CN113508637A - 用于促成将唤醒信号与其他资源复用的方法和装置 - Google Patents

用于促成将唤醒信号与其他资源复用的方法和装置 Download PDF

Info

Publication number
CN113508637A
CN113508637A CN202080017724.0A CN202080017724A CN113508637A CN 113508637 A CN113508637 A CN 113508637A CN 202080017724 A CN202080017724 A CN 202080017724A CN 113508637 A CN113508637 A CN 113508637A
Authority
CN
China
Prior art keywords
resources
wus
drx
duration
conflict
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080017724.0A
Other languages
English (en)
Other versions
CN113508637B (zh
Inventor
W·南
P·P·L·昂
O·O·阿翁尼-奥特里
骆涛
G·萨尔基斯
A·钱达马拉卡纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN113508637A publication Critical patent/CN113508637A/zh
Application granted granted Critical
Publication of CN113508637B publication Critical patent/CN113508637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

用户装备(UE)在该UE正基于不连续接收(DRX)进行操作时标识系统资源与关联于该UE的唤醒信号(WUS)资源之间的冲突。该UE响应于标识出该系统资源与该WUS资源之间的冲突而修改DRX操作。基站标识系统资源与用于基于DRX进行操作的UE的WUS资源之间的冲突。该基站响应于标识出该系统资源与该WUS资源之间的冲突而修改至该UE的传输。

