WO2020199734A1 - 随机接入信号的发送、接收方法和装置、存储介质及电子装置 - Google Patents

随机接入信号的发送、接收方法和装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2020199734A1
WO2020199734A1 PCT/CN2020/073229 CN2020073229W WO2020199734A1 WO 2020199734 A1 WO2020199734 A1 WO 2020199734A1 CN 2020073229 W CN2020073229 W CN 2020073229W WO 2020199734 A1 WO2020199734 A1 WO 2020199734A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
prach
node
resource
offset
Prior art date
Application number
PCT/CN2020/073229
Other languages
English (en)
French (fr)
Inventor
苗婷
毕峰
卢有雄
刘文豪
邢卫民
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020199734A1 publication Critical patent/WO2020199734A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of communications, for example, to a method and device for sending and receiving a random access signal, a storage medium, and an electronic device.
  • the New Radio (NR) mobile communication system allows for more flexible network networking methods and the existence of new types of network nodes than the second generation mobile communication system (2G), 3G, and 4G.
  • a new type of node that integrates Backhaul Link and normal NR access link (Access Link) Integrated Access and Backhaul Node (Integrated Access and Backhaul Node, IAB) can provide more flexibility than a single cellular coverage
  • the coverage and networking methods of the company will be an important part of the future mobile communication network.
  • IAB nodes can be regarded as ordinary terminals (User Equipment, UE), or as base stations accessed by other UEs.
  • UE User Equipment
  • IAB Nodes cannot send and receive at the same time, and the deployment location, antenna configuration, and mobility of IAB nodes are quite different from those of ordinary UEs. These have certain restrictions and requirements on the configuration of random access resources.
  • the redundancy of IAB nodes The resource configuration of connection and IAB node Distributed Unit (DU) also affects the configuration of random access resources. Therefore, how to judge the effectiveness of random access timing and reduce unnecessary signal transmission to avoid unnecessary interference and power consumption is a problem to be solved.
  • DU Distributed Unit
  • the embodiments of the present invention provide a method and device for sending and receiving a random access signal, a storage medium, and an electronic device, so as to at least solve the problem of judging the validity of random access timing in related technologies.
  • a method for receiving random access signals including: a first node sends resource configuration information to a second node; the first node receives random access sent by the second node according to the resource configuration information Signal, where the resource configuration information is used to instruct the second node to send a random access signal at a valid random access opportunity.
  • a method for sending a random access signal including: a second node receives resource configuration information sent by a first node; the second node determines the validity of the random access timing based on the resource configuration information ⁇ ; The second node sends a random access signal to the first node at a valid random access opportunity.
  • an apparatus for receiving a random access signal including: a first sending module, configured to send resource configuration information to a second node; and a first receiving module, configured according to the resource configuration information Receiving the random access signal sent by the second node, where the resource configuration information is used to instruct the second node to send the random access signal at a valid random access occasion.
  • an apparatus for sending a random access signal including: a second receiving module, configured to receive resource configuration information sent by a first node; and a determining module, configured to determine based on the resource configuration information The validity of the random access timing; the second sending module is used to send a random access signal to the first node when the random access timing is valid.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute any of the foregoing method embodiments when running.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any of the above Method embodiment.
  • the first node since a node sends resource configuration information to the second node, the first node receives the random access signal sent by the second node according to the resource configuration information, so that the first node and the second node can determine random access based on the resource configuration information.
  • the second node sends a random access signal within a valid random access timing
  • the first node receives a random access signal within a valid random access timing. Therefore, the problem of judging the validity of random access timing existing in the related technology can be solved, and the effectiveness of judging the validity of random access timing can be more reasonable, reducing unnecessary signal transmission, and avoiding unnecessary interference and power consumption.
  • FIG. 1 is a block diagram of the hardware structure of a mobile terminal of a method for receiving a random access signal according to an embodiment of the present invention
  • Fig. 2 is a flowchart of a method for receiving a random access signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the IAB network architecture
  • FIG. 4 is a schematic structural diagram of a Medium Access Control Protocol Data Unit (MAC PDU) according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of reserved bits included in a MAC PDU according to an optional embodiment of the present invention.
  • Fig. 6 is a flowchart of a method for sending a random access signal according to an embodiment of the present invention
  • Fig. 7 is a structural block diagram of a random access signal receiving apparatus according to an embodiment of the present invention.
  • Fig. 8 is a structural block diagram of a device for sending a random access signal according to an embodiment of the present invention.
  • FIG. 1 is a hardware structural block diagram of a mobile terminal in a method for receiving a random access signal according to an embodiment of the present invention.
  • the mobile terminal 10 may include one or more (only one is shown in FIG. 1) processor 102 (the processor 102 may include, but is not limited to, a Microcontroller Unit (MCU) or field programmable logic A processing device such as a Field Programmable Gate Array (FPGA) and a memory 104 for storing data.
  • MCU Microcontroller Unit
  • FPGA Field Programmable Gate Array
  • the above-mentioned mobile terminal may further include a transmission device 106 and an input/output device 108 for communication functions.
  • a transmission device 106 may further include a transmission device 106 and an input/output device 108 for communication functions.
  • the structure shown in FIG. 1 is only for illustration, and does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration from that shown in FIG.
  • the memory 104 may be used to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the random access signal receiving method in the embodiment of the present invention.
  • the processor 102 runs the computer programs stored in the memory 104 , So as to perform various functional applications and data processing, that is, to achieve the above methods.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is used to receive or send data via a network.
  • the above-mentioned specific example of the network may include a wireless network provided by the communication provider of the mobile terminal 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF radio frequency
  • a method for receiving random access signals is provided.
  • Fig. 2 is a flowchart of a method for receiving random access signals according to an embodiment of the present invention. As shown in Fig. 2, the process includes the following steps:
  • Step S202 The first node sends resource configuration information to the second node.
  • Step S204 The first node receives the random access signal sent by the second node according to the resource configuration information, where the resource configuration information is used to instruct the second node to send the random access signal at a valid random access occasion.
  • the first node since the first node sends resource configuration information to the second node, the first node receives the random access signal sent by the second node according to the resource configuration information, so that the first node and the second node can determine the random access signal based on the resource configuration information.
  • the second node For the purpose of the validity of the access timing, the second node sends a random access signal within a valid random access timing, and the first node receives a random access signal within a valid random access timing. Therefore, the problem of judging the validity of random access timing existing in the related technology can be solved, and the effectiveness of judging the validity of random access timing can be more reasonable, reducing unnecessary signal transmission, and avoiding unnecessary interference and power consumption.
  • the execution subject of the foregoing steps may be the first node (for example, parent IAB node, donor IAB, IAB node DU, base station in the IAB node), but is not limited to this.
  • the first node in this embodiment may be a donor IAB DU, or a parent IAB node DU, or a base station
  • the second node may be an IAB node, or an IAB node MT, or a relay station, or a terminal.
  • the IAB node can be regarded as a terminal (UE), or as a base station accessed by other UEs or IAB nodes.
  • Figure 3 is a schematic diagram of the architecture of the IAB network. As shown in Figure 3, it is connected to the core network. Nodes with wired connections are called donor IAB (donor IAB).
  • donor IAB wirelessly connects to one or more IAB nodes (IAB nodes), and provides wireless access for UEs.
  • IAB nodes IAB nodes
  • IAB node has two functions: 1) Distributed Unit (DU) function, that is, IAB node provides wireless access function for UE or sub-IAB node like a base station; 2) Mobile-Termination (MT) function , That is, IAB nodes are controlled and scheduled by donor IAB or upper IAB node (ie parent IAB node) like UE.
  • DU Distributed Unit
  • MT Mobile-Termination
  • the link between the donor IAB and the IAB nodes and the link between the IAB nodes are commonly referred to as the backhaul link (BL), and the link between the IAB node and the UE is called the access link (Access Link, AL).
  • the access link (Access Link, AL)
  • the link between the IAB node and its parent node that is, parent IAB node (may be a normal IAB node, or donor IAB) is called the parent backhaul link (parent BL), and the IAB node and its children
  • the link between the node (child IAB node) is called the child backhaul link (child BL), and the link between the IAB node and the ordinary UE is called the child access link (child AL).
  • an IAB node may have one or more potential parent nodes in addition to the current parent node.
  • IAB node4 and donor There is a wireless connection between IAB nodes, and there is also a potential wireless connection with IAB node1.
  • IAB nodes can be applied to the transmission of random access signals between IAB nodes. Because in the half-duplex operation mode, IAB nodes cannot send and receive at the same time. For example, when IAB node 2MT sends a random access preamble to IAB node1, it cannot receive random access preambles sent by child IAB node3 or child UEs at the same time.
  • the deployment location, antenna configuration, and mobility of IAB node are quite different from those of ordinary UE. These have certain restrictions and requirements on the configuration of random access resources.
  • the redundant connection of IAB node and the resource configuration of IAB node DU It also affects the configuration of random access resources, so random access resources, that is, resource configuration information, can be configured for IAB node.
  • the frequency domain configuration of random access resources is achieved by providing random access occasions (Physical Random Access Channel occasion (Physical Random Access Channel, PRACH occasion, RO)).
  • the time-domain configuration of random access resources is given in the form of tables. Different frequency band ranges and duplex modes correspond to different tables. Each table contains 256 configurations, with configuration indexes 0 to 255. In actual configuration, the base station only needs to provide a configuration index.
  • TDD Time Division Duplex
  • FR2 and unpaired spectrum frequency range 2 and unpaired spectrum, FR2 and unpaired spectrum
  • the random access time domain resource configuration is shown in Table 1. Show (due to the large number of rows in the table, only part of the configuration is given here).
  • the first column PRACH Config.Index PRACH configuration index.
  • the second column Preamble format Random access format.
  • x is the PRACH configuration period, ranging from 1 to 16, the unit radio frame, that is, the PRACH configuration period is 10x milliseconds;
  • y is the system frame number (SFN, System Frame Number) modulo x
  • SFN System Frame Number
  • the fifth column Starting symbol the starting symbol number (0-13) of the RO in the PRACH time slot.
  • the PRACH slot is the second time slot in 60kHz slot (parameter is 1), or two time slots in 60kHz slot They are all PRACH time slots (parameter 2).
  • the seventh column Number(#) of time-domain PRACH occasions within a PRACH slot the number of time-domain ROs in the PRACH slot.
  • the eighth column PRACH duration refers to the number of OFDM symbols occupied by each random access format.
  • A1 means 2 symbols; C2 means 6 symbols, the sequence in C2 occupies 4 symbols, and the others are CP and GP.
  • the resource configuration information of the IAB node may include at least one of the following: physical random access Channel PRACH configuration index, PRACH frequency domain resources, synchronization signal block (Synchronization signal block, SSB) and random access occasion ROs (RACH occasions) mapping relationship, starting logical root sequence index and cyclic shift Ncs, PRACH Configure the period scaling factor S, based on the offset y_offset of the radio frame, the offset sf_offset based on the subframe, the offset s_offset based on the slot, the slot number, the subframe number, the unavailable resource configuration, and the available resource configuration.
  • PRACH Configure the period scaling factor S, based on the offset y_offset of the radio frame, the offset sf_offset based on the subframe, the offset s_offset based on the slot, the slot number, the subframe number, the unavailable resource configuration, and the available resource configuration.
  • the resource configuration information needs to meet the following conditions:
  • the PRACH resource configured on its parent backhaul link and child link should be time division multiplexing (Time Division Multiplexing). , TDM), orthogonal in the real-time domain.
  • TDM Time Division Multiplexing
  • the PRACH resource for the preamble sent by the IAB node MT and the PRACH resource for the preamble received by the IAB node DU are orthogonal in the time domain.
  • IAB Node is a special integration of base stations and terminals. Its deployment location is very different from that of ordinary terminals. For example, IAB Nodes are often fixed under the eaves, and the hanging height is much higher than that of ordinary terminals, making it easier to communicate with donor IAB. Or the parent IAB node establishes a direct radiation path; for example, the IAB Node often has more antennas than ordinary terminals; for example, the IAB Node may need to be placed farther from the IAB donor or the parent IAB node than the ordinary terminal (see Figure 3 Middle IAB Node4), beyond the coverage of ordinary terminals.
  • the IAB nodes can be configured with a larger PRACH configuration period, that is, the x in the third column of the PRACH configuration table can be larger.
  • An IAB node or donor IAB needs to configure different PRACH resources for child UEs and child IAB nodes, including separate PRACH configuration indexes for IAB nodes, PRACH frequency domain resources, and SSB.
  • the mapping relationship with the effective random access opportunity ROs, the preamble including the starting logical root sequence index, the cyclic shift Ncs and other parameters that generate the preamble sequence).
  • the PRACH time domain resource configuration of IAB nodes can be simply extended based on the PRACH configuration table of terminal UEs in NR Release 15, including:
  • the PRACH configuration period x in the extended PRACH configuration table is assumed to be S, and the extended PRACH configuration period is S*x.
  • the extended PRACH configuration period is used as the PRACH configuration period of IAB nodes, and the offset radio frame or subframe or time slot is used as the subframe or time slot of IAB nodes containing ROs; or the extended PRACH configuration period is used as the PRACH configuration of IAB nodes Period, the parent IAB node can directly configure the slot number to replace the slot number indicated by the PRACH configuration index.
  • the replaced slot number is a set of slot numbers containing ROs; or the extended PRACH configuration period is used as the PRACH configuration period of IAB nodes, and the parent IAB node can directly configure the subframe number to replace the subframe number indicated by the PRACH configuration index.
  • the replaced subframe number is a set of subframe numbers containing ROs.
  • the method to configure slot number or subframe number is any of the following:
  • Method 1 Predefine multiple groups of configurations. Each group of configuration corresponds to a slot index set or subframe index set. Each group is configured with an index, and the configuration index is provided to the IAB node MT.
  • Method 2 Use a bitmap to indicate. For example, the slot number or subframe number corresponding to the bit value 1 is used to replace the slot number or subframe number indicated by the PRACH configuration index.
  • the length of the bitmap is the number of subframes included in the wireless frame
  • the length of the bitmap is the number of time slots between the 60kHz subcarriers included in the wireless frame; or, for all frequency bands, the length of the bitmap is the wireless frame
  • the number of time slots included in the 60kHz subcarrier interval is valid for only part of the bits of FR1, for example, the lower 10 bits or the upper 10 bits are valid.
  • IAB nodes can determine whether the cell can provide services for IAB nodes according to the PRACH resource configuration of the cell during initial access or handover. To avoid selecting a cell that cannot provide services for IAB nodes.
  • the PRACH resource configurations of UEs and IAB nodes are different, UEs may not know the PRACH resources of IAB nodes. Therefore, if the random access response (RAR, Random Access Response) of UEs and IAB nodes are multiplexed, it will happen even if the UE and IAB
  • the PRACH resources used by the node are different, but only one of the UE and the IAB node can successfully random access.
  • the UE and the IAB node MT use the same PRACH time-frequency resources, but the random access format and preamble sequence are different (but the sequence index ranges from 0 to 64). That is, the IAB node generates the starting root sequence index of the preamble sequence, and the cyclic shift is different from the ordinary terminal.
  • the ordinary terminal and the IAB terminal even use the same PRACH time-frequency resource and preamble sequence
  • the logo can also be successfully accessed at the same time.
  • the mechanism in the related technology makes the UE and the IAB node correspond to the same RAR, and at most one of the two can be successfully accessed randomly.
  • the time domain start position of the PRACH resources of the UE and the IAB node are the same, but they are orthogonal in the frequency domain (that is, frequency division multiplexing (FDM)), because the two are in the frequency domain.
  • FDM frequency division multiplexing
  • common terminals multiplex 8 in the frequency domain, and IAB nodes multiplex 4, and their corresponding frequency domain resource index ranges are 0-7 and 0-4, respectively. Therefore, even if the RACH resources of the two do not overlap, the calculated RA-RNTI may be the same. If the preamble sequence identifiers used by the two are also the same, the two will correspond to the same RAR, and there can only be one random at most. The connection is successful. This will not only increase the random access delay of ordinary terminals or IAB terminals, but also cause unnecessary interference in the subsequent random access process. Therefore, it is necessary to distinguish the RAR between UEs and IAB nodes.
  • IAB nodes use a different RA-RNTI calculation formula from UEs, or use MAC (Medium Access Control) RAR (Random Access Response) reserved fields to indicate IAB terminals (IAB node MT). ) MAC RAR.
  • MAC Medium Access Control
  • RAR Random Access Response
  • the RA-RNTI is used to scramble the cyclic redundancy check (CRC, Cyclic Redundancy Check) of the PDCCH corresponding to the random access response.
  • CRC Cyclic Redundancy Check
  • the frequency domain resources of the PRACH include: the starting frequency of the PRACH resources; and the number of PRACH multiplexed in the frequency domain.
  • the starting frequency of the PRACH resource can be determined in one of the following ways: the first node determines the starting frequency of the PRACH resource based on the activated uplink bandwidth BWP; the first node is based on the initial access of the terminal device to the PRACH The offset of the starting physical resource block (PRB) of the frequency domain resource determines the starting frequency of the PRACH resource; the first node determines the PRACH based on the terminal device’s initial access to the PRACH frequency domain resource and the ending PRB offset The starting frequency of the resource.
  • PRB physical resource block
  • the start frequency may be defined based on the activated uplink bandwidth part (BWP, Bandwidth part), or may be defined based on the offset of the start PRB or the end PRB relative to the PRACH frequency domain resources that UEs initially access.
  • BWP activated uplink bandwidth part
  • the starting frequency is the offset relative to the first physical resource block (PRB, Physical Resource Block) of the activated uplink BWP, that is, the offset relative to PRB0.
  • the starting frequency is the offset of the first PRB or the offset of the last PRB relative to the PRACH frequency domain resource that the UEs initially access.
  • the PRB corresponds to the subcarrier interval corresponding to the activated uplink BWP.
  • the default value of the start frequency is PRB0 of the activated uplink BWP.
  • the activated uplink BWP is the initially activated uplink BWP in the initial access phase or the activated uplink BWP after the initial access.
  • the starting logical root sequence index and the cyclic shift Ncs are used to generate the IAB nodes dedicated preamble.
  • a part of the 64 preambles used for random access by UEs may also be designated as a dedicated preamble for IAB nodes.
  • the number of IAB nodes is less than that of UEs, so the total number of preambles dedicated to IAB nodes can be less than 64, such as 8, 16, 32.
  • the offset y_offset of the radio frame includes: the offset relative to the preset parameter y in the preset resource configuration table of PRACH, where the preset parameter y refers to the period in the PRACH configuration period
  • the radio frame index containing the PRACH opportunity, and the preset parameter y is used to indicate the radio frame that includes the PRACH opportunity in the PRACH configuration period.
  • y_offset can be the offset relative to the parameter y in the PRACH configuration table, or the amount used to replace the parameter y.
  • the SFN including ROs meets:
  • the subframe-based offset sf_offset is the offset relative to the subframe number in the PRACH configuration table.
  • the slot-based offset s_offset is the offset relative to the slot number in the PRACH configuration table.
  • the slot/subframe number is a number within a radio frame (10ms), each subframe is 1ms, and the slot number is relative to the 60kHz subcarrier interval. Because a radio frame contains 10 subframes, the subframes number after the offset sf_offset and the value range of sf_offset are as follows:
  • sf_number represents the subframe number corresponding to the Rel-15PRACH configuration index
  • SF_number represents the subframe number after the offset sf_offset
  • s_number represents the slot number corresponding to the Rel-15PRACH configuration index
  • S_number represents the subframe number after the offset s_offset.
  • a PRACH configuration period scaling factor S is configured separately; or, for the entire PRACH configuration table, a PRACH configuration period scaling factor is configured.
  • IAB nodes IAB terminals
  • PRACH configuration index PRACH frequency domain resources
  • mapping relationship between SSB and effective ROs any one or any combination of the preamble, or there is no PRACH resource-related configuration for IAB nodes
  • the corresponding parameters in the PRACH resource configuration of the UEs are reused.
  • IAB nodes determine the PRACH resource according to the PRACH configuration index and PRACH frequency domain resources, combined with at least one of the scaling factor S, offset y_offset, offset s_offset, and offset sf_offset.
  • the default value is 0.
  • the parent IAB node also needs to provide IAB nodes with at least one PRACH related parameter as follows: the total number of preambles available for random access, and the contention-based preamble corresponding to each SSB The total number of codes, the total number of contention-based preambles in group A corresponding to each SSB, the transmission block size threshold of the preamble group is selected, the path loss calculation parameters of the preamble group are selected, the random access signal (message1 (message1, msg1)) ) Used sub-carrier spacing, select SSB and SSB received power threshold that the corresponding PRACH resource needs to meet, power-related parameters, restricted set configuration, msg3 precoding, etc.
  • the random access signal (message1 (message1, msg1)) ) Used sub-carrier spacing, select SSB and SSB received power threshold that the corresponding PRACH resource needs to meet, power-related parameters, restricted set configuration, msg3 precoding, etc.
  • the subframe number includes: the subframe number indicated by the PRACH configuration index in the preset resource configuration table used to replace the PRACH, where the subframe number after the replacement is an index set including the ROs subframe .
  • the time slot number includes: the time slot number indicated by the PRACH configuration index in the preset resource configuration table for replacing the PRACH, where the time slot number after replacement is an index set including the ROs time slot.
  • the PRACH configuration period of IAB nodes is Tmax system frames at most.
  • Tmax is one of 16, 32, 64, 128, and 256.
  • Scaling factor S 2k, where k is a non-negative integer, that is, S is a non-negative integer power of 2, and its maximum value depends on the maximum value of the PRACH configuration period of IAB nodes.
  • the maximum value of S depends on the maximum value of the PRACH configuration period Tmax of IAB nodes and the value of x in the PRACH configuration index. For example, the maximum value of S is Tmax divided by x.
  • system frame number SFN including ROs can be determined in the following ways:
  • y_offset is an integer, and 0 ⁇ y_offset ⁇ S*x; where, y is the parameter y in the PRACH configuration table.
  • each PRACH configuration index corresponds to a y value, that is, all ROs in the PRACH configuration period are included in a frame; for FR2 frequency bands, there is usually only one y value, and a few configurations correspond to Y is ⁇ 1,2 ⁇ .
  • method 2 is a simpler and more intuitive y_offset solution.
  • different PRACH frequency domain index numbers or offset of PRACH frequency domain index numbers may be used to calculate RA-RNTI.
  • the maximum number of PRACH multiplexed by the UE in the frequency domain is 8, and the index number f_id ranges from an integer of 0 ⁇ f_id ⁇ 8, so the PRACH index multiplexed by the IAB node in the frequency domain can be Numbering starts from 8. It is assumed that the maximum number of PRACH multiplexed by the IAB node in the frequency domain is Nprach, and the value of Nprach can be predefined, and the value of RA-RNTI is less than 65519. Then the PRACH index number multiplexed by the IAB node in the frequency domain is an integer of 8 ⁇ f_id ⁇ 8+Nprach.
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ (8+Nprach) ⁇ ul_carrier_id Formula 1;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index (8 ⁇ f_id ⁇ 8+Nprach) in the frequency domain
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 indicates a normal uplink carrier, 1 indicates a supplementary uplink carrier).
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ (f_id+8)+14 ⁇ 80 ⁇ (8+Nprach) ⁇ ul_carrier_id Formula 2;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ Nprach)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 indicates a normal uplink carrier, and 1 indicates a supplementary uplink carrier).
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 16 ⁇ ul_carrier_id;
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ (f_id+8)+14 ⁇ 80 ⁇ 16 ⁇ ul_carrier_id.
  • different timeslot indexes or offsets of timeslot indexes may be used to calculate RA-RNTI.
  • the time slot index of IAB nodes in the wireless frame is numbered starting from 80, that is, the first time slot index in the wireless frame is 80, the second is 81, and so on.
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 160 ⁇ f_id+14 ⁇ 160 ⁇ 8 ⁇ ul_carrier_id;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (80 ⁇ t_id ⁇ 160)
  • f_id is in Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the slot index of the IAB nodes in the radio frame is numbered starting from 0, and the t_id in the RA-RNTI calculation formula for the IAB nodes is offset by 80.
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ (t_id+80)+14 ⁇ 160 ⁇ f_id+14 ⁇ 160 ⁇ 8 ⁇ ul_carrier_id;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble can also be calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ identifier;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 means normal uplink carrier, 1 means supplementary uplink carrier)
  • identifier is used to indicate RA- Whether the RNTI calculation formula is for a normal terminal or an IAB node, the identifier is 0 for a normal terminal, and the identifier is 1 for an IAB node.
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+s ⁇ t_id+s ⁇ t ⁇ f_id+s ⁇ t ⁇ f ⁇ ul_carrier_id+s ⁇ t ⁇ f ⁇ 2; or,
  • RA-RNTI 1+s_id+s+s ⁇ t ⁇ f ⁇ ul_carrier_id+s ⁇ t ul_carrier_id;
  • s_id is the first OFDM symbol index of a given PRACH (s0 ⁇ s_id ⁇ s)
  • t_id is the first time slot index of a given PRACH in the system frame (t0 ⁇ t_id ⁇ t)
  • f_id is Given a PRACH index (f0 ⁇ f_id ⁇ f) in the frequency domain
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the OFDM symbols in the slot are numbered starting from s0, that is, the first OFDM symbol index in the slot is s0, the second is s0+1, and so on.
  • the time slot index in the wireless frame is numbered from t0, that is, the first time slot index in the wireless frame is t0, the second is t1, and so on;
  • the time slot index in the wireless frame starts from t0 Number, that is, the first time slot index in the radio frame is t0, the second is t0+1, and so on;
  • the PRACH index in the frequency domain is numbered starting from f0, that is, starting from the low frequency
  • the PRACH index of the first PRACH resource in the frequency domain is f0
  • the second is f0+1, and so on.
  • a reserved field in the MAC RAR is used to indicate the dedicated MAC RAR for IAB nodes.
  • a MAC PDU contains one or more MAC sub-PDUs (subPDU) and optional padding.
  • Each MAC subPDU consists of one of the following:
  • RAPID Random Access Preamble Identifier
  • -RAPID and RAR MAC subheader and MAC RAR with RAPID.
  • BI only is located at the beginning of the MAC PDU.
  • RAPID only and RAPID and RAR can be placed in any position between BI only and padding in the MAC PDU.
  • Each MAC RAR corresponds to a subheader.
  • the subheader contains RAPID.
  • the subheader and MAC RAR form a MAC subPDU. If the random access signal sent by ordinary terminals (UEs) in the MAC PDU corresponds to RAPID and IAB nodes The sent random access signals correspond to the same RAPID, so the MAC subPDU of the ordinary terminal should be before the MAC subPDU of the IAB nodes.
  • the MAC subPDU corresponding to the terminal is the nth
  • the MAC subPDU corresponding to the IAB nodes is the n+kth
  • k is a positive integer.
  • the MAC RAR will be multiplexed in one MAC PDU.
  • the reserved bit R in the MAC RAR can be used to indicate whether the MAC RAR is the MAC RAR of the IAB terminal.
