device or other frequency domain resource that can be used as a reference point.
  • the first reference point when the terminal device is a RedCap terminal device, the first reference point may be carrier resource, Point A, and CRB0.
  • the terminal device when the terminal device is not a RedCap terminal device (that is, the terminal device is a legacy (legacy) terminal device), the first reference point may be the BWP resource of the terminal device.
  • the carrier is the carrier of the access network device.
  • the access network device may indicate or configure the carrier of the access network device to the terminal device.
  • the access network device may broadcast its own carrier information, and the terminal device may receive the carrier information broadcast by the access network device.
  • the carrier resource can be the start resource of the carrier, the end resource of the carrier, the center frequency point of the carrier, the end subcarrier in the start RB of the carrier, the start subcarrier in the start RB of the carrier, the end subcarrier in the end RB of the carrier.
  • the starting subcarrier or other resource positions of the carrier are not limited here.
  • the starting resource of the carrier may be a resource of the starting position of the carrier, such as a frequency point of the starting position of the carrier.
  • the end resource of the carrier may be a resource at the end position of the carrier, such as a frequency point at the end position of the carrier.
  • the center frequency point of the carrier may be the frequency point of the center point between the start resource of the carrier and the end resource of the carrier.
  • Point A is the public reference point of the resource grid (grid), which can be used as a reference point for determining the position of the carrier.
  • CRB0 is the starting RB of the common resource block.
  • the center of subcarrier 0 of CRB0 is consistent with Point A.
  • the BWP resource of the terminal device can be the start resource of the BWP of the terminal device, the end resource of the BWP of the terminal device, the center frequency point of the BWP of the terminal device, the end subcarrier in the starting RB of the BWP of the terminal device, the The starting subcarrier in the starting RB of the BWP, the starting subcarrier in the ending RB of the BWP of the terminal device, or other resources of the BWP of the terminal device are not limited here.
  • the starting resource of the BWP of the terminal device may be a resource of the starting position of the BWP of the terminal device, such as a frequency point of the starting position of the BWP of the terminal device.
  • the end resource of the BWP of the terminal device may be a resource of the end position of the BWP of the terminal device, such as a frequency point of the end position of the BWP of the terminal device.
  • the center frequency point of the BWP of the terminal device may be the frequency point of the center point between the start resource of the BWP of the terminal device and the end resource of the BWP of the terminal device.
  • the first parameter may be used to indicate an offset value between the random access resource and the first reference point.
  • the random access resource may be a start resource of the random access resource, an end resource of the random access resource, a central frequency point of the random access resource, or other resources of the random access resource.
  • Fig. 3 is a schematic diagram between a random access resource disclosed in an embodiment of the present application and a first reference point.
  • the first parameter is used to indicate the offset value between the starting resource of the random access resource and the first reference point
  • the first reference point is the starting resource of the BWP of the terminal device.
  • Fig. 4 is a schematic diagram between another random access resource disclosed in the embodiment of the present application and a first reference point.
  • the first parameter is used to indicate an offset value between the starting resource of the random access resource and the first reference point, where the first reference point is the starting resource of the carrier.
  • the carrier may include the BWP of the terminal device and random access resources.
  • the starting resource of the random access resource may be a resource at the starting position of the random access resource, such as a frequency point at the starting position of the random access resource.
  • the end resource of the random access resource may be a resource at the end position of the random access resource, such as a frequency point at the end position of the random access resource.
  • the center frequency point of the random access resource may be the frequency point of the center point of the start resource of the random access resource and the end resource of the random access resource.
  • the first parameter can be a positive number, a negative number, or 0. Further, the first parameter may or may not be an integer.
  • the granularity of the first parameter may be RB, may also be a subcarrier, may also be a subband, and may also be other frequency domain units.
  • the following takes the BWP resource whose first reference point is the terminal device as an example for description.
  • the initial resource of the random access resource is the same as the initial resource of the BWP of the terminal device, that is, the initial resource of the random access resource is aligned with the initial resource of the BWP of the terminal device, that is, the random access resource
  • the starting resource of the resource is the starting resource of the BWP of the terminal device.
  • the end resource of the random access resource is located after the end resource of the BWP of the terminal device, that is, the end resource of the random access resource is a resource after the end resource of the BWP.
  • the first RB of the random access resource can be mapped to the terminal device
  • the first RB in the BWP of the random access resource and the last RB in the random access resource may be mapped to the first RB after the last RB in the BWP of the terminal device.
  • the RBs of the random access resources may be understood as the RBs included in the random access resources. For example, it is assumed that the number of RBs of the random access resource is 12, and the number of RBs of the BWP of the terminal device is 11. Please refer to FIG. 5 .
  • FIG. 5 Please refer to FIG. 5 .
  • FIG. 5 is a schematic diagram of a random access resource disclosed in an embodiment of the present application and a BWP of a terminal device.
  • the first RB of the random access resource is mapped to the first RB in the BWP of the terminal device, and the twelfth RB (that is, RB11) of the random access resource is mapped to the first RB in the BWP of the terminal device.
  • the first RB after 11 RBs.
  • the first RB of the random access resource can be mapped to the terminal
  • the first RB in the BWP of the device and the last RB of the random access resource may be mapped to the Kth RB after the last RB in the BWP of the terminal device.
  • K is an integer greater than 1.
  • the value of the first parameter in the case of different meanings of the first reference point and the first parameter is described below as an example.
  • the first One parameter is 0.
  • the first The parameter is N.
  • N is the number of RBs of random access resources.
  • N is an integer greater than 1.
  • the second One parameter is N/2.
  • the first reference point is the end resource of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the start resource of the random access resource and the first reference point
  • the first The parameter is -M.
  • M is the number of RBs of the BWP of the terminal device.
  • M is an integer greater than or equal to 1.
  • M is less than N.
  • the first parameter for N-M when the first reference point is the end resource of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the end resource of the random access resource and the first reference point.
  • the first The parameter is N/2-M.
  • the second One parameter is -M/2.
  • the first reference point is the center frequency point of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the end resource of the random access resource and the first reference point
  • the first The parameter is N–M/2.
  • the second One parameter is 0.
  • the above is an exemplary description of the first parameter when the meanings of the first reference point and the first parameter are different, and does not constitute a limitation thereto. It can be seen that when the meanings of the first parameters are the same, the first reference points are different and the first parameters are different. In the case of the same first reference point, the meanings of the first parameters are different, and the first parameters are different.
  • the starting resource of the random access resource is located before the starting resource of the BWP of the terminal device, that is, the starting resource of the random access resource is a resource position before the starting resource of the BWP of the terminal device.
  • the end resource of the random access resource is the same as the end resource of the BWP of the terminal device, that is, the end resource of the random access resource is aligned with the end resource of the BWP of the terminal device, that is, the end resource of the random access resource is the end resource of the BWP of the terminal device End resource.
  • the first RB of the random access resource is mapped to the terminal device's
  • the last RB before the first RB in the BWP and the last RB of the random access resource are mapped to the last RB in the BWP of the terminal device.
  • the number of RBs of the random access resource is 12, and the number of RBs of the BWP of the terminal device is 11.
  • Fig. 6 is a schematic diagram between another random access resource disclosed in the embodiment of the present application and the BWP of the terminal device.
  • the first RB of the random access resource is mapped to the first RB before the first RB in the BWP of the terminal device, and the 12th RB of the random access resource is mapped to the 11th RB in the BWP of the terminal device RB.
  • the first RB of the random access resource is mapped to the terminal device K RBs before the first RB in the BWP, and the last RB of the random access resource is mapped to the last RB in the BWP of the terminal device.
  • the first One parameter is M-N.
  • the first reference point is the start resource of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the end resource of the random access resource and the first reference point
  • the first The parameter is M.
  • the second One parameter is M-N/2.
  • the first reference point when the first reference point is the end resource of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the start resource of the random access resource and the first reference point, the first The parameter is -N.
  • the first parameter when the first reference point is the end resource of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the end resource of the random access resource and the first reference point, the first parameter is 0.
  • the first reference point when the first reference point is the end resource of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the center frequency point of the random access resource and the first reference point, the first The parameter is -N/2.
  • the second One parameter is M/2-N.
  • the first reference point is the center frequency point of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the end resource of the random access resource and the first reference point
  • the first The parameter is –M/2.
  • the second One parameter is (M-N)/2.
  • the first reference point may be the second RB of the BWP of the terminal device. It can be seen that when the meanings of the first parameters are the same, the first reference points are different and the first parameters are different. In the case of the same first reference point, the meanings of the first parameters are different, and the first parameters are different.
  • the central frequency point of the random access resource is the same as the central frequency point of the BWP of the terminal device, that is, the central frequency point of the random access resource is the central frequency point of the BWP of the terminal device, that is, the random access resource
  • the central frequency point of the resource is aligned with the central frequency point of the BWP of the terminal device.
  • the frequency domain resources corresponding to the number of frequency domain resources of the BWP of the terminal device are included in the frequency domain resources corresponding to the number of frequency domain resources of the random access resources, and the frequency domain resources corresponding to the number of frequency domain resources of the random access resources
  • the non-overlapping portion of the frequency domain resources corresponding to the number of frequency domain resources of the BWP of the terminal device is outside the bandwidth corresponding to the number of frequency domain resources of the BWP of the terminal device, and the lengths of the bandwidths on both sides outside the BWP of the terminal device are the same.
  • FIG. 7 is a schematic diagram of another random access resource disclosed in the embodiment of the present application and the BWP of the terminal device.
  • the 11RB of the BWP of the terminal device is included in the 12RB of the random access resource, and the non-overlapping part is outside the 11RB of the BWP of the terminal device, and the bandwidth on both sides outside the BWP of the terminal device is 180kHz , that is, 0.5 RB.
  • the first One parameter is (M-N)/2.
  • the first reference point is the start resource of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the end resource of the random access resource and the first reference point
  • the first The parameter is (M+N)/2.
  • the second One parameter is M/2.
  • the first reference point is the end resource of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the start resource of the random access resource and the first reference point
  • the first The parameter is -(M+N)/2.
  • the first parameter It is (N-M)/2.
  • the first reference point is the end resource of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the center frequency point of the random access resource and the first reference point
  • the first The parameter is -M/2.
  • the second One parameter is -N/2.
  • the first reference point is the center frequency point of the BWP of the terminal device, and the first parameter is used to indicate the offset value between the end resource of the random access resource and the first reference point
  • the first The parameter is N/2.
  • the second One parameter is 0.
  • the first reference point may be the second RB of the BWP of the terminal device. It can be seen that when the meanings of the first parameters are the same, the first reference points are different and the first parameters are different. In the case of the same first reference point, the meanings of the first parameters are different, and the first parameters are different.
  • the value of the first parameter is an exemplary description of the value of the first parameter, and does not limit the value of the first parameter, and the value of the first parameter may also be a specific numerical value.
  • the value of the first parameter may also be -1, -0.5, 0 and so on.
  • the first parameter can be used to indicate the offset value between the starting subcarrier of the random access preamble sequence and the first reference point in the resource corresponding to the number of frequency domain resources of the random access resource, that is, the random access resource in the random access resource.
  • the offset value between the first subcarrier occupied (or corresponding) by the preamble sequence and the first reference point that is, the offset value between the starting subcarrier of the random access preamble sequence in the random access resource and the first reference point offset value.
  • the first reference point is the starting resource (for example, the starting subcarrier) of the BWP of the terminal device as an example for description.
  • the length of the random access preamble sequence is 839, The value of is 10; when the subcarrier spacing of PUSCH is 30kHz, and the subcarrier spacing of PRACH is 30kHz, the length of the random access preamble sequence is 139, The value of is 2. At this time, the number of frequency domain resources of the random access resources is greater than the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the first parameter can indicate value of . indicated by the first parameter
  • the value of can be the same as Table 2.
  • the first parameter may indicate 2 or 10.
  • the value of can also be different from Table 2.
  • the first parameter may indicate a value other than 2 and 10.
  • the value of the first parameter is not 2 or 10.
  • the length of the random access preamble sequence is 139, 139 subcarriers need to be occupied, the number of frequency domain resources of the random access resource is 139 subcarriers, and the number of frequency domain resources of the BWP of the terminal device is 11 RBs as an example for illustration.
  • Fig. 8 is a kind of A schematic diagram of 2.
  • the number of frequency domain resources of random access resources is 12 RBs. These 12 RBs are indexed or numbered starting from 0 and ending at 11.
  • Each of the 12 RBs includes 12 subcarriers, therefore, the 12 RBs include 144 subcarriers in total.
  • the subcarriers in different RBs are individually numbered, and the numbers or indexes of the 12 subcarriers in each RB start from 0 and end with 11.
  • the first subcarrier (ie subcarrier 0) and the second subcarrier (ie subcarrier 1) in the first RB (ie RB0) of the 12 RBs of the random access resource do not transmit the random access preamble sequence
  • the random access preamble sequence is transmitted from the third subcarrier (ie subcarrier 2) in the first RB (ie RB0) of the random access resource to the 12th RB (ie RB11) of the random access resource
  • the ninth subcarrier (that is, subcarrier 8) ends the transmission, occupying a total of 139 subcarriers.
  • the starting resource of the random access resource is the same as the starting resource of the BWP of the terminal device.
  • RBs are numbered from the first RB of the BWP of the terminal equipment.
  • the candidate value of can be an integer greater than or equal to -7, or an integer less than -7.
  • Fig. 9 is a kind of Schematic for -7.
  • the first subcarrier in the subcarrier corresponding to the number of frequency domain resources of the random access resource is mapped to the sixth subcarrier in the first RB before the first RB in the BWP of the terminal device (that is, the subcarrier 5)
  • the last subcarrier of the subcarriers corresponding to the number of frequency domain resources of the random access resource is mapped to the twelfth subcarrier of the eleventh RB in the BWP of the terminal device.
  • the subcarriers corresponding to the number of frequency domain resources of the random access resources occupy 7 subcarriers of the low frequency part outside the BWP of the terminal device, that is, occupy the 5th to 11th subcarriers of the first RB outside the BWP low frequency edge of the terminal device, As well as the BWP of the entire terminal equipment, a total of 139 subcarriers are occupied.
  • Fig. 10 is a kind of Schematic for -4.
  • the first subcarrier of the subcarriers corresponding to the number of frequency domain resources of random access resources is mapped to the ninth subcarrier of the first RB before the first RB in the BWP of the terminal device (i.e. subcarrier 8 )
  • the last subcarrier in the subcarriers corresponding to the number of frequency domain resources of the random access resource is mapped to the third subcarrier (ie subcarrier 2) of the RB after the eleventh RB in the BWP of the terminal device.
  • the subcarriers corresponding to the number of frequency domain resources of random access resources occupy 4 subcarriers of the low-frequency part outside the BWP of the terminal device, that is, the 8th to 11th subcarriers of the first RB outside the low-frequency edge of the BWP of the terminal device.
  • the BWP, and the 3 subcarriers of the high-frequency part outside the BWP of the terminal device that is, the 0th to 2nd subcarriers of the first RB outside the high-frequency edge of the BWP of the terminal device.
  • Fig. 11 is a kind of A schematic diagram of 0.
  • the first subcarrier of the subcarriers corresponding to the number of frequency domain resources of random access resources is mapped to the first subcarrier of the first RB in the BWP of the terminal device, and the frequency of random access resources
  • the last subcarrier among the subcarriers corresponding to the domain resource number is mapped to the seventh subcarrier (that is, subcarrier 6) of the RB after the eleventh RB in the BWP of the terminal device.
  • the subcarriers corresponding to the number of frequency domain resources of random access resources occupy the entire BWP of the terminal equipment, and the 7 subcarriers of the high-frequency part outside the BWP of the terminal equipment, that is, the 0th to 1st RBs outside the high-frequency edge of the BWP of the terminal equipment. No. 6 subcarrier.
  • Fig. 12 is another kind of A schematic diagram of 2.
  • the first subcarrier of the subcarriers corresponding to the number of frequency domain resources of the random access resource is mapped to the third subcarrier (ie subcarrier 2) of the first RB in the BWP of the terminal device, randomly
  • the last subcarrier among the subcarriers corresponding to the number of frequency domain resources of the access resource is mapped to the ninth subcarrier (that is, subcarrier 8) of the RB after the eleventh RB in the BWP of the terminal device.
  • the subcarriers corresponding to the number of frequency domain resources of the random access resources occupy 130 subcarriers inside the BWP, and 9 subcarriers in the high frequency part outside the BWP of the terminal device, that is, the 0th to the RBth of the RB outside the high frequency edge of the BWP of the terminal device No. 8 subcarrier.
  • Figure 8- Figure 12 is for Exemplary description of the value, not correct The value of constitutes a limit, The value of can also be other integers. For example, The value of can also be 3, 4, 5, 6, etc. Another example, The value of can be any one of [-12,5].
  • the first parameter may be used to indicate the positional relationship between the random access resource and the first reference point.
  • the first parameter may be used to indicate the correspondence between the starting resource of the random access resource and the first reference point.
  • the first parameter may indicate that the starting resource of the random access resource is aligned with the first reference point, or that the starting resource of the random access resource is located A frequency domain resources or frequency domain units before the first reference point, or The starting resources of the random access resources are located B frequency domain resources or frequency domain units after the first reference point.
  • the first parameter may also indicate the correspondence between the end resource of the random access resource and the first reference point.
  • the first parameter may indicate that the end resource of the random access resource is aligned with the first reference point, or that the end resource of the random access resource is located A frequency domain resources or frequency domain units before the first reference point, or that the random access resource The end resource of the incoming resource is located B frequency domain resources or frequency domain units after the first reference point.
  • the first parameter may also be used to indicate the positional relationship between the center frequency point of the random access resource and the first reference point.
  • the first parameter may indicate that the central frequency point of the random access resource is aligned with the first reference point, or that the central frequency point of the random access resource is located A frequency domain resources or frequency domain units before the first reference point, or The central frequency point of the random access resource is located B frequency domain resources or frequency domain units after the first reference point.
  • a and B are integers greater than or equal to 1.
  • the first parameter may also be used to indicate the positional relationship between other resources of the random access resource and the first reference point.
  • index values corresponding to different positional relationships between the random access resource and the first reference point are different.
  • the first parameter may indicate a location relationship between the random access resource and the first reference point. The value of the first parameter is different, and the positional relationship between the random access resource and the first parameter point is different.
  • the first parameter may occupy 1 bit.
  • the value of the first parameter when the value of the first parameter is 0, it may indicate the positional relationship between the random access resource and the first reference point as shown in FIG. A positional relationship between reference points is shown in FIG. 6 .
  • the first parameter may occupy 2 bits.
  • the value of the first parameter when the value of the first parameter is 00, it may indicate the positional relationship between the random access resource and the first reference point as shown in FIG. 5
  • the value of the first parameter when the value of the first parameter is 01, it may indicate that the random access resource is The positional relationship between a reference point is shown in FIG. 6 .
  • the value of the first parameter is 10
  • it may indicate that the positional relationship between the random access resource and the first reference point is as shown in FIG. 7 .
  • the first parameter may indicate the positional relationship between the random access resource and the first reference point in the form of a bitmap.
  • the first parameter may occupy several bits, and each bit corresponds to a positional relationship between the random access resource and the first reference point.