Description

用于促成将唤醒信号与其他资源复用的方法和装置
相关申请的交叉引用
本申请要求于2019年3月4日提交的题为“METHODS AND APPARATUS TOFACILITATE MULTIPLEXING WAKE-UP SIGNALS WITH OTHER RESOURCES(用于促成将唤醒信号与其他资源复用的方法和装置)”的美国专利临时申请S/N.62/813,709以及于2020年2月28日提交的题为“METHODS AND APPARATUS TO FACILITATE MULTIPLEXING WAKE-UPSIGNALS WITH OTHER RESOURCES(用于促成将唤醒信号与其他资源复用的方法和装置)”的美国专利申请No.16/804,922的权益,这两篇申请通过援引全部明确纳入于此。
背景
技术领域
本公开一般涉及通信系统,尤其涉及关于唤醒信号的无线通信。
引言
无线通信系统被广泛部署以提供诸如电话、视频、数据、消息接发、和广播等各种电信服务。典型的无线通信系统可采用能够通过共享可用系统资源来支持与多个用户通信的多址技术。此类多址技术的示例包括码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统、正交频分多址(OFDMA)系统、单载波频分多址(SC-FDMA)系统、以及时分同步码分多址(TD-SCDMA)系统。
这些多址技术已经在各种电信标准中被采纳以提供使不同的无线设备能够在城市、国家、地区、以及甚至全球级别上进行通信的共同协议。示例电信标准是5G新无线电(NR)。5G NR是由第三代伙伴项目(3GPP)为满足与等待时间、可靠性、安全性、可缩放性(例如,与物联网(IoT))相关联的新要求以及其他要求所颁布的连续移动宽带演进的部分。5GNR包括与增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)和超可靠低等待时间通信(URLLC)相关联的服务。5G NR的一些方面可以基于4G长期演进(LTE)标准。存在对5G NR技术的进一步改进的需求。这些改进还可适用于其它多址技术以及采用这些技术的电信标准。
概述
以下给出了一个或多个方面的简要概述以提供对此类方面的基本理解。此概述不是所有构想到的方面的详尽综览,并且既非旨在标识出所有方面的关键性或决定性要素亦非试图界定任何或所有方面的范围。其唯一目的是以简化形式给出一个或多个方面的一些概念以作为稍后给出的更详细描述之序言。
在本公开的一方面,提供了一种方法、计算机可读介质和装置。一种用于在UE处进行无线通信的示例装置接收对用于另一UE的唤醒信号(WUS)资源的第一指示。该示例装置基于第一指示来标识分配给该UE的资源与用于另一UE的WUS资源之间的冲突。该示例装置响应于标识出该冲突而修改在该资源中与基站的通信。
在本公开的另一方面,提供了一种方法、计算机可读介质和装置。一种用于在UE处进行无线通信的示例装置在该UE正基于不连续接收(DRX)进行操作时标识系统资源与关联于该UE的WUS资源之间的冲突。该示例装置响应于标识出该系统资源与该WUS资源之间的冲突而修改DRX操作。
在本公开的另一方面,提供了一种方法、计算机可读介质和装置。一种用于在基站处进行无线通信的示例装置标识用于与第一UE通信的资源与用于另一UE的WUS之间的冲突。该装置响应于标识出该冲突而修改在该资源中与第一UE的通信。
在本公开的另一方面,提供了一种方法、计算机可读介质和装置。一种用于在基站处进行无线通信的示例装置标识系统资源与用于基于DRX进行操作的UE的WUS资源之间的冲突。该装置响应于标识出该系统资源与该WUS资源之间的冲突而修改至该UE的传输。
为了达成前述及相关目的,这一个或多个方面包括在下文充分描述并在权利要求中特别指出的特征。以下描述和附图详细阐述了这一个或多个方面的某些解说性特征。然而,这些特征仅仅是指示了可采用各个方面的原理的各种方式中的若干种,并且本描述旨在涵盖所有此类方面及其等效方案。
附图简述
图1是解说无线通信系统和接入网的示例的示图。
图2A、2B、2C和2D是分别解说第一5G/NR帧、5G/NR子帧内的DL信道、第二5G/NR帧、以及5G/NR子帧内的UL信道的示例的示图。
图3是解说接入网中的基站和用户装备(UE)的示例的示图。
图4是解说如本文中所公开的UE与基站之间的一呼叫流图的示图。
图5是解说如本文中所公开的UE与基站之间的另一呼叫流图的示图。
图6A和6B是解说如本文中所公开的促成WUS资源与其他资源的复用的示例实现的示图。
图7是无线通信方法的流程图。
图8是解说示例装备中的不同装置/组件之间的数据流的概念性数据流图。
图9是解说采用处理系统的装备的硬件实现的示例的示图。
图10是无线通信方法的流程图。
图11是解说示例装备中的不同装置/组件之间的数据流的概念性数据流图。
图12是解说采用处理系统的装备的硬件实现的示例的示图。
图13是无线通信方法的流程图。
图14是解说示例装备中的不同装置/组件之间的数据流的概念性数据流图。
图15是解说采用处理系统的装备的硬件实现的示例的示图。
图16是无线通信方法的流程图。
图17是解说示例装备中的不同装置/组件之间的数据流的概念性数据流图。
图18是解说采用处理系统的装备的硬件实现的示例的示图。
详细描述
以下结合附图阐述的详细描述旨在作为各种配置的描述,而无意表示可实践本文所描述的概念的仅有配置。本详细描述包括具体细节以提供对各种概念的透彻理解。然而,对于本领域技术人员将显而易见的是,没有这些具体细节也可实践这些概念。在一些实例中,以框图形式示出众所周知的结构和组件以便避免淡化此类概念。
现在将参考各种设备和方法给出电信系统的若干方面。这些设备和方法将在以下详细描述中进行描述并在附图中由各种框、组件、电路、过程、算法等(统称为“元素”)来解说。这些元素可使用电子硬件、计算机软件、或其任何组合来实现。此类元素是实现成硬件还是软件取决于具体应用和加诸于整体系统上的设计约束。
作为示例,元素、或元素的任何部分、或者元素的任何组合可被实现为包括一个或多个处理器的“处理系统”。处理器的示例包括:微处理器、微控制器、图形处理单元(GPU)、中央处理单元(CPU)、应用处理器、数字信号处理器(DSP)、精简指令集计算(RISC)处理器、片上系统(SoC)、基带处理器、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、状态机、门控逻辑、分立的硬件电路、以及配置成执行本公开通篇描述的各种功能性的其他合适硬件。处理系统中的一个或多个处理器可以执行软件。软件应当被宽泛地解释成意为指令、指令集、代码、代码段、程序代码、程序、子程序、软件组件、应用、软件应用、软件包、例程、子例程、对象、可执行件、执行的线程、规程、函数等,无论其是用软件、固件、中间件、微代码、硬件描述语言、还是其他术语来述及皆是如此。
相应地,在一个或多个示例实施例中,所描述的功能可以在硬件、软件、或其任何组合中实现。如果在软件中实现,则各功能可作为一条或多条指令或代码存储或编码在计算机可读介质上。计算机可读介质包括计算机存储介质。存储介质可以是可由计算机访问的任何可用介质。作为示例而非限制,此类计算机可读介质可包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、光盘存储、磁盘存储、其他磁性存储设备、上述类型的计算机可读介质的组合、或能够被用于存储可被计算机访问的指令或数据结构形式的计算机可执行代码的任何其他介质。
如本文所使用的,术语“计算机可读介质”被明确定义为包括任何类型的计算机可读存储设备和/或存储盘,并且排除传播信号和传输介质。如本文中所使用的,术语“计算机可读介质”、“机器可读介质”、“计算机可读存储器”、以及“机器可读存储器”可互换地使用。
图1是解说无线通信系统和接入网100的示例的示图。无线通信系统(亦称为无线广域网(WWAN))包括基站102、UE 104、演进型分组核心(EPC)160、和另一核心网190(例如,5G核心(5GC))。基站102可包括宏蜂窝小区(高功率蜂窝基站)和/或小型蜂窝小区(低功率蜂窝基站)。宏蜂窝小区包括基站。小型蜂窝小区包括毫微微蜂窝小区、微微蜂窝小区和微蜂窝小区。
配置成用于4G LTE的基站102(统称为演进型通用移动电信系统(UMTS)地面无线电接入网(E-UTRAN))可通过第一回程链路132(例如,S1接口)与EPC 160对接。配置成用于5G NR的基站102(统称为下一代RAN(NG-RAN))可通过第二回程链路184与核心网190对接。除了其他功能,基站102还可执行以下功能中的一者或多者:用户数据的传递、无线电信道暗码化和暗码解译、完整性保护、报头压缩、移动性控制功能(例如,切换、双连通性)、蜂窝小区间干扰协调、连接建立和释放、负载平衡、非接入阶层(NAS)消息的分发、NAS节点选择、同步、无线电接入网(RAN)共享、多媒体广播多播服务(MBMS)、订户和装备跟踪、RAN信息管理(RIM)、寻呼、定位、以及警报消息的递送。基站102可以直接或间接地(例如,通过EPC 160或核心网190)在第三回程链路134(例如,X2接口)上彼此通信。第三回程链路134可以是有线的或无线的。
基站102可与UE 104进行无线通信。每个基站102可为相应的地理覆盖区域110提供通信覆盖。可能存在交叠的地理覆盖区域110。例如,小型蜂窝小区102’可具有与一个或多个宏基站102的覆盖区域110交叠的覆盖区域110’。包括小型蜂窝小区和宏蜂窝小区两者的网络可被称为异构网络。异构网络还可包括归属演进型B节点(eNB)(HeNB),其可以向被称为封闭订户群(CSG)的受限群提供服务。基站102与UE 104之间的通信链路120可包括从UE 104到基站102的上行链路(UL)(亦称为反向链路)传输和/或从基站102到UE 104的下行链路(DL)(亦称为前向链路)传输。通信链路120可使用多输入多输出(MIMO)天线技术,包括空间复用、波束成形和/或发射分集。这些通信链路可通过一个或多个载波。对于在每个方向上用于传输的总共至多达Yx MHz(x个分量载波)的载波聚集中分配的每个载波,基站102/UE 104可使用至多达Y MHz(例如,5、10、15、20、100、400MHz等)带宽的频谱。这些载波可以或者可以不彼此毗邻。载波的分配可以关于DL和UL是非对称的(例如,与UL相比可将更多或更少载波分配给DL)。分量载波可包括主分量载波以及一个或多个副分量载波。主分量载波可被称为主蜂窝小区(PCell),而副分量载波可被称为副蜂窝小区(SCell)。
某些UE 104可使用设备到设备(D2D)通信链路158来彼此通信。D2D通信链路158可使用DL/UL WWAN频谱。D2D通信链路158可使用一个或多个侧链路信道,诸如物理侧链路广播信道(PSBCH)、物理侧链路发现信道(PSDCH)、物理侧链路共享信道(PSSCH)、以及物理侧链路控制信道(PSCCH)。D2D通信可通过各种各样的无线D2D通信系统,诸如举例而言,FlashLinQ、WiMedia、蓝牙、ZigBee、以IEEE 802.11标准为基础的Wi-Fi、LTE、或NR。
无线通信系统可进一步包括在5GHz无执照频谱中经由通信链路154与Wi-Fi站(STA)152进行通信的Wi-Fi接入点(AP)150。当在无执照频谱中通信时,STA 152/AP 150可在通信之前执行畅通信道评估(CCA)以便确定该信道是否可用。
小型蜂窝小区102’可在有执照和/或无执照频谱中操作。当在无执照频谱中操作时,小型蜂窝小区102’可采用NR并且使用与由Wi-Fi AP 150所使用的频谱相同的5GHz无执照频谱。在无执照频谱中采用NR的小型蜂窝小区102’可推升接入网的覆盖和/或增大接入网的容量。
无论是小型蜂窝小区102’还是大型蜂窝小区(例如,宏基站),基站102可包括和/或被称为eNB、gNodeB(gNB)、或另一类型的基站。一些基站(诸如gNB 180)可在传统亚6GHz频谱、毫米波(mmW)频率、和/或近mmW频率中操作以与UE 104通信。当gNB 180在mmW或近mmW频率中操作时,gNB180可被称为mmW基站。极高频(EHF)是电磁频谱中的RF的一部分。EHF具有30GHz到300GHz的范围以及1毫米到10毫米之间的波长。该频带中的无线电波可被称为毫米波。近mmW可向下扩展至具有100毫米波长的3GHz频率。超高频(SHF)频带在3GHz到30GHz之间扩展,其还被称为厘米波。使用mmW/近mmW射频频带(例如,3GHz–300GHz)的通信具有极高的路径损耗和短射程。mmW基站180可利用与UE 104的波束成形182来补偿极高路径损耗和短射程。基站180和UE 104可各自包括多个天线,诸如天线振子、天线面板和/或天线阵列以促成波束成形。
基站180可在一个或多个传送方向182’上向UE 104传送经波束成形信号。UE 104可在一个或多个接收方向182”上从基站180接收经波束成形信号。UE104也可在一个或多个传送方向上向基站180传送经波束成形信号。基站180可在一个或多个接收方向上从UE 104接收经波束成形信号。基站180/UE 104可执行波束训练以确定基站180/UE 104中的每一者的最佳接收方向和传送方向。基站180的传送方向和接收方向可以相同或可以不同。UE 104的传送方向和接收方向可以相同或可以不同。
EPC 160可包括移动性管理实体(MME)162、其他MME 164、服务网关166、多媒体广播多播服务(MBMS)网关168、广播多播服务中心(BM-SC)170、和分组数据网络(PDN)网关172。MME 162可与归属订户服务器(HSS)174处于通信。MME 162是处理UE 104与EPC 160之间的信令的控制节点。一般而言,MME 162提供承载和连接管理。所有用户网际协议(IP)分组经过服务网关166来传递,服务网关166自身连接到PDN网关172。PDN网关172提供UE IP地址分配以及其他功能。PDN网关172和BM-SC 170连接到IP服务176。IP服务176可包括因特网、内联网、IP多媒体子系统(IMS)、PS流送服务、和/或其他IP服务。BM-SC 170可提供用于MBMS用户服务置备和递送的功能。BM-SC 170可用作内容提供方MBMS传输的进入点,可用来授权和发起公共陆地移动网(PLMN)内的MBMS承载服务,并且可用来调度MBMS传输。MBMS网关168可用来向属于广播特定服务的多播广播单频网(MBSFN)区域的基站102分发MBMS话务,并且可负责会话管理(开始/停止)并负责收集eMBMS相关的收费信息。
核心网190可包括接入和移动性管理功能(AMF)192、其他AMF 193、会话管理功能(SMF)194、以及用户面功能(UPF)195。AMF 192可与统一数据管理(UDM)196处于通信。AMF192是处理UE 104与核心网190之间的信令的控制节点。一般而言,AMF 192提供QoS流和会话管理。所有用户网际协议(IP)分组经过UPF 195来传递。UPF 195提供UE IP地址分配以及其他功能。UPF 195连接到IP服务197。IP服务197可包括因特网、内联网、IP多媒体子系统(IMS)、PS流送服务、和/或其他IP服务。
基站可包括和/或被称为gNB、B节点、eNB、接入点、基收发机站、无线电基站、无线电收发机、收发机功能、基本服务集(BSS)、扩展服务集(ESS)、传送接收点(TRP)、或某个其他合适术语。基站102为UE 104提供去往EPC160或核心网190的接入点。UE 104的示例包括蜂窝电话、智能电话、会话发起协议(SIP)电话、膝上型设备、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体设备、视频设备、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、平板设备、智能设备、可穿戴设备、交通工具、电表、气泵、大型或小型厨房器具、健康护理设备、植入物、传感器/致动器、显示器、或任何其他类似的功能设备。一些UE 104可被称为IoT设备(例如,停车计时器、油泵、烤箱、交通工具、心脏监视器等)。UE 104也可被称为站、移动站、订户站、移动单元、订户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动订户站、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端、或某个其他合适术语。
再次参照图1,在某些方面,UE 104可被配置成经由WUS资源与其他资源的复用来管理无线通信的一个或多个方面。例如,图1的UE 104包括UE WUS组件198,其被配置成解决用于WUS的资源与用于其他通信的资源(例如,用于UE的专用资源或系统资源)之间的冲突。在一示例中,UE WUS组件198可被配置成接收对用于另一UE的WUS资源的第一指示。UE WUS组件198还可被配置成基于第一指示来标识关联于UE的资源与用于另一UE的WUS资源之间的冲突。此外,UE WUS组件198可被配置成响应于标识出该冲突而修改该资源中的通信。
在另一示例中,UE WUS组件198可被配置成在UE正在DRX状态下操作时标识系统资源与关联于该UE的WUS资源之间的冲突。UE WUS组件198还可以配置成响应于标识出该冲突而修改WUS资源的接收。
仍然参考图1,在某些方面,基站180可被配置成经由促成WUS资源与其他资源的复用来管理无线通信的一个或多个方面。例如,图1的基站180包括基站WUS组件199,其被配置成促成解决用于WUS的资源与用于其他通信的资源(例如,用于UE的专用资源或系统资源)之间的冲突。在一示例中,基站WUS组件199可被配置成向UE传送对用于另一UE的WUS资源的第一指示。基站WUS组件199还可被配置成在与UE相关联的资源中向该UE传送通信,其中基于第一指示将该资源标识为与WUS资源冲突的资源并且基于标识出该冲突的资源来修改该通信的接收。
在另一方面,基站WUS组件199可被配置成在UE正在DRX状态下操作时向该UE传送与该UE相关联的WUS资源,其中该WUS资源与系统资源冲突,并且其中该UE处的WUS资源的接收响应于该冲突而被修改。
尽管以下描述聚焦于下行链路通信,但是本文中所描述的概念亦可适用于上行链路通信和/或侧链通信。此外,尽管以下描述可能聚焦于5G/NR,但是本文中所描述的概念亦可适用于其他类似领域,诸如LTE、LTE-A、CDMA、GSM和/或其他无线技术,其中WUS资源可能与关联于UE的专用资源或关联于多个UE的系统资源(例如,共享资源)冲突。
图2A是解说5G/NR帧结构内的第一子帧的示例的示图200。图2B是解说5G/NR子帧内的DL信道的示例的示图230。图2C是解说5G/NR帧结构内的第二子帧的示例的示图250。图2D是解说5G/NR子帧内的UL信道的示例的示图280。5G/NR帧结构可以是FDD,其中对于特定副载波集(载波系统带宽),该副载波集内的子帧专用于DL或UL;或者可以是TDD,其中对于特定副载波集(载波系统带宽),该副载波集内的子帧专用于DL和UL两者。在由图2A、2C提供的示例中,5G/NR帧结构被假定为TDD,其中子帧4配置有时隙格式28(大部分是DL)且子帧3配置有时隙格式34(大部分是UL),其中D是DL,U是UL,并且X是供在DL/UL之间灵活使用的。虽然子帧3、4分别被示为具有时隙格式34、28,但是任何特定子帧可配置有各种可用时隙格式0-61中的任一种。时隙格式0、1分别是全DL、全UL。其他时隙格式2-61包括DL、UL、和灵活码元的混合。UE通过所接收到的时隙格式指示符(SFI)而被配置成具有时隙格式(通过DL控制信息(DCI)来动态地配置,或者通过无线电资源控制(RRC)信令来半静态地/静态地配置)。注意,以下描述也适用于为TDD的5G/NR帧结构。
