WO2024031690A1 - 随机接入方法及装置、存储介质 - Google Patents

随机接入方法及装置、存储介质 Download PDF

Info

Publication number
WO2024031690A1
WO2024031690A1 PCT/CN2022/112281 CN2022112281W WO2024031690A1 WO 2024031690 A1 WO2024031690 A1 WO 2024031690A1 CN 2022112281 W CN2022112281 W CN 2022112281W WO 2024031690 A1 WO2024031690 A1 WO 2024031690A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
uplink subband
effective
valid
time unit
Prior art date
Application number
PCT/CN2022/112281
Other languages
English (en)
French (fr)
Inventor
王磊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/112281 priority Critical patent/WO2024031690A1/zh
Publication of WO2024031690A1 publication Critical patent/WO2024031690A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communications, and in particular, to random access methods and devices, and storage media.
  • the version 18 (Release-18, Rel-18) full-duplex (duplex) enhancement project will study the full-duplex solution.
  • the network side can receive data simultaneously within a time slot (slot). and send.
  • the network side schedules or instructs full-duplex terminals to send or receive data on semi-static flexible symbols.
  • One of the purposes of performing full-duplex on the base station side is to reduce uplink transmission delay.
  • the terminal determines the physical resources that can be used for uplink random access based on the random access channel configuration (Random Access Channel configuration, RACH configuration) configured by the base station.
  • RACH configuration Random Access Channel configuration
  • the terminal sends a preamble according to its own needs on a valid (valid) random access opportunity (RACH Occasion, RO) (preamble), for example, the terminal will not initiate a random access process on an RO in a downlink (DL) slot or a flexible time symbol that does not meet the conditions defined in the protocol.
  • RACH Occasion, RO valid random access opportunity
  • duplex terminals they can perform uplink transmission in the uplink subband (UL subband) within the DL slot.
  • UL subband uplink subband
  • the base station does not expect the terminal to send preamble within the DL slot, thus limiting the gain of full-duplex technology in reducing latency.
  • embodiments of the present disclosure provide a random access method and device, and a storage medium.
  • a random access method is provided, and the method is executed by a terminal, including:
  • the designated time unit is a downlink time unit configured with the uplink subband
  • a random access preamble is sent to the base station.
  • the method also includes:
  • Determining whether there is a valid random access opportunity RO on the uplink subband in a specified time unit includes:
  • determining whether the effective RO exists on the uplink subband based on the relative position relationship includes:
  • the relative position relationship indicates that the RACH resource is at least partially located outside the frequency domain range of the uplink subband in the frequency domain, it is determined that the valid RO does not exist on the uplink subband.
  • the determining whether there is a valid random access opportunity RO on the uplink subband in the specified time unit includes:
  • the configuration RO Based on the number of first frequency domain units included in the configuration RO and the number of second frequency domain units included in the uplink subband, it is determined whether the effective RO exists on the uplink subband; wherein the configuration RO is RO determined based on RACH resource configuration information.
  • determining whether the effective RO exists on the uplink subband based on the number of first frequency domain units included in the configuration RO and the number of second frequency domain units included in the uplink subband includes: :
  • the method also includes:
  • Determining whether there is a valid random access opportunity RO on the uplink subband in a specified time unit includes:
  • determining the resource location of the effective RO includes:
  • RACH resources configured by the base station for the terminal are all located in the frequency domain of the uplink subband, determine the resource location of the configured RO as the resource location of the effective RO;
  • the resource locations of the effective RO are all located within the frequency domain range of the uplink subband in the frequency domain.
  • offsetting the resource location of the configured RO in the frequency domain and determining the effective resource location of the RO includes:
  • the number of first frequency domain units included in the configuration RO is determined as the number of frequency domain units included in the effective RO.
  • determining the starting frequency domain position of the effective RO within the frequency domain range of the uplink subband includes:
  • the second RRC signaling is used to indicate any of the following:
  • the starting frequency domain position of the effective RO is the starting frequency domain position of the uplink subband.
  • the method also includes:
  • Determining whether there is a valid random access opportunity RO on the uplink subband in a specified time unit includes:
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the third RRC signaling is used to indicate the designated time unit index value where the valid RO is located.
  • determining the resource location of the effective RO includes:
  • the resource location of the configuration RO is determined as the resource location of the effective RO.
  • the method also includes at least one of the following:
  • a random access method is provided, and the method is executed by a network side device, including:
  • the designated time unit is a downlink time unit configured with the uplink subband
  • the method also includes:
  • Determining whether there is a valid random access opportunity RO on the uplink subband in a specified time unit includes:
  • determining whether the effective RO exists on the uplink subband based on the relative position relationship includes:
  • the relative position relationship indicates that the RACH resource is at least partially located outside the frequency domain range of the uplink subband in the frequency domain, it is determined that the valid RO does not exist on the uplink subband.
  • the determining whether there is a valid random access opportunity RO on the uplink subband in the specified time unit includes:
  • the configuration RO Based on the number of first frequency domain units included in the configuration RO and the number of second frequency domain units included in the uplink subband, it is determined whether the effective RO exists on the uplink subband; wherein the configuration RO is RO determined based on RACH resource configuration information.
  • determining whether the effective RO exists on the uplink subband based on the number of first frequency domain units included in the configuration RO and the number of second frequency domain units included in the uplink subband includes: :
  • the method also includes:
  • determining the resource location of the effective RO includes:
  • RACH resources configured by the base station for the terminal are all located in the frequency domain of the uplink subband, determine the resource location of the configured RO as the resource location of the effective RO;
  • the resource locations of the effective RO are all located within the frequency domain range of the uplink subband in the frequency domain.
  • offsetting the resource location of the configured RO in the frequency domain and determining the effective resource location of the RO includes:
  • the number of first frequency domain units included in the configuration RO is determined as the number of frequency domain units included in the effective RO.
  • determining the starting frequency domain position of the effective RO within the frequency domain range of the uplink subband includes:
  • the starting frequency domain position of the effective RO is determined.
  • the method also includes:
  • the second RRC signaling is used to indicate any of the following:
  • the starting frequency domain position of the effective RO is the starting frequency domain position of the uplink subband.
  • the method also includes:
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the third RRC signaling is used to indicate the designated time unit index value where the valid RO is located.
  • determining the resource location of the effective RO includes:
  • the resource location of the configuration RO is determined as the resource location of the effective RO.
  • the method also includes:
  • the base station In response to determining that the valid RO does not exist on the uplink subband, the base station does not expect to receive a random access preamble sent by the terminal within the specified time unit.
  • a random access device is provided, and the device is applied to a terminal and includes:
  • the first determination module is configured to determine whether there is a valid random access opportunity RO on the uplink subband in the designated time unit; wherein the designated time unit is a downlink time unit configured with the uplink subband;
  • a second determination module configured to determine the resource location of the effective RO in response to determining that the effective RO exists on the uplink subband
  • the sending module is configured to send a random access preamble to the base station at the resource location of the effective RO.
  • a random access device is provided, and the device is applied to a base station and includes:
  • the third determination module is configured to determine whether there is a valid random access opportunity RO on the uplink subband in the designated time unit; wherein the designated time unit is a downlink time unit configured with the uplink subband;
  • a fourth determination module configured to determine the resource location of the effective RO in response to determining that the effective RO exists on the uplink subband
  • the receiving module is configured to receive the random access preamble sent by the terminal at the resource location of the effective RO.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute any of the random access methods on the terminal side.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute any of the random access methods described above on the base station side.
  • a random access device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any of the random access methods described above on the terminal side.
  • a random access device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the random access methods described above on the base station side.
  • the terminal can determine whether there is a valid random access opportunity RO on the uplink subband in the designated time unit, which is a downlink time unit configured with the uplink subband, so that the uplink subband in the designated time unit When there is a valid RO on the band, determine the resource location of the valid RO, and initiate random access to the base station at the resource location of the valid RO.
  • the present disclosure can effectively reduce the delay of the random access process in full-duplex communication and improve the efficiency of full-duplex communication.
  • Figure 1 is a schematic flowchart of a random access method according to an exemplary embodiment.
  • Figure 2A is a schematic flowchart of another random access method according to an exemplary embodiment.
  • FIG. 2B is a schematic diagram showing a relative position relationship according to an exemplary embodiment.
  • FIG. 2C is another schematic diagram of relative positional relationships according to an exemplary embodiment.
  • Figure 2D is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 3A is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 3B is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 4A is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 4B is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 5A is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 5B is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 6 is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 7A is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 7B is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 8A is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 8B is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 9A is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 9B is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 10A is a schematic flowchart of another random access method according to an exemplary embodiment.
  • Figure 10B is a schematic flowchart of another random access method according to an exemplary embodiment.
  • FIG. 11A is a schematic diagram of a time slot structure of time division multiplexing according to an exemplary embodiment.
  • Figure 11B is a schematic diagram of RACH resources configured by a base station according to an exemplary embodiment.
  • Figure 11C is a schematic diagram of RACH resources of another base station configuration according to an exemplary embodiment.
  • FIG. 11D is a schematic diagram of resource locations of another effective RO according to an exemplary embodiment.
  • FIG. 11E is a schematic diagram of resource locations of another effective RO according to an exemplary embodiment.
  • Figure 12A is a schematic diagram of another time slot structure of time division multiplexing according to an exemplary embodiment.
  • FIG. 12B is a schematic diagram of resource locations of another effective RO according to an exemplary embodiment.
  • Figure 13 is a block diagram of a random access device according to an exemplary embodiment.
  • Figure 14 is a block diagram of another random access device according to an exemplary embodiment.
  • Figure 15 is a schematic structural diagram of a random access device according to an exemplary embodiment of the present disclosure.
  • Figure 16 is a schematic structural diagram of another random access device according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • the base station can configure available RACH resources for the terminal through System Information Block 1 (SIB1) or terminal-specific Radio Resource Control (Radio Resource Control, RRC) signaling. Specifically, it can be configured through the following two parameters, and the terminal determines the time-frequency resources that can be used for random access based on the configuration:
  • SIB1 System Information Block 1
  • RRC Radio Resource Control
  • the protocol defines a method for determining valid RO.
  • the base station and the terminal need to determine which of the ROs configured by the above configuration signaling can actually be used to transmit preamble based on the valid ROs defined in the protocol.
  • valid RO is defined as follows:
  • the RO in a RACH slot is located in the UL symbol, the RO is a valid RO
  • the RO in a RACH slot meets the following conditions at the same time, the RO is a valid RO:
  • the RO is not located before the Synchronization Signal Block (SSB) SSB;
  • Condition 2 The RO is behind SSB and meets the gap specified in the agreement
  • the base station does not expect to receive the preamble sent by the terminal on the invalid RO. It limits the delay reduction brought by full-duplex technology to random access and limits the technical gain of full-duplex technology in delay reduction.
  • the present disclosure provides the following random access method, device, and storage medium, which can effectively reduce the delay of the random access process in full-duplex communication and improve the efficiency of full-duplex communication.
  • FIG. 1 is a flow chart of a random access method according to an embodiment, which can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • Full-duplex terminal refers to a terminal that supports data transmission and data reception on semi-static variable symbols.
  • the method may include the following steps:
  • step 101 it is determined whether there is a valid random access opportunity RO on the uplink subband in a specified time unit.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink duration (span), etc. Among them, a span includes multiple consecutive symbols.
  • the terminal can determine whether there is a valid (valid) RO on the uplink subband in the specified time unit in accordance with the protocol agreement or the signaling instruction sent by the base station, that is, in a predefined manner.
  • the base station configures the uplink subband for the terminal within the designated time unit, so that the terminal can use the resources of the uplink subband to perform uplink transmission within the downlink time unit.
  • the terminal determines whether there is a valid RO on the uplink subband in the designated time unit, which may refer to determining whether the frequency domain of the uplink subband can be utilized within the time domain range corresponding to the designated time unit.
  • the resource initiates random access.
  • the effective RO time domain resources are located in the designated time unit, the effective RO frequency domain resources may be located within the frequency domain range of the uplink subband in the designated time unit, or part of the effective RO frequency domain resources may be located in the uplink outside the frequency domain range of the subband.
  • step 102 in response to determining that the effective RO exists on the uplink subband, determine the resource location of the effective RO.
  • the terminal may further determine the resource location of the valid RO.
  • resource locations include but are not limited to time domain resource locations, frequency domain resource locations, etc.
  • the terminal can determine the resource location of the configured RO based on the RACH resource configuration information sent by the base station.
  • the configured RO refers to the RO configured by the base station for the terminal.
  • the time domain resource location of the effective RO is located in the specified time unit and is the same as the time domain resource location of the configured RO. This disclosure focuses more on how to determine the frequency domain resource location of an effective RO.
  • the frequency domain resource locations of effective ROs may all be located within the frequency domain range of the uplink subband.
  • At least part of the frequency domain resource locations of the effective RO may be located outside the frequency domain range of the uplink subband.
  • step 103 a random access preamble is sent to the base station at the resource location of the effective RO.
  • the terminal can send a random access preamble to the base station at the resource location of the valid RO, that is, the terminal initiates random access to the base station.
  • the terminal when a valid RO exists in a specified time unit, the terminal can initiate random access to the base station at the resource location of the valid RO, which can effectively reduce the time of the random access process in full-duplex communication. delay, improving the efficiency of full-duplex communication.
  • the following describes the method for the terminal to determine whether there is a valid RO on the uplink subband in the specified time unit.
  • the terminal may determine whether there is a valid RO on the uplink subband in the specified time unit based on the relative position of the RACH resource in the frequency domain with respect to the uplink subband in the specified time unit.
  • the RACH resources are RACH resources configured by the base station for the terminal and capable of random access.
  • Figure 2A is a flow chart of a random access method according to an embodiment. It can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • the method can include the following steps:
  • step 201 determine the relative positional relationship in the frequency domain between the random access channel RACH resources configured by the base station for the terminal and the uplink subband in the designated time unit.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the relative position relationship indicates that the RACH resources are all located within the frequency domain range of the uplink subband in the frequency domain, for example, as shown in Figure 2B.
  • the relative position relationship indicates that the RACH resource is at least partially located outside the frequency domain range of the uplink subband in the frequency domain, for example, as shown in FIG. 2C.
  • step 202 if the relative position relationship indicates that the RACH resources are all located within the frequency domain range of the uplink subband in the frequency domain, it is determined that the valid RO exists on the uplink subband.
  • step 203 the resource location of the effective RO is determined.
  • the terminal can determine the resource location for configuring the RO based on the RACH resource configuration information provided by the base station through SIB1 or terminal-specific RRC signaling.
  • the RACH resource configuration information provided by the base station includes a Physical Random Access Channel (Physical Random Access Channel, PRACH) configuration index value. Assuming that the index value is 65, the terminal can determine the PRACH configuration index value based on Table 1 Corresponding RACH resource configuration information:
  • the terminal can determine the specific resource location for configuring RO based on the contents of Table 1 and in accordance with related technologies.
  • the terminal can directly determine the resource location where the RO is configured as the resource location of the valid RO.
  • step 204 a random access preamble is sent to the base station at the resource location of the effective RO.
  • the terminal determines that there is a valid RO in the uplink subband in the specified time unit. , and sends the random access preamble to the base station at the effective RO resource location. It effectively reduces the delay of the random access process in full-duplex communication and improves the efficiency of full-duplex communication.
  • Figure 2D is a flow chart of a random access method according to an embodiment. It can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • the method can include Following steps:
  • step 201' determine the relative positional relationship in the frequency domain between the random access channel RACH resources configured by the base station for the terminal and the uplink subband in the designated time unit.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the relative position relationship indicates that the RACH resources are all located within the frequency domain range of the uplink subband in the frequency domain, for example, as shown in Figure 2B.
  • the relative position relationship indicates that the RACH resource is at least partially located outside the frequency domain range of the uplink subband in the frequency domain, for example, as shown in FIG. 2C.
  • step 202' if the relative position relationship indicates that the RACH resource is at least partially located outside the frequency domain range of the uplink subband in the frequency domain, it is determined that the valid resource does not exist on the uplink subband. RO.
  • the terminal determines that the valid RO does not exist on the uplink subband. That is, the terminal determines that there is an invalid RO on the uplink subband.
  • the terminal may ignore all ROs included in the uplink subband, and/or determine not to send a random access preamble to the base station within the specified time unit.