  • the value of the bit corresponding to this positional relationship in the bitmap may be 1 (or 0), and other positional relationships correspond to The value of the bit can be 0 (or 1).
  • the first reference point, the first parameter, and the meaning of the first parameter may be specified by the protocol, that is, configured by default, or configured by the access network device. For example, it may be configured by broadcasting or by one or more messages (or signaling).
  • the first parameter may be carried in a system message, such as a system information block (system information block, SIB) and the like.
  • the first parameter can also be carried in downlink control information (downlink control information, DCI), can also be carried in MAC, can also be carried in MAC control element (control element, CE), can also be carried in RRC, can also carry In other signaling or messages, there is no limitation here.
  • the second manner the terminal device may determine random access resources according to the first rule.
  • the first rule may be specified by the protocol or configured by the access network device.
  • the access network device may also send first indication information to the terminal device in a broadcast manner, where the first indication information is used to indicate the first rule.
  • the terminal device may receive the first indication information broadcast by the access network device, and then may determine the first rule according to the first indication information, and further determine the random access resource according to the first rule.
  • the first rule may be: when the BWP of the terminal device does not include A frequency domain resources with the highest sequence numbers in the carrier, the starting resource of the random access resource is the same as the starting resource of the BWP of the terminal device Identical or aligned; when the BWP of the terminal device includes A frequency domain resources with the highest sequence numbers in the carrier, the end resource of the random access resource is the same or aligned with the end resource of the BWP of the terminal device.
  • the terminal device can determine that the starting resource of the random access resource is the same as the starting resource of the BWP of the terminal device, and the random access resource The end resource of is located after the end resource of the end device's BWP.
  • the terminal device can determine that the start resource of the random access resource is located before the start resource of the BWP of the terminal device, and the end resource of the random access resource Same as the end resource of the BWP of the end device.
  • A is a positive integer greater than 0. In this way, it can be ensured that the random access resources are within the transmission bandwidth range of the carrier and will not be transmitted within the guard band of the carrier, thereby avoiding interference with adjacent frequencies/neighboring cells.
  • FIG. 13 is a schematic diagram of determining random access resources according to a first rule disclosed in an embodiment of the present application.
  • the BWP of the terminal device does not include the RB with the highest sequence number in the carrier, it can be determined that the start resource of the random access resource is the same as the start resource of the BWP of the terminal device, and the end of the random access resource The resource is located after the end resource of the BWP of the end device.
  • the BWP of the terminal device includes the RB with the highest sequence number in the carrier, it can be determined that the start resource of the random access resource is located before the start resource of the BWP of the terminal device, and the end resource of the random access resource is the same as the end resource of the BWP of the terminal device. End resources are the same.
  • the first rule may be: when the BWP of the terminal device includes A frequency domain resources with the lowest serial number in the carrier, the starting resource of the random access resource is the same as the starting resource of the BWP of the terminal device Same or aligned: when the BWP of the terminal device does not include A frequency domain resources with the lowest serial number in the carrier, the end resource of the random access resource is the same or aligned with the end resource of the BWP of the terminal device.
  • the terminal device can determine that the start resource of the random access resource is located before the start resource of the BWP of the terminal device, and the random access resource The end resource of is the same as the end resource of the end device's BWP.
  • the terminal device can determine that the start resource of the random access resource is the same as the start resource of the BWP of the terminal device, and the end resource of the random access resource After the end resource of the BWP of the end device.
  • the carrier and the BWP of the terminal device may be sent by the access network device in a broadcast manner. After receiving the carrier broadcast by the access network device and the BWP of the terminal device, the terminal device may determine random access resources according to the first rule, the carrier and the BWP of the terminal device.
  • a third manner the terminal device may determine random access resources according to the second rule.
  • the number of frequency domain resources of the random access resources is greater than the number of frequency domain resources of the maximum transmission bandwidth of the terminal device, in order to transmit the frequency domain resources corresponding to the number of frequency domain resources of the random access resources in the BWP of the terminal device, it may be
  • the frequency domain resources corresponding to the number of frequency domain resources of the random access resources are divided into two parts. When splitting, how to split may be determined according to the second rule.
  • the number of frequency domain resources of random access resources may include the number of frequency domain resources of the first resource and the number of frequency domain resources of the second resource, that is, the number of frequency domain resources of the first resource and the number of frequency domain resources of the second resource and equal to the number of frequency domain resources of random access resources.
  • the second rule may specify the number of frequency domain resources of the first resource and the number of frequency domain resources of the second resource. Therefore, the terminal device may determine the number of frequency domain resources of the first resource and the number of frequency domain resources of the second resource according to the second rule.
  • the frequency domain resource corresponding to the frequency domain resource number of the first resource is a frequency domain resource used to transmit information among the frequency domain resources included in the first resource.
  • the frequency domain resource corresponding to the frequency domain resource number of the second resource is a frequency domain resource used to transmit information among the frequency domain resources included in the second resource.
  • the number of frequency domain resources of the first resource is a
  • the number of frequency domain resources of the second resource is b
  • the number of frequency domain resources of random access resources is equal to a+b.
  • a frequency domain resource and b frequency domain resources can occupy 12 RBs at a subcarrier spacing of 30kHz, or can occupy a subcarrier spacing of 30kHz
  • the terminal device may determine the time-domain resource of the first resource according to the first information, and may determine the time-domain resource of the second resource according to the second information.
  • the first information and the second information may be the same or different.
  • the terminal device may first determine two random access channel (random access channel, RACH) opportunities (RACH occasion, RO), and then combine the two ROs into one RO.
  • This merged RO includes the time-domain resource of the first resource and the time-domain resource of the second resource.
  • the two ROs may be two adjacent ROs, or two non-adjacent ROs.
  • the first information is the same as the second information, which is the merged RO.
  • the determined time-domain resource of the first resource and the time-domain resource of the second information are also the same. Please refer to FIG. 14 .
  • FIG. 14 is a schematic diagram of merging two ROs into one RO disclosed in the embodiment of the present application. As shown in Figure 14, two adjacent ROs can be merged into one RO.
  • the terminal device can determine the time domain resource of the RO according to the configuration information. For example, the terminal device can determine the time domain resource of the RO according to the existing protocol and configuration information.
  • the terminal device may determine the time-domain resource of the first resource according to the i-th RO, and may determine the time-domain resource of the second resource according to the i+n-th RO.
  • the terminal device may determine the time-domain resource of the second resource according to the i-th RO, and may determine the time-domain resource of the first resource according to the i+n-th RO.
  • n is an integer greater than 0.
  • n may be specified by the protocol or configured by the access network device.
  • FIG. 15 is a schematic diagram of time-domain resource cross-mapping disclosed in an embodiment of the present application. As shown in Figure 15, two adjacent ROs can be cross-mapped.
  • the time domain resource of the first resource is different from the time domain resource of the second resource by m time units.
  • the value of m is related to the time when the terminal equipment performs frequency tuning. For example, in the case that the frequency tuning time is 4 symbols or 140 ⁇ s, the difference between the time domain resource of the first resource and the time domain resource of the second resource is 4 symbols. In this way, it can be ensured that the terminal equipment has enough time for frequency tuning, a guard time can be reserved for the terminal equipment between transmitting the first PRACH and the second PRACH, and it can be avoided that the terminal equipment can only transmit part of the frequency due to the limited channel bandwidth of the terminal equipment.
  • PRACH Physical Broadband
  • the time domain resource of the first resource and the time domain resource of the second resource may differ by k time units, where k is an integer greater than or equal to 1.
  • the granularity of the time unit can be slots, mini-slots, symbols, milliseconds (ms), K symbols, or other characterization A unit of a time domain resource.
  • the terminal device may determine the time-domain resource of the first resource according to an RO, and then may determine the resource corresponding to the kth time unit after the time-domain resource of the first resource as the time-domain resource of the second resource. Or the terminal device may determine the time domain resource of the second resource according to an RO, and then may determine the resource corresponding to the kth time unit after the time domain resource of the second resource as the time domain resource of the first resource.
  • FIG. 16 is a schematic diagram of a time-domain resource of a first resource and a time-domain resource of a second resource disclosed in an embodiment of the present application.
  • the time domain resource of the second resource is different from the time domain resource of the first resource by 1 time unit, that is, the time domain resource of the second resource is the first resource after (or before) the time domain resource of the first resource. a unit of time. Frequency domain resources of the first resource and the second resource are the same.
  • FIG. 17 is a schematic diagram of another time-domain resource of a first resource and a time-domain resource of a second resource disclosed in an embodiment of the present application.
  • the time domain resource of the second resource is different from the time domain resource of the first resource by 3 time units, that is, the time domain resource of the second resource is the first resource after (or before) the time domain resource of the first resource. three time units. Frequency domain resources of the first resource and the second resource are different.
  • the access network device determines random access resources.
  • the manner in which the access network device determines the random access resource is the same as the manner in which the terminal device determines the random access resource. For a detailed description, refer to step 201 , which will not be repeated here.
  • the terminal device sends a PRACH to the access network device on the random access resource.
  • the access network device receives the PRACH from the terminal device on the random access resource.
  • the terminal device may send the PRACH to the access network device on the random access resource.
  • the random access preamble is carried on the PRACH.
  • the terminal device may be on the frequency domain resource corresponding to the number of frequency domain resources of the first resource
  • the second PRACH may be sent on frequency domain resources corresponding to the number of frequency domain resources of the second resource
  • the first part of the random access preamble sequence is carried on the first PRACH
  • the second part of the random access preamble sequence Carried on the second PRACH the first part and the second part are part or all of the random access preamble.
  • the random access preamble sequence may be split into at least two parts, and two parts of the at least two parts may be carried on the PRACH transmitted on the first resource and the second resource respectively.
  • the RO basically occupies the BWP of the entire terminal device, and other channels cannot transmit, that is, the RO occupies the maximum transmission bandwidth of the terminal device, and the terminal device cannot support wider bandwidth transmission. Therefore, the time unit corresponding to the random access resource is an invalid time unit of the first signal/channel.
  • the first signal/channel may include at least one of PUCCH, PUSCH, SRS and the like. Determining the time unit corresponding to the determined random access resource used to transmit PRACH as the invalid time unit of the first signal/channel can ensure that the first signal/channel is not transmitted on the resource for transmitting PRACH, thereby ensuring normal transmission of PRACH And avoiding invalid transmission of the first signal/channel.
  • the time unit of all ROs is the time unit of all ROs configured by the access network device.
  • the RO corresponding to the time-domain resource for transmitting the random access channel by the terminal device transmits the RO of the random access channel for the terminal device. If the terminal device does not transmit a random access channel on an RO, the time unit corresponding to this RO cannot be used as an invalid time unit of the first signal/channel, but as a valid time unit of the first signal/channel.
  • the random access corresponding to the PRACH is contention-free random access. That is, the time unit of the RO configured as contention free (CF) may be determined as the invalid time unit of the first signal/channel.
  • the random access is triggered by the access network equipment, therefore, it can be considered that the PRACH has the highest priority. Since the contention-free random access is a random access initiated by the terminal device triggered by the access network device, and the access network device configures specific resources for the terminal device, therefore, the terminal device does not transmit PRACH on this resource, and the resource will be wasted , resulting in a waste of transmission resources.
  • the access network device indicates that the random access initiated by the terminal device may be due to reasons such as uplink out-of-synchronization. Random access is required to ensure the transmission quality of the signal. Therefore, the priority of contention-free random access should be higher, so that it can be given priority
  • the PRACH corresponding to the contention-free random access is transmitted.
  • the priority of the first signal/channel is lower than that of the PRACH.
  • the time unit corresponding to the RO of the time domain resource of the random access resource may be determined as the invalid time unit of the first signal/channel.
  • the priority of PRACH may be higher than that of SRS, PUSCH, PUCCH and so on.
  • the time unit of the RO configured based on contention based (CB) can be determined as the invalid time unit of the first signal/channel, that is, the time unit of the RO corresponding to the time domain resource of the random access resource is determined as the first Invalid time unit for signal/channel.
  • the priorities of different signals/channels may be: SRS>PRACH>PUSCH/PUCCH.
  • the time unit of RO configured as CB (that is, the time unit of RO corresponding to the time domain resource of the random access resource) can be determined as the invalid time unit of PUSCH and PUCCH, and the time unit of RO configured as CB can be determined as Determined as a valid time unit for the SRS.
  • the priorities of different signals/channels may be: dynamic scheduling (dynamic scheduling, DG) PUSCH>PRACH>grant-free scheduling (configured grant, CG) PUSCH.
  • DG dynamic scheduling
  • CG grant-free scheduling
  • the time unit of the RO corresponding to the time domain resource of the random access resource may be determined as the effective time unit of the PUSCH.
  • the priority of the PUSCH is lower than that of the PRACH. Therefore, the time unit of the RO corresponding to the time domain resource of the random access resource may be determined as the invalid time unit of the PUSCH.
  • the purpose of triggering the PRACH process is to improve the transmission quality of the signal. Therefore, its priority should be higher than the transmission of other signals/channels, so as to avoid the failure of other signals/channels due to poor signal transmission quality, resulting in waste of system resources.
  • the priority of PRACH is higher than the priority of the first signal/channel
  • the competition will succeed because the priority of PRACH is high, while the first signal/channel
  • the channel will inevitably fail to compete due to its low priority. Therefore, determining the time unit corresponding to the determined random access resource used to transmit the PRACH as the invalid time unit of the first signal/channel can avoid invalid competition for the first signal/channel. Therefore, the transmission efficiency of the first signal/channel can be improved, and the transmission delay of the first signal/channel can be reduced.
  • the random access corresponding to the PRACH is triggered by a specific event.
  • the time unit of the RO corresponding to the time domain resource of the random access resource may be determined as the invalid time unit of the first channel/signal.
  • the time unit of the RO corresponding to the time domain resource of the random access resource may be determined as the invalid time of the first channel/signal unit.
  • the time unit of the RO corresponding to the time domain resource of the random access resource may be determined as the invalidity of the first channel/signal unit of time.
  • the time unit of the RO corresponding to the time domain resource of the random access resource may be determined as the effective time unit of the first channel/signal.
  • the time unit of the RO corresponding to the time domain resource of the random access resource may be determined as the effective time unit of the first channel/signal.
  • the time unit of the RO corresponding to the time domain resource of the random access resource may be determined as the first channel/ The effective time unit of the signal.
  • the priority of random access triggered by a specific event is higher than that of the first signal/channel, while the priority of random access triggered by a non-specific event is lower than that of the first signal/channel.
  • the priority of random access triggered by link failure, time out of synchronization, etc. is higher, and the priority of random access triggered by scheduling request, system message request, etc. is lower.
  • the random access corresponding to PRACH is triggered by a specific event, indicating that the priority of PRACH is higher than the priority of the first signal/channel, and when PRACH and the first signal/channel compete for the same time unit, due to the high priority of PRACH, it will definitely compete Success, but the first signal/channel will fail to compete due to its low priority.
  • determining the time unit corresponding to the random access resource used to transmit PRACH as the invalid time unit of the first signal/channel can avoid the first Ineffective competition of signals/channels can improve the transmission efficiency of the first signal/channel and reduce the transmission delay of the first signal/channel.
  • the PRACH cannot be transmitted in the BWP of the terminal device, so the terminal device can determine that the corresponding configuration is an invalid configuration or an error Condition.
  • the terminal device when the channel bandwidth of the terminal device is less than or equal to 5 MHz, and the subcarrier spacing of PUSCH is 30 kHz, the terminal device does not expect the number of frequency domain resources included in the resources used by the PRACH to be configured to be greater than 11. For another example, when the channel bandwidth of the terminal device is less than or equal to 3.5 MHz, and the subcarrier spacing of PUSCH is 15 kHz, the terminal device does not expect the number of frequency domain resources included in the resources used by PRACH to be configured as 24, or to be greater than 17 value, or a value greater than 18, or a value greater than 16.
  • the access network device does not support configuring the frequency domain resources occupied by the PRACH as 12 RB, therefore, the terminal device can determine that the corresponding configuration is an invalid configuration or an error.
  • the random sequence carried on the PRACH is a partial sequence in the random access preamble sequence.
  • the length of the random access preamble carried on the PRACH is less than L1.
  • L1 is 839.
  • L1 is 139.
  • the random access preamble length may be 792, or a positive integer less than or equal to 792, or a positive integer greater than or equal to 720 and less than 839.
  • the random access preamble length can be a positive integer less than 139, or a positive integer less than or equal to 132, or greater than or equal to 120 and less than 139 positive integer of .
  • the present application provides a communication method.
  • this application sets the frequency domain resources of the maximum transmission bandwidth of the terminal equipment and the frequency domain resources required for PRACH transmission, so that the frequency domain resources required for PRACH transmission can meet the requirements of PRACH transmission, thereby ensuring that the terminal equipment and Communication between access network devices.
  • 11 in Table 1 can be changed to 12.
  • FIG. 18 is a schematic flowchart of another communication method disclosed in an embodiment of the present application. As shown in Fig. 18, the communication method may include the following steps.
  • the terminal device determines random access resources.
  • the random access resource is equal to the maximum transmission bandwidth of the terminal device.
  • the random access resource is equal to the maximum transmission bandwidth of the terminal device. It can be understood that the number of frequency domain resources of the random access resource may be equal to the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the terminal device may determine random access resources.
  • the terminal device can determine the number of frequency domain resources of the random access resource according to the number of frequency domain resources of the maximum transmission bandwidth of the terminal device, that is, the number of frequency domain resources of the maximum transmission bandwidth of the terminal device can be determined as the frequency domain resource of the random access resource number.
  • the maximum number of RBs included in the BWP is 12.
  • the BWP configured by the access network device for the terminal device may include a maximum of 12 RBs.
  • the maximum transmission bandwidth of the terminal device is 12 RBs.
  • the maximum channel bandwidth of the terminal equipment is less than or equal to 5 MHz. Doing so is beneficial to the channel design of small-bandwidth terminal equipment. For example, when the subcarrier interval of the frequency domain resource of the random access resource is 30 kHz, it needs to occupy 12 RBs.
  • the frequency-domain resource allocation granularity of the PDCCH is a control channel element (CCE), and one CCE resource is equivalent to 6 RBs, that is, the resource allocation granularity of the PDCCH is equivalent to 6 RBs. Therefore, the BWP can include 12 RBs and can be configured with 2 complete CCEs, which is beneficial to the simplification of resource management and allocation of access network devices.
  • CCE control channel element
  • the number of frequency domain resources of the random access resource and the number of frequency domain resources of the BWP of the terminal device may be the same.
  • the terminal device may determine the number of frequency domain resources of the random access resource according to the number of frequency domain resources of the BWP of the terminal device. At this time, the number of frequency domain resources of the BWP of the terminal device is the number of frequency domain resources of the maximum transmission bandwidth of the terminal device.
  • the random access resource is the same as the BWP resource of the terminal device, that is, the number of frequency domain resources of the random access resource is the same as the number of frequency domain resources of the BWP of the terminal device, and the frequency domain resource position of the random access resource is the same as the frequency domain resource of the BWP of the terminal device.
  • the domain resource location is the same. For example, in the case that the subcarrier spacing of the PUSCH is 30 kHz, the number of random access resources of the terminal device and the number of RBs of the BWP may be equal to 12.