其他无线通信技术可具有不同的帧结构和/或不同的信道。一帧(10ms)可被划分成10个相等大小的子帧(1ms)。每个子帧可以包括一个或多个时隙。子帧还可包括迷你时隙,其可包括7、4或2个码元。每个时隙可包括7或14个码元,这取决于时隙配置。对于时隙配置0,每个时隙可包括14个码元,而对于时隙配置1,每个时隙可包括7个码元。DL上的码元可以是循环前缀(CP)OFDM(CP-OFDM)码元。UL上的码元可以是CP-OFDM码元(对于高吞吐量场景)或离散傅立叶变换(DFT)扩展OFDM(DFT-s-OFDM)码元(也称为单载波频分多址(SC-FDMA)码元)(对于功率受限的场景;限于单流传输)。子帧内的时隙数目基于时隙配置和参数设计。对于时隙配置0,不同参数设计μ0到5分别允许每子帧1、2、4、8、16和32个时隙。对于时隙配置1,不同参数设计0到2分别允许每子帧2、4和8个时隙。相应地,对于时隙配置0和参数设计μ,存在每时隙14个码元和每子帧2μ个时隙。副载波间隔和码元长度/历时因变于参数设计。副载波间隔可等于2μ*15kHz,其中μ为参数设计0到5。如此,参数设计μ=0具有15kHz的副载波间隔,而参数设计μ=5具有480kHz的副载波间隔。码元长度/历时与副载波间隔逆相关。图2A-2D提供了每时隙具有14个码元的时隙配置0和参数设计μ=2且每个子帧具有4个时隙的示例。时隙历时为0.25ms,副载波间隔为60kHz,并且码元历时为大约16.67μs。
资源网格可被用于表示帧结构。每个时隙包括延伸12个连贯副载波的资源块(RB)(也称为物理RB(PRB))。资源网格被划分成多个资源元素(RE)。由每个RE携带的比特数取决于调制方案。
如图2A中解说的,一些RE携带用于UE的参考(导频)信号(RS)。RS可包括用于UE处的信道估计的解调RS(DM-RS)(对于一个特定配置指示为Rx,其中100x是端口号,但其他DM-RS配置是可能的)和信道状态信息参考信号(CSI-RS)。RS还可以包括波束测量RS(BRS)、波束精化RS(BRRS)和相位跟踪RS(PT-RS)。
图2B解说帧的子帧内的各种DL信道的示例。物理下行链路控制信道(PDCCH)在一个或多个控制信道元素(CCE)内携带DCI,每个CCE包括9个RE群(REG),每个REG包括OFDM码元中的4个连贯RE。主同步信号(PSS)可在帧的特定子帧的码元2内。PSS由UE 104用于确定子帧/码元定时和物理层身份。副同步信号(SSS)可在帧的特定子帧的码元4内。SSS由UE用于确定物理层蜂窝小区身份群号和无线电帧定时。基于物理层身份和物理层蜂窝小区身份群号,UE可确定物理蜂窝小区标识符(PCI)。基于PCI,UE可确定前述DM-RS的位置。携带主信息块(MIB)的物理广播信道(PBCH)可以在逻辑上与PSS和SSS编群在一起以形成同步信号(SS)/PBCH块。MIB提供系统带宽中的RB数目、以及系统帧号(SFN)。物理下行链路共享信道(PDSCH)携带用户数据、不通过PBCH传送的广播系统信息(诸如系统信息块(SIB)、以及寻呼消息。
如在图2C中解说的,一些RE携带用于基站处的信道估计的DM-RS(对于一个特定配置指示为R,但其他DM-RS配置是可能的)。UE可传送用于物理上行链路控制信道(PUCCH)的DM-RS和用于物理上行链路共享信道(PUSCH)的DM-RS。PUSCH DM-RS可在PUSCH的前一个或前两个码元中被传送。PUCCH DM-RS可取决于传送短PUCCH还是传送长PUCCH以及取决于所使用的特定PUCCH格式而在不同配置中被传送。UE可传送探通参考信号(SRS)。SRS可在子帧的最后码元中被传送。SRS可具有梳齿结构,并且UE可在各梳齿之一上传送SRS。SRS可由基站用于信道质量估计以在UL上启用取决于频率的调度。
图2D解说帧的子帧内的各种UL信道的示例。PUCCH可位于如在一种配置中指示的位置。PUCCH携带上行链路控制信息(UCI),诸如调度请求、信道质量指示符(CQI)、预编码矩阵指示符(PMI)、秩指示符(RI)、以及HARQ ACK/NACK反馈。PUSCH携带数据,并且可以附加地用于携带缓冲器状态报告(BSR)、功率净空报告(PHR)、和/或UCI。
图3是接入网中基站310与UE 350处于通信的框图。在DL中,来自EPC160的IP分组可被提供给控制器/处理器375。控制器/处理器375实现层3和层2功能性。层3包括无线电资源控制(RRC)层,并且层2包括服务数据适配协议(SDAP)层、分组数据汇聚协议(PDCP)层、无线电链路控制(RLC)层、以及媒体接入控制(MAC)层。控制器/处理器375提供与系统信息(例如,MIB、SIB)的广播、RRC连接控制(例如,RRC连接寻呼、RRC连接建立、RRC连接修改、以及RRC连接释放)、无线电接入技术(RAT)间移动性、以及UE测量报告的测量配置相关联的RRC层功能性;与报头压缩/解压缩、安全性(暗码化、暗码解译、完整性保护、完整性验证)、以及切换支持功能相关联的PDCP层功能性;与上层分组数据单元(PDU)的传递、通过ARQ的纠错、RLC服务数据单元(SDU)的级联、分段和重组、RLC数据PDU的重新分段、以及RLC数据PDU的重新排序相关联的RLC层功能性;以及与逻辑信道和传输信道之间的映射、将MAC SDU复用到传输块(TB)上、从TB解复用MAC SDU、调度信息报告、通过HARQ的纠错、优先级处置、以及逻辑信道优先级区分相关联的MAC层功能性。
发射(TX)处理器316和接收(RX)处理器370实现与各种信号处理功能相关联的层1功能性。包括物理(PHY)层的层1可包括传输信道上的检错、传输信道的前向纠错(FEC)编码/解码、交织、速率匹配、映射到物理信道上、物理信道的调制/解调、以及MIMO天线处理。TX处理器316基于各种调制方案(例如,二进制相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))来处置至信号星座的映射。经编码和调制的码元随后可被拆分成并行流。每个流随后可被映射到OFDM副载波,在时域和/或频域中与参考信号(例如,导频)复用,并且随后使用快速傅立叶逆变换(IFFT)组合到一起以产生携带时域OFDM码元流的物理信道。该OFDM流被空间预编码以产生多个空间流。来自信道估计器374的信道估计可被用来确定编码和调制方案以及用于空间处理。该信道估计可从由UE 350传送的参考信号和/或信道状况反馈推导出。每个空间流随后可经由分开的发射机318TX被提供给一不同的天线320。每个发射机318TX可用相应空间流来调制RF载波以供传输。
在UE 350,每个接收机354RX通过其相应的天线352来接收信号。每个接收机354RX恢复出调制到RF载波上的信息并将该信息提供给接收(RX)处理器356。TX处理器368和RX处理器356实现与各种信号处理功能相关联的层1功能性。RX处理器356可对该信息执行空间处理以恢复出以UE 350为目的地的任何空间流。如果有多个空间流以UE 350为目的地,则它们可由RX处理器356组合成单个OFDM码元流。RX处理器356随后使用快速傅立叶变换(FFT)将该OFDM码元流从时域变换到频域。该频域信号对该OFDM信号的每个副载波包括单独的OFDM码元流。通过确定最有可能由基站310传送的信号星座点来恢复和解调每个副载波上的码元、以及参考信号。这些软判决可基于由信道估计器358计算出的信道估计。这些软判决随后被解码和解交织以恢复出原始由基站310在物理信道上传送的数据和控制信号。这些数据和控制信号随后被提供给实现层3和层2功能性的控制器/处理器359。
控制器/处理器359可与存储程序代码和数据的存储器360相关联。存储器360可被称为计算机可读介质。在UL中,控制器/处理器359提供传输信道与逻辑信道之间的解复用、分组重组、暗码解译、报头解压缩以及控制信号处理以恢复出来自EPC 160的IP分组。控制器/处理器359还负责使用ACK和/或NACK协议进行检错以支持HARQ操作。
类似于结合由基站310进行的DL传输所描述的功能性,控制器/处理器359提供与系统信息(例如,MIB、SIB)捕获、RRC连接、以及测量报告相关联的RRC层功能性;与报头压缩/解压缩、以及安全性(暗码化、暗码解译、完整性保护、完整性验证)相关联的PDCP层功能性;与上层PDU的传递、通过ARQ的纠错、RLC SDU的级联、分段、以及重组、RLC数据PDU的重新分段、以及RLC数据PDU的重新排序相关联的RLC层功能性;以及与逻辑信道和传输信道之间的映射、将MAC SDU复用到TB上、从TB解复用MAC SDU、调度信息报告、通过HARQ的纠错、优先级处置、以及逻辑信道优先级区分相关联的MAC层功能性。
由信道估计器358从由基站310所传送的参考信号或反馈推导出的信道估计可由TX处理器368用于选择恰适的编码和调制方案、以及促成空间处理。由TX处理器368生成的空间流可经由分开的发射机354TX被提供给不同的天线352。每个发射机354TX可用相应空间流来调制RF载波以供传输。
在基站310处以与结合UE 350处的接收机功能所描述的方式相类似的方式来处理UL传输。每个接收机318RX通过其相应的天线320来接收信号。每个接收机318RX恢复出调制到RF载波上的信息并将该信息提供给RX处理器370。
控制器/处理器375可与存储程序代码和数据的存储器376相关联。存储器376可被称为计算机可读介质。在UL中,控制器/处理器375提供传输信道与逻辑信道之间的解复用、分组重组、暗码解译、报头解压缩、控制信号处理以恢复出来自UE 350的IP分组。来自控制器/处理器375的IP分组可被提供给EPC 160。控制器/处理器375还负责使用ACK和/或NACK协议进行检错以支持HARQ操作。
TX处理器368、RX处理器356和控制器/处理器359中的至少一者可被配置成执行与图1的UE WUS组件198结合的各方面。
TX处理器316、RX处理器370和控制器/处理器375中的至少一者可被配置成执行与图1的基站WUS组件199结合的各方面。
当在DRX中操作时,UE可在一时段(诸如寻呼时机)期间苏醒以监视来自网络的寻呼。如果在寻呼时机之后没有寻呼被接收到,则该UE可转换到睡眠模式或较低功率模式,直至下一寻呼时机。唤醒信号可被用来在不连续接收操作期间促成提高功率效率。例如,在DRX操作期间采用WUS可减少设备(诸如图1的UE 104)不必要地苏醒的可能性。例如,当该UE正在DRX循环中操作时,该UE可接收指示在DRX循环的DRX开启状态期间存在为该UE调度的数据的WUS。对WUS的检测可使UE苏醒以接收通信。如果WUS未被检测到,则该UE可返回到睡眠状态,该UE随后可在DRX循环的DRX开启状态的历时内转换回到睡眠状态,而非留在苏醒状态。
WUS可在时间和/或频率上的资源(在此可被称为“WUS资源”)上被传送。在一些示例中,WUS资源的实例可被称为WUS监视时机。
不同类型的信号可被用于WUS。例如,WUS可基于参考信号,诸如信道状态信息参考信号(CSI-RS)、跟踪参考信号(TRS)、解调参考信号(DMRS)等。在一些示例中,WUS可被包括在控制信道中,诸如物理下行链路控制信道(PDCCH)。在一些示例中,WUS可包括特定序列,诸如伪随机(PN)序列、gold序列、Zadoff-chu(ZC)序列等。
在一些示例中,可为由基站服务的每个DRX UE(例如,在DRX循环中操作的UE)配置用于WUS传输的资源。在一些此类示例中,相应DRX UE中的每一者都可监视所配置资源以检测相应WUS,作为其DRX循环的一部分。然而,在一些示例中,WUS可在专用于另一UE和/或由其他UE共享的相同资源中被传送。在一些此类示例中,UE可修改资源中和/或周围的通信的接收以促成减少(例如,WUS资源与专用资源/系统资源之间的)冲突的影响。在一些示例中,可基于与WUS有冲突的可能性的信号类型来应用不同的调整。
如本文中所使用的,专用资源是为特定UE调度(例如,因UE而异)的资源(例如,时间和/或频率)。专用资源可被用于不处于DRX状态的UE和/或在DRX循环的DRX开启状态期间处于苏醒状态(在本文中有时被称为“开启状态”)的UE。在一些示例中,专用资源可被用来向UE传送数据传输或控制传输,诸如PDCCH、物理下行链路共享信道(PDSCH)、物理上行链路控制信道(PUCCH)、物理上行链路共享信道(PUSCH)等。在一些示例中,专用资源可被用来向UE传送参考信号,诸如CSI-RS、相位TRS(PTRS)、跟踪RS等。
如本文中所使用的,系统资源是由所有或一群UE共享的资源(例如,时间和/或频率)。系统资源的示例包括同步信号块(SSB)、物理广播信道(PBCH)块、包括系统信息块(SIB)的广播信号、包括其他系统信息(OSI)的广播信号、包括剩余最小系统信息(RMSI)的广播信号、因群而异的参考信号、以及静态保留资源(或半静态保留资源)、等等。
虽然图4至6B中所解说的示例涉及下行链路通信,但是本文中所公开的技术可附加或替换地应用于上行链路通信。例如,在时分双工(TDD)中,时隙被指派通信方向(例如,上行链路或下行链路),该通信方向是在从网络(例如,基站)至UE的半静态配置中指示的。如果时隙被标记用于下行链路通信,则WUS资源可能在该相应时隙中与专用资源或系统资源冲突,并且UE可按下文结合图4和5描述的那样操作。如果时隙被标记用于上行链路通信,则WUS资源可能在该相应时隙中与专用资源或系统冲突,并且UE可按下文结合图5描述的那样操作。然而,由于基站正在指派相应时隙的通信方向以及WUS的传送,因此WUS资源与上行链路通信之间也许不太可能发生冲突。
此外,在频分双工(FDD)中,由于不同的带宽被用于上行链路传输和下行链路传输,因此WUS资源与下行链路通信之间可能存在冲突(如下文结合图4描述的),而WUS资源与上行链路通信之间可能不存在冲突。
图4是解说UE 404与基站402之间的实现如本文中所公开的WUS资源与其他资源的复用的各方面的呼叫流图400的示图。UE 404可对应于图1的UE104和/或图3的UE 350。基站402可对应于图1的基站102、图1的基站180、和/或图3的基站310。在图4的所解说示例中,UE404是活跃UE(例如,在专用资源上接收数据和/或参考信号的UE)。如415处所解说的,该UE可确定为该UE传送的通信与用于向另一UE(诸如示例UE 406)传送的WUS 425的WUS资源之间可能存在冲突。专用资源可被用于至UE 404的数据传输、控制传输、和/或参考信号传输。在所解说示例中,UE 404将知晓专用资源(例如,基于所调度的PDCCH、PDSCH和/或参考信号,或者基于针对PUSCH/PUCCH的上行链路准予)。
在图4的所解说示例中,基站402可传送指示410,指示410由UE 404接收。指示410可通过较高层配置(诸如无线电资源控制层)经由零功率信道状态信息参考信号(ZP-CSI-RS)和/或速率匹配资源配置参数(RateMatchPattern(速率匹配模式))来配置。在一些示例中,指示410可以标识向一个或多个其他UE(例如,UE 406)指派用于WUS的一个或多个资源。在一些此类示例中,基于指示410中所标识的WUS资源,UE 404可以能够标识冲突资源(例如,用于WUS传输的资源与用于因蜂窝小区而异(或专用)的通信的资源之间的交叠),如415处所解说的。
在所解说示例中,基站402传送通信420,通信420由UE 404使用为UE 404配置的资源(例如,专用资源)接收。通信420可以是数据传输、控制传输和/或参考信号传输。在图4的所解说示例中,通信420与WUS资源交叠。
在430,UE 404应用通信处置技术来处理通信420。例如,UE 404可确定(或标识)通信420(例如,PDCCH、PDSCH、和/或参考信号)是否与用于另一UE(例如,UE 406)的WUS资源冲突。在一些示例中,UE 404可基于指示410中所包括的信息来确定通信420与WUS资源冲突。例如,指示410可指示用于传送通信420的专用资源也是指派给WUS的资源。在其中UE 404确定通信420与WUS资源冲突的一些此类示例中,UE 404可确定让UE 404在冲突资源上监视通信和/或接收通信可能是一个问题。因此,该UE可修改与通信420相关的动作。例如,该UE可通过确定不接收或不监视通信来修改通信的接收。替换地,该UE可以经修改的方式(例如,使用经调整的资源、使用丢弃、速率匹配、穿孔等)来接收通信。
在一些示例中,响应于检测到WUS资源与专用于数据传输或控制传输的资源之间的潜在冲突,UE 404可通过就像下行链路信息未被基站映射到交叠(或冲突)资源那样操作来修改通信420的接收。在一些此类示例中,UE 404可对交叠资源中的通信420的接收进行穿孔(或将其丢弃)。例如,UE 404可以不对交叠资源中的通信420进行解码。在一些示例中,通信420可由基站402进行速率匹配以避免交叠资源。例如,基站402可在没有将下行链路信息映射到交叠资源的情况下传送通信420。在一些此类示例中,UE 404可通过类似地围绕交叠资源进行速率匹配来接收通信420。
在一些示例中,UE 404可能需要在要应用于接收与WUS资源冲突的通信的不同类型的技术之间进行确定(例如,在419)。例如,UE 404可确定要对冲突资源中的通信420的接收进行穿孔还是速率匹配。基站402可以提供指示通信420中的信息是否被映射到交叠资源和/或指示UE 404是否要像下行链路资源被映射到用于WUS的交叠资源上那样操作的指示417。在一些示例中,指示417可以是经调度的下行链路控制信息(DCI),其指示UE 404是否要像通信420中的信息被映射到交叠资源那样操作。在一些此类示例中,当指示417指示信息与交叠资源进行速率匹配时,UE 404可使用速率匹配来接收通信420。然而,在一些示例中,如果指示417指示信息被映射到交叠资源,则UE 404可确定要丢弃交叠资源中的通信420。
在一些示例中,指示417可包括指派给WUS的资源的调度。例如,该调度可指示指派给WUS的一个或多个资源。在一些此类示例中,UE 404可以通过以下方式来修改与交叠资源相对应的通信的接收:不对相应通信进行解码(例如,通过丢弃通信(或将通信穿孔),和/或围绕交叠资源进行速率匹配)。
在某一示例中,通信420可包括在与关联于另一UE(例如,UE 406)的WUS资源交叠的资源上调度的用于UE 404的参考信号。UE 404可以通过就像基站402没有将参考信号映射到交叠资源上那样操作来修改通信420的接收。在一些此类示例中,UE 404可对交叠资源上的通信420的接收进行穿孔(或将其丢弃),如结合数据/控制与WUS资源之间的潜在冲突所描述的。例如,UE404可不对交叠资源中的参考信号进行解码。在另一示例中,该UE可围绕交叠资源进行速率匹配。
在一些示例中,UE 404可以就像参考信号在时间和/或频率上相对于交叠资源的位置映射到另一位置(例如,经移位位置处)那样操作。在一些此类示例中,UE 404可尝试在经移位位置处对参考信号进行处理(或解码),并基于经移位位置来提供与参考信号相对应的测量。