  • the terminal determines that there is no valid resource in the uplink subband of the specified time unit.
  • RO at this time, the terminal may ignore all ROs included in the uplink subband, and/or determine not to send a random access preamble to the base station within the specified time unit.
  • the base station side does not expect to receive the random access preamble sent by the terminal within the specified time unit, ensuring consistent understanding between the terminal and the base station and high availability.
  • the terminal may determine whether the valid RO exists on the uplink subband based on the number of first frequency domain units included in the configured RO and the number of second frequency domain units included in the uplink subband.
  • the configured RO is an RO determined based on RACH resource configuration information.
  • Figure 3A is a flow chart of a random access method according to an embodiment. It can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • the method can include the following steps:
  • step 301 if the number of first frequency domain units included in the configuration RO is less than or equal to the number of second frequency domain units included in the uplink subband within the specified time unit, it is determined that there is a presence on the uplink subband in the specified time unit. Effective RO.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the terminal may determine the number of first frequency domain units included in the configuration RO based on the RACH resource configuration information provided by the base station through SIB1 or terminal-specific RRC signaling.
  • the terminal may determine the number of second frequency domain units included in the uplink subband within the specified time unit based on the base station configuration.
  • the frequency domain unit may be a resource block (RB), a resource block group (RBG), etc., and this disclosure does not limit this.
  • the terminal may determine that there is a valid RO on the uplink subband.
  • step 302 the resource location of the effective RO is determined.
  • the resource location for configuring the RO may be determined first based on the RACH resource configuration information.
  • the specific determination method is similar to the method of determining the resource location for configuring the RO in step 203, and will not be described again here.
  • the terminal may directly determine the resource location where the RO is configured as the resource location of the valid RO.
  • the resource location where the RO is configured needs to be offset in the frequency domain so that all of it is located in the frequency domain.
  • the effective RO resource location is obtained.
  • the starting frequency domain position of the effective RO can be determined first within the frequency domain range of the uplink subband.
  • the terminal may determine the starting frequency domain position of the effective RO based on the protocol agreement.
  • the terminal may determine the starting frequency domain position of the effective RO based on the indication of the second RRC signaling sent by the base station, where the second RRC signaling is used to indicate the starting frequency domain position of the effective RO.
  • the second RRC signaling may be used to indicate the starting frequency domain location index value of the effective RO.
  • the second RRC signaling may be used to indicate an offset of the starting frequency domain location index value of the effective RO relative to the starting frequency domain location index value of the configured RO.
  • the starting frequency domain position of the effective RO can be the starting frequency domain position of the uplink subband.
  • the starting frequency domain position of the effective RO can also be other preset frequency domain positions, which is not limited in this disclosure.
  • the terminal may determine the number of first frequency domain units included in the configured RO as the number of frequency domain units included in the effective RO. Thus, the specific frequency domain resource location of the effective RO is obtained.
  • the time domain resource position of the effective RO remains unchanged and is the same as the time domain resource position of the configured RO.
  • step 303 a random access preamble is sent to the base station at the resource location of the effective RO.
  • the terminal determines the uplink subband of the specified time unit. There is a valid RO in the memory, and the random access preamble is sent to the base station at the resource location of the valid RO. It effectively reduces the delay of the random access process in full-duplex communication and improves the efficiency of full-duplex communication.
  • Figure 3B is a flow chart of a random access method according to an embodiment. It can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • the method can include the following steps:
  • step 301' if the number of first frequency domain units included in the configuration RO is greater than the number of second frequency domain units included in the uplink subband in the specified time unit, it is determined that there is no presence in the uplink subband in the specified time unit. Effective RO.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the terminal may determine the number of first frequency domain units included in the configuration RO based on the RACH resource configuration information provided by the base station through SIB1 or terminal-specific RRC signaling.
  • the terminal may determine the number of second frequency domain units included in the uplink subband within the specified time unit based on the base station configuration.
  • the frequency domain unit may be in units of RB, RBG, etc., which is not limited in this disclosure.
  • the terminal can determine that there is no valid RO on the uplink subband of the specified time unit. That is, the terminal determines that there is an invalid RO on the uplink subband.
  • the terminal may ignore all ROs included in the uplink subband, and/or determine not to send a random access preamble to the base station within the specified time unit.
  • the terminal determines that there are no uplink subbands in the specified time unit. If there are valid ROs, the terminal may ignore all ROs included in the uplink subband, and/or determine not to send a random access preamble to the base station within the specified time unit. The base station side does not expect to receive the random access preamble sent by the terminal within the specified time unit, ensuring consistent understanding between the terminal and the base station and high availability.
  • Method 3 Determine whether there is a valid RO based on the indication of the first radio resource control RRC signaling sent by the base station.
  • the first RRC signaling is used to indicate whether there is a valid RO on the uplink subband in the specified time unit. .
  • Figure 4A is a flow chart of a random access method according to an embodiment. It can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • the method can include the following steps:
  • step 401 receive first radio resource control RRC signaling sent by the base station.
  • the first RRC signaling is directly used to indicate whether the valid RO exists on the uplink subband in the specified time unit.
  • step 402 if the first RRC signaling indicates that a valid RO exists on the uplink subband in the specified time unit, it is determined that the valid RO exists on the uplink subband.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the terminal directly determines that the valid RO exists on the uplink subband based on the first RRC signaling sent by the base station.
  • step 403 the resource location of the effective RO is determined.
  • the resource location for configuring the RO may be determined first based on the RACH resource configuration information.
  • the resource location where the RO is configured is determined as the resource location of the effective RO.
  • the specific determination method is similar to the above-mentioned step 302 and will not be described again here.
  • step 404 a random access preamble is sent to the base station at the resource location of the effective RO.
  • the terminal determines that there is a valid RO in the uplink subband of the specified time unit based on the indication of the first RRC signaling sent by the base station, and sends the random access preamble to the base station at the resource location of the valid RO. . It effectively reduces the delay of the random access process in full-duplex communication and improves the efficiency of full-duplex communication.
  • Figure 4B is a flow chart of a random access method according to an embodiment. It can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • the method can include the following steps:
  • step 401' receive the first radio resource control RRC signaling sent by the base station.
  • the first RRC signaling is directly used to indicate whether the valid RO exists on the uplink subband in the specified time unit.
  • step 402' if the first RRC signaling indicates that there is no valid RO on the uplink subband in the specified time unit, it is determined that the valid RO does not exist on the uplink subband.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the terminal directly determines that the valid RO does not exist on the uplink subband based on the first RRC signaling sent by the base station. That is, the terminal determines that there is an invalid RO on the uplink subband.
  • the terminal may ignore all ROs included in the uplink subband, and/or determine not to send a random access preamble to the base station within the specified time unit.
  • the terminal may determine that there is no valid RO in the uplink subband of the specified time unit based on the indication of the first RRC signaling sent by the base station, and the terminal may ignore all ROs included in the uplink subband, and/ Or determine not to send a random access preamble to the base station within the specified time unit.
  • the base station side does not expect to receive the random access preamble sent by the terminal within the specified time unit, ensuring consistent understanding between the terminal and the base station and high availability.
  • Method 4 Determine whether there is a valid RO on the uplink subband in the specified time unit based on the indication of the third RRC signaling sent by the base station.
  • the third RRC signaling is at least used to indicate where the valid RO is located.
  • the specified time unit is the indication of the third RRC signaling sent by the base station.
  • Figure 5A is a flow chart of a random access method according to an embodiment. It can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • the method can include the following steps:
  • step 501 third RRC signaling sent by the base station is received.
  • the base station may indicate the designated time unit where the effective RO is located through terminal-specific (UE-dedicated) third RRC signaling.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the base station may indicate whether the valid RO exists in each time unit within the configuration period through a bitmap.
  • the third RRC signaling is used to indicate a specified time unit index value where the valid RO is located.
  • step 502 based on the indication of the third RRC signaling, it is determined that the valid RO exists on the uplink subband in the specified time unit.
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the configuration period includes 5 time slots, among which slot#0, slot#1, Slot#2 and slot#3 are downlink time slots, and slot#4 is flexible slot.
  • Uplink subbands are configured on slot#1 and slot#3, that is, slot#1 and slot#3 are designated time units.
  • the third RRC signaling can indicate whether there is a valid RO on each time unit through a bitmap.
  • the bitmap is 01001, and the terminal can determine that a valid RO exists on the uplink subband of slot #1.
  • the third RRC signaling is used to indicate the specified time unit index value where the valid RO is located.
  • the configuration period includes 5 time slots, among which slot#0, slot#1, slot#2, Slot#3 is the downlink time slot, slot#4 is flexible slot.
  • Uplink subbands are configured on slot#1 and slot#3, that is, slot#1 and slot#3 are designated time units.
  • the specified time unit index value of the third RRC signaling indicating the existence of valid RO is 1, and the terminal can determine that the valid RO exists on the uplink subband of slot #1.
  • step 503 the resource location of the effective RO is determined.
  • the terminal can determine the resource location for configuring the RO based on the RACH resource configuration information.
  • the specific determination method is similar to the above step 203 of determining the resource location for configuring the RO, which will not be described again here.
  • the terminal can determine the resource location where the RO is configured as a valid RO resource location.
  • step 504 a random access preamble is sent to the base station at the resource location of the effective RO.
  • the terminal can determine that there is a valid RO in the uplink subband of the specified time unit based on the indication of the third RRC signaling sent by the base station, and send the random access preamble to the base station at the resource location of the valid RO. code. It effectively reduces the delay of the random access process in full-duplex communication and improves the efficiency of full-duplex communication.
  • Figure 5B is a flow chart of a random access method according to an embodiment. It can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • the method can include the following steps:
  • step 501' receive the third RRC signaling sent by the base station.
  • the base station may use terminal-dedicated (UE-dedicated) third RRC signaling to at least indicate whether the valid RO exists on the uplink subband in a specified time unit.
  • UE-dedicated terminal-dedicated
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the base station may indicate whether the valid RO exists in each time unit within the configuration period through a bitmap.
  • the third RRC signaling is used to indicate a specified time unit index value where the valid RO is located.
  • step 502' based on the indication of the third RRC signaling, it is determined that the valid RO does not exist on the uplink subband of the designated time unit in the designated time unit.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the configuration period includes 5 time slots, among which slot#0, slot#1, Slot#2 and slot#3 are downlink time slots, and slot#4 is flexible slot.
  • Uplink subbands are configured on slot#1 and slot#3, that is, slot#1 and slot#3 are designated time units.
  • the third RRC signaling can indicate whether there is a valid RO on each time unit through a bitmap. For example, the bitmap is 01001, and the terminal can determine that there is no valid RO on the uplink subband of slot #3.
  • the third RRC signaling is used to indicate the specified time unit index value where the valid RO is located.
  • the configuration period includes 5 time slots, among which slot#0, slot#1, slot#2, Slot#3 is the downlink time slot, slot#4 is flexible slot.
  • Uplink subbands are configured on slot#1 and slot#3, that is, slot#1 and slot#3 are designated time units.
  • the specified time unit index value of the third RRC signaling indicating the existence of valid RO is 1, and the terminal can determine that there is no valid RO on the uplink subband of slot #3.
  • the terminal may ignore all ROs included in the uplink subband, and/or determine not to send a random access preamble to the base station within the specified time unit.
  • the terminal may determine that there is no valid RO in the uplink subband of the specified time unit based on the indication of the third RRC signaling. At this time, the terminal may ignore all ROs included in the uplink subband, and/or It is determined not to send a random access preamble to the base station within the specified time unit. The base station side does not expect to receive the random access preamble sent by the terminal within the specified time unit, ensuring consistent understanding between the terminal and the base station and high availability.
  • FIG. 6 is a flow chart of a random access method according to an embodiment, which can be executed by a base station. The method can include the following steps:
  • step 601 it is determined whether there is a valid random access opportunity RO on the uplink subband in a specified time unit.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc. Among them, a span includes multiple consecutive symbols.
  • the base station may determine whether there is a valid RO on the uplink subband in the specified time unit in a predefined manner.
  • the base station configures the uplink subband for the terminal within the designated time unit, so that the terminal can use the resources of the uplink subband to perform uplink transmission within the downlink time unit.
  • the terminal determines whether there is a valid RO on the uplink subband in the designated time unit, which may refer to determining whether the frequency domain of the uplink subband can be utilized within the time domain range corresponding to the designated time unit.
  • the resource initiates random access.
  • the effective RO time domain resources are located in the designated time unit, the effective RO frequency domain resources may be located within the frequency domain range of the uplink subband in the designated time unit, or part of the effective RO frequency domain resources may be located in the uplink outside the frequency domain range of the subband.
  • step 602 in response to determining that the effective RO exists on the uplink subband, determine the resource location of the effective RO.
  • the base station may further determine the resource location of the valid RO.
  • resource locations include but are not limited to time domain resource locations, frequency domain resource locations, etc.
  • the base station can determine the resource location of the configured RO based on the RACH resource configuration information.
  • the configured RO refers to the RO configured by the base station for the terminal.
  • the time domain resource location of the effective RO is located in the specified time unit and is the same as the time domain resource location of the configured RO. This disclosure focuses more on how to determine the frequency domain resource location of an effective RO. In a possible implementation, all frequency domain resource locations of effective ROs are located within the frequency domain range of the uplink subband.
  • At least part of the frequency domain resource locations of the effective RO are located outside the frequency domain range of the uplink subband.
  • step 603 receive the random access preamble sent by the terminal at the resource location of the effective RO.
  • the base station can receive the random access preamble sent by the terminal at the resource location of the valid RO, thereby triggering the random access process between the base station and the terminal.
  • the base station when there is a valid RO on the uplink subband in a specified time unit, the base station can receive the random access preamble sent by the terminal at the resource location of the valid RO, which can effectively reduce the full-duplex
  • the delay of the random access process in communication improves the efficiency of full-duplex communication, and ensures consistent understanding between the terminal and the base station, and high availability.
  • the following describes the method for the base station to determine whether there is a valid RO on the uplink subband in a specified time unit.
  • the base station may determine whether there is a valid RO on the uplink subband in the specified time unit based on the relative position of the RACH resource in the frequency domain with respect to the uplink subband in the specified time unit.
  • the RACH resources are RACH resources configured by the base station for the terminal and capable of random access.
  • Figure 7A is a flow chart of a random access method according to an embodiment, which can be executed by a base station.
  • the method can include the following steps:
  • step 701 determine the relative positional relationship in the frequency domain between the random access channel RACH resources configured by the base station for the terminal and the uplink subband in the designated time unit.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the relative position relationship indicates that the RACH resources are all located within the frequency domain range of the uplink subband in the frequency domain, for example, as shown in Figure 2B.
  • the relative position relationship indicates that the RACH resource is at least partially located outside the frequency domain range of the uplink subband in the frequency domain, for example, as shown in FIG. 2C.
  • step 702 if the relative position relationship indicates that the RACH resources are all located within the frequency domain range of the uplink subband in the frequency domain, it is determined that the valid RO exists on the uplink subband.
  • step 703 the resource location of the effective RO is determined.
  • the base station can provide RACH resource configuration information to the terminal through SIB1 or terminal-specific RRC signaling, and the resource location for configuring RO is determined based on the RACH resource configuration information.
  • the RACH resource configuration information provided by the base station includes a physical PRACH configuration index value. Assuming that the index value is 65, the base station can determine the RACH resource configuration information corresponding to the index value based on Table 1, so as to follow the related technology. Determine the resource location where RO is configured.
  • the base station can directly determine the resource location where the RO is configured as the resource location of the valid RO.
  • step 704 receive the random access preamble sent by the terminal at the resource location of the effective RO.
  • the base station determines that there is a valid RO in the uplink subband in the specified time unit. , and receive the random access preamble sent by the terminal at the effective RO resource location. It effectively reduces the delay of the random access process in full-duplex communication, improves the efficiency of full-duplex communication, and ensures consistent understanding between the terminal and the base station and high availability.
  • Figure 7B is a flow chart of a random access method according to an embodiment, which can be executed by a base station.
  • the method can include the following steps:
  • step 701' determine the relative position relationship in the frequency domain between the random access channel RACH resources configured by the base station for the terminal and the uplink subband in the designated time unit.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the relative position relationship indicates that the RACH resources are all located within the frequency domain range of the uplink subband in the frequency domain, for example, as shown in Figure 2B.