  • the random access resource of the terminal device and the number of RBs of the BWP may be equal to 12.
  • the random access resources of the terminal device and the number of RBs of BWP may be equal to 12.
  • the maximum channel bandwidth of the terminal device is less than or equal to 5 MHz
  • the random access resources of the terminal device and the number of RBs of the BWP may be equal to 12.
  • the access network device can configure the BWP of the terminal device for the terminal device.
  • the number of frequency domain resources of the configured BWP of the terminal device is larger than the number of RBs in Table 1, so that the number of frequency domain resources of the random access resources and the BWP of the terminal device The number of frequency domain resources is the same or equal.
  • the maximum transmission bandwidth of the first terminal device is 12 RBs, and the maximum transmission bandwidth of the second terminal device is 11 RBs.
  • the channel bandwidth of the first terminal device is 5 MHz, and the channel bandwidth of the second terminal device is 5 MHz.
  • the first terminal device may be a low-complexity terminal device, may be a low-complexity terminal device specified in R18, may be an evolved low-complexity terminal device, or may be a further reduced low-complexity terminal device.
  • the second terminal device may be a non-low-complexity terminal device, may also be a low-complexity terminal device specified in R17, may also be an eMBB terminal device, or may be a URLLC terminal device.
  • the access network device can configure the BWP of the terminal device to the terminal device in a broadcast manner.
  • the access network device may configure only one type of BWP of the terminal device, and the number of frequency domain resources of the BWP of the terminal device is the same as the number of frequency domain resources of the random access resource.
  • the access network device can configure two types of BWPs for terminal devices.
  • the number of frequency domain resources of the BWP of one type of terminal device is the same as the number of frequency domain resources of random access resources, and the number of frequency domain resources of the BWP of the other type of terminal device The number of frequency domain resources is greater than the number of frequency domain resources of the random access resources.
  • the terminal device may determine which BWP to use according to the protocol used in the terminal device, channel bandwidth and other information.
  • the terminal device can use the BWP of the terminal device whose number of frequency domain resources is greater than the number of frequency domain resources of random access resources;
  • the protocol used in the terminal device is a future or future protocol (such as R18)
  • the terminal device can use the BWP of the terminal device whose number of frequency domain resources is equal to the number of frequency domain resources of random access resources.
  • the access network device determines random access resources.
  • the manner in which the access network device determines the random access resource is the same as the manner in which the terminal device determines the random access resource.
  • step 1801 The manner in which the access network device determines the random access resource.
  • the terminal device sends the PRACH to the access network device on the random access resource.
  • the access network device receives the PRACH from the terminal device on the random access resource.
  • the terminal device may send the PRACH to the access network device on the random access resource.
  • the random access preamble is carried on the PRACH.
  • the PRACH may be transmitted in the BWP of the terminal equipment, or may not be transmitted in the BWP of the terminal equipment, and part of it may be transmitted in the BWP of the terminal equipment and part of it may not be transmitted in the BWP of the terminal equipment, which is not limited here.
  • a terminal device When a terminal device needs to perform random access, it can randomly select a random access preamble from multiple random access preambles broadcast by the access network device, and then use the selected random access preamble in the preconfigured RO The resource is sent to the access network device.
  • the access network device may send feedback information, namely RAR, to the terminal device within a pre-configured RAR window (window) when the terminal device is allowed to access.
  • RAR may include RAR messages.
  • Each random access preamble sequence has a corresponding identity (identity, ID), and the RAR message may include IDs corresponding to multiple terminal devices.
  • the terminal device may report the ID of the terminal device to the access network device.
  • the access network device may indicate the terminal device ID of the successfully accessed terminal device.
  • the message used to indicate the ID of the terminal device of the successfully accessed terminal device may be message 4 (message 4, Msg4).
  • the terminal device may send feedback information, that is, feedback information of Msg4, to the access network device.
  • the access network device may first configure 16 PUCCH resources for transmitting the feedback information of Msg4, and then may indicate the index r PUCCH of the PUCCH resource to be used by the terminal device in the 16 PUCCH resources through signaling.
  • the terminal device uses the PUCCH resource to transmit the feedback information of Msg4, the PUCCH is transmitted through frequency hopping, and the frequency domain resources of two hops can occupy 1 RB.
  • the index of the RB of the first hop can be determined by formula (1).
  • Formula (1) can be expressed as follows:
  • N CS represents the total number of initial cyclic indices included in the initial cyclic shift index set, that is, the number of cyclic indices included in one RB. Indicates rounding down. It can be understood as: the offset of the first resource among the PUCCH resources configured for the terminal device relative to the initial resource of the BWP of the terminal device.
  • the PUCCH resource can be understood as the resource for transmitting the PUCCH, and can also be understood as the transmission resource for the PUCCH.
  • the index of the RB of the second hop can be determined by formula (2).
  • Formula (2) can be expressed as follows:
  • the index of the RB of the first hop can be determined by formula (3).
  • Formula (3) can be expressed as follows:
  • the index of the RB of the second hop can be determined by formula (4).
  • Formula (4) can be expressed as follows:
  • FIG. 19 is a schematic diagram of PUCCH transmission through frequency hopping disclosed in an embodiment of the present application.
  • 16 PUCCH resources may occupy 8 RBs, and each RB may include 2 cyclic indices.
  • the frequency domain resources of the first hop are identified by "x-1", and the resources of the second hop are identified by "x-2".
  • the second offset in Figure 19 is the aforementioned
  • the frequency domain resources of the 16 PUCCH resources are located on both sides of the BWP of the terminal device, and the number of RBs occupied on the side of the BWP of the terminal device can be 2, 3 or 4.
  • the access network equipment can allocate the frequency domain resources of 16 PUCCH resources to one side of the BWP. Please refer to FIG. 20 .
  • FIG. 20 is a schematic diagram of a frequency domain resource of a PUCCH resource disclosed in an embodiment of the present application on the BWP side of a terminal device.
  • the PUCCH resource of the RedCap terminal device and the The PUCCH resources of non-RedCap terminal devices are configured orthogonally, that is, they are configured on different or non-overlapping resources.
  • the frequency domain resources of the 16 PUCCH resources are on the side of the BWP of the terminal equipment.
  • a new parameter namely the second parameter, is introduced to ensure that the RedCap terminal equipment transmits the feedback of Msg4.
  • the resource of the information and the resource of the feedback information of the non-RedCap terminal device transmitting the Msg4 are staggered, so that resource conflicts can be avoided.
  • FIG. 21 is a schematic flowchart of another communication method disclosed in an embodiment of the present application. As shown in Fig. 21, the communication method may include the following steps.
  • the terminal device determines the first resource according to the second parameter and the second offset.
  • the terminal device may determine the first resource according to the second parameter and the second offset.
  • Candidate values for the second parameter can be 0, 2, 3, 4, 6, -2, -3, -4, -6, One or more of etc.
  • the candidate values of the second parameter may be 2, 4, -2, -4.
  • the candidate values of the second parameter can be 4, 6,
  • the terminal device may determine the first resource according to the second parameter, the second offset, r PUCCH , and N CS .
  • the index of the first resource can be determined by formula (5).
  • Formula (5) can be expressed as follows:
  • the index of the first resource may be determined by formula (6).
  • Formula (6) can be expressed as follows:
  • the above example is an exemplary description of determining the first resource according to the second parameter, the second offset, r PUCCH and N CS , and is not a reference to determining the first resource according to the second parameter, the second offset, r PUCCH and N CS .
  • a resource is limited in a specific manner.
  • the first resource may be determined through various modified formulas of formula (5) or formula (6).
  • the first resource may be determined according to other formulas, as long as the first formula directly or indirectly includes the four information of the second parameter, the second offset, rPUCCH and NCS .
  • the terminal device may, according to the second parameter, the second offset, r PUCCH and N CS determine the first resource.
  • the index of the first resource can be determined by formula (7).
  • Formula (7) can be expressed as follows:
  • the index of the first resource may be determined by formula (8).
  • Formula (8) can be expressed as follows:
  • the above example is based on the second parameter, the second offset.
  • An exemplary description of determining the first resource by r PUCCH and N CS does not apply to the second parameter, second offset,
  • the r PUCCH and the N CS determine the specific manner of the first resource to be limited.
  • the first resource may be determined through various modified formulas of formula (7) or formula (8).
  • the first resource can be determined according to other formulas, as long as the first formula directly or indirectly includes The four pieces of information of r PUCCH , N CS , the second parameter and the second offset are enough.
  • the second parameter may be specified by the protocol, that is, configured by default.
  • the second parameter may also be configured by the access network device.
  • the access network device may send indication information to the terminal device, where the indication information is used to indicate the second parameter.
  • the terminal device may receive indication information from the access network device, and may determine the second parameter according to the indication information.
  • the indication information may indicate the second parameter through the index of the second parameter, or may indicate the second parameter through other information of the second parameter, which is not limited here.
  • the index of the second parameter may be an index of the second parameter in all possible values of the second parameter, or may be an index of the second parameter in some values included in all possible values of the second parameter.
  • the protocol specifies 4 candidate values for the second parameter, such as 2, 4,
  • the indication information may indicate the second parameter through 2 bits.
  • the second parameter may be indicated as 2.
  • the second parameter may be indicated as 4.
  • the indication information is 10
  • it can indicate that the second parameter is
  • the indication information is 11, it can indicate that the second parameter is
  • the index of the second parameter is an index of the second parameter in some values included in all possible values of the second parameter, and is not limited thereto.
  • the candidate values of the second parameter may be 5, 6, 7 and other values.
  • the starting resource of the BWP of the terminal device may be used as a reference point.
  • FIG. 22 is a schematic diagram disclosed in an embodiment of the present application and takes the starting resource of the BWP of the terminal device as a reference point.
  • the second parameter can be set to 0, 2, 3, 4, At least one of 6 can avoid the situation where PUCCH causes resource fragmentation in the middle of the carrier.
  • the second parameter in order to make the first resource be at the upper edge of the BWP of the terminal device, that is, after the central frequency point of the BWP of the terminal device, the second parameter can be At least one of them can avoid resource fragmentation caused by PUCCH in the middle of the carrier.
  • the end resource of the BWP of the terminal device may also be used as a reference point.
  • FIG. 23 is a schematic diagram disclosed by an embodiment of the present application with the end resource of the BWP of the terminal device as a reference point.
  • the second parameter can be set to 0, 2, 3, 4, At least one of 6, -2, -3, -4, -6 can avoid resource fragmentation caused by the PUCCH in the middle of the carrier.
  • the second parameter in order to make the first resource located at the upper edge of the BWP of the terminal device, that is, after the center frequency point of the BWP of the terminal device, the second parameter may be: At least one of them can avoid resource fragmentation caused by PUCCH in the middle of the carrier.
  • the access network device determines the first resource according to the second parameter and the second offset.
  • the manner in which the access network device determines the first resource according to the second parameter and the second offset is the same as the manner in which the terminal device determines the first resource according to the second parameter and the second offset.
  • the manner in which the access network device determines the first resource according to the second parameter and the second offset is the same as the manner in which the terminal device determines the first resource according to the second parameter and the second offset.
  • the terminal device sends the PUCCH to the access network device on the first resource.
  • the access network device receives the PUCCH from the terminal device on the first resource.
  • the terminal device may send the PUCCH to the access network device on the first resource.
  • the feedback information of Msg4 is carried on PUCCH, and Msg4 is used for contention resolution.
  • the functions performed by the terminal device in the above communication method may also be performed by a module (for example, a chip) in the terminal device, and the functions performed by the access network device in the above communication method may also be performed by a module in the access network device modules (eg, chips) to perform.
  • a module for example, a chip
  • the functions performed by the access network device in the above communication method may also be performed by a module in the access network device modules (eg, chips) to perform.
  • FIG. 24 and FIG. 25 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication apparatuses can realize the functions of the terminal device or the access network device in the above method embodiments, and therefore can also realize the beneficial effects of the above method embodiments.
  • the communication device may be the terminal device 101 as shown in Figure 1, or the access network device 102 as shown in Figure 1, or it may be a terminal device or access network device Modules (such as chips).
  • a communication device 2400 includes a transceiver module 2401 and a processing module 2402 .
  • the communication device 2400 may be used to realize the functions of the terminal device or the access network device in the method embodiments shown in FIG. 2 , FIG. 18 or FIG. 21 above.
  • the processing module 2402 is configured to determine random access resources.
  • the transceiver module 2401 is configured to send PRACH on random access resources.
  • the processing module 2402 is used to determine random access resources; Receive PRACH.
  • the processing module 2402 is configured to determine the first resource according to the second parameter and the second offset.
  • the transceiver module 2401 is configured to send the PUCCH on the first resource.
  • the processing module 2402 is configured to determine the first resource according to the second parameter and the second offset.
  • the transceiver module 2401 is configured to receive the PUCCH on the first resource.
  • transceiver module 2401 For a more detailed description of the transceiver module 2401 and the processing module 2402, reference may be made to relevant descriptions in the above method embodiments, and no further description is given here.
  • a communication device 2500 includes a processor 2510 and an interface circuit 2520 .
  • the processor 2510 and the interface circuit 2520 are coupled to each other.
  • the interface circuit 2520 may be a transceiver or an input/output interface.
  • the communication device 2500 may further include a memory 2530 for storing instructions executed by the processor 2510 or storing input data required by the processor 2510 to execute the instructions or storing data generated after the processor 2510 executes the instructions.
  • the processor 2510 is used to execute the functions of the above-mentioned processing module 2402
  • the interface circuit 2520 is used to execute the functions of the above-mentioned transceiver module 2401 .
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), and the information is sent to the terminal device by the access network device; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules) module or antenna) to send information, which is sent by the terminal device to the access network device.
  • the access network equipment chip implements the functions of the access network equipment in the above method embodiments.
  • the access network device chip receives information from other modules (such as radio frequency modules or antennas) in the access network device, and the information is sent by the terminal device to the access network device; or, the access network device chip sends information to the access network device Other modules in the device (such as radio frequency modules or antennas) send information, which is sent by the access network device to the terminal device.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), etc.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • the embodiment of the present application also discloses a computer-readable storage medium, in which a computer program or computer instruction is stored.
  • a computer program or computer instruction is stored.
  • the methods in the above method embodiments are executed.
  • the embodiment of the present application also discloses a computer program product including a computer program or a computer instruction.