  • the MAC subPDU of the common terminal should be before the MAC subPDU of the IAB terminal in the MAC PDU.
  • s_id and t_id are based on where the PRACH resource is located.
  • the subcarrier interval of the activated uplink BWP is determined.
  • s_id and t_id are activated according to the PRACH resource
  • the sub-carrier interval of the uplink BWP of the uplink BWP is determined, or the sub-carrier interval of the PRACH is determined, and the protocol needs to be pre-defined.
  • s_id and t_id are based on PRACH
  • the sub-carrier spacing is determined.
  • the validity of the random access timing can be judged by one of the following methods:
  • the random access timing is valid when the random access timing meets the following conditions: the random access timing is not in the PRACH time slot Before the SSB, the starting point of the random access opportunity is at least Ngap symbols after the last SSB received symbol, and the random access opportunity does not overlap with the specific resource in the time domain.
  • the random access timing is valid when the random access timing meets one of the following conditions: the random access timing is within the uplink symbol, and The random access timing does not overlap with specific resources in the time domain; the random access timing is not in front of the SSB in the PRACH time slot, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and random access
  • the timing does not overlap with specific resources in the time domain; the random access timing is not in front of the SSB in the PRACH time slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the random access timing is There is no overlap with specific resources in the time domain; the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the random access The starting point is at least Ngap symbols after the last downlink
  • the specific resource includes at least one of the following: resources indicated by the unavailable resource configuration, resources that cannot be used by the second node, hard resources of the base station unit of the second node, and the base station unit of the second node for transmitting important signals or channels.
  • the hard resource is the hard uplink (Uplink, UL) resource of the base station unit of the second node, and the base station unit of the second node is used to transmit important signals or channel transmission hard UL resources.
  • Important signals or channels include at least one of the following: SSB, system information, PRACH, ultra-reliable and low latency communications (Ultra-Reliable and Low Latency Communications, URLLC) signals or channels.
  • SSB system information
  • PRACH Physical Random Access Control Channel
  • URLLC Ultra-Reliable and Low Latency Communications
  • the IAB node has two functional units, MT and DU.
  • MT is the unit that serves as the UE function in the IAB node. Therefore, the resource type of MT is the same as that of ordinary UE, including downlink time resources (D) and uplink time.
  • the resource types are: D, U, F, and not available time resource (NA, not available time resource). Among them, NA refers to the resources that DU cannot use.
  • Each D, U, and F has the following two attributes: hard (hard) and soft (soft). Hard refers to the resources that DU is always available. Whether soft resources are available can be displayed Further instructions in explicit or implicit way. Therefore, the resources of DU include the following 7 types: hard D, soft D, hard U, soft L, hard F, soft F, NA.
  • IAB node DU resource configuration needs to consider the flexibility of configuration and the trade-off between bit overhead. Since IAB node DU needs to provide services for ordinary UEs, DU resource configuration may also be affected by the public TDD uplink and downlink configuration of Release 15 (such as TDD- UL-DL-ConfigurationCommon) mode restrictions, therefore, for an IAB node, because the PRACH time domain resource configuration is selected from the table, and the selection is also affected by the public TDD uplink and downlink configuration, so the parent IAB node DU NA resources It may overlap with the PRACH resource configured by the parent IAB node for the IAB node MT in the time domain.
  • Release 15 such as TDD- UL-DL-ConfigurationCommon
  • IAB node may need to randomly access other IAB nodes other than the current parent IAB node.
  • IAB node4 in Figure 3 may also need to randomly access IAB node1, for example, to maintain basic synchronization with IAB node1 so that when IAB ndoe4 and donor IAB When the link quality between them is poor, it can quickly switch to IAB node1, or IAB node4 may need to perform random access to IAB node1 and switch to IAB node1. That is, IAB node1 is the potential parent IAB node of IAB node4.
  • the PRACH resources configured by the parent IAB node and the potential parent IAB node for the IAB node MT may be different. Therefore, even if the PRACH resources configured by the parent IAB node for the IAB node MT and the hard resources of the IAB node DU do not overlap in the time domain, It is difficult to ensure that the PRACH resources configured by one or more potential parent IAB nodes for the IAB node MT and the hard resources of the IAB node DU are orthogonal in the time domain. In this case, related solutions are also needed to enable IAB node to work under half-duplex restrictions.
  • the random access timing obtained according to the PRACH resource configuration may be invalid.
  • the random access timing and the downlink signal SSB overlap in the time domain. Due to half-duplex or interference limitations, the parent IAB node cannot receive the uplink when sending the SSB. Random access signals, therefore, terminals (UEs or IAB nodes MTs) do not need to send uplink random access signals, so it is necessary to formulate criteria for judging the validity of random access timing. Otherwise, it will not only cause interference, but also cause inconsistent understanding of the mapping between SSB and random access timing at both ends of the random access signal, causing random access failure.
  • the rule for judging the validity of random access timing is as follows:
  • the random access timing in the PRACH slot is not before the SSB in the PRACH slot, and the random access timing starts at the last SSB reception After at least Ngap symbols of the symbol, the random access timing is valid.
  • the terminal is provided with time division duplex uplink and downlink configuration, if the random access timing is in the uplink symbol; or, the random access timing is not before the SSB in the PRACH time slot, and the random access timing starts at the last downlink symbol At least Ngap symbols later; or, the random access timing is not before the SSB in the PRACH slot, and the starting point of the random access timing is at least Ngap symbols after the last SSB received symbol; or, the random access timing is not in the PRACH Before the SSB in the slot, and the random access timing start is at least Ngap symbols after the last downlink symbol, and the random access timing start is at least Ngap symbols after the last SSB received symbol, the random access timing is valid of.
  • the obtained effective random access timing may not be available for IAB terminals. Therefore, it is necessary to enhance the random access effectiveness determination mechanism, or to further determine the availability of the effective random access timing determined by the mechanism in the related technology.
  • the PRACH time slot refers to a time slot containing PRACH opportunities corresponding to the PRACH subcarrier interval.
  • the parent IAB node is the unavailable resource configuration provided by the IAB nodes, and is used to indicate the time resources that the IAB node MT cannot use, that is, the IAB node MT unavailable resources. If the PRACH resource configured by the parent IAB node for the IAB node MT overlaps the unavailable resource in the time domain, the random access timing that overlaps the unavailable resource in the time domain is invalid, that is, the IAB node MT cannot Use random access opportunities that overlap with unavailable resources in the time domain.
  • the PRACH resource may be a public PRACH resource configured by a system message, or may be a dedicated PRACH resource configured by dedicated radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • Unavailable resources are continuous time resources or discrete time resources.
  • unavailable resources may include at least one of the following: unavailable resources of parent IAB node DU, subset of unavailable resources of parent IAB node DU, unavailable resources of potential parent IAB node DU, potential parent IAB node DU A subset of the unavailable resources of the parent IAB node child IAB node DU hard resources, parent IAB node child IAB node DU hard UL resources, PRACH resources that cannot be used, and the determination of unavailable resources depends on the parent IAB node DU The realization.
  • the child IAB node DU and the IAB node MT are located in the same IAB node.
  • the unavailable resources are continuous-time resources or discrete-time resources in each radio frame.
  • the manner of indicating unavailable resources in each radio frame is any one of the following: 1. k1 to k2 subframes or time slots; 2. last M1 subframes or time slots; 3. last M2 Even numbered subframes or time slots; 4. The last M3 odd numbered subframes or time slots; 5.
  • Use resource indicator value (RIV, Resource indicator value) to indicate; 6.
  • bitmap bitmap length is included in the radio frame For the number of subframes or time slots, it is pre-appointed whether 0 or 1 in the bitmap indicates unavailable resources; 7.
  • the resource grouping in the radio frame is used for the bitmap to indicate that one or more groups are unavailable resources.
  • the unavailable resources are periodic unavailable continuous-time resources or discrete-time resources.
  • the unavailable resource configuration includes period, bitmap or RIV.
  • the bitmap is used for 0 or 1 to indicate that one or more subframes or time slots in the period are unavailable resources.
  • the length of the bitmap is the number of subframes or time slots included in the period.
  • 0 in the bitmap indicates unavailable resources.
  • the RIV indicates that one or more consecutive subframes or time slots starting from the initial subframe or time slot are unavailable resources, the RIV calculation method and the indication in the radio frame.
  • the unavailable resource configuration includes at least one of the following parameters: period, offset 0 within the period, and duration t.
  • the granularity of the offset 0 and the duration t within the period is a subframe or a PRACH time slot.
  • the start position of the first period is aligned with the start position of radio frame 0.
  • the effectiveness of random access timing is also related to the time division duplex uplink and downlink configuration and the time domain position of the SSB.
  • the random access timing is valid.
  • the random access timing is within the uplink symbol, and the random access timing does not overlap with the first resource in the time domain; or, the random access timing is not in PRACH Before the SSB in the time slot and the random access timing starting point is at least Ngap symbols after the last downlink symbol, and the random access timing does not overlap with the first resource in the time domain; or when the random access timing is not on PRACH In front of the SSB in the slot, and the starting point of the random access opportunity is after at least Ngap symbols of the last SSB received symbol, and the random access opportunity does not overlap with the first resource in the time domain; or, the random access opportunity is not in the PRACH Before the SSB in the time slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and the random access timing If there is no overlap
  • the first resource is a resource indicated by the unavailable resource configuration.
  • IAB node MT can be obtained from the unavailable resource configuration provided by parent IAB node for IAB nodes.
  • the parent IAB node provides available resource configuration for the IAB nodes, and is used to indicate the time resources that the IAB node MT can use, that is, the IAB node MT available resources. If the random access timing configured by the parent IAB nodes for the IAB node MT is within the available resources, the random access timing is valid, that is, the IAB node MT can use the random access timing within the available resources.
  • the available resources are continuous-time resources or discrete-time resources.
  • the available resources are any one or any combination of the following: the available resources of the parent IAB node DU, the subset of the available resources of the parent IAB node DU, the available resources of the potential parent IAB node DU, the availability of the potential parent IAB node DU A subset of resources, parent IAB node child IAB node DU unavailable resource NA, parent IAB node child IAB node DU soft D resource, parent IAB node IAB node DU soft U resource, parent IAB node child IAB node DU hard D resources, parent IAB node child IAB node DU hard F resources, parent IAB node child IAB node DU soft F resources, available PRACH resources, and the determination of available resources depends on the parent IAB node DU The realization.
  • the above child IAB node DU and IAB node MT are located in the same IAB node.
  • the indication mode of available resources is similar to the indication mode of unavailable resources, and will not be repeated here.
  • the random access timing is valid.
  • the random access timing is within the uplink symbol and the random access timing is within the available resources; or, the random access timing is not before the SSB in the PRACH time slot and The random access timing start point is at least Ngap symbols after the last downlink symbol, and the random access timing is within the available resources; or the random access timing is not in front of the SSB in the PRACH time slot, and the random access start point is at At least Ngap symbols after the last SSB received symbol, and the random access timing is within the available resources; or, the random access timing is not before the SSB in the PRACH slot, and the starting point of random access is the last SSB received symbol After at least Ngap symbols of, and the starting point of random access is after at least Ngap symbols of the last downlink symbol, and the random access timing is within the available resources, the random access timing is valid.
  • the available resources are resources indicated by the available resource configuration.
  • the validity of the random access timing can also be judged in the following manner:
  • the hard resources of the IAB node DU are the resources that the DU can use, that is, the resources that can be used by the sub-links of the IAB node (including the sub-access link and the sub-backhaul link). If the hard resources of the IAB node DU and the PRACH resources configured by the parent IAB node for the IAB node MT overlap in the time domain, due to the half-duplex limitation, the IAB node MT and DU may not be able to use the overlapped resources at the same time.
  • the processing method is: if the hard resource of the IAB node DU and the PRACH resource configured by the parent IAB node for the IAB node MT overlap in the time domain, the random access timing that overlaps the hard resource of the DU in the time domain is invalid Yes, that is, the IAB node MT cannot use the random access timing that overlaps with the DU hard resource in the time domain to send the preamble signal.
  • IAB node MT and IAB node DU can be sent or received at the same time, so if the hard resource is hard downlink ( Downlink, DL) or hard F, then IAB node MT and IAB node DU can be sent at the same time, so IAB node MT can be considered that the hard DL or hard F of the DU overlaps in the time domain and the random access timing is still valid Therefore, for IAB nodes that support frequency division multiplexing (FDM) and space division multiplexing (SDM), the effectiveness of random access timing can also be judged as follows: If the hard UL and parent IAB node of IAB node DU are The PRACH resource configured by the IAB node MT overlaps in the time domain, and the random access timing that overlaps with the hard UL of the DU in the time domain is invalid.
  • FDM Frequency Division Multiplexing
  • SDM Space Division Multiplexing
  • the resource configuration of IAB node DU is obtained after the initial access of IAB node MT is completed, IAB node MT cannot obtain the resource configuration of IAB node DU during initial access. Therefore, the resource configuration of the IAB node DU can only be used to judge the validity of dedicated PRACH resources, or it can also be used to judge the validity of public PRACH resources after the initial access of the IAB node MT.
  • the random access timing is valid.
  • the random access timing is within the uplink symbol, and the random access timing does not overlap with the second resource in the time domain; or, the random access timing is not in PRACH Before the SSB in the time slot and the random access opportunity starts at least Ngap symbols after the last downlink symbol, and the random access opportunity does not overlap with the second resource in the time domain; or, when the random access opportunity is not on PRACH In front of the SSB in the slot, and the random access timing starting point is at least Ngap symbols after the last SSB received symbol, and the random access timing does not overlap with the second resource in the time domain; or, the random access timing is not on PRACH Before the SSB in the time slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and the random access timing If there is no overlap with the second resource in
  • the second resource is the hard resource of the IAB node DU, or the hard resource of the IAB node DU for transmitting important signals or channel transmission, or the hard UL resource of the IAB node DU, or the IAB node DU for transmitting important signals or Hard UL resources of the channel.
  • the important signal or channel is any one or any combination of the following: SSB, system information, PRACH, URLLC-related signals or channels.
  • the time division duplex uplink and downlink configuration may be a public time division duplex uplink and downlink configuration, or a public time division duplex uplink and downlink configuration and a dedicated time division duplex uplink and downlink configuration.
  • the parent IAB node DU knows the resource configuration of the IAB node DU, the parent IAB node DU and the IAB node MT have the same judgment results on the validity of the random access timing. There will be no problems affecting random access performance caused by inconsistent judgment results.
  • the validity of the random access timing can also be judged based on the hard resource and unavailable resource configuration of the DU:
  • Parent IAB node provides unavailable resource configuration for IAB nodes, which is used to indicate time resources that IAB node MT cannot use, that is, IAB node MT unavailable resources. If the PRACH resource configured by the parent IAB node for the IAB node MT overlaps the unavailable resource in the time domain, the random access timing that overlaps the unavailable resource in the time domain is invalid, that is, the IAB node MT cannot Use random access opportunities that overlap with unavailable resources in the time domain.
  • IAB node MT can further determine the effectiveness of random access timing in conjunction with the resource configuration of IAB node DU. That is, for paired spectrum (frequency division duplex), all random access slots are valid.
  • the random access timing is valid.
  • the random access timing is within the uplink symbol, and the random access timing does not overlap with the first resource and the second resource in the time domain; or, random The access timing is not before the SSB in the PRACH slot and the random access timing starts at least Ngap symbols after the last downlink symbol, or at least Ngap symbols after the last SSB received symbol, and the random access timing is in the time domain If the above does not overlap with the first resource and the second resource, the random access timing is effective.
  • the random access timing is within the uplink symbol, and the random access timing does not overlap with the first resource and the second resource in the time domain; or, random The access timing is not in front of the SSB in the PRACH time slot, the random access timing starts at least Ngap symbols after the last downlink symbol, and the random access timing does not overlap with the first resource and the second resource in the time domain.
  • the random access opportunity is not in front of the SSB in the PRACH time slot, and the start of the random access opportunity is at least Ngap symbols after the last SSB received symbol, and the random access opportunity is in the time domain with the first resource and the first resource
  • the two resources do not overlap; or, the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the starting point of random access is at the end After at least Ngap symbols of a downlink symbol, and the random access timing does not overlap with the first resource and the second resource in the time domain, the random access timing is effective.
  • the first resource is the unavailable resource of IAB node MT, which is provided by the unavailable resource configuration provided by the parent IAB node for IAB nodes.
  • the second resource is hard resource of IAB node DU, or hard resource of IAB node DU for important signal or channel transmission, or hard UL resource of IAB node DU, or IAB node DU for important signal or channel transmission Hard UL resources.
  • the important signal or channel is any one or any combination of the following: SSB, system information, PRACH, URLLC-related signals or channels.
  • the time division duplex uplink and downlink configuration may be a public time division duplex uplink and downlink configuration, or a public time division duplex uplink and downlink configuration and a dedicated time division duplex uplink and downlink configuration.
  • the effectiveness of the random access timing can be determined according to the mechanism in the related technology, and whether the effective random access timing is available is determined based on the unavailable resources:
  • each random access timing determines whether each random access timing is valid. For each valid random access timing, if the effective random access timing is not in the time domain with unavailable resources Overlapping, the effective random access timing is available, otherwise it is not available.
  • the unavailable resource is the resource indicated by the unavailable resource configuration.
  • each random access timing determines whether each random access timing is valid. For each effective random access timing, if the effective random access timing is within the available resources, then the effective random access timing is valid. The access timing is available, otherwise it is not available.
  • the available resources are resources indicated by the available resource configuration.
  • the validity of the random access timing may also be determined according to the mechanism in the related technology, and the random access timing determined to be valid may be further determined whether it overlaps with the unavailable resources in the time domain. If there is no overlap, the random access timing is valid.
  • the unavailable resource is the resource indicated by the unavailable resource configuration; or the first resource and/or the second resource in the foregoing embodiment.
  • the validity of the random access timing may also be determined according to the mechanism in the related technology, and the random access timing determined to be valid may be further determined whether it is within the available resources. If it is within the available resources, the random access timing is valid, otherwise it is invalid.
  • the available resources are resources indicated by the available resource configuration.
  • s_offset may be applied to the entire configuration table.
  • each random access format The duration of the access format format is shown in Table 2.
  • OS is an OFDM symbol. For formats 1 and 2, the duration exceeds 1ms. Since the Subframe number is only the starting subframe of PRACH occasion, if The s_offset should be in the entire configuration table, and the preamble may cross a radio frame.
  • Index 36 has similar problems.
  • RO cross-frame may affect the orthogonality of the PRACH resources of parent backhaul link and child link in time domain, that is, if RO cross frame, the parent backhaul link and child link of different frames RACH resources may overlap in the time domain.
  • the slot granularity is needed to determine the orthogonality of the PRACH resources of the parent backhaul link and the child link, because even if the frames are different, the PRACH resources may not be orthogonal.
  • the PRACH resource of the IAB node can be sent using the system information common to IAB nodes, such as IAB-System Information Block 1 (System Information Block, SIB1), and the protocol predefines the IAB-System Information (System Information) dedicated to the IAB node. , SI)-RNTI, used to scramble the CRC of the scheduling system information PDCCH.
  • SIB1 System Information Block 1
  • SIB1 System Information Block 1
  • the IAB node sometimes refers to an IAB terminal (IAB node MT), which is used to communicate with a parent node; sometimes refers to an IAB base station (IAB node DU), which is used to communicate with a child node.
  • IAB node MT IAB terminal
  • IAB node DU IAB base station
  • the IAB node specifically refers to which can be distinguished according to the context.
  • Ngap is the same as the value of Ngap in judging the validity of the random access time slot of an ordinary terminal.
  • the IAB node MT and IAB node DU appearing in the same embodiment or the same example are two units of the same IAB node.
  • Random access timing that overlaps with SSB or downlink symbols in the time domain is also invalid. In other words, the validity of the random access timing must be determined by the random access timing in the time domain with the SSB or downlink symbols. There is no overlap.
  • mapping relationship between SSBs and effective random access occasions is determined according to the mechanism in the related technology.
  • judging the effectiveness of random access timing based on unavailable resource configuration and IAB node DU resource configuration can determine the effectiveness of random access timing more reasonably, reducing unnecessary signal transmission, and avoiding unnecessary interference And power consumption. It also provides a method to distinguish the random access responses of ordinary UEs and IAB nodes, which solves the problem of multiplexing the random access responses of UEs and IAB nodes, even if the PRACH resources used by the UE and IAB nodes are different, only one of them can successfully connect randomly. Into the situation.
  • FIG. 6 is a flowchart of a method for sending a random access signal according to an embodiment of the present invention. As shown in FIG. 6, the process includes the following steps:
  • Step S602 The second node receives the resource configuration information sent by the first node.
  • Step S604 The second node determines the validity of the random access opportunity based on the resource configuration information.
  • step S606 the second node sends a random access signal to the first node at a valid random access opportunity.
  • the second node since the second node receives the resource configuration information sent by the first node, the second node determines the validity of the random access opportunity based on the resource configuration information, and the second node sends to the first node at the valid random access opportunity
  • the random access signal realizes the purpose of the first node and the second node to determine the validity of the random access timing based on the resource configuration information.
  • the second node sends the random access signal within the effective random access timing, and the first node The random access signal is received within an effective random access time. Therefore, the problem of judging the validity of random access timing existing in the related technology can be solved, and the effectiveness of judging the validity of random access timing can be more reasonable, reducing unnecessary signal transmission, and avoiding unnecessary interference and power consumption.
  • the execution subject of the foregoing steps may be a second node (for example, an IAB node), etc., but is not limited thereto.
  • the first node in this embodiment may be a donor IAB DU or a parent IAB node DU.
  • the second node may be an IAB node.
  • the IAB node can be regarded as a normal terminal (UE), or as a base station accessed by other UEs.
  • Figure 3 is a schematic diagram of the architecture of the IAB network, as shown in Figure 3, with the core network A node with a wired connection is called a donor IAB (donor IAB).
  • donor IAB wirelessly connects to one or more IAB nodes (IAB nodes), and at the same time provides wireless access functions for UEs.
  • IAB nodes IAB nodes
  • IAB node has two functions: 1) Distributed Unit (DU) function, that is, IAB node provides wireless access function for UE or sub-IAB node like a base station; 2) Mobile-Termination (MT) function , That is, IAB nodes are controlled and scheduled by the donor IAB or the upper IAB node like the UE.
  • DU Distributed Unit
  • MT Mobile-Termination
  • the link between the donor IAB and the IAB nodes and the link between the IAB nodes are commonly referred to as the backhaul link (BL), and the link between the IAB node and the UE is called the access link (Access Link, AL).
  • the access link (Access Link, AL).
  • the IAB network supports multiple hops (for example, the subordinate nodes of IAB node 3 can connect to the donor IAB after 4 hops, and the interaction with the core network is completed through the donor IAB), in order to describe the link more clearly, specifically
  • the link between the IAB node and its parent node that is, parent IAB node (may be a normal IAB node, or donor IAB) is called the parent backhaul link (parent BL), and the IAB node and its children
  • the link between the node (child IAB node) is called the child backhaul link (child BL), and the link between the IAB node and the UE is called the child access link (child AL).
  • an IAB node may have one or more potential parent nodes in addition to the current parent node.
  • IAB node4 and donor There is a wireless connection between IAB nodes, and there is also a potential wireless connection with IAB node1.
  • IAB nodes can be applied to the transmission of random signals between IAB nodes. Because in the half-duplex operation mode, IAB nodes cannot send and receive at the same time. For example, when IAB node 2MT sends a random access preamble to IAB node1, it cannot receive random access preambles sent by child IAB node3 or child UEs at the same time.
  • the deployment location, antenna configuration, and mobility of IAB node are quite different from those of ordinary UE. These have certain restrictions and requirements on the configuration of random access resources.
  • the redundant connection of IAB node and the resource configuration of IAB node DU It also affects the configuration of random access resources, so random access resources, that is, resource configuration information, can be configured for IAB node.
  • the configuration of random access resources is achieved by providing a random access opportunity (PRACH occasion, RO) for starting frequency and frequency domain multiplexing.
  • the random access resource configuration is given in the form of a table. Different frequency band ranges and duplex modes correspond to different tables. Each table contains 256 configurations, with configuration indexes 0 to 255. In actual configuration, the base station only needs to provide a configuration index. For example, for a TDD system in the frequency band above 6GHz (ie FR2 and unpaired spectrum), the random access time domain resource configuration is shown in Table 1 (due to the large number of rows in the table, only part of the configuration is given here).
  • the first column PRACH Config.Index configuration index.
  • the second column Preamble format Random access format.
  • x is the PRACH configuration period, ranging from 1 to 16, the unit radio frame, that is, the PRACH configuration period is 10x milliseconds;
  • y is the system frame number (SFN, System Frame Number) modulo x
  • SFN System Frame Number
  • the fifth column Starting symbol the starting symbol number (0-13) of the RO in the PRACH time slot.
  • the PRACH slot is the second time slot in 60kHz slot (parameter is 1), or two time slots in 60kHz slot They are all PRACH time slots (parameter 2).
  • the seventh column Number(#) of time-domain PRACH occasions within a PRACH slot the number of time-domain ROs in the PRACH slot.
  • the eighth column PRACH duration refers to the number of OFDM symbols occupied by each random access format.
  • A1 means 2 symbols; C2 means 6 symbols, the sequence in C2 occupies 4 symbols, and the others are CP and GP.
  • the resource configuration information of the IAB node may include at least one of the following: physical random access Channel PRACH configuration index, PRACH frequency domain resources, synchronization signal block SSB and RACH occasions random access timing ROs mapping relationship, starting logical root sequence index and cyclic shift Ncs, PRACH configuration cycle scaling factor S, based on wireless Frame offset y_offset, slot number, subframe number, unavailable resource configuration.
  • the resource configuration information needs to meet the following conditions:
  • the PRACH resources configured on its parent backhaul link and child link should be time division multiplexed (TDM) , Orthogonal in the real-time domain.
  • TDM time division multiplexed
  • the PRACH resource for the preamble sent by the IAB node MT and the PRACH resource for the preamble received by the IAB node DU are orthogonal in the time domain.
  • IAB Node is a special integration of base stations and terminals. Its deployment location is very different from that of ordinary terminals. For example, IAB Nodes are often fixed under the eaves, and the hanging height is much higher than that of ordinary terminals, making it easier to communicate with donor IAB. Or the parent IAB node establishes a direct radiation path; for example, the IAB Node often has more antennas than ordinary terminals; for example, the IAB Node may need to be placed farther from the IAB donor or the parent IAB node than the ordinary terminal (see Figure 3 Middle IAB Node4), beyond the coverage of ordinary terminals.
  • the IAB nodes can be configured with a larger PRACH configuration period, that is, the x in the third column of the PRACH configuration table can be larger.
  • An IAB node or donor IAB needs to configure different PRACH resources for child UEs and child IAB nodes, including separate PRACH configuration indexes for IAB nodes, PRACH frequency domain resources, and SSB.
  • the mapping relationship with the effective random access opportunity ROs, the preamble including the starting logical root sequence index, the cyclic shift Ncs and other parameters that generate the preamble sequence).