基站402可经由指示417来指示参考信号未被映射到交叠资源或参考信号被映射到经移位位置。在一些此类示例中,UE 404可基于参考信号是否未被映射到交叠资源(例如,UE 404可将通信420丢弃(或将其穿孔))或参考信号是否被映射到经移位位置(例如,通过提供与参考信号相对应的测量)来处理通信420。
由此,由于在不同实例中指示417可指示不同信息(例如,是否丢弃通信420,是否执行速率匹配以用于接收通信420,是否执行位置移位以接收通信420),指示417有时可被称为“动态指示符”。
图5是解说UE 504与基站502之间的实现如本文中所公开的WUS资源与其他资源的复用的各方面的呼叫流图500的示图。UE 504可对应于图1的UE104、图3的UE 350、和/或图4的UE 404。基站502可对应于图1的基站102、图1的基站180、图3的基站310、和/或图4的基站402。在图5的所解说示例中,UE 504在DRX循环中操作,并在时间和频率中为WUS传输指派的资源上监视WUS传输。基站502还可能正在广播(例如,周期性、非周期性和/或作为一次性事件)系统资源,该系统资源由网络中的所有或一群UE共享。系统资源的示例包括同步信号、PBCH、SIB、RMSI、OSI、因群而异的参考信号、用于高优先级服务的半静态保留资源等。
在510,UE 504监视WUS传输,并标识系统资源与关联于UE 504的WUS资源之间的潜在冲突。例如,由于系统资源的位置为UE 504所知晓,因此UE 504能够标识根据UE的DRX循环的WUS资源何时与系统资源交叠。
在图5的所解说示例中,基站502可传送WUS 520,WUS 520由UE 504接收。
在530,UE 504可应用WUS处置技术以管理UE 504的DRX循环。在一些示例中,响应于标识出WUS资源与系统资源之间的交叠,UE 504可在发生冲突时就像WUS资源被移位到另一不交叠位置那样操作。例如,UE 504可以在系统资源之前的时间或在不与系统资源交叠的时间监视WUS 520。
在另一示例中,UE 504可抑制在时间上与系统资源交叠的资源中监视WUS520。
如以上所公开的,在一些示例中,WUS 520可被用来在DRX开启历时内将UE 504从睡眠状态转换到苏醒状态,或者可向UE 504指示在DRX开启历时期间没有为UE 504调度传输并且UE 504可转换回到睡眠状态。由此,在一些示例中,响应于标识出交叠资源的出现,UE 504可转换到苏醒状态而不监视WUS 520(例如,UE 504就像WUS 520被检测到那样操作)。这可使UE 504在即使没有WUS将被传送的情况下苏醒,但这有助于确保UE 504在存在用于UE 504的通信的情况下是苏醒的。
在一些示例中,基站502可传送经修改的DRX配置540,经修改的DRX配置540由UE504接收。在一些此类示例中,当WUS资源与系统资源冲突时,UE 504可使用经修改的DRX配置540。例如,UE 504可在接收WUS 520之前接收经修改的DRX配置540。经修改的DRX配置540可与不同于UE 504的当前DRX配置的一个或多个DRX参数相关联。在一些示例中,经修改的DRX配置540可使WUS资源的位置移位,以使得UE在不与系统资源交叠的资源中监视WUS(例如,通过将WUS资源的位置移动到系统资源之前的位置或系统资源之后的位置)。例如,经修改的DRX配置540可包括比UE 504的当前DRX循环历时短或长的经修改的DRX循环历时。在一些示例中,经修改的DRX配置540可附加或替换地包括比UE 504的当前DRX开启历时短的经修改的DRX开启历时。在其中UE 504被提供经修改的DRX配置540的一些此类示例中,在530,UE 504可通过基于经修改的DRX配置540监视WUS 520来应用WUS处置技术。
在一些示例中,WUS 520可包括有效载荷,诸如DRX开启历时参数、当前DRX循环的WUS资源监视状态的周期性参数、与当前DRX循环的历时相关联的DRX循环历时参数、与当前DRX循环的睡眠状态相关联的非活跃定时器参数等。例如,WUS 520的有效载荷可包括指令UE 504延长当前DRX循环的DRX开启历时的信息。在其中WUS 520预期包括有效载荷并且WUS520与系统资源之间发生冲突的一些此类示例中,UE 504可将默认值应用于DRX循环的参数。例如,UE 504可将第一默认值应用于DRX开启历时参数,将第二默认值应用于DRX循环历时参数,将第三默认值应用于非活跃定时器参数,和/或可将第四默认值应用于周期性参数。在其他示例中,UE 504可应用来自前一DRX循环中的周期有效载荷的参数。
图6A和6B是解说如本文中所公开的促成WUS资源与系统资源的复用的示例实现的示图600、650。在图6A和6B的所解说示例中,系统资源是SSB资源。然而,在一些示例中,可附加或替换地使用其他系统资源。
在图6A的所解说示例中,示图600解说了四个示例DRX循环,其中每个DRX循环的历时为40毫秒(ms)。每个WUS资源之后是对应的DRX开启历时。示图600还包括以80ms周期性传送的两个SSB块。如图6A中所示,第二WUS资源(例如,WUS资源-2)与第一SSB资源(例如,SSB资源-1)交叠,并且第四WUS资源(例如,WUS资源-4)与第二SSB资源(例如,SSB资源-2)交叠。
在一些此类示例中且鉴于图5的呼叫流图500,响应于标识出交叠资源,UE 504可修改UE 504的DRX循环。在一些示例中,UE 504可以就像基站没有传送WUS那样操作,从而保持在睡眠状态中。例如,UE 504可禁止在第二WUS资源(例如,WUS资源-2)中监视WUS,并在第二DRX开启历时(例如,DRX开启历时-2)的历时内保持在睡眠状态中。
在一些示例中,UE 504可以就像检测到WUS那样操作并转换到苏醒状态而不在WUS资源中监视WUS。例如,UE 504可不在第四WUS资源(例如,WUS资源-4)期间监视WUS,并且可在第四DRX开启历时(例如,DRX开启历时4)的历时内转换到苏醒状态。
在图6B的所解说示例中,示图650解说了具有经修改的DRX配置的四个示例DRX循环。每个WUS资源之后是对应的DRX开启历时。示图650还包括以80ms周期性传送的两个SSB块。如图6B中所示,经修改的DRX配置通过使DRX循环的位置相对于SSB块的位置移位来促成避免交叠资源。
在图6B的所解说示例中,第一经修改的DRX配置将第一DRX循环的历时修改为六十毫秒。在该所解说示例中,第二WUS资源(例如,WUS资源-2)和第二DRX开启历时(例如,DRX开启历时-2)均被移位到第一SSB块(例如,SSB资源-1)之后的位置。然而,在附加或替换的示例中,第一经修改的DRX配置可将第一DRX循环的历时修改成使得第二WUS资源(例如,WUS资源-2)和第二DRX开启历时(例如,DRX开启历时-2)均被移位到第一SSB块(例如,SSB资源-1)之前的位置。例如,相对于图6A的示图600中所示的DRX循环的历时,第一经修改的DRX配置可缩短第一DRX循环的周期。
在一些示例中,经修改的DRX配置可使WUS资源的位置移位,但不使对应的DRX开启历时的位置移位。例如,在图6B的所解说示例中,第四WUS资源(例如,WUS资源-4)的位置被移位到第二SSB块(例如,SSB资源-2)之前的位置,而第四DRX开启历时(例如,DRX开启历时-4)的位置位于第二SSB块(例如,SSB资源-2)之后的定位。
图7是无线通信方法的流程图700。该方法可由UE(例如,UE 104、350、404、504;装备802/802’;处理系统914,其可以包括存储器360并且可以是整个UE 350或UE 350的组件(诸如TX处理器368、RX处理器356和/或控制器处理器359))来执行。使用虚线来解说可任选方面。图7的方法使得UE能够调整控制、数据和/或参考信号的接收以容适可被传送给其他UE的WUS,如本文中所公开的。
在702,该UE接收对用于另一UE的WUS资源的第一指示,如结合图4的指示410所描述的。第一指示的接收可例如由图8的装备802的接收组件804和/或指示组件820来执行。该指示可指示用于另一UE的时间和/或频率上的WUS资源。该UE可接收对用于多个UE的WUS资源的指示。该指示可从基站(例如,图4的基站402)在速率匹配资源配置参数(例如,作为速率匹配模式参数的一部分)中提供。作为另一示例,对WUS资源的指示可由ZP-CSI-RS提供。
在710,该UE基于第一指示来标识分配给该UE的专用资源与用于另一UE的WUS资源之间的冲突,如结合图4的415所描述的。对该冲突的标识可例如由装备802的冲突标识组件810来执行。专用资源可用于UE的下行链路数据传输(例如,PDSCH)和/或用于UE的下行链路控制传输(例如,PDCCH)。作为另一示例,专用资源可用于UE的参考信号(例如,CSI-RSPTRS、跟踪RS、DMRS等)。由于UE知晓其自己的经调度传输,该UE可确定用于其他UE的WUS资源与用于该UE的PDCCH、PDSCH和/或RS的专用资源之间是否存在冲突。在一些示例中,专用资源可用于上行链路数据传输(例如,PUSCH)和/或上行链路控制传输(例如,PUCCH)。
在712,响应于标识出该冲突,该UE修改与该基站的通信。例如,UE可修改专用资源中的通信的接收,如结合图4的430所描述的。对通信的接收的修改可例如由装备802的修改组件812、穿孔组件814、速率匹配组件816、和/或位置组件818来执行。UE可以各种方式(例如,基于通信类型、基于来自基站的指示等)修改通信的接收。
例如,修改专用资源的接收可包括接收通信,其中UE通过在714将与WUS资源交叠的通信穿孔或丢弃来修改通信的接收。例如,对通信的穿孔或丢弃可以例如由装备802的穿孔组件814来执行。由此,UE可假定下行链路资源未被映射到交叠资源上,并可丢弃在那些冲突资源中接收到的通信。在一些示例中,UE可在冲突资源期间自主地丢弃接收,即使基站可在该资源上传送通信亦是如此。
在一些示例中,该UE可通过在716围绕专用资源进行速率匹配(例如,围绕WUS资源进行速率匹配)来修改通信。速率匹配可例如由装备802的速率匹配组件816来执行。由此,UE可就像基站不在冲突资源中传送通信、而是取而代之地具有经速率匹配通信那样操作以避免冲突资源。UE可在接收通信时应用对应的速率匹配。
当WUS资源与用于UE的下行链路通信之间存在冲突时,基站可向UE提供关于要使用的修改类型的指示。例如,基站可动态地(例如,诸如通过调度DCI)指示UE是否要像下行链路通信被映射到冲突资源那样操作。由此,在704,UE可在WUS资源之前接收关于要围绕WUS资源进行穿孔还是速率匹配来接收通信的第二指示,如结合图4的指示417所描述的。第二指示的接收可例如由装备802的接收组件804和/或指示组件820来执行。随后,在712,该UE可以通过基于第二指示对该通信进行穿孔或速率匹配(例如,在714或716)来修改通信的接收。例如,装备802的穿孔组件814可执行对通信的穿孔,或者装备802的速率匹配组件816可执行速率匹配。
在另一示例中,UE可在706在WUS资源之前接收与WUS资源至少部分地交叠的一个或多个资源的调度,如结合图4的指示410所描述的。该调度的接收可例如由装备802的接收组件804和/或指示组件820来执行。在一些此类示例中,在712,该UE可基于所接收的调度来修改一个或多个专用资源中的对应通信的接收。如结合714和716所描述的,在712处基于该调度修改该一个或多个专用资源中的对应通信中的一者的接收可包括:基于该调度对该一个或多个专用资源中的对应通信的接收进行穿孔或速率匹配。
在一些示例中,在706处接收到的调度可基于一个或多个专用资源与对应WUS资源之间的冲突来指示相应通信在时间或频率中的至少一者上的相应经移位位置。在一些此类示例中,UE可在712修改该一个或多个专用资源中的对应通信,包括在相应经移位位置处监视对应通信。
例如,UE可在708接收对与用于其他UE的WUS资源冲突的用于UE的下行链路参考信号的经移位位置的指示,如结合图4的指示417所描述的。相应经移位位置的接收可例如由装备802的接收组件804和/或WUS资源组件808来执行。在一些此类示例中,该UE可在712通过在718在经移位位置处监视下行链路参考信号来修改专用资源的接收,如结合图4的430所描述的。经移位位置处的监视可例如由装备802的位置组件818来执行。
在一些示例中,在704处接收到的指示可指示要基于穿孔、速率匹配、还是监视经移位位置来修改下行链路参考信号的接收。随后,该UE可基于第二指示来修改下行链路参考信号的接收(例如,通过根据在704处接收到的指示来应用714、716或718)。
图8是解说示例装备802中的不同装置/组件之间的数据流的概念性数据流图800。装备802可以是UE或UE的组件。装备802包括接收组件804、传输组件806、WUS资源组件808、冲突标识组件810、修改组件812、穿孔组件814、速率匹配组件816、位置组件818和指示组件820。
装备802的接收组件804可被配置成从例如基站850和/或另一UE 851接收通信(例如,如结合702、704、706和/或708所描述的)。
装备802的传输组件806可被配置成例如向基站850传送上行链路通信。
装备802的WUS资源组件808可被配置成接收对用于另一UE 851的WUS资源的第一指示(例如,如结合708所描述的)。
装备802的冲突标识组件810可被配置成基于第一指示来标识分配给UE的资源与用于另一UE的WUS资源之间的冲突(例如,如结合710所描述的)。
装备802的修改组件812可被配置成响应于标识出冲突而修改与基站的通信(例如,如结合712所描述的)。
装备802的穿孔组件814可被配置成对WUS资源中的通信的接收进行穿孔(例如,如结合712、714所描述的)。
装备802的速率匹配组件816可被配置成围绕WUS资源进行速率匹配(例如,如结合712、716所描述的)。
装备802的位置组件818可被配置成在经移位位置处监视通信(诸如下行链路参考信号)(例如,如结合712、718所描述的)。
装备802的指示组件820可被配置成接收对关于要对通信的接收进行穿孔、围绕专用资源进行速率匹配、还是要监视经移位位置以寻找通信的指示(例如,如结合702、704、706所描述的)。
该装备可包括执行图7的前述流程图中的算法的每个框的附加组件。如此,图7的前述流程图中的每个框可由一组件执行且该装备可包括那些组件中的一者或多者。这些组件可以是专门配置成执行所述过程/算法的一个或多个硬件组件、由配置成执行所述过程/算法的处理器实现、存储在计算机可读介质中以供由处理器实现、或其某种组合。
图9是解说采用处理系统914的装备802’的硬件实现的示例的示图900。处理系统914可被实现成具有由总线924一般化地表示的总线架构。取决于处理系统914的具体应用和整体设计约束,总线924可以包括任何数目的互连总线和桥接器。总线924将各种电路链接在一起,包括一个或多个处理器和/或硬件组件(由处理器904,组件804、806、808、810、812、814、816、818、820以及计算机可读介质/存储器906表示)。总线924还可链接各种其他电路,诸如定时源、外围设备、稳压器和功率管理电路,这些电路在本领域是众所周知的,且因此将不再进一步描述。
处理系统914可被耦合至收发机910。收发机910被耦合至一个或多个天线920。收发机910提供用于通过传输介质与各种其他装备进行通信的装置。收发机910从一个或多个天线920接收信号,从所接收的信号中提取信息,并将所提取的信息提供给处理系统914(具体而言是接收组件804)。另外,收发机910从处理系统914(具体而言是传输组件806)接收信息,并基于所接收的信息来生成将被应用于该一个或多个天线920的信号。处理系统914包括被耦合至计算机可读介质/存储器906的处理器904。处理器904负责一般性处理,包括对存储在计算机可读介质/存储器906上的软件的执行。该软件在由处理器904执行时使处理系统914执行上文针对任何特定装置所描述的各种功能。计算机可读介质/存储器906还可被用于存储由处理器904在执行软件时操纵的数据。处理系统914进一步包括组件804、806、808、810、812、814、816、818、820中的至少一个组件。这些组件可以是在处理器904中运行的软件组件、驻留/存储在计算机可读介质/存储器906中的软件组件、被耦合至处理器904的一个或多个硬件组件、或其某种组合。处理系统914可以是UE 350的组件且可包括存储器360和/或以下至少一者:TX处理器368、RX处理器356、以及控制器/处理器359。替换地,处理系统914可以是整个UE(例如,参见图3的350)。
在一种配置中,用于无线通信的装备802/802'包括:用于接收对用于另一UE的唤醒信号(WUS)资源的第一指示的装置。装备802/802’还包括:用于基于第一指示来标识分配给该UE的资源与用于另一UE的WUS资源之间的冲突的装置。装备802/802’还包括:用于响应于标识出该冲突而修改与基站的通信的装置。装备802/802’还可包括:用于通过对资源中的通信的接收进行穿孔来修改该通信的接收的装置。装备802/802’还可包括:用于通过围绕该资源进行速率匹配来修改该通信的接收的装置。装备802/802’还可包括:用于在WUS资源之前接收关于要对通信的接收进行穿孔还是围绕该资源进行速率匹配的第二指示的装置,并且其中修改该通信的接收包括:基于第二指示来对该通信进行穿孔或速率匹配。装备802/802’还可包括:用于在WUS资源之前接收与WUS资源至少部分地交叠的一个或多个资源的调度的装置。装备802/802’还可包括:用于基于该调度来修改一个或多个资源中的对应通信的接收的装置。装备802/802’还可包括:用于通过基于该调度对一个或多个资源中的对应通信的接收进行穿孔来修改对应通信的接收的装置。装备802/802’还可包括:用于通过基于该调度围绕相应资源进行速率匹配来修改对应通信的接收的装置。装备802/802’还可包括:用于修改一个或多个资源中的对应通信(包括相应经移位位置处的对应通信)的接收的装置。装备802/802’还可包括:用于修改一个或多个资源中的通信的接收(包括对资源上的下行链路参考信号的接收进行穿孔或围绕资源对下行链路参考信号的接收进行速率匹配)的装置。装备802/802’还可包括:用于接收对下行链路参考信号的经移位位置的第二指示的装置,并且其中修改通信包括:在经移位位置处监视下行链路参考信号。装备802/802’还可包括:用于接收指示要基于穿孔、速率匹配还是监视经移位位置来修改下行链路参考信号的接收的第二指示的装置,并且其中UE基于第二指示来修改下行链路参考信号的接收。装备802/802’还可包括:用于标识用于另一UE的WUS资源与上行链路传输之间的冲突的装置。
前述装置可以是装备802的前述组件和/或装备802’的处理系统914中被配置成执行由前述装置叙述的功能的一个或多个组件。如上文中所描述的,处理系统914可包括TX处理器368、RX处理器356、和控制器/处理器359。如此,在一种配置中,前述装置可以是被配置成执行由前述装置叙述的功能的TX处理器368、RX处理器356和控制器/处理器359。
图10是无线通信方法的流程图1000。该方法可由UE(例如,UE 104、350、404、504;装备1102/1102’;处理系统1214,其可以包括存储器360并且可以是整个UE 350或UE 350的组件(诸如TX处理器368、RX处理器356和/或控制器处理器359))来执行。使用虚线来解说可任选方面。图10的方法使得UE能够调整对WUS的接收以容适与系统资源的冲突,如本文所公开的。