  • a computer program product including a computer program or a computer instruction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种通信方法及装置。该方法通过终端设备确定随机接入资源,该随机接入资源的频域资源数大于终端设备的最大带宽的频域资源数,并在所述随机接入资源上发送物理随机接入信道PRACH。由于确定的随机接入资源可以满足PRACH传输的资源需求,从而可以保证终端设备与接入网设备的通信。

Description

一种通信方法及装置
本申请要求于2022年02月11日提交中国专利局、申请号为202210130601.9、申请名称为“一种通信方法及装置“的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。因此,为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景,即增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
典型的eMBB业务有超高清视频、增强现实(augmented reality,AR)和虚拟现实(virtualreality,VR)等,这些业务的主要特点是传输数据量大和传输速率很高。典型的URLLC业务有工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时以及传输数据量较少。典型的mMTC业务有智能电网配电自动化和智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端设备需要满足低成本和非常长的待机时间的需求。
随着通信技术的不断发展,终端设备能够使用的频域资源越来越少。终端设备与接入网设备通信之前,先需要通过物理随机接入信道(physical random access channel,PRACH)接入接入网设备。然而,频域资源的减少使终端设备能够用于传输信息的频域资源越来越少,以致资源无法满足PRACH的传输需求。
发明内容
本申请实施例公开了一种通信方法及装置,用于确保有足够的资源传输PRACH以保证终端设备与接入网设备的通信。
第一方面,本申请公开一种通信方法,该通信方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片)。下面以执行主体是终端设备为例进行描述。该通信方法可以包括:终端设备确定随机接入资源,随机接入资源的频域资源数大于终端设备的最大传输带宽的频域资源数。所述终端设备在随机接入资源上发送PRACH。终端设备的带宽资源不能满足PRACH的传输需求时,终端设备可以通过确定随机接入资源,该随机接入资源的频域资源数大于终端设备的最大带宽的频域资源数,因此可以保证有足够的资源传输PRACH,进而可以使终端设备通过PRACH接入接入网设备,从而可以保证终端设备与接入网设备之间的通信。
作为一种可能的实施方式,终端设备可以根据第一参数和第一参考点确定随机接入资源。 示例性的,第一参考点可以为载波资源,也可以为Point A,还可以为公共资源块(commonresource block,CRB)0,还可以为终端设备的带宽部分(bandwidth part,BWP)资源。示例性的,第一参数可以用于指示随机接入资源与第一参考点之间的偏移值,也可以用于指示随机接入资源与第一参考点之间的位置关系。
在第一参数的含义、第一参数以及第一参考点确定的情况下,可以根据采用第一参数和第一参考点准确地确定用于传输PRACH的随机接入资源,可以提高随机接入资源确定的准确性。在第一参数的含义、第一参数以及第一参考点确定的情况下,可以保证终端设备与接入网设备确定的随机接入资源相同,从而可以保证终端设备发送PRACH能够成功地被接入网设备接收到。进一步地,第一参考点是现有技术中的频域资源,而不是额外确定的频域资源,可以提高与现有技术之间的兼容性。在第一参考点为载波资源的情况下,随机接入资源可以不局限在终端设备的BWP内,而是在载波资源范围内,可以提高随机接入资源的选择范围,从而可以提高随机接入资源确定的灵活性。在第一参考点为Point A(或CRB0)的情况下,随机接入资源可以不局限在载波和终端设备的BWP内,而是在系统资源范围内,可以提高随机接入资源的选择范围,从而可以提高随机接入资源确定的灵活性。在第一参考点为终端设备的BWP资源的情况下,由于随机接入资源与终端设备的BWP之间存在重叠,因此,终端设备不需要在PRACH与数据信道之间进行调谐,可以降低终端设备的功耗、提高PRACH的传输效率以及缩短PRACH的传输时延。
作为一种可能的实施方式,该通信方法还可以包括:所述终端设备接收第一参数。第一参数可以是接入网设备配置或指示的,终端设备可以根据接入网设备的配置或指示确定第一参数,进而可以根据第一参数确定用于传输PRACH的随机接入资源。接入网设备在不同情况、不同场景或不同时候,可以配置或指示不同的第一参数,而不是配置或指示固定的第一参数,可以提高第一参数配置或指示的灵活性,以及可以提高第一参数的适用性。
作为一种可能的实施方式,终端设备的BWP不包括载波中序号最高的A个频域资源,所述随机接入资源的起始资源与终端设备的BWP的起始资源相同,所述随机接入资源的结束资源位于终端设备的BWP的结束资源之后;或,终端设备的BWP包括载波中序号最高的A个频域资源,所述随机接入资源的起始资源位于终端设备的BWP的起始资源之前,所述随机接入资源的结束资源与终端设备的BWP的结束资源相同;或,终端设备的BWP不包括载波中序号最低的A个频域资源,所述随机接入资源的起始资源位于终端设备的BWP的起始资源之前,所述随机接入资源的结束资源与终端设备的BWP的结束资源相同;或,终端设备的BWP包括载波中序号最低的A个频域资源,所述随机接入资源的起始资源与终端设备的BWP的起始资源相同,所述随机接入资源的结束资源位于终端设备的BWP的结束资源之后。例如,所述A为大于0的正整数。
在PRACH所需传输资源的频域资源数大于终端设备的最大传输带宽的频域资源数的情况下,终端设备可以根据接入网设备广播的信息确定载波的信息以及终端设备的BWP的信息,再根据载波的信息以及终端设备的BWP的信息,确定终端设备的BWP是否包括载波中序号最低或最高的A个频域资源,进而可以确定用于传输PRACH的随机接入资源,从而可以保证随机接入资源在载波的传输带宽范围内,而不会在载波的保护带内,可以避免与邻频/邻区的干扰。此外,由于终端设备可以根据终端设备的BWP是否包括载波中序号最低或最高的A个频域资源准确地确定随机接入资源,不需要接入网设备额外配置或发送其他信息,可以减少传输信息的信息量或次数,从而可以节约传输资源。其中,终端设备的BWP不包括载波中序号最高的A个频域资源,可以理解为终端设备的BWP不位于载波的上边缘。示例性的,终端设备的BWP可以位于载波下边缘或中间。终端设备的BWP包括载波中序号最高的A个频域资源,可以理解为终 端设备的BWP位于载波的上边缘。终端设备的BWP不包括载波中序号最低的A个频域资源,可以理解为终端设备的BWP不位于载波的下边缘。示例性的,终端设备的BWP可以位于载波上边缘或中间。终端设备的BWP包括载波中序号最低的A个频域资源,可以理解为终端设备的BWP位于载波的下边缘。
作为一种可能的实施方式,随机接入资源的频域资源数可以包括第一资源的频域资源数与第二资源的频域资源数,随机接入前导序列承载于PRACH上,终端设备在随机接入资源上发送PRACH可以包括:在第一资源的频域资源数对应的频域资源上发送第一PRACH;在第二资源的频域资源数对应的频域资源上发送第二PRACH。示例性的,随机接入前导序列的第一部分承载于第一PRACH上,随机接入前导序列的第二部分承载于第二PRACH上,第一部分和第二部分为随机接入前导序列中的部分或全部。
在PRACH所需传输资源的频域资源数大于终端设备的最大传输带宽的频域资源数的情况下,PRACH无法在终端设备的BWP内传输,因此,可以将随机接入资源的频域资源数拆分为两部分,每部分频域资源数对应的频域资源用于传输一个PRACH,每个PRACH承载随机接入前导序列的部分序列,以便接入网设备能够接收到终端设备发送的随机接入前导序列,进而可以根据随机接入前导序列允许终端设备的接入,从而可以保证终端设备在PRACH所需传输资源的频域资源数大于终端设备的BWP的频域资源数时的正常接入。采用这种方式,可以使每部分的频域资源数小于或等于终端设备的BWP的频域资源数,可以保证终端设备的BWP的资源足够传输每个PRACH,进而可以保证PRACH能够在终端设备的BWP内传输,从而可以提高与现有协议的兼容性。
作为一种可能的实施方式,所述随机接入资源可以包括第一资源和第二资源,所述随机接入资源的频域资源数可以包括所述第一资源的频域资源数与所述第二资源的频域资源数,所述第一资源的时域资源和所述第二资源的时域资源相差k个时间单元,k为大于或等于1的整数。为了保证终端设备有足够的时间在两个PRACH之间进行频率调谐,传输两个PRACH的资源的时域资源之间可以相差k个时间单元,可以为终端设备在传输第一PRACH与第二PRACH之间预留出保护时间,从而可以避免由于终端设备的信道带宽受限而只能传输部分PRACH的情况。
第二方面,本申请公开一种通信方法,有益效果可以参见第一方面的描述此处不再赘述。该通信方法可以应用于接入网设备,也可以应用于接入网设备中的模块(例如,芯片)。下面以执行主题是接入网设备为例进行描述。该通信方法可以包括:接入网设备确定随机接入资源,随机接入资源的频域资源数大于终端设备的最大传输带宽的频域资源数。所述接入网设备在随机接入资源上接收PRACH。
作为一种可能的实施方式,接入网设备可以根据第一参数和第一参考点确定随机接入资源。示例性的,第一参考点可以为载波资源,也可以为Point A,还可以为CRB 0,还可以为终端设备的BWP资源。示例性的,第一参数可以用于指示随机接入资源与第一参考点之间的偏移值,也可以用于指示随机接入资源与第一参考点之间的位置关系。
作为一种可能的实施方式,该通信方法还可以包括:所述接入网设备发送第一参数。
作为一种可能的实施方式,终端设备的BWP不包括载波中序号最高的A个频域资源,所述随机接入资源的起始资源与终端设备的BWP的起始资源相同,随机接入资源的结束资源位于终端设备的BWP的结束资源之后;或,终端设备的BWP包括载波中序号最高的A个频域资源,确定随机接入资源的起始资源位于终端设备的BWP的起始资源之前,所述随机接入资源的结束资源与终端设备的BWP的结束资源相同;或,终端设备的BWP不包括载波中序号最低的A个频域资源, 确定随机接入资源的起始资源位于终端设备的BWP的起始资源之前,所述随机接入资源的结束资源与终端设备的BWP的结束资源相同;或,终端设备的BWP包括载波中序号最低的A个频域资源,确定随机接入资源的起始资源与终端设备的BWP的起始资源相同,所述随机接入资源的结束资源位于终端设备的BWP的结束资源之后;例如,所述A为大于0的正整数。
作为一种可能的实施方式,随机接入资源的频域资源数可以包括第一资源的频域资源数与第二资源的频域资源数,随机接入前导序列承载于PRACH上,接入网设备在随机接入资源上接收PRACH包括:在第一资源的频域资源数对应的频域资源上接收第一PRACH;在第二资源的频域资源数对应的频域资源上接收第二PRACH。示例性的,随机接入前导序列的第一部分承载于第一PRACH上,随机接入前导序列的第二部分承载于第二PRACH上,第一部分和第二部分为随机接入前导序列中的部分或全部。
作为一种可能的实施方式,所述随机接入资源可以包括第一资源和第二资源,所述随机接入资源的频域资源数可以包括所述第一资源的频域资源数与所述第二资源的频域资源数,所述第一资源的时域资源和所述第二资源的时域资源可以相差k个时间单元,k为大于或等于1的整数。
第三方面,本申请公开一种通信方法,该通信方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片)。下面以执行主体是终端设备为例进行描述。该通信方法可以包括:确定随机接入资源,随机接入资源的频域资源数等于终端设备的最大传输带宽的频域资源数。所述终端设备在随机接入资源上发送PRACH。终端设备的带宽资源不能满足传输PRACH的资源需求时,终端设备可以确定随机接入资源的频域资源数等于终端设备的最大带宽的频域资源数,从而使带宽资源能够满足传输PRACH的资源需求,保证了终端设备与接入网设备之间的通信。
作为一种可能的实施方式,随机接入资源的频域资源数等于终端设备的最大传输带宽的频域资源数可以包括:随机接入资源的频域资源数与终端设备的BWP的频域资源数相同,或随机接入资源与终端设备的BWP资源相同。
作为一种可能的实施方式,终端设备的BWP的频域资源数为12个资源块(resource block,RB)。
第四方面,本申请公开一种通信方法,有益效果可以参见第三方面的描述此处不再赘述。该通信方法可以应用于接入网设备,也可以应用于接入网设备中的模块(例如,芯片)。下面以执行主体是接入网设备为例进行描述。该通信方法可以包括:接入网设备确定随机接入资源,随机接入资源的频域资源数等于终端设备的最大传输带宽的频域资源数。所述接入网设备在随机接入资源上接收PRACH。
作为一种可能的实施方式,随机接入资源的频域资源数等于终端设备的最大传输带宽的频域资源数可以包括:随机接入资源的频域资源数与终端设备的BWP的频域资源数相同,或随机接入资源与终端设备的BWP资源相同。
作为一种可能的实施方式,终端设备的BWP的频域资源数为12个RB。
第五方面,本申请公开一种通信方法,该通信方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片)。下面以执行主题是终端设备为例进行描述。该通信方法可以包括:终端设备根据第二参数和第二偏移确定第一资源,第二偏移为计算物理上行控制 信道(physical uplink control channel,PUCCH)的传输资源时物理资源块(physicalresource block,PRB)的偏移。所述终端设备在第一资源上发送PUCCH。示例性的,第二参数可以为0、2、3、4、-2、-3、-4、
Figure PCTCN2022114140-appb-000001
Figure PCTCN2022114140-appb-000002
Figure PCTCN2022114140-appb-000003
中的一个或多个。其中,
Figure PCTCN2022114140-appb-000004
表示终端设备的BWP包括的频域资源数或RB数,
Figure PCTCN2022114140-appb-000005
表示第二偏移,r PUCCH表示PUCCH的传输资源的索引,N CS表示1个RB包括的循环索引数,
Figure PCTCN2022114140-appb-000006
表示向下取整。示例性的,消息4(message 4,Msg4)的反馈信息承载于PUCCH,Msg 4用于竞争解决。
传输Msg4的反馈信息的资源根据第二参数和第二偏移确定,在现有的基础上增加了第二参数的偏移,且给出了第二参数取值的可能性,可以尽可能的保证低能力(reducedcapability,RedCap)终端设备传输Msg4的反馈信息的资源和非RedCap终端设备传输Msg4的反馈信息的资源错开,从而可以避免资源冲突。
作为一种可能的实施方式,终端设备可以根据第二参数、第二偏移、r PUCCH和N CS确定第一资源。
作为一种可能的实施方式,终端设备可以根据
Figure PCTCN2022114140-appb-000007
r PUCCH、N CS第二参数和第二偏移、确定第一资源。
第六方面,本申请公开一种通信方法,有益效果可以参见第五方面的描述此处不再赘述。该通信方法可以应用于接入网设备,也可以应用于接入网设备中的模块(例如,芯片)。下面以执行主题是接入网设备为例进行描述。该通信方法可以包括:接入网设备根据第二参数和第二偏移确定第一资源,第二偏移为计算PUCCH的传输资源时PRB的偏移;所述接入网设备在第一资源上接收PUCCH。示例性的,第二参数可以为0、2、3、4、-2、-3、-4、
Figure PCTCN2022114140-appb-000008
Figure PCTCN2022114140-appb-000009
中的一个或多个。其中,
Figure PCTCN2022114140-appb-000010
表示终端设备的BWP包括的频域资源数或RB数,
Figure PCTCN2022114140-appb-000011
表示第二偏移,r PUCCH表示PUCCH的传输资源的索引,N CS表示1个RB包括的循环索引数,
Figure PCTCN2022114140-appb-000012
表示向下取整。示例性的,Msg4的反馈信息承载于PUCCH,Msg 4用于竞争解决。
作为一种可能的实施方式,接入网设备可以根据第二参数、第二偏移、r PUCCH和N CS确定第一资源。
作为一种可能的实施方式,终端设备可以根据
Figure PCTCN2022114140-appb-000013
r PUCCH、N CS第二参数和第二偏移、确定第一资源。
第七方面,本申请公开一种通信装置,有益效果可以参见第一方面(或第三方面)的描述此处不再赘述。所述通信装置具有实现上述第一方面(或第三方面)的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于确定随机接入资源;收发模块,用于在随机接入资源上发送PRACH。这些模块可以执行上述第一方面(或第三方面)方法示例中的相应功能,具体参见方法示例中的详细描 述,此处不做赘述。
第八方面,本申请公开一种通信装置,有益效果可以参见第二方面(或第四方面)的描述此处不再赘述。所述通信装置具有实现上述第二方面(或第四方面)的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于确定随机接入资源;收发模块,用于在随机接入资源上接收PRACH。这些模块可以执行上述第二方面(或第四方面)方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第九方面,本申请公开一种通信装置,有益效果可以参见第五方面的描述此处不再赘述。所述通信装置具有实现上述第五方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于根据第二参数和第二偏移确定第一资源;收发模块,用于在第一资源上发送PUCCH。这些模块可以执行上述第五方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第十方面,本申请公开一种通信装置,有益效果可以参见第六方面的描述此处不再赘述。所述通信装置具有实现上述第六方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于根据第二参数和第二偏移确定第一资源;收发模块,用于在第一资源上接收PUCCH。这些模块可以执行上述第六方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第十一方面,本申请公开了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第十二方面,本申请公开了一种通信装置,该通信装置可以为上述方法实施例中的接入网设备,或者为设置在接入网设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由接入网设备所执行的方法。
第十三方面,本申请公开了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第十四方面,本申请公开了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由接入网设备执行的方法被执行。
第十五方面,本申请公开了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十六方面,本申请公开了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中接入网设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请公开了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十八方面,本申请公开了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由接入网设备执行的方法。
附图说明
图1是本申请实施例公开的一种网络架构示意图;
图2是本申请实施例公开的一种通信方法的流程示意图;
图3是本申请实施例公开的一种随机接入资源与第一参考点之间的示意图;
图4是本申请实施例公开的另一种随机接入资源与第一参考点之间的示意图;
图5是本申请实施例公开的一种随机接入资源与终端设备的BWP之间的示意图;
图6是本申请实施例公开的另一种随机接入资源与终端设备的BWP之间的示意图;
图7是本申请实施例公开的又一种随机接入资源与终端设备的BWP之间的示意图;
图8是本申请实施例公开的一种为2的示意图;
图9是本申请实施例公开的一种为-7的示意图;
图10是本申请实施例公开的一种为-4的示意图;
图11是本申请实施例公开的一种为0的示意图;
图12是本申请实施例公开的另一种为2的示意图;
图13是本申请实施例公开的一种根据第一规则确定随机接入资源的示意图;
图14是本申请实施例公开的一种将两个RO合并为1个RO的示意图;
图15是本申请实施例公开的一种时域资源交叉映射的示意图;
图16是本申请实施例公开的一种第一资源的时域资源和第二资源的时域资源的示意图;
图17是本申请实施例公开的另一种第一资源的时域资源和第二资源的时域资源的示意图;
图18是本申请实施例公开的另一种通信方法的流程示意图;
图19是本申请实施例公开的一种PUCCH通过跳频传输的示意图;
图20是本申请实施例公开的一种PUCCH资源的频域资源处于终端设备的BWP一侧的示意图;
图21是本申请实施例公开的又一种通信方法的流程示意图;
图22是本申请实施例公开的一种以终端设备的BWP的起始资源为参考点的示意图;
图23是本申请实施例公开的一种以终端设备的BWP的结束资源为参考点的示意图;
图24是本申请实施例公开的一种通信装置的结构示意图;
图25是本申请实施例公开的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