  • the PRACH time domain resource configuration of IAB nodes can be simply extended based on the PRACH configuration table of terminal UEs in NR Release 15, including:
  • the PRACH configuration period x in the extended PRACH configuration table is assumed to be S, and the extended PRACH configuration period is S*x.
  • the extended PRACH configuration period is used as the PRACH configuration period of IAB nodes, and the offset radio frame or subframe or time slot is used as the subframe or time slot of IAB nodes containing ROs; or the extended PRACH configuration period is used as the PRACH configuration of IAB nodes Period, the parent IAB node can directly configure the slot number or subframe number to replace the slot number or subframe number indicated by the PRACH configuration index.
  • the replaced slot number or subframe number is the slot number or subframe number containing ROs.
  • the method to configure slot number or subframe number is any of the following:
  • Method 1 Predefine multiple groups of configurations, each group of configuration corresponds to a time slot index set or subframe index set, each group is configured with a suoin index, and the configuration index is provided to IAB node MT.
  • Method 2 Use bitmap to indicate. For example, the slot number or subframe number corresponding to the bit value 1 is used to replace the slot number or subframe number indicated by the PRACH configuration index.
  • the length of the bitmap is the number of subframes included in the wireless frame
  • the length of the bitmap is the number of time slots with the 60kHz subcarrier interval included in the wireless frame; or, for all frequency bands, the length of the bitmap is the wireless frame
  • the number of time slots included in the 60kHz subcarrier interval is valid for only part of the bits of FR1, for example, the lower 10 bits or the upper 10 bits are valid.
  • IAB nodes can determine whether the cell can provide services for IAB nodes according to the PRACH resource configuration of the cell during initial access or handover. To avoid selecting a cell that cannot provide services for IAB nodes.
  • the PRACH resource configurations of UEs and IAB nodes are different, UEs may not know the PRACH resources of IAB nodes. Therefore, if the random access response (RAR, Random Access Response) of UEs and IAB nodes are multiplexed, it will happen even if the UE and IAB
  • the PRACH resources used by the node are different, but only one of the UE and the IAB node can successfully random access.
  • the UE and the IAB node MT use the same PRACH time-frequency resources, but the random access format and preamble sequence are different (but the sequence index ranges from 0 to 64). That is, the IAB node generates the starting root sequence index of the preamble sequence, and the cyclic shift is different from the ordinary terminal.
  • the ordinary terminal and the IAB terminal even use the same PRACH time-frequency resource and preamble sequence
  • the logo can also be successfully accessed at the same time.
  • the mechanism in the related technology makes the UE and the IAB node correspond to the same RAR, and at most one of the two can be successfully accessed randomly.
  • the time domain start position of the PRACH resources of the UE and the IAB node are the same, but they are orthogonal in the frequency domain (that is, FDM), because the resource index of both in the frequency domain starts at 0, such as a normal terminal 8 are multiplexed in the frequency domain, and 4 are multiplexed by the IAB node, and their corresponding frequency domain resource index ranges are 0-7 and 0-4 respectively. Therefore, even if the RACH resources of the two do not overlap, the calculated RA-RNTI may be the same. If the preamble sequence identifiers used by the two are also the same, the two will correspond to the same RAR, and there can only be one random at most. The connection is successful.
  • IAB nodes use a different RA-RNTI calculation formula from UEs, or use the reserved field of MAC RAR to indicate the MAC RAR of the IAB terminal.
  • the RA-RNTI is used to scramble the cyclic redundancy check (CRC, Cyclic Redundancy Check) of the PDCCH corresponding to the random access response.
  • CRC Cyclic Redundancy Check
  • the frequency domain resources of the PRACH include: the starting frequency of the PRACH resources; and the number of PRACH multiplexed in the frequency domain.
  • the starting frequency of the PRACH resource can be determined in one of the following ways: the first node determines the starting frequency of the PRACH resource based on the activated uplink bandwidth BWP; the first node is based on the initial access of the terminal device to the PRACH The offset of the starting physical resource block PRB of the frequency domain resource determines the starting frequency of the PRACH resource; the first node determines the starting frequency of the PRACH resource based on the terminal device’s initial access to the PRACH frequency domain resource and the ending PRB offset .
  • the start frequency may be defined based on the activated uplink bandwidth part (BWP, Bandwidth part), or may be defined based on the offset definition of the start PRB or the end PRB relative to the PRACH frequency domain resources that UEs initially access.
  • the starting frequency is an offset relative to the first physical resource block (PRB, Physical Resource Block) of the activated uplink BWP, that is, an offset relative to PRB0.
  • the starting frequency is the offset of the first PRB or the offset of the last PRB relative to the PRACH frequency domain resource that the UEs initially access.
  • the PRB corresponds to the subcarrier interval corresponding to the activated uplink BWP.
  • the default value of the start frequency is PRB0 of the activated uplink BWP.
  • the activated uplink BWP is the initially activated uplink BWP in the initial access phase or the activated uplink BWP after the initial access.
  • the starting logical root sequence index and the cyclic shift Ncs are used to generate the IAB nodes dedicated preamble.
  • a part of the 64 preambles used for random access by UEs may also be designated as a dedicated preamble for IAB nodes.
  • the number of IAB nodes is less than that of UEs, so the total number of preambles dedicated to IAB nodes can be less than 64, such as 8, 16, 32.
  • the offset y_offset of the radio frame includes: the offset relative to the preset parameter y in the preset resource configuration table of PRACH, where the preset parameter y refers to the period in the PRACH configuration period
  • the radio frame index including the PRACH opportunity, the preset parameter y is used to indicate the radio frame number including the PRACH opportunity in the PRACH configuration period.
  • y_offset can be the offset relative to the parameter y in the PRACH configuration table, or the amount used to replace the parameter y.
  • the SFN including ROs meets:
  • the subframe-based offset sf_offset is the offset relative to the subframe number in the PRACH configuration table.
  • the slot-based offset s_offset is the offset relative to the slot number in the PRACH configuration table.
  • the slot/subframe number is a number within a radio frame (10ms), each subframe is 1ms, and the slot number is relative to the 60kHz subcarrier interval. Because a radio frame contains 10 subframes, the subframes number after the offset sf_offset and the value range of sf_offset are as follows:
  • sf_number represents the subframe number corresponding to the Rel-15PRACH configuration index
  • SF_number represents the subframe number after the offset sf_offset
  • s_number represents the slot number corresponding to the Rel-15PRACH configuration index
  • S_number represents the subframe number after the offset s_offset.
  • a PRACH configuration period scaling factor S is configured separately; or, for the entire PRACH configuration table, a PRACH configuration period scaling factor is configured.
  • IAB nodes IAB terminals
  • PRACH configuration index PRACH frequency domain resources
  • mapping relationship between SSB and effective ROs any one or any combination of the preamble, or there is no PRACH resource-related configuration for IAB nodes
  • the corresponding parameters in the PRACH resource configuration of the UEs are reused.
  • IAB nodes determine the PRACH resource according to the PRACH configuration index and PRACH frequency domain resources, combined with at least one of the scaling factor S, offset y_offset, offset s_offset, and offset sf_offset.
  • the default value is 0.
  • IAB nodes can also receive at least one PRACH related parameter provided by parent IAB node as follows: the total number of preambles available for random access, and the contention-based preamble corresponding to each SSB The total number of codes, the total number of contention-based preambles in the group A corresponding to each SSB, the transmission block size threshold of the preamble group, the path loss calculation parameters of the preamble group, and the subcarrier interval used by the random access signal (msg1) , Select SSB and the SSB received power threshold that the corresponding PRACH resource needs to meet, power related parameters, restricted set configuration, msg3 precoding, etc.
  • the random access signal msg1
  • Select SSB and the SSB received power threshold that the corresponding PRACH resource needs to meet, power related parameters, restricted set configuration, msg3 precoding, etc.
  • the subframe number includes: the subframe number indicated by the PRACH configuration index in the preset resource configuration table used to replace the PRACH, where the subframe number after the replacement is an index set including the ROs subframe .
  • the time slot number includes: the time slot number indicated by the PRACH configuration index in the preset resource configuration table for replacing the PRACH, where the time slot number after replacement is an index set including the ROs time slot.
  • the PRACH configuration period of IAB nodes is Tmax system frames at most.
  • Tmax is one of 16, 32, 64, 128, and 256.
  • the scaling factor S 2k, where k is a non-negative integer, and its maximum value depends on the maximum value of the PRACH configuration period of the IAB nodes.
  • the maximum value of S depends on the maximum value of the PRACH configuration period Tmax of IAB nodes and the value of x in the PRACH configuration index. For example, the maximum value of S is Tmax divided by x.
  • system frame number SFN including ROs can be determined in the following ways:
  • y_offset is an integer, and 0 ⁇ y_offset ⁇ S*x;
  • y is the parameter y in the PRACH configuration table.
  • each PRACH configuration index corresponds to a y value, that is, all ROs in the PRACH configuration period are included in a frame; for FR2 frequency bands, there is usually only one y value, and a few configurations correspond to Y is ⁇ 1,2 ⁇ .
  • method 2 is a simpler and more intuitive y_offset solution.
  • different PRACH frequency domain index numbers or offset of PRACH frequency domain index numbers may be used to calculate RA-RNTI.
  • the maximum number of PRACH multiplexed by the UE in the frequency domain is 8, and the index number f_id ranges from an integer of 0 ⁇ f_id ⁇ 8, so the PRACH index multiplexed by the IAB node in the frequency domain can be Numbering starts from 8. It is assumed that the maximum number of PRACH multiplexed by the IAB node in the frequency domain is Nprach, and the value of Nprach can be predefined, and the value of RA-RNTI is less than 65519. Then the PRACH index number multiplexed by the IAB node in the frequency domain is an integer of 8 ⁇ f_id ⁇ 8+Nprach.
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ (8+Nprach) ⁇ ul_carrier_id Formula 1;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index (8 ⁇ f_id ⁇ 8+Nprach) in the frequency domain
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 indicates a normal uplink carrier, 1 indicates a supplementary uplink carrier).
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ (f_id+8)+14 ⁇ 80 ⁇ (8+Nprach) ⁇ ul_carrier_id Formula 2;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ Nprach)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 indicates a normal uplink carrier, and 1 indicates a supplementary uplink carrier).
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 16 ⁇ ul_carrier_id;
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ (f_id+8)+14 ⁇ 80 ⁇ 16 ⁇ ul_carrier_id.
  • different timeslot indexes or offsets of timeslot indexes may be used to calculate RA-RNTI.
  • the time slot index of IAB nodes in the wireless frame is numbered starting from 80, that is, the first time slot index in the wireless frame is 80, the second is 81, and so on.
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 160 ⁇ f_id+14 ⁇ 160 ⁇ 8 ⁇ ul_carrier_id;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (80 ⁇ t_id ⁇ 160)
  • f_id is in Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the slot index of the IAB nodes in the radio frame is numbered starting from 0, and the t_id in the RA-RNTI calculation formula for the IAB nodes is offset by 80.
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ (t_id+80)+14 ⁇ 160 ⁇ f_id+14 ⁇ 160 ⁇ 8 ⁇ ul_carrier_id;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble can also be calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ identifier;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 means normal uplink carrier, 1 means supplementary uplink carrier)
  • identifier is used to indicate RA- Whether the RNTI calculation formula is for a normal terminal or an IAB node, the identifier is 0 for a normal terminal, and the identifier is 1 for an IAB node.
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id;
  • s_id is the first OFDM symbol index of a given PRACH (0 ⁇ s_id ⁇ 14)
  • t_id is the first time slot index of a given PRACH in the system frame (0 ⁇ t_id ⁇ 80)
  • f_id is Given a PRACH index in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the RA-RNTI corresponding to the PRACH transmitting the random access preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+s ⁇ t_id+s ⁇ t ⁇ f_id+s ⁇ t ⁇ f ⁇ ul_carrier_id+s ⁇ t ⁇ f ⁇ 2; or,
  • RA-RNTI 1+s_id+s+s ⁇ t ⁇ f ⁇ ul_carrier_id+s ⁇ tul_carrier_id;
  • s_id is the first OFDM symbol index of a given PRACH (s0 ⁇ s_id ⁇ s)
  • t_id is the first time slot index of a given PRACH in the system frame (t0 ⁇ t_id ⁇ t)
  • f_id is Given a PRACH index (f0 ⁇ f_id ⁇ f) in the frequency domain
  • ul_carrier_id is used to indicate the uplink carrier for transmitting the random access preamble (0 represents a normal uplink carrier, and 1 represents a supplementary uplink carrier).
  • the OFDM symbols in the slot are numbered starting from s0, that is, the first OFDM symbol index in the slot is s0, the second is s0+1, and so on.
  • the time slot index in the wireless frame is numbered from t0, that is, the first time slot index in the wireless frame is t0, the second is t1, and so on;
  • the time slot index in the wireless frame starts from t0 Number, that is, the first time slot index in the radio frame is t0, the second is t0+1, and so on;
  • the PRACH index in the frequency domain is numbered starting from f0, that is, starting from the low frequency
  • the PRACH index of the first PRACH resource in the frequency domain is f0
  • the second is f0+1, and so on.
  • a reserved field in the MAC RAR is used to indicate the dedicated MAC RAR for IAB nodes.
  • one MAC PDU contains one or more MAC subPDUs and optional padding.
  • Each MAC subPDU consists of one of the following:
  • RAPID Random Access Preamble Identifier
  • -RAPID and RAR MAC subheader and MAC RAR with RAPID.
  • BI only is located at the beginning of the MAC PDU.
  • RAPID only and RAPID and RAR can be placed in any position between BI only and padding in the MAC PDU.
  • Each MAC RAR corresponds to a subheader.
  • the subheader contains RAPID.
  • the subheader and MAC RAR form a MAC subPDU. If the random access signal sent by ordinary terminals (UEs) in the MAC PDU corresponds to RAPID and IAB nodes The sent random access signals correspond to the same RAPID, so the MAC subPDU of the ordinary terminal should be before the MAC subPDU of the IAB nodes.
  • the MAC subPDU corresponding to the terminal is the nth
  • the MAC subPDU corresponding to the IAB nodes is the n+kth
  • k is a positive integer.
  • the MAC RAR will be multiplexed in one MAC PDU.
  • the reserved bit R in the MAC RAR can be used to indicate whether the MAC RAR is the MAC RAR of the IAB terminal.
  • the MAC subPDU of the common terminal should be before the MAC subPDU of the IAB terminal in the MAC PDU.
  • s_id and t_id are based on where the PRACH resource is located.
  • the subcarrier interval of the activated uplink BWP is determined.
  • s_id and t_id are activated according to the PRACH resource
  • the sub-carrier interval of the uplink BWP of the uplink BWP is determined, or the sub-carrier interval of the PRACH is determined, and the protocol needs to be pre-defined.
  • s_id and t_id are based on PRACH
  • the sub-carrier spacing is determined.
  • the validity of the random access timing can be judged by one of the following methods:
  • the random access timing is valid: the random access timing is not in the PRACH time slot Before the inner SSB, the starting point of the random access opportunity is at least Ngap symbols after the last SSB receives the symbol, and the random access opportunity does not overlap with the specific resource in the time domain.
  • the random access timing is valid when the random access timing meets one of the following conditions: the random access timing is within the uplink symbol, and The random access timing does not overlap with specific resources in the time domain; the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and random access
  • the entry timing does not overlap with specific resources in the time domain; the random access timing is not before the SSB in the PRACH time slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the random access timing
  • the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and random access
  • the starting point of is at least Ngap symbols after the last downlink symbol, and
  • the specific resource includes at least one of the following: resources that the second node cannot use, the hard resources of the base station unit of the second node, the hard resources of the base station unit of the second node for transmitting important signals or channels, and the base station of the second node
  • the hard UL resources of the unit, the base station unit of the second node is used to transmit important signals or channel transmission hard UL resources.
  • Important signals or channels include at least one of the following: SSB, system information, PRACH, URLLC signals or channels.
  • the IAB node has two functional units, MT and DU.
  • MT is the unit that serves as the UE function in the IAB node. Therefore, the resource type of MT is the same as that of ordinary UE, including downlink time resources (D) and uplink time.
  • the resource types are: D, U, F, and not available time resource (NA, not available time resource). Among them, NA refers to the resources that DU cannot use.
  • Each D, U, and F has the following two attributes: hard (hard) and soft (soft). Hard refers to the resources that DU is always available. Whether soft resources are available can be displayed Further instructions in explicit or implicit way. Therefore, the resources of DU include the following 7 types: hard D, soft D, hard U, soft L, hard F, soft F, NA.
  • IAB node DU resource configuration needs to consider the flexibility of configuration and the trade-off between bit overhead. Since IAB node DU needs to provide services for ordinary UEs, DU resource configuration may also be affected by the public TDD uplink and downlink configuration of Release 15 (such as TDD- UL-DL-ConfigurationCommon) mode restrictions, therefore, for an IAB node, because the PRACH time domain resource configuration is selected from the table, and the selection is also affected by the public TDD uplink and downlink configuration, so the parent IAB node DU NA resources It may overlap with the PRACH resource configured by the parent IAB node for the IAB node MT in the time domain.
  • Release 15 such as TDD- UL-DL-ConfigurationCommon
  • IAB node may need to randomly access other IAB nodes other than the current parent IAB node.
  • IAB node4 in Figure 3 may also need to randomly access IAB node1, for example, to maintain basic synchronization with IAB node1 so that when IAB ndoe4 and donor IAB When the link quality between them is poor, it can quickly switch to IAB node1, or IAB node4 may need to perform random access to IAB node1 and switch to IAB node1. That is, IAB node1 is the potential parent IAB node of IAB node4.
  • the PRACH resources configured by the parent IAB node and the potential parent IAB node for the IAB node MT may be different. Therefore, even if the PRACH resources configured by the parent IAB node for the IAB node MT and the hard resources of the IAB node DU do not overlap in the time domain, It is difficult to ensure that the PRACH resources configured by one or more potential parent IAB nodes for the IAB node MT and the hard resources of the IAB node DU are orthogonal in the time domain. In this case, related solutions are also needed to enable IAB node to work under half-duplex restrictions.
  • the random access timing obtained according to the PRACH resource configuration may be invalid.
  • the random access timing and the downlink signal SSB overlap in the time domain. Due to half-duplex or interference limitations, the parent IAB node cannot receive the uplink when sending the SSB. Random access signals, therefore, terminals (UEs or IAB nodes MTs) do not need to send uplink random access signals, so it is necessary to formulate criteria for judging the validity of random access timing. Otherwise, it will not only cause interference, but also cause inconsistent understanding of the mapping between SSB and random access timing at both ends of the random access signal, causing random access failure.
  • the parent IAB node is the unavailable resource configuration provided by the IAB nodes, and is used to indicate the time resources that the IAB node MT cannot use, that is, the IAB node MT unavailable resources. If the PRACH resource configured by the parent IAB node for the IAB node MT overlaps the unavailable resource in the time domain, the random access timing that overlaps the unavailable resource in the time domain is invalid, that is, the IAB node MT cannot Use random access opportunities that overlap with unavailable resources in the time domain.
  • the PRACH resource can be a public PRACH resource configured by system messages, or a dedicated PRACH resource configured by dedicated RRC signaling.
  • Unavailable resources are continuous time resources or discrete time resources.
  • the unavailable resource is at least one of the following: unavailable resources of the parent IAB node DU, a subset of the unavailable resources of the parent IAB node DU, unavailable resources of the potential parent IAB node DU, and potential parent IAB node DU
  • unavailable resources of the parent IAB node DU a subset of unavailable resources of the parent IAB node DU, unavailable resources of the potential parent IAB node DU, and potential parent IAB node DU
  • a subset of unavailable resources, parent IAB node child IAB node DU hard resource, parent IAB node child IAB node DU hard UL resource, unusable PRACH resource, unavailable resource determination depends on parent IAB node DU achieve.
  • the unavailable resources are continuous-time resources or discrete-time resources in each radio frame.
  • the manner of indicating unavailable resources in each radio frame is any one of the following: 1. k1 to k2 subframes or time slots; 2. last M1 subframes or time slots; 3. last M2 Even numbered subframes or time slots; 4. The last M3 odd numbered subframes or time slots; 5.
  • Use resource indicator value (RIV, Resource indicator value) to indicate; 6.
  • bitmap bitmap length is included in the radio frame For the number of subframes or time slots, it is pre-appointed whether 0 or 1 in the bitmap indicates unavailable resources; 7.
  • the resource grouping in the radio frame is used for the bitmap to indicate that one or more groups are unavailable resources.
  • the unavailable resources are periodic unavailable continuous-time resources or discrete-time resources.
  • the unavailable resource configuration includes period, bitmap or RIV.
  • the bitmap is used for 0 or 1 to indicate that one or more subframes or time slots in the period are unavailable resources.
  • the length of the bitmap is the number of subframes or time slots included in the period.
  • 0 in the bitmap indicates unavailable resources.
  • the RIV indicates that one or more consecutive subframes or time slots starting from the initial subframe or time slot are unavailable resources, the RIV calculation method and the indication in the radio frame.
  • the unavailable resource configuration includes at least one of the following parameters: period, offset 0 within the period, and duration t.
  • the granularity of the offset 0 and the duration t within the period is a subframe or a PRACH time slot.
  • the start position of the first period is aligned with the start position of radio frame 0.
  • the effectiveness of random access timing is also related to the time division duplex uplink and downlink configuration and the time domain position of the SSB.
  • the random access timing is valid.
  • the random access timing is within the uplink symbol, and the random access timing does not overlap with the first resource in the time domain; or, the random access timing is not in PRACH
  • the beginning of the SSB in the slot and the starting point of the random access opportunity is at least Ngap symbols after the last downlink symbol, or at least Ngap symbols after the last SSB received symbol, and the random access opportunity is in the time domain with the first resource Without overlap, the random access timing is valid.
  • the first resource is an unavailable resource of IAB node MT.
  • IAB node MT can be obtained from the unavailable resource configuration provided by parent IAB node for IAB nodes.
  • the validity of the random access timing can also be judged in the following manner:
  • the hard resources of the IAB node DU are the resources that the DU can use, that is, the resources that can be used by the sub-links of the IAB node (including the sub-access link and the sub-backhaul link). If the hard resources of the IAB node DU and the PRACH resources configured by the parent IAB node for the IAB node MT overlap in the time domain, due to the half-duplex limitation, the IAB node MT and DU may not be able to use the overlapped resources at the same time.
  • the processing method is: if the hard resource of the IAB node DU and the PRACH resource configured by the parent IAB node for the IAB node MT overlap in the time domain, the random access timing that overlaps the hard resource of the DU in the time domain is invalid Yes, that is, the IAB node MT cannot use the random access timing that overlaps with the DU hard resource in the time domain to send the preamble signal.
  • IAB node MT and IAB node DU can be sent or received at the same time. Therefore, if the hard resource is hard DL or hard F, then IAB node MT and IAB node DU can be sent at the same time, so IAB node MT can be considered that the random access timing that overlaps with the DU's hard DL or hard F in the time domain is still valid.
  • FDM frequency division multiplexing
  • SDM space division multiplexing
  • the resource configuration of IAB node DU is obtained after the initial access of IAB node MT is completed, IAB node MT cannot obtain the resource configuration of IAB node DU during initial access. Therefore, the resource configuration of the IAB node DU can only be used to judge the validity of dedicated PRACH resources, or it can also be used to judge the validity of public PRACH resources after the initial access of the IAB node MT.
  • the random access timing is valid.
  • the random access timing is within the uplink symbol, and the random access timing does not overlap with the second resource in the time domain; or, the random access timing is not in PRACH
  • the front of the SSB in the time slot and the start of the random access opportunity is at least Ngap symbols after the last downlink symbol, or at least Ngap symbols after the last SSB received symbol, and the random access opportunity is in the time domain and the second resource Without overlap, the random access timing is valid.
  • the second resource is the hard resource of the IAB node DU, or the hard resource of the IAB node DU for transmitting important signals or channel transmission, or the hard UL resource of the IAB node DU, or the IAB node DU for transmitting important signals or Hard UL resources of the channel.
  • the important signal or channel is any one or any combination of the following: SSB, system information, PRACH, URLLC-related signals or channels.
  • the time division duplex uplink and downlink configuration may be a public time division duplex uplink and downlink configuration, or a public time division duplex uplink and downlink configuration and a dedicated time division duplex uplink and downlink configuration.
  • the parent IAB node DU knows the resource configuration of the IAB node DU, the parent IAB node DU and the IAB node MT have the same judgment results on the validity of the random access timing. There will be no problems affecting random access performance caused by inconsistent judgment results.
  • the validity of the random access timing can also be judged based on the hard resource and unavailable resource configuration of the DU:
  • Parent IAB node provides unavailable resource configuration for IAB nodes, which is used to indicate time resources that IAB node MT cannot use, that is, IAB node MT unavailable resources. If the PRACH resource configured by the parent IAB node for the IAB node MT overlaps the unavailable resource in the time domain, the random access timing that overlaps the unavailable resource in the time domain is invalid, that is, the IAB node MT cannot Use random access opportunities that overlap with unavailable resources in the time domain.
  • IAB node MT can further determine the effectiveness of random access timing in conjunction with the resource configuration of IAB node DU. which is,
  • the random access timing is valid.
  • the random access timing is within the uplink symbol, and the random access timing does not overlap with the first resource and the second resource in the time domain; or, random The access timing is not before the SSB in the PRACH slot and the random access timing starts at least Ngap symbols after the last downlink symbol, or at least Ngap symbols after the last SSB received symbol, and the random access timing is in the time domain If the above does not overlap with the first resource and the second resource, the random access timing is effective.
  • the first resource is the unavailable resource of the IAB node MT, which is provided by the parent IAB node for the unavailable resource configuration provided by the IAB nodes.
  • the second resource is hard resource of IAB node DU, or hard resource of IAB node DU for important signal or channel transmission, or hard UL resource of IAB node DU, or IAB node DU for important signal or channel transmission Hard UL resources.
  • the important signal or channel is any one or any combination of the following: SSB, system information, PRACH, URLLC-related signals or channels.
  • the time division duplex uplink and downlink configuration may be a public time division duplex uplink and downlink configuration, or a public time division duplex uplink and downlink configuration and a dedicated time division duplex uplink and downlink configuration.
  • s_offset may be applied to the entire configuration table.
  • each random access format The duration of the access format format is shown in Table 2.
  • OS is an OFDM symbol. For formats 1 and 2, the duration exceeds 1ms. Since the Subframe number is only the starting subframe of PRACH occasion, if The s_offset should be in the entire configuration table, and the preamble may cross a radio frame.
  • Index 36 has similar problems.
  • subframe 0 of NR TDD should be a DL subframe, so the RO is invalid, which may result in no available RACH resources.
  • the cross-frame RO may affect the orthogonality of the PRACH resources of the parent backhaul link and the child link in the time domain, that is, if the RO crosses the frame, the RACH resources of the parent backhaul link and child link of different frames may be in the time domain. Will overlap.