  • the relative position relationship indicates that the RACH resource is at least partially located outside the frequency domain range of the uplink subband in the frequency domain, for example, as shown in FIG. 2C.
  • step 702' if the relative position relationship indicates that the RACH resource is at least partially located outside the frequency domain range of the uplink subband in the frequency domain, it is determined that the valid resource does not exist on the uplink subband. RO.
  • the base station determines that the valid RO does not exist on the uplink subband. That is, the base station determines that an invalid RO exists on the uplink subband.
  • the base station does not expect to receive the random access preamble sent by the terminal within the specified time unit.
  • the base station determines that there is no valid signal in the uplink subband of the specified time unit. RO, at this time the base station does not expect to receive the random access preamble sent by the terminal within the specified time unit. Ensure consistent understanding between terminals and base stations and high availability.
  • the base station may determine whether the valid RO exists on the uplink subband based on the number of first frequency domain units included in the configured RO and the number of second frequency domain units included in the uplink subband.
  • the configured RO is an RO determined based on RACH resource configuration information.
  • Figure 8A is a flow chart of a random access method according to an embodiment, which can be executed by a base station.
  • the method can include the following steps:
  • step 801 if the number of first frequency domain units included in the configuration RO is less than or equal to the number of second frequency domain units included in the uplink subband within the specified time unit, it is determined that there is a presence on the uplink subband in the specified time unit.
  • the effective RO if the number of first frequency domain units included in the configuration RO is less than or equal to the number of second frequency domain units included in the uplink subband within the specified time unit, it is determined that there is a presence on the uplink subband in the specified time unit. The effective RO.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the base station may provide RACH resource configuration information to the terminal through SIB1 or terminal-specific RRC signaling, and the number of first frequency domain units included in the configured RO may be determined based on the RACH resource configuration information.
  • the base station may configure the number of second frequency domain units included in the uplink subband within the specified time unit for the terminal.
  • the frequency domain unit may be in units of RB, RBG, etc., which is not limited in this disclosure.
  • the base station may determine that there is a valid RO on the uplink subband.
  • step 802 the resource location of the effective RO is determined.
  • the resource location for configuring the RO may be determined first based on the RACH resource configuration information.
  • the specific determination method is similar to the method of determining the resource location for configuring the RO in step 203, and will not be described again here.
  • the base station can directly determine the resource location where the RO is configured as the resource location of the effective RO.
  • the resource location where the RO is configured needs to be offset in the frequency domain so that all of it is located in the frequency domain.
  • the effective RO resource location is obtained.
  • the starting frequency domain position of the effective RO can be determined first within the frequency domain range of the uplink subband.
  • the base station may determine the starting frequency domain position of the effective RO based on the protocol agreement.
  • the base station sends the second RRC signaling to the terminal, and uses the second RRC signaling to indicate the starting frequency domain position of the effective RO.
  • the second RRC signaling may be used to indicate the starting frequency domain location index value of the effective RO.
  • the second RRC signaling may be used to indicate an offset of the starting frequency domain location index value of the effective RO relative to the starting frequency domain location index value of the configured RO.
  • the starting frequency domain position of the effective RO can be the starting frequency domain position of the uplink subband.
  • the starting frequency domain position of the effective RO can also be other preset frequency domain positions, which is not limited in this disclosure.
  • the base station may determine the number of first frequency domain units included in the configured RO as the number of frequency domain units included in the effective RO. Thus, the specific frequency domain resource location of the effective RO is obtained.
  • the time domain resource position of the effective RO remains unchanged and is the same as the time domain resource position of the configured RO.
  • step 803 receive the random access preamble sent by the terminal at the resource location of the effective RO.
  • the base station determines the uplink subband of the specified time unit. There is a valid RO in the memory, and at the resource location of the valid RO, the random access preamble sent by the terminal is received. It effectively reduces the delay of the random access process in full-duplex communication, improves the efficiency of full-duplex communication, and ensures consistent understanding between the terminal and the base station and high availability.
  • Figure 8B is a flow chart of a random access method according to an embodiment. It can be executed by a terminal.
  • the terminal can be a full-duplex terminal.
  • the method can include the following steps:
  • step 801' if the number of first frequency domain units included in the configuration RO is greater than the number of second frequency domain units included in the uplink subband in the specified time unit, it is determined that there is no presence in the uplink subband in the specified time unit.
  • the effective RO if the number of first frequency domain units included in the configuration RO is greater than the number of second frequency domain units included in the uplink subband in the specified time unit, it is determined that there is no presence in the uplink subband in the specified time unit. The effective RO.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the base station may provide RACH resource configuration information to the terminal through SIB1 or terminal-specific RRC signaling, and the number of first frequency domain units included in the configured RO may be determined based on the RACH resource configuration information.
  • the base station may configure the number of second frequency domain units included in the uplink subband within the specified time unit for the terminal.
  • the frequency domain unit may be in units of RB, RBG, etc., which is not limited in this disclosure.
  • the base station may determine that there is no valid RO on the uplink subband. That is, the base station determines that there is an invalid RO on the uplink subband.
  • the base station does not expect to receive the random access preamble sent by the terminal within the specified time unit.
  • the base station determines that the uplink subband in the specified time unit is There is no valid RO on the terminal, and the base station does not expect to receive the random access preamble sent by the terminal within the specified time unit, ensuring consistent understanding between the terminal and the base station and high availability.
  • Method 3 The base station sends the first RRC signaling indication to directly indicate whether there is a valid RO on the uplink subband.
  • Figure 9A is a flow chart of a random access method according to an embodiment, which can be executed by a base station.
  • the method can include the following steps:
  • step 901 first radio resource control RRC signaling is sent to the terminal.
  • the first RRC signaling is directly used to indicate whether the valid RO exists on the uplink subband in the specified time unit.
  • step 902 if the first RRC signaling indicates that a valid RO exists on the uplink subband in the specified time unit, it is determined that the valid RO exists on the uplink subband.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • step 903 the resource location of the effective RO is determined.
  • the resource location for configuring the RO may be determined based on the RACH resource configuration information.
  • the resource location where the RO is configured is determined as the resource location of the effective RO.
  • the specific determination method is similar to the above-mentioned step 302 and will not be described again here.
  • step 904 receive the random access preamble sent by the terminal at the resource location of the effective RO.
  • the base station sends the first RRC signaling to the terminal, indicating that there is a valid RO on the uplink subband in the specified time unit.
  • the base station receives the random access preamble sent by the terminal at the resource location of the valid RO. . It effectively reduces the delay of the random access process in full-duplex communication, improves the efficiency of full-duplex communication, ensures consistent understanding between the terminal and the base station, and has high availability.
  • Figure 9B is a flow chart of a random access method according to an embodiment, which can be executed by a base station.
  • the method can include the following steps:
  • step 901' receive the first radio resource control RRC signaling sent by the base station.
  • the first RRC signaling is directly used to indicate whether the valid RO exists on the uplink subband in the specified time unit.
  • step 902' if the first RRC signaling indicates that there is no valid RO on the uplink subband in the specified time unit, it is determined that the valid RO does not exist on the uplink subband.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the base station sends the first RRC signaling to indicate that the valid RO does not exist on the uplink subband in the specified time unit, that is, there is an invalid RO on the uplink subband.
  • the base station side does not expect to receive the random access preamble sent by the terminal within the designated time unit.
  • the base station sends the first RRC signaling to the terminal, indicating that there is no valid RO on the uplink subband in the designated time unit, and the base station does not expect to receive the random data sent by the terminal in the designated time unit.
  • the access preamble ensures consistent understanding between the terminal and the base station and high availability.
  • Method 4 The base station sends a third RRC signaling to indicate whether there is a valid RO on the uplink subband in the designated time unit.
  • the third RRC signaling is at least used to indicate the designated time where the valid RO is located. unit.
  • Figure 10A is a flow chart of a random access method according to an embodiment, which can be executed by a base station.
  • the method can include the following steps:
  • step 1001 third RRC signaling is sent to the terminal.
  • the base station may indicate at least the designated time unit where the effective RO is located through terminal-specific (UE-dedicated) third RRC signaling.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the base station may indicate whether the valid RO exists in each time unit within the configuration period through a bitmap.
  • the third RRC signaling is used to indicate a specified time unit index value where the valid RO is located.
  • step 1002 based on the indication of the third RRC signaling, it is determined that the valid RO exists on the uplink subband in the specified time unit.
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the configuration period includes 5 time slots, among which slot#0, slot#1, Slot#2 and slot#3 are downlink time slots, and slot#4 is flexible slot.
  • Uplink subbands are configured on slot#1 and slot#3, that is, slot#1 and slot#3 are designated time units.
  • the third RRC signaling can indicate whether there is a valid RO on each time unit through a bitmap.
  • the bitmap is 01001, that is, the base station indicates that a valid RO exists on the uplink subband of slot #1.
  • the third RRC signaling is used to indicate the specified time unit index value where the valid RO is located.
  • the configuration period includes 5 time slots, among which slot#0, slot#1, slot#2, Slot#3 is the downlink time slot, slot#4 is flexible slot.
  • Uplink subbands are configured on slot#1 and slot#3, that is, slot#1 and slot#3 are designated time units.
  • the specified time unit index value of the third RRC signaling indicating that valid RO exists is 1, that is, the base station indicates that valid RO exists on the uplink subband of slot #1.
  • step 1003 the resource location of the effective RO is determined.
  • the terminal can determine the resource location for configuring the RO based on the RACH resource configuration information.
  • the specific determination method is similar to the above step 203 of determining the resource location for configuring the RO, which will not be described again here.
  • the terminal can determine the resource location where the RO is configured as a valid RO resource location.
  • step 1004 receive the random access preamble sent by the terminal at the resource location of the effective RO.
  • the base station may send the third RRC signaling to the terminal, indicate the designated time unit where the effective RO is located through the third RRC signaling, and receive the random access sent by the terminal at the resource location of the effective RO. Enter the preamble. It effectively reduces the delay of the random access process in full-duplex communication and improves the efficiency of full-duplex communication.
  • Figure 10B is a flow chart of a random access method according to an embodiment, which can be executed by a base station.
  • the method can include the following steps:
  • step 1001' third RRC signaling is sent to the terminal.
  • the base station may indicate at least the designated time unit where the effective RO is located through terminal-specific (UE-dedicated) third RRC signaling.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the base station may indicate whether the valid RO exists in each time unit within the configuration period through a bitmap.
  • the third RRC signaling is used to indicate a specified time unit index value where the valid RO is located.
  • step 1002' based on the indication of the third RRC signaling, it is determined that the valid RO does not exist on the uplink subband in the specified time unit.
  • the designated time unit refers to a downlink time unit configured with an uplink subband.
  • the downlink time unit includes but is not limited to downlink slot, downlink symbol, downlink span, etc.
  • the third RRC signaling is used to indicate whether the valid RO exists on each time unit within the configuration period.
  • the configuration period includes 5 time slots, among which slot#0, slot#1, Slot#2 and slot#3 are downlink time slots, and slot#4 is flexible slot.
  • Uplink subbands are configured on slot#1 and slot#3, that is, slot#1 and slot#3 are designated time units.
  • the third RRC signaling can indicate whether there is a valid RO on each time unit through a bitmap. For example, if the bitmap is 01001, it can be determined that there is no valid RO on the uplink subband of slot #3.
  • the third RRC signaling is used to indicate the specified time unit index value where the valid RO is located.
  • the configuration period includes 5 time slots, among which slot#0, slot#1, slot#2, Slot#3 is the downlink time slot, slot#4 is flexible slot.
  • Uplink subbands are configured on slot#1 and slot#3, that is, slot#1 and slot#3 are designated time units.
  • the specified time unit index value of the third RRC signaling indicating the existence of valid RO is 1. It can be determined that there is no valid RO on the uplink subband of slot #3.
  • the base station side does not expect to receive the random access preamble sent by the terminal within the designated time unit.
  • the base station sends the third RRC signaling to the terminal, and uses the third RRC signaling to indicate the designated time unit where the valid RO is located.
  • the base station side does not expect to receive all the information in the designated time unit where there is no valid RO.
  • the random access preamble sent by the terminal ensures consistent understanding between the terminal and the base station and high availability.
  • Embodiment 1 assumes that the terminal is a Rel-18 or later version terminal with half-duplex capability or full-duplex capability. This disclosure does not make any limitations. Assume that the base station performs full-duplex operation on the semi-static fexible symbols in the TDD frequency band, that is, it schedules downlink data and uplink data at the same time.
  • the first time unit is a semi-static flexible symbol, which can be determined by the following information sent by the base station:
  • the base station instructs the terminal on the transmission direction on the semi-static flexible symbol in the following manner.
  • the embodiments of this disclosure do not impose any restrictions:
  • the base station configures UL subband or DL subband for the terminal. Within the UL subband, the terminal can only perform uplink transmission; within the DL subband, the terminal can only perform uplink reception. The base station performs data channel scheduling or reference signal indication within the UL subband or DL subband.
  • the time slot structure configured by the base station through TDD UL-DL configuration is DDDDF, that is, during the TDD configuration period, the first 4 slots are DL slots, and the last slot is a flexible slot.
  • DDDDF time slot structure configured by the base station through TDD UL-DL configuration
  • the first 4 slots are DL slots
  • the last slot is a flexible slot.
  • this embodiment method can also be directly applied to other TDD UL DL time slot structures.
  • the base station configures UL subband on the semi-DL symbol.
  • the base station configures the time-frequency resources for RACH transmission for the terminal through the RACH configuration information carried in SIB1.
  • the specific configuration information is shown in Table 1, which will not be described again here.
  • the schematic diagram of configured RACH resources is shown in Figure 11B.
  • the RO located in DL slot #1 cannot be used to transmit preamble. This limits the flexibility of full-duplex terminals for uplink random access.
  • the terminal determines whether there is a valid RO on the uplink subband within the specified time unit (subsequently represented by SBFD slot) through the following method.
  • SBFD slot is a DL slot configured with UL subband:
  • the terminal determines the relative position relationship in the frequency domain of the random access channel RACH resource configured by the base station for the terminal with respect to the uplink subband within the designated time unit.
  • the terminal determines that the valid RO exists on the uplink subband. And the resource location of the configuration RO is determined as the resource location of the effective RO.
  • the terminal can send a random access preamble to the base station at a valid RO resource location.
  • the relative position relationship indicates that at least part of the RACH resource is located outside the frequency domain range of the uplink subband in the frequency domain, it is determined that the effective RO does not exist on the uplink subband, that is, the uplink subband
  • the RO on the subband is an invalid RO, and the terminal ignores all ROs included in the uplink subband, and/or determines not to send a random access preamble to the base station within the specified time unit.
  • the terminal determines that all the RACH resources exist on the uplink subband. Describe the valid RO, that is, the terminal can send preamble in the RO in slot #1.
  • the terminal does not transmit on the RO of the uplink subband within the specified time unit. preamble.
  • Embodiment 2 assumes that the terminal is a Rel-18 or later version terminal with half-duplex capability or full-duplex capability. This disclosure does not make any limitations. Assume that the base station performs full-duplex operation on the semi-static fexible symbols in the TDD frequency band, that is, it schedules downlink data and uplink data at the same time.
  • the first time unit is a semi-static flexible symbol, which can be determined by the following information sent by the base station:
  • the base station instructs the terminal on the transmission direction on the semi-static flexible symbol in the following manner.
  • This embodiment of the disclosure does not impose any restrictions:
  • the base station configures UL subband or DL subband for the terminal. Within the UL subband, the terminal can only perform uplink transmission; within the DL subband, the terminal can only perform uplink reception. The base station performs data channel scheduling or reference signal indication within the UL subband or DL subband.
  • the time slot structure configured by the base station through TDD UL-DL configuration is DDDDF, that is, during the TDD configuration period, the first four slots are DL slots, and the last slot is a flexible slot.
  • DDDDF time slot structure configured by the base station through TDD UL-DL configuration
  • the first four slots are DL slots
  • the last slot is a flexible slot.
  • this embodiment method can also be directly applied to other TDD UL DL time slot structures.
  • the base station configures UL subband on the semi-DL symbol.
  • the base station configures the time-frequency resources for RACH transmission for the terminal through the RACH configuration information carried in SIB1.
  • the specific configuration information is shown in Table 1, which will not be described again here.