为了更好地理解本申请实施例,下面先对本申请实施例的网络架构进行描述。请参阅图1,图1是本申请实施例公开的一种网络架构示意图。如图1所示,该网络架构可以包括一个或多个终端设备101、接入网设备102和核心网设备103。终端设备101可以通过无线的方式与接入网设备102连接,接入网设备102可以通过无线或有线方式与核心网设备103连接。 核心网设备103与接入网设备102可以是独立的不同的物理设备,也可以是将核心网设备103的功能与接入网设备102的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备103的功能和部分的接入网设备102的功能。终端设备101的位置可以是固定不变的,也可以是移动的。
终端设备,可以是能够接收接入网设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备,或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信。
终端设备101和接入网设备102可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请对终端设备101和接入网设备102的应用场景不作限定。
终端设备可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以为手持终端、客户终端设备(customer premise equipment,CPE)笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、计算设备、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、会话启动协议(session initiation protocol,SIP)电话、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端,可穿戴设备(如智能手表、智能手环、计步器等),车载设备(如汽车、自行车、电动车、飞机、船舶、火车、高铁等)、VR设备、AR设备、工业控制(industrial control)中的无线终端、智能家居设备(如冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、无线数据卡、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(如智能机器人、热气球、无人机、飞机等)或其他可以接入网络的设备。
此外,终端设备也可以是未来通信系统(例如第六代移动通信技术(6th generation mobile communication technology,6G))通信系统等)中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。示例性的,6G网络可以进一步扩展5G通信终端设备的形态和功能,6G终端设备包括但不限于车、蜂窝网络终端设备(融合卫星终端功能)、无人机、物联网(internet of things,IoT)。
接入网设备为为终端设备提供无线接入的设备,可以负责空口侧的无线资源管理、服务质量(quality of service,QoS)流管理、数据压缩和加密等功能。接入网设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单 元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为RAN中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
核心网设备,是指为终端设备提供业务支持的CN中的设备,主要负责呼叫的接续、计费,移动性管理,提供用户连接、对用户的管理以及对业务完成承载等功能。核心网设备在不同的通信系统可以对应不同的设备。例如,在第四代移动通信技术(4th generation mobile networks,4G)中可以对应移动管理实体(mobility management entity,MME)、服务网关(serving gateway,S-GW)等中的一个或多个。再例如,在5G中可以对应接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元等中的一个或多个网元。在下一代通信系统或未来通信设备中可以为为终端设备提供业务支持的一个或多个网元、设备或实体。
需要说明的是,图1所示的网络架构中不限于仅包括图中所示的终端设备、接入网设备和核心网设备,还可以包括无线中继设备和无线回传设备,具体本申请在此处不再一一列举。此外,本申请的实施例对核心网设备、无线接入网设备和终端设备的数量不做限定。
上述网络架构可以应用于窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA)、WiFi系统,LTE、5G系统、以及6G等5G之后演进的通信系统。
为了更好地理解本申请实施例,下面先对本申请实施例的相关技术进行描述。
目前,标准中将mMTC业务的终端设备称为RedCap终端设备,即低复杂度或低能力的终端设备。RedCap终端设备可能在带宽、功耗、天线数等方面比其他终端设备复杂度低一些,如带宽更窄、功耗更低、天线数更少等。RedCap终端设备也可以称为轻新无线(new radio,NR)(NR light,NRL)的终端设备,即轻量版的终端设备。
例如,在频率范围(frequency range,FR)1中,eMBB终端设备的最大信道带宽为100MHz,RedCap终端设备的最大信道带宽降低到5MHz。因此,配置的最大传输带宽对应的资源块(resource block,RB)数量N RB可以如表1所示:
Figure PCTCN2022114140-appb-000014
表1配置的最大传输带宽对应的N RB
当物理上行共享信道(physical uplink share channel,PUSCH)的子载波间隔(subcarrier space,SCS)为30kHz,终端设备的最大信道带宽为5MHz时,终端设备的最大传输带宽对应11个RB。但并没有限制最大信道带宽对应哪些信道,因此,可以认为最大信道带宽对应所有的传输信道。传输信道可以包括上行信道、下行信道、上行信号和下行信号。上行信道或上行信号可以包括同步信号、PRACH、PUCCH、PUSCH、探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS)等。下行信道或下行信号可以包括物理广播信道(physical broadcast channel,PBCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physicaldownlink share channel,PDSCH)、DMRS、随机接入响应(random access response,RAR)、寻呼(paging)等。其中,表1中第一行SCS后面的值为最大信道带宽。
此外,NR协议还规定了PRACH的频域资源占用情况,PRACH的频域资源占用情况可以如表2所示:
Figure PCTCN2022114140-appb-000015
表2 PRACH的频域资源占用情况
表2中的L RA为随机接入前导序列的长度。PRACH的△f RA为PRACH的SCS。PUSCH的△f为PUSCH的SCS。
Figure PCTCN2022114140-appb-000016
为传输PRACH的资源需要的RB数量。例如,
Figure PCTCN2022114140-appb-000017
可以根据PUSCH的SCS确定。
Figure PCTCN2022114140-appb-000018
为PRACH的起始资源(RB)中的起始子载波的索引。
如表2所示,不同的随机接入前导序列的长度和SCS适用于不同的小区覆盖。然而,当L RA=839,PRACH的SCS=5kHz,或者L RA=139,PRACH的SCS=30kHz时,传输PRACH的资源需要12个RB,即传输PRACH需要占用12个RB,超过了表1中定义的11个RB。
可见,PRACH所需传输资源的频域资源数大于终端设备的最大传输带宽的频域资源数,即PRACH所需传输资源的频域资源数与终端设备的最大传输带宽的频域资源数不匹配,以致 终端设备无法在终端设备的最大传输带宽内传输PRACH。因此,如何确定用于传输PRACH的资源非常重要。
实施例一
鉴于上述技术问题,本申请提供了一种通信方法。通过该方法,本申请通过对终端设备的最大传输带宽的频域资源和传输PRACH所需频域资源的设定,使得传输PRACH所需频域资源能够满足传输PRACH的需求,从而保证终端设备与接入网设备之间通信。
下面将结合附图详细说明本申请提供的各个实施例。
基于上述网络架构,请参阅图2,图2是本申请实施例公开的一种通信方法的流程示意图。如图2所示,该通信方法可以包括以下步骤。
201.终端设备确定随机接入资源。示例性的,该随机接入资源大于终端设备的最大传输带宽。
示例性的,该随机接入资源大于终端设备的最大传输带宽可以理解为,该随机接入资源的频域资源数可以大于终端设备的最大传输带宽的频域资源数。
在终端设备需要接入接入网设备的情况下,终端设备可以确定随机接入资源。随机接入资源的频域资源数可以大于终端设备的最大传输带宽的频域资源数。
终端设备可以为以下至少一种:低复杂度的终端设备、R18规定的低复杂度的终端设备、最大信道带宽为5MHz的终端设备或最大信道带宽小于5MHz的终端设备。
频域资源的粒度可以为RB,也可以为子载波,还可以为子带,还可以为Hz,还可以为其他可以表征频域资源大小的频域资源或频域单元。频域资源数可以理解为频域资源的数量,可以为RB数,也可以为子载波数,还可以为子带数,还可以为Hz,还可以为可以表征频域资源大小的频域资源或频域单元的数量,在此不加限定。
随机接入资源的频域资源数,可以理解为随机接入资源包括的频域资源中能够用于传输信息的频域资源的数量。如,随机接入资源包括的RB个数、子载波个数或子带个数等。
终端设备的最大传输带宽限定了终端设备接收或者发送的信号的带宽的最大值。例如,假设终端设备接收或者发送信号所使用的频域资源的最大传输带宽为5MHz,则终端设备接收或者发送信号的带宽应该小于或等于5MHz;再例如,假设终端设备接收或者发送信号所使用的频域资源的最大传输带宽为10MHz,则终端设备接收或者发送信号的带宽应该小于或等于10MHz。
终端设备的最大传输带宽的频域资源数,可以理解为终端设备的最大传输带宽包括的频域资源中能够用于传输信息的频域资源的数量。
下面以频域资源的粒度为RB为例进行说明。
此时,随机接入资源的RB数大于终端设备的最大传输带宽的RB数。例如,随机接入资源的RB数可以大于11,终端设备的BWP或其他信号/信道的RB数可以为11。其他信号/信道可以包括PUSCH、PDSCH、PUCCH、PDCCH、SRS、Paging、PBCH、同步信号块(synchronization signal block,SSB)、RAR、DMRS等中的一个或多个。应理解,终端设备的BWP的带宽小于或等于终端设备的最大传输带宽。相应地,终端设备的BWP的频域资源数小于或等于终端设备的最大传输带宽的频域资源数。例如,随机接入资源的RB数可以等于12。随机接入资源的带宽可以等于4.32MHz。例如,在PUSCH的子载波间隔为30kHz的情况下,终端设备的随机接入资源的RB数可以等于12。再例如,在PUSCH的子载波间隔为30kHz,且PRACH的子载波间隔为5kHz的情况下,终端设备的随机接入资源的RB数可以等于12。再例如,在PUSCH的子载波间隔为30kHz,且PRACH的子载波间隔为30kHz的情况下,终端设备的随机接入资 源的RB数可以等于12。再例如,终端设备的最大信道带宽小于或等于5MHz时,随机接入资源的RB数可以等于12。应理解,上述举例是对随机接入资源的RB数等于12的场景的示例性说明,并不对其构成限定。随机接入资源的RB数也可以大于12,如13、14等。
目前,NR中引入了BWP的概念。BWP是相对于带宽来说的。BWP是一个载波上的一部分连续的频域资源,通常以RB作为最小频域单元。一个RB可以包括多个子载波(subcarrier)。例如,一个RB可以包括12个子载波。再例如,一个RB可以包括14个子载波。本申请中一个RB包括12个子载波。根据数据的上行传输和下行传输,BWP可以分为上行BWP和下行BWP,其中,用于传输上行数据的BWP称为上行BWP,用于传输下行数据的BWP称为下行BWP。
应理解,上述是对随机接入资源的RB数大于终端设备的最大传输带宽的RB数的示例性说明,并不对其构成限定。例如,终端设备的BWP的RB数以及随机接入资源的RB数可以为其他值,只要满足随机接入资源的RB数大于终端设备的最大传输带宽的RB数即可,或随机接入资源的RB数大于其他信号/信道带宽的RB数即可。
在传输信息时,为了保证信息的正确传输,避免与邻区/邻频之间的相互干扰,可以在传输信息的频域资源(即传输带宽或BWP)两边加入保护带,以便保护传输的信息。因此,随机接入资源的频域资源具有对应的保护带。
每个终端设备的信道带宽和PUSCH的SCS的最小保护带可以如表3所示:
SCS 5 10 15 20 25 30 40 50 60 70 80 90 100
15 242.5 312.5 382.5 452.5 522.5 592.5 552.5 692.5 N/A N/A N/A N/A N/A
30 505 665 645 805 785 945 905 1045 825 965 925 885 845
60 N/A 1010 990 1330 1310 1290 1610 1570 1530 1490 1450 1410 1370
表3每个终端设备的信道带宽和SCS的最小保护带
通过表3可知,在终端设备的最大信道带宽小于或等于5MHz,PUSCH的子载波间隔为30kHz的情况下,信道带宽的最小保护带(guardband)为505 kHz。由于随机接入资源的频域资源数大于终端设备的最大信道带宽的频域资源数,因此,随机接入资源对应的保护带可以小于505kHz。表3第一行SCS后的值为最大信道带宽。
例如,随机接入资源对应的保护带可以为325(即505-180)kH、145(即505-360)kHz、340(即(5000-12*360)/2)kHz、415(即(5000-139*30)/2)kHz、430kHz、402.5(即(5000-839*5)/2)kHz、或417.5kHz。应理解,上述是对随机接入资源对应的保护带大小的示例性说明,并不对随机接入资源对应的保护带的大小构成限定。
需要说明的是,此处的保护带是指处于随机接入资源一侧的保护带,随机接入资源对应的总保护带为处于随机接入资源两侧的保护带之和,即为上述随机接入资源对应的保护带的两倍,也即上述保护带*2。
上述是以频域资源的粒度为RB进行说明,但对频域资源的粒度并不构限定。例如,频域资源的粒度可以为子载波。
终端设备可以通过三种方式确定随机接入资源,下面分别进行说明。
第一种方式:终端设备可以根据第一参数和第一参考点确定随机接入资源。例如,第一参考点可以为载波资源、Point A、CRB0、终端设备的BWP资源或能够作为参考点的其他频域资源。
例如,在终端设备为RedCap终端设备的情况下,第一参考点可以为载波资源、Point A、CRB0。在终端设备不是RedCap终端设备(即终端设备为传统(legacy)终端设备)的情况下,第一参考点可以为终端设备的BWP资源。
载波为接入网设备的载波。接入网设备可以将接入网设备的载波指示或配置给终端设备。例如,接入网设备可以广播自身的载波信息,终端设备可以接收到接入网设备广播的载波信息。载波资源可以为载波的起始资源、载波的结束资源、载波的中心频点、载波的起始RB中的结束子载波、载波的起始RB中的起始子载波、载波的结束RB中的起始子载波或者载波的其他资源位置,在此不加限定。示例性的,载波的起始资源可以为载波的起始位置的资源,如载波的起始位置的频点。示例性的,载波的结束资源可以为载波的结束位置的资源,如载波的结束位置的频点。示例性的,载波的中心频点可以为载波的起始资源与载波的结束资源的中心点的频点。
Point A为资源格(grid)的公共参考点,可以作为确定载波位置的参考点。
CRB0为公共资源块的起始RB。CRB0的子载波0的中心和Point A一致。
终端设备的BWP资源可以为终端设备的BWP的起始资源、终端设备的BWP的结束资源、终端设备的BWP的中心频点、终端设备的BWP的起始RB中的结束子载波、终端设备的BWP的起始RB中的起始子载波、终端设备的BWP的结束RB中的起始子载波或者终端设备的BWP的其他资源,在此不加限定。示例性的,终端设备的BWP的起始资源可以为终端设备的BWP的起始位置的资源,如终端设备的BWP的起始位置的频点。示例性的,终端设备的BWP的结束资源可以为终端设备的BWP的结束位置的资源,如终端设备的BWP的结束位置的频点。示例性的,终端设备的BWP的中心频点可以为终端设备的BWP的起始资源与终端设备的BWP的结束资源的中心点的频点。
一种情况下,第一参数可以用于指示随机接入资源与第一参考点之间的偏移值。其中,随机接入资源可以为随机接入资源的起始资源、随机接入资源的结束资源、随机接入资源的中心频点或随机接入资源的其他资源。
图3是本申请实施例公开的一种随机接入资源与第一参考点之间的示意图。如图3所示,第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值,第一参考点为终端设备的BWP的起始资源。
图4是本申请实施例公开的另一种随机接入资源与第一参考点之间的示意图。如图4所示,第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值,第一参考点为载波的起始资源。
如图3和图4所示,载波可以包括终端设备的BWP以及随机接入资源。
示例性的,随机接入资源的起始资源可以为随机接入资源的起始位置的资源,如随机接入资源的起始位置的频点。示例性的,随机接入资源的结束资源可以为随机接入资源的结束位置的资源,如随机接入资源的结束位置的频点。示例性的,随机接入资源的中心频点可以为随机接入资源的起始资源与随机接入资源的结束资源的中心点的频点。
第一参数可以为正数,也可以为负数,还可以为0。进一步地,第一参数可以为整数,也可以不是整数。示例性的,第一参数的粒度可以为RB,也可以为子载波,还可以为子带,还可以为其他频域单元。
下面以第一参考点为终端设备的BWP资源为例进行说明。
一种实现方式中,随机接入资源的起始资源与终端设备的BWP的起始资源相同,即随机接入资源的起始资源与终端设备的BWP的起始资源对齐,也即随机接入资源的起始资源为终端设备的BWP的起始资源。随机接入资源的结束资源位于终端设备的BWP的结束资源之后,也即随机接入资源的结束资源为BWP的结束资源后的资源。
示例性的,在频域资源的粒度为RB,且随机接入资源的RB数比终端设备的BWP的RB数 多一个RB的情况下,随机接入资源的第一个RB可以映射到终端设备的BWP内的第一个RB,随机接入资源的最后一个RB可以映射到终端设备的BWP内最后一个RB之后的第一个RB。随机接入资源的RB可以理解为随机接入资源包括的RB。例如,假设随机接入资源的RB数为12,终端设备的BWP的RB数为11。请参阅图5,图5是本申请实施例公开的一种随机接入资源与终端设备的BWP之间的示意图。如图5所示,随机接入资源的第一个RB映射到终端设备的BWP内的第一个RB,随机接入资源的第12个RB(即RB11)映射到终端设备的BWP内的第11个RB之后的第一个RB。
示例性的,在频域资源的粒度为RB,且随机接入资源的RB数比终端设备的BWP的RB数多K个RB的情况下,随机接入资源的第一个RB可以映射到终端设备的BWP内的第一个RB,随机接入资源的最后一个RB可以映射到终端设备的BWP内最后一个RB之后的第K个RB。K为大于1的整数。
下面对在第一参考点以及第一参数的含义不同的情况下的第一参数的取值进行示例性说明。
示例性的,在第一参考点为终端设备的BWP的起始资源,且第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值的情况下,第一参数为0。示例性的,在第一参考点为终端设备的BWP的起始资源,且第一参数用于指示随机接入资源的结束资源与第一参考点之间的偏移值的情况下,第一参数为N。如,N为随机接入资源的RB数。N为大于1的整数。示例性的,在第一参考点为终端设备的BWP的起始资源,且第一参数用于指示随机接入资源的中心频点与第一参考点之间的偏移值的情况下,第一参数为N/2。示例性的,在第一参考点为终端设备的BWP的结束资源,且第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值的情况下,第一参数为-M。如,M为终端设备的BWP的RB数。M为大于或等于1的整数。如,M小于N。示例性的,在第一参考点为终端设备的BWP的结束资源,且第一参数用于指示随机接入资源的结束资源与第一参考点之间的偏移值的情况下,第一参数为N-M。示例性的,在第一参考点为终端设备的BWP的结束资源,且第一参数用于指示随机接入资源的中心频点与第一参考点之间的偏移值的情况下,第一参数为N/2-M。示例性的,在第一参考点为终端设备的BWP的中心频点,且第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值的情况下,第一参数为-M/2。示例性的,在第一参考点为终端设备的BWP的中心频点,且第一参数用于指示随机接入资源的结束资源与第一参考点之间的偏移值的情况下,第一参数为N–M/2。示例性的,在第一参考点为终端设备的BWP的中心频点,且第一参数用于指示随机接入资源的中心频点与第一参考点之间的偏移值的情况下,第一参数为0。
应理解,上述是对在第一参考点以及第一参数的含义不同的情况下的第一参数的示例性说明,并不对其构成限定。可见,在第一参数的含义相同的情况下,第一参考点不同,第一参数不同。在第一参考点相同的情况下,第一参数的含义不同,第一参数不同。
另一种实现方式中,随机接入资源的起始资源位于终端设备的BWP的起始资源之前,也即随机接入资源的起始资源为终端设备的BWP的起始资源之前的资源位置。随机接入资源的结束资源与终端设备的BWP的结束资源相同,即随机接入资源的结束资源与终端设备的BWP的结束资源对齐,也即随机接入资源的结束资源为终端设备的BWP的结束资源。