  • the PRACH resource of the IAB node can be sent using the system information common to IAB nodes, such as IAB-SIB1, and the protocol predefines the IAB-SI-RNTI dedicated to the IAB node for scrambling the CRC of the scheduling system information PDCCH .
  • the IAB node sometimes refers to an IAB terminal (IAB node MT), which is used to communicate with a parent node; sometimes refers to an IAB base station (IAB node DU), which is used to communicate with a child node.
  • IAB node MT IAB terminal
  • IAB node DU IAB base station
  • the IAB node specifically refers to which can be distinguished according to the context.
  • Ngap is the same as the value of Ngap in judging the validity of the random access time slot of an ordinary terminal.
  • judging the effectiveness of random access timing based on unavailable resource configuration and IAB node DU resource configuration can determine the effectiveness of random access timing more reasonably, reducing unnecessary signal transmission, and avoiding unnecessary interference And power consumption. It also provides a method to distinguish the random access responses of ordinary UEs and IAB nodes, which solves the problem of multiplexing the random access responses of UEs and IAB nodes, even if the PRACH resources used by the UE and IAB nodes are different, only one of them can successfully connect randomly. Into the situation.
  • a random access signal receiving device is also provided, which is used to implement the above-mentioned embodiments and preferred implementations, and what has been described will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 7 is a structural block diagram of a device for receiving a random access signal according to an embodiment of the present invention.
  • the device includes: a first sending module 72 and a first receiving module 74.
  • the device will be described in detail below :
  • the first sending module 72 is used to send resource configuration information to the second node;
  • the first receiving module 74 is connected to the first sending module 72 mentioned above and is used to receive random access sent by the second node according to the resource configuration information.
  • Signal where the resource configuration information is used to instruct the second node to send a random access signal at a valid random access opportunity.
  • the first node since the first node sends resource configuration information to the second node, the first node receives the random access signal sent by the second node according to the resource configuration information, so that the first node and the second node can determine random access based on the resource configuration information.
  • the second node sends a random access signal within a valid random access timing, and the first node receives a random access signal within a valid random access timing. Therefore, the problem of judging the validity of random access timing existing in the related technology can be solved, and the effectiveness of judging the validity of random access timing can be more reasonable, reducing unnecessary signal transmission, and avoiding unnecessary interference and power consumption.
  • the resource configuration information includes at least one of the following: the configuration index of the physical random access channel PRACH, the frequency domain resource of the PRACH, the mapping relationship between the synchronization signal block SSB and the random access opportunity ROs, and the start Logical root sequence index and cyclic shift Ncs, PRACH configuration cycle scaling factor S, based on radio frame offset y_offset, slot number, subframe number, unavailable resource configuration, available resource configuration.
  • the frequency domain resources of the PRACH include: the starting frequency of the PRACH resources; and the number of PRACH multiplexed in the frequency domain.
  • the starting frequency of the PRACH resource is determined by one of the following methods: the first node determines the starting frequency of the PRACH resource based on the activated uplink bandwidth BWP; the first node is based on the initial access of the terminal device The offset of the starting physical resource block PRB into the PRACH frequency domain resource determines the starting frequency of the PRACH resource; the first node determines the starting frequency of the PRACH resource based on the terminal device’s initial access to the PRACH frequency domain resource and the ending PRB offset. Start frequency.
  • the offset y_offset of the radio frame includes: the offset relative to the preset parameter y in the preset resource configuration table of PRACH, where the preset parameter y refers to the period in the PRACH configuration period The index of the radio frame containing the PRACH occasion.
  • the first node after the first node receives the random access signal sent by the second node according to the resource configuration information, the first node sends a random access response to the second node, where the random access response corresponds to the physical
  • the cyclic redundancy check CRC of the downlink control channel PDCCH is scrambled by RA-RNTI; RA-RNTI corresponds to the PRACH for transmitting random access signals.
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2;
  • s_id is the symbol index of the first orthogonal frequency division multiplexing OFDM of PRACH, 0 ⁇ s_id ⁇ 14;
  • t_id is The first time slot index of PRACH, 0 ⁇ t_id ⁇ 80;
  • f_id is the frequency domain index of PRACH, 0 ⁇ f_id ⁇ 8;
  • ul_carrier_id is the uplink carrier used to indicate PRACH to transmit random access signals.
  • the first node after the first node receives the random access signal sent by the second node according to the resource configuration information, the first node sends a random access response to the second node, where the MAC in the random access response -The reserved field of RAR indicates that the MAC-RAR is the MAC-RAR of the second node.
  • each MAC-RAR corresponds to a sub-header, and the sub-header includes the random access preamble identifier RAPID; the sub-header and MAC-RAR form the media access control protocol data unit MAC subPDU; If the RAPID corresponding to the random access signal sent by the terminal device in the MAC-PDU of the protocol data unit for access control is the same as the RAPID corresponding to the random access signal sent by the second node, the MAC subPDU of the terminal device is in the first Before the MAC subPDU of the second node.
  • the subframe number includes: the subframe number indicated by the PRACH configuration index in the preset resource configuration table used to replace the PRACH, where the subframe number after the replacement is an index set including the ROs subframe .
  • the time slot number includes: the time slot number indicated by the PRACH configuration index in the preset resource configuration table for replacing PRACH, where the replaced time slot number is an index set including ROs time slots .
  • the method before the first node receives the random access signal sent by the second node according to the resource configuration information, the method further includes: the first node judging the validity of the random access opportunity, wherein the first node judges the random access
  • the validity of the access timing includes one of the following: in the case where the first node does not provide the second node with the uplink and downlink configuration of time division duplex, the random access timing is valid when the random access timing meets the following conditions: The random access opportunity is not in front of the SSB in the PRACH time slot, the starting point of the random access opportunity is at least Ngap symbols after the last SSB receives the symbol, and the random access opportunity does not overlap with the specific resource in the time domain.
  • the random access timing is valid when the random access timing meets one of the following conditions: the random access timing is within the uplink symbol, and The random access timing does not overlap with specific resources in the time domain; the random access timing is not in front of the SSB in the PRACH time slot, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and random access
  • the timing does not overlap with specific resources in the time domain; the random access timing is not in front of the SSB in the PRACH slot, the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the random access timing is time
  • the domain does not overlap with specific resources; the random access timing is not in front of the SSB in the PRACH time slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the starting point of random access After at least Ngap symbols of the last downlink symbol, and
  • the method before the first node receives the random access signal sent by the second node according to the resource configuration information, the method further includes: the first node judging the validity of the random access opportunity, wherein the first node judges the random access
  • the validity of access timing includes one of the following:
  • the random access timing in the PRACH time slot meets the following conditions: when the random access timing is not on PRACH Before the SSB in the slot, the starting point of the random access opportunity is at least Ngap symbols after the last SSB receives the symbol, and the random access opportunity is in the specific resource.
  • the random access timing is valid: the random access timing is within the uplink symbol , And the random access timing is in a specific resource; the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and the random access timing is in a specific Within resources; the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the random access timing is within a specific resource; random access timing Not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and random access The timing of entry is within specific resources.
  • the specific resources include at least one of the following: resources indicated by the available resource configuration, non-hard resources of the base station unit of the second node, non-hard UL resources of the base station unit of the second node, and unavailable resources of the base station unit of the second node .
  • FIG. 8 is a structural block diagram of a device for sending a random access signal according to an embodiment of the present invention.
  • the device includes: a second receiving module 82, a determining module 84, and a second sending module 86.
  • the device is described in detail: the second receiving module 82 is used to receive the resource configuration information sent by the first node; the determining module 84 is connected to the second receiving module 82 mentioned above and is used to determine the random access timing based on the resource configuration information. Validity;
  • the second sending module 86 is connected to the above-mentioned determining module 84, and is used to send a random access signal to the first node at a valid random access opportunity.
  • the second node since the second node receives the resource configuration information sent by the first node, the second node determines the validity of the random access timing based on the resource configuration information, and the second node sends to the first node when the random access timing is valid.
  • the random access signal realizes the purpose of the first node and the second node to determine the validity of the random access timing based on the resource configuration information.
  • the second node sends the random access signal within the effective random access timing, and the first node The random access signal is received within an effective random access time. Therefore, the problem of judging the validity of random access timing existing in the related technology can be solved, and the effectiveness of judging the validity of random access timing can be more reasonable, reducing unnecessary signal transmission, and avoiding unnecessary interference and power consumption.
  • the resource configuration information includes at least one of the following: the configuration index of the physical random access channel PRACH, the frequency domain resource of the PRACH, the mapping relationship between the synchronization signal block SSB and the random access opportunity ROs, and the start Logical root sequence index and cyclic shift Ncs, PRACH configuration cycle scaling factor S, based on radio frame offset y_offset, slot number, subframe number, unavailable resource configuration, available resource configuration.
  • the frequency domain resources of the PRACH include: the starting frequency of the PRACH resources; and the number of PRACH multiplexed in the frequency domain.
  • the starting frequency of the PRACH resource is determined by one of the following information: the activated uplink bandwidth BWP; the initial physical resource block PRB offset of the terminal device's initial access to the PRACH frequency domain resource; The terminal device's initial access to PRACH frequency domain resources and the termination PRB offset.
  • the offset y_offset of the radio frame includes: the offset relative to the preset parameter y in the preset resource configuration table of PRACH, where the preset parameter y refers to the period in the PRACH configuration period The index of the radio frame containing the PRACH occasion.
  • the second node after the second node sends a random access signal to the first node at a valid random access opportunity, the second node receives the random access response sent by the first node, and performs the random access response according to the random access
  • the reserved field of the MAC-RAR in the response determines whether the MAC-RAR is the MAC-RAR of the second node.
  • each MAC-RAR corresponds to a sub-header, and the sub-header includes the random access preamble identifier RAPID; the sub-header and MAC-RAR form the media access control sub-protocol data unit MAC subPDU;
  • RAPID corresponding to the random access signal sent by the terminal device in the MAC-PDU of the access control protocol data unit is the same as the RAPID corresponding to the random access signal sent by the second node
  • the MAC subPDU of the terminal device is in the second The MAC of the node in front of the subPDU.
  • the subframe number includes: the subframe number indicated by the PRACH configuration index in the preset resource configuration table used to replace the PRACH, where the subframe number after the replacement is an index set including the ROs subframe .
  • the time slot number includes: the time slot number indicated by the PRACH configuration index in the preset resource configuration table for replacing PRACH, where the replaced time slot number is an index set including ROs time slots .
  • the random access timing is valid when the first node does not provide the second node with a time division duplex uplink and downlink configuration, and the random access timing in the PRACH time slot meets the following conditions:
  • the random access opportunity is not in front of the SSB in the PRACH time slot, the starting point of the random access opportunity is at least Ngap symbols after the last SSB receives the symbol, and the random access opportunity does not overlap with the specific resource in the time domain.
  • the random access timing is valid: the random access timing is within the uplink symbol , And the random access timing does not overlap with specific resources in the time domain; the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and The random access timing does not overlap with specific resources in the time domain; the random access timing is not in front of the SSB in the PRACH slot, the starting point of random access is at least Ngap symbols after the last SSB received symbol, and random access The timing does not overlap with specific resources in the time domain; the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the random access The starting point is at least Ngap symbols after the last downlink symbol, and
  • the specific resource includes at least one of the following: the resource indicated by the unavailable resource configuration, the hard resource of the base station unit of the second node, the hard resource of the base station unit of the second node for transmitting important signals or channels, the base station of the second node
  • the hard UL resources of the unit, the base station unit of the second node is used to transmit important signals or channel transmission hard UL resources.
  • Important signals or channels include at least one of the following: SSB, system information, PRACH, URLLC signals or channels.
  • the method before the second node sends a random access signal to the first node under a valid random access opportunity, the method further includes: the second node determines the validity of the random access opportunity, where the first node The two nodes judge the validity of random access timing including one of the following:
  • the random access timing in the PRACH time slot meets the following conditions: when the random access timing is not on PRACH Before the SSB in the slot, the starting point of the random access opportunity is at least Ngap symbols after the last SSB receives the symbol, and the random access opportunity is in the specific resource.
  • the random access timing is valid: the random access timing is within the uplink symbol , And the random access timing is in a specific resource; the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and the random access timing is in a specific Within resources; the random access timing is not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the random access timing is within a specific resource; random access timing Not in front of the SSB in the PRACH slot, and the starting point of random access is at least Ngap symbols after the last SSB received symbol, and the starting point of random access is at least Ngap symbols after the last downlink symbol, and random access The timing of entry is within specific resources.
  • the specific resources include at least one of the following: resources indicated by the available resource configuration, non-hard resources of the base station unit of the second node, non-hard UL resources of the base station unit of the second node, and unavailable resources of the base station unit of the second node .
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules are combined in any combination The forms are located in different processors.
  • An embodiment of the present invention also provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store a computer program for executing the foregoing steps.
  • the aforementioned storage medium may include, but is not limited to: U disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), mobile hard disk, magnetic disk Various media that can store computer programs such as discs or optical discs.
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute the steps in any of the foregoing method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the foregoing processor may be configured to execute the foregoing steps through a computer program.
  • modules or steps of the present application can be implemented by a general computing device. They can be concentrated on a single computing device or distributed on a network composed of multiple computing devices. Optionally, they can be implemented with program codes executable by a computing device, so that they can be stored in a storage device for execution by the computing device, and in some cases, they can be executed in a different order than here.
  • the steps shown or described can be implemented by making them into individual integrated circuit modules, or making multiple modules or steps of them into a single integrated circuit module. In this way, this application is not limited to any specific hardware and software combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种随机接入信号的发送、接收方法和装置、存储介质及电子装置,该接收方法包括:第一节点向第二节点发送资源配置信息;第一节点根据资源配置信息接收第二节点发送的随机接入信号,其中,资源配置信息用于指示第二节点在有效的随机接入时机下发送随机接入信号。

Description

随机接入信号的发送、接收方法和装置、存储介质及电子装置
本申请要求在2019年03月29日提交中国专利局、申请号为201910253163.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如,涉及一种随机接入信号的发送、接收方法和装置、存储介质及电子装置。
背景技术
新一代无线(New Radio,NR)移动通信系统允许比第二代移动通信系统(the 2th Generation mobile communication system,2G)、3G、4G更灵活的网络组网方式以及新类型网络节点的存在。整合了回程链路(Backhaul Link)和正常的NR接入链路(Access Link)的新类型节点集成接入和回程节点(Integrated Access and Backhaul Node,IAB)可以提供比单一的蜂窝覆盖更为灵活的覆盖和组网方式,将是未来移动通讯网络中重要的组成部分。
对于采用IAB节点的新一代移动通信系统来说,IAB节点既可以视为普通的终端(User Equipment,UE),也可以视为其他UE接入的基站,由于在半双工运行模式下,IAB节点(node)不能同时收发,且IAB node的部署位置、天线配置以及移动性和普通UE有较大不同,这些对随机接入资源的配置有一定的限制和要求,另外,IAB node的冗余连接、IAB node分布式单元(Distributed Unit,DU)的资源配置也会影响随机接入资源的配置。因此如何判断随机接入时机的有效性,减少无用信号发送,以避免不必要的干扰和功率消耗是需要解决的问题。
发明内容
本发明实施例提供了一种随机接入信号的发送、接收方法和装置、存储介质及电子装置,以至少解决相关技术中随机接入时机的有效性判断的问题。
根据本发明的一个实施例,提供了一种随机接入信号的接收方法,包括:第一节点向第二节点发送资源配置信息;第一节点根据资源配置信息接收第二节点发送的随机接入信号,其中,资源配置信息用于指示第二节点在有效的随机接入时机下发送随机接入信号。
根据本发明的另一个实施例,提供了一种随机接入信号的发送方法,包括: 第二节点接收第一节点发送的资源配置信息;第二节点基于资源配置信息确定随机接入时机的有效性;第二节点在有效的随机接入时机下,向第一节点发送随机接入信号。
根据本发明的另一个实施例,提供了一种随机接入信号的接收装置,包括:第一发送模块,用于向第二节点发送资源配置信息;第一接收模块,用于根据资源配置信息接收第二节点发送的随机接入信号,其中,资源配置信息用于指示第二节点在有效的随机接入时机下发送随机接入信号。
根据本发明的另一个实施例,提供了一种随机接入信号的发送装置,包括:第二接收模块,用于接收第一节点发送的资源配置信息;确定模块,用于基于资源配置信息确定随机接入时机的有效性;第二发送模块,用于所在有效的随机接入时机下,向第一节点发送随机接入信号。
根据本发明的又一个实施例,还提供了一种存储介质,存储介质中存储有计算机程序,其中,计算机程序被设置为运行时执行上述任一项方法实施例。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例。
通过本申请,由于一节点向第二节点发送资源配置信息,第一节点根据资源配置信息接收第二节点发送的随机接入信号,实现了第一节点和第二节点基于资源配置信息判断随机接入时机的有效性的目的,第二节点在有效的随机接入时机内发送随机接入信号,第一节点在有效的随机接入时机内接收随机接入信号。因此,可以解决相关技术中存在的随机接入时机有效性判断的问题,达到可以更合理地判断随机接入时机的有效性,减少无用信号发送,以避免不必要的干扰和功率消耗的效果。
附图说明
图1是本发明实施例的一种随机接入信号的接收方法的移动终端的硬件结构框图;
图2是根据本发明实施例的随机接入信号的接收方法的流程图;
图3是IAB网络的架构示意图;
图4是根据本发明实施例的媒体接入控制协议数据单元(Medium Access Control Protocol Data Unit,MAC PDU)的结构示意图;
图5是根据本发明可选实施例的MAC PDU中包括的预留比特的示意图;
图6是根据本发明实施例的随机接入信号的发送方法的流程图;
图7是根据本发明实施例的随机接入信号的接收装置的结构框图;
图8是根据本发明实施例的随机接入信号的发送装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本文中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本发明实施例的一种随机接入信号的接收方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理单元(Microcontroller Unit,MCU)或现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)等的处理装置)和用于存储数据的存储器104,可选地,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本发明实施例中的随机接入信号的接收方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种随机接入信号的接收方法,图2是根据本发明实 施例的随机接入信号的接收方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,第一节点向第二节点发送资源配置信息。
步骤S204,第一节点根据资源配置信息接收第二节点发送的随机接入信号,其中,资源配置信息用于指示第二节点在有效的随机接入时机下发送随机接入信号。
通过上述步骤,由于第一节点向第二节点发送资源配置信息,第一节点根据资源配置信息接收第二节点发送的随机接入信号,实现了第一节点和第二节点基于资源配置信息判断随机接入时机的有效性的目的,第二节点在有效的随机接入时机内发送随机接入信号,第一节点在有效的随机接入时机内接收随机接入信号。因此,可以解决相关技术中存在的随机接入时机有效性判断的问题,达到可以更合理地判断随机接入时机的有效性,减少无用信号发送,以避免不必要的干扰和功率消耗的效果。
可选地,上述步骤的执行主体可以为第一节点(例如IAB节点中的父节点parent IAB node,donor IAB,IAB node DU,基站)等,但不限于此。
本实施例中的第一节点可以是donor IAB DU,或者parent IAB node DU,或者基站,第二节点可以是IAB node,或者IAB node MT,或者中继站,或者终端。
在本实施例中,IAB节点既可以视为终端(UE),也可以视为其他UE或者IAB节点接入的基站,图3是IAB网络的架构示意图,如图3所示,与核心网之间存在有线连接的节点称为施主IAB(donor IAB),一个施主IAB无线连接一个或多个IAB节点(IAB node),同时为UEs提供无线接入功能。IAB节点与核心网之间不存在直接链接,其与核心网之间的交互需要一次或多次转发,并最终借助施主IAB实现。IAB node有两个功能:1)分布式单元(Distributed Unit,DU)功能,即IAB node像基站一样为UE或者子IAB node提供无线接入功能;2)移动终端(Mobile-Termination,MT)功能,即IAB nodes像UE一样被donor IAB或者上层IAB node(即parent IAB node)控制和调度。
donor IAB和IAB nodes之间的链路以及IAB nodes之间的链路通称为回传链路(Backhaul Link,BL),IAB node和UE之间的链路称为接入链路(Access Link,AL)。考虑到IAB网络支持多跳(例如,对于IAB node3的下属节点来说经过4跳才能连接到donor IAB,经过donor IAB完成与核心网之间的交互),为了更清楚的描述链路,具体地,对于一个特定的IAB node,IAB node与其父节点即parent IAB node(可能是普通IAB node,也可能是donor IAB)之间的链路称为父回程链路(parent BL),IAB node与其子节点(child IAB node)之间 的链路称为子回程链路(child BL),IAB node与普通UE之间的链路称为子接入链路(child AL)。为了保证父回程链路的鲁棒性,IAB网络支持冗余连接,例如,一个IAB node除了当前父节点外,可能还有一个或者多个潜在父节点,如图3所示,IAB node4和donor IAB node之间有无线连接,同时还和IAB node1有潜在无线连接。
在本实施例中,可以应用在IAB节点之间的随机接入信号的传输中。由于在半双工运行模式下,IAB node不能同时收发,例如IAB node 2MT向IAB node1发送随机接入前导(Random Access Preamble)时,不能同时接收child IAB node3或child UEs发送的随机接入前导,且IAB node的部署位置、天线配置以及移动性和普通UE有较大不同,这些对随机接入资源的配置有一定的限制和要求,另外,IAB node的冗余连接、IAB node DU的资源配置也会影响随机接入资源的配置,因此可以为IAB node配置随机接入资源,即资源配置信息。
此外,在NR发布15(Release15)中,随机接入资源的频域配置是通过提供起始频率和频域复用的随机接入时机(物理随机接入信道时机(Physical Random Access Channel occasion,PRACH occasion,RO))来实现的。随机接入资源的时域配置是以表格的形式给出的,不同的频段范围和双工方式对应不同的表格,每个表格包含256种配置,配置索引0至255。实际配置时基站提供一个配置索引即可。例如6GHz以上频段时分双工(Time Division Duplex,TDD)系统(即频率范围2和非成对频谱(Frequency Range2 and unpaired spectrum,FR2 and unpaired spectrum)),随机接入时域资源配置如表1所示(由于表格行数较多,这里仅仅给出了部分配置)。
表1
Figure PCTCN2020073229-appb-000001
Figure PCTCN2020073229-appb-000002
其中,表1的各列的含义如下:
第1列PRACH Config.Index:PRACH配置索引。
第2列Preamble format:随机接入格式。
第3列(包含x和y):x为PRACH配置周期,取值为1到16,单位无线帧,即PRACH配置周期为10x毫秒;y为系统帧号(SFN,System Frame Number)模x后的余数,其物理意义为在PRACH配置周期内的第几个无线帧上会有PRACH时隙或者PRACH时机,例如y=0,则是第一个无线帧,y=1则是第二 个无线帧。
第4列Slot number:包含ROs的时隙。对于6GHz以下频段(即FR1)为子帧编号(Subframe number)。
第5列Starting symbol:RO在PRACH时隙中的起始符号编号(0~13)。
第6列Number of PRACH slots within a 60kHz slot:当PRACH的子载波间隔为120kHz时,PRACH时隙是60kHz slot内的第二个时隙(参数为1),还是60kHz slot内的两个时隙都是PRACH时隙(参数为2)。
第7列Number(#)of time-domain PRACH occasions within a PRACH slot:PRACH时隙内的时域RO的个数。
第8列PRACH duration是指每个随机接入格式所占用的OFDM符号数量。比如A1,就是2个符号;C2就是6个符号,C2中序列占4个符号,其他是CP和GP。对于随机接入长格式(序列长度为839)统一取值为0并无实际物理意义。
在一个可选的实施例中,考虑到IAB node需要满足半双工限制(half-duplex constraint),即不能同时收发,因此,IAB node的资源配置信息可以包括以下至少之一:物理随机接入信道PRACH的配置索引,PRACH的频域资源,同步信号块(Synchronization signal block,SSB)与随机接入时机ROs(RACH occasions)的映射关系,起始逻辑根序列索引和循环移位Ncs,PRACH的配置周期缩放因子S,基于无线帧的偏移量y_offset,基于子帧的偏移量sf_offset,基于时隙的偏移量s_offset,时隙号,子帧号,不可用资源配置,可用资源配置。
在本实施例中,资源配置信息需要满足如下条件:对于一个IAB node,其parent backhaul link与child link(包括child access link和child backhaul link)上配置的PRACH资源应该是时分复用(Time Division Multiplexing,TDM)的,即时域上正交。也就是说,IAB node MT发送前导码的PRACH资源与IAB node DU接收前导码的PRACH资源(即child UEs,child IAB nodes发送的前导码的PRACH资源)在时域上正交。
IAB node和普通UE的覆盖特性和移动性的不同。IAB Node作为一种特殊的基站和终端的整合体,它的部署位置和普通终端有很大不同,比如IAB Node往往是固定在屋檐下等位置,挂高比普通终端高很多,便于和donor IAB或者parent IAB node建立直射径;又比如IAB Node往往具备比普通终端更多的天线数量;又比如IAB Node有可能需要放置在离IAB donor或者parent IAB node比普通终端更远的位置(如图3中IAB Node4),超出了普通终端的覆盖范围等。另外,IAB nodes通常位置是固定的,也就是说信道条件比较稳定,所以IAB nodes 可以配置较大的PRACH配置周期,即PRACH配置表的第3列中的x可以更大。
而不同的随机接入格式支持不同覆盖范围、移动速度和对穿透损耗的抵抗能力等。因此,普通UEs和IAB nodes对PRACH资源的要求不同,一个IAB node或者donor IAB需要为child UEs和child IAB nodes配置不同的PRACH资源,包括单独为IAB nodes配置PRACH配置索引,PRACH频域资源,SSB与有效随机接入时机ROs的映射关系,前导码(包括起始逻辑根序列索引,循环移位Ncs等产生前导码序列的参数)。
为减少复杂度,IAB nodes的PRACH时域资源配置可以基于NR Release 15中终端UEs的PRACH配置表进行简单的扩展,包括:
扩展PRACH配置表中PRACH配置周期x,假设缩放因子为S,扩展后PRACH配置周期为S*x。
相对PRACH配置表中包含ROs的无线帧的偏移量y_offset,和/或相对PRACH配置表包含ROs的子帧的偏移量sb_offset,包含ROs的时隙的偏移量s_offset。
扩展后PRACH配置周期作为IAB nodes的PRACH配置周期,偏移后的无线帧或者子帧或时隙作为IAB nodes的包含ROs的子帧或时隙;或者扩展后PRACH配置周期作为IAB nodes的PRACH配置周期,parent IAB node可以直接配置slot number用于替换PRACH配置索引指示的slot number。替换后的slot number为包含ROs的时隙号的集合;或者扩展后PRACH配置周期作为IAB nodes的PRACH配置周期,parent IAB node可以直接配置subframe number用于替换PRACH配置索引指示的subframe number。替换后的subframe number为包含ROs的子帧号的集合。
配置slot number或者subframe number的方式为如下任意一种:
方式1:预定义多组配置,每组配置对应一个时隙索引集合或者子帧索引集合,每组配置有一个索引,将配置索引提供给IAB node MT。
方式2:用位图(bitmap)指示。例如对于比特值1对应的slot number或者subframe number用于替换PRACH配置索引指示的slot number或者subframe number。
其中,对于FR1,bitmap的长度为无线帧内包含的子帧数,对于FR2,bitmap的长度为无线帧内包含的60kHz子载波间隔的时隙数;或者,对于所有频段,bitmap长度为无线帧内包含的60kHz子载波间隔的时隙数,对于FR1仅仅部分比特有效,例如低10比特或者高10比特有效。
如果UEs和IAB nodes的PRACH资源配置不同,则IAB nodes在初始接入 或者切换时,可以根据小区的PRACH资源配置来判断该小区是否能为IAB nodes提供服务。以避免选择不能为IAB nodes提供服务的小区。
由于UEs和IAB nodes的PRACH资源配置不同,UEs可能无法知道IAB nodes的PRACH资源,因此,如果UEs和IAB nodes的随机接入响应(RAR,Random Access Response)复用,则会出现即使UE和IAB node使用的PRACH资源不同,但UE和IAB node中只有一个能够成功随机接入的情况。例如,UE和IAB node MT使用相同的PRACH时频资源,但随机接入格式和前导码序列不同(但序列索引的范围都是0~64)。即IAB节点产生前导码序列的起始根序列索引,循环移位等与普通终端不同,这时期望的是普通终端和IAB终端(IAB node MT)即使使用相同的PRACH时频资源和前导码序列标识,也可以同时接入成功。但相关技术中的机制使得UE和IAB node对应同一个RAR,两者最多只能有一个随机接入成功。又比如,UE和IAB node的PRACH资源的时域起始位置相同,但是频域上是正交的(即频分复用(Frequency Division Multiplexing,FDM)的),由于两者在频域上的资源索引都是0开始,例如普通终端在频域复用8个,IAB节点复用4个,它们对应的频域资源索引范围分别为0~7和0~4。所以即使两者的RACH资源没有交叠,但计算的RA-RNTI也可能相同,如果两者使用的前导码序列标识也是一样,则两者会对应同一个RAR,两者最多只能有一个随机接入成功。这不仅会增加普通终端或者IAB终端的随机接入时延,后续的随机接入过程还会产生不必要的干扰。因此,需要区分UEs和IAB nodes的RAR。比如,IAB nodes采用与UEs不同的RA-RNTI计算公式,或者用MAC(媒体接入控制,Medium Access Control)RAR(随机接入响应,Random Access Response)的预留域指示IAB终端(IAB node MT)的MAC RAR。
其中,RA-RNTI用于对随机接入响应对应的PDCCH的循环冗余校验(CRC,Cyclic redundancy check)进行加扰。
在一个可选的实施例中,PRACH的频域资源包括:PRACH的资源的起始频率;频域复用的PRACH的数量。在本实施例中,PRACH的资源的起始频率可以通过以下方式之一确定:第一节点基于激活的上行带宽BWP确定PRACH的资源的起始频率;第一节点基于终端设备的初始接入PRACH频域资源的起始物理资源块(Physical Resource Block,PRB)的偏移确定PRACH的资源的起始频率;第一节点基于终端设备的初始接入PRACH频域资源的终止PRB的偏移确定PRACH的资源的起始频率。
在本实施例中,起始频率可以基于激活的上行带宽部分(BWP,Bandwidth part)定义,也可以基于相对UEs初始接入的PRACH频域资源的起始PRB或终止PRB的偏移定义。例如,起始频率为相对于激活的上行BWP的第一个物 理资源块(PRB,Physical Resource Block)的偏移,即相对于PRB0的偏移。或者,起始频率为相对UEs初始接入的PRACH频域资源的第一个PRB的偏移或最后一个PRB的偏移。
可选地,PRB对应的是激活的上行BWP对应的子载波间隔。
可选地,起始频率的默认值为激活的上行BWP的PRB0。
可选地,激活的上行BWP为初始接入阶段的初始激活的上行BWP或者初始接入后的激活的上行BWP。
其中,起始逻辑根序列索引和循环移位Ncs用于产生IAB nodes专用前导码。
可选地,也可以指定用于UEs随机接入的64个前导码中的一部分前导码作为IAB nodes的专用前导码。
IAB nodes的数量比UEs少,所以IAB nodes专用的前导码的总数可以少于64,比如8个,16个,32个。
在一个可选的实施例中,无线帧的偏移量y_offset包括:相对PRACH的预设资源配置表中的预设参数y的偏移量,其中,预设参数y是指在PRACH配置周期内的包含PRACH时机的无线帧索引,预设参数y用于指示在PRACH配置周期内包括PRACH时机的无线帧。
其中,y_offset可以是相对于PRACH配置表中参数y的偏移量,或者用于替换参数y的量。
假定IAB PRACH配置周期(configuration period)最大为Tmax个frames。包含ROs的SFN满足:
mod(SFN,x*S)=mod(y+y_offset,x*S),其中,0≤y_offset<Tmax或者0≤y_offset<x*S。或者,
mod(SFN,min{x*S,Tmax})=mod(y+y_offset,min{x*S,Tmax}),其中,0≤y_offset<Tmax或者0≤y_offset<x*S或者0≤y_offset<min{x*S,Tmax}。
其中,基于子帧的偏移量sf_offset为相对于PRACH配置表中子帧号subframe number的偏移量。
其中,基于时隙的偏移量s_offset为相对于PRACH配置表中时隙号slot number的偏移量。
根据相关技术中的协议,slot/subframe number是一个无线帧内(10ms)的编号,每个子帧1ms,slot number相对于60kHz子载波间隔而言的。因为一个无线帧包含10个subframes,所以偏移sf_offset之后的subframes number以及sf_offset的取值范围如下:
SF_number=mod(sf_number+sf_offset,10),其中0≤sf_offset<10;
其中,sf_number表示Rel-15PRACH configuration index对应的subframe number,SF_number表示偏移sf_offset之后的subframe number。
因为一个无线帧包含40个60kHz的slots,所以偏移s_offset之后的slots number以及s_offset的取值范围如下:
S_number=mod(s_number+s_offset,40),其中0≤s_offset<40;
其中,s_number表示Rel-15PRACH configuration index对应的slot number,S_number表示偏移s_offset之后的subframe number。
其中,对于每个PRACH配置索引,单独配置PRACH配置周期缩放因子S;或者,对于整个PRACH配置表配置一个PRACH配置周期缩放因子。
如果没有给IAB nodes(IAB终端)配置如下参数:PRACH配置索引,PRACH频域资源,SSB与有效ROs的映射关系,前导码中的任意一项或者任意组合,或者没有给IAB nodes配置PRACH资源相关的其他任何参数,则IAB nodes重用UEs的PRACH资源配置中的相应参数。
IAB nodes根据PRACH配置索引和PRACH频域资源,结合缩放因子S,偏移量y_offset,偏移量s_offset,偏移量sf_offset中至少一项确定PRACH资源。
可选地,对于缩放因子S,偏移量y_offset,偏移量s_offset,偏移量sf_offset,如果没有配置,则默认值为0。
在一个可选的实施例中,除上述参数外,parent IAB node还需要为IAB nodes提供如下至少一项PRACH相关参数:可用的随机接入的前导码总数,每个SSB对应的基于竞争的前导码总数,每个SSB对应的组A中基于竞争的前导码总数,选择前导码组的传输块大小门限,选择前导码组的路损计算参数,随机接入信号(消息1(message1,msg1))使用的子载波间隔,选择SSB和对应PRACH资源需要满足的SSB接收功率门限,功率相关参数,限制集配置,msg3的预编码等。
在一个可选的实施例中,子帧号包括:用于替换PRACH的预设资源配置表中PRACH配置索引指示的子帧号,其中,替换后的子帧号是包括ROs子帧的索引集合。时隙号包括:用于替换PRACH的预设资源配置表中PRACH配置索引指示的时隙号,其中,替换后的时隙号是包括ROs时隙的索引集合。
在上述实施例中,假定IAB nodes的PRACH configuration period最大为Tmax个系统帧。可选地,Tmax为16,32,64,128,256中的一个。缩放因子S=2k,其中k为非负整数,即S为2的非负整数次幂,其最大值取决于IAB nodes的 PRACH配置周期的最大值。
对于每个PRACH配置索引,S的最大值取决于IAB nodes的PRACH配置周期的最大值Tmax和PRACH配置索引中的x值,例如S的最大值为Tmax除以x。
对于IAB nodes,包含ROs的系统帧号SFN可以根据如下几种方式确定:
方式1:SFN满足mod(SFN,S*x)=mod(y+y_offset,S*x),其中,y_offset为整数,且0≤y_offset<Tmax或者0≤y_offset<S*x或者0≤y_offset<min{x*S,Tmax}。
方式2:y=y_offset,即直接替换配置表中的参数y,即SFN满足mod(SFN,x*S)=y_offset,其中,y_offset为整数,且0≤y_offset<S*x。
3)如果PRACH配置索引中y包含多个值,则y_offset为参数y的第一个值y1,参数y中的其他值为PRACH配置表中相应值与y1的差+y_offset,例如PRACH配置表中y={y1,y2},则由y_offset可得y={y_offset,y_offset+y2-y1},否则y=y_offset。其中,y_offset为整数,且0≤y_offset<S*x;其中,y为PRACH配置表中的参数y。
需要说明的是,如果S*x>Tmax,则S*x=Tmax,否则上述公式不变。
考虑到在NR R15中,对于FR1,每个PRACH configuration index对应一个y值,即在PRACH configuration period内所有ROs包含在一个frame内;对于FR2频段,通常情况下也只有一个y值,少数配置对应的y为{1,2},考虑到IAB node与IAB node之间的信道条件比较稳定,在一个PRACH configuration period内没有必要配置多个frames包含ROs,所以方式2是更简单直观的y_offset方案。
在一个可选的实施例中,可以采用不同的PRACH频域索引编号或对PRACH频域索引编号进行偏移来计算RA-RNTI。
相关技术中的协议中UE在频域上复用的PRACH的最大数量为8个,索引编号f_id的范围为0≤f_id<8的整数,因此可以对IAB node在频域上复用的PRACH索引从8开始编号,假设IAB node在频域上复用的PRACH最大数量为Nprach,Nprach的值可以预先定义,且使得RA-RNTI的值小于65519。则IAB node在频域上复用的PRACH索引编号为8≤f_id<8+Nprach的整数。
为了与UE的RA-RNTI(Random Access-Radio Network Temporary Identifier)区分开,因此,对于IAB nodes,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×(8+Nprach)×ul_carrier_id       公式1;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(8≤f_id<8+Nprach),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
另外,还有一种方式是对IAB node在频域上复用的PRACH索引从0开始编号,对IAB nodes的RA-RNTI计算公式中f_id偏移8,因此,对于IAB nodes,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×(f_id+8)+14×80×(8+Nprach)×ul_carrier_id       公式2;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(0≤f_id<Nprach),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
可选地,Nprach=8,则上述两个公式1和公式2分别为:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×16×ul_carrier_id;
RA-RNTI=1+s_id+14×t_id+14×80×(f_id+8)+14×80×16×ul_carrier_id。
在一个可选的实施例中,可以采用不同时隙索引或者对时隙索引偏移来计算RA-RNTI。
对IAB nodes在无线帧内的时隙索引从80开始编号,即无线帧内的第一个时隙索引为80,第二个为81,以此类推。
因此,对于IAB nodes,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×160×f_id+14×160×8×ul_carrier_id;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(80≤t_id<160),f_id是在频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
另外,还有一种方式是,对IAB nodes在无线帧内的时隙索引从0开始编号, 对IAB nodes的RA-RNTI计算公式中t_id偏移80。
因此,对于IAB nodes,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×(t_id+80)+14×160×f_id+14×160×8×ul_carrier_id;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
在一个可选的实施例中,传输随机接入前导码的PRACH对应的RA-RNTI还可以通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×identifier;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波),identifier用于表示RA-RNTI计算公式是针对普通终端的还是IAB节点的,对于普通终端identifier为0,对于IAB节点identifier为1。
在一个可选的实施例中,对于IAB终端(IAB node MT),传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
对于普通终端,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在 频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
在一个可选的实施例中,对于IAB节点,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+s×t_id+s×t×f_id+s×t×f×ul_carrier_id+s×t×f×2;或者,
RA-RNTI=1+s_id+s+s×t×f×ul_carrier_id+s×t ul_carrier_id;
其中,s_id是给定的PRACH的第一个OFDM符号索引(s0≤s_id<s),t_id是系统帧内给定的PRACH的第一个时隙索引(t0≤t_id<t),f_id是在频域上给定的PRACH索引(f0≤f_id<f),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
其中,在时隙内OFDM符号从s0开始编号,即时隙内的第一个OFDM符号索引为s0,第二个为s0+1,以此类推。
其中,在无线帧内的时隙索引从t0开始编号,即无线帧内的第一个时隙索引为t0,第二个为t1,以此类推;在无线帧内的时隙索引从t0开始编号,即无线帧内的第一个时隙索引为t0,第二个为t0+1,以此类推;
其中,在频域上PRACH索引从f0开始编号,即从低频开始,频域上第一PRACH资源的PRACH索引为f0,第二个为f0+1,以此类推。
其中,s0,t0,f0,s,t,f的值需要预定义,例如s0=0,t0=0,f0=0,s=14,t=80,f=8;或者s0=14,t0=0,f0=0,s=28,t=80,f=8;或者s0=0,t0=80,f0=0,s=14,t=160,f=8;或者s0=0,t0=0,f0=8,s=14,t=80,f=16。