在1002,在UE正基于DRX(例如,在DRX状态中)操作时,该UE标识系统资源与关联于该UE的WUS资源之间的冲突,如结合图5的510所描述的。对该冲突的标识可例如由图11的装备1102的冲突标识组件1110来执行。该冲突可基于该WUS资源与该系统资源之间在时间上的交叠来标识。系统资源可包括用于SSB、PBCH、SIB、OSI、RMSI、因群而异的参考信号、或静态保留资源中的任一者的资源。
在1006,在标识该冲突之后,该UE响应于标识出该系统资源与该WUS资源之间的冲突而修改DRX操作,如结合图5的530所描述的。DRX操作的修改可例如由装备1102的修改组件1112、WUS组件1114、、苏醒组件1116、和/或DRX配置组件1118来执行。
在一些示例中,在1008,该UE可以通过抑制在时间上与该系统资源交叠的资源中监视WUS来修改DRX操作,例如,如结合图5的530所描述的。由此,当WUS资源与系统资源交叠时,UE可以不监视WUS。关于不监视WUS的确定可例如由装备1102的WUS组件1114来执行。由此,当UE在1002标识出冲突时,该UE可抑制监视WUS。
在一些示例中,在1010,UE可在WUS资源之后的DRX开启历时内苏醒(例如,而不监视WUS资源),如结合图5的530所描述的。苏醒(例如,进入/转换到苏醒状态)可例如由装备1102的苏醒组件1116来执行。在一些示例中,在1006处修改DRX操作可包括:响应于标识出该系统资源与该WUS资源之间的冲突而应用默认DRX开启历时、默认DRX循环历时、默认非活跃定时器、或默认周期性中的至少一者。由此,UE可在DRX开启历时期间苏醒而不监视与该系统资源冲突的WUS资源,其中该UE基于默认DRX开启历时、默认DRX循环历时、默认非活跃定时器、或默认周期性中的至少一者而苏醒。
在一些示例中,当发生冲突时,UE可以就像将WUS资源移位到另一不交叠位置那样操作。如在1004所解说的,UE可接收不同于与UE的DRX状态相关联的DRX配置的经修改的DRX配置,如结合图5的经修改的DRX配置540所描述的。经修改的DRX配置540的接收可例如由装备1102的接收组件1104和/或修改组件1112来执行。在1006处修改DRX操作可包括:在1012,响应于标识出系统资源与WUS资源之间的冲突而基于经修改的DRX配置来监视经调整的WUS资源。经修改的DRX配置可包括经修改的DRX循环历时,例如,可与较短活跃时间(例如,较短开启历时、较短非活跃定时器等)相关联的第二DRX配置。在一些此类示例中,在1012,该UE可基于经修改的DRX配置来监视WUS(例如,当冲突被标识时),如结合图5的530所描述的。基于经修改的DRX配置监视WUS可例如由装备1102的DRX配置组件1118来执行。经修改的DRX配置可包括经修改的DRX循环历时。经修改的DRX配置可包括经修改的DRX开启历时。该UE可以通过在系统资源之前的位置处监视WUS并在系统资源之前进入与DRX状态相关联的苏醒状态来基于经修改的DRX配置监视WUS。在另一示例中,该UE可以通过在系统资源之前的位置处监视WUS并在系统资源之后进入与DRX状态相关联的苏醒状态来基于经修改的DRX配置监视WUS。该UE可在相对于系统资源不交叠的位置监视WUS并可在系统资源之前苏醒。在另一示例中,该UE可在相对于系统资源不交叠的位置监视WUS并可在系统资源之后苏醒。
在一些示例中,在1006处接收的与系统资源有冲突的WUS可包括有效载荷,如结合图5的WUS 520所描述的。WUS中的有效载荷的接收可例如由装备1102的接收组件1104和/或有效载荷组件1108来执行。如果UE不监视WUS或由于冲突而无法接收WUS,则该UE可作出关于有效载荷的假言。有效载荷可包括与DRX状态相关联的DRX开启历时参数、与当前DRX循环的历时相关联的DRX循环历时参数、与DRX状态相关联的非活跃定时器参数、和/或与DRX循环相关联的周期性参数。在一些示例中,响应于WUS资源与系统资源的冲突,在1016,该UE可应用默认DRX开启历时参数、默认DRX循环历时参数、默认非活跃定时器参数、和/或默认周期性参数。在一些示例中,替代应用默认有效载荷,在1014,该UE可响应于WUS资源与系统资源的冲突而应用来自先前DRX循环中的在先有效载荷的参数。来自在先WUS有效载荷的参数的应用和/或WUS有效载荷的默认值的应用可例如由装备1102的有效载荷组件1108来执行。
图11是解说示例装备1102中的不同装置/组件之间的数据流的概念性数据流图1100。装备1102可以是UE或UE的组件。装备1102包括接收组件1104、传输组件1106、有效载荷组件1108、冲突标识组件1110、修改组件1112、WUS组件1114、苏醒组件1116和DRX配置组件1118。
装备1102的接收组件1104可被配置成从基站1150接收下行链路通信(例如,如结合1004、1006所描述的)。
装备1102的传输组件1106可被配置成向基站1150传送上行链路通信。
装备1102的有效载荷组件1108可被配置成应用DRX开启历时参数、DRX循环历时参数、非活跃定时器、周期性参数等。在一些示例中,当WUS资源与系统资源之间存在冲突时,有效载荷组件1108可应用默认DRX开启历时参数、默认DRX循环历时参数、默认非活跃定时器参数、或默认周期性参数中的至少一者。在一些示例中,有效载荷组件1108可响应于WUS资源与系统资源的冲突来应用来自先前DRX循环中的在先有效载荷的参数(例如,如结合1014、1016所描述的)。
装备1102的冲突标识组件1110可被配置成在UE正基于DRX操作时标识系统资源与关联于UE的WUS资源之间的冲突(例如,如结合1002所描述的)。
装备1102的修改组件1112可被配置成响应于标识出系统资源与WUS资源之间的冲突来修改DRX操作(例如,如结合1004、1006所描述的)。
装备1102的WUS组件1114可被配置成抑制在WUS资源期间在时间上与系统资源交叠的资源中监视WUS(例如,如结合1006、1008所描述的)。
装备1102的苏醒组件1116可被配置成进入与DRX状态相关联的苏醒状态而不监视WUS(例如,如结合1006、1010所描述的)。
装备1102的DRX配置组件1118可被配置成接收不同于与UE的DRX状态相关联的DRX配置的经修改的DRX配置,其中该UE基于经修改的DRX配置来监视WUS(例如,如结合1004、1006所描述的)。
该装备可包括执行图10的前述流程图中的算法的每个框的附加组件。如此,图10的前述流程图中的每个框可由一组件执行且该装备可包括那些组件中的一者或多者。这些组件可以是专门配置成执行所述过程/算法的一个或多个硬件组件、由配置成执行所述过程/算法的处理器实现、存储在计算机可读介质中以供由处理器实现、或其某种组合。
图12是解说采用处理系统1214的装备1102’的硬件实现的示例的示图1200。处理系统1214可被实现成具有由总线1224一般化地表示的总线架构。取决于处理系统1214的具体应用和整体设计约束,总线1224可以包括任何数目的互连总线和桥接器。总线1224将各种电路链接在一起,包括一个或多个处理器和/或硬件组件(由处理器1204,组件1104、1106、1108、1110、1112、1114、1116、1118以及计算机可读介质/存储器1206表示)。总线1224还可链接各种其他电路,诸如定时源、外围设备、稳压器和功率管理电路,这些电路在本领域是众所周知的,且因此将不再进一步描述。
处理系统1214可被耦合至收发机1210。收发机1210被耦合至一个或多个天线1220。收发机1210提供用于通过传输介质与各种其他装备进行通信的装置。收发机1210从一个或多个天线1220接收信号,从所接收的信号中提取信息,并将所提取的信息提供给处理系统1214(具体而言是接收组件1104)。另外,收发机1210从处理系统1214(具体而言是传输组件1106)接收信息,并基于所接收的信息来生成将要应用于该一个或多个天线1220的信号。处理系统1214包括被耦合至计算机可读介质/存储器1206的处理器1204。处理器1204负责一般性处理,包括对存储在计算机可读介质/存储器1206上的软件的执行。该软件在由处理器1204执行时使处理系统1214执行上文针对任何特定装置所描述的各种功能。计算机可读介质/存储器1206还可被用于存储由处理器1204在执行软件时操纵的数据。处理系统1214进一步包括组件1104、1106、1108、1110、1112、1114、1116、1118中的至少一个组件。这些组件可以是在处理器1204中运行的软件组件、驻留/存储在计算机可读介质/存储器1206中的软件组件、被耦合至处理器1204的一个或多个硬件组件、或其某种组合。处理系统1214可以是UE 350的组件且可包括存储器360和/或以下至少一者:TX处理器368、RX处理器356、以及控制器/处理器359。替换地,处理系统1214可以是整个UE(例如,参见图3的350)。
在一种配置中,用于无线通信的装备1102/1102'包括:用于在UE正基于DRX操作时标识系统资源与关联于该UE的WUS资源之间的冲突的装置。装备1102/1102’还可包括:用于响应于标识出冲突而修改DRX操作的装置。装备1102/1102’还可包括:用于响应于WUS资源与系统资源的冲突而应用默认DRX开启历时参数、默认DRX循环历时参数、默认非活跃定时器参数、或默认周期性参数中的至少一者的装置。装备1102/1102’还可包括:用于响应于WUS资源与系统资源的冲突而应用来自先前DRX循环中的在先有效载荷的参数的装置。装备1102/1102’还可包括:用于通过在DRX开启历时期间苏醒而不监视WUS资源来修改DRX操作的装置。装备1102/1102’还可包括:用于通过不在时间上与系统资源交叠的资源中监视WUS来修改DRX操作的装置。装备1102/1102’还可包括:用于接收不同于与UE的DRX状态相关联的DRX配置的经修改的DRX配置的装置。装备1102/1102’还可包括:用于基于经修改的DRX配置来监视WUS的装置。装备1102/1102’还可包括:用于在相对于系统资源不交叠的位置处监视WUS的装置。装备1102/1102’还可包括:用于在系统资源之前苏醒的装置。装备1102/1102’还可包括:用于在相对于系统资源不交叠的位置处监视WUS资源的装置。装备1102/1102’还可包括:用于在系统资源之后苏醒的装置。
前述装置可以是装备1102的前述组件和/或装备1102’的处理系统1214中被配置成执行由前述装置叙述的功能的一个或多个组件。如上文所描述的,处理系统1214可包括TX处理器368、RX处理器356、和控制器/处理器359。如此,在一种配置中,前述装置可以是被配置成执行由前述装置叙述的功能的TX处理器368、RX处理器356和控制器/处理器359。
图13是无线通信方法的流程图1300。该方法可由基站(例如,基站102、180、310、402、502;装备1402/1402’;处理系统1514,其可包括存储器376并且可以是整个基站310或基站310的组件(诸如TX处理器316、RX处理器370和/或控制器/处理器375))来执行。使用虚线来解说可任选方面。图13的方法促成使得UE能够调整控制、数据和/或参考信号的接收以容适可被传送给其他UE的WUS,如本文中所公开的。
在1302,该基站标识用于与第一UE进行通信的资源与用于另一UE的WUS资源之间的冲突,如结合图4的指示410所描述的。该标识可例如由图14的装备1402的标识组件1408和/或传输组件1406来执行。在一些示例中,基站可传送对用于另一UE的WUS资源的第一指示,例如,第一指示可被包括在速率匹配资源配置参数中。
在1304,该基站可传送关于修改通信的接收的第二指示,如以上结合图4的指示417所描述的。第二指示的传送可例如由装备1402的第二指示传输组件1410和/或传输组件1406来执行。在一些示例中,第二指示可指示基站通过对通信进行穿孔还是围绕资源进行速率匹配来修改该通信。在一些示例中,第二指示可通过DCI来提供。
在1306,基站响应于标识出该冲突而修改该资源中与第一UE的通信,例如,如结合图4的通信420所描述的。通信的修改可例如由装备1402的通信传输组件1412和/或传输组件1406来执行。在一些示例中,资源可用于至第一UE的下行链路数据传输或用于至第一UE的下行链路控制传输。在一些示例中,通信可以是下行链路参考信号。例如,下行链路参考信号可包括CSI-RS、PTRS、跟踪参考信号和DMRS中的一者。
在一些示例中,通信的接收可基于标识出WUS资源与关联于UE的资源冲突来修改。在一些此类示例中,修改WUS资源的接收可包括对资源中的通信的传输进行穿孔。在一些示例中,修改WUS资源的接收可包括在向UE传送通信时围绕资源进行速率匹配。
在一些示例中,第一指示和/或第二指示可包括一个或多个资源的调度。在一些此类示例中,修改通信可基于该调度和该一个或多个资源。例如,基站可以基于该调度来传送通信。
在一些示例中,通信可包括上行链路数据传输或上行链路控制传输。在一些此类示例中,冲突可能是用于第二UE的WUS资源与用于第一UE的上行链路数据传输或上行链路控制传输之间的冲突。
图14是解说示例装备1402中的不同装置/组件之间的数据流的概念性数据流图1400。该装备1402可以是基站或基站的组件。装备1402包括接收组件1404、传输组件1406、第一指示传输组件1408、第二指示传输组件1410和通信传输组件1412。
装备1402的接收组件1404可被配置成从UE(诸如示例UE 1450)接收上行链路通信。装备1402的传输组件1406可配置成向UE 1450传送下行链路通信(例如,如结合1302、1304、1306所描述的)。装备1402的标识组件1408可被配置成标识用于与UE 1450的通信的资源(例如,如结合1302所描述的)与用于另一UE的WUS资源之间的冲突。装备1402的第二指示传输组件1410可被配置成传送关于通信修改的第二通信(例如,如结合1304所描述的)。装备1402的通信传输组件1412可被配置成在与UE 1450相关联的资源中传送通信(例如,如结合1306所描述的),例如,基于对冲突的标识来修改。
该装备可包括执行图13的前述流程图中的算法的每个框的附加组件。如此,图13的前述流程图中的每个框可由一组件执行且该装备可包括那些组件中的一者或多者。这些组件可以是专门配置成执行所述过程/算法的一个或多个硬件组件、由配置成执行所述过程/算法的处理器实现、存储在计算机可读介质中以供由处理器实现、或其某种组合。
图15是解说采用处理系统1514的装备1402’的硬件实现的示例的示图1500。处理系统1514可被实现成具有由总线1524一般化地表示的总线架构。取决于处理系统1514的具体应用和整体设计约束,总线1524可以包括任何数目的互连总线和桥接器。总线1524将各种电路链接在一起,包括一个或多个处理器和/或硬件组件(由处理器1504、组件1404、1406、1408、1410、1412、以及计算机可读介质/存储器1506表示)。总线1524还可链接各种其他电路,诸如定时源、外围设备、稳压器和功率管理电路,这些电路在本领域是众所周知的,且因此将不再进一步描述。
处理系统1514可被耦合至收发机1510。收发机1510被耦合至一个或多个天线1520。收发机1510提供用于通过传输介质与各种其他装备进行通信的装置。收发机1510从一个或多个天线1520接收信号,从所接收的信号中提取信息,并将所提取的信息提供给处理系统1514(具体而言是接收组件1404)。此外,收发机1510从处理系统1514(具体而言是传输组件1406)接收信息,并基于所接收的信息来生成将被应用于该一个或多个天线1520的信号。处理系统1514包括被耦合至计算机可读介质/存储器1506的处理器1504。处理器1504负责一般性处理,包括对存储在计算机可读介质/存储器1506上的软件的执行。该软件在由处理器1504执行时使处理系统1514执行上文针对任何特定装备所描述的各种功能。计算机可读介质/存储器1506还可被用于存储由处理器1504在执行软件时操纵的数据。处理系统1514进一步包括组件1404、1406、1408、1410、1412中的至少一者。这些组件可以是在处理器1504中运行的软件组件、驻留/存储在计算机可读介质/存储器1506中的软件组件、被耦合至处理器1504的一个或多个硬件组件、或其某种组合。处理系统1514可以是基站310的组件且可包括存储器376和/或以下至少一者:TX处理器316、RX处理器370、以及控制器/处理器375。替换地,处理系统1514可以是整个基站(例如,参见图3的310)。
在一种配置中,用于无线通信的装备1402/1402'包括:用于标识用于与第一UE通信的资源与用于另一UE的WUS资源之间的冲突的装置。装备1402/1402’还包括:用于响应于标识出冲突而修改与第一UE的通信的装置。装备1402/1402’还包括:用于在WUS资源之前传送关于基站对通信进行穿孔还是进行速率匹配的第二指示的装置。装备1402/1402’还包括:用于通过DCI来提供第二指示的装置。装备1402/1402’还包括:用于在WUS资源之前传送一个或多个资源的调度的装置,并且其中通信可基于该调度和该一个或多个资源来修改。
前述装置可以是装备1402的前述组件和/或装备1402’的处理系统1514中被配置成执行由前述装置叙述的功能的一个或多个组件。如上文中所描述的,处理系统1514可包括TX处理器316、RX处理器370和控制器/处理器375。如此,在一种配置中,前述装置可以是被配置成执行由前述装置叙述的功能的TX处理器316、RX处理器370和控制器/处理器375。
图16是无线通信方法的流程图1600。该方法可由基站(例如,基站102、180、310、402、502;装备1402/1402’;处理系统1514,其可包括存储器376并且可以是整个基站310或基站310的组件(诸如TX处理器316、RX处理器370和/或控制器/处理器375))来执行。使用虚线来解说可任选方面。图16的方法促成使得UE能够调整对WUS的接收以容适与系统资源的冲突,如本文所公开的。
在1604,该基站标识系统资源与用于基于DRX进行操作的UE的WUS资源之间的冲突。在一些示例中,系统资源可以是SSB、PBCH块、包括SIB的第一广播信号、包括RMSI的第二广播信号、包括OSI的第三广播信号、因群而异的参考信号、和/或静态保留资源中的一者。该冲突可基于该WUS资源与该系统资源之间在时间上的交叠来标识。
在1606,该基站响应于标识出该系统资源与该WUS资源之间的冲突而修改至该UE的传输,如结合图5所描述的。该修改可例如由装备1702的WUS资源组件1710、经修改的DRX配置组件1708、和/或传输组件1706来执行。在一些示例中,WUS资源可能与系统资源冲突,并且WUS的传输可响应于该冲突而被修改。在一些示例中,该基站可通过响应于标识出该系统资源与该WUS资源之间的冲突而在基于默认DRX开启历时、默认DRX循环历时、默认非活跃定时器、或默认周期性中的至少一者的DRX开启历时期间向UE传送通信来修改至该UE的传输。