示例性的,在频域资源的粒度为RB,且随机接入资源的RB数比终端设备的BWP的RB数多一个RB的情况下,随机接入资源的第一个RB映射到终端设备的BWP内第一个RB前一个RB,随机接入资源的最后一个RB映射到终端设备BWP内最后一个RB。例如,假设随机接入资源的RB数为12,终端设备的BWP的RB数为11。请参阅图6,图6是本申请实施例公开的 另一种随机接入资源与终端设备的BWP之间的示意图。如图6所示,随机接入资源的第一个RB映射到终端设备的BWP内的第一个RB前一个RB,随机接入资源的第12个RB映射到终端设备的BWP内第11个RB。
示例性的,在频域资源的粒度为RB,且随机接入资源的RB数比终端设备的BWP的RB数多K个RB的情况下,随机接入资源的第一个RB映射到终端设备的BWP内第一个RB前K个RB,随机接入资源的最后一个RB映射到终端设备的BWP内最后一个RB。
下面对在第一参考点以及第一参数的含义不同的情况下的第一参数进行示例性说明。
示例性的,在第一参考点为终端设备的BWP的起始资源,且第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值的情况下,第一参数为M-N。示例性的,在第一参考点为终端设备的BWP的起始资源,且第一参数用于指示随机接入资源的结束资源与第一参考点之间的偏移值的情况下,第一参数为M。示例性的,在第一参考点为终端设备的BWP的起始资源,且第一参数用于指示随机接入资源的中心频点与第一参考点之间的偏移值的情况下,第一参数为M-N/2。示例性的,在第一参考点为终端设备的BWP的结束资源,且第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值的情况下,第一参数为-N。示例性的,在第一参考点为终端设备的BWP的结束资源,且第一参数用于指示随机接入资源的结束资源与第一参考点之间的偏移值的情况下,第一参数为0。示例性的,在第一参考点为终端设备的BWP的结束资源,且第一参数用于指示随机接入资源的中心频点与第一参考点之间的偏移值的情况下,第一参数为-N/2。示例性的,在第一参考点为终端设备的BWP的中心频点,且第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值的情况下,第一参数为M/2-N。示例性的,在第一参考点为终端设备的BWP的中心频点,且第一参数用于指示随机接入资源的结束资源与第一参考点之间的偏移值的情况下,第一参数为–M/2。示例性的,在第一参考点为终端设备的BWP的中心频点,且第一参数用于指示随机接入资源的中心频点与第一参考点之间的偏移值的情况下,第一参数为(M-N)/2。
应理解,上述是对在第一参考点以及第一参数的含义不同的情况下的第一参数的示例性说明,并不对其构成限定。例如,第一参考点可以为终端设备的BWP的第二个RB。可见,在第一参数的含义相同的情况下,第一参考点不同,第一参数不同。在第一参考点相同的情况下,第一参数的含义不同,第一参数不同。
又一种实现方式中,随机接入资源的中心频点与终端设备的BWP的中心频点相同,即随机接入资源的中心频点为终端设备的BWP的中心频点,也即随机接入资源的中心频点与终端设备的BWP的中心频点对齐。
此时,终端设备的BWP的频域资源数对应的频域资源包括在随机接入资源的频域资源数对应的频域资源内,随机接入资源的频域资源数对应的频域资源中与终端设备的BWP的频域资源数对应的频域资源不重合部分处于终端设备的BWP的频域资源数对应的带宽之外,且在终端设备的BWP外的两侧带宽的长度相同。
例如,假设随机接入资源的频域资源数为12个RB,终端设备的BWP的评语资源数为11个RB。请参阅图7,图7是本申请实施例公开的又一种随机接入资源与终端设备的BWP之间的示意图。如图7所示,终端设备的BWP的11RB包括在随机接入资源的12RB内,且不重合部分在终端设备的BWP的11RB之外,且在终端设备的BWP外的两侧带宽均为180kHz,即0.5个RB。
下面对在第一参考点以及第一参数的含义不同的情况下的第一参数进行示例性说明。
示例性的,在第一参考点为终端设备的BWP的起始资源,且第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值的情况下,第一参数为(M-N)/2。示例性的,在第一 参考点为终端设备的BWP的起始资源,且第一参数用于指示随机接入资源的结束资源与第一参考点之间的偏移值的情况下,第一参数为(M+N)/2。示例性的,在第一参考点为终端设备的BWP的起始资源,且第一参数用于指示随机接入资源的中心频点与第一参考点之间的偏移值的情况下,第一参数为M/2。示例性的,在第一参考点为终端设备的BWP的结束资源,且第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值的情况下,第一参数为-(M+N)/2。示例性的,在第一参考点为终端设备的BWP的结束资源,且第一参数用于指示随机接入资源的结束资源与第一参考点之间的偏移值的情况下,第一参数为(N-M)/2。示例性的,在第一参考点为终端设备的BWP的结束资源,且第一参数用于指示随机接入资源的中心频点与第一参考点之间的偏移值的情况下,第一参数为-M/2。示例性的,在第一参考点为终端设备的BWP的中心频点,且第一参数用于指示随机接入资源的起始资源与第一参考点之间的偏移值的情况下,第一参数为-N/2。示例性的,在第一参考点为终端设备的BWP的中心频点,且第一参数用于指示随机接入资源的结束资源与第一参考点之间的偏移值的情况下,第一参数为N/2。示例性的,在第一参考点为终端设备的BWP的中心频点,且第一参数用于指示随机接入资源的中心频点与第一参考点之间的偏移值的情况下,第一参数为0。
应理解,上述是对在第一参考点以及第一参数的含义不同的情况下的第一参数的示例性说明,并不对其构成限定。例如,第一参考点可以为终端设备的BWP的第二个RB。可见,在第一参数的含义相同的情况下,第一参考点不同,第一参数不同。在第一参考点相同的情况下,第一参数的含义不同,第一参数不同。
应理解,上述是对第一参数取值的示例性说明,并不对第一参数的取值构成限定,第一参数的取值还可以为具体的数值。例如,第一参数的取值还可以为-1、-0.5、0等。
应理解,上述是以第一参数的粒度为RB进行说明的,下面以第一参数的粒度为子载波为例进行说明。
第一参数可以用于指示随机接入资源的频域资源数对应的资源中随机接入前导序列起始子载波与第一参考点之间的偏移值,即随机接入资源中随机接入前导序列占用(或对应)的第一个子载波与第一参考点之间的偏移值,也即随机接入资源中随机接入前导序列的起始子载波与第一参考点之间的偏移值。如指示表3中的
Figure PCTCN2022114140-appb-000019
下面以第一参考点为终端设备的BWP的起始资源(如,起始子载波)为例进行说明。
如表2所示,在PUSCH的子载波间隔为30kHz,且PRACH的子载波间隔为5kHz的情况下,随机接入前导序列的长度为839,
Figure PCTCN2022114140-appb-000020
的取值为10;在PUSCH的子载波间隔为30kHz,且PRACH的子载波间隔为30kHz的情况下,随机接入前导序列的长度为139,
Figure PCTCN2022114140-appb-000021
的取值为2。此时,随机接入资源的频域资源数大于终端设备的最大传输带宽的频域资源数。
第一参数可以指示
Figure PCTCN2022114140-appb-000022
的取值。第一参数指示的
Figure PCTCN2022114140-appb-000023
的值可以与表2相同。如,第一参数可以指示2或10。第一参数指示的
Figure PCTCN2022114140-appb-000024
的值也可以与表2不同。如,第一参数可以指示除2和10之外的值。如,第一参数的取值不为2或10。
下面以随机接入前导序列的长度为139,需要占用139个子载波,随机接入资源的频域资源数为139个子载波,终端设备的BWP的频域资源数为11个RB为例进行说明。
请参阅图8,图8是本申请实施例公开的一种
Figure PCTCN2022114140-appb-000025
为2的示意图。如图8所示,随机接入资源的频域资源数为12个RB。这12个RB的索引或编号是从0开始,到11结束。12个RB中每个RB包括12个子载波,因此,12个RB总共包括144个子载波。不同RB中的子载波是单独编号,每个RB中的12个子载波的编号或索引从0开始,到11结束。随机接入资源的12个RB中的第一个RB(即RB0)中的第一个子载波(即子载波0)和第二个子载波(即子载波1)不传输随机接入前导序 列,随机接入资源的12个RB中的第12个RB(即RB11)中的第十个子载波(即子载波9)、第十一个子载波(即子载波10)和第十二个子载波(即子载波11)不传输随机接入前导序列。随机接入前导序列是从随机接入资源的第一个RB(即RB0)中的第三个子载波(即子载波2)开始传输,到随机接入资源的第12个RB(即RB11)中的第九个子载波(即子载波8)结束传输,总共占用了139个子载波。其中,随机接入资源的起始资源与终端设备的BWP的起始资源相同。RB是从终端设备的BWP的第一个RB开始编号。
例如,在PUSCH的子载波间隔为30kHz,且PRACH的子载波间隔为30kHz的情况下,
Figure PCTCN2022114140-appb-000026
的候选值可以为大于或等于-7的整数,也可以为小于-7的整数。
请参阅图9,图9是本申请实施例公开的一种
Figure PCTCN2022114140-appb-000027
为-7的示意图。如图9所示,随机接入资源的频域资源数对应的子载波中第一个子载波映射到终端设备的BWP内的第一个RB前一个RB中的第六个子载波(即子载波5),随机接入资源的频域资源数对应的子载波中最后一个子载波映射到终端设备的BWP内的第十一个RB的第十二个子载波。可见,随机接入资源的频域资源数对应的子载波占用终端设备的BWP外低频部分7个子载波,即占用终端设备的BWP低频边缘外第一个RB的第5~第11号子载波,以及整个终端设备的BWP,总共占用了139个子载波。
请参阅图10,图10是本申请实施例公开的一种
Figure PCTCN2022114140-appb-000028
为-4的示意图。如图10所示,随机接入资源的频域资源数对应的子载波中第一个子载波映射到终端设备的BWP内的第一个RB前一个RB的第九个子载波(即子载波8),随机接入资源的频域资源数对应的子载波中最后一个子载波映射到终端设备的BWP内的第十一个RB后一个RB的第三个子载波(即子载波2)。可见,随机接入资源的频域资源数对应的子载波占用终端设备的BWP外低频部分4个子载波,即终端设备的BWP低频边缘外第一个RB的第8~第11号子载波,整个BWP,以及终端设备的BWP外高频部分3子载波,即终端设备的BWP高频边缘外第一个RB的第0~第2号子载波。
请参阅图11,图11是本申请实施例公开的一种
Figure PCTCN2022114140-appb-000029
为0的示意图。如图11所示,随机接入资源的频域资源数对应的子载波中第一个子载波映射到终端设备的BWP内的第一个RB的第一个子载波,随机接入资源的频域资源数对应的子载波中最后一个子载波映射到终端设备的BWP内的第十一个RB后一个RB的第七个子载波(即子载波6)。可见,随机接入资源的频域资源数对应的子载波占用整个终端设备的BWP,以及终端设备的BWP外高频部分7子载波,即终端设备的BWP高频边缘外RB的第0~第6号子载波。
请参阅图12,图12是本申请实施例公开的另一种
Figure PCTCN2022114140-appb-000030
为2的示意图。如图12所示,随机接入资源的频域资源数对应的子载波中第一个子载波映射到终端设备的BWP内的第一个RB的第三个子载波(即子载波2),随机接入资源的频域资源数对应的子载波中最后一个子载波映射到终端设备的BWP内的第十一个RB后一个RB的第九个子载波(即子载波8)。可见,随机接入资源的频域资源数对应的子载波占用BWP内部130个子载波,以及终端设备的BWP外高频部分9子载波,即终端设备的BWP高频边缘外RB的第0~第8号子载波。
应理解,图8-图12是对
Figure PCTCN2022114140-appb-000031
取值的示例性说明,并不对
Figure PCTCN2022114140-appb-000032
的取值构成限定,
Figure PCTCN2022114140-appb-000033
的取值还可以为其它整数。例如,
Figure PCTCN2022114140-appb-000034
的取值还可以为3、4、5、6等。再例如,
Figure PCTCN2022114140-appb-000035
的取值可以为[-12,5]中的任意一个。
另一种情况下,第一参数可以用于指示随机接入资源与第一参考点之间的位置关系。
第一参数可以用于指示随机接入资源的起始资源与第一参考点之间的对应关系。示例性的,第一参数可以指示随机接入资源的起始资源与第一参考点对齐,或者随机接入资源的起始资源位于第一参考点之前A个频域资源或频域单元,或者随机接入资源的起始资源位于第一参考点之后B个频域资源或频域单元。第一参数也可以指示随机接入资源的结束资源与第 一参考点之间的对应关系。示例性的,第一参数可以指示随机接入资源的结束资源与第一参考点对齐,或者随机接入资源的结束资源位于第一参考点之前A个频域资源或频域单元,或者随机接入资源的结束资源位于第一参考点之后B个频域资源或频域单元。第一参数还可以用于指示随机接入资源的中心频点与第一参考点之间的位置关系。示例性的,第一参数可以指示随机接入资源的中心频点与第一参考点对齐,或者随机接入资源的中心频点位于第一参考点之前A个频域资源或频域单元,或者随机接入资源的中心频点位于第一参考点之后B个频域资源或频域单元。其中,A、B为大于或等于1的整数。第一参数还可以用于指示随机接入资源的其他资源与第一参考点之间的位置关系。
一种方式中,随机接入资源与第一参考点之间的位置关系不同对应的索引值不同。第一参数可以指示随机接入资源与第一参考点之间的位置关系。第一参数的值不同,随机接入资源与第一参数点之间的位置关系不同。
在随机接入资源与第一参考点之间的位置关系总共有两种的情况下,第一参数可以占用1比特。例如,第一参数的值为0时,可以指示随机接入资源与第一参考点之间的位置关系如图5所示,第一参数的值为1时,可以指示随机接入资源与第一参考点之间的位置关系如图6所示。
在随机接入资源与第一参考点之间的位置关系总共有三种或四种的情况下,第一参数可以占用2比特。例如,第一参数的值为00时,可以指示随机接入资源与第一参考点之间的位置关系如图5所示,第一参数的值为01时,可以指示随机接入资源与第一参考点之间的位置关系如图6所示,第一参数的值为10时,可以指示随机接入资源与第一参考点之间的位置关系如图7所示。
另一种方式中,第一参数可以通过比特位图的方式指示随机接入资源与第一参考点之间的位置关系。随机接入资源与第一参考点之间的位置关系总共有几种,第一参数可以占用几个比特,每个比特对应一种随机接入资源与第一参考点之间的位置关系。在要指示具体哪一种随机接入资源与第一参考点之间的位置关系的情况下,比特位图中这种位置关系对应的比特的值可以为1(或0),其他位置关系对应的比特的值可以为0(或1)。
第一参考点、第一参数以及以及第一参数的含义可以是协议规定的,即默认配置的,也可以是接入网设备配置的。例如,可以是通过广播的方式配置或者通过一条或多条消息(或信令)的方式配置。示例性的,第一参数可以携带在系统消息中,如系统信息块(system information block,SIB)等。第一参数也可以携带在下行控制信息(downlink control information,DCI)中,还可以携带在MAC,还可以携带在MAC控制单元(control element,CE)中,还可以携带在RRC中,还可以携带在其他信令或消息中,在此不加限定。
第二种方式:终端设备可以根据第一规则确定随机接入资源。
第一规则可以是协议规定的,也可以是接入网设备配置的。
在第一规则是接入网设备配置的情况下,接入网设备还可以通过广播方式向终端设备发送第一指示信息,第一指示信息用于指示第一规则。相应地,终端设备可以接收接入网设备广播的第一指示信息,之后可以根据第一指示信息确定第一规则,进而可以根据第一规则确定随机接入资源。
一种实现方式中,第一规则可以为:在终端设备的BWP不包括载波中序号最高的A个频域资源的情况下,随机接入资源的起始资源与终端设备的BWP的起始资源相同或对齐;在终端设备的BWP包括载波中序号最高的A个频域资源的情况下,随机接入资源的结束资源与终端设备的BWP的结束资源相同或对齐。因此,在终端设备的BWP不包括载波中序号最高的A个频域资源 的情况下,终端设备可以确定随机接入资源的起始资源与终端设备的BWP的起始资源相同,随机接入资源的结束资源位于终端设备的BWP的结束资源之后。在终端设备的BWP包括载波中序号最高的A个频域资源的情况下,终端设备可以确定随机接入资源的起始资源位于终端设备的BWP的起始资源之前,随机接入资源的结束资源与终端设备的BWP的结束资源相同。A为大于0的正整数。这样,可以保证随机接入资源在载波的传输带宽范围内,不会在载波的保护带内进行传输,避免了和邻频/邻区的干扰。
请参阅图13,图13是本申请实施例公开的一种根据第一规则确定随机接入资源的示意图。如图13所示,在终端设备的BWP不包括载波中序号最高的RB的情况下,可以确定随机接入资源的起始资源与终端设备的BWP的起始资源相同,随机接入资源的结束资源位于终端设备的BWP的结束资源之后。在终端设备的BWP包括载波中序号最高的RB的情况下,可以确定随机接入资源的起始资源位于终端设备的BWP的起始资源之前,随机接入资源的结束资源与终端设备的BWP的结束资源相同。
另一种实现方式中,第一规则可以为:在终端设备的BWP包括载波中序号最低的A个频域资源的情况下,随机接入资源的起始资源与终端设备的BWP的起始资源相同或对齐;在终端设备的BWP不包括载波中序号最低的A个频域资源下,随机接入资源的结束资源与终端设备的BWP的结束资源相同或对齐的情况。因此,在终端设备的BWP不包括载波中序号最低的A个频域资源的情况下,终端设备可以确定随机接入资源的起始资源位于终端设备的BWP的起始资源之前,随机接入资源的结束资源与终端设备的BWP的结束资源相同。在终端设备的BWP包括载波中序号最低的A个频域资源的情况下,终端设备可以确定随机接入资源的起始资源与终端设备的BWP的起始资源相同,随机接入资源的结束资源位于终端设备的BWP的结束资源之后。
载波以及终端设备的BWP可以是接入网设备通过广播的方式发送的。终端设备接收到接入网设备广播的载波以及终端设备的BWP,可以根据第一规则、载波以及终端设备的BWP确定随机接入资源。
第三种方式:终端设备可以根据第二规则确定随机接入资源。
由于随机接入资源的频域资源数大于终端设备的最大传输带宽的频域资源数,因此,为了使随机接入资源的频域资源数对应的频域资源在终端设备的BWP内传输,可以将随机接入资源的频域资源数对应的频域资源拆分为两部分。拆分的时候怎么拆分可以是根据第二规则确定的。
可见,随机接入资源的频域资源数可以包括第一资源的频域资源数与第二资源的频域资源数,即第一资源的频域资源数与第二资源的频域资源数之和等于随机接入资源的频域资源数。第二规则可以规定第一资源的频域资源数与第二资源的频域资源数。因此,终端设备可以根据第二规则确定第一资源的频域资源数与第二资源的频域资源数。
第一资源的频域资源数对应的频域资源为第一资源包括的频域资源中用于传输信息的频域资源。第二资源的频域资源数对应的频域资源为第二资源包括的频域资源中用于传输信息的频域资源。
假设第一资源的频域资源数为a,第二资源的频域资源数为b,随机接入资源的频域资源数等于a+b。
在随机接入资源的频域资源数为12个RB的情况下,a个频域资源和b个频域资源可以共占用30kHz子载波间隔下的12个RB,也可以共占用30kHz子载波间隔下的139个子载波,还可以共占用5kHz子载波间隔下的839个子载波,还可以共占用12*360kHz=4.32MHz带宽,还可以共占用139*30kHz=4.17MHz带宽,还可以共占用839*5kHz=4.195MHz带宽,还可以共占用30kHz子载 波间隔下的140个子载波,还可以共占用5kHz子载波间隔下的840个子载波,还可以共占用140*30kHz=4.2MHz的带宽,还可以共占用840*5kHz=4.2MHz的带宽。
在随机接入资源的频域资源数为12个RB的情况下,a可以为6,b可以为6;a可以为11,b可以为1;a可以为11,b可以为1;a和b还可以为其他值,在此不加限定。在随机接入资源的频域资源数为24个RB的情况下,a可以为18,b可以为6;a可以为16,b可以为8;a可以为17,b可以为7;a可以为12,b可以为12;a和b还可以为其他值,在此不加限定。
终端设备可以根据第一信息确定第一资源的时域资源,可以根据第二信息确定第二资源的时域资源。第一信息和第二信息可以相同,也可以不同。
一种实现方式中,终端设备可以先确定两个随机接入(random access channel,RACH)时机(RACH occasion,RO),之后可以将这两个RO合并为一个RO。合并的这个RO包括第一资源的时域资源和第二资源的时域资源。这两个RO可以为相邻的两个RO,也可以为不相邻的两个RO。此时第一信息与第二信息相同,为合并的这个RO。确定的第一资源的时域资源和第二信息的时域资源也相同。请参阅图14,图14是本申请实施例公开的一种将两个RO合并为1个RO的示意图。如图14所示,可以将两个相邻的RO合并为一个RO。
终端设备可以根据配置信息确定RO的时域资源。例如,终端设备可以根据现有协议和配置信息确定RO的时域资源。
另一种实现方式中,终端设备可以根据第i个RO确定第一资源的时域资源,可以根据第i+n个RO确定第二资源的时域资源。或者终端设备可以根据第i个RO确定第二资源的时域资源,可以根据第i+n个RO确定第一资源的时域资源。n为大于0的整数。n可以是协议规定的,也可以是接入网设备配置的。此时第一信息与第二信息不同,确定的第一资源的时域资源和第二信息的时域资源也不同。
可见,可以将两个RO交叉映射,这两个RO可以为相邻的RO,也可以为不相邻的RO。请参阅图15,图15是本申请实施例公开的一种时域资源交叉映射的示意图。如图15所示,可以将两个相邻的RO交叉映射。
进一步地,第一资源的时域资源和第二资源的时域资源相差m个时间单元。m的取值和终端设备进行频率调谐的时间有关。例如,在频率调谐的时间为4个符号或140μs的情况下,第一资源的时域资源和第二资源的时域资源相差4个符号。这样,可以保证终端设备有足够的时间进行频率调谐,可以为终端设备在传输第一PRACH与第二PRACH之间预留出保护时间,可以避免由于终端设备的信道带宽受限而只能传输部分PRACH的情况。