在一个可选的实施例中,使用MAC RAR中的预留域指示IAB nodes专用MAC RAR。
在NR Rel-15中,如图4所示,一个MAC PDU包含一个或多个MAC子PDU(subPDU)以及可选的补充比特(padding),每个MAC subPDU由如下之一组成:
-退避指示(Backoff Indicator,BI)only:仅仅带Backoff指示的MAC子头。
-RAPID(Random Access Preamble Identifier)only:仅仅带RAPID的MAC子头(即系统信息请求的确认)。
-RAPID and RAR:带RAPID的MAC子头和MAC RAR。
其中,如果MAC PDU包含BI only,则BI only位于MAC PDU的开始处。RAPID only和RAPID and RAR可以放在MAC PDU中BI only和补充比特(padding)之间的任何位置。
如图5所示,可以使用MAC RAR中的预留比特R来指示该MAC RAR是否是IAB nodes的MAC RAR。例如R=0表示不是IAB nodes的MAC RAR,R=1表示是IAB nodes的MAC RAR,反之也可以。
每个MAC RAR对应一个子头(subheader),子头中包含RAPID,子头与MAC RAR构成一个MAC subPDU,如果在MAC PDU中普通终端(UEs)发送的随机接入信号对应的RAPID与IAB nodes发送的随机接入信号对应的RAPID相同,则普通终端的MAC subPDU应该在IAB nodes的MAC subPDU前面。例如终端对应MAC subPDU为第n个,则IAB nodes对应MAC subPDU为第n+k个,k为正整数。
当普通终端和IAB终端的发送前导码信号的PRACH时频资源一样,且前导码索引一样时,普通终端和IAB终端的RA-RNTI一样,且普通终端与IAB终端的RAPID也一样,因此它们的MAC RAR会复用在一个MAC PDU中,为了IAB终端能够区分自己的MAC RAR,可以使用MAC RAR中的预留比特R来指示该MAC RAR是否是IAB终端的MAC RAR。为了避免普通终端错误检测到IAB终端的MAC RAR,因此在MAC PDU中普通终端的MAC subPDU应该在IAB终端的MAC subPDU前面。
因为普通终端不能识别R,这样可以避免普通终端把IAB终端的MAC RAR当成自己,从而造成接入失败,同时也会影响IAB终端的初始接入。
需要说明的是,在上述示例的所有RA-RNTI的计算公式中,对随机接入格式0、1、2和3(即preamble长度为839的长格式),s_id和t_id是根据PRACH资源所在的激活的上行BWP的子载波间隔确定的。对于随机接入格式A1/B1,A2/B2,A3/B3,A1,A2,A3,B1,B4,C0,C2(即preamble长度为139短格式),s_id和t_id是根据PRACH资源所在的激活的上行BWP的子载波间隔确定的,或者根据PRACH的子载波间隔确定的,需要协议预先定义。
可选地,对于随机接入格式A1/B1,A2/B2,A3/B3,A1,A2,A3,B1,B4,C0,C2(即preamble长度为139短格式),s_id和t_id是根据PRACH的子载波间隔确定的。
在一个可选的实施例中,可以通过以下方式之一判断随机接入时机的有效性:
在第一节点没有为第二节点提供时分双工的上下行配置的情况下,在随机 接入时机满足以下条件的情况下,随机接入时机有效:随机接入时机不在PRACH的时隙内的SSB的前面,随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后,随机接入时机在时域上与特定资源没有交叠。
在第一节点为第二节点提供时分双工的上下行配置的情况下,在随机接入时机满足以下条件之一的情况下,随机接入时机有效:随机接入时机在上行符号内,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在PRACH时隙内SSB的前面,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在PRACH时隙内SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;所述随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠。
其中,特定资源包括以下至少之一:不可用资源配置指示的资源,第二节点不能使用的资源,第二节点的基站单元的hard资源,第二节点的基站单元用于传输重要信号或信道的hard资源,第二节点的基站单元的hard上行(Uplink,UL)资源,第二节点的基站单元用于传输重要信号或信道传输的hard UL资源。
重要信号或者信道包括以下至少之一:SSB,系统信息,PRACH,超可靠低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)的信号或信道。
在本实施例中,IAB node有两个功能单元MT和DU,其中MT是IAB节点中充当UE功能的单元,因此,MT的资源类型和普通UE一样,包括下行时间资源(D),上行时间资源(U),灵活的时间资源(F),其中F可用灵活地作为上行或者下行资源使用。对于DU,其资源类型为:D,U,F,不可用时间资源(NA,not available time resource)。其中,NA指DU不能使用的资源,每个D、U和F又有如下两类属性:硬(hard)和软(soft),hard指DU总是可用的资源,soft资源是否可用可以通过显式或隐式方式进一步指示。因此对于DU的资源包括如下7种类型:hard D,soft D,hard U,soft L,hard F,soft F,NA。
IAB node DU资源配置需要考虑配置的灵活性与比特开销的折中,由于IAB node DU要为普通UE提供服务,因此DU的资源配置可能还会受Release 15的公共TDD上下行配置(例如TDD-UL-DL-ConfigurationCommon)模式的限制,因此,对于一个IAB node,由于PRACH时域资源配置是从表格中选的,并且选择还会受公共TDD上下行配置的影响,所以parent IAB node DU的NA资源 可能与parent IAB node为IAB node MT配置的PRACH资源在时域上交叠。另外,对于一个IAB node,很有可能IAB node DU的hard资源与parent IAB node为IAB node MT配置的PRACH资源在时域上是交叠的。在这种情况下,需要相关的方案来使得IAB node在半双工限制下能够工作。
另外,IAB node有可能需要随机接入到当前parent IAB node之外的其他IAB node,为描述方便我们称之为潜在parent IAB node。如图3中的IAB node4除了随机接入到donor IAB(即parent IAB node)外,可能还需要随机接入到IAB node1,例如维持与IAB node1之间的基本同步,以便当IAB ndoe4与donor IAB之间的链路质量较差时能快速切换到IAB node1,或者IAB node4可能需要执行到IAB node1的随机接入并切换到IAB node1。即IAB node1为IAB node4的潜在parent IAB node。而parent IAB node和潜在parent IAB node为IAB node MT配置的PRACH资源可能不同,因此,即使parent IAB node为IAB node MT配置的PRACH资源与IAB node DU的hard资源在时域上不交叠,也很难同时保证一个或多个潜在parent IAB nodes为IAB node MT配置的PRACH资源与IAB node DU的hard资源在时域上正交。在这种情况下,也需要相关的方案来使得IAB node在半双工限制下能够工作。
根据PRACH资源配置获取的随机接入时机可能是无效的,比如随机接入时机与下行信号SSB在时域上交叠,由于半双工或者干扰的限制,parent IAB node在发送SSB时不能接收上行随机接入信号,因此,终端(UEs或者IAB node MTs)也不需要发送上行随机接入信号,所以需要制定随机接入时机有效性的判断准则。否则,不仅会产生干扰,还会使得随机接入信号的收发两端对SSB和随机接入时机的映射理解不一致,造成随机接入失败。
在一个可选的实施例中,判断随机接入时机有效性的规则如下:
对于成对频谱(频分双工),所有的随机接入时隙有效。
对于非成对频谱,如果没有为终端提供时分双工上下行配置,则如果PRACH时隙内的随机接入时机不该PRACH时隙内SSB的前面,且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,则随机接入时机是有效的。
如果为终端提供了时分双工上下行配置,则如果随机接入时机在上行符号内;或者,随机接入时机不在PRACH时隙内SSB的前面,且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后;或者,随机接入时机不在PRACH时隙内SSB的前面,且随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后;或者,随机接入时机不在PRACH时隙内SSB的前面,且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后,且随机接入 时机起点在最后一个SSB接收符号的至少Ngap个符号之后,则随机接入时机是有效的。
按照上述机制,得到的有效随机接入时机,对于IAB终端可能无法使用,因此需要增强随机接入有效性判断机制,或者对相关技术中的机制判断的有效随机接入时机进一步判断其可用性。
其中,所述PRACH时隙指PRACH子载波间隔对应的包含PRACH时机的时隙。
在一个可选的实施例中,parent IAB node为IAB nodes提供的不可用资源配置,用于指示IAB node MT不能使用的时间资源,即IAB node MT不可用资源。如果parent IAB nodes为IAB node MT配置的PRACH资源与所述不可用资源在时域上交叠,则与不可用资源在时域上交叠的随机接入时机是无效的,即IAB node MT不能使用与不可用资源在时域上交叠的随机接入时机。
PRACH资源可以是系统消息配置的公共PRACH资源,也可以是专用无线资源控制(Radio Resource Control,RRC)信令配置的专用PRACH资源。
不可用资源是连续时间资源,或者离散时间资源。
可选地,不可用资源可以包括以下至少之一:parent IAB node DU的不可用资源,parent IAB node DU的不可用资源的子集,潜在parent IAB node DU的不可用资源,潜在parent IAB node DU的不可用资源的子集,parent IAB node的child IAB node DU的hard资源,parent IAB node的child IAB node DU的hard UL资源,不能使用的PRACH资源,不可用资源的确定取决于parent IAB node DU的实现。
可选地,child IAB node DU与IAB node MT位于同一个IAB node中。
可选地,不可用资源为每个无线帧内的连续时间资源或者离散时间资源。
可选地,指示每个无线帧内的不可用资源的方式为如下任意一种:1、第k1至第k2个子帧或时隙;2、后M1个子帧或时隙;3、后M2个偶数编号的子帧或时隙;4、后M3个奇数编号的子帧或时隙;5、用资源指示值(RIV,Resource indicator value)指示;6、bitmap,bitmap长度为无线帧内包含的子帧或时隙数,预先约定bitmap中是0还是1表示不可用资源;7、无线帧内的资源分组,对分组后的资源用于bitmap指示一个或多个组为不可用资源。
RIV根据无线帧内包含的子帧或时隙数N、不可用资源的起始子帧或时隙Tstart以及连续的子帧或时隙数L来确定:如果(L-1)<floor(N/2),则RIV=N(L-1)+Tstart,否则,RIV=N(N-L+1)+(N-1-Tstart),其中,k1,k2,M1,M2,M3为小于等于N的整数。
可选地,不可用资源为周期的不可用的连续时间资源或者离散时间资源。
可选地,不可用资源配置包括周期,bitmap或者RIV。其中,bitmap用于0或1指示周期内的一个或多个子帧或者时隙是不可用资源。bitmap的长度为周期包含的子帧数或者时隙数。其中,预先约定bitmap中是0还是1表示不可用资源,例如,约定bitmap中0表示不可用资源。RIV指示从起始子帧或时隙开始的一个或多个连续子帧或时隙为不可用资源,RIV计算方法与无线帧内指示。
可选地,不可用资源配置包括如下至少一个参数:周期,周期内的偏移O,持续时间t。其中,周期内的偏移O和持续时间t的粒度为子帧或者PRACH的时隙。
可选地,对于上述周期,第一个周期的起始位置与无线帧0的起始位置对齐。
对于成对频谱(频分双工),所有的随机接入时隙有效。
对于非成对频谱(时分双工),随机接入时机的有效性还与时分双工上下行配置以及SSB的时域位置有关。
对于非成对频谱,如果没有为IAB node MT提供时分双工上下行配置,则如果随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源没有交叠,则随机接入时机是有效的。
如果为IAB node MT提供了时分双工上下行配置,则如果随机接入时机在上行符号内,且随机接入时机在时域上与第一资源没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面,且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源没有交叠;或者,随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源没有交叠,则随机接入时机是有效的。
其中,第一资源为不可用资源配置指示的资源。IAB node MT可以从parent IAB node为IAB nodes提供的不可用资源配置中获取。
在一个可选的实施例中,parent IAB node为IAB nodes提供可用资源配置,用于指示IAB node MT可以使用的时间资源,即IAB node MT可用资源。如果parent IAB nodes为IAB node MT配置的随机接入时机在可用资源内,则随机接 入时机是有效的,即IAB node MT可以使用可用资源内的随机接入时机。
可用资源是连续时间资源,或者离散时间资源。
可选地,可用资源为如下任意一项或者任意组合:parent IAB node DU的可用资源,parent IAB node DU的可用资源的子集,潜在parent IAB node DU的可用资源,潜在parent IAB node DU的可用资源的子集,parent IAB node的child IAB node DU的不可用资源NA,parent IAB node的child IAB node DU的soft D资源,parent IAB node的child IAB node DU的soft U资源,parent IAB node的child IAB node DU的hard D资源,parent IAB node的child IAB node DU的hard F资源,parent IAB node的child IAB node DU的soft F资源,可以使用的PRACH资源,可用资源的确定取决于parent IAB node DU的实现。
可选地,上述child IAB node DU与IAB node MT位于同一个IAB node中。
其中,可用资源的指示方式与不可用资源指示方式类似,这里不再赘述。
对于成对频谱(频分双工),所有的随机接入时隙有效。
对于非成对频谱,如果没有为IAB node MT提供时分双工上下行配置,则如果随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在可用资源内,则随机接入时机是有效的。
如果为IAB node MT提供了时分双工上下行配置,则如果随机接入时机在上行符号内,且随机接入时机在可用资源内;或者,随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在可用资源内;或者,随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在可用资源内;或者,随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在可用资源内,则随机接入时机是有效的。
其中,可用资源为可用资源配置指示的资源。
在一个可选的实施例中,还可以通过以下方式判断随机接入时机的有效性:
对于一个IAB node,IAB node DU的hard资源是DU可以使用的资源,即IAB node的子链路(包括子接入链路和子回程链路)可以使用的资源。如果IAB node DU的hard资源与parent IAB node为IAB node MT配置的PRACH资源在时域上交叠,则由于半双工限制,IAB node MT和DU可能无法同时使用交叠的资源,因此一种处理方式是:如果IAB node DU的hard资源与parent IAB node 为IAB node MT配置的PRACH资源在时域上交叠,则与DU的hard资源在时域上有交叠的随机接入时机是无效的,即IAB node MT无法使用与DU的hard资源在时域上有交叠的随机接入时机发送前导码信号。
然而,对于支持频分复用(FDM)和空分复用(Space Division Multiplexing,SDM)的IAB node,IAB node MT和IAB node DU能同时发或者同时收,所以,如果hard资源是hard下行(Downlink,DL)或者hard F,则IAB node MT和IAB node DU可以同时发,所以IAB node MT可以认为与DU的hard DL或者hard F在时域上有交叠的随机接入时机仍然是有效的,因此,对于支持频分复用(FDM)和空分复用(SDM)的IAB node,还可以按如下方法判断随机接入时机的有效性:如果IAB node DU的hard UL与parent IAB node为IAB node MT配置的PRACH资源在时域上交叠,则与DU的hard UL在时域上有交叠的随机接入时机是无效的。
由于IAB node DU的资源配置是IAB node MT初始接入完成后才获得的,因此IAB node MT在初始接入时无法获得IAB node DU的资源配置。所以IAB node DU的资源配置可以仅用于专用PRACH资源的有效性判断,或者也可以用于IAB node MT初始接入后对公共PRACH资源的有效性判断。
对于成对频谱(频分双工),所有的随机接入时隙有效。
对于非成对频谱,如果没有为IAB node MT提供时分双工上下行配置,则如果随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第二资源没有交叠,则随机接入时机是有效的。
如果为IAB node MT提供了时分双工上下行配置,则如果随机接入时机在上行符号内,且随机接入时机在时域上与第二资源没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与第二资源没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面,且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第二资源没有交叠;或者,随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与第二资源没有交叠,则随机接入时机是有效的。
其中,第二资源为IAB node DU的hard资源,或者为IAB node DU用于传输重要信号或信道传输的hard资源,或者IAB node DU的hard UL资源,或者为IAB node DU用于传输重要信号或信道的hard UL资源。
其中,重要信号或者信道为如下任意一项或任意组合:SSB,系统信息,PRACH,URLLC相关的信号或信道。
其中,时分双工上下行配置,可以是公共的时分双工上下行配置,或者公共的时分双工上下行配置和专用的时分双工上下行配置。
由于parent IAB node DU知道IAB node DU的资源配置,所以parent IAB node DU和IAB node MT对随机接入时机有效性的判断结果是一致的。不会出现判断结果不一致导致的影响随机接入性能的问题。
在一个可选的实施例中,还可以基于DU的hard资源和不可用资源配置判断随机接入时机的有效性:
parent IAB node为IAB nodes提供不可用资源配置,用于指示IAB node MT不能使用的时间资源,即IAB node MT不可用资源。如果parent IAB nodes为IAB node MT配置的PRACH资源与所述不可用资源在时域上交叠,则与不可用资源在时域上交叠的随机接入时机是无效的,即IAB node MT不能使用与不可用资源在时域上交叠的随机接入时机。
另外,IAB node MT可以结合IAB node DU的资源配置进一步判断随机接入时机的有效性。即,对于成对频谱(频分双工),所有的随机接入时隙有效。
对于非成对频谱,如果没有为IAB node MT提供时分双工上下行配置,则如果随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源和第二资源都没有交叠,则随机接入时机是有效的。
如果为IAB node MT提供了时分双工上下行配置,则如果随机接入时机在上行符号内,且随机接入时机在时域上与第一资源和第二资源都没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后,或最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源和第二资源都没有交叠,则随机接入时机是有效的。
如果为IAB node MT提供了时分双工上下行配置,则如果随机接入时机在上行符号内,且随机接入时机在时域上与第一资源和第二资源都没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源和第二资源都没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面,且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源和第二资源都没有交叠;或者,随机接入时机 不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源和第二资源都没有交叠,则随机接入时机是有效的。
其中,第一资源为IAB node MT不可用资源,由parent IAB node为IAB nodes提供的不可用资源配置提供。
其中,第二资源为IAB node DU的hard资源,或者为IAB node DU用于重要信号或信道传输的hard资源,或者IAB node DU的hard UL资源,或者为IAB node DU用于重要信号或信道传输的hard UL资源。
其中,重要信号或者信道为如下任意一项或任意组合:SSB,系统信息,PRACH,URLLC相关的信号或信道。
其中,时分双工上下行配置,可以是公共的时分双工上下行配置,或者公共的时分双工上下行配置和专用的时分双工上下行配置。
在一个可选的实施例中,可以按照相关技术中的机制判断随机接入时机的有效性,并基于不可用资源确定有效的随机接入时机是否可用:
基于相关技术中的判断随机接入时机有效性的规则判断每个随机接入时机是否有效,对每个有效的随机接入时机,如果有效的随机接入时机在时域上与不可用资源没有交叠,则有效的随机接入时机是可用的,否则是不可用的。
其中,不可用资源为不可用资源配置指示的资源。
在一个可选的实施例中,还可以按照相关技术中的机制判断随机接入时机的有效性,并基于可用资源确定有效的随机接入时机是否可用:
基于相关技术中的判断随机接入时机有效性的规则判断每个随机接入时机是否有效,对每个有效的随机接入时机,如果有效的随机接入时机在可用资源内,则有效的随机接入时机是可用的,否则是不可用的。
其中,可用资源为可用资源配置指示的资源。
在一个可选的实施例中,还可以按照相关技术中的机制判断随机接入时机的有效性,对判断为有效的随机接入时机进一步判断其是否在时域上与不可用资源交叠。如果没有交叠,则随机接入时机有效。
其中,不可用资源为不可用资源配置指示的资源;或者上述实施例中的第一资源和/或第二资源。
在一个可选的实施例中,还可以按照相关技术中的机制判断随机接入时机的有效性,对判断为有效的随机接入时机进一步判断其是否在可用资源内。如 果在可用资源内,则随机接入时机有效,否则无效。
其中,可用资源为可用资源配置指示的资源。
有效的随机接入时机或者可用的随机接入时机才可用于传输随机接入信号。
在一个可选的实施例中,针对对配置表中的子帧或时隙偏移后随机接入格式跨无线帧的问题,s_offset可能应用到整个配置表,根据相关技术中的协议,各个随机接入格式format的持续时间duration如表2所示,其中OS为OFDM符号(OFDM symbol),对于format 1和2,其duration超过1ms,由于Subframe number仅仅是PRACH occasion的起始subframe,因此,如果s_offset应该到整个配置表,则可能出现preamble跨无线帧(frame)的情况。
例如,FR1 TDD PRACH configuration index 30,每个RACH occasion(RO)时域上占用3个子帧7,8,9,如果s_offset=1,则偏移之后每个RO在时域上占用子帧8,9以及下一个无线帧的子帧0。Index 36有类似的问题。
Rel-15的FR1 TDD PRACH configuration中,format 1的PRACH resource起始subframe只有一个值7,因此,对于s_offset=1,2,偏移之后的RO跨frame;format 2的PRACH resource起始subframe只有一个值6,因此,对于s_offset=1,2,3,偏移之后的RO跨frame。
RO跨frame导致的问题:
当NR系统的UL/DL configuration需要与长期演进(Long Term Evolution,LTE)TDD UL/DL configuration对齐时,NR TDD的子帧0应该是DL子帧,所以该RO是无效的,可能导致没有可用的RACH资源(resources);RO跨frame可能会影响parent backhaul link与child link的PRACH resources时域上的正交性,也就是说,如果RO跨frame,则不同frame的parent backhaul link和child link的RACH resources在时域上可能会交叠。
可以使用如下任何一种方法解决RO跨frame的问题:
1、对于IAB node定义ROs是否有效的规则,例如跨frame的RO是无效的。
2、当偏移后format 1和format 2的ROs跨frame时,需要slot粒度判断parent backhaul link与child link的PRACH resources时域上的正交性,因为即使frames不同PRACH resources也可能不正交。
3、定义规则:如果偏移后使得format 1/2对应的ROs跨frame,则该s_offset对format 1/format 2的subframe number无效,即认为s_offset=0,否则s_offset有效。
4、对于format 1和format 2单独配置基于subframe的(subframe-based)s_offset,配置合适的s_offset。
5、每个index单独配置s_offset,配置合适的s_offset。
表2:随机接入格式的持续时间
Figure PCTCN2020073229-appb-000003
上述实施例中,IAB节点的PRACH资源可以使用IAB nodes公用的系统信息发送,例如IAB-系统信息块1(System Information Block,SIB1),并且协议预定义IAB节点专用的IAB-系统信息(System Information,SI)-RNTI,用于对调度系统信息PDCCH的CRC加扰。
上述实施例中,IAB节点有时指的是IAB终端(IAB node MT),用于与父节点通信;有时指的是IAB基站(IAB node DU),用于与子节点通信。IAB节点具体指的是哪个可以根据上下文来区分。
Ngap的取值与普通终端的随机接入时隙有效性判断中Ngap的取值一样。
在同一个实施例或者同一个示例中出现的IAB node MT和IAB node DU是同一个IAB node的两个单元。
在时域上与SSB或者下行符号有交叠的随机接入时机也是无效的,也就是说,随机接入时机有效性的判断中还需满足随机接入时机在时域上与SSB或者下行符号没有交叠。
需要注意的是上述所有实施例和示例中,按照相关技术中的机制确定SSBs与有效的随机接入时机的映射关系。
综上所述,基于不可用资源配置和IAB node DU的资源配置判断随机接入时机的有效性,可以更合理地判断随机接入时机的有效性,减少无用信号发送,以避免不必要的干扰和功率消耗。并且还提供了区分普通UEs和IAB nodes的随机接入响应的方法,解决了UEs和IAB nodes的随机接入响应复用造成的即使UE和IAB node使用的PRACH资源不同但只有一个能够成功随机接入的情况。
在本实施例中提供了一种随机接入信号的发送方法,图6是根据本发明实施例的随机接入信号的发送方法的流程图,如图6所示,该流程包括如下步骤:
步骤S602,第二节点接收第一节点发送的资源配置信息。
步骤S604,第二节点基于资源配置信息确定随机接入时机的有效性。
步骤S606,第二节点在有效的随机接入时机下,向第一节点发送随机接入信号。
通过上述步骤,由于第二节点接收第一节点发送资源配置信息,第二节点基于资源配置信息确定随机接入时机的有效性,第二节点在有效的随机接入时机下,向第一节点发送随机接入信号,实现了第一节点和第二节点基于资源配置信息判断随机接入时机的有效性的目的,第二节点在有效的随机接入时机内发送随机接入信号,第一节点在有效的随机接入时机内接收随机接入信号。因此,可以解决相关技术中存在的随机接入时机有效性判断的问题,达到可以更合理地判断随机接入时机的有效性,减少无用信号发送,以避免不必要的干扰和功率消耗的效果。
可选地,上述步骤的执行主体可以为第二节点(例如IAB节点)等,但不限于此。
本实施例中的第一节点可以是donor IAB DU,或者parent IAB node DU。第二节点可以是IAB node。
在本实施例中,IAB节点既可以视为普通的终端(UE),也可以视为其他UE接入的基站,图3是IAB网络的架构示意图,如图3所示,与核心网之间存在有线连接的节点称为施主IAB(donor IAB),一个施主IAB无线连接一个或多个IAB节点(IAB node),同时为UEs提供无线接入功能。IAB节点与核心网之间不存在直接链接,其与核心网之间的交互需要一次或多次转发,并最终借助施主IAB实现。IAB node有两个功能:1)分布式单元(Distributed Unit,DU)功能,即IAB node像基站一样为UE或者子IAB node提供无线接入功能;2)移动终端(Mobile-Termination,MT)功能,即IAB nodes像UE一样被donor IAB或者上层IAB node控制和调度。
donor IAB和IAB nodes之间的链路以及IAB nodes之间的链路通称为回传链路(Backhaul Link,BL),IAB node和UE之间的链路称为接入链路(Access Link,AL)。考虑到IAB网络支持多跳(例如,对于IAB node3的下属节点来说经过4跳才能连接到donor IAB,经过donor IAB完成与核心网之间的交互),为了更清楚的描述链路,具体地,对于一个特定的IAB node,IAB node与其父节点即parent IAB node(可能是普通IAB node,也可能是donor IAB)之间的链路称为父回程链路(parent BL),IAB node与其子节点(child IAB node)之间的链路称为子回程链路(child BL),IAB node与UE之间的链路称为子接入链路(child AL)。为了保证父回程链路的鲁棒性,IAB网络支持冗余连接,例如,一个IAB node除了当前父节点外,可能还有一个或者多个潜在父节点,如图3所示,IAB node4和donor IAB node之间有无线连接,同时还和IAB node1有潜在无线连接。
在本实施例中,可以应用在IAB节点之间的随机信号的传输中。由于在半双工运行模式下,IAB node不能同时收发,例如IAB node 2MT向IAB node1发送随机接入前导(Random Access Preamble)时,不能同时接收child IAB node3或child UEs发送的随机接入前导,且IAB node的部署位置、天线配置以及移动性和普通UE有较大不同,这些对随机接入资源的配置有一定的限制和要求,另外,IAB node的冗余连接、IAB node DU的资源配置也会影响随机接入资源的配置,因此可以为IAB node配置随机接入资源,即资源配置信息。
此外,在NR Release15中,随机接入资源的配置是通过提供起始频率和频域复用的随机接入时机(PRACH occasion,RO)来实现的。随机接入资源配置是以表格的形式给出的,不同的频段范围和双工方式对应不同的表格,每个表格包含256种配置,配置索引0至255。实际配置时基站提供一个配置索引即可。例如6GHz以上频段TDD系统(即FR2 and unpaired spectrum),随机接入时域资源配置如表1所示(由于表格行数较多,这里仅仅给出了部分配置)。
其中,表1的各列的含义如下:
第1列PRACH Config.Index:配置索引。
第2列Preamble format:随机接入格式。
第3列(包含x和y):x为PRACH配置周期,取值为1到16,单位无线帧,即PRACH配置周期为10x毫秒;y为系统帧号(SFN,System Frame Number)模x后的余数,其物理意义为在PRACH配置周期内的第几个无线帧上会有PRACH时隙或者PRACH时机,例如y=0,则是第一个无线帧,y=1则是第二个无线帧。
第4列Slot number:包含ROs的时隙。对于6GHz以下频段(即FR1)为Subframe number。
第5列Starting symbol:RO在PRACH时隙中的起始符号编号(0~13)。
第6列Number of PRACH slots within a 60kHz slot:当PRACH的子载波间隔为120kHz时,PRACH时隙是60kHz slot内的第二个时隙(参数为1),还是60kHz slot内的两个时隙都是PRACH时隙(参数为2)。
第7列Number(#)of time-domain PRACH occasions within a PRACH slot:PRACH时隙内的时域RO的个数。
第8列PRACH duration是指每个随机接入格式所占用的OFDM符号数量。比如A1,就是2个符号;C2就是6个符号,C2中序列占4个符号,其他是CP和GP。对于随机接入长格式(序列长度为839)统一取值为0并无实际物理意义。
在一个可选的实施例中,考虑到IAB node需要满足半双工限制(half-duplex constraint),即不能同时收发,因此,IAB node的资源配置信息可以包括以下至少之一:物理随机接入信道PRACH的配置索引,PRACH的频域资源,同步信号块SSB与RACH occasions随机接入时机ROs的映射关系,起始逻辑根序列索引和循环移位Ncs,PRACH的配置周期缩放因子S,基于无线帧的偏移量y_offset,时隙号,子帧号,不可用资源配置。
在本实施例中,资源配置信息需要满足如下条件:对于一个IAB node,其parent backhaul link与child link(包括child access link和child backhaul link)上配置的PRACH资源应该是时分复用(TDM)的,即时域上正交。也就是说,IAB node MT发送前导码的PRACH资源与IAB node DU接收前导码的PRACH资源(即child UEs,child IAB nodes发送的前导码的PRACH资源)在时域上正交。
IAB node和普通UE的覆盖特性和移动性的不同。IAB Node作为一种特殊 的基站和终端的整合体,它的部署位置和普通终端有很大不同,比如IAB Node往往是固定在屋檐下等位置,挂高比普通终端高很多,便于和donor IAB或者parent IAB node建立直射径;又比如IAB Node往往具备比普通终端更多的天线数量;又比如IAB Node有可能需要放置在离IAB donor或者parent IAB node比普通终端更远的位置(如图3中IAB Node4),超出了普通终端的覆盖范围等。另外,IAB nodes通常位置是固定的,也就是说信道条件比较稳定,所以IAB nodes可以配置较大的PRACH配置周期,即PRACH配置表的第3列中的x可以更大。
而不同的随机接入格式支持不同覆盖范围、移动速度和对穿透损耗的抵抗能力等。因此,普通UEs和IAB nodes对PRACH资源的要求不同,一个IAB node或者donor IAB需要为child UEs和child IAB nodes配置不同的PRACH资源,包括单独为IAB nodes配置PRACH配置索引,PRACH频域资源,SSB与有效随机接入时机ROs的映射关系,前导码(包括起始逻辑根序列索引,循环移位Ncs等产生前导码序列的参数)。
为减少复杂度,IAB nodes的PRACH时域资源配置可以基于NR Release 15中终端UEs的PRACH配置表进行简单的扩展,包括:
扩展PRACH配置表中PRACH配置周期x,假设缩放因子为S,扩展后PRACH配置周期为S*x。
相对PRACH配置表中包含ROs的无线帧的偏移量y_offset,和/或相对PRACH配置表包含ROs的子帧的偏移量sb_offset,包含ROs的时隙的偏移量s_offset。
扩展后PRACH配置周期作为IAB nodes的PRACH配置周期,偏移后的无线帧或者子帧或时隙作为IAB nodes的包含ROs的子帧或时隙;或者扩展后PRACH配置周期作为IAB nodes的PRACH配置周期,parent IAB node可以直接配置slot number或者subframe number用于替换PRACH配置索引指示的slot number或者subframe number。替换后的slot number或者subframe number为包含ROs的时隙号或子帧号。
配置slot number或者subframe number的方式为如下任意一种:
方式1:预定义多组配置,每组配置对应一个时隙索引集合或者子帧索引集合,每组配置有suoin一个索引,将配置索引提供给IAB node MT。
方式2:用bitmap指示。例如对于比特值1对应的slot number或者subframe number用于替换PRACH配置索引指示的slot number或者subframe number。
其中,对于FR1,bitmap的长度为无线帧内包含的子帧数,对于FR2,bitmap的长度为无线帧内包含的60kHz子载波间隔的时隙数;或者,对于所有频段, bitmap长度为无线帧内包含的60kHz子载波间隔的时隙数,对于FR1仅仅部分比特有效,例如低10比特或者高10比特有效。