  • the schematic diagram of configured RACH resources is shown in Figure 11C.
  • the RO located in DL slot #1 cannot be used to transmit preamble. This limits the flexibility of full-duplex terminals for uplink random access.
  • the terminal determines whether there is a valid RO on the uplink subband within the specified time unit (subsequently represented by SBFD slot) through the following method.
  • SBFD slot is a DL slot configured with UL subband:
  • the terminal determines the relative position relationship in the frequency domain of the random access channel RACH resource configured by the base station for the terminal with respect to the uplink subband within the designated time unit.
  • the terminal determines that the valid RO exists on the uplink subband. And the resource location of the configuration RO is determined as the resource location of the effective RO.
  • the terminal can send a random access preamble to the base station at a valid RO resource location.
  • the resource location for configuring the RO can be offset in the frequency domain so that the effective RO The resource locations are all located within the frequency domain range of the uplink subband in the frequency domain.
  • the starting frequency domain position of the effective RO is agreed upon by the protocol, and may be the starting frequency domain position of the uplink subband;
  • the starting frequency domain position of the effective RO is indicated by the second RRC signaling sent by the base station.
  • At least part of the RACH resources in the frequency domain are outside the frequency domain range of the uplink subband, and the number of first frequency domain units included in the configuration RO is less than or equal to the number of first frequency domain units included in the uplink subband. Number of second frequency domain units. This allows the resource locations where RO is configured to be shifted in the frequency domain so that they can all be located within the frequency domain range of the uplink subband.
  • the starting frequency domain position of the effective RO can be determined through the agreement in the protocol, and the starting frequency domain position of the effective RO in the agreement is the starting frequency domain position of the uplink subband.
  • the starting frequency domain position of the effective RO is configured by the base station through the second RRC signaling (signaling).
  • the terminal may determine the number of first frequency domain units included in the configured RO as the number of frequency domain units included in the effective RO.
  • the base station may indicate through the first RRC singaling whether there is a valid RO on the uplink subband within the specified time unit.
  • the terminal or the base station determines the resource location of the valid RO according to the method described in Embodiment 1 or Embodiment 2.
  • the terminal may ignore all ROs included in the uplink subband, and/or determine not to report to the base station within the specified time unit. Send random access preamble. The base station does not expect to receive the random access preamble sent by the terminal within the specified time unit.
  • Embodiment 4 assumes that the terminal is a Rel-18 or later version terminal with half-duplex capability or full-duplex capability. This disclosure does not make any limitations. Assume that the base station performs full-duplex operation on the semi-static fexible symbols in the TDD frequency band, that is, it schedules downlink data and uplink data at the same time.
  • the first time unit is a semi-static flexible symbol, which can be determined by the following information sent by the base station:
  • the base station instructs the terminal on the transmission direction on the semi-static flexible symbol in the following manner.
  • This embodiment of the disclosure does not impose any restrictions:
  • the base station configures UL subband or DL subband for the terminal. Within the UL subband, the terminal can only perform uplink transmission; within the DL subband, the terminal can only perform uplink reception. The base station performs data channel scheduling or reference signal indication within the UL subband or DL subband.
  • the time slot structure configured by the base station through TDD UL-DL configuration is DDDDDDFUUU, as shown in Figure 12A, that is, during the TDD configuration period, the first 6 slots are DL slots, and the last 3 slots are UL There is a flexible slot (a time slot with variable transmission direction) between slot, Ulslot and DL slot.
  • this embodiment method can also be directly applied to other TDD UL DL time slot structures.
  • the base station configures UL subband on the semi-DL symbol.
  • the base station configures the time-frequency resources for RACH transmission for the terminal through the RACH configuration information carried in SIB1.
  • the specific configuration information is shown in Table 2.
  • FIG. 12B a schematic diagram of the determined RACH resources configured by the base station for the terminal is shown in Figure 12B.
  • the resource range for configuring RO is within the configured RACH resource range.
  • RO located in DL slot#1, DL slot#3, and DL slot#5 cannot be used to transmit preamble. This limits the flexibility of full-duplex terminals for uplink random access.
  • the terminal determines whether there is a valid RO on the uplink subband within the specified time unit (subsequently represented by SBFD slot) through the following method.
  • SBFD slot is a DL slot configured with UL subband:
  • the terminal determines whether there is a valid RO on the uplink subband of the specified time unit according to the valid RO pattern indicated by the third RRC signaling sent by the base station.
  • the base station indicates the effective RO pattern through UE-dedicated RRC signaling.
  • the RO indicated by the valid RO pattern is a valid RO.
  • the terminal considers the RO indicated by the valid RO pattern to be a valid RO.
  • the valid RO pattern acts to configure the RO.
  • the base station indicates the slot index where the effective RO is located through the UE-dedicated third RRC signaling. For example, if the slot indexes are #1 and #5, then the ROs in slot #1 and slot #5 determined by the RACH Configuration index #66 are valid ROs. Regardless of whether all the RACH resources are located in the frequency domain of the uplink subband, the terminal and the base station consider the RO of the designated time unit to be a valid RO, and preamble transmission may occur.
  • the delay of the random access process in full-duplex communication can be effectively reduced, the efficiency of full-duplex communication is improved, and the terminal and the base station are ensured to have consistent understanding and high availability.
  • the present disclosure also provides an application function implementation device embodiment.
  • Figure 13 illustrates a random access device according to an exemplary embodiment.
  • the device is applied to a terminal and includes:
  • the first determination module 1301 is configured to determine whether there is a valid random access opportunity RO on the uplink subband in a designated time unit; wherein the designated time unit is a downlink time unit configured with the uplink subband;
  • the second determination module 1302 is configured to determine the resource location of the effective RO in response to determining that the effective RO exists on the uplink subband;
  • the sending module 1303 is configured to send a random access preamble to the base station at the resource location of the effective RO.
  • Figure 14 illustrates a random access device according to an exemplary embodiment.
  • the device is applied to a base station and includes:
  • the third determination module 1401 is configured to determine whether there is a valid random access opportunity RO on the uplink subband in the designated time unit; wherein the designated time unit is a downlink time unit configured with the uplink subband;
  • the fourth determination module 1402 is configured to determine the resource location of the effective RO in response to determining that the effective RO exists on the uplink subband;
  • the receiving module 1403 is configured to receive the random access preamble sent by the terminal at the resource location of the effective RO.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the partial description of the method embodiment for relevant details.
  • the device embodiments described above are only illustrative.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in a place, or can be distributed across multiple network units. Some or all of the modules may be selected according to actual conditions to achieve the purpose of the disclosed solution. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • the present disclosure also provides a computer-readable storage medium that stores a computer program, and the computer program is used to execute any of the above random access methods for the terminal side.
  • the present disclosure also provides a computer-readable storage medium that stores a computer program, and the computer program is used to execute any of the above random access methods for the base station side.
  • the present disclosure also provides a random access device, including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any of the above random access methods on the terminal side.
  • FIG. 15 is a block diagram of an electronic device 1500 according to an exemplary embodiment.
  • the electronic device 1500 may be a mobile phone, a tablet computer, an e-book reader, a multimedia player device, a wearable device, a vehicle-mounted terminal, an iPad, a smart TV and other terminals.
  • electronic device 1500 may include one or more of the following components: processing component 1502, memory 1504, power supply component 1506, multimedia component 1508, audio component 1510, input/output (I/O) interface 1512, sensor component 1516, and communications component 1518.
  • processing component 1502 memory 1504
  • power supply component 1506 multimedia component 1508, audio component 1510
  • input/output (I/O) interface 1512 sensor component 1516
  • communications component 1518 communications component 1518.
  • Processing component 1502 generally controls the overall operations of electronic device 1500, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1502 may include one or more processors 1520 to execute instructions to complete all or part of the steps of the random access method described above.
  • processing component 1502 may include one or more modules that facilitate interaction between processing component 1502 and other components.
  • processing component 1502 may include a multimedia module to facilitate interaction between multimedia component 1508 and processing component 1502.
  • the processing component 1502 can read executable instructions from the memory to implement a random access step provided by the above embodiments.
  • Memory 1504 is configured to store various types of data to support operations at electronic device 1500 . Examples of such data include instructions for any application or method operating on the electronic device 1500, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1504 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 1506 provides power to various components of electronic device 1500 .