又一种实现方式中,第一资源的时域资源和第二资源的时域资源可以相差k个时间单元,k为大于或等于1的整数。
时间单元的粒度可以为时隙(slot),也可以为微时隙(mini-slot),也可以为符号,还可以为毫秒(ms),还可以为K个符号,还可以为其它可以表征时域资源的单元。
终端设备可以根据一个RO确定第一资源的时域资源,之后可以将第一资源的时域资源后的第k个时间单元对应的资源确定为第二资源的时域资源。或者终端设备可以根据一个RO确定第二资源的时域资源,之后可以将第二资源的时域资源后的第k个时间单元对应的资源确定为第一资源的时域资源。
请参阅图16,图16是本申请实施例公开的一种第一资源的时域资源和第二资源的时域资源的示意图。如图16所示,第二资源的时域资源与第一资源的时域资源相差1个时间单元,即第二资源的时域资源在第一资源的时域资源之后(或之前)的第一个时间单元。第一资源和第二资源的频域资源相同。
请参阅图17,图17是本申请实施例公开的另一种第一资源的时域资源和第二资源的时域资源的示意图。如图17所示,第二资源的时域资源与第一资源的时域资源相差3个时间单元,即第二资源的时域资源在第一资源的时域资源之后(或之前)的第三个时间单元。第一资源和第二资源的频域资源不同。
202.接入网设备确定随机接入资源。
其中,接入网设备确定随机接入资源的方式与终端设备确定随机接入资源的方式相同,详细描述可以参考步骤201,在此不再赘述。
203.终端设备在随机接入资源上向接入网设备发送PRACH。
相应地,接入网设备在随机接入资源上接收来自终端设备的PRACH。
终端设备确定出随机接入资源之后,可以在随机接入资源上向接入网设备发送PRACH。随机接入前导序列承载于PRACH上。
在随机接入资源的频域资源数包括第一资源的频域资源数与第二资源的频域资源数的情况下,终端设备可以在第一资源的频域资源数对应的频域资源上发送第一PRACH,可以在第二资源的频域资源数对应的频域资源上发送第二PRACH,随机接入前导序列的第一部分承载于第一PRACH上,随机接入前导序列的第二部分承载于第二PRACH上,第一部分和第二部分为随机接入前导序列中的部分或全部。可见,可以将随机接入前导序列拆分为至少两部分,可以将至少两部分中的两部分分别承载于第一资源和第二资源上传输的PRACH。
在有些情况下,RO基本占用了整个终端设备的BWP,其他信道无法传输,即RO占用了终端设备的最大传输带宽,终端设备没有能力支持更宽带宽的传输。因此,随机接入资源对应时间单元为第一信号/信道的无效时间单元。第一信号/信道可以包括PUCCH、PUSCH、SRS等中的至少一种。将确定的用于传输PRACH的随机接入资源对应时间单元确定为第一信号/信道的无效时间单元,可以保证在传输PRACH的资源上不传输第一信号/信道,从而可以保证PRACH的正常传输以及避免第一信号/信道的无效传输。
可以仅将终端设备传输随机接入信道的时域资源对应RO的时间单元确定为第一信号/信道的无效时间单元,也可以将所有RO的时间单元确定为第一信号/信道的无效时间单元,还可以将有效RO的时间单元确定为第一信号/信道的无效时间单元。所有RO的时间单元为接入网设备配置的所有RO的时间单元。终端设备传输随机接入信道的时域资源对应RO,为终端设备传输了随机接入信道的RO。如果终端设备在一个RO上没有传输随机接入信道,则这个RO对应的时间单元不能作为第一信号/信道的无效时间单元,而是作为第一信号/信道的有效时间单元。
一种实现方式中,PRACH对应的随机接入为免竞争随机接入。即可以将配置为免竞争(contention free,CF)的RO的时间单元确定为第一信号/信道的无效时间单元。此时,随机接入是接入网设备触发的,因此,可以认为PRACH优先级最高。由于免竞争随机接入是接入网设备触发终端设备发起的随机接入,且接入网设备为终端设备配置了特定的资源,因此,终端设备不在该资源上传输PRACH,该资源会被浪费,从而造成传输资源浪费。此外,接入网设备指示终端设备发起的随机接入可能是由于上行失步等原因,需要随机接入来保证信号的传输质量,因而免竞争随机接入的优先级应该更高,从而可以优先传输免竞争随机接入对应的PRACH。
另一种实现方式中,第一信号/信道的优先级小于PRACH的优先级。在PRACH的优先级大于第一信号/信道的优先级的情况下,可以将随机接入资源的时域资源对应RO的时间单元确定为第一信号/信道的无效时间单元。
PRACH的优先级可以大于SRS、PUSCH、PUCCH等的优先级。此时可以将配置为基于竞争(contention based,CB)的RO的时间单元确定为第一信号/信道的无效时间单元,即将随机接入资源的时域资源对应的RO的时间单元确定为第一信号/信道的无效时间单元。
不同信号/信道的优先级可以为:SRS>PRACH>PUSCH/PUCCH。此时,可以将配置为CB的RO的时间单元(即随机接入资源的时域资源对应的RO的时间单元)确定为PUSCH和PUCCH的无效时间单元,可以将配置为CB的RO的时间单元确定为SRS的有效时间单元。
例如,不同信号/信道的优先级可以为:动态调度(dynamic scheduling,DG)PUSCH>PRACH>免授权调度(configured grant,CG)PUSCH。在PUSCH为DG PUSCH的情况下,PUSCH的优先级大于PRACH,因此,可以将随机接入资源的时域资源对应的RO的时间单元确定为PUSCH的有效时间单元。在PUSCH为CG PUSCH的情况下,PUSCH的优先级小于PRACH,因此,可以将随机接入资源的时域资源对应的RO的时间单元确定为PUSCH的无效时间单元。
触发PRACH流程是为了提高信号的传输质量,因此,其优先级应该高于其他信号/信道的传输,以避免由于信号的传输质量较差而导致其他信号/信道传输失败,造成系统资源的浪费。此外,在PRACH的优先级高于第一信号/信道的优先级的情况下,PRACH与第一信号/信道竞争同一时间单元时,由于PRACH的优先级高必将竞争成功,而第一信号/信道由于优先级低必将竞争失败,因此,将确定的用于传输PRACH的随机接入资源对应时间单元确定为第一信号/信道的无效时间单元,可以避免第一信号/信道的无效竞争,从而可以提高第一信号/信道的传输效率,减少第一信号/信道的传输时延。
又一种实现方式中,PRACH对应的随机接入由特定事件触发。在PRACH对应的随机接入为失步相关事件触发的情况下,可以将随机接入资源的时域资源对应的RO的时间单元确定为第一信道/信号的无效时间单元。例如,在PRACH对应的随机接入为上行处于失步状态触发的随机接入的情况下,可以将随机接入资源的时域资源对应的RO的时间单元确定为第一信道/信号的无效时间单元。再例如,在PRACH对应的随机接入为下行处于失步状态触发的随机接入的情况下,可以将随机接入资源的时域资源对应的RO的时间单元确定为第一信道/信号的无效时间单元。
在PRACH对应的随机接入为同步相关事件触发的情况下,可以将随机接入资源的时域资源对应的RO的时间单元确定为第一信道/信号的有效时间单元。例如,在PRACH对应的随机接入为系统信息请求触发的情况下,可以将随机接入资源的时域资源对应的RO的时间单元确定为第一信道/信号的有效时间单元。再例如,在PRACH对应的随机接入为调度请求(scheduling request,SR)请求系统信息请求触发的情况下,可以将随机接入资源的时域资源对应的RO的时间单元确定为第一信道/信号的有效时间单元。
由特定事件触发的随机接入优先级高于第一信号/信道,而由非特定事件触发的随机接入优先级低于第一信号/信道。例如,链路失败、时间失步等触发的随机接入的优先级较高,调度请求、系统消息请求等触发的随机接入的优先级较低。在PRACH对应的随机接入由特定事件触发,表明PRACH的优先级高于第一信号/信道的优先级,PRACH与第一信号/信道竞争同一时间单元时,由于PRACH的优先级高必将竞争成功,而第一信号/信道由于优先级低必将竞争失败,因此,将确定的用于传输PRACH的随机接入资源对应时间单元确定为第一信号/信道的无效时间单元,可以避免第一信号/信道的无效竞争,从而可以提高第一信号/信道的传输效率,减少第一信号/信道的传输时延。
在随机接入资源的频域资源数大于终端设备的最大传输带宽的频域资源数的情况下, PRACH无法在终端设备的BWP内传输,因此,终端设备可以确定对应的配置为无效配置或错误情况。
例如,在终端设备的信道带宽小于或等于5MHz,PUSCH的子载波间隔为30kHz的情况下,终端设备不期望PRACH使用的资源包括的频域资源数被配置为大于11。再例如,在终端设备的信道带宽小于或等于3.5MHz,PUSCH的子载波间隔为15kHz的情况下,终端设备不期望PRACH使用的资源包括的频域资源数被配置为24,或为大于17的值,或为大于18的值,或为大于16的值。
例如,在PUSCH的子载波间隔为30kHz,PRACH的子载波间隔为5kHz或30kHz场景下,终端设备的最大带宽的频域资源数为11个RB,随机接入资源的频域资源数为12个RB,此时接入网设备不支持配置PRACH占用频域资源为12RB的情况,因此,终端设备可以确定对应的配置为无效配置或错误情况。
在随机接入资源的频域资源数大于终端设备的最大带宽的频域资源数的情况下,PRACH上承载的随机序列为随机接入前导序列中的部分序列。
在终端设备的信道带宽小于或等于5MHz,且PUSCH的子载波间隔为30kHz的情况下,PRACH上承载的随机接入前导序列长度小于L1。在PRACH的子载波间隔为5kHz的情况下,L1为839。在PRACH的子载波间隔为30kHz的情况下,L1为139。例如,在PRACH的子载波间隔为5kHz的情况下,随机接入前导序列长度可以为792,也可以为小于或等于792的正整数,还可以为大于或等于720且小于839的正整数。再例如,在PRACH的子载波间隔为30kHz的情况下,随机接入前导序列长度可以为小于139的正整数,也可以为小于或等于132的正整数,还可以为大于或等于120且小于139的正整数。
实施例二
鉴于上述技术问题,本申请提供了一种通信方法。通过该方法,本申请通过对终端设备的最大传输带宽的频域资源和传输PRACH所需频域资源的设定,使得传输PRACH所需频域资源能够满足传输PRACH的需求,从而保证终端设备与接入网设备之间通信。例如,可以将表1中的11修改为12。
基于上述网络架构,请参阅图18,图18是本申请实施例公开的另一种通信方法的流程示意图。如图18所示,该通信方法可以包括以下步骤。
1801.终端设备确定随机接入资源。示例性的,该随机接入资源等于终端设备的最大传输带宽。
示例性的,该随机接入资源等于终端设备的最大传输带宽,可以理解为该随机接入资源的频域资源数可以等于终端设备的最大传输带宽的频域资源数。
在终端设备需要接入接入网设备的情况下,终端设备可以确定随机接入资源。终端设备可以根据终端设备的最大传输带宽的频域资源数确定随机接入资源的频域资源数,即可以将终端设备的最大传输带宽的频域资源数确定为随机接入资源的频域资源数。
示例性的,在PUSCH的子载波间隔为30kHz的情况下,BWP包括的最大RB数为12。例如,在PUSCH的子载波间隔为30kHz的情况下,接入网设备可以为终端设备配置的BWP可以包括的RB数最大为12。再例如,在PUSCH的子载波间隔为30kHz的情况下,终端设备的最大传输带宽为12个RB。此时终端设备的最大信道带宽小于或等于5MHz。这样做有利于小带宽终端设备的信道设计。例如,随机接入资源的频域资源在子载波间隔为30kHz时,需要占用12个RB。再如, PDCCH的频域资源分配粒度是控制信道元素(control channel element,CCE),一个CCE资源等效于6个RB,即PDCCH的资源分配粒度等效于6个RB。因而,BWP可以包括12个RB,可以配置2个完整的CCE,有利于接入网设备的资源管理和分配的简化。
随机接入资源的频域资源数与终端设备的BWP的频域资源数可以相同。终端设备可以根据终端设备的BWP的频域资源数确定随机接入资源的频域资源数。此时,终端设备的BWP的频域资源数为终端设备的最大传输带宽的频域资源数。
随机接入资源与终端设备的BWP资源相同,即随机接入资源的频域资源数与终端设备的BWP的频域资源数相同,随机接入资源的频域资源位置与终端设备的BWP的频域资源位置相同。例如,在PUSCH的子载波间隔为30kHz的情况下,终端设备的随机接入资源和BWP的RB数可以等于12。再例如,在PUSCH的子载波间隔为30kHz,且PRACH的子载波间隔为5kHz的情况下,终端设备的随机接入资源和BWP的RB数可以等于12。再例如,在PUSCH的子载波间隔为30kHz,且PRACH的子载波间隔为30kHz的情况下,终端设备的随机接入资源和BWP的RB数可以等于12。再例如,终端设备的最大信道带宽小于或等于5MHz时,终端设备的随机接入资源和BWP的RB数可以等于12。接入网设备可以为终端设备配置终端设备的BWP,配置的终端设备的BWP的频域资源数比表1中的RB数大,使随机接入资源的频域资源数与终端设备的BWP的频域资源数相同或相等。
示例性的,第一终端设备的最大传输带宽为12个RB,第二终端设备的最大传输带宽为11个RB。第一终端设备的信道带宽为5MHz,第二终端设备的信道带宽为5MHz。第一终端设备可以为低复杂度终端设备,也可以为R18规定的低复杂度终端设备,还可以为演进的低复杂度终端设备,还可以为进一步降低的低复杂度终端设备。第二终端设备可以为非低复杂度终端设备,也可以为R17规定的低复杂度终端设备,还可以为eMBB终端设备,还可以为URLLC终端设备。
接入网设备可以通过广播的方式向终端设备配置终端设备的BWP。
一种情况下,接入网设备可以仅配置一种终端设备的BWP,终端设备的BWP的频域资源数与随机接入资源的频域资源数相同。
另一种情况下,接入网设备可以配置两种终端设备的BWP,一种终端设备的BWP的频域资源数与随机接入资源的频域资源数相同,另一种终端设备的BWP的频域资源数大于随机接入资源的频域资源数。终端设备可以根据终端设备中使用的协议、信道带宽等信息来确定使用哪一种BWP。
例如,在终端设备中使用的协议为现有协议(如R15、R16、R17)的情况下,终端设备可以使用频域资源数大于随机接入资源的频域资源数的终端设备的BWP;在终端设备中使用的协议为未来或以后协议(如R18)的情况下,终端设备可以使用频域资源数等于随机接入资源的频域资源数的终端设备的BWP。
1802.接入网设备确定随机接入资源。
其中,接入网设备确定随机接入资源的方式与终端设备确定随机接入资源的方式相同,详细描述可以参考步骤1801,在此不再赘述。
1803.终端设备在随机接入资源上向接入网设备发送PRACH。
相应地,接入网设备在随机接入资源上接收来自终端设备的PRACH。
终端设备确定出随机接入资源之后,可以在随机接入资源上向接入网设备发送PRACH。随机接入前导序列承载于PRACH上。PRACH可以在终端设备的BWP内传输,也可以不在终端设备的BWP内传输,还可以部分在终端设备的BWP内传输部分不在终端设备的BWP内传输,在此不加限 定。
实施例三
终端设备需要进行随机接入时,可以从接入网设备广播的多个随机接入前导序列中随机选择一个随机接入前导序列,之后可以将选择的这个随机接入前导序列在预配置的RO资源上发送给接入网设备。接入网设备成功接收到来自终端设备的随机接入前导序列之后,在允许终端设备接入的情况下,可以在预配置的RAR的窗口(window)内向终端设备发送反馈信息,即RAR。RAR可以包括RAR消息。每个随机接入前导序列有对应的标识(identity,ID),RAR消息可以包括给多个终端设备对应的ID。在RAR消息包括终端设备发送的随机接入前导序列的ID的情况下,终端设备可以向接入网设备上报终端设备的ID。接入网设备成功接收到来自终端设备的终端设备的ID之后,可以指示成功接入的终端设备的终端设备的ID。用于指示成功接入的终端设备的终端设备的ID的消息可以为消息4(message 4,Msg4)。终端设备成功接收到Msg4之后,可以向接入网设备发送反馈信息,即Msg4的反馈信息。
目前,接入网设备可以先配置用于传输Msg4的反馈信息的16个PUCCH资源,之后可以通过信令指示终端设备要使用的PUCCH资源在这16个PUCCH资源中的索引r PUCCH。终端设备使用PUCCH资源传输Msg4的反馈信息时,PUCCH通过跳频传输,两跳的频域资源可以占用1个RB。在
Figure PCTCN2022114140-appb-000036
的情况下,第一跳的RB的索引可以通过公式(1)确定。公式(1)可以表示如下:
Figure PCTCN2022114140-appb-000037
其中,
Figure PCTCN2022114140-appb-000038
表示计算PUCCH的传输资源时PRB的偏移,即下面的第二偏移。N CS表示初始循环移位索引集合包括的初始循环索引总数,即1个RB包括的循环索引数。
Figure PCTCN2022114140-appb-000039
表示向下取整。
Figure PCTCN2022114140-appb-000040
可以理解为:配置给的终端设备的PUCCH资源中第一个资源相对于终端设备的BWP的起始资源的偏移。PUCCH资源可以理解为传输PUCCH的资源,也可以理解为PUCCH的传输资源。第二跳的RB的索引可以通过公式(2)确定。公式(2)可以表示如下:
Figure PCTCN2022114140-appb-000041
其中,
Figure PCTCN2022114140-appb-000042
表示终端设备的BWP包括的频域资源数或RB数。
Figure PCTCN2022114140-appb-000043
的情况下,第一跳的RB的索引可以通过公式(3)确定。公式(3)可以表示如下:
Figure PCTCN2022114140-appb-000044
第二跳的RB的索引可以通过公式(4)确定。公式(4)可以表示如下:
Figure PCTCN2022114140-appb-000045
例如,请参阅图19,图19是本申请实施例公开的一种PUCCH通过跳频传输的示意图。如图19所示,16个PUCCH资源可以占用8个RB,每个RB可以包括2个循环索引。第一跳的频域资源用“x-1”标识,第二跳的资源用“x-2”标识。图19中的第二偏移即上述的
Figure PCTCN2022114140-appb-000046
现有协议中,
Figure PCTCN2022114140-appb-000047
可以为0、2、3或4。16个PUCCH资源的频域资源处于终端设备的BWP的两侧,在终端设备的BWP一侧占用的RB数可以为2、3或4。对于RedCap终端设备,为了避免资源碎片化问题,接入网设备可以将16个PUCCH资源的频域资源分配到BWP的一侧。请参阅图20,图20是本申请实施例公开的一种PUCCH资源的频域资源处于终端设备的BWP一侧的示意图。如图20所示,当RedCap终端设备和非RedCap终端设备的BWP的起始资源重合时,为了避免RedCap终端设备和非RedCap终端设备重合导致资源冲突的问题,可以将RedCap终端设备的PUCCH资源和非RedCap终端设备的PUCCH资源正交配置,即配置在不同或不重合的资源上。
由于
Figure PCTCN2022114140-appb-000048
只能取0、2、3或4这4个取值,因此,无法保证这两类终端设备的PUCCH资源错开。可见,如何保证这两类终端设备的PUCCH资源错开非常重要。
本实施例中,16个PUCCH资源的频域资源处于终端设备的BWP的一侧,在确定PUCCH资源时新引入了一个参数,即第二参数,可以通过这个参数保证RedCap终端设备传输Msg4的反馈信息的资源和非RedCap终端设备传输Msg4的反馈信息的资源错开,从而可以避免资源冲突。
请参阅图21,图21是本申请实施例公开的又一种通信方法的流程示意图。如图21所示,该通信方法可以包括以下步骤。
2101.终端设备根据第二参数和第二偏移确定第一资源。
终端设备接收到来自接入网设备的Msg4之后,可以根据第二参数和第二偏移确定第一资源。
第二参数的候选值可以为0、2、3、4、6、-2、-3、-4、-6、
Figure PCTCN2022114140-appb-000049
Figure PCTCN2022114140-appb-000050
Figure PCTCN2022114140-appb-000051
等中的一个或多个。
例如,第二参数的候选值可以为2、4、-2、-4。再例如,第二参数的候选值可以为4、6、
Figure PCTCN2022114140-appb-000052
一种情况下,终端设备可以根据第二参数、第二偏移、r PUCCH和N CS确定第一资源。
例如,第一资源的索引可以通过公式(5)确定。公式(5)可以表示如下:
Figure PCTCN2022114140-appb-000053
再例如,第一资源的索引可以通过公式(6)确定。公式(6)可以表示如下:
Figure PCTCN2022114140-appb-000054
Figure PCTCN2022114140-appb-000055
应理解,上述举例是对根据第二参数、第二偏移、r PUCCH和N CS确定第一资源的示例性说明,并不对根据第二参数、第二偏移、r PUCCH和N CS确定第一资源具体方式进行限定。例如,可以通过公式(5)或公式(6)的各种变形后的公式确定第一资源。再例如,可以根据其他公式确定第一资源,只要第一公式中直接或间接包括第二参数、第二偏移、r PUCCH和N CS这四个信息即可。
另一种情况下,终端设备可以根据第二参数、第二偏移、
Figure PCTCN2022114140-appb-000056
r PUCCH和N CS确定第一资源。
例如,第一资源的索引可以通过公式(7)确定。公式(7)可以表示如下:
Figure PCTCN2022114140-appb-000057
再例如,第一资源的索引可以通过公式(8)确定。公式(8)可以表示如下:
Figure PCTCN2022114140-appb-000058
Figure PCTCN2022114140-appb-000059
应理解,上述举例是对根据第二参数、第二偏移、
Figure PCTCN2022114140-appb-000060
r PUCCH和N CS确定第一资源的示例性说明,并不对根据第二参数、第二偏移、
Figure PCTCN2022114140-appb-000061
r PUCCH和N CS确定第一资源具体方式进行限定。例如,可以通过公式(7)或公式(8)的各种变形后的公式确定第一资源。再例如,可以根据其他公式确定第一资源,只要第一公式中直接或间接包括