如果UEs和IAB nodes的PRACH资源配置不同,则IAB nodes在初始接入或者切换时,可以根据小区的PRACH资源配置来判断该小区是否能为IAB nodes提供服务。以避免选择不能为IAB nodes提供服务的小区。
由于UEs和IAB nodes的PRACH资源配置不同,UEs可能无法知道IAB nodes的PRACH资源,因此,如果UEs和IAB nodes的随机接入响应(RAR,Random Access Response)复用,则会出现即使UE和IAB node使用的PRACH资源不同,但UE和IAB node中只有一个能够成功随机接入的情况。例如,UE和IAB node MT使用相同的PRACH时频资源,但随机接入格式和前导码序列不同(但序列索引的范围都是0~64)。即IAB节点产生前导码序列的起始根序列索引,循环移位等与普通终端不同,这时期望的是普通终端和IAB终端(IAB node MT)即使使用相同的PRACH时频资源和前导码序列标识,也可以同时接入成功。但相关技术中的机制使得UE和IAB node对应同一个RAR,两者最多只能有一个随机接入成功。又比如,UE和IAB node的PRACH资源的时域起始位置相同,但是频域上是正交的(即FDM的),由于两者在频域上的资源索引都是0开始,例如普通终端在频域复用8个,IAB节点复用4个,它们对应的频域资源索引范围分别为0~7和0~4。所以即使两者的RACH资源没有交叠,但计算的RA-RNTI也可能相同,如果两者使用的前导码序列标识也是一样,则两者会对应同一个RAR,两者最多只能有一个随机接入成功。这不仅会增加普通终端或者IAB终端的随机接入时延,后续的随机接入过程还会产生不必要的干扰。因此,需要区分UEs和IAB nodes的RAR。比如,IAB nodes采用与UEs不同的RA-RNTI计算公式,或者用MAC RAR的预留域指示IAB终端的MAC RAR。
其中,RA-RNTI用于对随机接入响应对应的PDCCH的循环冗余校验(CRC,Cyclic redundancy check)进行加扰。
在一个可选的实施例中,PRACH的频域资源包括:PRACH的资源的起始频率;频域复用的PRACH的数量。在本实施例中,PRACH的资源的起始频率可以通过以下方式之一确定:第一节点基于激活的上行带宽BWP确定PRACH的资源的起始频率;第一节点基于终端设备的初始接入PRACH频域资源的起始物理资源块PRB的偏移确定PRACH的资源的起始频率;第一节点基于终端设备的初始接入PRACH频域资源的终止PRB的偏移确定PRACH的资源的起始频率。
在本实施例中,起始频率可以基于激活的上行带宽部分(BWP,Bandwidth  part)定义,也可以基于相对UEs初始接入的PRACH频域资源的起始PRB或终止PRB的偏移定义。例如,起始频率为相对于激活的上行BWP的第一个物理资源块(PRB,Physical Resource Block)的偏移,即相对于PRB0的偏移。或者,起始频率为相对UEs初始接入的PRACH频域资源的第一个PRB的偏移或最后一个PRB的偏移。
可选地,PRB对应的是激活的上行BWP对应的子载波间隔。
可选地,起始频率的默认值为激活的上行BWP的PRB0。
可选地,激活的上行BWP为初始接入阶段的初始激活的上行BWP或者初始接入后的激活的上行BWP。
其中,起始逻辑根序列索引和循环移位Ncs用于产生IAB nodes专用前导码。
可选地,也可以指定用于UEs随机接入的64个前导码中的一部分前导码作为IAB nodes的专用前导码。
IAB nodes的数量比UEs少,所以IAB nodes专用的前导码的总数可以少于64,比如8个,16个,32个。
在一个可选的实施例中,无线帧的偏移量y_offset包括:相对PRACH的预设资源配置表中的预设参数y的偏移量,其中,预设参数y是指在PRACH配置周期内的包含PRACH时机的无线帧索引,预设参数y用于指示在PRACH配置周期内包括PRACH时机的无线帧号。
其中,y_offset可以是相对于PRACH配置表中参数y的偏移量,或者用于替换参数y的量。
假定IAB PRACH configuration period最大为Tmax个frames。包含ROs的SFN满足:
mod(SFN,x*S)=mod(y+y_offset,x*S),其中,0≤y_offset<Tmax或者0≤y_offset<x*S。或者,
mod(SFN,min{x*S,Tmax})=mod(y+y_offset,min{x*S,Tmax}),其中,0≤y_offset<Tmax或者0≤y_offset<x*S或者0≤y_offset<min{x*S,Tmax}。
其中,基于子帧的偏移量sf_offset为相对于PRACH配置表中子帧号subframe number的偏移量。
其中,基于时隙的偏移量s_offset为相对于PRACH配置表中时隙号slot number的偏移量。
根据相关技术中的协议,slot/subframe number是一个无线帧内(10ms)的编号,每个子帧1ms,slot number相对于60kHz子载波间隔而言的。因为一个 无线帧包含10个subframes,所以偏移sf_offset之后的subframes number以及sf_offset的取值范围如下:
SF_number=mod(sf_number+sf_offset,10),其中0≤sf_offset<10;
其中,sf_number表示Rel-15PRACH configuration index对应的subframe number,SF_number表示偏移sf_offset之后的subframe number。
因为一个无线帧包含40个60kHz的slots,所以偏移s_offset之后的slots number以及s_offset的取值范围如下:
S_number=mod(s_number+s_offset,40),其中0≤s_offset<40;
其中,s_number表示Rel-15PRACH configuration index对应的slot number,S_number表示偏移s_offset之后的subframe number。
其中,对于每个PRACH配置索引,单独配置PRACH配置周期缩放因子S;或者,对于整个PRACH配置表配置一个PRACH配置周期缩放因子。
如果没有给IAB nodes(IAB终端)配置如下参数:PRACH配置索引,PRACH频域资源,SSB与有效ROs的映射关系,前导码中的任意一项或者任意组合,或者没有给IAB nodes配置PRACH资源相关的其他任何参数,则IAB nodes重用UEs的PRACH资源配置中的相应参数。
IAB nodes根据PRACH配置索引和PRACH频域资源,结合缩放因子S,偏移量y_offset,偏移量s_offset,偏移量sf_offset中至少一项确定PRACH资源。
可选地,对于缩放因子S,偏移量y_offset,偏移量s_offset,偏移量sf_offset,如果没有配置,则默认值为0。
在一个可选的实施例中,除上述参数外,IAB nodes还可以接收parent IAB node提供如下至少一项PRACH相关参数:可用的随机接入的前导码总数,每个SSB对应的基于竞争的前导码总数,每个SSB对应的组A中基于竞争的前导码总数,选择前导码组的传输块大小门限,选择前导码组的路损计算参数,随机接入信号(msg1)使用的子载波间隔,选择SSB和对应PRACH资源需要满足的SSB接收功率门限,功率相关参数,限制集配置,msg3的预编码等。
在一个可选的实施例中,子帧号包括:用于替换PRACH的预设资源配置表中PRACH配置索引指示的子帧号,其中,替换后的子帧号是包括ROs子帧的索引集合。时隙号包括:用于替换PRACH的预设资源配置表中PRACH配置索引指示的时隙号,其中,替换后的时隙号是包括ROs时隙的索引集合。
在上述实施例中,假定IAB nodes的PRACH configuration period最大为Tmax个系统帧。可选地,Tmax为16,32,64,128,256中的一个。缩放因子S=2k, 其中k为非负整数,其最大值取决于IAB nodes的PRACH配置周期的最大值。
对于每个PRACH配置索引,S的最大值取决于IAB nodes的PRACH配置周期的最大值Tmax和PRACH配置索引中的x值,例如S的最大值为Tmax除以x。
对于IAB nodes,包含ROs的系统帧号SFN可以根据如下几种方式确定:
方式1:SFN满足mod(SFN,S*x)=mod(y+y_offset,S*x),其中,y_offset为整数,且0≤y_offset<Tmax或者0≤y_offset<S*x或者0≤y_offset<min{x*S,Tmax}。
方式2:y=y_offset,即直接替换配置表中的参数y,即SFN满足mod(SFN,x*S)=y_offset,其中,y_offset为整数,且0≤y_offset<S*x。
3)如果PRACH配置索引中y包含多个值,则y_offset为参数y的第一个值y1,参数y中的其他值为PRACH配置表中相应值与y1的差+y_offset,例如PRACH配置表中y={y1,y2},则由y_offset可得y={y_offset,y_offset+y2-y1},否则y=y_offset。其中,y_offset为整数,且0≤y_offset<S*x;
其中,y为PRACH配置表中的参数y。
需要说明的是,如果S*x>Tmax,则S*x=Tmax,否则上述公式不变。
考虑到在NR R15中,对于FR1,每个PRACH configuration index对应一个y值,即在PRACH configuration period内所有ROs包含在一个frame内;对于FR2频段,通常情况下也只有一个y值,少数配置对应的y为{1,2},考虑到IAB node与IAB node之间的信道条件比较稳定,在一个PRACH configuration period内没有必要配置多个frames包含ROs,所以方式2是更简单直观的y_offset方案。
在一个可选的实施例中,可以采用不同的PRACH频域索引编号或对PRACH频域索引编号进行偏移来计算RA-RNTI。
相关技术中的协议中UE在频域上复用的PRACH的最大数量为8个,索引编号f_id的范围为0≤f_id<8的整数,因此可以对IAB node在频域上复用的PRACH索引从8开始编号,假设IAB node在频域上复用的PRACH最大数量为Nprach,Nprach的值可以预先定义,且使得RA-RNTI的值小于65519。则IAB node在频域上复用的PRACH索引编号为8≤f_id<8+Nprach的整数。
为了与UE的RA-RNTI(Random Access-Radio Network Temporary Identifier)区分开,因此,对于IAB nodes,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×(8+Nprach)×ul_carrier_id      公式1;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(8≤f_id<8+Nprach),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
另外,还有一种方式是对IAB node在频域上复用的PRACH索引从0开始编号,对IAB nodes的RA-RNTI计算公式中f_id偏移8,因此,对于IAB nodes,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×(f_id+8)+14×80×(8+Nprach)×ul_carrier_id      公式2;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(0≤f_id<Nprach),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
可选地,Nprach=8,则上述两个公式1和公式2分别为:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×16×ul_carrier_id;
RA-RNTI=1+s_id+14×t_id+14×80×(f_id+8)+14×80×16×ul_carrier_id。
在一个可选的实施例中,可以采用不同时隙索引或者对时隙索引偏移来计算RA-RNTI。
对IAB nodes在无线帧内的时隙索引从80开始编号,即无线帧内的第一个时隙索引为80,第二个为81,以此类推。
因此,对于IAB nodes,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×160×f_id+14×160×8×ul_carrier_id;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(80≤t_id<160),f_id是在频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
另外,还有一种方式是,对IAB nodes在无线帧内的时隙索引从0开始编号, 对IAB nodes的RA-RNTI计算公式中t_id偏移80。
因此,对于IAB nodes,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×(t_id+80)+14×160×f_id+14×160×8×ul_carrier_id;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
在一个可选的实施例中,传输随机接入前导码的PRACH对应的RA-RNTI还可以通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×identifier;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波),identifier用于表示RA-RNTI计算公式是针对普通终端的还是IAB节点的,对于普通终端identifier为0,对于IAB节点identifier为1。
在一个可选的实施例中,对于IAB终端(IAB node MT),传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
对于普通终端,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id;
其中,s_id是给定的PRACH的第一个OFDM符号索引(0≤s_id<14),t_id是系统帧内给定的PRACH的第一个时隙索引(0≤t_id<80),f_id是在 频域上给定的PRACH索引(0≤f_id<8),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
在一个可选的实施例中,对于IAB节点,传输随机接入前导码的PRACH对应的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+s×t_id+s×t×f_id+s×t×f×ul_carrier_id+s×t×f×2;或者,
RA-RNTI=1+s_id+s+s×t×f×ul_carrier_id+s×tul_carrier_id;
其中,s_id是给定的PRACH的第一个OFDM符号索引(s0≤s_id<s),t_id是系统帧内给定的PRACH的第一个时隙索引(t0≤t_id<t),f_id是在频域上给定的PRACH索引(f0≤f_id<f),ul_carrier_id是用于指示传输随机接入前导码的上行载波(0表示普通上行载波,1表示补充上行载波)。
其中,在时隙内OFDM符号从s0开始编号,即时隙内的第一个OFDM符号索引为s0,第二个为s0+1,以此类推。
其中,在无线帧内的时隙索引从t0开始编号,即无线帧内的第一个时隙索引为t0,第二个为t1,以此类推;在无线帧内的时隙索引从t0开始编号,即无线帧内的第一个时隙索引为t0,第二个为t0+1,以此类推;
其中,在频域上PRACH索引从f0开始编号,即从低频开始,频域上第一PRACH资源的PRACH索引为f0,第二个为f0+1,以此类推。
其中,s0,t0,f0,s,t,f的值需要预定义,例如s0=0,t0=0,f0=0,s=14,t=80,f=8;或者s0=14,t0=0,f0=0,s=28,t=80,f=8;或者s0=0,t0=80,f0=0,s=14,t=160,f=8;或者s0=0,t0=0,f0=8,s=14,t=80,f=16。
在一个可选的实施例中,使用MAC RAR中的预留域指示IAB nodes专用MAC RAR。
在NR Rel-15中,如图4所示,一个MAC PDU包含一个或多个MAC subPDU以及可选的补充比特(padding),每个MAC subPDU由如下之一组成:
-BI only:仅仅带Backoff指示的MAC子头。
-RAPID(Random Access Preamble Identifier)only:仅仅带RAPID的MAC子头(即系统信息请求的确认)。
-RAPID and RAR:带RAPID的MAC子头和MAC RAR。
其中,如果MAC PDU包含BI only,则BI only位于MAC PDU的开始处。RAPID only和RAPID and RAR可以放在MAC PDU中BI only和补充比特 (padding)之间的任何位置。
如图5所示,可以使用MAC RAR中的预留比特R来指示该MAC RAR是否是IAB nodes的MAC RAR。例如R=0表示不是IAB nodes的MAC RAR,R=1表示是IAB nodes的MAC RAR。
每个MAC RAR对应一个子头(subheader),子头中包含RAPID,子头与MAC RAR构成一个MAC subPDU,如果在MAC PDU中普通终端(UEs)发送的随机接入信号对应的RAPID与IAB nodes发送的随机接入信号对应的RAPID相同,则普通终端的MAC subPDU应该在IAB nodes的MAC subPDU前面。例如终端对应MAC subPDU为第n个,则IAB nodes对应MAC subPDU为第n+k个,k为正整数。
当普通终端和IAB终端的发送前导码信号的PRACH时频资源一样,且前导码索引一样时,普通终端和IAB终端的RA-RNTI一样,且普通终端与IAB终端的RAPID也一样,因此它们的MAC RAR会复用在一个MAC PDU中,为了IAB终端能够区分自己的MAC RAR,可以使用MAC RAR中的预留比特R来指示该MAC RAR是否是IAB终端的MAC RAR。为了避免普通终端错误检测到IAB终端的MAC RAR,因此在MAC PDU中普通终端的MAC subPDU应该在IAB终端的MAC subPDU前面。
因为普通终端不能识别R,这样可以避免普通终端把IAB终端的MAC RAR当成自己,从而造成接入失败,同时也会影响IAB终端的初始接入。
需要说明的是,在上述示例的所有RA-RNTI的计算公式中,对随机接入格式0、1、2和3(即preamble长度为839的长格式),s_id和t_id是根据PRACH资源所在的激活的上行BWP的子载波间隔确定的。对于随机接入格式A1/B1,A2/B2,A3/B3,A1,A2,A3,B1,B4,C0,C2(即preamble长度为139短格式),s_id和t_id是根据PRACH资源所在的激活的上行BWP的子载波间隔确定的,或者根据PRACH的子载波间隔确定的,需要协议预先定义。
可选地,对于随机接入格式A1/B1,A2/B2,A3/B3,A1,A2,A3,B1,B4,C0,C2(即preamble长度为139短格式),s_id和t_id是根据PRACH的子载波间隔确定的。
在一个可选的实施例中,可以通过以下方式之一判断随机接入时机的有效性:
在第一节点没有为第二节点提供时分双工的上下行配置的情况下,在随机接入时机满足以下条zhish件的情况下,随机接入时机有效:随机接入时机不在PRACH的时隙内的SSB的前面,随机接入时机的起点在最后一个SSB接收符 号的至少Ngap个符号之后,随机接入时机在时域上与特定资源没有交叠。
在第一节点为第二节点提供时分双工的上下行配置的情况下,在随机接入时机满足以下条件之一的情况下,随机接入时机有效:随机接入时机在上行符号内,且随机接入时机在时域上与特定资源没有交叠;随机接入时机的不在PRACH时隙内SSB的前面,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在PRACH时隙内SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在所述PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠。
其中,特定资源包括以下至少之一:第二节点不能使用的资源,第二节点的基站单元的hard资源,第二节点的基站单元用于传输重要信号或信道的hard资源,第二节点的基站单元的hard UL资源,第二节点的基站单元用于传输重要信号或信道传输的hard UL资源。
重要信号或者信道包括以下至少之一:SSB,系统信息,PRACH,URLLC的信号或信道。
在本实施例中,IAB node有两个功能单元MT和DU,其中MT是IAB节点中充当UE功能的单元,因此,MT的资源类型和普通UE一样,包括下行时间资源(D),上行时间资源(U),灵活的时间资源(F),其中F可用灵活地作为上行或者下行资源使用。对于DU,其资源类型为:D,U,F,不可用时间资源(NA,not available time resource)。其中,NA指DU不能使用的资源,每个D、U和F又有如下两类属性:硬(hard)和软(soft),hard指DU总是可用的资源,soft资源是否可用可以通过显式或隐式方式进一步指示。因此对于DU的资源包括如下7种类型:hard D,soft D,hard U,soft L,hard F,soft F,NA。
IAB node DU资源配置需要考虑配置的灵活性与比特开销的折中,由于IAB node DU要为普通UE提供服务,因此DU的资源配置可能还会受Release 15的公共TDD上下行配置(例如TDD-UL-DL-ConfigurationCommon)模式的限制,因此,对于一个IAB node,由于PRACH时域资源配置是从表格中选的,并且选择还会受公共TDD上下行配置的影响,所以parent IAB node DU的NA资源可能与parent IAB node为IAB node MT配置的PRACH资源在时域上交叠。另外,对于一个IAB node,很有可能IAB node DU的hard资源与parent IAB node为IAB node MT配置的PRACH资源在时域上是交叠的。在这种情况下,需要 相关的方案来使得IAB node在半双工限制下能够工作。
另外,IAB node有可能需要随机接入到当前parent IAB node之外的其他IAB node,为描述方便我们称之为潜在parent IAB node。如图3中的IAB node4除了随机接入到donor IAB(即parent IAB node)外,可能还需要随机接入到IAB node1,例如维持与IAB node1之间的基本同步,以便当IAB ndoe4与donor IAB之间的链路质量较差时能快速切换到IAB node1,或者IAB node4可能需要执行到IAB node1的随机接入并切换到IAB node1。即IAB node1为IAB node4的潜在parent IAB node。而parent IAB node和潜在parent IAB node为IAB node MT配置的PRACH资源可能不同,因此,即使parent IAB node为IAB node MT配置的PRACH资源与IAB node DU的hard资源在时域上不交叠,也很难同时保证一个或多个潜在parent IAB nodes为IAB node MT配置的PRACH资源与IAB node DU的hard资源在时域上正交。在这种情况下,也需要相关的方案来使得IAB node在半双工限制下能够工作。
根据PRACH资源配置获取的随机接入时机可能是无效的,比如随机接入时机与下行信号SSB在时域上交叠,由于半双工或者干扰的限制,parent IAB node在发送SSB时不能接收上行随机接入信号,因此,终端(UEs或者IAB node MTs)也不需要发送上行随机接入信号,所以需要制定随机接入时机有效性的判断准则。否则,不仅会产生干扰,还会使得随机接入信号的收发两端对SSB和随机接入时机的映射理解不一致,造成随机接入失败。
在一个可选的实施例中,parent IAB node为IAB nodes提供的不可用资源配置,用于指示IAB node MT不能使用的时间资源,即IAB node MT不可用资源。如果parent IAB nodes为IAB node MT配置的PRACH资源与所述不可用资源在时域上交叠,则与不可用资源在时域上交叠的随机接入时机是无效的,即IAB node MT不能使用与不可用资源在时域上交叠的随机接入时机。
PRACH资源可以是系统消息配置的公共PRACH资源,也可以是专用RRC信令配置的专用PRACH资源。
不可用资源是连续时间资源,或者离散时间资源。
可选地,不可用资源为如下至少之一:parent IAB node DU的不可用资源,parent IAB node DU的不可用资源的子集,潜在parent IAB node DU的不可用资源,潜在parent IAB node DU的不可用资源的子集,parent IAB node的child IAB node DU的hard资源,Parent IAB node的child IAB node DU的hard UL资源,不能使用的PRACH资源,不可用资源的确定取决于parent IAB node DU的实现。
可选地,不可用资源为每个无线帧内的连续时间资源或者离散时间资源。
可选地,指示每个无线帧内的不可用资源的方式为如下任意一种:1、第k1至第k2个子帧或时隙;2、后M1个子帧或时隙;3、后M2个偶数编号的子帧或时隙;4、后M3个奇数编号的子帧或时隙;5、用资源指示值(RIV,Resource indicator value)指示;6、bitmap,bitmap长度为无线帧内包含的子帧或时隙数,预先约定bitmap中是0还是1表示不可用资源;7、无线帧内的资源分组,对分组后的资源用于bitmap指示一个或多个组为不可用资源。
RIV根据无线帧内包含的子帧或时隙数N、不可用资源的起始子帧或时隙Tstart以及连续的子帧或时隙数L来确定:如果(L-1)<floor(N/2),则RIV=N(L-1)+Tstart,否则,RIV=N(N-L+1)+(N-1-Tstart),其中,k1,k2,M1,M2,M3为小于等于N的整数。
可选地,所述不可用资源为周期的不可用的连续时间资源或者离散时间资源。
可选地,不可用资源配置包括周期,bitmap或者RIV。其中,bitmap用于0或1指示周期内的一个或多个子帧或者时隙是不可用资源。bitmap的长度为周期包含的子帧数或者时隙数。其中,预先约定bitmap中是0还是1表示不可用资源,例如,约定bitmap中0表示不可用资源。RIV指示从起始子帧或时隙开始的一个或多个连续子帧或时隙为不可用资源,RIV计算方法与无线帧内指示。
可选地,不可用资源配置包括如下至少一个参数:周期,周期内的偏移O,持续时间t。其中,周期内的偏移O和持续时间t的粒度为子帧或者PRACH的时隙。
可选地,对于上述周期,第一个周期的起始位置与无线帧0的起始位置对齐。
对于成对频谱(频分双工),所有的随机接入时隙有效。
对于非成对频谱(时分双工),随机接入时机的有效性还与时分双工上下行配置以及SSB的时域位置有关。
对于非成对频谱,如果没有为IAB node MT提供时分双工上下行配置,则如果随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源没有交叠,则随机接入时机是有效的。
如果为IAB node MT提供了时分双工上下行配置,则如果随机接入时机在上行符号内,且随机接入时机在时域上与第一资源没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后,或最后一个SSB接收符号的至少Ngap个符号之后, 且随机接入时机在时域上与第一资源没有交叠,则随机接入时机是有效的。
其中,所述第一资源为IAB node MT不可用资源。IAB node MT可以从parent IAB node为IAB nodes提供的不可用资源配置中获取。
在一个可选的实施例中,还可以通过以下方式判断随机接入时机的有效性:
对于一个IAB node,IAB node DU的hard资源是DU可以使用的资源,即IAB node的子链路(包括子接入链路和子回程链路)可以使用的资源。如果IAB node DU的hard资源与parent IAB node为IAB node MT配置的PRACH资源在时域上交叠,则由于半双工限制,IAB node MT和DU可能无法同时使用交叠的资源,因此一种处理方式是:如果IAB node DU的hard资源与parent IAB node为IAB node MT配置的PRACH资源在时域上交叠,则与DU的hard资源在时域上有交叠的随机接入时机是无效的,即IAB node MT无法使用与DU的hard资源在时域上有交叠的随机接入时机发送前导码信号。
然而,对于支持频分复用(FDM)和空分复用(SDM)的IAB node,IAB node MT和IAB node DU能同时发或者同时收,所以,如果hard资源是hard DL或者hard F,则IAB node MT和IAB node DU可以同时发,所以IAB node MT可以认为与DU的hard DL或者hard F在时域上有交叠的随机接入时机仍然是有效的,因此,对于支持频分复用(FDM)和空分复用(SDM)的IAB node,还可以按如下方法判断随机接入时机的有效性:如果IAB node DU的hard UL与parent IAB node为IAB node MT配置的PRACH资源在时域上交叠,则与DU的hard UL在时域上有交叠的随机接入时机是无效的。
由于IAB node DU的资源配置是IAB node MT初始接入完成后才获得的,因此IAB node MT在初始接入时无法获得IAB node DU的资源配置。所以IAB node DU的资源配置可以仅用于专用PRACH资源的有效性判断,或者也可以用于IAB node MT初始接入后对公共PRACH资源的有效性判断。
对于成对频谱(频分双工),所有的随机接入时隙有效。
对于非成对频谱,如果没有为IAB node MT提供时分双工上下行配置,则如果随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第二资源没有交叠,则随机接入时机是有效的。
如果为IAB node MT提供了时分双工上下行配置,则如果随机接入时机在上行符号内,且随机接入时机在时域上与第二资源没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后,或最后一个SSB接收符号的至少Ngap个符号之后, 且随机接入时机在时域上与第二资源没有交叠,则随机接入时机是有效的。
其中,第二资源为IAB node DU的hard资源,或者为IAB node DU用于传输重要信号或信道传输的hard资源,或者IAB node DU的hard UL资源,或者为IAB node DU用于传输重要信号或信道的hard UL资源。
其中,重要信号或者信道为如下任意一项或任意组合:SSB,系统信息,PRACH,URLLC相关的信号或信道。
其中,时分双工上下行配置,可以是公共的时分双工上下行配置,或者公共的时分双工上下行配置和专用的时分双工上下行配置。
由于parent IAB node DU知道IAB node DU的资源配置,所以parent IAB node DU和IAB node MT对随机接入时机有效性的判断结果是一致的。不会出现判断结果不一致导致的影响随机接入性能的问题。
在一个可选的实施例中,还可以基于DU的hard资源和不可用资源配置判断随机接入时机的有效性:
parent IAB node为IAB nodes提供不可用资源配置,用于指示IAB node MT不能使用的时间资源,即IAB node MT不可用资源。如果parent IAB nodes为IAB node MT配置的PRACH资源与所述不可用资源在时域上交叠,则与不可用资源在时域上交叠的随机接入时机是无效的,即IAB node MT不能使用与不可用资源在时域上交叠的随机接入时机。
另外,IAB node MT可以结合IAB node DU的资源配置进一步判断随机接入时机的有效性。即,
对于成对频谱(频分双工),所有的随机接入时隙有效。
对于非成对频谱,如果没有为IAB node MT提供时分双工上下行配置,则如果随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源和第二资源都没有交叠,则随机接入时机是有效的。
如果为IAB node MT提供了时分双工上下行配置,则如果随机接入时机在上行符号内,且随机接入时机在时域上与第一资源和第二资源都没有交叠;或者,随机接入时机不在PRACH时隙内SSB的前面且随机接入时机起点在最后一个下行符号的至少Ngap个符号之后,或最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与第一资源和第二资源都没有交叠,则随机接入时机是有效的。
其中,第一资源为IAB node MT不可用资源,由parent IAB node为IAB nodes 提供的不可用资源配置提供。
其中,第二资源为IAB node DU的hard资源,或者为IAB node DU用于重要信号或信道传输的hard资源,或者IAB node DU的hard UL资源,或者为IAB node DU用于重要信号或信道传输的hard UL资源。
其中,重要信号或者信道为如下任意一项或任意组合:SSB,系统信息,PRACH,URLLC相关的信号或信道。
其中,时分双工上下行配置,可以是公共的时分双工上下行配置,或者公共的时分双工上下行配置和专用的时分双工上下行配置。
在一个可选的实施例中,针对对配置表中的子帧或时隙偏移后随机接入格式跨无线帧的问题,s_offset可能应用到整个配置表,根据相关技术中的协议,各个随机接入格式format的持续时间duration如表2所示,其中OS为OFDM符号(OFDM symbol),对于format 1和2,其duration超过1ms,由于Subframe number仅仅是PRACH occasion的起始subframe,因此,如果s_offset应该到整个配置表,则可能出现preamble跨无线帧(frame)的情况。
例如,FR1 TDD PRACH configuration index 30,每个RACH occasion(RO)时域上占用3个子帧7,8,9,如果s_offset=1,则偏移之后每个RO在时域上占用子帧8,9以及下一个无线帧的子帧0。Index 36有类似的问题。
Rel-15的FR1 TDD PRACH configuration中,format 1的PRACH resource起始subframe只有一个值7,因此,对于s_offset=1,2,偏移之后的RO跨frame;
format 2的PRACH resource起始subframe只有一个值6,因此,对于s_offset=1,2,3,偏移之后的RO跨frame。
RO跨frame导致的问题:
当NR系统的UL/DL configuration需要与LTE TDD UL/DL configuration对齐时,NR TDD的子帧0应该是DL子帧,所以该RO是无效的,可能导致没有可用的RACH resources。
RO跨frame可能会影响parent backhaul link与child link的PRACH resources时域上的正交性,也就是说,如果RO跨frame,则不同frame的parent backhaul link和child link的RACH resources在时域上可能会交叠。
可以使用如下任何一种方法解决RO跨frame的问题:
1、对于IAB node定义ROs是否有效的规则,例如跨frame的RO是无效的。
2、当偏移后format 1和format 2的ROs跨frame时,需要slot粒度判断parent backhaul link与child link的PRACH resources时域上的正交性,因为即使frames 不同PRACH resources也可能不正交。
3、定义规则:如果偏移后使得format 1/2对应的ROs跨frame,则该s_offset对format 1/format 2的subframe number无效,即认为s_offset=0,否则s_offset有效。
4、对于format 1和format 2单独配置subframe-based s_offset,配置合适的s_offset。
5、每个index单独配置s_offset,配置合适的s_offset。
上述实施例中,IAB节点的PRACH资源可以使用IAB nodes公用的系统信息发送,例如IAB-SIB1,并且协议预定义IAB节点专用的IAB-SI-RNTI,用于对调度系统信息PDCCH的CRC加扰。
上述实施例中,IAB节点有时指的是IAB终端(IAB node MT),用于与父节点通信;有时指的是IAB基站(IAB node DU),用于与子节点通信。IAB节点具体指的是哪个可以根据上下文来区分。
Ngap的取值与普通终端的随机接入时隙有效性判断中Ngap的取值一样。
综上所述,基于不可用资源配置和IAB node DU的资源配置判断随机接入时机的有效性,可以更合理地判断随机接入时机的有效性,减少无用信号发送,以避免不必要的干扰和功率消耗。并且还提供了区分普通UEs和IAB nodes的随机接入响应的方法,解决了UEs和IAB nodes的随机接入响应复用造成的即使UE和IAB node使用的PRACH资源不同但只有一个能够成功随机接入的情况。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明实施例所述的方法。
在本实施例中还提供了一种随机接入信号的接收装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本发明实施例的随机接入信号的接收装置的结构框图,如图7 所示,该装置包括:第一发送模块72和第一接收模块74,下面对该装置进行详细说明:第一发送模块72,用于向第二节点发送资源配置信息;第一接收模块74,连接至上述中的第一发送模块72,用于根据资源配置信息接收第二节点发送的随机接入信号,其中,资源配置信息用于指示第二节点在有效的随机接入时机下发送随机接入信号。
通过上述模块,由于第一节点向第二节点发送资源配置信息,第一节点根据资源配置信息接收第二节点发送的随机接入信号,实现了第一节点和第二节点基于资源配置信息判断随机接入时机的有效性的目的,第二节点在有效的随机接入时机内发送随机接入信号,第一节点在有效的随机接入时机内接收随机接入信号。因此,可以解决相关技术中存在的随机接入时机有效性判断的问题,达到可以更合理地判断随机接入时机的有效性,减少无用信号发送,以避免不必要的干扰和功率消耗的效果。
在一个可选的实施例中,资源配置信息包括以下至少之一:物理随机接入信道PRACH的配置索引,PRACH的频域资源,同步信号块SSB与随机接入时机ROs的映射关系,起始逻辑根序列索引和循环移位Ncs,PRACH的配置周期缩放因子S,基于无线帧的偏移量y_offset,时隙号,子帧号,不可用资源配置,可用资源配置。
在一个可选的实施例中,PRACH的频域资源包括:PRACH的资源的起始频率;频域复用的PRACH的数量。