如在1602所解说的,该基站可向UE指示经修改的DRX配置,例如,与该UE的当前DRX配置不同的DRX配置,如结合图5的经修改的DRX配置540所描述的。随后,在1606,该传输的修改可包括:基于经修改的DRX配置来在经调整的WUS资源上向该UE传送WUS。经修改的DRX配置的传送可例如由图17的装备1702的经修改的DRX配置组件1708和/或传输组件1706来执行。在一些示例中,经修改的DRX配置可包括经修改的DRX循环历时。在一些示例中,经修改的DRX配置可包括经修改的DRX开启历时。
在一些示例中,WUS可包括有效载荷。在一些此类示例中,有效载荷可包括与DRX状态相关联的DRX开启历时参数、与DRX循环的历时相关联的DRX循环历时参数、与DRX状态相关联的非活跃定时器参数、和/或与DRX循环相关联的周期性参数中的至少一者。在一些示例中,基站可通过响应于标识出系统资源与WUS资源之间的冲突而在基于来自先前WUS的有效负载的至少一个参数的DRX开启期间向UE传送通信来修改至该UE的传输,该至少一个参数包括DRX开启历时、DRX循环历时、非活跃定时器、或周期性中的一者或多者。
在一些示例中,修改传输可包括指示传送给UE的经修改的DRX配置(例如,在1602)。例如,该基站可在系统资源之前传送WUS。
图17是解说示例装备1702中的不同装置/组件之间的数据流的概念性数据流图1700。该装备1702可以是基站或基站的组件。装备1702包括接收组件1704、传输组件1706、经修改的DRX配置组件1708和WUS资源组件1710。
装备1702的接收组件1704可被配置成从UE(诸如示例UE 1750)接收上行链路通信。装备1702的传输组件1706可被配置成向UE(诸如示例UE 1750)传送下行链路通信(例如,如结合1602、1606所描述的)。WUS资源组件1710可被配置成标识系统资源与用于UE的WUS资源之间的冲突,例如,如结合1604所描述的。装备1702的经修改的DRX配置组件1708可被配置成响应于标识出系统资源与WUS资源之间的冲突而修改至UE 1750的传输(例如,如结合1606所描述的)。装备1702的传输组件1706可被配置成向UE(诸如UE 1750)传送WUS。
该装备可包括执行图16的前述流程图中的算法的每个框的附加组件。如此,图16的前述流程图中的每个框可由一组件执行且该装备可包括那些组件中的一者或多者。这些组件可以是专门配置成执行所述过程/算法的一个或多个硬件组件、由配置成执行所述过程/算法的处理器实现、存储在计算机可读介质中以供由处理器实现、或其某种组合。
图18是解说采用处理系统1814的装备1702’的硬件实现的示例的示图1800。处理系统1814可被实现成具有由总线1824一般化地表示的总线架构。取决于处理系统1814的具体应用和整体设计约束,总线1824可以包括任何数目的互连总线和桥接器。总线1824将包括一个或多个处理器和/或硬件组件(由处理器1804、组件1704、1706、1708、1710以及计算机可读介质/存储器1806表示)的各种电路链接在一起。总线1824还可链接各种其他电路,诸如定时源、外围设备、稳压器和功率管理电路,这些电路在本领域是众所周知的,且因此将不再进一步描述。
处理系统1814可被耦合至收发机1810。收发机1810被耦合至一个或多个天线1820。收发机1810提供用于通过传输介质与各种其他装备进行通信的装置。收发机1810从一个或多个天线1820接收信号,从所接收的信号中提取信息,并将所提取的信息提供给处理系统1814(具体而言是接收组件1704)。另外,收发机1810从处理系统1814(具体而言是传输组件1706)接收信息,并基于所接收的信息来生成将被应用于该一个或多个天线1820的信号。处理系统1814包括被耦合至计算机可读介质/存储器1806的处理器1804。处理器1804负责一般性处理,包括对存储在计算机可读介质/存储器1806上的软件的执行。该软件在由处理器1804执行时使处理系统1814执行上文针对任何特定装备所描述的各种功能。计算机可读介质/存储器1806还可被用于存储由处理器1804在执行软件时操纵的数据。处理系统1814进一步包括组件1704、1706、1708、1710中的至少一个组件。这些组件可以是在处理器1804中运行的软件组件、驻留/存储在计算机可读介质/存储器1806中的软件组件、被耦合至处理器1804的一个或多个硬件组件、或其某种组合。处理系统1814可以是基站310的组件且可包括存储器376和/或以下至少一者:TX处理器316、RX处理器370、以及控制器/处理器375。替换地,处理系统1814可以是整个基站(例如,参见图3的310)。
在一种配置中,用于无线通信的装备1702/1702’包括:用于标识系统资源与用于基于DRX进行操作的UE的WUS资源之间的冲突的装置,例如,如结合图16中的1604所描述的。装备1702/1702’还可包括:用于响应于标识出该系统资源与该WUS资源之间的冲突而修改至该UE的传输的装置,例如,如结合图16中的1606所描述的。装备1702/1702’还可包括:用于向该UE指示不同于与该UE的DRX状态相关联的DRX配置的经修改的DRX配置的装置,例如,如结合图16中的1602所描述的。装备1702/1702’还可包括:用于基于经修改的DRX配置在经调整的WUS资源上向该UE进行传送的装置。装备1702/1702’还可包括:用于在相对于该系统资源不交叠的位置处传送该WUS资源的装置。
前述装置可以是装备1702的前述组件和/或装备1702'中被配置成执行由前述装置叙述的功能的处理系统1814中的一者或多者。如上文中所描述的,处理系统1814可包括TX处理器316、RX处理器370和控制器/处理器375。如此,在一种配置中,前述装置可以是被配置成执行由前述装置叙述的功能的TX处理器316、RX处理器370和控制器/处理器375。
应理解,所公开的过程/流程图中的各个框的具体次序或层次是示例办法的解说。应理解,基于设计偏好,可以重新编排这些过程/流程图中的各个框的具体次序或层次。此外,一些框可被组合或被略去。所附方法权利要求以范例次序呈现各种框的要素,且并不意味着被限定于所呈现的具体次序或层次。
以下示例仅是解说性的,并且可以与其他实施例的各方面或本文所描述的教导进行组合而没有限制。
示例1是一种在用户装备(UE)处进行无线通信的方法,包括:接收对用于另一UE的唤醒信号(WUS)资源的第一指示;基于第一指示来标识分配给该UE的资源与用于另一UE的WUS资源之间的冲突;以及响应于标识出该冲突而修改在该资源中与基站的通信。
在示例2中,该方法进一步包括:资源用于下行链路数据传输或下行链路控制传输。
在示例3中,示例1或示例2的方法进一步包括:修改该资源中的通信包括:对与该WUS资源交叠的通信的接收进行穿孔。
在示例4中,示例1-3中的任一项的方法进一步包括:修改该资源中的通信包括:围绕该WUS资源进行速率匹配。
在示例5中,示例1-4中的任一项的方法进一步包括:第一指示被包括在速率匹配资源配置参数中。
在示例6中,示例1-5中的任一项的方法进一步包括:在该WUS资源之前接收关于要对该通信的接收进行穿孔还是要围绕该WUS资源进行速率匹配的第二指示,并且其中修改通信包括:基于第二指示对该通信进行穿孔或速率匹配。
在示例7中,示例1-6中的任一项的方法进一步包括:第二指示是在下行链路控制信息(DCI)中接收的。
在示例8中,示例1-7中的任一项的方法进一步包括:在该WUS资源之前接收与WUS资源至少部分地交叠的一个或多个资源的调度,其中修改该资源中的通信包括:基于该调度来接收该通信。
在示例9中,示例1-8中的任一项的方法进一步包括:修改该通信进一步包括:基于该调度对该通信的接收进行穿孔。
在示例10中,示例1-9中的任一项的方法进一步包括:修改该通信进一步包括:基于该调度来围绕相应资源进行速率匹配。
在示例11中,示例1-10中的任一项的方法进一步包括:该调度基于该一个或多个资源与该WUS资源之间的冲突来指示该通信在时间或频率中的至少一者上的经移位位置,并且其中修改该通信包括:在经移位位置处监视该通信。
在示例12中,示例1-11中的任一项的方法进一步包括:该通信包括下行链路参考信号。
在示例13中,示例1-12中的任一项的方法进一步包括:下行链路参考信号包括信道状态信息参考信号(CSI-RS)、相位跟踪参考信号(PTRS)、跟踪参考信号和解调参考信号(DMRS)中的一者。
在示例14中,示例1-13中的任一项的方法进一步包括:修改该通信包括:在该WUS资源上使用穿孔或围绕该WUS资源进行速率匹配来接收该下行链路参考信号。
在示例15中,示例1-14中的任一项的方法进一步包括:接收对该下行链路参考信号的经移位位置的第二指示,其中修改该通信包括:在该经移位位置处监视该下行链路参考信号。
在示例16中,示例1-15中的任一项的方法进一步包括:接收指示要基于穿孔、速率匹配还是监视经移位位置来修改该下行链路参考信号的接收的第二指示,其中该UE基于第二指示修改该下行链路参考信号的接收。
在示例17中,示例1-16中的任一项的方法进一步包括:该资源用于上行链路数据传输或上行链路控制传输,并且其中该UE标识用于另一UE的WUS资源与上行链路数据传输或上行链路控制传输之间的冲突。
示例18是一种设备,该设备包括一个或多个处理器以及与该一个或多个处理器处于电子通信的一个或多个存储器,该一个或多个存储器存储可由该一个或多个处理器执行以使系统或设备实现如示例1至17中的任一者中的方法的指令。
示例19是一种系统或设备,其包括用于实现如示例1至17中的任一者中的方法或实现如示例1至17中的任一者中的设备的装置。
示例20是一种非瞬态计算机可读介质,其存储可由一个或多个处理器执行的指令,这些指令使该一个或多个处理器实现如示例1至17中的任一者中的方法。
示例21是一种用于在用户装备(UE)处进行无线通信的方法,包括:在该UE正基于不连续接收(DRX)进行操作时标识系统资源与关联于该UE的唤醒信号(WUS)资源之间的冲突;以及响应于标识出该系统资源与该WUS资源之间的冲突而修改DRX操作。
在示例22中,示例21的方法进一步包括:该系统资源包括以下一者:同步信号块(SSB)、物理广播信道(PBCH)块、包括系统信息块(SIB)的第一广播信号、包括剩余最小系统信息(RMSI)的第二广播信号、包括其他系统信息(OSI)的第三广播信号、因群而异的参考信号和静态保留资源。
在示例23中,示例21或示例22的方法进一步包括:该冲突是基于该WUS资源与该系统资源之间在时间上的交叠来标识的。
在示例24中,示例21-23中的任一项的方法进一步包括:修改该DRX操作包括:抑制在与该系统资源冲突的WUS资源中监视WUS。
在示例25中,示例21-24中的任一项的方法进一步包括:在该WUS资源之后的DRX开启历时期间苏醒而不监视该WUS。
在示例26中,示例21-25中的任一者的方法进一步包括:修改该DRX操作包括:响应于标识出该系统资源与该WUS资源之间的冲突而应用默认DRX开启历时、默认DRX循环历时、默认非活跃定时器、或默认周期性中的至少一者。
在示例27中,示例21-26中的任一者的方法进一步包括:在DRX开启历时期间苏醒而不监视与该系统资源冲突的WUS资源,其中该UE基于该默认DRX开启历时、该默认DRX循环历时、该默认非活跃定时器、或该默认周期性中的该至少一者而苏醒。
在示例28中,示例21-27中的任一者的方法进一步包括:修改该DRX操作包括:响应于标识出该系统资源与该WUS资源之间的冲突而应用来自先前WUS的有效载荷的至少一个参数,该至少一个参数包括DRX开启历时、DRX循环历时、非活跃定时器、或周期性中的一者或多者。
在示例29中,示例21-28中任一者的方法进一步包括:接收经修改的DRX配置,其中修改该DRX操作包括:响应于标识出该系统资源与该WUS资源之间的冲突而基于经修改的DRX配置来监视经调整的WUS资源。
在示例30中,示例21-29中的任一项的方法进一步包括:经修改的DRX配置包括:经修改的DRX循环历时。
在示例31中,示例21-30中的任一项的方法进一步包括:经修改的DRX配置包括:经修改的DRX开启历时。
在示例32中,示例21-31中的任一者的方法进一步包括:基于经修改的DRX配置来监视经调整的WUS资源包括:在相对于该系统资源不交叠的位置处监视WUS;以及在该系统资源之前苏醒。
在示例33中,示例21-32中的任一者的方法进一步包括:基于经修改的DRX配置来监视经调整的WUS资源包括:在相对于该系统资源不交叠的位置处监视WUS;以及在该系统资源之后苏醒。
示例34是一种设备,该设备包括一个或多个处理器以及与该一个或多个处理器处于电子通信的一个或多个存储器,该一个或多个存储器存储可由该一个或多个处理器执行以使系统或设备实现如示例21-33中的任一者中的方法的指令。
示例35是一种系统或设备,其包括用于实现如示例21-33中的任一者中的方法或实现如示例21-33中的任一者中的设备的装置。
示例36是一种非瞬态计算机可读介质,其存储可由一个或多个处理器执行的指令,这些指令使该一个或多个处理器实现如示例21-33中的任一项的方法。
示例37是一种在基站处进行无线通信的方法,包括:标识用于与第一UE通信的资源与用于另一UE的唤醒信号(WUS)资源之间的冲突;以及响应于标识出该冲突而修改在该资源中与第一UE的通信。
在示例38中,示例37的方法进一步包括:该资源用于至第一UE的下行链路数据传输或至第一UE的下行链路控制传输。
在示例39中,示例37或示例38的方法进一步包括:修改该通信包括:对该资源中的下行链路数据传输或下行链路控制传输进行穿孔。
在示例40中,示例37-39中的任一项的方法进一步包括:修改该通信包括:围绕该资源进行速率匹配。
在示例41中,示例37-40中的任一者的方法进一步包括:第一指示被包括在速率匹配资源配置参数中。
在示例42中,示例37-41中的任一项的方法进一步包括:在该WUS资源之前传送指示要对该通信的接收进行穿孔还是要围绕该资源进行速率匹配的第二指示,并且其中该基站通过根据第二指示将该通信穿孔或围绕该资源进行速率匹配来修改该通信。
在示例43中,示例37-42中的任一项的方法进一步包括:第二指示是在下行链路控制信息(DCI)中传送的。
在示例44中,示例37-43中的任一项的方法进一步包括:在该WUS资源之前传送一个或多个资源的调度,其中修改该通信包括:基于该调度来传送该通信。
在示例45中,示例37-44中的任一项的方法进一步包括:该通信包括下行链路参考信号。
在示例46中,示例37-45中的任一项的方法进一步包括:下行链路参考信号包括信道状态信息参考信号(CSI-RS)、相位跟踪参考信号(PTRS)、跟踪参考信号和解调参考信号(DMRS)中的一者。
在示例47中,示例37-46中的任一项的方法进一步包括:该通信包括上行链路数据传输或上行链路控制传输,并且其中该基站标识用于第二UE的WUS资源与来自第一UE的上行链路数据传输或上行链路控制传输之间的冲突。
示例48是一种设备,该设备包括一个或多个处理器以及与该一个或多个处理器处于电子通信的一个或多个存储器,该一个或多个存储器存储可由该一个或多个处理器执行以使系统或设备实现如示例37-47中的任一者中的方法的指令。
示例49是一种系统或设备,其包括用于实现如示例37-47中的任一者中的方法或实现如示例37-47中的任一者中的设备的装置。
示例50是一种非瞬态计算机可读介质,其存储可由一个或多个处理器执行的指令,这些指令使该一个或多个处理器实现如示例37-47中的任一项的方法。
示例51是一种用于在基站处进行无线通信的方法,包括:标识系统资源与用于基于不连续接收(DRX)进行操作的用户装备(UE)的唤醒信号(WUS)资源之间的冲突;以及响应于标识出该系统资源与该WUS资源之间的冲突而修改至该UE的传输。
在示例52中,示例51的方法进一步包括:该系统资源包括以下一者:同步信号块(SSB)、物理广播信道(PBCH)块、包括系统信息块(SIB)的第一广播信号、包括剩余最小系统信息(RMSI)的第二广播信号、包括其他系统信息(OSI)的第三广播信号、因群而异的参考信号和静态保留资源。
在示例53中,示例51或示例52的方法进一步包括:该冲突是基于该WUS资源与该系统资源之间在时间上的交叠来标识的。
在示例54中,示例51-53中的任一者的方法进一步包括:修改至该UE的传输包括:响应于标识出该系统资源与该WUS资源之间的冲突而在基于默认DRX开启历时、默认DRX循环历时、默认非活跃定时器、或默认周期性中的至少一者的DRX开启历时期间向该UE传送通信。
在示例55中,示例51-54中的任一者的方法进一步包括:修改至该UE的传输包括:响应于标识出该系统资源与该WUS资源之间的冲突而在基于来自先前WUS的有效载荷的至少一个参数的DRX开启期间向该UE传送通信,该至少一个参数包括DRX开启历时、DRX循环历时、非活跃定时器、或周期性中的一者或多者。
在示例56中,示例51-55中任一者的方法进一步包括:向该UE指示经修改的DRX配置,其中修改至该UE的传输包括:基于经修改的DRX配置在经调整的WUS资源上向该UE传送WUS。
在示例57中,示例51-56中的任一者的方法进一步包括:经修改的DRX配置包括:经修改的DRX循环历时或经修改的DRX开启历时中的至少一者。
示例58是一种设备,该设备包括一个或多个处理器以及与该一个或多个处理器处于电子通信的一个或多个存储器,该一个或多个存储器存储可由该一个或多个处理器执行以使系统或设备实现如示例51-57中的任一者中的方法的指令。
示例59是一种系统或设备,其包括用于实现如示例51-57中的任一者中的方法或实现如示例51-57中的任一者中的设备的装置。
示例60是一种非瞬态计算机可读介质,其存储可由一个或多个处理器执行的指令,这些指令使该一个或多个处理器实现如示例51-57中的任一项的方法。
提供先前描述是为了使本领域任何技术人员均能够实践本文中所描述的各种方面。对这些方面的各种修改将容易为本领域技术人员所明白,并且在本文中所定义的普适原理可被应用于其他方面。由此,权利要求并非旨在被限定于本文中所示的方面,而是应被授予与语言上的权利要求相一致的全部范围,其中对要素的单数形式的引述除非特别声明,否则并非旨在表示“有且仅有一个”,而是“一个或多个”。措辞“示例性”在本文中用于意指“用作示例、实例、或解说”。本文中所描述为“示例性”的任何方面不必被解释为优于或胜过其他方面。除非特别另外声明,否则术语“一些/某个”指的是一个或多个。诸如“A、B或C中的至少一者”、“A、B或C中的一者或多者”、“A、B和C中的至少一者”、“A、B和C中的一者或多者”、以及“A、B、C或其任何组合”之类的组合包括A、B和/或C的任何组合,并且可包括多个A、多个B或者多个C。具体地,诸如“A、B或C中的至少一者”、“A、B或C中的一者或多者”、“A、B和C中的至少一者”、“A、B和C中的一者或多者”、以及“A、B、C或其任何组合”之类的组合可以是仅A、仅B、仅C、A和B、A和C、B和C、或者A和B和C,其中任何此类组合可包含A、B或C中的一个或多个成员。本公开通篇描述的各个方面的要素为本领域普通技术人员当前或今后所知的所有结构上和功能上的等效方案通过引述被明确纳入于此,且旨在被权利要求所涵盖。此外,本文所公开的任何内容都不旨在捐献于公众,无论此类公开内容是否明确记载在权利要求书中。措辞“模块”、“机制”、“元素”、“设备”等等可以不是措辞“装置”的代替。如此,没有任何权利要求元素应被解释为装置加功能,除非该元素是使用短语“用于……的装置”来明确叙述的。