  • Power supply components 1506 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to electronic device 1500 .
  • Multimedia component 1508 includes a display screen that provides an output interface between the electronic device 1500 and the user.
  • multimedia component 1508 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1510 is configured to output and/or input audio signals.
  • audio component 1510 includes a microphone (MIC) configured to receive external audio signals when electronic device 1500 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signals may be further stored in memory 1504 or sent via communication component 1518 .
  • audio component 1510 also includes a speaker for outputting audio signals.
  • the I/O interface 1512 provides an interface between the processing component 1502 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1516 includes one or more sensors for providing various aspects of status assessment for electronic device 1500 .
  • the sensor component 1516 can detect the open/closed state of the electronic device 1500, the relative positioning of components, such as the display and keypad of the electronic device 1500, the sensor component 1516 can also detect the electronic device 1500 or an electronic device 1500.
  • the position of components changes, the presence or absence of user contact with the electronic device 1500 , the orientation or acceleration/deceleration of the electronic device 1500 and the temperature of the electronic device 1500 change.
  • Sensor component 1516 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1516 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1516 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1518 is configured to facilitate wired or wireless communications between electronic device 1500 and other devices.
  • the electronic device 1500 may access a wireless network based on a communication standard, such as Wi-Fi, 2G, 3G, 4G or 5G, or a combination thereof.
  • communication component 1518 receives broadcast signals or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communications component 1518 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • electronic device 1500 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmable gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above random access method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmable gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above random access method.
  • a non-transitory machine-readable storage medium including instructions such as a memory 1504 including instructions, which can be executed by the processor 1520 of the electronic device 1500 to complete the above random access method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the present disclosure also provides a random access device, including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the above random access methods on the base station side.
  • FIG 16 is a schematic structural diagram of a random access device 1600 according to an exemplary embodiment.
  • Apparatus 1600 may be provided as a base station.
  • apparatus 1600 includes a processing component 1622, a wireless transmit/receive component 1624, an antenna component 1626, and a wireless interface-specific signal processing portion.
  • the processing component 1622 may further include at least one processor.
  • One of the processors in the processing component 1622 may be configured to perform any of the above random access methods on the base station side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种随机接入方法及装置、存储介质,其中,所述方法包括:确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;在所述有效的RO的资源位置上,向基站发送随机接入前导码。本公开可以有效降低全双工通信中随机接入过程的时延,提高了全双工通信的效率。

Description

随机接入方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及随机接入方法及装置、存储介质。
背景技术
版本18(Release-18,Rel-18)全双工(duplex)增强(enhancement)项目将对全双工方案进行研究,具体地,网络侧能够在一个时隙(slot)内同时进行数据的接收和发送。作为一种可能的方案,网络侧在半静态可变符号(semi-static flexible symbol)上调度或者指示全双工终端进行数据的发送或者接收。基站侧执行全双工的目的之一是降低上行传输时延。对于随机接入(Random Access,RA)过程而言,终端根据基站配置的随机接入信道配置(Random Access Channel configuration,RACH configuration)确定可以用于上行随机接入的物理资源。
在时分双工(Time Division Duplexing,TDD)或者频分双工(Frequency Division Duplexing,FDD)系统中,终端在有效的(valid)随机接入时机(RACH Occasion,RO)上根据自身需要发送前导码(preamble),例如终端不会在下行(DownLink,DL)slot内或者不满足协议中定义条件的可变(flexible)时间符号(symbol)上的RO上发起随机接入过程。
对于duplex终端,其可在DL slot内的上行子带(UpLink subband,UL subband)内进行上行发送。
但是按照相关协议的定义,基站不期待终端在DL slot内发送preamble,从而限制了全双工技术在降低时延方面的增益。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种随机接入方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种随机接入方法,所述方法由终端执行,包括:
确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
在所述有效的RO的资源位置上,向基站发送随机接入前导码。
可选地,所述方法还包括:
确定所述基站为所述终端配置的随机接入信道RACH资源与所述指定时间单元中的所述上行子带在频域上的相对位置关系;
所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
基于所述相对位置关系,确定所述上行子带上是否存在所述有效的RO。
可选地,所述基于所述相对位置关系,确定所述上行子带上是否存在所述有效的RO,包括:
如果所述相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,确定所述上行子带上存在所述有效的RO;
如果所述相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子 带的频域范围之外,确定所述上行子带上不存在所述有效的RO。
可选地,所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
基于配置RO所包括的第一频域单元数目与所述上行子带所包括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO;其中,所述配置RO是基于RACH资源配置信息确定的RO。
可选地,所述基于配置RO所包括的第一频域单元数目与所述上行子带所包括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO,包括:
如果所述第一频域单元数目小于或等于所述第二频域单元数目,确定所述上行子带上存在所述有效的RO;
如果所述第一频域单元数目大于所述第二频域单元数目,确定所述上行子带上不存在所述有效的RO。
可选地,所述方法还包括:
接收所述基站发送的第一无线资源控制RRC信令;其中,所述第一RRC信令用于指示所述上行子带上是否存在所述有效的RO;
所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
基于所述第一RRC信令的指示,确定所述上行子带上是否存在所述有效的RO。
可选地,所述确定所述有效的RO的资源位置,包括:
基于RACH资源配置信息,确定配置RO的资源位置;
如果所述基站为所述终端配置的RACH资源在频域上全部位于所述上行子带的频域范围内,将所述配置RO的资源位置确定为所述有效的RO的资源位置;
如果所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,对所述配置RO的资源位置在频域上进行偏移,确定所述有效的RO的资源位置;其中,所述有效的RO的资源位置在频域上全部位于所述上行子带的频域范围内。
可选地,所述对所述配置RO的资源位置在频域上进行偏移,确定所述有效的RO的资源位置,包括:
在所述上行子带的频域范围内,确定所述有效的RO的起始频域位置;
将所述配置RO所包括的第一频域单元数目确定为所述有效的RO所包括的频域单元数目。
可选地,所述在所述上行子带的频域范围内,确定所述有效的RO的起始频域位置,包括:
基于协议约定,确定所述有效的RO的起始频域位置;或者
基于所述基站发送的第二RRC信令的指示,确定所述有效的RO的起始频域位置;其中,所述第二RRC信令用于指示所述有效的RO的起始频域位置。
可选地,所述第二RRC信令用于指示以下任一项:
所述有效的RO的起始频域位置索引值;
所述有效的RO的起始频域位置索引值相对于所述配置RO的起始频域位置索引值的偏移量。
可选地,所述有效的RO的起始频域位置为所述上行子带的起始频域位置。
可选地,所述方法还包括:
接收所述基站发送的第三RRC信令;其中,所述第三RRC信令至少用于指示所述有效的RO所在的所述指定时间单元;
所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
基于所述第三RRC信令的指示,确定所述上行子带上是否存在所述有效的RO。
可选地,所述第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO;或者,
所述第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值。
可选地,所述确定所述有效的RO的资源位置,包括:
基于RACH资源配置信息,确定配置RO的资源位置;
将所述配置RO的资源位置确定为所述有效的RO的资源位置。
可选地,所述方法还包括以下至少一项:
响应于确定所述上行子带上不存在所述有效的RO,忽略所述上行子带所包括的所有RO;
确定不在所述指定时间单元内向所述基站发送随机接入前导码。
根据本公开实施例的第二方面,提供一种随机接入方法,所述方法由网络侧设备执行,包括:
确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
在所述有效的RO的资源位置上,接收终端发送的随机接入前导码。
可选地,所述方法还包括:
确定所述基站为所述终端配置的随机接入信道RACH资源与所述指定时间单元中的所述上行子带在频域上的相对位置关系;
所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
基于所述相对位置关系,确定所述上行子带上是否存在所述有效的RO。
可选地,所述基于所述相对位置关系,确定所述上行子带上是否存在所述有效的RO,包括:
如果所述相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,确定所述上行子带上存在所述有效的RO;
如果所述相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,确定所述上行子带上不存在所述有效的RO。
可选地,所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
基于配置RO所包括的第一频域单元数目与所述上行子带所包括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO;其中,所述配置RO是基于RACH资源配置信息确定的RO。
可选地,所述基于配置RO所包括的第一频域单元数目与所述上行子带所包括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO,包括:
如果所述第一频域单元数目小于或等于所述第二频域单元数目,确定所述上行子带上存在所述有效的RO;
如果所述第一频域单元数目大于所述第二频域单元数目,确定所述上行子带上不存在所述有效的RO。
可选地,所述方法还包括:
向所述终端发送第一无线资源控制RRC信令;其中,所述第一RRC信令用于指示所述上行子带上是否存在所述有效的RO。
可选地,所述确定所述有效的RO的资源位置,包括:
基于RACH资源配置信息,确定配置RO的资源位置;
如果所述基站为所述终端配置的RACH资源在频域上全部位于所述上行子带的频域范围内,将所述配置RO的资源位置确定为所述有效的RO的资源位置;
如果所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,对所述配置RO的资源位置在频域上进行偏移,确定所述有效的RO的资源位置;其中,所述有效的RO的资源位置在频域上全部位于所述上行子带的频域范围内。
可选地,所述对所述配置RO的资源位置在频域上进行偏移,确定所述有效的RO的资源位置,包括:
在所述上行子带的频域范围内,确定所述有效的RO的起始频域位置;
将所述配置RO所包括的第一频域单元数目确定为所述有效的RO所包括的频域单元数目。
可选地,所述在所述上行子带的频域范围内,确定所述有效的RO的起始频域位置,包括:
基于协议约定,确定所述有效的RO的起始频域位置。
可选地,所述方法还包括:
向所述终端发送第二RRC信令;其中,所述第二RRC信令用于指示所述有效的RO的起始频域位置。
可选地,所述第二RRC信令用于指示以下任一项:
所述有效的RO的起始频域位置索引值;
所述有效的RO的起始频域位置索引值相对于所述配置RO的起始频域位置索引值的偏移量。
可选地,所述有效的RO的起始频域位置为所述上行子带的起始频域位置。
可选地,所述方法还包括:
向所述终端发送第三RRC信令;其中,所述第三RRC信令至少用于指示所述有效的RO所在的所述指定时间单元。
可选地,所述第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO;或者,
所述第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值。
可选地,所述确定所述有效的RO的资源位置,包括:
基于RACH资源配置信息,确定配置RO的资源位置;
将所述配置RO的资源位置确定为所述有效的RO的资源位置。
可选地,所述方法还包括:
响应于确定所述上行子带上不存在所述有效的RO,所述基站不期待在所述指定时间单元内接收所述终端发送的随机接入前导码。
根据本公开实施例的第三方面,提供一种随机接入装置,所述装置应用于终端,包括:
第一确定模块,被配置为确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
第二确定模块,被配置为响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
发送模块,被配置为在所述有效的RO的资源位置上,向基站发送随机接入前导码。
根据本公开实施例的第四方面,提供一种随机接入装置,所述装置应用于基站,包括:
第三确定模块,被配置为确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
第四确定模块,被配置为响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
接收模块,被配置为在所述有效的RO的资源位置上,接收终端发送的随机接入 前导码。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述终端侧任一项所述的随机接入方法。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述基站侧任一项所述的随机接入方法。
根据本公开实施例的第七方面,提供一种随机接入装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一项所述的随机接入方法。
根据本公开实施例的第八方面,提供一种随机接入装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一项所述的随机接入方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开中,终端可以确定指定时间单元中的上行子带上是否存在有效的随机接入时机RO,该指定时间单元是配置了上行子带的下行时间单元,从而在指定时间单元中的上行子带上存在有效的RO的情况下,确定有效的RO的资源位置,并在有效的RO的资源位置上,向基站发起随机接入。本公开可以有效降低全双工通信中随机接入过程的时延,提高了全双工通信的效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种随机接入方法流程示意图。
图2A是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图2B是根据一示例性实施例示出的一种相对位置关系示意图。
图2C是根据一示例性实施例示出的另一种相对位置关系示意图。
图2D是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图3A是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图3B是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图4A是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图4B是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图5A是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图5B是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图6是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图7A是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图7B是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图8A是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图8B是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图9A是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图9B是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图10A是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图10B是根据一示例性实施例示出的另一种随机接入方法流程示意图。
图11A是根据一示例性实施例示出的一种时分复用的时隙结构示意图。
图11B是根据一示例性实施例示出的一种基站配置的RACH资源示意图。
图11C是根据一示例性实施例示出的另一种基站配置的RACH资源示意图。
图11D是根据一示例性实施例示出的另一种有效的RO的资源位置示意图。
图11E是根据一示例性实施例示出的另一种有效的RO的资源位置示意图。
图12A是根据一示例性实施例示出的另一种时分复用的时隙结构示意图。
图12B是根据一示例性实施例示出的另一种有效的RO的资源位置示意图。
图13是根据一示例性实施例示出的一种随机接入装置框图。
图14是根据一示例性实施例示出的另一种随机接入装置框图。
图15是本公开根据一示例性实施例示出的一种随机接入装置的一结构示意图。
图16是本公开根据一示例性实施例示出的另一种随机接入装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含至少一个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在相关协议中,基站可以通过系统信息块1(System Information Block1,SIB1)或者终端专属的无线资源控制(Radio Resource Control,RRC)信令,为终端配置可用的RACH资源。具体的,可通过如下两个参数进行配置,终端根据该配置确定可进行随机接入的时频资源:
参数1、通用RACH配置(RACH-ConfigCommon);
参数2、专用RACH配置(RACH-ConfigDedicated)。
在通过如上配置确定可进行随机接入的时频资源的基础上,协议中定义了确定valid RO的方法。简而言之,基站和终端需要根据协议中定义的valid RO,判断由如上配置信令配置的RO中哪些可实际用来传输preamble。具体地,valid RO的定义如下:
如果一个RACH slot内的RO位于UL symbol内,则该RO为valid RO;
或者,如果在一个RACH slot内RO同时满足如下条件,则该RO为valid RO:
条件1、所述RO不位于同步信号块(Synchronization Signal Block,SSB)SSB之前;
条件2、所述RO在SSB之后并满足协议规定的间隙(gap);
条件3、所述RO与最后一个DL symbol之间满足协议规定的gap。
按照上述valid RO的定义,即便RO位于DL slot内的UL subband之内,所述RO仍然为无效的(invalid)RO。对应地,基站不期待在invalid RO上接收终端发送的preamble。限制了全双工技术为随机接入带来的时延降低,限制了全双工技术在时延降低方面的技术增益。
为了解决上述技术问题,本公开提供了以下随机接入方法及装置、存储介质,可 以有效降低全双工通信中随机接入过程的时延,提高了全双工通信的效率。
下面先从终端侧介绍一下本公开提供的随机接入方法。
本公开实施例提供了一种随机接入方法,参照图1所示,图1是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,全双工终端是指在半静态可变符号上支持数据发送和数据接收的终端,该方法可以包括以下步骤:
在步骤101中,确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行持续时长(span)等。其中,一个span包括多个连续的symbol。
在本公开实施例中,终端可以按照协议约定或基站发送的信令指示,即按照预定义的方式确定在指定时间单元中在上行子带上是否存在有效的(valid)RO。
需要说明的是,基站为终端在指定时间单元内配置上行子带,使得终端可以利用该上行子带的资源在下行时间单元内进行上行传输。本公开所包括的实施例中,终端在指定时间单元中在上行子带上确定是否存在有效的RO,可以指在指定时间单元对应的时域范围内,确定是否可以利用上行子带的频域资源发起随机接入。有效的RO的时域资源位于所述指定时间单元中,有效的RO的频域资源可以位于指定时间单元中的上行子带的频域范围内,或者有效的RO的部分频域资源可以位于上行子带的频域范围之外。
在步骤102中,响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置。
在本公开实施例中,终端确定所述上行子带上存在有效的RO的基础上,可以进一步确定有效的RO的资源位置。其中,资源位置包括但不限于时域资源位置、频域资源位置等。
本公开中,终端可以基于基站发送的RACH资源配置信息,确定配置RO的资源位置,该配置RO是指基站为终端配置的RO。有效的RO的时域资源位置位于指定时间单元中,且与该配置RO的时域资源位置相同。本公开更关注于如何确定有效的RO的频域资源位置。在一个可能的实现方式中,有效的RO的频域资源位置可以全部位于所述上行子带的频域范围内。
在另一个可能的实现方式中,有效的RO的至少部分频域资源位置可以位于所述上行子带的频域范围之外。
在步骤103中,在所述有效的RO的资源位置上,向基站发送随机接入前导码。
在本公开实施例中,终端可以valid RO的资源位置上,向基站发送随机接入前导码,即终端向基站发起随机接入。
上述实施例中,终端可以在指定时间单元上存在有效的RO的情况下,在有效的RO的资源位置上,向基站发起随机接入,可以有效降低全双工通信中随机接入过程的时延,提高了全双工通信的效率。
下面介绍一下终端确定指定时间单元中的上行子带上是否存在有效的RO的方法。
方法1,终端可以基于RACH资源在频域上相对于所述指定时间单元内的所述上行子带的相对位置关系,确定在指定时间单元中在上行子带上是否存在有效的RO。其中,RACH资源是由基站为该终端配置的可进行随机接入的RACH资源。
参照图2A所示,图2A是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,该方法可以包括以下步骤:
在步骤201中,确定所述基站为所述终端配置的随机接入信道RACH资源与所述指定时间单元中的所述上行子带在频域上的相对位置关系。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在本公开实施例中,相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,例如图2B所示。或者,相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,例如图2C所示。
在步骤202中,如果所述相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,确定所述上行子带上存在所述有效的RO。
在步骤203中,确定所述有效的RO的资源位置。
在本公开实施例中,终端可以基于基站通过SIB1或终端专用的RRC信令提供的RACH资源配置信息,确定配置RO的资源位置。
在本公开实施例中,基站提供的RACH资源配置信息包括物理随机接入信道(Physical Random Access Channel,PRACH)配置索引值,假设该索引值为65,则终端可以基于表1确定PRACH配置索引值对应的RACH资源配置信息:
表1
Figure PCTCN2022112281-appb-000001
终端可以基于表1的内容,按照相关技术确定配置RO的具体资源位置。
由于RACH资源在频域上全部位于所述上行子带的频域范围内,因此,终端可以直接将配置RO的资源位置确定为valid RO的资源位置。
在步骤204中,在所述有效的RO的资源位置上,向基站发送随机接入前导码。
上述实施例中,终端在相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内的情况下,确定在指定时间单元中在上行子带内存在有效的RO,并在有效的RO的资源位置上,向基站发送随机接入前导码。有效降低了全双工通信中随机接入过程的时延,提高了全双工通信的效率。
在一些可选实施例中,参照图2D所示,图2D是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,该方法可以包括以下步骤:
在步骤201’中,确定所述基站为所述终端配置的随机接入信道RACH资源与所述指定时间单元中的所述上行子带在频域上的相对位置关系。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在本公开实施例中,相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,例如图2B所示。或者,相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,例如图2C所示。
在步骤202’中,如果所述相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,确定所述上行子带上不存在所述有效的RO。
在本公开实施例中,如果相对位置关系例如图2C所示,则终端确定所述上行子带上不存在所述有效的RO。即终端确定上行子带上存在无效的(invalid)RO。
相应地,终端可以忽略所述上行子带所包括的所有RO,和/或确定不在所述指定 时间单元内向所述基站发送随机接入前导码。
上述实施例中,终端在相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外的情况下,确定指定时间单元的上行子带内不存在有效的RO,此时终端可以忽略所述上行子带所包括的所有RO,和/或确定不在所述指定时间单元内向所述基站发送随机接入前导码。基站侧不期待在所述指定时间单元内接收所述终端发送的随机接入前导码,确保终端与基站的理解一致,可用性高。
方法2、终端可以基于配置RO所包括的第一频域单元数目与所述上行子带所包括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO。其中,配置RO是基于RACH资源配置信息确定的RO。
参照图3A所示,图3A是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,该方法可以包括以下步骤:
在步骤301中,如果配置RO所包括的第一频域单元数目小于或等于指定时间单元内的上行子带所包括的第二频域单元数目,确定在指定时间单元中在上行子带上存在有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
终端可以基于基站通过SIB1或终端专用的RRC信令提供的RACH资源配置信息,从而确定配置RO所包括的第一频域单元数目。
另外,终端可以基于基站配置,确定指定时间单元内的上行子带所包括的第二频域单元数目。
其中,频域单元可以以资源块(Resource Block,RB)、资源块组(Resource Block Group,RBG)等为单位,本公开对此不作限定。
如果第一频域单元数目小于或等于第二频域单元数目,终端可以确定上行子带上存在有效的RO。
在步骤302中,确定所述有效的RO的资源位置。
在本公开实施例中,可以先基于RACH资源配置信息,确定配置RO的资源位置。具体确定方式与步骤203中确定配置RO的资源位置方式类似,在此不再赘述。
进一步地,如果RACH资源在频域上全部位于所述上行子带的频域范围内,则终端可以直接将配置RO的资源位置确定为该有效的RO的资源位置。
如果所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,则需要对所述配置RO的资源位置在频域上进行偏移,从而使其全部位于所述上行子带的频域范围内,得到有效的RO的资源位置。
在本公开实施例中,在所述配置RO的资源位置进行偏移时,可以先在上行子带的频域范围内,确定所述有效的RO的起始频域位置。
可选地,终端可以基于协议约定,确定所述有效的RO的起始频域位置。或者,终端可以基于基站发送的第二RRC信令的指示,确定有效的RO的起始频域位置,所述第二RRC信令用于指示所述有效的RO的起始频域位置。
在一个示例中,第二RRC信令可以用于指示所述有效的RO的起始频域位置索引值。
在另一个示例中,第二RRC信令可以用于指示所述有效的RO的起始频域位置索引值相对于所述配置RO的起始频域位置索引值的偏移量。
为了确保配置RO的资源位置偏移后能够在频域上全部位于所述上行子带的频域范围内,有效的RO的起始频域位置可以为所述上行子带的起始频域位置。当然,有效的RO的起始频域位置也可以为其他预设频域位置,本公开对此不作限定。
进一步地,终端在确定了有效的RO的起始频域位置后,可以将所述配置RO所包括的第一频域单元数目确定为所述有效的RO所包括的频域单元数目。从而得到有 效的RO的具体的频域资源位置。
以上仅为示例性说明,其他可以确定有效的RO的频域资源位置的方式均应属于本公开的保护范围。
当然在本公开实施例中,有效的RO的时域资源位置不变,与配置RO的时域资源位置相同。
在步骤303中,在所述有效的RO的资源位置上,向基站发送随机接入前导码。
上述实施例中,终端在配置RO所包括的第一频域单元数目小于或等于指定时间单元内的上行子带所包括的第二频域单元数目的情况下,确定指定时间单元的上行子带内存在有效的RO,并在有效的RO的资源位置上,向基站发送随机接入前导码。有效降低了全双工通信中随机接入过程的时延,提高了全双工通信的效率。
参照图3B所示,图3B是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,该方法可以包括以下步骤:
在步骤301’中,如果配置RO所包括的第一频域单元数目大于指定时间单元内的上行子带所包括的第二频域单元数目,确定在指定时间单元中在上行子带上不存在有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
终端可以基于基站通过SIB1或终端专用的RRC信令提供的RACH资源配置信息,从而确定配置RO所包括的第一频域单元数目。
另外,终端可以基于基站配置,确定指定时间单元内的上行子带所包括的第二频域单元数目。
其中,频域单元可以以RB、RBG等为单位,本公开对此不作限定。
如果第一频域单元数目大于第二频域单元数目,也就是说,即使将配置RO的资源位置在频域上进行偏移,也无法使得有效的RO的资源位置在频域上全部位于所述上行子带的频域范围内,此时终端可以确定指定时间单元的上行子带上不存在有效的RO。即终端确定上行子带上存在无效的RO。
相应地,终端可以忽略所述上行子带所包括的所有RO,和/或确定不在所述指定时间单元内向所述基站发送随机接入前导码。
上述实施例中,终端在配置RO所包括的第一频域单元数目大于指定时间单元内的上行子带所包括的第二频域单元数目的情况下,确定指定时间单元的上行子带内不存在有效的RO,终端可以忽略所述上行子带所包括的所有RO,和/或确定不在所述指定时间单元内向所述基站发送随机接入前导码。基站侧不期待在所述指定时间单元内接收所述终端发送的随机接入前导码,确保终端与基站的理解一致,可用性高。
方法3、基于基站发送的第一无线资源控制RRC信令的指示,确定是否存在有效的RO,所述第一RRC信令用于指示在指定时间单元中在上行子带上是否存在有效的RO。
参照图4A所示,图4A是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,该方法可以包括以下步骤:
在步骤401中,接收所述基站发送的第一无线资源控制RRC信令。
其中,第一RRC信令直接用于指示在指定时间单元中在上行子带上是否存在所述有效的RO。
在步骤402中,如果所述第一RRC信令指示在指定时间单元中在上行子带上存在有效的RO,确定所述上行子带上存在所述有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
终端直接基于基站发送的第一RRC信令,确定上行子带上存在所述有效的RO。
在步骤403中,确定所述有效的RO的资源位置。
在本公开实施例中,可以先基于RACH资源配置信息,确定配置RO的资源位置。
如果所述基站为所述终端配置的RACH资源在频域上全部位于所述上行子带的频域范围内,将所述配置RO的资源位置确定为所述有效的RO的资源位置。
如果所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,对所述配置RO的资源位置在频域上进行偏移,确定所述有效的RO的资源位置。
具体确定方式与上述步骤302类似,在此不再赘述。
在步骤404中,在所述有效的RO的资源位置上,向基站发送随机接入前导码。
上述实施例中,终端基于基站发送的第一RRC信令的指示,确定指定时间单元的上行子带内存在有效的RO,并在有效的RO的资源位置上,向基站发送随机接入前导码。有效降低了全双工通信中随机接入过程的时延,提高了全双工通信的效率。
参照图4B所示,图4B是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,该方法可以包括以下步骤:
在步骤401’中,接收所述基站发送的第一无线资源控制RRC信令。
其中,第一RRC信令直接用于指示在指定时间单元中在上行子带上是否存在所述有效的RO。
在步骤402’中,如果所述第一RRC信令指示在指定时间单元中在上行子带上不存在有效的RO,确定所述上行子带上不存在所述有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
终端直接基于基站发送的第一RRC信令,确定上行子带上不存在所述有效的RO。即终端确定上行子带上存在无效的RO。
相应地,终端可以忽略所述上行子带所包括的所有RO,和/或确定不在所述指定时间单元内向所述基站发送随机接入前导码。
上述实施例中,终端可以基于基站发送的第一RRC信令的指示,确定指定时间单元的上行子带内不存在有效的RO,终端可以忽略所述上行子带所包括的所有RO,和/或确定不在所述指定时间单元内向所述基站发送随机接入前导码。基站侧不期待在所述指定时间单元内接收所述终端发送的随机接入前导码,确保终端与基站的理解一致,可用性高。
方法4,基于基站发送的第三RRC信令的指示,确定在指定时间单元中在上行子带上是否存在有效的RO,所述第三RRC信令至少用于指示所述有效的RO所在的所述指定时间单元。
参照图5A所示,图5A是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,该方法可以包括以下步骤:
在步骤501中,接收所述基站发送的第三RRC信令。
在本公开实施例中,基站可以通过终端专属的(UE-dedicated)的第三RRC信令指示所述有效的RO所在的所述指定时间单元。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在一个示例中,第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO。可选地,基站可以通过比特图(bitmap)的方式指示配置周期内的每个时间单元上是否存在所述有效的RO。
在另一个示例中,第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值。
在步骤502中,基于所述第三RRC信令的指示,确定在指定时间单元中在上行子带上存在所述有效的RO。
在一个示例中,第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO,例如,配置周期内包括5个时隙,其中slot#0、slot#1、slot#2、slot#3为下行时隙,slot#4flexible slot。slot#1和slot#3上配置了上行子带,即slot#1和slot#3为指定时间单元。第三RRC信令可以通过比特图的方式指示每个时间单元上是否存在有效的RO,例如比特图为01001,终端可以确定slot#1的上行子带上存在valid RO。
在另一个示例中,第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值,例如配置周期内包括5个时隙,其中slot#0、slot#1、slot#2、slot#3为下行时隙,slot#4flexible slot。slot#1和slot#3上配置了上行子带,即slot#1和slot#3为指定时间单元。第三RRC信令指示存在valid RO的指定时间单元索引值为1,终端可以确定slot#1的上行子带上存在valid RO。
在步骤503中,确定所述有效的RO的资源位置。
在本公开实施例中,终端可以基于RACH资源配置信息,确定配置RO的资源位置,具体确定方式与上述步骤203确定配置RO的资源位置类似,在此不再赘述。
进一步地,无论RACH资源在频域上是否全部位于所述上行子带的频域范围内,终端都可以将配置RO的资源位置确定为有效的RO的资源位置。
在步骤504中,在所述有效的RO的资源位置上,向基站发送随机接入前导码。
上述实施例中,终端可以基于基站发送的第三RRC信令的指示,确定指定时间单元的上行子带内存在有效的RO,并在有效的RO的资源位置上,向基站发送随机接入前导码。有效降低了全双工通信中随机接入过程的时延,提高了全双工通信的效率。
参照图5B所示,图5B是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,该方法可以包括以下步骤:
在步骤501’中,接收所述基站发送的第三RRC信令。
在本公开实施例中,基站可以通过终端专属的(UE-dedicated)的第三RRC信令至少用于指示在指定时间单元中在上行子带上是否存在所述有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在一个示例中,第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO。可选地,基站可以通过比特图(bitmap)的方式指示配置周期内的每个时间单元上是否存在所述有效的RO。
在另一个示例中,第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值。
在步骤502’中,基于所述第三RRC信令的指示,确定在指定时间单元中在指定时间单元的上行子带上不存在所述有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在一个示例中,第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO,例如,配置周期内包括5个时隙,其中slot#0、slot#1、slot#2、slot#3为下行时隙,slot#4flexible slot。slot#1和slot#3上配置了上行子带,即slot#1和slot#3为指定时间单元。第三RRC信令可以通过比特图的方式指示每个时间单元上是否存在有效的RO,例如比特图为01001,终端可以确定slot#3的上行子带上不存在valid RO。
在另一个示例中,第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值,例如配置周期内包括5个时隙,其中slot#0、slot#1、slot#2、slot#3为下行时隙,slot#4flexible slot。slot#1和slot#3上配置了上行子带,即slot#1和slot#3为指定时间单元。第三RRC信令指示存在valid RO的指定时间单元索引值为1,终端可以确定slot#3的上行子带上不存在valid RO。
相应地,终端可以忽略所述上行子带所包括的所有RO,和/或确定不在所述指定 时间单元内向所述基站发送随机接入前导码。
上述实施例中,终端可以基于第三RRC信令的指示,确定指定时间单元的上行子带内不存在有效的RO,此时终端可以忽略所述上行子带所包括的所有RO,和/或确定不在所述指定时间单元内向所述基站发送随机接入前导码。基站侧不期待在所述指定时间单元内接收所述终端发送的随机接入前导码,确保终端与基站的理解一致,可用性高。
下面再从基站侧介绍一下本公开提供的随机接入方法。
本公开实施例提供了一种随机接入方法,参照图6所示,图6是根据一实施例示出的一种随机接入方法流程图,可以由基站执行,该方法可以包括以下步骤:
在步骤601中,确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。其中,一个span包括多个连续的symbol。
在本公开实施例中,基站可以按照预定义的方式确定指定时间单元中的上行子带上是否存在有效的RO。
需要说明的是,基站为终端在指定时间单元内配置上行子带,使得终端可以利用该上行子带的资源在下行时间单元内进行上行传输。本公开所包括的实施例中,终端在指定时间单元中在上行子带上确定是否存在有效的RO,可以指在指定时间单元对应的时域范围内,确定是否可以利用上行子带的频域资源发起随机接入。有效的RO的时域资源位于所述指定时间单元中,有效的RO的频域资源可以位于指定时间单元中的上行子带的频域范围内,或者有效的RO的部分频域资源可以位于上行子带的频域范围之外。
在步骤602中,响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置。
在本公开实施例中,基站确定所述上行子带上存在有效的RO的基础上,可以进一步确定有效的RO的资源位置。其中,资源位置包括但不限于时域资源位置、频域资源位置等。
本公开中,基站可以基于RACH资源配置信息,确定配置RO的资源位置,该配置RO是指基站为终端配置的RO。有效的RO的时域资源位置位于指定时间单元中,且与该配置RO的时域资源位置相同。本公开更关注于如何确定有效的RO的频域资源位置。在一个可能的实现方式中,有效的RO的频域资源位置全部位于所述上行子带的频域范围内。
在另一个可能的实现方式中,有效的RO的至少部分频域资源位置位于所述上行子带的频域范围之外。
在步骤603中,在所述有效的RO的资源位置上,接收终端发送的随机接入前导码。
在本公开实施例中,基站可以valid RO的资源位置上,接收终端发送的随机接入前导码,从而触发基站与终端之间的随机接入过程。
上述实施例中,基站可以在指定时间单元中在上行子带上存在有效的RO的情况下,在有效的RO的资源位置上,接收终端发送的随机接入前导码,可以有效降低全双工通信中随机接入过程的时延,提高了全双工通信的效率,且可以确保终端与基站的理解一致,可用性高。
下面介绍一下基站确定指定时间单元中的上行子带上是否存在有效的RO的方法。
方法1,基站可以基于RACH资源在频域上相对于所述指定时间单元内的所述上行子带的相对位置关系,确定指定时间单元中的上行子带上是否存在有效的RO。其 中,RACH资源是由基站为该终端配置的可进行随机接入的RACH资源。
参照图7A所示,图7A是根据一实施例示出的一种随机接入方法流程图,可以由基站执行,该方法可以包括以下步骤:
在步骤701中,确定所述基站为所述终端配置的随机接入信道RACH资源与所述指定时间单元中的所述上行子带在频域上的相对位置关系。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在本公开实施例中,相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,例如图2B所示。或者,相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,例如图2C所示。
在步骤702中,如果所述相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,确定所述上行子带上存在所述有效的RO。
在步骤703中,确定所述有效的RO的资源位置。
在本公开实施例中,基站可以通过SIB1或终端专用的RRC信令为终端提供RACH资源配置信息,配置RO的资源位置是基于该RACH资源配置信息来确定的。