Figure PCTCN2022114140-appb-000062
r PUCCH、N CS、第二参数和第二偏移这四个信息即可。
第二参数可以是协议规定的,即默认配置的。第二参数也可以是接入网设备配置的。此 时,接入网设备可以向终端设备发送指示信息,指示信息用于指示第二参数。相应地,终端设备可以接收来自接入网设备的指示信息,可以根据指示信息确定第二参数。
指示信息可以通过第二参数的索引指示第二参数,也可以通过第二参数的其他信息指示第二参数,在此不加限定。第二参数的索引可以为第二参数在上述第二参数的所有可能取值中的索引,也可以为第二参数在上述第二参数的所有可能取值包括的部分取值中的索引。
例如,协议规定了第二参数的4个候选值,如2、4、
Figure PCTCN2022114140-appb-000063
Figure PCTCN2022114140-appb-000064
此时指示信息可以通过2比特指示第二参数。如,在指示信息为00时,可以指示第二参数为2。如,在指示信息为01时,可以指示第二参数为4。如,在指示信息为10时,可以指示第二参数为
Figure PCTCN2022114140-appb-000065
如,在指示信息为11时,可以指示第二参数为
Figure PCTCN2022114140-appb-000066
应理解,上述是对第二参数的索引为第二参数在上述第二参数的所有可能取值包括的部分取值中的索引的示例性说明,并不对其构成限定。例如,第二参数的候选值可以为5、6、7等其他值。
确定第一资源的索引时,可以以终端设备的BWP的起始资源为参考点。请参阅图22,图22是本申请实施例公开的一种以终端设备的BWP的起始资源为参考点的示意图。如图22中的(a)所示,为了使第一资源处于终端设备的BWP的下边缘,即终端设备的BWP的中心频点之前,可以使第二参数为0、2、3、4、6中的至少一个,可以避免PUCCH在载波中间导致资源碎片的情况。如图22中的(b)所示,为了使第一资源处于终端设备的BWP的上边缘,即终端设备的BWP的中心频点之后,可以使第二参数为
Figure PCTCN2022114140-appb-000067
Figure PCTCN2022114140-appb-000068
Figure PCTCN2022114140-appb-000069
中的至少一个,可以避免PUCCH在载波中间导致资源碎片的情况。
确定第一资源的索引时,也可以以终端设备的BWP的结束资源为参考点。请参阅图23,图23是本申请实施例公开的一种以终端设备的BWP的结束资源为参考点的示意图。如图23中的(a)所示,为了使第一资源处于终端设备的BWP的下边缘,即终端设备的BWP的中心频点之前,可以使第二参数为0、2、3、4、6、-2、-3、-4、-6中的至少一个,可以避免PUCCH在载波中间导致资源碎片化的情况。如图23中的(b)所示,为了使第一资源处于终端设备的BWP的上边缘,即终端设备的BWP的中心频点之后,可以使第二参数为、
Figure PCTCN2022114140-appb-000070
Figure PCTCN2022114140-appb-000071
Figure PCTCN2022114140-appb-000072
中的至少一个,可以避免PUCCH在载波中间导致资源碎片的情况。
2102.接入网设备根据第二参数和第二偏移确定第一资源。
其中,接入网设备根据第二参数和第二偏移确定第一资源的方式,与终端设备根据第二参数和第二偏移确定第一资源的方式相同,详细描述可以参考步骤2101,在此不再赘述。
2103.终端设备在第一资源上向接入网设备发送PUCCH。
相应地,接入网设备在第一资源上接收来自终端设备的PUCCH。
终端设备确定出第一资源之后,可以在第一资源上向接入网设备发送PUCCH。Msg4的反馈 信息承载于PUCCH,Msg 4用于竞争解决。
应理解,上述通信方法中不同步骤、不同位置或不同实施例中相同信息或相应信息的相关描述可以相互参考。
应理解,上述通信方法中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,上述通信方法中由接入网设备执行的功能也可以由接入网设备中的模块(例如,芯片)来执行。
图24和图25为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以实现上述方法实施例中终端设备或接入网设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是如图1所示的终端设备101,也可以是如图1所示的接入网设备102,还可以是应用于终端设备或接入网设备的模块(如芯片)。
如图24所示,通信装置2400包括收发模块2401和处理模块2402。通信装置2400可用于实现上述图2、图18或图21所示的方法实施例中终端设备或接入网设备的功能。
当通信装置2400用于实现图2或图18所述方法实施例中终端设备的功能时:处理模块2402,用于确定随机接入资源。收发模块2401,用于在随机接入资源上发送PRACH。
当通信装置2400用于实现图2或图18所述方法实施例中接入网设备的功能时:处理模块2402,用于确定随机接入资源;收发模块2401,用于在随机接入资源上接收PRACH。
当通信装置2400用于实现图21所述方法实施例中终端设备的功能时:处理模块2402,用于根据第二参数和第二偏移确定第一资源。收发模块2401,用于在第一资源上发送PUCCH。
当通信装置2400用于实现图21所述方法实施例中接入网设备的功能时:处理模块2402,用于根据第二参数和第二偏移确定第一资源。收发模块2401,用于在第一资源上接收PUCCH。
关于上述收发模块2401和处理模块2402更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图25所示,通信装置2500包括处理器2510和接口电路2520。处理器2510和接口电路2520之间相互耦合。可以理解的是,接口电路2520可以为收发器或输入输出接口。可选的,通信装置2500还可以包括存储器2530,用于存储处理器2510执行的指令或存储处理器2510运行指令所需要的输入数据或存储处理器2510运行指令后产生的数据。
当通信装置2500用于实现上述方法实施例中的方法时,处理器2510用于执行上述处理模块2402的功能,接口电路2520用于执行上述收发模块2401的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是接入网设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给接入网设备的。
当上述通信装置为应用于接入网设备的芯片时,该接入网设备芯片实现上述方法实施例中接入网设备的功能。该接入网设备芯片从接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给接入网设备的;或者,该接入网设备芯片向接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是接入网设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)等。
本申请实施例还公开一种计算机可读存储介质,其中存储有计算机程序或计算机指令,该计算机程序或计算机指令在计算机上运行时,上述方法实施例中的方法被执行。
本申请实施例还公开一种包括计算机程序或计算机指令的计算机程序产品,该计算机程序或计算机指令在计算机上运行时,上述方法实施例中的方法被执行。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内

Claims (20)

  1. 一种通信方法,其特征在于,包括:
    确定随机接入资源,所述随机接入资源的频域资源数大于终端设备的最大传输带宽的频域资源数;
    在所述随机接入资源上发送物理随机接入信道PRACH。
  2. 根据权利要求1所述的方法,其特征在于,所述确定随机接入资源包括:
    根据第一参数和第一参考点确定随机接入资源;
    所述第一参考点为载波资源、Point A、公共资源块CRB0、或所述终端设备的部分带宽BWP资源;
    所述第一参数用于指示:
    所述随机接入资源与所述第一参考点之间的偏移值;或
    所述随机接入资源与所述第一参考点之间的位置关系。
  3. 根据权利要求1所述的方法,其特征在于,
    所述终端设备的BWP不包括载波中序号最高的A个频域资源,所述随机接入资源的起始资源与所述BWP的起始资源相同,所述随机接入资源的结束资源位于所述BWP的结束资源之后;或,
    所述终端设备的BWP包括载波中序号最高的A个频域资源,所述随机接入资源的起始资源位于所述BWP的起始资源之前,所述随机接入资源的结束资源与所述BWP的结束资源相同;或,
    所述终端设备的BWP不包括载波中序号最低的A个频域资源,所述随机接入资源的起始资源位于所述BWP的起始资源之前,所述随机接入资源的结束资源与所述BWP的结束资源相同;或,
    所述终端设备的BWP包括载波中序号最低的A个频域资源,所述随机接入资源的起始资源与所述BWP的起始资源相同,所述随机接入资源的结束资源位于所述BWP的结束资源之后;
    其中,所述A为大于0的正整数。
  4. 根据权利要求1所述的方法,其特征在于,所述随机接入资源的频域资源数包括第一资源的频域资源数与第二资源的频域资源数,随机接入前导序列承载于所述PRACH上,所述在所述随机接入资源上发送PRACH包括:
    在所述第一资源的频域资源数对应的频域资源上发送第一PRACH;
    在所述第二资源的频域资源数对应的频域资源上发送第二PRACH;
    所述随机接入前导序列的第一部分承载于所述第一PRACH上,所述随机接入前导序列的第二部分承载于所述第二PRACH上,所述第一部分和所述第二部分为所述随机接入前导序列中的部分或全部。
  5. 根据权利要求1所述的方法,其特征在于,所述随机接入资源包括第一资源和第二资源,所述随机接入资源的频域资源数包括所述第一资源的频域资源数与所述第二资源的频域资源数,所述第一资源的时域资源和所述第二资源的时域资源相差k个时间单元,k为大于或等于1的整数。
  6. 一种通信方法,其特征在于,包括:
    确定随机接入资源,所述随机接入资源的频域资源数大于终端设备的最大传输带宽的频域资源数;
    在所述随机接入资源上接收物理随机接入信道PRACH。
  7. 根据权利要求6所述的方法,其特征在于,所述确定随机接入资源包括:
    根据第一参数和第一参考点确定随机接入资源;
    所述第一参考点为载波资源、Point A、公共资源块CRB0、或所述终端设备的部分带宽BWP资源;
    所述第一参数用于指示:
    所述随机接入资源与所述第一参考点之间的偏移值;或
    所述随机接入资源与所述第一参考点之间的位置关系。
  8. 根据权利要求6所述的方法,其特征在于,
    所述终端设备的BWP不包括载波中序号最高的A个频域资源,所述随机接入资源的起始资源与所述BWP的起始资源相同,所述随机接入资源的结束资源位于所述BWP的结束资源之后;或,
    所述终端设备的BWP包括载波中序号最高的A个频域资源,所述随机接入资源的起始资源位于所述BWP的起始资源之前,所述随机接入资源的结束资源与所述BWP的结束资源相同;或,
    所述终端设备的BWP不包括载波中序号最低的A个频域资源,所述随机接入资源的起始资源位于所述BWP的起始资源之前,所述随机接入资源的结束资源与所述BWP的结束资源相同;或,
    所述终端设备的BWP包括载波中序号最低的A个频域资源,所述随机接入资源的起始资源与所述BWP的起始资源相同,所述随机接入资源的结束资源位于所述BWP的结束资源之后;
    其中,所述A为大于0的正整数。
  9. 根据权利要求6所述的方法,其特征在于,所述随机接入资源的频域资源数包括第一资源的频域资源数与第二资源的频域资源数,随机接入前导序列承载于所述PRACH上,所述在所述随机接入资源上接收PRACH包括:
    在所述第一资源的频域资源数对应的频域资源上接收第一PRACH;
    在所述第二资源的频域资源数对应的频域资源上接收第二PRACH;
    所述随机接入前导序列的第一部分承载于所述第一PRACH上,所述随机接入前导序列的第二部分承载于所述第二PRACH上,所述第一部分和所述第二部分为所述随机接入前导序列中的部分或全部。
  10. 根据权利要求6所述的方法,其特征在于,所述随机接入资源包括第一资源和第二资源,所述随机接入资源的频域资源数包括所述第一资源的频域资源数与所述第二资源的频域资源数,所述第一资源的时域资源和所述第二资源的时域资源相差k个时间单元,k为大于或等于1的整数。
  11. 一种通信方法,其特征在于,包括:
    终端设备根据第二参数和第二偏移确定第一资源,所述第二参数的候选值为0、2、3、4、6;所述第二偏移为计算PUCCH的传输资源时PRB的偏移;
    所述终端设备在所述第一资源上向接入网设备发送物理上行控制信道PUCCH,所述PUCCH承载消息Msg4的反馈信息,所述Msg4用于竞争解决。
  12. 根据权利要求11所述的方法,其特征在于,所述第一资源的索引满足如下公式:
    Figure PCTCN2022114140-appb-100001
    其中,
    Figure PCTCN2022114140-appb-100002
    表示第二偏移;r PUCCH为信令指示终端设备要使用的PUCCH资源索引;N CS为N CS表示初始循环移位索引集合包括的初始循环索引总数。
  13. 根据权利要求11所述的方法,其特征在于,所述第一资源的索引满足如下公式:
    Figure PCTCN2022114140-appb-100003
    其中,
    Figure PCTCN2022114140-appb-100004
    表示终端设备的BWP包括的频域资源数或RB数;
    Figure PCTCN2022114140-appb-100005
    表示第二偏移;r PUCCH为信令指示终端设备要使用的PUCCH资源索引;N CS为N CS表示初始循环移位索引集合包括的初始循环索引总数。
  14. 一种通信方法,其特征在于,包括:
    接入网设备根据第二参数和第二偏移确定第一资源,所述第二参数的候选值为0、2、3、4、6;所述第二偏移为计算PUCCH的传输资源时PRB的偏移;
    所述接入网设备在所述第一资源上接收来自终端设备的物理上行控制信道PUCCH,所述PUCCH承载消息Msg4的反馈信息,所述Msg4用于竞争解决。
  15. 根据权利要求14所述的方法,其特征在于,所述第一资源的索引满足如下公式:
    Figure PCTCN2022114140-appb-100006
    其中,
    Figure PCTCN2022114140-appb-100007
    表示第二偏移;r PUCCH为信令指示终端设备要使用的PUCCH资源索引;N CS为N CS表示初始循环移位索引集合包括的初始循环索引总数。
  16. 根据权利要求14所述的方法,其特征在于,所述第一资源的索引满足如下公式:
    Figure PCTCN2022114140-appb-100008
    其中,
    Figure PCTCN2022114140-appb-100009
    表示终端设备的BWP包括的频域资源数或RB数;
    Figure PCTCN2022114140-appb-100010
    表示第二偏移;r PUCCH为信令指示终端设备要使用的PUCCH资源索引;N CS为N CS表示初始循环移位索引集合包括的初始循环索引总数。
  17. 一种通信装置,其特征在于,包括用于执行如权利要求1至5或6至10或11至13或14至16中的任一项所述方法的单元。
  18. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至5或6至10或11至13或14至16中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1至5或6至10或11至13或14至16任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至5或6至10或11至13或14至16中任一项所述的方法。
PCT/CN2022/114140 2022-02-11 2022-08-23 一种通信方法及装置 WO2023151258A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210130601.9 2022-02-11
CN202210130601.9A CN116634572A (zh) 2022-02-11 2022-02-11 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023151258A1 true WO2023151258A1 (zh) 2023-08-17

Family

ID=87563516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114140 WO2023151258A1 (zh) 2022-02-11 2022-08-23 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116634572A (zh)
WO (1) WO2023151258A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150373740A1 (en) * 2013-01-17 2015-12-24 Telefonaktiebolaget L M Ericsson (Publ) Dynamic Random Access Resource Size Configuration and Selection
CN107690173A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种随机接入方法和设备
CN109644432A (zh) * 2016-12-30 2019-04-16 Oppo广东移动通信有限公司 用于随机接入的方法和装置
CN109891994A (zh) * 2016-11-03 2019-06-14 Lg 电子株式会社 在无线通信系统中执行初始接入的方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150373740A1 (en) * 2013-01-17 2015-12-24 Telefonaktiebolaget L M Ericsson (Publ) Dynamic Random Access Resource Size Configuration and Selection
CN107690173A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种随机接入方法和设备
CN109891994A (zh) * 2016-11-03 2019-06-14 Lg 电子株式会社 在无线通信系统中执行初始接入的方法及其装置
CN109644432A (zh) * 2016-12-30 2019-04-16 Oppo广东移动通信有限公司 用于随机接入的方法和装置

Also Published As

Publication number Publication date
CN116634572A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
CN109392129B (zh) 一种资源分配的方法,终端以及网络设备
US20230171722A1 (en) Synchronization signal block transmission method and communication apparatus
CN113455071B (zh) 控制信道的传输方法、装置及存储介质
TW202014038A (zh) 判斷對話前監聽和通道存取優先級等級之方法及使用者設備
TWI640215B (zh) 經由錨定載波的小區存取方法和裝置
JP6833988B2 (ja) ダウンリンク制御信号を伝送する方法及び装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN115843115A (zh) 侧行通信的方法及装置
KR20230056028A (ko) 통신 방법 및 통신 장치
JP2023512807A (ja) 無線通信において、低減した能力のデバイスをサポートする方法及び装置
WO2023151258A1 (zh) 一种通信方法及装置
CN116033558A (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
CN116783974A (zh) 信道接入方法及设备
US20240007235A1 (en) Information transmission method and apparatus
US11856605B2 (en) Medium access control support for heterogenous physical layer data unit multiplexing
WO2023066028A1 (zh) 一种通信方法及装置
WO2022188630A1 (zh) 一种传输信息的方法及装置
KR102613535B1 (ko) 네트워크 슬라이싱에 기반하여 랜덤 액세스를 수행하는 장치 및 방법
WO2022237597A1 (zh) 通信方法和通信装置
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2023030205A1 (zh) 资源指示方法和通信装置
WO2023134678A1 (zh) 通信方法和通信装置
US20240090002A1 (en) Sidelink communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925617

Country of ref document: EP

Kind code of ref document: A1