在一个可选的实施例中,PRACH的资源的起始频率通过以下方式之一确定:第一节点基于激活的上行带宽BWP确定PRACH的资源的起始频率;第一节点基于终端设备的初始接入PRACH频域资源的起始物理资源块PRB的偏移确定PRACH的资源的起始频率;第一节点基于终端设备的初始接入PRACH频域资源的终止PRB的偏移确定PRACH的资源的起始频率。
在一个可选的实施例中,无线帧的偏移量y_offset包括:相对PRACH的预设资源配置表中的预设参数y的偏移量,其中,预设参数y是指在PRACH配置周期内的包含PRACH时机的无线帧索引。
在一个可选的实施例中,随机接入时机所在的无线帧号SFN满足以下公式之一:mod(SFN,min{x*S,Tmax})=mod(y+y_offset,min{x*S,Tmax}),其中,y_offset是整数,且0≤y_offset<Tmax;mod(SFN,x*S)=y_offset,其中,y_offset是整数,且0≤y_offset<x*S;其中,x和y是PRACH的预设资源配置表中的参数,Tmax是第二节点允许的PRACH的配置周期的最大值。
在一个可选的实施例中,第一节点根据资源配置信息接收第二节点发送的 随机接入信号之后,第一节点向第二节点发送随机接入响应,其中,随机接入响应对应的物理下行控制信道PDCCH的循环冗余校验CRC使用RA-RNTI加扰;RA-RNTI与传输随机接入信号的PRACH相对应,RA-RNTI的计算公式包括:RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2;s_id是PRACH的第一个正交频分复用OFDM的符号索引,0≤s_id<14;t_id是PRACH的第一个时隙索引,0≤t_id<80;f_id是PRACH的频域索引,0≤f_id<8;ul_carrier_id是用于指示PRACH传输随机接入信号的上行载波。
在一个可选的实施例中,第一节点根据资源配置信息接收第二节点发送的随机接入信号之后,第一节点向第二节点发送随机接入响应,其中,随机接入响应中的MAC-RAR的预留域指示MAC-RAR是第二节点的MAC-RAR。
在一个可选的实施例中,每个MAC-RAR对应一个子头,子头中包括随机接入前导标识RAPID;子头与MAC-RAR构成媒体接入控制协议数据单元MAC subPDU;在媒体接入控制的协议数据单元MAC-PDU中的终端设备发送的随机接入信号对应的RAPID,与第二节点发送的随机接入信号对应的RAPID相同的情况下,终端设备的MAC subPDU在所述第二节点的MAC subPDU的前面。
在一个可选的实施例中,子帧号包括:用于替换PRACH的预设资源配置表中PRACH配置索引指示的子帧号,其中,替换后的子帧号是包括ROs子帧的索引集合。
在一个可选的实施例中,时隙号包括:用于替换PRACH的预设资源配置表中PRACH配置索引指示的时隙号,其中,替换后的时隙号是包括ROs时隙的索引集合。
在一个可选的实施例中,第一节点根据资源配置信息接收第二节点发送的随机接入信号之前,还包括:第一节点判断随机接入时机的有效性,其中,第一节点判断随机接入时机的有效性包括以下之一:在第一节点没有为第二节点提供时分双工的上下行配置的情况下,在随机接入时机满足以下条件的情况下,随机接入时机有效:随机接入时机的不在PRACH的时隙内的SSB的前面,随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后,随机接入时机在时域上与特定资源没有交叠。
在第一节点为第二节点提供时分双工的上下行配置的情况下,在随机接入时机满足以下条件之一的情况下,随机接入时机有效:随机接入时机在上行符号内,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在PRACH时隙内SSB的前面,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在PRACH时隙内SSB的前面,随机接入的起点在最后一个SSB接收符号的至 少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在所述PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;其中,特定资源包括以下至少之一:第二节点不能使用的资源,第二节点的基站单元的hard资源,第二节点的基站单元用于传输重要信号或信道的hard资源,第二节点的基站单元的hard UL资源,第二节点的基站单元用于传输重要信号或信道传输的hard UL资源;重要信号或者信道包括以下至少之一:SSB,系统信息,PRACH,URLLC的信号或信道。
在一个可选的实施例中,第一节点根据资源配置信息接收第二节点发送的随机接入信号之前,还包括:第一节点判断随机接入时机的有效性,其中,第一节点判断随机接入时机的有效性包括以下之一:
在第一节没点没有为第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件的情况下,随机接入时机有效:随机接入时机不在PRACH时隙内的SSB的前面,随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后,随机接入时机在特定资源内。
在第一节点为第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件之一的情况下,随机接入时机有效:随机接入时机在上行符号内,且随机接入时机在特定资源内;随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在特定资源内;随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在特定资源内;随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在特定资源内。
其中,特定资源包括以下至少之一:可用资源配置指示的资源,第二节点的基站单元的非hard资源,第二节点的基站单元的非hard UL资源,第二节点的基站单元的不可用资源。
图8是根据本发明实施例的随机接入信号的发送装置的结构框图,如图8所示,该装置包括:第二接收模块82、确定模块84以及第二发送模块86,下面对该装置进行详细说明:第二接收模块82,用于接收第一节点发送的资源配置信息;确定模块84,连接至上述中的第二接收模块82,用于基于资源配置信息确定随机接入时机的有效性;第二发送模块86,连接至上述中的确定模块84, 用于所在有效的随机接入时机下,向第一节点发送随机接入信号。
通过上述模块,由于第二节点接收第一节点发送资源配置信息,第二节点基于资源配置信息确定随机接入时机的有效性,第二节点在有效的随机接入时机下,向第一节点发送随机接入信号,实现了第一节点和第二节点基于资源配置信息判断随机接入时机的有效性的目的,第二节点在有效的随机接入时机内发送随机接入信号,第一节点在有效的随机接入时机内接收随机接入信号。因此,可以解决相关技术中存在的随机接入时机有效性判断的问题,达到可以更合理地判断随机接入时机的有效性,减少无用信号发送,以避免不必要的干扰和功率消耗的效果。
在一个可选的实施例中,资源配置信息包括以下至少之一:物理随机接入信道PRACH的配置索引,PRACH的频域资源,同步信号块SSB与随机接入时机ROs的映射关系,起始逻辑根序列索引和循环移位Ncs,PRACH的配置周期缩放因子S,基于无线帧的偏移量y_offset,时隙号,子帧号,不可用资源配置,可用资源配置。
在一个可选的实施例中,PRACH的频域资源包括:PRACH的资源的起始频率;频域复用的PRACH的数量。
在一个可选的实施例中,PRACH的资源的起始频率通过以下信息之一确定:激活的上行带宽BWP;终端设备的初始接入PRACH频域资源的起始物理资源块PRB的偏移;终端设备的初始接入PRACH频域资源的终止PRB的偏移。
在一个可选的实施例中,无线帧的偏移量y_offset包括:相对PRACH的预设资源配置表中的预设参数y的偏移量,其中,预设参数y是指在PRACH配置周期内的包含PRACH时机的无线帧索引。
在一个可选的实施例中,随机接入时机所在的无线帧号SFN满足以下公式之一:mod(SFN,min{x*S,Tmax})=mod(y+y_offset,min{x*S,Tmax}),其中,y_offset是整数,且0≤y_offset<Tmax;mod(SFN,x*S)=y_offset,其中,y_offset是整数,且0≤y_offset<x*S;其中,x和y是PRACH的预设资源配置表中的参数,Tmax是第二节点允许的PRACH的配置周期的最大值。
在一个可选的实施例中,第二节点在有效的随机接入时机下,向第一节点发送随机接入信号之后,第二节点接收第一节点发送的随机接入响应,并用RA-RNTI解扰随机接入响应对应的物理下行控制信道PDCCH的循环冗余校验CRC;RA-RNTI与传输随机接入信号的PRACH相对应,RA-RNTI的计算公式包括:RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2;s_id是PRACH的第一个正交频分复用OFDM的符号索引,0≤ s_id<14;t_id是PRACH的第一个时隙索引,0≤t_id<80;f_id是PRACH的频域索引,0≤f_id<8;ul_carrier_id是用于指示PRACH传输随机接入信号的上行载波。
在一个可选的实施例中,第二节点在有效的随机接入时机下,向第一节点发送随机接入信号之后,第二节点接收第一节点发送随机接入响应,并根据随机接入响应中的MAC-RAR的预留域确定MAC-RAR是否是第二节点的MAC-RAR。
在一个可选的实施例中,每个MAC-RAR对应一个子头,子头中包括随机接入前导标识RAPID;子头与MAC-RAR构成媒体接入控制子协议数据单元MAC subPDU;在媒体接入控制的协议数据单元MAC-PDU中的终端设备发送的随机接入信号对应的RAPID,与第二节点发送的随机接入信号对应的RAPID相同的情况下,终端设备的MAC subPDU在第二节点的MAC subPDU的前面。
在一个可选的实施例中,子帧号包括:用于替换PRACH的预设资源配置表中PRACH配置索引指示的子帧号,其中,替换后的子帧号是包括ROs子帧的索引集合。
在一个可选的实施例中,时隙号包括:用于替换PRACH的预设资源配置表中PRACH配置索引指示的时隙号,其中,替换后的时隙号是包括ROs时隙的索引集合。
在一个可选的实施例中,在第一节点没有为第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件的情况下,随机接入时机有效:随机接入时机不在PRACH的时隙内的SSB的前面,随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后,随机接入时机在时域上与特定资源没有交叠。
在第一节点为第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件之一的情况下,随机接入时机有效:随机接入时机在上行符号内,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在PRACH时隙内SSB的前面,随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠。
其中,特定资源包括以下至少之一:不可用资源配置指示的资源,第二节点的基站单元的hard资源,第二节点的基站单元用于传输重要信号或信道的hard资源,第二节点的基站单元的hard UL资源,第二节点的基站单元用于传输重要信号或信道传输的hard UL资源。
重要信号或者信道包括以下至少之一:SSB,系统信息,PRACH,URLLC的信号或信道。
在一个可选的实施例中,第二节点在有效的随机接入时机下,向第一节点发送随机接入信号之前,还包括:第二节点判断随机接入时机的有效性,其中,第二节点判断随机接入时机的有效性包括以下之一:
在第一节没点没有为第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件的情况下,随机接入时机有效:随机接入时机不在PRACH时隙内的SSB的前面,随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后,随机接入时机在特定资源内。
在第一节点为第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件之一的情况下,随机接入时机有效:随机接入时机在上行符号内,且随机接入时机在特定资源内;随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在特定资源内;随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在特定资源内;随机接入时机不在PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在特定资源内。
其中,特定资源包括以下至少之一:可用资源配置指示的资源,第二节点的基站单元的非hard资源,第二节点的基站单元的非hard UL资源,第二节点的基站单元的不可用资源。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以上各步骤的计算机程序。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以上各步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。

Claims (30)

  1. 一种随机接入信号的接收方法,包括:
    第一节点向第二节点发送资源配置信息;
    所述第一节点根据所述资源配置信息接收所述第二节点发送的随机接入信号,其中,所述资源配置信息用于指示所述第二节点在有效的随机接入时机下发送所述随机接入信号。
  2. 根据权利要求1所述的方法,其中,所述资源配置信息包括以下至少之一:
    物理随机接入信道PRACH的配置索引、PRACH的频域资源、同步信号块SSB与随机接入时机的映射关系、起始逻辑根序列索引和循环移位Ncs、PRACH的配置周期缩放因子S、基于无线帧的偏移量y_offset、时隙号、子帧号、不可用资源配置、可用资源配置。
  3. 根据权利要求2所述的方法,其中,所述PRACH的频域资源包括:
    所述PRACH的资源的起始频率;
    频域复用的PRACH的数量。
  4. 根据权利要求3所述的方法,其中,所述PRACH的资源的起始频率通过以下方式之一确定:
    所述第一节点基于激活的上行带宽BWP确定所述PRACH的资源的起始频率;
    所述第一节点基于终端设备初始接入的PRACH频域资源的起始物理资源块PRB的偏移确定所述PRACH的资源的起始频率;
    所述第一节点基于终端设备初始接入的PRACH频域资源的终止PRB的偏移确定所述PRACH的资源的起始频率。
  5. 根据权利要求2所述的方法,其中,所述无线帧的偏移量y_offset包括:
    相对所述PRACH的预设资源配置表中的预设参数y的偏移量,其中,所述预设参数y是指在PRACH配置周期内的包含PRACH时机的无线帧索引。
  6. 根据权利要求5所述的方法,其中,所述随机接入时机所在的无线帧号SFN满足以下公式之一:
    mod(SFN,min{x*S,Tmax})=mod(y+y_offset,min{x*S,Tmax}),其中,y_offset是整数,且0≤y_offset<Tmax;
    mod(SFN,x*S)=y_offset,其中,y_offset是整数,且0≤y_offset<x*S;
    其中,x和y是所述PRACH的预设资源配置表中的参数,Tmax是所述第二节点允许的所述PRACH的配置周期的最大值。
  7. 根据权利要求1所述的方法,在所述第一节点根据所述资源配置信息接收所述第二节点发送的所述随机接入信号之后,还包括:
    所述第一节点向所述第二节点发送随机接入响应,其中,所述随机接入响应对应的物理下行控制信道PDCCH的循环冗余校验CRC使用随机接入无线网络临时标识RA-RNTI加扰;
    所述RA-RNTI与传输所述随机接入信号的PRACH相对应,所述RA-RNTI的计算公式包括:
    RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2;
    其中,s_id是所述PRACH的第一个正交频分复用OFDM的符号索引,0≤s_id<14;t_id是所述PRACH的第一个时隙索引,0≤t_id<80;f_id是所述PRACH的频域索引,0≤f_id<8;ul_carrier_id是用于指示所述PRACH传输随机接入信号的上行载波。
  8. 根据权利要求1所述的方法,在所述第一节点根据所述资源配置信息接收所述第二节点发送的随机接入信号之后,还包括:
    所述第一节点向所述第二节点发送随机接入响应,其中,所述随机接入响应中的媒体接入控制-随机接入响应MAC-RAR的预留域指示所述MAC-RAR是所述第二节点的MAC-RAR。
  9. 根据权利要求8所述的方法,其中,
    每个MAC-RAR对应一个子头,所述子头中包括随机接入前导标识RAPID;
    所述子头与所述MAC-RAR构成媒体接入控制子协议数据单元MAC subPDU;
    在媒体接入控制的协议数据单元MAC-PDU中的终端设备发送的随机接入信号对应的RAPID,与所述第二节点发送的随机接入信号对应的RAPID相同的情况下,所述终端设备的MAC subPDU在所述第二节点的MAC subPDU的前面。
  10. 根据权利要求2所述的方法,其中,所述子帧号包括:
    用于替换所述PRACH的预设资源配置表中PRACH配置索引指示的子帧号,其中,替换后的子帧号是包括随机接入时机子帧的索引集合。
  11. 根据权利要求2所述的方法,其中,所述时隙号包括:
    用于替换所述PRACH的预设资源配置表中PRACH配置索引指示的时隙 号,其中,替换后的时隙号是包括随机接入时机时隙的索引集合。
  12. 根据权利要求2所述的方法,在所述第一节点根据所述资源配置信息接收所述第二节点发送的随机接入信号之前,还包括:
    所述第一节点判断随机接入时机的有效性,其中,所述第一节点判断随机接入时机的有效性包括以下之一:
    在所述第一节点没有为所述第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件的情况下,所述随机接入时机有效:所述随机接入时机不在所述PRACH时隙内的SSB的前面;所述随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后;所述随机接入时机在时域上与特定资源没有交叠;
    在所述第一节点为所述第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件之一的情况下,所述随机接入时机有效:所述随机接入时机在上行符号内,且所述随机接入时机在时域上与特定资源没有交叠;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且所述随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且所述随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且所述随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;
    其中,所述特定资源包括以下至少之一:所述不可用资源配置指示的资源、所述第二节点的基站单元的硬hard资源、所述第二节点的基站单元用于传输重要信号或信道的hard资源、所述第二节点的基站单元的硬上行hard UL资源、所述第二节点的基站单元用于传输重要信号或信道传输的hard UL资源;
    所述重要信号或者信道包括以下至少之一:SSB、系统信息、PRACH、超可靠低时延通信URLLC的信号或信道。
  13. 根据权利要求2所述的方法,在所述第一节点根据所述资源配置信息接收所述第二节点发送的随机接入信号之前,还包括:
    所述第一节点判断随机接入时机的有效性,其中,所述第一节点判断随机接入时机的有效性包括以下之一:
    在所述第一节没点没有为所述第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件的情况下,所述随机接入时机有 效:所述随机接入时机不在所述PRACH时隙内的SSB的前面;所述随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后;所述随机接入时机在特定资源内;
    在所述第一节点为所述第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件之一的情况下,所述随机接入时机有效:所述随机接入时机在上行符号内,且所述随机接入时机在特定资源内;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且所述随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在特定资源内;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在特定资源内;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且所述随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且所述随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在特定资源内;
    其中,所述特定资源包括以下至少之一:所述可用资源配置指示的资源、所述第二节点的基站单元的非hard资源、所述第二节点的基站单元的非hard UL资源、所述第二节点的基站单元的不可用资源。
  14. 一种随机接入信号的发送方法,包括:
    第二节点接收第一节点发送的资源配置信息;
    所述第二节点基于所述资源配置信息确定随机接入时机的有效性;
    所述第二节点在有效的随机接入时机下,向所述第一节点发送随机接入信号。
  15. 根据权利要求14所述的方法,其中,所述资源配置信息包括以下至少之一:
    物理随机接入信道PRACH的配置索引、PRACH的频域资源,同步信号块SSB与随机接入时机的映射关系、起始逻辑根序列索引和循环移位Ncs、所述PRACH的配置周期缩放因子S、基于无线帧的偏移量y_offset、时隙号、子帧号、不可用资源配置、可用资源配置。
  16. 根据权利要求15所述的方法,其中,所述PRACH的频域资源包括:
    所述PRACH的资源的起始频率;
    频域复用的PRACH的数量。
  17. 根据权利要求16所述的方法,其中,所述PRACH的资源的起始频率通过以下信息之一确定:
    激活的上行带宽BWP;
    终端设备初始接入的PRACH频域资源的起始物理资源块PRB的偏移;
    终端设备初始接入的PRACH频域资源的终止PRB的偏移。
  18. 根据权利要求15所述的方法,其中,所述无线帧的偏移量y_offset包括:
    相对所述PRACH的预设资源配置表中的预设参数y的偏移量,其中,所述预设参数y是指在PRACH配置周期内的包含PRACH时机的无线帧索引。
  19. 根据权利要求18所述的方法,其中,所述随机接入时机所在的无线帧号SFN满足以下公式之一:
    mod(SFN,min{x*S,Tmax})=mod(y+y_offset,min{x*S,Tmax}),其中,y_offset是整数,且0≤y_offset<Tmax;
    mod(SFN,x*S)=y_offset,其中,y_offset是整数,且0≤y_offset<x*S;
    其中,x和y是所述PRACH的预设资源配置表中的参数,Tmax是所述第二节点允许的所述PRACH的配置周期的最大值。
  20. 根据权利要求14所述的方法,在所述第二节点在有效的随机接入时机下,向所述第一节点发送随机接入信号之后,还包括:
    所述第二节点接收所述第一节点发送的随机接入响应,并用RA-RNTI解扰所述随机接入响应对应的物理下行控制信道PDCCH的循环冗余校验CRC;
    所述RA-RNTI与传输所述随机接入信号的PRACH相对应,所述RA-RNTI的计算公式包括:
    RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2;
    其中,s_id是所述PRACH的第一个正交频分复用OFDM的符号索引,0≤s_id<14;t_id是所述PRACH的第一个时隙索引,0≤t_id<80;f_id是所述PRACH的频域索引,0≤f_id<8;ul_carrier_id是用于指示所述PRACH传输随机接入信号的上行载波。
  21. 根据权利要求14所述的方法,在所述第二节点在有效的随机接入时机下,向所述第一节点发送随机接入信号之后,还包括:
    所述第二节点接收所述第一节点发送随机接入响应,并根据所述随机接入响应中的媒体接入控制-随机接入响应MAC-RAR的预留域确定所述MAC-RAR是否是所述第二节点的MAC-RAR。
  22. 根据权利要求21所述的方法,其中,
    每个MAC-RAR对应一个子头,所述子头中包括随机接入前导标识RAPID;
    所述子头与所述MAC-RAR构成媒体接入控制子协议数据单元MAC subPDU;
    在媒体接入控制的协议数据单元MAC-PDU中的终端设备发送的随机接入信号对应的RAPID,与所述第二节点发送的随机接入信号对应的RAPID相同的情况下,所述终端设备的MAC subPDU在所述第二节点的MAC subPDU的前面。
  23. 根据权利要求15所述的方法,其中,所述子帧号包括:
    用于替换所述PRACH的预设资源配置表中PRACH配置索引指示的子帧号,其中,替换后的子帧号是包括随机接入时机子帧的索引集合。
  24. 根据权利要求15所述的方法,其中,所述时隙号包括:
    用于替换所述PRACH的预设资源配置表中PRACH配置索引指示的时隙号,其中,替换后的时隙号是包括随机接入时机时隙的索引集合。
  25. 根据权利要求15所述的方法,在所述第二节点在有效的随机接入时机下,向所述第一节点发送随机接入信号之前,还包括:
    所述第二节点判断随机接入时机的有效性,其中,所述第二节点判断随机接入时机的有效性包括以下之一:
    在所述第一节点没有为所述第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件的情况下,所述随机接入时机有效:所述随机接入时机不在所述PRACH的时隙内的SSB的前面;所述随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后;所述随机接入时机在时域上与特定资源没有交叠;
    在所述第一节点为所述第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件之一的情况下,所述随机接入时机有效:所述随机接入时机在上行符号内,且所述随机接入时机在时域上与特定资源没有交叠;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且所述随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;所述随机接入时机不在所述PRACH时隙内SSB的前面,随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且所述随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且所述随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在时域上与特定资源没有交叠;
    其中,所述特定资源包括以下至少之一:所述不可用资源配置指示的资源、所述第二节点的基站单元的硬hard资源、所述第二节点的基站单元用于传输重要信号或信道的hard资源、所述第二节点的基站单元的硬上行hard UL资源、所述第二节点的基站单元用于传输重要信号或信道传输的hard UL资源;
    所述重要信号或者信道包括以下至少之一:SSB、系统信息、PRACH、超可靠低时延通信URLLC的信号或信道。
  26. 根据权利要求15所述的方法,在所述第二节点在有效的随机接入时机下,向所述第一节点发送随机接入信号之前,还包括:
    所述第二节点判断随机接入时机的有效性,其中,所述第二节点判断随机接入时机的有效性包括以下之一:
    在所述第一节没点没有为所述第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件的情况下,所述随机接入时机有效:所述随机接入时机不在所述PRACH时隙内的SSB的前面;所述随机接入时机的起点在最后一个SSB接收符号的至少Ngap个符号之后;所述随机接入时机在特定资源内;
    在所述第一节点为所述第二节点提供时分双工的上下行配置,且PRACH时隙内的随机接入时机满足以下条件之一的情况下,所述随机接入时机有效:所述随机接入时机在上行符号内,且所述随机接入时机在特定资源内;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在特定资源内;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且所述随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且随机接入时机在特定资源内;所述随机接入时机不在所述PRACH时隙内的SSB的前面,且所述随机接入的起点在最后一个SSB接收符号的至少Ngap个符号之后,且所述随机接入的起点在最后一个下行符号的至少Ngap个符号之后,且随机接入时机在特定资源内;
    其中,所述特定资源包括以下至少之一:所述可用资源配置指示的资源、所述第二节点的基站单元的非hard资源、所述第二节点的基站单元的非hard UL资源、所述第二节点的基站单元的不可用资源。
  27. 一种随机接入信号的接收装置,包括:
    第一发送模块,设置为向第二节点发送资源配置信息;
    第一接收模块,设置为根据所述资源配置信息接收所述第二节点发送的随机接入信号,其中,所述资源配置信息用于指示所述第二节点在有效的随机接入时机下发送所述随机接入信号。
  28. 一种随机接入信号的发送装置,包括:
    第二接收模块,设置为接收第一节点发送的资源配置信息;
    确定模块,设置为基于所述资源配置信息确定随机接入时机的有效性;
    第二发送模块,设置为在有效的随机接入时机下,向所述第一节点发送随机接入信号。
  29. 一种存储介质,存储有计算机程序,其中,所述计算机程序被设置为运行时执行权利要求1至13任一项中所述的随机接入信号的接收方法,或者,所述计算机程序被设置为运行时执行所述权利要求14至26任一项中所述的随机接入信号的发送方法。
  30. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行权利要求1至13任一项中所述的随机接入信号的接收方法,或者,所述处理器被设置为运行所述计算机程序以执行所述权利要求14至26任一项中所述的随机接入信号的发送方法。
PCT/CN2020/073229 2019-03-29 2020-01-20 随机接入信号的发送、接收方法和装置、存储介质及电子装置 WO2020199734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253163.3A CN111757488A (zh) 2019-03-29 2019-03-29 随机接入信号的发送、接收方法及装置
CN201910253163.3 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199734A1 true WO2020199734A1 (zh) 2020-10-08

Family

ID=72664642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073229 WO2020199734A1 (zh) 2019-03-29 2020-01-20 随机接入信号的发送、接收方法和装置、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN111757488A (zh)
WO (1) WO2020199734A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116171636A (zh) * 2020-12-18 2023-05-26 Oppo广东移动通信有限公司 随机接入响应的处理方法、网络设备和终端设备
US11968634B2 (en) * 2020-04-24 2024-04-23 Qualcomm Incorporated Synchronization signal block (SSB) in full-duplex

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4258791A4 (en) * 2020-12-30 2024-03-20 Huawei Technologies Co., Ltd. DIRECT ACCESS METHOD, APPARATUS AND SYSTEM
CN115334579A (zh) * 2021-05-10 2022-11-11 华为技术有限公司 一种资源确定方法及装置
BR112023023504A2 (pt) * 2021-05-10 2024-03-12 Beijing Xiaomi Mobile Software Co Ltd Método e aparelho para configuração de recursos, dispositivo de comunicação, e, meio de armazenamento legível por computador
WO2024031690A1 (zh) * 2022-08-12 2024-02-15 北京小米移动软件有限公司 随机接入方法及装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734690A (zh) * 2016-08-12 2018-02-23 华为技术有限公司 随机接入方法、装置、系统、终端和基站
CN108282873A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 一种系统消息的传输方法、装置及系统
CN108289329A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN108401297A (zh) * 2017-02-06 2018-08-14 北京三星通信技术研究有限公司 随机接入方法及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734690A (zh) * 2016-08-12 2018-02-23 华为技术有限公司 随机接入方法、装置、系统、终端和基站
CN108282873A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 一种系统消息的传输方法、装置及系统
CN108289329A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN108401297A (zh) * 2017-02-06 2018-08-14 北京三星通信技术研究有限公司 随机接入方法及终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11968634B2 (en) * 2020-04-24 2024-04-23 Qualcomm Incorporated Synchronization signal block (SSB) in full-duplex
CN116171636A (zh) * 2020-12-18 2023-05-26 Oppo广东移动通信有限公司 随机接入响应的处理方法、网络设备和终端设备

Also Published As

Publication number Publication date
CN111757488A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2020199734A1 (zh) 随机接入信号的发送、接收方法和装置、存储介质及电子装置
CA3097606C (en) Method, device, and system for configuring sidelink resources
US11076382B2 (en) Methods for controlling a paging operation and apparatuses thereof
US10652882B2 (en) Data transmission method, wireless network device, and communications system
KR102618058B1 (ko) 통신 시스템에서 광대역 캐리어 지원을 위한 대역폭 설정 방법
CN110730510B (zh) 用于在免授权频带中执行无线通信的方法和设备
KR102310983B1 (ko) 랜덤 액세스 방법 및 장치
KR20200120533A (ko) 사이드링크 통신을 수행하는 방법 및 그 장치
CN114126073B (zh) 用于等待时间减少的随机接入过程
WO2019062779A1 (zh) 一种寻呼的方法、通信定时的方法和装置
WO2020047922A1 (zh) 配置信息的传输方法和终端设备
CN111436132B (zh) 随机接入资源配置方法和装置
RU2735183C1 (ru) Управление aul-передачами при сосуществовании с диспетчеризованными ue
CN107770872B (zh) 一种非授权频谱上的数据传输方法和设备
CN112189367B (zh) 在新无线电非授权网络中配置备用寻呼机会的方法及用户设备
KR20190132228A (ko) 비면허 대역에서 harq 피드백 정보를 전송하는 방법 및 장치
KR20200018310A (ko) 비면허 대역에서 데이터를 송수신하는 방법 및 장치
CN111867074A (zh) 接收数据和发送数据的方法、通信装置
KR20190114848A (ko) 상향링크 데이터 채널을 전송하는 방법 및 장치
KR20190131429A (ko) 비면허 대역의 무선 통신을 위한 LBT(Listen Before Talk)를 수행하는 방법 및 장치
KR20190098708A (ko) 상향링크 데이터를 전송하는 방법 및 장치
KR20210049673A (ko) 사이드링크 통신을 제어하는 방법 및 그 장치
KR20210038323A (ko) 사이드링크 통신을 제어하는 방법 및 그 장치
EP4362596A1 (en) Random access method and communication apparatus
CN113748713A (zh) 增强型随机接入过程的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20783832

Country of ref document: EP

Kind code of ref document: A1