在一个可能的实现方式中,基站提供的RACH资源配置信息包括物理PRACH配置索引值,假设该索引值为65,则基站可以基于表1确定该索引值对应的RACH资源配置信息,从而按照相关技术确定配置RO的资源位置。
由于RACH资源在频域上全部位于所述上行子带的频域范围内,因此,基站可以直接将配置RO的资源位置确定为valid RO的资源位置。
在步骤704中,在所述有效的RO的资源位置上,接收终端发送的随机接入前导码。
上述实施例中,基站在相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内的情况下,确定在指定时间单元中在上行子带内存在有效的RO,并在有效的RO的资源位置上,接收终端发送的随机接入前导码。有效降低了全双工通信中随机接入过程的时延,提高了全双工通信的效率,且可以确保终端与基站的理解一致,可用性高。
参照图7B所示,图7B是根据一实施例示出的一种随机接入方法流程图,可以由基站执行,该方法可以包括以下步骤:
在步骤701’中,确定所述基站为所述终端配置的随机接入信道RACH资源与所述指定时间单元中的所述上行子带在频域上的相对位置关系。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在本公开实施例中,相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,例如图2B所示。或者,相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,例如图2C所示。
在步骤702’中,如果所述相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,确定所述上行子带上不存在所述有效的RO。
在本公开实施例中,如果相对位置关系例如图2C所示,则基站确定所述上行子带上不存在所述有效的RO。即基站确定上行子带上存在无效的(invalid)RO。
相应地,基站不期待在所述指定时间单元内接收所述终端发送的随机接入前导码。
上述实施例中,基站在相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外的情况下,确定指定时间单元的上行子带内不存在有效的RO,此时基站不期待在所述指定时间单元内接收所述终端发送的随机接入前导码。确保终端与基站的理解一致,可用性高。
方法2、基站可以基于配置RO所包括的第一频域单元数目与所述上行子带所包 括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO。其中,配置RO是基于RACH资源配置信息确定的RO。
参照图8A所示,图8A是根据一实施例示出的一种随机接入方法流程图,可以由基站执行,该方法可以包括以下步骤:
在步骤801中,如果配置RO所包括的第一频域单元数目小于或等于指定时间单元内的上行子带所包括的第二频域单元数目,确定在指定时间单元中在上行子带上存在所述有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
基站可以通过SIB1或终端专用的RRC信令为终端提供RACH资源配置信息,配置RO所包括的第一频域单元数目可以基于RACH资源配置信息确定。
另外,基站可以为终端配置指定时间单元内的上行子带所包括的第二频域单元数目。
其中,频域单元可以以RB、RBG等为单位,本公开对此不作限定。
如果第一频域单元数目小于或等于第二频域单元数目,基站可以确定上行子带上存在有效的RO。
在步骤802中,确定所述有效的RO的资源位置。
在本公开实施例中,可以先基于RACH资源配置信息,确定配置RO的资源位置。
具体确定方式与步骤203中确定配置RO的资源位置方式类似,在此不再赘述。
进一步地,如果RACH资源在频域上全部位于所述上行子带的频域范围内,则基站可以直接将配置RO的资源位置确定为该有效的RO的资源位置。
如果所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,则需要对所述配置RO的资源位置在频域上进行偏移,从而使其全部位于所述上行子带的频域范围内,得到有效的RO的资源位置。
在本公开实施例中,在所述配置RO的资源位置进行偏移时,可以先在上行子带的频域范围内,确定所述有效的RO的起始频域位置。
可选地,基站可以基于协议约定,确定所述有效的RO的起始频域位置。或者,基站向终端发送第二RRC信令,通过第二RRC信令指示有效的RO的起始频域位置。
在一个示例中,第二RRC信令可以用于指示所述有效的RO的起始频域位置索引值。
在另一个示例中,第二RRC信令可以用于指示所述有效的RO的起始频域位置索引值相对于所述配置RO的起始频域位置索引值的偏移量。
为了确保配置RO的资源位置偏移后能够在频域上全部位于所述上行子带的频域范围内,有效的RO的起始频域位置可以为所述上行子带的起始频域位置。当然,有效的RO的起始频域位置也可以为其他预设频域位置,本公开对此不作限定。
进一步地,基站在确定了有效的RO的起始频域位置后,可以将所述配置RO所包括的第一频域单元数目确定为所述有效的RO所包括的频域单元数目。从而得到有效的RO的具体的频域资源位置。
以上仅为示例性说明,其他可以确定有效的RO的频域资源位置的方式均应属于本公开的保护范围。
当然在本公开实施例中,有效的RO的时域资源位置不变,与配置RO的时域资源位置相同。
在步骤803中,在所述有效的RO的资源位置上,接收终端发送的随机接入前导码。
上述实施例中,基站在配置RO所包括的第一频域单元数目小于或等于指定时间单元内的上行子带所包括的第二频域单元数目的情况下,确定指定时间单元的上行子 带内存在有效的RO,并在有效的RO的资源位置上,接收终端发送的发送随机接入前导码。有效降低了全双工通信中随机接入过程的时延,提高了全双工通信的效率,且可以确保终端与基站的理解一致,可用性高。
参照图8B所示,图8B是根据一实施例示出的一种随机接入方法流程图,可以由终端执行,该终端可以为全双工终端,该方法可以包括以下步骤:
在步骤801’中,如果配置RO所包括的第一频域单元数目大于指定时间单元内的上行子带所包括的第二频域单元数目,确定在指定时间单元中在上行子带上不存在所述有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
基站可以通过SIB1或终端专用的RRC信令为终端提供RACH资源配置信息,配置RO所包括的第一频域单元数目可以基于RACH资源配置信息确定。
另外,基站可以为终端配置指定时间单元内的上行子带所包括的第二频域单元数目。
其中,频域单元可以以RB、RBG等为单位,本公开对此不作限定。
如果第一频域单元数目大于第二频域单元数目,基站可以确定上行子带上不存在有效的RO。即基站确定上行子带上存在无效的RO。
相应地,基站不期待在所述指定时间单元内接收所述终端发送的随机接入前导码。
上述实施例中,基站在配置RO所包括的第一频域单元数目大于指定时间单元内的上行子带所包括的第二频域单元数目的情况下,确定在指定时间单元中在上行子带上不存在有效的RO,基站侧不期待在所述指定时间单元内接收所述终端发送的随机接入前导码,确保终端与基站的理解一致,可用性高。
方法3、基站发送第一RRC信令指示,直接指示上行子带上是否存在有效的RO。
参照图9A所示,图9A是根据一实施例示出的一种随机接入方法流程图,可以由基站执行,该方法可以包括以下步骤:
在步骤901中,向终端发送第一无线资源控制RRC信令。
其中,第一RRC信令直接用于指示在指定时间单元中在上行子带上是否存在所述有效的RO。
在步骤902中,如果所述第一RRC信令指示在指定时间单元中在上行子带上存在有效的RO,确定所述上行子带上存在所述有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在步骤903中,确定所述有效的RO的资源位置。
在本公开实施例中,可以基于RACH资源配置信息,确定配置RO的资源位置。
如果所述基站为所述终端配置的RACH资源在频域上全部位于所述上行子带的频域范围内,将所述配置RO的资源位置确定为所述有效的RO的资源位置。
如果所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,对所述配置RO的资源位置在频域上进行偏移,确定所述有效的RO的资源位置。
具体确定方式与上述步骤302类似,在此不再赘述。
在步骤904中,在所述有效的RO的资源位置上,接收终端发送的随机接入前导码。
上述实施例中,基站向终端发送第一RRC信令,指示在指定时间单元中在上行子带上存在有效的RO,基站在有效的RO的资源位置上,接收终端发送的随机接入前导码。有效降低了全双工通信中随机接入过程的时延,提高了全双工通信的效率,确保终端与基站的理解一致,可用性高。
参照图9B所示,图9B是根据一实施例示出的一种随机接入方法流程图,可以由 基站执行,该方法可以包括以下步骤:
在步骤901’中,接收所述基站发送的第一无线资源控制RRC信令。
其中,第一RRC信令直接用于指示在指定时间单元中在上行子带上是否存在所述有效的RO。
在步骤902’中,如果所述第一RRC信令指示在指定时间单元中在上行子带上不存在有效的RO,确定所述上行子带上不存在所述有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
基站发送第一RRC信令,指示在指定时间单元中在上行子带上不存在所述有效的RO,即上行子带上存在无效的RO。
相应地,基站侧不期待在所述指定时间单元内接收所述终端发送的随机接入前导码。
上述实施例中,基站向终端发送第一RRC信令,指示在指定时间单元中在上行子带上不存在有效的RO,基站侧不期待在所述指定时间单元内接收所述终端发送的随机接入前导码,确保终端与基站的理解一致,可用性高。
方法4,基站发送第三RRC信令,指示在指定时间单元中在上行子带上是否存在有效的RO,所述第三RRC信令至少用于指示所述有效的RO所在的所述指定时间单元。
参照图10A所示,图10A是根据一实施例示出的一种随机接入方法流程图,可以由基站执行,该方法可以包括以下步骤:
在步骤1001中,向终端发送第三RRC信令。
在本公开实施例中,基站可以通过终端专属的(UE-dedicated)的第三RRC信令,至少指示所述有效的RO所在的所述指定时间单元。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在一个示例中,第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO。可选地,基站可以通过比特图(bitmap)的方式指示配置周期内的每个时间单元上是否存在所述有效的RO。
在另一个示例中,第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值。
在步骤1002中,基于所述第三RRC信令的指示,确定在指定时间单元中在上行子带上存在所述有效的RO。
在一个示例中,第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO,例如,配置周期内包括5个时隙,其中slot#0、slot#1、slot#2、slot#3为下行时隙,slot#4flexible slot。slot#1和slot#3上配置了上行子带,即slot#1和slot#3为指定时间单元。第三RRC信令可以通过比特图的方式指示每个时间单元上是否存在有效的RO,例如比特图为01001,即基站指示slot#1的上行子带上存在valid RO。
在另一个示例中,第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值,例如配置周期内包括5个时隙,其中slot#0、slot#1、slot#2、slot#3为下行时隙,slot#4flexible slot。slot#1和slot#3上配置了上行子带,即slot#1和slot#3为指定时间单元。第三RRC信令指示存在valid RO的指定时间单元索引值为1,即基站指示slot#1的上行子带上存在valid RO。
在步骤1003中,确定所述有效的RO的资源位置。
在本公开实施例中,终端可以基于RACH资源配置信息,确定配置RO的资源位置,具体确定方式与上述步骤203确定配置RO的资源位置类似,在此不再赘述。
进一步地,无论RACH资源在频域上是否全部位于所述上行子带的频域范围内, 终端都可以将配置RO的资源位置确定为有效的RO的资源位置。
在步骤1004中,在所述有效的RO的资源位置上,接收终端发送的随机接入前导码。
上述实施例中,基站可以向终端发送第三RRC信令,通过第三RRC信令指示有效的RO所在的所述指定时间单元,并在有效的RO的资源位置上,接收终端发送的随机接入前导码。有效降低了全双工通信中随机接入过程的时延,提高了全双工通信的效率。
参照图10B所示,图10B是根据一实施例示出的一种随机接入方法流程图,可以由基站执行,该方法可以包括以下步骤:
在步骤1001’中,向终端发送第三RRC信令。
在本公开实施例中,基站可以通过终端专属的(UE-dedicated)的第三RRC信令,至少指示所述有效的RO所在的所述指定时间单元。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在一个示例中,第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO。可选地,基站可以通过比特图(bitmap)的方式指示配置周期内的每个时间单元上是否存在所述有效的RO。
在另一个示例中,第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值。
在步骤1002’中,基于所述第三RRC信令的指示,确定在指定时间单元中在上行子带上不存在所述有效的RO。
在本公开实施例中,指定时间单元是指配置了上行子带的下行时间单元,下行时间单元包括但不限于下行slot、下行symbol、下行span等。
在一个示例中,第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO,例如,配置周期内包括5个时隙,其中slot#0、slot#1、slot#2、slot#3为下行时隙,slot#4flexible slot。slot#1和slot#3上配置了上行子带,即slot#1和slot#3为指定时间单元。第三RRC信令可以通过比特图的方式指示每个时间单元上是否存在有效的RO,例如比特图为01001,可以确定slot#3的上行子带上不存在valid RO。
在另一个示例中,第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值,例如配置周期内包括5个时隙,其中slot#0、slot#1、slot#2、slot#3为下行时隙,slot#4flexible slot。slot#1和slot#3上配置了上行子带,即slot#1和slot#3为指定时间单元。第三RRC信令指示存在valid RO的指定时间单元索引值为1,可以确定slot#3的上行子带上不存在valid RO。
相应地,基站侧不期待在所述指定时间单元内接收所述终端发送的随机接入前导码。
上述实施例中,基站向终端发送第三RRC信令,通过第三RRC信令指示有效的RO所在的所述指定时间单元,基站侧不期待在不存在有效的RO的指定时间单元内接收所述终端发送的随机接入前导码,确保终端与基站的理解一致,可用性高。
下面对上述随机接入方法进一步举例说明如下。
实施例1,假设终端为Rel-18及后续版本终端,具有半双工能力或者具有全双工能力,本公开不做任何限定。假设基站在TDD频段的semi-static fexible符号上执行全双工操作,也即同时进行调度下行数据和上行数据。第一时间单元为semi-static flexible symbol,可以通过基站发送的以下信息来确定:
tdd-UL-DL-ConfigurationCommon;
tdd-UL-DL-ConfigurationCommon、tdd-UL-DL-ConfigurationDedicated。
基站通过如下方式指示终端在所述semi-static flexible符号上的传输方向,本公开 实施例不做任何限制:
基站为所述终端配置UL subband或者DL subband。在所述UL subband内,终端只能进行上行发送;在所述DL subband内,终端只能进行上行接收。基站在所述UL subband或者DL subband内进行数据信道的调度或者参考信号的指示。
在本实施例中,假设基站通过TDD UL-DL configuration配置的时隙结构为DDDDF,也即在TDD配置周期内,前4个slot为DL slot,最后1个slot为flexible slot,参照图11A所示。当然,该实施例方法亦可直接应用于其他的TDD UL DL时隙结构。
在本实施例中,假设基站在所述semi-DL符号上配置了UL subband。基站通过SIB1中携带的RACH配置信息,为终端配置了RACH传输的时频资源。在本实施例中,假设基站为终端配置的RACH资源为PRACH Configuration index=65.具体的配置信息例如表1所示,此处不再赘述。
根据如上配置信息,配置的RACH资源示意图如图11B所示。根据相关协议定义,位于DL slot#1内的RO不能用于传输preamble。从而限制了全双工终端进行上行随机接入的灵活性。
在本实施例中,终端通过如下方法确定指定时间单元(后续用SBFD slot来表示)内的上行子带上是否存在有效的RO。需要注意的是,在本实施例中,所述SBFD slot为配置了UL subband的DL slot:
终端确定所述基站为所述终端配置的随机接入信道RACH资源在频域上相对于所述指定时间单元内的所述上行子带的相对位置关系。
如果所述相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,则终端确定所述上行子带上存在所述有效的RO。且将所述配置RO的资源位置确定为所述有效的RO的资源位置。终端能够在有效的RO的资源位置上向基站发送随机接入preamble。
如果所述相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,则确定所述上行子带上不存在所述有效的RO,即上行子带上的RO为无效的RO,终端忽略所述上行子带所包括的所有RO,和/或确定不在所述指定时间单元内向所述基站发送随机接入前导码。
对于本实施例而言,由于相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,例如图11B所示,因此终端确定所述上行子带上存在所述有效的RO,也即终端可在slot#1内的RO内发送preamble。
当然另一方面,如果所述相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,则终端不在指定时间单元内上行子带的RO上发送preamble。
实施例2,假设终端为Rel-18及后续版本终端,具有半双工能力或者具有全双工能力,本公开不做任何限定。假设基站在TDD频段的semi-static fexible符号上执行全双工操作,也即同时进行调度下行数据和上行数据。第一时间单元为semi-static flexible symbol,可以通过基站发送的以下信息来确定:
tdd-UL-DL-ConfigurationCommon;
tdd-UL-DL-ConfigurationCommon、tdd-UL-DL-ConfigurationDedicated。
基站通过如下方式指示终端在所述semi-static flexible符号上的传输方向,本公开实施例不做任何限制:
基站为所述终端配置UL subband或者DL subband。在所述UL subband内,终端只能进行上行发送;在所述DL subband内,终端只能进行上行接收。基站在所述UL subband或者DL subband内进行数据信道的调度或者参考信号的指示。
在本实施例中,假设基站通过TDD UL-DL configuration配置的时隙结构为DDDDF,也即在TDD配置周期内,前4个slot为DL slot,最后1个slot为flexible slot, 参照图11A所示。当然,该实施例方法亦可直接应用于其他的TDD UL DL时隙结构。
在本实施例中,假设基站在所述semi-DL符号上配置了UL subband。基站通过SIB1中携带的RACH配置信息,为终端配置了RACH传输的时频资源。在本实施例中,假设基站为终端配置的RACH资源为PRACH Configuration index=65.具体的配置信息例如表1所示,此处不再赘述。
根据如上配置信息,配置的RACH资源示意图如图11C所示。根据相关协议定义,位于DL slot#1内的RO不能用于传输preamble。从而限制了全双工终端进行上行随机接入的灵活性。
在本实施例中,终端通过如下方法确定指定时间单元(后续用SBFD slot来表示)内的上行子带上是否存在有效的RO。需要注意的是,在本实施例中,所述SBFD slot为配置了UL subband的DL slot:
终端确定所述基站为所述终端配置的随机接入信道RACH资源在频域上相对于所述指定时间单元内的所述上行子带的相对位置关系。
如果所述相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,则终端确定所述上行子带上存在所述有效的RO。且将所述配置RO的资源位置确定为所述有效的RO的资源位置。终端能够在有效的RO的资源位置上向基站发送随机接入preamble。
如果所述相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,可以对配置RO的资源位置在频域上进行偏移,使有效的RO的资源位置在频域上全部位于所述上行子带的频域范围内。
所述有效的RO的起始频域位置由协议约定,假设可以为上行子带的起始频域位置;
或者,所述有效的RO的起始频域位置由基站发送的第二RRC信令进行指示。
对于本实施例而言,RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,且配置RO所包括的第一频域单元数目小于或等于上行子带所包括的第二频域单元数目。使得将配置RO的资源位置在频域上间偏移后,可以全部位于上行子带的频域范围内。
图11D中,有效的RO的起始频域位置可以通过协议约定方式来确定,且协议约定的有效的RO的起始频域位置为上行子带的起始频域位置。
图11E中,有效的RO的起始频域位置由基站通过第二RRC信令(signaling)配置。
另外,终端可以将所述配置RO所包括的第一频域单元数目确定为所述有效的RO所包括的频域单元数目。
实施例3,如实施例1和实施例2中所述方法,基站可通过第一RRC singaling指示指定时间单元内的上行子带上是否存在有效的RO。
如果第一RRC信令指示指定时间单元内的上行子带上存在有效的RO,则终端或基站根据实施例1或者实施例2中所述方法确定有效的RO的资源位置。
如果第一RRC信令指示指定时间单元内的上行子带上不存在有效的RO,终端可以忽略所述上行子带所包括的所有RO,和/或确定不在所述指定时间单元内向所述基站发送随机接入前导码。基站不期待在所述指定时间单元内接收所述终端发送的随机接入前导码。
实施例4,假设终端为Rel-18及后续版本终端,具有半双工能力或者具有全双工能力,本公开不做任何限定。假设基站在TDD频段的semi-static fexible符号上执行全双工操作,也即同时进行调度下行数据和上行数据。第一时间单元为semi-static flexible symbol,可以通过基站发送的以下信息来确定:
tdd-UL-DL-ConfigurationCommon;
tdd-UL-DL-ConfigurationCommon、tdd-UL-DL-ConfigurationDedicated。
基站通过如下方式指示终端在所述semi-static flexible符号上的传输方向,本公开实施例不做任何限制:
基站为所述终端配置UL subband或者DL subband。在所述UL subband内,终端只能进行上行发送;在所述DL subband内,终端只能进行上行接收。基站在所述UL subband或者DL subband内进行数据信道的调度或者参考信号的指示。
在本实施例中,假设基站通过TDD UL-DL configuration配置的时隙结构为DDDDDDFUUU,例如图12A所示,也即在TDD配置周期内,前6个slot为DL slot,最后3个slot为UL slot,Ulslot与DL slot之间存在flexible slot(传输方向可变的时隙)。当然,该实施例方法亦可直接应用于其他的TDD UL DL时隙结构。
在本实施例中,假设基站在所述semi-DL符号上配置了UL subband。基站通过SIB1中携带的RACH配置信息,为终端配置了RACH传输的时频资源。在本实施例中,假设基站为终端配置的RACH资源为PRACH Configuration index=66.具体的配置信息如表2所示。
表2
Figure PCTCN2022112281-appb-000002
根据表2,确定的由基站为终端配置的RACH资源的示意图如图12B所示。其中,配置RO的资源范围位于配置的RACH资源范围内。根据当前协议定义,位于DL slot#1、DL slot#3、DL slot#5内的RO不能用于传输preamble。从而限制了全双工终端进行上行随机接入的灵活性。
在本实施例中,终端通过如下方法确定指定时间单元(后续用SBFD slot来表示)内的上行子带上是否存在有效的RO。需要注意的是,在本实施例中,所述SBFD slot为配置了UL subband的DL slot:
终端根据基站发送的第三RRC信令所指示的有效的RO图样确定指定时间单元的上行子带上是否存在有效的RO。
其中,基站通过UE-dedicated的RRC signalling指示所述有效的RO图样。所述有效的RO图样指示的RO为有效的RO。无论所述RO是否位于指定时间单元的上行子带上,终端均认为有效的RO图样指示的RO为有效的RO。所述有效的RO图样作用于配置RO。
所述有效的RO图样可以通过第三RRC信令采用以下方式实现:
通过bitmap进行指示,所述bitmap长度为TDD配置周期内包含的所有slot数目;或者
通过指示有效的RO所在的slot index。
在本实施例中,假设基站通过UE-dedicated的第三RRC signaling指示所述有效的RO所在的slot index。例如,slot index为#1和#5,则所述RACH Configuration index#66确定的在slot#1和slot#5内的RO为有效的RO。无论所述RACH资源在频域上是否全部位于所述上行子带的频域范围内,终端和基站均认为该指定时间单元的RO为有效的RO,并可能存在preamble传输。
上述实施例中,可以有效降低全双工通信中随机接入过程的时延,提高了全双工通信的效率,确保终端与基站的理解一致,可用性高。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图13,图13是根据一示例性实施例示出的一种随机接入装置,所述装置应用于终端,包括:
第一确定模块1301,被配置为确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
第二确定模块1302,被配置为响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
发送模块1303,被配置为在所述有效的RO的资源位置上,向基站发送随机接入前导码。
参照图14,图14是根据一示例性实施例示出的一种随机接入装置,所述装置应用于基站,包括:
第三确定模块1401,被配置为确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
第四确定模块1402,被配置为响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
接收模块1403,被配置为在所述有效的RO的资源位置上,接收终端发送的随机接入前导码。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于终端侧任一所述的随机接入方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于基站侧任一所述的随机接入法。
相应地,本公开还提供了一种随机接入装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一所述的随机接入方法。
图15是根据一示例性实施例示出的一种电子设备1500的框图。例如电子设备1500可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载终端、ipad、智能电视等终端。
参照图15,电子设备1500可以包括以下一个或多个组件:处理组件1502,存储器1504,电源组件1506,多媒体组件1508,音频组件1510,输入/输出(I/O)接口1512,传感器组件1516,以及通信组件1518。
处理组件1502通常控制电子设备1500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1502可以包括一个或多个处理器1520来执行指令,以完成上述的随机接入方法的全部或部分步骤。此外,处理组件1502可以包括一个或多个模块,便于处理组件1502和其他组件之间的交互。例如,处理组件1502可以包括多媒体模块,以方便多媒体组件1508和处理组件1502之间的交互。又如,处理组件1502可以从存储器读取可执行指令,以实现上述各实施例提供 的一种随机接入的步骤。
存储器1504被配置为存储各种类型的数据以支持在电子设备1500的操作。这些数据的示例包括用于在电子设备1500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1506为电子设备1500的各种组件提供电力。电源组件1506可以包括电源管理系统,一个或多个电源,及其他与为电子设备1500生成、管理和分配电力相关联的组件。
多媒体组件1508包括在所述电子设备1500和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件1508包括一个前置摄像头和/或后置摄像头。当电子设备1500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1510被配置为输出和/或输入音频信号。例如,音频组件1510包括一个麦克风(MIC),当电子设备1500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1504或经由通信组件1518发送。在一些实施例中,音频组件1510还包括一个扬声器,用于输出音频信号。
I/O接口1512为处理组件1502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1516包括一个或多个传感器,用于为电子设备1500提供各个方面的状态评估。例如,传感器组件1516可以检测到电子设备1500的打开/关闭状态,组件的相对定位,例如所述组件为电子设备1500的显示器和小键盘,传感器组件1516还可以检测电子设备1500或电子设备1500一个组件的位置改变,用户与电子设备1500接触的存在或不存在,电子设备1500方位或加速/减速和电子设备1500的温度变化。传感器组件1516可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1516还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1516还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1518被配置为便于电子设备1500和其他设备之间有线或无线方式的通信。电子设备1500可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G或5G,或它们的组合。在一个示例性实施例中,通信组件1518经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1518还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备1500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述随机接入方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器1504,上述指令可由电子设备1500的处理器1520执行以完成上述随机接入方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储 器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
相应地,本公开还提供了一种随机接入装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一所述的随机接入方法。
如图16所示,图16是根据一示例性实施例示出的一种随机接入装置1600的一结构示意图。装置1600可以被提供为基站。参照图16,装置1600包括处理组件1622、无线发射/接收组件1624、天线组件1626、以及无线接口特有的信号处理部分,处理组件1622可进一步包括至少一个处理器。
处理组件1622中的其中一个处理器可以被配置为用于执行上述基站侧任一所述的随机接入方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (37)

  1. 一种随机接入方法,其特征在于,所述方法由终端执行,包括:
    确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
    响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
    在所述有效的RO的资源位置上,向基站发送随机接入前导码。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述基站为所述终端配置的随机接入信道RACH资源与所述指定时间单元中的所述上行子带在频域上的相对位置关系;
    所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
    基于所述相对位置关系,确定所述上行子带上是否存在所述有效的RO。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述相对位置关系,确定所述上行子带上是否存在所述有效的RO,包括:
    如果所述相对位置关系指示所述RACH资源在频域上全部位于所述上行子带的频域范围内,确定所述上行子带上存在所述有效的RO;
    如果所述相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,确定所述上行子带上不存在所述有效的RO。
  4. 根据权利要求1所述的方法,其特征在于,所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
    基于配置RO所包括的第一频域单元数目与所述上行子带所包括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO;其中,所述配置RO是基于RACH资源配置信息确定的RO。
  5. 根据权利要求4所述的方法,其特征在于,所述基于配置RO所包括的第一频域单元数目与所述上行子带所包括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO,包括:
    如果所述第一频域单元数目小于或等于所述第二频域单元数目,确定所述上行子带上存在所述有效的RO;
    如果所述第一频域单元数目大于所述第二频域单元数目,确定所述上行子带上不存在所述有效的RO。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的第一无线资源控制RRC信令;其中,所述第一RRC信令用于指示所述上行子带上是否存在所述有效的RO;
    所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
    基于所述第一RRC信令的指示,确定所述上行子带上是否存在所述有效的RO。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述确定所述有效的RO的资源位置,包括:
    基于RACH资源配置信息,确定配置RO的资源位置;
    如果所述基站为所述终端配置的RACH资源在频域上全部位于所述上行子带的频域范围内,将所述配置RO的资源位置确定为所述有效的RO的资源位置;
    如果所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,对所述配置RO的资源位置在频域上进行偏移,确定所述有效的RO的资源位置;其中,所述有效的RO的资源位置在频域上全部位于所述上行子带的频域范围内。
  8. 根据权利要求7所述的方法,其特征在于,所述对所述配置RO的资源位置在 频域上进行偏移,确定所述有效的RO的资源位置,包括:
    在所述上行子带的频域范围内,确定所述有效的RO的起始频域位置;
    将所述配置RO所包括的第一频域单元数目确定为所述有效的RO所包括的频域单元数目。
  9. 根据权利要求8所述的方法,其特征在于,所述在所述上行子带的频域范围内,确定所述有效的RO的起始频域位置,包括:
    基于协议约定,确定所述有效的RO的起始频域位置;或者
    基于所述基站发送的第二RRC信令的指示,确定所述有效的RO的起始频域位置;其中,所述第二RRC信令用于指示所述有效的RO的起始频域位置。
  10. 根据权利要求9所述的方法,其特征在于,所述第二RRC信令用于指示以下任一项:
    所述有效的RO的起始频域位置索引值;
    所述有效的RO的起始频域位置索引值相对于所述配置RO的起始频域位置索引值的偏移量。
  11. 根据权利要求8所述的方法,其特征在于,所述有效的RO的起始频域位置为所述上行子带的起始频域位置。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的第三RRC信令;其中,所述第三RRC信令至少用于指示所述有效的RO所在的所述指定时间单元;
    所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
    基于所述第三RRC信令的指示,确定所述上行子带上是否存在所述有效的RO。
  13. 根据权利要求12所述的方法,其特征在于,所述第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO;或者,
    所述第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值。
  14. 根据权利要求12所述的方法,其特征在于,所述确定所述有效的RO的资源位置,包括:
    基于RACH资源配置信息,确定配置RO的资源位置;
    将所述配置RO的资源位置确定为所述有效的RO的资源位置。
  15. 根据权利要求1所述的方法,其特征在于,所述方法还包括以下至少一项:
    响应于确定所述上行子带上不存在所述有效的RO,忽略所述上行子带所包括的所有RO;
    确定不在所述指定时间单元内向所述基站发送随机接入前导码。
  16. 一种随机接入方法,其特征在于,所述方法由基站执行,包括:
    确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
    响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
    在所述有效的RO的资源位置上,接收终端发送的随机接入前导码。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    确定所述基站为所述终端配置的随机接入信道RACH资源与所述指定时间单元中的所述上行子带在频域上的相对位置关系;
    所述确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
    基于所述相对位置关系,确定所述上行子带上是否存在所述有效的RO。
  18. 根据权利要求17所述的方法,其特征在于,所述基于所述相对位置关系,确定所述上行子带上是否存在所述有效的RO,包括:如果所述相对位置关系指示所述 RACH资源在频域上全部位于所述上行子带的频域范围内,确定所述上行子带上存在所述有效的RO;
    如果所述相对位置关系指示所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,确定所述上行子带上不存在所述有效的RO。
  19. 根据权利要求16所述的方法,其特征在于,所述确定中在指定时间单元中在上行子带上是否存在有效的随机接入时机RO,包括:
    基于配置RO所包括的第一频域单元数目与所述上行子带所包括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO;其中,所述配置RO是基于RACH资源配置信息确定的RO。
  20. 根据权利要求19所述的方法,其特征在于,所述基于配置RO所包括的第一频域单元数目与所述上行子带所包括的第二频域单元数目,确定所述上行子带上是否存在所述有效的RO,包括:
    如果所述第一频域单元数目小于或等于所述第二频域单元数目,确定所述上行子带上存在所述有效的RO;
    如果所述第一频域单元数目大于所述第二频域单元数目,确定所述上行子带上不存在所述有效的RO。
  21. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第一无线资源控制RRC信令;其中,所述第一RRC信令用于指示所述上行子带上是否存在所述有效的RO。
  22. 根据权利要求16-21任一项所述的方法,其特征在于,所述确定所述有效的RO的资源位置,包括:
    基于RACH资源配置信息,确定配置RO的资源位置;
    如果所述基站为所述终端配置的RACH资源在频域上全部位于所述上行子带的频域范围内,将所述配置RO的资源位置确定为所述有效的RO的资源位置;
    如果所述RACH资源在频域上有至少部分位于所述上行子带的频域范围之外,对所述配置RO的资源位置在频域上进行偏移,确定所述有效的RO的资源位置;其中,所述有效的RO的资源位置在频域上全部位于所述上行子带的频域范围内。
  23. 根据权利要求22所述的方法,其特征在于,所述对所述配置RO的资源位置在频域上进行偏移,确定所述有效的RO的资源位置,包括:
    在所述上行子带的频域范围内,确定所述有效的RO的起始频域位置;
    将所述配置RO所包括的第一频域单元数目确定为所述有效的RO所包括的频域单元数目。
  24. 根据权利要求23所述的方法,其特征在于,所述在所述上行子带的频域范围内,确定所述有效的RO的起始频域位置,包括:
    基于协议约定,确定所述有效的RO的起始频域位置。
  25. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二RRC信令;其中,所述第二RRC信令用于指示所述有效的RO的起始频域位置。
  26. 根据权利要求25所述的方法,其特征在于,所述第二RRC信令用于指示以下任一项:
    所述有效的RO的起始频域位置索引值;
    所述有效的RO的起始频域位置索引值相对于所述配置RO的起始频域位置索引值的偏移量。
  27. 根据权利要求23所述的方法,其特征在于,所述有效的RO的起始频域位置为所述上行子带的起始频域位置。
  28. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第三RRC信令;其中,所述第三RRC信令至少用于指示所述有效的RO所在的所述指定时间单元。
  29. 根据权利要求28所述的方法,其特征在于,所述第三RRC信令用于指示配置周期内的每个时间单元上是否存在所述有效的RO;或者,
    所述第三RRC信令用于指示所述有效的RO所在的指定时间单元索引值。
  30. 根据权利要求16所述的方法,其特征在于,所述确定所述有效的RO的资源位置,包括:
    基于RACH资源配置信息,确定配置RO的资源位置;
    将所述配置RO的资源位置确定为所述有效的RO的资源位置。
  31. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    响应于确定所述上行子带上不存在所述有效的RO,所述基站不期待在所述指定时间单元内接收所述终端发送的随机接入前导码。
  32. 一种随机接入装置,其特征在于,所述装置应用于终端,包括:
    第一确定模块,被配置为确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
    第二确定模块,被配置为响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
    发送模块,被配置为在所述有效的RO的资源位置上,向基站发送随机接入前导码。
  33. 一种随机接入装置,其特征在于,所述装置应用于基站,包括:
    第三确定模块,被配置为确定在指定时间单元中在上行子带上是否存在有效的随机接入时机RO;其中,所述指定时间单元是配置了上行子带的下行时间单元;
    第四确定模块,被配置为响应于确定所述上行子带上存在所述有效的RO,确定所述有效的RO的资源位置;
    接收模块,被配置为在所述有效的RO的资源位置上,接收终端发送的随机接入前导码。
  34. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-15任一项所述的随机接入方法。
  35. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求16-31任一项所述的随机接入方法。
  36. 一种随机接入装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-15任一项所述的随机接入方法。
  37. 一种随机接入装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求16-31任一项所述的随机接入方法。
PCT/CN2022/112281 2022-08-12 2022-08-12 随机接入方法及装置、存储介质 WO2024031690A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112281 WO2024031690A1 (zh) 2022-08-12 2022-08-12 随机接入方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112281 WO2024031690A1 (zh) 2022-08-12 2022-08-12 随机接入方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2024031690A1 true WO2024031690A1 (zh) 2024-02-15

Family

ID=89850512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112281 WO2024031690A1 (zh) 2022-08-12 2022-08-12 随机接入方法及装置、存储介质

Country Status (1)

Country Link
WO (1) WO2024031690A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106060943A (zh) * 2016-07-08 2016-10-26 华中科技大学 一种多天线无线通信系统的随机接入方法
CN110958712A (zh) * 2018-09-26 2020-04-03 北京三星通信技术研究有限公司 信号的发送/接收方法、用户设备和网络设备
CN111757488A (zh) * 2019-03-29 2020-10-09 中兴通讯股份有限公司 随机接入信号的发送、接收方法及装置
CN113543360A (zh) * 2020-04-22 2021-10-22 北京三星通信技术研究有限公司 一种传输方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106060943A (zh) * 2016-07-08 2016-10-26 华中科技大学 一种多天线无线通信系统的随机接入方法
CN110958712A (zh) * 2018-09-26 2020-04-03 北京三星通信技术研究有限公司 信号的发送/接收方法、用户设备和网络设备
CN111757488A (zh) * 2019-03-29 2020-10-09 中兴通讯股份有限公司 随机接入信号的发送、接收方法及装置
CN113543360A (zh) * 2020-04-22 2021-10-22 北京三星通信技术研究有限公司 一种传输方法和设备

Similar Documents

Publication Publication Date Title
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
WO2021226746A1 (zh) 数据传输方法、数据传输装置及存储介质
WO2023240646A1 (zh) 小区确定、下行控制信息发送方法和装置
WO2023097875A1 (zh) 下行控制信息检测、发送方法及装置、存储介质
WO2018098623A1 (zh) 确定传输时间间隔的方法、装置及基站、用户设备
WO2024059979A1 (zh) 子带配置方法及装置
EP3883163B1 (en) Method and device for transmitting control information and data
US20220279524A1 (en) Pusch receiving method and device, pusch sending method and device
WO2023206029A1 (zh) 信道传输方法及装置、存储介质
WO2020014878A1 (zh) 数据传输方法、装置及存储介质
WO2024031690A1 (zh) 随机接入方法及装置、存储介质
WO2023245454A1 (zh) 确定终端行为的方法及装置、存储介质
WO2023240408A1 (zh) 数据传输方法及装置、存储介质
WO2019183939A1 (zh) 数据传输方法及装置
WO2024059978A1 (zh) 信息传输方法及装置
WO2023184271A1 (zh) 资源确定方法及装置、存储介质
WO2024065219A1 (zh) 跳频处理方法及装置
WO2023226032A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2024065220A1 (zh) 跳频处理方法及装置
WO2023184272A1 (zh) 上行传输方法及装置、存储介质
WO2022006758A1 (zh) 确定harq反馈时延的方法及装置、存储介质
WO2024050837A1 (zh) 下行控制信息dci接收、发送方法及装置、存储介质
WO2024020886A1 (zh) 信息监听、信息发送方法及装置、存储介质
WO2023184270A1 (zh) 通信控制方法、装置、通信装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954642

Country of ref document: EP

Kind code of ref document: A1