Claims (30)

1.一种在用户装备(UE)处进行无线通信的方法,所述方法包括:
在所述UE正基于不连续接收(DRX)进行操作时标识系统资源与关联于所述UE的唤醒信号(WUS)资源之间的冲突;以及
响应于标识出所述系统资源与所述WUS资源之间的所述冲突而修改DRX操作。
2.如权利要求1所述的方法,其中所述系统资源包括以下一者:同步信号块(SSB)、物理广播信道(PBCH)块、包括系统信息块(SIB)的第一广播信号、包括剩余最小系统信息(RMSI)的第二广播信号、包括其他系统信息(OSI)的第三广播信号、因群而异的参考信号和静态保留资源。
3.如权利要求2所述的方法,其中所述冲突是基于所述WUS资源与所述系统资源之间在时间上的交叠来标识的。
4.如权利要求1所述的方法,其中修改所述DRX操作包括:抑制在与所述系统资源冲突的所述WUS资源中监视WUS。
5.如权利要求4所述的方法,进一步包括:
在所述WUS资源之后的DRX开启历时期间苏醒而不监视所述WUS。
6.如权利要求1所述的方法,其中修改所述DRX操作包括:响应于标识出所述系统资源与所述WUS资源之间的所述冲突而应用默认DRX开启历时、默认DRX循环历时、默认非活跃定时器、或默认周期性中的至少一者。
7.如权利要求6所述的方法,进一步包括:
在DRX开启历时期间苏醒而不监视与所述系统资源冲突的所述WUS资源,其中所述UE基于所述默认DRX开启历时、所述默认DRX循环历时、所述默认非活跃定时器、或所述默认周期性中的所述至少一者而苏醒。
8.如权利要求1所述的方法,其中修改所述DRX操作包括:响应于标识出所述系统资源与所述WUS资源之间的所述冲突而应用来自先前WUS的有效载荷的至少一个参数,所述至少一个参数包括DRX开启历时、DRX循环历时、非活跃定时器、或周期性中的一者或多者。
9.如权利要求1所述的方法,进一步包括:
接收经修改的DRX配置,其中修改所述DRX操作包括:响应于标识出所述系统资源与所述WUS资源之间的所述冲突而基于所述经修改的DRX配置来监视经调整的WUS资源。
10.如权利要求9所述的方法,其中所述经修改的DRX配置包括经修改的DRX循环历时。
11.如权利要求9所述的方法,其中所述经修改的DRX配置包括经修改的DRX开启历时。
12.如权利要求9所述的方法,其中基于所述经修改的DRX配置来监视所述经调整的WUS资源包括:
在相对于所述系统资源不交叠的位置处监视WUS;以及
在所述系统资源之前苏醒。
13.如权利要求9所述的方法,其中基于所述经修改的DRX配置来监视所述经调整的WUS资源包括:
在相对于所述系统资源不交叠的位置处监视WUS;以及
在所述系统资源之后苏醒。
14.一种用于在用户装备(UE)处进行无线通信的装置,包括:
存储器;以及
至少一个处理器,所述至少一个处理器耦合至所述存储器并被配置成:
在所述UE正基于不连续接收(DRX)进行操作时标识系统资源与关联于所述UE的唤醒信号(WUS)资源之间的冲突;以及
响应于标识出所述系统资源与所述WUS资源之间的所述冲突而修改DRX操作。
15.如权利要求14所述的装置,其中所述系统资源包括以下一者:同步信号块(SSB)、物理广播信道(PBCH)块、包括系统信息块(SIB)的第一广播信号、包括剩余最小系统信息(RMSI)的第二广播信号、包括其他系统信息(OSI)的第三广播信号、因群而异的参考信号和静态保留资源,并且其中所述冲突是基于所述WUS资源与所述系统资源之间在时间上的交叠来标识的。
16.如权利要求14所述的装置,其中所述至少一个处理器被配置成通过抑制在与所述系统资源冲突的所述WUS资源中监视WUS来修改所述DRX操作。
17.如权利要求16所述的装置,其中所述至少一个处理器被进一步配置成:
在所述WUS资源之后的DRX开启历时期间苏醒而不监视所述WUS。
18.如权利要求14所述的装置,其中所述至少一个处理器被配置成通过响应于标识出所述系统资源与所述WUS资源之间的所述冲突而应用默认DRX开启历时、默认DRX循环历时、默认非活跃定时器、或默认周期性中的至少一者来修改所述DRX操作。
19.如权利要求18所述的装置,其中所述至少一个处理器被进一步配置成:
在DRX开启历时期间苏醒而不监视与所述系统资源冲突的所述WUS资源,其中所述UE基于所述默认DRX开启历时、所述默认DRX循环历时、所述默认非活跃定时器、或所述默认周期性中的所述至少一者而苏醒。
20.如权利要求14所述的装置,其中所述至少一个处理器被配置成通过响应于标识出所述系统资源与所述WUS资源之间的所述冲突而应用来自先前WUS的有效载荷的至少一个参数来修改所述DRX操作,所述至少一个参数包括DRX开启历时、DRX循环历时、非活跃定时器、或周期性中的一者或多者。
21.一种在基站处进行无线通信的方法,所述方法包括:
标识系统资源与用于基于不连续接收(DRX)进行操作的用户装备(UE)的唤醒信号(WUS)资源之间的冲突;以及
响应于标识出所述系统资源与所述WUS资源之间的所述冲突而修改至所述UE的传输。
22.如权利要求21所述的方法,其中所述系统资源包括以下一者:同步信号块(SSB)、物理广播信道(PBCH)块、包括系统信息块(SIB)的第一广播信号、包括剩余最小系统信息(RMSI)的第二广播信号、包括其他系统信息(OSI)的第三广播信号、因群而异的参考信号和静态保留资源。
23.如权利要求22所述的方法,其中所述冲突是基于所述WUS资源与所述系统资源之间在时间上的交叠来标识的。
24.如权利要求21所述的方法,其中修改至所述UE的所述传输包括:响应于标识出所述系统资源与所述WUS资源之间的所述冲突而在基于默认DRX开启历时、默认DRX循环历时、默认非活跃定时器、或默认周期性中的至少一者的DRX开启历时期间向所述UE传送通信。
25.如权利要求21所述的方法,其中修改至所述UE的所述传输包括:响应于标识出所述系统资源与所述WUS资源之间的所述冲突而在基于来自先前WUS的有效载荷的至少一个参数的DRX开启期间向所述UE传送通信,所述至少一个参数包括DRX开启历时、DRX循环历时、非活跃定时器、或周期性中的一者或多者。
26.如权利要求21所述的方法,进一步包括:
向所述UE指示经修改的DRX配置,其中修改至所述UE的所述传输包括:基于所述经修改的DRX配置在经调整的WUS资源上向所述UE传送WUS。
27.如权利要求26所述的方法,其中所述经修改的DRX配置包括:经修改的DRX循环历时或经修改的DRX开启历时中的至少一者。
28.一种用于在基站处进行无线通信的装置,包括:
存储器;以及
至少一个处理器,所述至少一个处理器耦合至所述存储器并被配置成:
标识系统资源与用于基于不连续接收(DRX)进行操作的用户装备(UE)的唤醒信号(WUS)资源之间的冲突;以及
响应于标识出所述系统资源与所述WUS资源之间的所述冲突而修改至所述UE的传输。
29.如权利要求28所述的装置,其中所述冲突是基于所述WUS资源与所述系统资源之间在时间上的交叠来标识的。
30.如权利要求28所述的装置,其中所述至少一个装置被配置成通过响应于标识出所述系统资源与所述WUS资源之间的所述冲突而在基于默认DRX开启历时、默认DRX循环历时、默认非活跃定时器、或默认周期性中的至少一者的DRX开启历时期间向所述UE传送通信来修改至所述UE的所述传输。
CN202080017724.0A 2019-03-04 2020-03-02 用于促成将唤醒信号与其他资源复用的方法和装置 Active CN113508637B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962813709P 2019-03-04 2019-03-04
US62/813,709 2019-03-04
US16/804,922 US11218969B2 (en) 2019-03-04 2020-02-28 Methods and apparatus to facilitate multiplexing wake-up signals with other resources
US16/804,922 2020-02-28
PCT/US2020/020690 WO2020180810A1 (en) 2019-03-04 2020-03-02 Methods and apparatus to facilitate multiplexing wake-up signals with other resources

Publications (2)

Publication Number Publication Date
CN113508637A true CN113508637A (zh) 2021-10-15
CN113508637B CN113508637B (zh) 2024-04-09

Family

ID=72334755

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202080017310.8A Active CN113597813B (zh) 2019-03-04 2020-02-18 用于促进将唤醒信号与其它资源复用的方法和装置
CN202080017724.0A Active CN113508637B (zh) 2019-03-04 2020-03-02 用于促成将唤醒信号与其他资源复用的方法和装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202080017310.8A Active CN113597813B (zh) 2019-03-04 2020-02-18 用于促进将唤醒信号与其它资源复用的方法和装置

Country Status (4)

Country Link
US (2) US11310742B2 (zh)
EP (2) EP3935912A1 (zh)
CN (2) CN113597813B (zh)
WO (2) WO2020180486A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11310742B2 (en) 2019-03-04 2022-04-19 Qualcomm Incorporated Methods and apparatus to facilitate multiplexing wake-up signals with other resources
HUE058801T2 (hu) * 2019-03-25 2022-09-28 Beijing Xiaomi Mobile Software Co Ltd Energia takarékossági parancs adása és vétele
EP4007379B1 (en) 2019-07-26 2024-05-08 LG Electronics Inc. Method for monitoring physical downlink control channel of terminal in wireless communication system, and device using same method
WO2021016817A1 (zh) * 2019-07-29 2021-02-04 北京小米移动软件有限公司 直连通信方法、装置及存储介质
US11540166B2 (en) * 2019-12-05 2022-12-27 Qualcomm Incorporated Procedures for managing quality of service flows
CN113225840B (zh) * 2020-01-21 2023-12-05 华硕电脑股份有限公司 无线通信系统中监视装置间侧链路控制信号的方法和设备
CN112218356B (zh) * 2020-09-25 2022-04-29 紫光展锐(重庆)科技有限公司 一种唤醒同步方法、装置、终端和计算机可读存储介质
CN112714487B (zh) * 2020-12-21 2022-12-02 展讯通信(上海)有限公司 一种通信方法、装置和电子设备
EP4399941A1 (en) * 2021-09-10 2024-07-17 Qualcomm Incorporated Techniques for conditional wake-up signal monitoring
WO2023225909A1 (en) * 2022-05-25 2023-11-30 Nec Corporation Method, device and computer storage medium of communication
CN118265167A (zh) * 2022-12-27 2024-06-28 华为技术有限公司 资源指示的方法与通信装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175760A1 (en) * 2017-03-24 2018-09-27 Intel Corporation Wake up signal for machine type communication and narrowband-internet-of-things devices

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9521701B2 (en) 2012-09-09 2016-12-13 Apple Inc. Conflict handling in a device configured to operate according to multiple cellular communication protocols
US9942879B2 (en) * 2014-05-19 2018-04-10 Samsung Electronics Co., Ltd. Method and apparatus for avoiding resource collision in mobile communication system
US10104616B2 (en) * 2015-06-22 2018-10-16 Qualcomm Incorporated Downlink multiplexing and MAC signaling for a system with devices operating with and without low power companion receivers
WO2017146556A1 (ko) 2016-02-26 2017-08-31 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US10021711B2 (en) 2016-03-23 2018-07-10 Qualcomm Incorporated Methods and apparatus for reducing resource contention
WO2018161244A1 (en) * 2017-03-07 2018-09-13 Qualcomm Incorporated Paging offset negotiation
WO2018174635A1 (ko) * 2017-03-24 2018-09-27 엘지전자 주식회사 페이징 메시지를 수신하는 방법 및 무선 기기
CN113891437B (zh) * 2017-03-24 2024-04-26 Lg电子株式会社 用于接收寻呼消息的方法和无线设备
WO2018199652A1 (ko) 2017-04-26 2018-11-01 엘지전자 주식회사 무선 통신 시스템에서 wake up 신호를 수신하는 방법 및 장치
KR102491548B1 (ko) * 2017-07-31 2023-01-26 삼성전자주식회사 지시 정보 검출 방법과 장치, 및 전송 중계 방법 및 기기
CN110831121B (zh) 2018-08-10 2022-03-22 展讯通信(上海)有限公司 唤醒信号的碰撞解决方法及装置、存储介质、终端、基站
CN117858278A (zh) * 2019-01-10 2024-04-09 北京三星通信技术研究有限公司 一种物理下行控制信道的监听方法、终端设备及存储介质
US11310742B2 (en) 2019-03-04 2022-04-19 Qualcomm Incorporated Methods and apparatus to facilitate multiplexing wake-up signals with other resources

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175760A1 (en) * 2017-03-24 2018-09-27 Intel Corporation Wake up signal for machine type communication and narrowband-internet-of-things devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
""R1-1807560"", 3GPP TSG_RAN\\WG1_RL1 *
""R1-1814028_7.2.9.3_summary_95_rrm_ue_power"", 3GPP TSG_RAN\\WG1_RL1 *

Also Published As

Publication number Publication date
CN113508637B (zh) 2024-04-09
CN113597813B (zh) 2024-07-26
WO2020180486A1 (en) 2020-09-10
US11310742B2 (en) 2022-04-19
US11218969B2 (en) 2022-01-04
EP3935913A1 (en) 2022-01-12
WO2020180810A1 (en) 2020-09-10
US20200288401A1 (en) 2020-09-10
EP3935912A1 (en) 2022-01-12
US20200288402A1 (en) 2020-09-10
CN113597813A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN113508637B (zh) 用于促成将唤醒信号与其他资源复用的方法和装置
CN113812209B (zh) 解决与唤醒信号的冲突的无线通信
CN114175811A (zh) 用于nr降低能力ue的两步rach规程
CN112740584A (zh) 使用新的上行链路授权提早终止pusch
CN113196838A (zh) 针对功率节省配置的ue辅助信息
CN112970304A (zh) 用于避免针对相同设备内的nr v2x和lte v2x的传输冲突的方法
CN113615119A (zh) 采用资源编群的信令开销减少
CN113785651A (zh) 用于选择性地监视用于补充上行链路和非补充上行链路载波的上行链路先占指示的方法和装置
CN114503495A (zh) 针对srs/pucch的默认空间关系
CN114128204A (zh) 降低能力/复杂度nr带宽部分配置
CN114009142A (zh) Rrc状态之间ue辅助的快速转换
CN114731254A (zh) 经由mac-ce启用路径损耗参考信号更新的rrc指示
CN114467265A (zh) 默认pdsch波束选择
CN115552837A (zh) 用于跨载波多dci的qcl假设的方法和装置
CN114175554A (zh) 用于多个同步信号块的系统信息和寻呼监视
CN113366918A (zh) 快速突发调离
CN114051758A (zh) 基于预定状态变动的drx和苏醒操作
CN114731625A (zh) 侧链路中的资源重选
CN114342458A (zh) 用于促进在连接模式不连续接收模式期间的多任务化和智能位置选择的方法和装置
CN112189311A (zh) 动态搜索空间配置
CN113940023A (zh) 用于促进针对上行链路控制信道和探测参考信号的空间关系指示的方法和装置
CN115699623A (zh) Cli测量的动态禁用
CN114830790A (zh) 基于多分段rar窗口的消息2 pdsch重复
CN114651514A (zh) 用于配置对于补充上行链路载波的上行链路取消指示的方法
CN114762397A (zh) 针对配置和激活的路径损耗参考信号的ue能力报告

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant