WO2024045882A1 - 服务小区选择方法和装置 - Google Patents

服务小区选择方法和装置 Download PDF

Info

Publication number
WO2024045882A1
WO2024045882A1 PCT/CN2023/105278 CN2023105278W WO2024045882A1 WO 2024045882 A1 WO2024045882 A1 WO 2024045882A1 CN 2023105278 W CN2023105278 W CN 2023105278W WO 2024045882 A1 WO2024045882 A1 WO 2024045882A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
serving cell
reference signal
uplink
base station
Prior art date
Application number
PCT/CN2023/105278
Other languages
English (en)
French (fr)
Inventor
唐臻飞
李新县
彭金磷
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045882A1 publication Critical patent/WO2024045882A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the present application relates to the field of wireless communications, and more specifically, to a serving cell selection method and device.
  • a user equipment usually communicates through one or more cells. If the UE communicates through a cell, the cell includes 1 downlink carrier, 1 or 2 uplink carriers. If the UE communicates through multiple cells (carrier aggregation), the primary cell includes 1 downlink carrier, 1 or 2 uplink carriers, and the secondary cell includes 1 downlink carrier, 0 or 1 or 2 uplink carriers.
  • FDD frequency division duplex
  • TDD time division duplex
  • Mobility management is the management of location information and business continuity of mobile terminals, and the selection of optimal wireless links to provide wireless communication services for UEs.
  • the UE when the UE selects the serving cell, it will receive the downlink reference signal sent by the network side, and judge the communication quality of the serving cell based on the signal strength of the received downlink reference signal.
  • the UE will use the received downlink reference signal to determine the communication quality of the serving cell.
  • the strength is reported to the base station.
  • the base station will select a serving cell for the UE based on the signal strength of the downlink reference signal reported by the UE.
  • the UE performs uplink communication and downlink communication through the selected serving cell. For the UE, the downlink communication quality of the serving cell may be better, but the uplink communication quality may not be better.
  • This application provides a serving cell selection method and device, which can improve the uplink communication quality of the terminal.
  • the first aspect is to provide a serving cell selection method.
  • the method includes: a terminal sending a reference signal, the reference signal being used to determine an uplink serving cell; and the terminal receiving indication information from a first radio access network device, where the indication information includes information about the uplink serving cell.
  • the first radio access network device is the radio access network device currently serving the terminal.
  • the uplink serving cell of the terminal determined based on the above technical solution is the serving cell with better uplink communication quality of the terminal. Therefore, the uplink communication quality of the terminal can be improved.
  • the method further includes: the terminal receiving configuration information from the first radio access network device, where the configuration information includes carrier information of the reference signal, the reference signal at least one of the time-frequency resource information, the sequence information of the reference signal, the scrambling code information of the reference signal, the power information of the reference signal and the area identification of the candidate uplink serving cell, wherein the candidate uplink The serving cell includes the uplink serving cell.
  • the configuration information is used by the terminal to send reference signals.
  • the terminal can send reference signals on the resources indicated by the configuration information; on the other hand, the terminal can generate reference signals according to the configuration information. For example, the terminal scrambles the reference signal according to the area identifier indicated by the configuration information.
  • the reference signal enables the serving cells in the area identified by the area identifier to detect the reference signal, thereby reducing the implementation complexity of the terminal sending the reference signal.
  • the information of the uplink serving cell includes an identifier of the uplink serving cell.
  • the indication information further includes at least one of the temporary cell radio network temporary identifier TC-RNTI, timing advance adjustment information and frequency offset adjustment information of the uplink serving cell.
  • the timing advance adjustment information is used for the terminal to adjust the uplink time, so that the terminal and the uplink time of the wireless access network equipment serving the uplink service cell are synchronized;
  • the frequency offset adjustment information is used for the terminal to make frequency compensation, so that the terminal and the uplink service Synchronization of the uplink frequencies of wireless access network equipment served by the cell.
  • the method further includes: the terminal sending an uplink access message, where the uplink access message includes an identifier of the uplink serving cell. Specifically, the terminal sends an uplink access message to the radio access network device serving the uplink serving cell, and the uplink access message is used to establish an RRC connection between the terminal and the uplink serving cell.
  • the second aspect is to provide a serving cell selection method.
  • the method includes: the first radio access network device receives a reference signal from a terminal in a first cell, and obtains first quality information of the reference signal; the first radio access network device receives a reference signal based on the reference signal.
  • the first quality information determines the uplink serving cell of the terminal; the first radio access network device sends indication information to the terminal, where the indication information includes information of the uplink serving cell.
  • the second aspect is a method on the radio access network device side corresponding to the first aspect, so the beneficial effects in the above-mentioned first aspect can also be achieved.
  • the method further includes: the first radio access network device receiving first information from a second radio access network device, the first information indicating that the second radio access network device is Second quality information of the reference signal received on the second cell of the access network device.
  • the first radio access network device determines the uplink serving cell of the terminal based on the first quality information of the reference signal, including: based on the first quality information and the The second quality information determines that the first cell is the uplink serving cell of the terminal.
  • the method further includes: the first radio access network device sending configuration information to the terminal, where the configuration information includes carrier information of the reference signal, At least one of time-frequency resource information, sequence information of the reference signal, scrambling information of the reference signal, power information of the reference signal, and area identification of a candidate uplink serving cell, wherein the candidate uplink serving cell The cell includes the uplink serving cell.
  • the information of the uplink serving cell includes an identifier of the uplink serving cell.
  • the indication information further includes at least one of the temporary cell radio network temporary identifier TC-RNTI, timing advance adjustment information and frequency offset adjustment information of the uplink serving cell.
  • the first information also indicates identification information of the reference signal received on the second cell, the timing advance adjustment information and the frequency offset adjustment information. At least one item.
  • the method further includes: receiving an uplink access message from the terminal, where the uplink access message includes an identifier of the uplink serving cell.
  • a communication device including: a processor and an interface circuit, the interface circuit being used to receive signals from other communication devices and transmit them to the processor or to send signals from the processor to other devices.
  • the processor executes code instructions through logic circuits to implement the method in the first aspect or any possible implementation of the first aspect, or to implement the method in the second aspect or any possible implementation of the second aspect. Methods.
  • a computer-readable storage medium is provided.
  • Computer programs or instructions are stored in the storage medium.
  • the above-mentioned first aspect and the first aspect are implemented.
  • the method in any possible implementation manner, or the method in any possible implementation manner of the above second aspect and the second aspect.
  • a fifth aspect provides a computer program product containing instructions.
  • the communication device When the instructions are executed by a communication device, the communication device enables the communication device to implement the above-mentioned first aspect and the method in any possible implementation manner of the first aspect, or to implement the above-mentioned second aspect. aspect and a method in any possible implementation manner of the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system applied in an embodiment of the present application.
  • Figure 2 is a schematic diagram of the application scenarios of macro stations and small stations.
  • Figure 3 is a schematic diagram of a multi-frequency application scenario.
  • Figure 4 is a schematic diagram of the site transmission shutdown energy-saving application scenario.
  • Figure 5 is a schematic diagram of an application scenario where only the receiving function is configured for some sites.
  • Figure 6 is a schematic flow interaction diagram of the serving cell selection method proposed by the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 1 is a schematic architectural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a wireless access network 100 and a core network 200.
  • the communication system 1000 may also include the Internet 300.
  • the radio access network 100 may include at least one radio access network device (110a and 110b in Figure 1), and may also include at least one terminal (120a-120j in Figure 1).
  • the terminal is connected to the wireless access network equipment through wireless means, and the wireless access network equipment is connected to the core network through wireless or wired means.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • Wireless access network equipment is access equipment for terminals to access the communication system through wireless means.
  • Wireless access network equipment can be a base station, an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), or the next generation of the fifth generation (5th generation, 5G) mobile communication system.
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, can be a centralized unit (CU) or a distributed unit (DU).
  • the CU here completes the functions of the base station's radio resource control protocol and packet data convergence protocol (PDCP), and can also complete the functions of the service data adaptation protocol (SDAP); DU completes the functions of the base station
  • the functions of the wireless link control layer and medium access control (MAC) layer can also complete some or all of the physical layer functions.
  • PDCP radio resource control protocol
  • SDAP service data adaptation protocol
  • MAC medium access control
  • the wireless access network equipment may be a macro base station (110a in Figure 1), a micro base station or an indoor station (110b in Figure 1), or a relay node or donor node.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the wireless access network equipment.
  • the device used to realize the function of the wireless access network device may be a wireless access network device, or may be a device that can support the wireless access network device to realize the function, such as a chip system.
  • the device may be installed on the wireless access network in the device.
  • the following uses a base station as an example of a radio access network device to describe the technical solutions provided by embodiments of the present application.
  • the terminal is a device with wireless transceiver function that can send signals to the base station or receive signals from the base station.
  • the terminal may also be called terminal equipment, UE, mobile station, mobile terminal, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device, vehicle-to-thing communication, machine-type communication, Internet of Things, virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, Smart wearables, smart transportation, smart cities, smart homes, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, airplanes, ships, robots, robotic arms, smart home devices, etc. The embodiments of this application do not limit the specific technology and specific equipment form used by the terminal.
  • the device used to implement the function of the terminal may be a terminal, or may be a device capable of supporting the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices. The following uses a UE as an example of a terminal to describe the technical solutions provided by the embodiments of this application.
  • Base stations and terminals can be fixed-location or mobile. Base stations and terminals can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites. The embodiments of this application do not limit the application scenarios of base stations and terminals.
  • the helicopter or drone 120i in Figure 1 may be configured as a mobile base station.
  • the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is through a wireless air interface protocol.
  • communication between 110a and 120i can also be carried out through an interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, both base stations and terminals can be collectively called communication devices.
  • 110a and 110b in Figure 1 can be called communication devices with base station functions
  • 120a-120j in Figure 1 can be called communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time; it can communicate through 6,000 It can communicate using spectrum below gigahertz (GHz), it can also communicate through spectrum above 6GHz, and it can also communicate using spectrum below 6GHz and spectrum above 6GHz at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the functions of the base station can also be performed by modules (such as chips) in the base station, or by modules including the base station.
  • the control subsystem of the station function is executed.
  • the control subsystem containing base station functions here can be the control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal can also be performed by modules in the terminal (such as chips or modems), or by a device containing the terminal functions.
  • the base station sends downlink signals or downlink information to the terminal, and the downlink signal or downlink information is carried on the downlink channel;
  • the terminal sends uplink signals or uplink information to the base station, and the uplink signal or uplink information is carried on the uplink channel.
  • the terminal In order to communicate with the base station, the terminal needs to establish a wireless connection with the cell controlled by the base station.
  • the cell with which a terminal has established a wireless connection is called the serving cell of the terminal.
  • the serving cell When the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the RRC idle state refers to the state of the UE when the RRC connection is not established.
  • the UE in the idle state releases the RRC connection between the UE and the base station, and the UE and the base station that last provided services to the UE release the context of the UE.
  • the network can configure specific discontinuous reception (DRX) for UEs in RRC idle state; UEs in idle state control mobility according to network configuration.
  • Idle UEs can monitor short messages on downlink control information (DCI), monitor core network paging, perform neighbor cell measurement and cell reselection, and obtain system messages.
  • DCI downlink control information
  • a UE in the RRC inactive state releases the RRC connection between the UE and the base station, but the UE and the base station that last served the UE save the context of the UE.
  • the network can configure specific DRX for UEs in RRC inactive state; UEs in inactive state control mobility according to network configuration.
  • Inactive UEs can monitor short messages on DCI, can monitor paging of the core network and radio access network (RAN), can perform neighbor cell measurement and cell reselection, can obtain system messages, and can Perform periodic RAN-based notification area updates.
  • RAN radio access network
  • An RRC connection has been established between the UE in the RRC connected state and the base station.
  • the UE saves the access layer context, and unicast data can be transmitted between the base station and the UE.
  • the network side can configure specific DRX for the UE in the RRC connected state; the network side controls the mobility of the UE.
  • a UE in the RRC connected state can monitor short messages on the DCI, monitor the control channel, provide channel feedback information, perform neighbor cell measurements and measurement reporting, and obtain system messages.
  • Mobility management is the management of the location information and business continuity of mobile terminals, and selects better wireless links to provide wireless communication services for UEs.
  • Figures 2 to 5 are schematic diagrams of four different application scenarios applicable to embodiments of the present application.
  • Macro stations and small stations are two deployment forms of base stations.
  • Figure 2 is a schematic diagram of the application scenarios of macro stations and small stations.
  • the network deploys macro stations and small stations.
  • the macro stations have large transmit power, many antennas, and cover a large area, forming a larger service cell; the small stations have small transmit power, fewer antennas, and cover a smaller area, forming a larger service area. Small service area.
  • the frequencies supported by the macro station and the small station may be the same or different.
  • the network selects one or more serving cells for the UE based on factors such as the UE's business, location information, and channel quality.
  • the power of the downlink signal received by the UE from the macro station is greater, so the downlink is more suitable for accessing the macro station; however, because the UE is closer to the small station, the UE transmit power is Under certain circumstances, the power of the uplink signal received by the small station is greater, so the uplink is more suitable for accessing the small station.
  • Figure 3 is a schematic diagram of a multi-frequency application scenario. Multiple sites form a network, and the frequencies supported by multiple sites are not exactly the same.
  • the site in this application may be a base station, a TRP in the base station, or a receiving point or a transmitting point in the base station.
  • site 1 and site 3 both support two frequency points F1 and F2, and site 2 supports one frequency point F1; among them, frequency point F2 has a lower frequency than frequency point F1.
  • the power of the downlink signal received by the UE from the F2 frequency point of site 3 is greater, and the downlink is more suitable for accessing the F2 frequency point of site 3; when the UE Under a given transmission power, the power of the uplink signal received by station 2 is greater, and the uplink is more suitable for accessing station 2.
  • FIG 4 is a schematic diagram of the energy-saving application scenario of site transmission shutdown.
  • the network can turn off the transmission of the site (transmit, TX) module or some devices to achieve energy saving effects.
  • site 1 and site 2 turn off the sending module, and only the receiving (RX) module works;
  • site 3 works normally, including the module sending and receiving modules.
  • the UE downlink can provide services through site 3, and the uplink can Provide services through site 2 or multiple sites together to provide uplink services.
  • Figure 5 is a schematic diagram of an application scenario where some sites are configured with only the receiving function. In order to reduce network deployment costs, some receiving-only sites are deployed to improve uplink service performance.
  • the macro station works normally and includes a sending module and a receiving module; the small station only includes a receiving module. As shown in Figure 5, the UE accesses the macro station in downlink, and the uplink can be served through the small station that only performs reception.
  • Mobility management includes mobility management based on downlink reference signals and mobility management based on uplink reference signals.
  • the downlink reference signal includes the channel state information reference signal (CSI-RS) or the synchronization signal and physical broadcast channel block (SSB);
  • the uplink reference signal includes the sounding reference signal ( sounding reference signal (SRS) or discovery reference signal (DRS) or other reference signal.
  • Mobility management includes three operations: cell selection, cell reselection and cell handover.
  • a UE in the RRC idle state After the UE is powered on, it starts cell search and selects a suitable cell to camp on.
  • the downlink mobility management process includes: after the UE is turned on, there is no cell to camp in, and it needs to select a cell from many cells to camp in.
  • the cell selection can be based on the signal quality/signal strength of the downlink reference signal SSB of different cells, or based on the stored Information for cell selection.
  • the downstream mobility management process includes:
  • Step (1) UE performs neighbor cell measurement. After the UE camps in a cell, it measures the neighboring cells based on the downlink signal quality/signal strength of the current serving cell and the frequency priority information of the neighboring cells.
  • the measurement frequency is the adjacent frequency broadcast by the system or the frequency carried by the RRC connection release message. Specifically, it includes same-frequency measurement rules and different-frequency measurement rules.
  • Co-frequency measurement rules If the signal quality/signal strength of the current serving cell is very good, for example, the signal quality/signal strength of the current serving cell is greater than a given threshold, co-frequency measurement will not be started; if the serving cell does not meet specific conditions, such as , the cell signal quality/signal strength is not greater than the given threshold, then the same frequency measurement is started;
  • Inter-frequency measurement rules If an inter-frequency frequency point or an inter-system frequency point has a higher priority than the current serving frequency point, regardless of the signal quality/signal strength of the current serving cell, the UE will measure them; if the inter-frequency frequency point has priority The priority is lower than the current service frequency point, and the priority of the different system frequency point is lower than the current service frequency point, then the measurement rules are the same as the same-frequency measurement rules.
  • Step (2) The UE adjusts the cell where it resides based on the signal quality/signal strength of the current serving cell and the signal quality/signal strength of the neighboring cell.
  • the base station For UEs in the RRC connected state, after the UE camps in a certain cell and initiates random access to enter the RRC connected state, the base station will adjust the cell to which the UE accesses based on coverage/service/distance to ensure the stability of the UE's services. connect.
  • the downstream mobility management process includes:
  • Step (1) Trigger the UE to perform measurement. After the UE completes access or successfully switches, the base station delivers measurement control information to the UE.
  • the measurement control information includes measurement objects, measurement resource configuration, measurement events, etc., where the measurement resource configuration includes downlink signal SSB or CSI-RS configuration.
  • Step (2) Perform measurement.
  • the UE monitors the wireless channel according to the relevant configuration of measurement control; when the measurement reporting conditions are met, it reports to the base station through events.
  • the base station determines the handover strategy, target cell, and frequency based on the measurement results.
  • Step (4) Switch execution.
  • the source base station initiates a handover request to the target base station. After receiving the handover request, the target base station performs admission control, allocates UE instances and transmission resources after allowing access, and replies to the source base station with handover permission signaling.
  • the source base station makes a handover execution decision and issues a handover command to the UE, which performs handover and data forwarding.
  • the source base station is the current serving base station of the UE, and the target base station is the serving base station after the UE performs cell handover.
  • the uplink and downlink are bound, which has relatively large restrictions on the UE's uplink and/or downlink experience.
  • the current mobility management is in the four scenarios of Figure 2 to Figure 5 above, because the UE is based on the following uplink signal to perform cell selection, reselection and handover, and the uplink carrier and downlink carrier, or downlink subframe and uplink subframe are bound, therefore, the UE cannot select the downlink carrier of the first cell and the second one respectively.
  • the uplink carrier of the cell, or the downlink subframe of the first cell and the uplink subframe of the second cell cannot be selected respectively for communication.
  • the uplink serving cell and the downlink serving cell of the UE must be the same cell.
  • the uplink communication quality may not be good; or when the UE achieves good uplink communication quality, the downlink communication quality may not be good.
  • embodiments of the present application propose a serving cell selection method, which can improve the uplink communication quality of the terminal.
  • FIG. 6 is a schematic flow interaction diagram of the serving cell selection method 600 proposed by the embodiment of the present application.
  • UE is taken as an example of a terminal
  • base station 1 is taken as an example of a first radio access network device
  • base station 2 is taken as an example of a second radio access network device.
  • the UE sends a reference signal, which is used to determine the uplink serving cell of the UE. Specifically, the UE sends the reference signal to one or more candidate serving cells, and the base station managing the multiple candidate serving cells can receive the reference signal sent by the UE.
  • Base station 1 is the serving base station for the UE.
  • the serving base station in this application refers to the base station that manages the downlink serving cell of the UE.
  • the base station 1 sends configuration information to the UE.
  • the configuration information is used by the UE to send the reference signal.
  • the configuration information includes the carrier information of the reference signal, the time-frequency resource information of the reference signal, the sequence information of the reference signal, and the interference of the reference signal. At least one of the code information, the power information of the reference signal and the area identification of the candidate uplink serving cell.
  • the UE receives the configuration information from the base station 1 and sends the reference signal according to the configuration information.
  • the carrier information of the reference signal includes information such as subcarrier spacing and the location of point A.
  • the location of point A is the center location of subcarrier 0 of the common physical resource block 0 on the carrier.
  • the carrier information of the reference signal is used by the UE to determine the transmission reference The carrier used in the signal.
  • the carrier information includes uplink carrier information and optionally also includes downlink carrier information.
  • the time-frequency resource information of the reference signal is used to indicate the time domain resources and frequency domain resources used by the UE when sending the reference signal.
  • the sequence information of the reference signal includes information used by the UE in the process of generating the reference signal sequence.
  • the scrambling code information of the reference signal is used by the UE to determine the scrambling code for scrambling the reference signal.
  • the power information of the reference signal is used by the UE to determine the transmit power when sending the reference signal.
  • the area identifier of the candidate uplink serving cell is used to identify the area where multiple candidate uplink serving cells that can provide services for the UE are located.
  • the UE may send the reference signal to the base station 1 in the area identified by the area identifier of the candidate uplink serving cell.
  • the UE may also send the reference signal to the base station 2 in the area.
  • the base station 2 here may be one or more indivual.
  • the UE can scramble the reference signal by using the area identifier. That is to say, the reference signal generation sequence formula includes the area identifier.
  • the UE only needs to generate a reference signal sequence to use the area identifier.
  • Both base station 1 and base station 2 in the area can receive the reference signal according to the corresponding area identifier, thereby reducing the implementation complexity of the UE sending reference signals.
  • base station 1 when in the RRC connected state, can send configuration information to the UE in a broadcast manner. For example, base station 1 can notify the UE of the configuration information through a system information block (SIB) message; base station 1 can also Configuration information is sent to the UE using UE-specific messages, such as UE-specific RRC messages, media access control elements (MAC control elements, MAC CE), or DCI, which is not limited in this application. For example, when the UE is in the RRC idle state or the RRC inactive state, the base station 1 sends the configuration information to the UE in a broadcast manner.
  • SIB system information block
  • the reference signal may be sent periodically or aperiodicly. That is to say, the UE may send the reference signal periodically according to the configuration information, or may send the reference signal aperiodically.
  • the trigger condition for a UE in the RRC connected state to send reference signals aperiodically may be service transmission failure or poor uplink channel quality.
  • the triggering condition for a UE in RRC idle state or RRC inactive state to send reference signals aperiodically may be network side paging or tracking area update or area identifier update of the candidate serving cell, etc.
  • the base station receives the reference signal from the terminal.
  • base station 1 receives the reference signal from the UE on the first cell of base station 1, and obtains the first quality information of the reference signal.
  • base station 1 receives the reference signal from the UE according to the configuration information.
  • the candidate serving cell includes the first cell.
  • base station 2 receives the reference signal from the UE on the second cell of base station 2 according to the configuration information, and obtains the second quality information of the reference signal.
  • the candidate serving cell includes the second cell.
  • Receiving the reference signal from the UE can be understood as detecting or monitoring the reference signal from the UE on the time-frequency resource indicated by the above configuration information.
  • base station 1 and base station 2 serving the UE can determine the configuration information of the reference signal through information exchange.
  • the time-frequency resource for the UE to send the reference signal to base station 1 is determined by base station 1 and sent to the UE;
  • the time-frequency resource for the UE to send the reference signal to base station 2 is The time-frequency resources are determined by base station 2 and sent to base station 1, and base station 1 then sends the configuration information to the UE.
  • Base station 2 may send first information to base station 1, where the first information includes second quality information.
  • base station 1 receives the first information from base station 2.
  • the quality information of the reference signal can be the reference signal receiving power (RSRP), the reference signal receiving quality (RSRQ), or the signal-to-interference-to-noise ratio or signal-to-noise ratio of the reference signal. .
  • the first information may also include at least one of the following information determined by the base station 2: identification information of the reference signal, timing advance (TA) adjustment information, frequency offset adjustment information, etc.
  • TA timing advance
  • the timing advance adjustment information is used by the UE to determine the TA between the UE and base station 2; or, if base station 1 adjusts the timing in advance according to the information Determine the new TA adjustment information between the UE and base station 2, then base station 1 sends the new TA adjustment information to the UE, and the UE determines the TA between the UE and base station 2 based on the new TA adjustment information, and enables the uplink between the UE and base station 2 time synchronization.
  • the frequency offset adjustment information is the frequency offset information determined by the base station 2 based on the reference signal sent by the UE, and is used for the base station 2 to perform frequency compensation; sending the frequency offset adjustment information to the UE allows the UE to perform frequency compensation, enabling The uplink frequencies of the UE and base station 2 are synchronized.
  • base station 1 there is interaction between base station 1 and base station 2 in the area. After the UE accesses base station 1, base station 2 can learn that base station 1 is the serving base station of the UE through interaction with base station 1. Under the current situation, the selection/reselection/handover operations of the UE's serving cell are all completed through the base station 1.
  • base station 2 may directly send the determined first information to base station 1.
  • base station 2 may determine whether to send the first information to base station 1 based on the quality information of the received reference signal and the preset threshold. For example, if the signal quality indicated by the quality information of the reference signal exceeds the preset threshold, the base station 2 sends the first information to the base station 1; if the signal quality indicated by the quality information of the reference signal does not exceed the preset threshold, the base station 2. Do not send the first information or send a feedback message rejecting access.
  • the preset threshold may be predefined or specified in a protocol, or sent by base station 1 to base station 2.
  • Base station 1 determines the uplink serving cell of the UE based on the first quality information of the reference signal.
  • base station 1 determines based on the first quality information of the reference signal and the second quality information of the reference signal.
  • the first cell is the uplink serving cell of the UE.
  • the signal quality indicated by the first quality information is better than the signal quality indicated by the second quality information.
  • base station 1 determines based on the first quality information of the reference signal and the second quality information of the reference signal.
  • the second cell is the uplink serving cell of the UE.
  • the signal quality indicated by the second quality information is better than the signal quality indicated by the first quality information.
  • the uplink serving cell of the UE determined by the base station 1 may be a serving cell in which the base station receives the reference signal on the candidate serving cell with better signal quality.
  • the UE's uplink serving cell may be one or more, which may be determined based on the capabilities reported by the UE.
  • Base station 1 sends indication information to the UE.
  • the indication information includes the information of the UE's uplink serving cell.
  • the uplink serving cell information includes the identity of the uplink serving cell.
  • the indication information may also include at least one of the temporary cell radio network temporary identifier (TC-RNTI), timing advance adjustment information and frequency offset adjustment information of the uplink serving cell.
  • TC-RNTI temporary cell radio network temporary identifier
  • the TC-RNTI of the UE in the uplink serving cell is allocated by the base station that manages the uplink serving cell.
  • the indication information may also include information about the UE's downlink serving cell, such as the identity of the UE's downlink serving cell.
  • the uplink serving cell of the UE and the downlink serving cell of the UE may be the same cell or different cells.
  • the uplink serving cell is the serving cell with better uplink communication quality determined by base station 1 based on the uplink reference signal sent by the UE;
  • the downlink serving cell is the base station 1, or base station 1 and base station 2 transmit downlink signals, and according to the UE
  • the signal quality of the received downlink signal determines the serving cell with better downlink communication quality.
  • the UE receives the indication information from base station 1.
  • the UE accesses the uplink serving cell according to the uplink serving cell information included in the indication information.
  • the UE will switch to the uplink serving cell after receiving the indication information. If the UE is in the RRC idle state or RRC inactive state, the UE receives the indication message. After receiving the information, select or reselect the uplink serving cell.
  • the UE sends an uplink access message to the base station 1 that manages the uplink serving cell according to the instruction information.
  • the uplink access message includes the identity of the uplink serving cell.
  • the uplink access message is used to establish the connection between the UE and the uplink serving cell. RRC connection between uplink serving cells.
  • the base station that manages the uplink serving cell receives the uplink access message from the UE, and establishes an RRC connection between the uplink serving cell and the UE according to the uplink access message.
  • the base station that manages the uplink serving cell may be base station 1 or base station 2. That is to say, the UE's uplink serving cell and the UE's downlink serving cell may be managed by the same base station, or the UE's uplink serving cell and the UE's downlink serving cell may be managed by different base stations.
  • the UE may send an uplink serving cell access completion message to base station 1 and/or the base station that manages the uplink serving cell; the UE communicates with the base station that manages the uplink serving cell.
  • the uplink serving cell and the downlink serving cell of the UE belong to different cells.
  • the uplink serving cell that provides uplink communication services for the UE only includes uplink carriers, and the uplink carrier in the uplink serving cell provides uplink communication services for the UE.
  • the downlink serving cell that provides downlink communication services for the UE only includes downlink carriers, and the downlink carrier in the downlink serving cell provides downlink communication services for the UE.
  • the carrier in the uplink serving cell that provides uplink communication services for the UE may be called an uplink serving carrier, and the carrier in the downlink serving cell that provides downlink communication services for the UE may be called a downlink serving carrier.
  • the uplink serving cell and the downlink serving cell of the UE belong to different cells.
  • the uplink serving cell that provides uplink communication services for the UE includes one downlink carrier and one or two uplink carriers.
  • One or two uplink carriers in the uplink serving cell provides uplink communication services for the UE.
  • the downlink serving cell that provides downlink communication services for the UE includes one downlink carrier and one or two uplink carriers.
  • the downlink carrier in the downlink serving cell provides downlink communication services for the UE.
  • the carrier in the uplink serving cell that provides uplink communication services for the UE may be called an uplink serving carrier, and the carrier in the downlink serving cell that provides downlink communication services for the UE may be called a downlink serving carrier.
  • the uplink serving cell and the downlink serving cell of the UE belong to the same cell.
  • the serving cell that provides uplink communication services and downlink communication services for the UE includes 1 downlink carrier and 1 or 2 uplink carriers. 1 or 2 uplink carriers in the serving cell provide uplink communication services for the UE.
  • the downlink carrier provides downlink communication services for UE.
  • the carrier in the serving cell that provides uplink communication services for the UE may be called an uplink serving carrier, and the carrier in the serving cell that provides downlink communication services for the UE may be called a downlink serving carrier.
  • the uplink serving carrier of the UE and the downlink serving carrier of the UE may be carriers in the same frequency band, or may be carriers in different frequency bands.
  • the UE sends a reference signal used to determine the uplink serving cell.
  • Base station 1 or base station 1 and base station 2 can receive the uplink reference signal sent by the UE.
  • Base station 1 determines the uplink serving cell based on the The uplink serving cell of the UE is determined based on the first quality information of the received reference signal, or based on the first quality information and the second quality information of the reference signal received by the base station 2 on the second cell.
  • the uplink serving cell of the UE determined by this solution is the serving cell with better uplink communication quality of the UE. Therefore, the uplink communication quality of the UE can be improved.
  • the base station and the terminal include corresponding hardware structures and/or software modules that perform each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 7 to 9 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of the terminal (UE) or the first radio access network device (base station 1) in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j as shown in Figure 1, or it may be the base station 110a or 110b as shown in Figure 1, or it may be applied to the terminal or the base station. Modules (such as chips).
  • the communication device 700 includes a transceiver unit 710 .
  • the communication device 700 is used to implement the functions of the UE in the above method embodiment shown in Figure 6.
  • the transceiver unit 710 is used to send reference signals, and the reference signals are used to determine the uplink serving cell;
  • the transceiver unit 710 is also configured to receive indication information from the base station 1, where the indication information includes the information of the uplink serving cell.
  • the transceiver unit 710 is also configured to receive configuration information from the base station 1, where the configuration information includes reference information. At least one of the carrier information of the reference signal, the time-frequency resource information of the reference signal, the sequence information of the reference signal, the scrambling code information of the reference signal, the power information of the reference signal and the area identification of the candidate uplink serving cell, wherein the candidate The uplink serving cell includes the uplink serving cell.
  • the transceiver unit 710 is specifically configured to send an uplink access message, where the uplink access message includes the identifier of the uplink serving cell.
  • transceiver unit 710 For a more detailed description of the above transceiver unit 710, please refer to the relevant description in the method embodiment shown in FIG. 6 .
  • the communication device 800 includes a transceiver unit 810 and a processing unit 820 .
  • the communication device 800 is used to implement the functions of the base station 1 in the method embodiment shown in FIG. 6 .
  • the transceiver unit 810 is configured to receive the reference signal from the UE on the first cell and obtain the first quality information of the reference signal;
  • the processing unit 820 is configured to determine the uplink serving cell of the UE according to the first quality information of the reference signal
  • the transceiver unit 810 is further configured to send indication information to the UE, where the indication information includes information about the uplink serving cell.
  • the transceiver unit 810 is also configured to receive first information from the base station 2, where the first information indicates the second quality information of the reference signal received on the second cell of the base station 2. .
  • the processing unit 820 is specifically configured to determine, according to the first quality information and the second quality information, that the first cell is the uplink serving cell of the UE.
  • the transceiver unit 810 is further configured to send configuration information to the UE, where the configuration information includes carrier information of the reference signal, time-frequency resource information of the reference signal, sequence information of the reference signal, and interference of the reference signal. At least one of the code information, the power information of the reference signal and the area identification of the candidate uplink serving cell, wherein the candidate uplink serving cell includes the uplink serving cell.
  • the transceiver unit 810 is further configured to receive an uplink access message from the UE, where the uplink access message includes the identity of the uplink serving cell.
  • transceiver unit 810 For a more detailed description of the above transceiver unit 810, please refer to the relevant description in the method embodiment shown in FIG. 6 .
  • the communication device 900 includes a processor 910 and an interface circuit 920 .
  • the processor 910 and the interface circuit 920 are coupled to each other.
  • the interface circuit 920 may be a transceiver or an input-output interface.
  • the communication device 900 may also include a memory 930 for storing instructions executed by the processor 910 or input data required for the processor 910 to run the instructions or data generated after the processor 910 executes the instructions.
  • the processor 910 is used to implement the functions of the above-mentioned processing unit 820, and the interface circuit 920 is used to implement the functions of the above-mentioned transceiver unit 710 or 810.
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas).
  • the information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the terminal to the base station; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), and the base station module The information is sent by the base station to the terminal.
  • the base station module here can be the baseband chip of the base station, or it can be a DU or other module.
  • the DU here can be a DU under an open radio access network (open-RAN, O-RAN) architecture.
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be the processor's component.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the base station or terminal.
  • the processor and storage medium may also exist as discrete components in the base station or terminal.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and magnetic tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard disks.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the related objects before and after are a kind of "division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种服务小区选择方法和装置,该方法包括:终端发送上行参考信号,基站根据不同小区接收到的该上行参考信号的质量确定上行服务小区,从而能够使得确定的上行服务小区的上行质量较优,进而提高终端的上行传输效率。

Description

服务小区选择方法和装置
本申请要求于2022年08月27日提交中华人民共和国知识产权局、申请号为202211036219.8、发明名称为“服务小区选择方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种服务小区选择方法和装置。
背景技术
传统上一个用户设备(user equipment,UE)通常通过一个或者多个小区进行通信。如果UE通过一个小区进行通信,那么该小区包括1个下行载波、1个或2个上行载波。如果UE通过多个小区进行通信(载波聚合),那么主小区包括1个下行载波、1个或2个上行载波,辅小区包括1个下行载波、0个或1个或2个上行载波。通常一个频分双工(frequency division duplex,FDD)系统的小区的上行频谱资源和下行频谱资源是不同的;一个时分双工(time division duplex,TDD)系统的小区的上下行频谱资源是相同的。
移动性管理,是对移动终端的位置信息和业务连续性方面的管理,选择较优的无线链路为UE提供无线通信服务。在移动性管理过程中,UE选择服务小区时会接收网络侧发送的下行参考信号,根据接收到的下行参考信号的信号强度来判断服务小区的通信质量,UE将接收到的下行参考信号的信号强度上报给基站,通常基站会根据UE上报的下行参考信号的信号强度来为UE选择服务小区。UE通过选择的服务小区进行上行通信和下行通信,该服务小区对UE来说,下行通信质量可能是较优的、但上行通信质量可能不是较优的。
发明内容
本申请提供了一种服务小区选择方法和装置,能够提高终端的上行通信质量。
第一方面,提供一种服务小区选择方法。该方法包括:终端发送参考信号,所述参考信号用于确定上行服务小区;所述终端接收来自第一无线接入网设备的指示信息,所述指示信息包括所述上行服务小区的信息。第一无线接入网设备是当前为终端服务的无线接入网设备。
基于上述技术方案确定的终端的上行服务小区是该终端的上行通信质量较优的服务小区,因此,能够提高终端的上行通信质量。
在一种可能的实现方式中,所述方法还包括:所述终端接收来自所述第一无线接入网设备的配置信息,所述配置信息包括所述参考信号的载波信息、所述参考信号的时频资源信息、所述参考信号的序列信息、所述参考信号的扰码信息、所述参考信号的功率信息和候选上行服务小区的区域标识中的至少一项,其中,所述候选上行服务小区包括所述上行服务小区。
其中,配置信息用于终端发送参考信号,一方面终端可以在该配置信息指示的资源上发送参考信号;一方面终端可以根据配置信息生成参考信号,例如终端根据配置信息指示的区域标识加扰该参考信号,使该区域标识所标识的区域中的服务小区都可以检测该参考信号,从而降低终端发送参考信号的实现复杂度。
在一种可能的实现方式中,所述上行服务小区的信息包括所述上行服务小区的标识。
在一种可能的实现方式中,所述指示信息还包括所述上行服务小区的临时小区无线网络临时标识TC-RNTI、定时提前调整信息和频率偏移调整信息中的至少一项。定时提前调整信息用于终端调整上行时间,使该终端和为上行服务小区服务的无线接入网设备的上行时间的同步;频率偏移调整信息用于终端做频率补偿,使终端和为上行服务小区服务的无线接入网设备的上行频率的同步。
在一种可能的实现方式中,所述方法还包括:所述终端发送上行接入消息,所述上行接入消息包括所述上行服务小区的标识。具体地,终端向为该上行服务小区服务的无线接入网设备发送上行接入消息,该上行接入消息用于建立该终端与该上行服务小区之间的RRC连接。
第二方面,提供一种服务小区选择方法。该方法包括:所述第一无线接入网设备在第一小区上接收来自终端的参考信号,得到所述参考信号的第一质量信息;所述第一无线接入网设备根据所述参考信号的第一质量信息,确定所述终端的上行服务小区;所述第一无线接入网设备向所述终端发送指示信息,所述指示信息包括所述上行服务小区的信息。第二方面是与第一方面相对应的无线接入网设备侧的方法,因此也能实现上述第一方面中的有益效果。
在一种可能的实现方式中,所述方法还包括:所述第一无线接入网设备接收来自第二无线接入网设备的第一信息,所述第一信息指示在所述第二无线接入网设备的第二小区上接收到的所述参考信号的第二质量信息。
在一种可能的实现方式中,所述第一无线接入网设备根据所述参考信号的第一质量信息,确定所述终端的上行服务小区,包括:根据所述第一质量信息和所述第二质量信息,确定所述第一小区为所述终端的上行服务小区。
在一种可能的实现方式中,所述方法还包括:所述第一无线接入网设备向所述终端发送配置信息,所述配置信息包括所述参考信号的载波信息、所述参考信号的时频资源信息、所述参考信号的序列信息、所述参考信号的扰码信息、所述参考信号的功率信息和候选上行服务小区的区域标识中的至少一项,其中,所述候选上行服务小区包括所述上行服务小区。
在一种可能的实现方式中,所述上行服务小区的信息包括所述上行服务小区的标识。
在一种可能的实现方式中,所述指示信息中还包括所述上行服务小区的临时小区无线网络临时标识TC-RNTI、定时提前调整信息和频率偏移调整信息中的至少一项。
在一种可能的实现方式中,所述第一信息还指示在所述第二小区上接收到的所述参考信号的标识信息、所述定时提前调整信息和所述频率偏移调整信息中的至少一项。
在一种可能的实现方式中,所述方法还包括:接收来自所述终端的上行接入消息,所述上行接入消息包括所述上行服务小区的标识。
第三方面,提供一种通信装置,包括:处理器和接口电路,所述接口电路用于接收来自其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给其它通信装置,所述处理器通过逻辑电路或执行代码指令,以实现如第一方面或第一方面任意可能的实现方式中的方法,或实现如第二方面或第二方面任意可能的实现方式中的方法。
第四方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如上述第一方面以及第一方面中任一种可能实现方式中的方法,或实现如上述第二方面以及第二方面中任一种可能实现方式中的方法。
第五方面,提供一种包含指令的计算机程序产品,所述指令被通信装置执行时使得通信装置实现上述第一方面以及第一方面中任一种可能实现方式中的方法,或实现上述第二方面以及第二方面中任一种可能实现方式中的方法。
附图说明
图1是本申请的实施例应用的通信系统的架构示意图。
图2是宏站和小站应用场景的示意图。
图3是多频点应用场景的示意图。
图4是站点发送关断节能应用场景的示意图。
图5是为部分站点只配置了接收功能的应用场景示意图。
图6是本申请实施例提出的服务小区选择方法的示意性流程交互图。
图7是本申请实施例的一种通信装置的结构示意图。
图8是本申请实施例的另一种通信装置的结构示意图。
图9是本申请实施例的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备是终端通过无线方式接入到通信系统中的接入设备。无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。用于实现无线接入网设备的功能的装置可以是无线接入网设备,也可以是能够支持无线接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在无线接入网设备中。下文以基站作为无线接入网设备的举例,对本申请实施例提供的技术方案进行描述。
终端是具有无线收发功能的设备,可以向基站发送信号,或接收来自基站的信号。终端也可以称为终端设备、UE、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备、车物通信、机器类通信、物联网、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市、智慧家庭等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。下文以UE作为终端的举例,对本申请实施例提供的技术方案进行描述。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基 站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信号或下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信号或上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
下面对本申请实施例涉及的一些术语进行简单介绍。
(1)无线资源控制(radio resource control,RRC)空闲态
RRC空闲态是指未建立RRC连接时UE的状态。处于空闲态的UE释放该UE与基站之间的RRC连接,且该UE以及为该UE最后提供服务的基站释放该UE的上下文。
网络可以为处于RRC空闲态的UE配置特定的不连续接收(discontinuous reception,DRX);空闲态的UE根据网络配置控制移动性。空闲态的UE可以监听下行控制信息(downlink control information,DCI)上的短消息,可以监听核心网的寻呼,可以执行邻区测量和小区重选,还可以获取系统消息。
(2)RRC非激活态
处于RRC非激活态的UE释放该UE与基站之间的RRC连接,但该UE以及最后为该UE提供服务的基站保存该UE的上下文。
网络可以为处于RRC非激活态的UE配置特定的DRX;非激活态的UE根据网络配置控制移动性。非激活态的UE可以监听DCI上的短消息,可以监听核心网和无线接入网(radio access network,RAN)的寻呼,可以执行邻区测量和小区重选,可以获取系统消息,还可以定期执行基于RAN的通知区域更新。
(3)RRC连接态
处于RRC连接态的UE与基站之间已建立RRC连接,该UE保存接入层上下文,基站和UE之间可以传输单播数据。
网络侧可以为处于RRC连接态的UE配置特定的DRX;网络侧控制该UE的移动性。RRC连接态的UE可以监听DCI上的短消息,可以监听控制信道,可以提供信道反馈信息,可以执行邻区测量和测量上报,还可以获取系统消息。
(4)移动性管理,是对移动终端的位置信息和业务连续性方面的管理,选择较优的无线链路为UE提供无线通信服务。
以上介绍了本申请实施例所涉及的术语概念,以下将介绍本申请实施例提供的服务小区选择方法所应用的场景。
图2至图5为本申请实施例适用的四种不同的应用场景的示意图。宏站和小站是基站的两种部署形态。图2为宏站和小站应用场景的示意图。网络部署了宏站和小站,宏站的发射功率大、天线数目多、覆盖较大区域,形成较大的服务小区;小站的发射功率小、天线数目少、覆盖较小区域,形成较小的服务小区。宏站和小站支持的频点可以相同、也可以不相同。网络根据UE的业务、位置信息和信道质量等因素,为UE选择一个或多个服务小区。当UE靠近小站时,由于宏站发射功率大,UE接收到宏站的下行信号的功率更大,因此下行更适合接入宏站;但由于UE离小站更近,在UE发射功率给定的情况下,小站接收到上行信号的功率更大,因此上行更适合接入小站。
图3为多频点应用场景的示意图。多个站点组成一个网络,多个站点所能支持的频点不完全相同。本申请中的站点可以是一个基站,也可以是基站中的一个TRP,还可以是基站中的一个接收点或一个发射点。例如,站点1和站点3都支持两个频点F1、F2,站点2支持一个频点F1;其中,频点F2比频点F1的频率低。UE靠近站点2时,由于频点F2的频率低、信号衰减少,因此UE接收到站点3的F2频点的下行信号的功率更大,下行更适合接入站点3的F2频点;在UE的发射功率给定的情况下,站点2接收到上行信号的功率更大,上行更适合接入站点2。
图4为站点发送关断节能应用场景的示意图。在业务传输较小的时候,网络可以关闭站点的发送 (transmit,TX)模块或部分器件,达到节能效果。如图4中所示,站点1和站点2关断发送模块,只有接收(receive,RX)模块工作;站点3正常工作,包括模块发送和接收模块,UE下行可以通过站点3提供服务,上行可以通过站点2提供服务或者多个站点一起提供上行服务。
图5为部分站点只配置了接收功能的应用场景示意图。为了降低网络部署成本,部署一些只进行接收的站点,以提升上行服务性能。宏站正常工作,包括发送模块和接收模块;小站只包括接收模块。如图5中所示,UE下行接入宏站,上行可通过只进行接收的小站进行服务。
下面对本申请涉及的移动性管理进行简单介绍。
移动性管理包括基于下行参考信号的移动性管理和基于上行参考信号的移动性管理。其中,下行参考信号包括信道状态信息参考信号(channel state information reference signal,CSI-RS)或同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB);上行参考信号包括探测参考信号(sounding reference signal,SRS)或发现参考信号(discovery reference signal,DRS)或其他参考信号。移动性管理包括小区选择、小区重选和小区切换三种操作。
1、小区选择
针对RRC空闲态的UE,该UE开机后,并开始小区搜索,选择一个合适的小区驻留。
下行移动性管理流程包括:UE开机后,还没有驻留小区,需要从众多小区中选择一个小区驻留,可以根据不同小区的下行参考信号SSB的信号质量/信号强度进行小区选择,或者根据存储信息进行小区选择。
2、小区重选
针对RRC空闲态或RRC非激活态的UE,该UE已经在一个小区驻留后,仍然会看情况持续观察附近小区,通过对比不同小区的信号质量/信号强度调整驻留的小区。
下行移动性管理流程包括:
步骤(1):UE进行邻区测量。UE在一个小区驻留后,根据当前服务小区的下行信号质量/信号强度以及邻区频点优先级信息,对邻区进行测量。测量频点为系统广播的邻频或者通过RRC连接释放(RRC connection release)消息携带的频点。具体包括同频测量规则和异频测量规则。
同频测量规则:如果当前服务小区的信号质量/信号强度很好,例如,当前服务小区的信号质量/信号强度大于给定阈值,则不启动同频测量;如果服务小区不满足特定条件,例如,小区信号质量/信号强度不大于给定阈值,则启动同频测量;
异频测量规则:如果异频频点或者异系统频点比当前服务频点的优先级高,不管当前服务小区的信号质量/信号强度如何,UE都将对它们进行测量;如果异频频点的优先级低于当前服务频点,异系统频点的优先级低于当前服务频点,则测量规则与同频测量规则相同。
步骤(2):UE根据当前服务小区的信号质量/信号强度和邻区的信号质量/信号强度调整驻留小区。
3、小区切换
针对RRC连接态的UE,该UE在某个小区驻留、并发起随机接入进行RRC连接态后,基站会基于覆盖/业务/距离来调整UE接入的小区,以保证UE的业务的稳定连接。
下行移动性管理流程包括:
步骤(1):触发UE进行测量。在UE完成接入或切换成功后,基站向该UE下发测量控制信息。测量控制信息包括测量对象、测量资源配置、测量事件等,其中,测量资源配置包括下行信号SSB或CSI-RS配置。
步骤(2):执行测量。UE根据测量控制的相关配置,监测无线信道;当满足测量报告条件时,通过事件报告基站。
步骤(3):目标判决。基站根据测量结果进行切换策略、目标小区、和频点的判决。
步骤(4):切换执行。源基站向目标基站发起切换请求,目标基站收到切换请求后,进行准入控制,允许准入后分配UE实例和传输资源,回复源基站允许切换信令。源基站进行切换执行判决,将切换命令下发给UE,该UE执行切换和数据转发。其中,源基站是UE当前的服务基站,目标基站是UE执行小区切换后的服务基站。
在上述小区选择、小区重选和小区切换的流程中,上下行进行了绑定,对UE上行和/或下行体验有比较大的限制。具体来说,当前的移动性管理在上述图2至图5的四种场景中,由于UE是根据下 行信号,进行小区的选择、重选和切换,且上行载波与下行载波、或下行子帧与上行子帧是绑定的,因此,UE无法分别选择第一个小区的下行载波和第二个小区的上行载波,或者无法分别选择第一个小区的下行子帧和第二个小区的上行子帧进行通信。也就是说,UE的上行服务小区和下行服务小区必须是同一小区。当UE达到下行通信质量较优的时候,上行通信质量可能不是较优的;或者UE达到上行通信质量较优的时候,下行通信质量可能不是较优的。
为此,本申请实施例提出了一种服务小区选择方法,能够提高终端的上行通信质量。
图6为本申请实施例提出的服务小区选择方法600的示意性流程交互图。本申请实施例中将UE作为终端的举例,基站1作为第一无线接入网设备的举例,基站2作为第二无线接入网设备的举例进行描述。
610,UE发送参考信号,该参考信号用于确定该UE的上行服务小区。具体地,UE向一个或多个候选服务小区发送该参考信号,管理该多个候选服务小区的基站都可以接收到UE发送的参考信号。基站1为该UE的服务基站。本申请中的服务基站是指管理该UE的下行服务小区的基站。
可选的,基站1向UE发送配置信息,该配置信息用于UE发送参考信号,该配置信息包括参考信号的载波信息、参考信号的时频资源信息、参考信号的序列信息、参考信号的扰码信息、参考信号的功率信息和候选上行服务小区的区域标识中的至少一项。对应地,UE接收来自基站1的配置信息,并根据该配置信息发送参考信号。
其中,参考信号的载波信息包括子载波间隔、point A的位置等信息,point A的位置为载波上公共物理资源块0的子载波0的中心位置,参考信号的载波信息用于UE确定发送参考信号时使用的载波,载波信息包括了上行载波信息,可选的也包括下行载波信息。参考信号的时频资源信息用于指示UE发送参考信号时使用的时域资源和频域资源。参考信号的序列信息包括UE生成参考信号序列过程中所用到的信息。参考信号的扰码信息用于UE确定对参考信号进行加扰的扰码。参考信号的功率信息用于UE确定发送参考信号时的发射功率。
候选上行服务小区的区域标识用来标识可以为该UE提供服务的多个候选上行服务小区所在的区域。具体地,UE可以向候选上行服务小区的区域标识所标识的区域中的基站1发送该参考信号,UE还可以向该区域中的基站2发送该参考信号,这里的基站2可以是一个或多个。UE使用该区域标识可以加扰该参考信号,也就是说,该参考信号生成序列公式中包括该区域标识。UE使用该区域标识只需要生成一份参考信号序列,区域内的基站1和基站2都可以根据相应的区域标识来接收该参考信号,从而降低UE发送参考信号的实现复杂度。
示例性地,当处于RRC连接态时,基站1可以采用广播的方式向UE发送配置信息,例如基站1可以通过系统信息块(system information block,SIB)消息通知UE该配置信息;基站1也可以采用UE特定的消息向UE发送配置信息,比如UE特定的RRC消息、媒体接入控制控制元素(MAC control element,MAC CE)、或DCI,本申请对此不做限定。示例性地,当UE处于RRC空闲态或RRC非激活态时,基站1采用广播的方式向UE发送配置信息。
可选的,参考信号可以是周期性发送的,也可以是非周期性发送的。也就是说,UE可以根据配置信息周期性地发送参考信号,也可以非周期性地发送参考信号。例如,处于RRC连接态的UE非周期性地发送参考信号的触发条件可能是业务传输失败或者上行信道质量差。又例如,处于RRC空闲态或RRC非激活态的UE非周期性地发送参考信号的触发条件可能是网络侧寻呼或跟踪区更新或上述候选服务小区的区域标识更新等。
对应地,基站接收来自终端的参考信号。示例性地,基站1在基站1的第一小区上接收来自UE的参考信号,得到参考信号的第一质量信息。具体地,基站1根据配置信息,接收来自UE的参考信号。其中,候选服务小区包括第一小区。
示例性地,基站2根据配置信息,在基站2的第二小区上接收来自UE的参考信号,得到参考信号的第二质量信息。其中,候选服务小区包括第二小区。
接收来自UE的参考信号,可以理解为,在上述配置信息所指示的时频资源上检测或监听来自UE的参考信号。其中,为UE服务的基站1与基站2之间可以通过信息交互,确定参考信号的配置信息。例如,UE向基站1发送参考信号的时频资源由基站1确定并发送给UE;UE向基站2发送参考信号的 时频资源由基站2确定,并发送给基站1,基站1再将配置信息发送给UE。
基站2可以向基站1发送第一信息,该第一信息包括第二质量信息。对应地,基站1接收来自基站2的第一信息。参考信号的质量信息可以是参考信号接收功率(reference signal receiving power,RSRP),也可以是参考信号接收质量(reference signal receiving quality,RSRQ),还可以是参考信号的信号干扰噪声比或信号噪声比。
可选的,该第一信息中还可以包括基站2确定的以下至少一种信息:参考信号的标识信息、定时提前(timing advance,TA)调整信息、频率偏移调整信息等。其中,如果基站1直接把基站2发送的定时提前调整信息发送给UE,那么该定时提前调整信息用于UE确定该UE和基站2之间的TA;或者,如果基站1根据该定时提前调整信息确定UE和基站2之间的新TA调整信息,那么基站1将新TA调整信息发送给UE,UE根据新TA调整信息确定该UE和基站2之间的TA,使能UE和基站2的上行的时间同步。频率偏移调整信息是基站2根据UE发送的参考信号确定的频率偏移信息,用于该基站2做频率补偿;将该频率偏移调整信息发送给UE,可以让UE做频率补偿,使能UE和基站2的上行的频率同步。
应理解,基站1与区域内的基站2之间是有交互的,当UE接入基站1之后,基站2通过与基站1之间的交互可获知基站1为UE的服务基站。当前情况下,UE的服务小区的选择/重选/切换操作都通过基站1完成。
可选的,基站2接收到UE发送的参考信号之后,可以将确定的第一信息直接发送给基站1。可选的,基站2接收到UE发送的参考信号之后,可以根据接收到的参考信号的质量信息和预设阈值确定是否向基站1发送第一信息。例如,若该参考信号的质量信息指示的信号质量超过预设阈值,则该基站2向基站1发送第一信息;若该参考信号的质量信息指示的信号质量不超过预设阈值,则该基站2不发送第一信息或发送一个拒绝接入的反馈信息。应理解,该预设阈值可以是预定义的或协议规定的,或基站1发送给基站2的。
620,基站1根据参考信号的第一质量信息,确定UE的上行服务小区。
示例性地,若基站2也接收到来自UE的参考信号,且基站1接收到来自基站2的第一信息,则基站1根据参考信号的第一质量信息和参考信号的第二质量信息,确定第一小区为UE的上行服务小区。其中,第一质量信息指示的信号质量优于第二质量信息指示的信号质量。
示例性地,若基站2也接收到来自UE的参考信号,且基站1接收到来自基站2的第一信息,则基站1根据参考信号的第一质量信息和参考信号的第二质量信息,确定第二小区为UE的上行服务小区。其中,第二质量信息指示的信号质量优于第一质量信息指示的信号质量。
可选的,基站1确定的UE的上行服务小区可以是基站在候选服务小区上接收到参考信号的信号质量较优的服务小区。可选的,UE的上行服务小区可以为一个或多个,具体可以根据UE上报的能力确定。
630,基站1向UE发送指示信息,该指示信息包括UE的上行服务小区的信息。
可选的,上行服务小区的信息包括该上行服务小区的标识。可选的,指示信息中还可以包括上行服务小区的临时小区无线网络临时标识(temporary cell-radio network temporary identifier,TC-RNTI)、定时提前调整信息和频率偏移调整信息中的至少一项。其中,UE在该上行服务小区的TC-RNTI是管理该上行服务小区的基站分配的。
示例性地,当UE处于RRC空闲态或RRC非激活态时,该指示信息中还可以包括UE的下行服务小区的信息,例如UE的下行服务小区的标识。
UE的上行服务小区和该UE的下行服务小区可以是相同的小区、也可以是不同的小区。但是,该上行服务小区是基站1根据UE发送的上行参考信号确定的上行通信质量较优的服务小区;该下行服务小区是基站1、或、基站1和基站2通过发送下行信号,并根据UE接收到下行信号的信号质量确定的下行通信质量较优的服务小区。
对应地,UE接收来自基站1的指示信息。UE根据该指示信息包括的上行服务小区的信息,接入该上行服务小区。
若该UE已在基站1管理的某个小区驻留、且已发起随机接入进入RRC连接态,则UE接收到指示信息后进行上行服务小区的切换。若该UE处于RRC空闲态或RRC非激活态,则UE接收到指示信 息后进行上行服务小区的选择或重选。
可选的,该UE根据指示信息,向管理该上行服务小区的基站1发送上行接入消息,该上行接入消息包括该上行服务小区的标识,该上行接入消息用于建立该UE与该上行服务小区之间的RRC连接。对应地,管理该上行服务小区的基站接收来自UE的上行接入消息,并根据上行接入消息建立该上行服务小区与UE之间的RRC连接。
可选的,管理该上行服务小区的基站可能是基站1,也可能是基站2。也就是说,UE的上行服务小区与该UE的下行服务小区可能是同一个基站管理的,UE的上行服务小区与该UE的下行服务小区也可能是不同基站管理的。
可选的,UE接入上行服务小区成功之后,可以向基站1、和/或、管理该上行服务小区的基站发送上行服务小区接入完成消息;该UE与管理该上行服务小区的基站进行通信。
在一种实现方式中,UE的上行服务小区和下行服务小区属于不同的小区。为UE提供上行通信服务的上行服务小区中仅包括上行载波,该上行服务小区中的上行载波为UE提供上行通信服务。为UE提供下行通信服务的下行服务小区中仅包括下行载波,该下行服务小区中的下行载波为UE提供下行通信服务。其中,该上行服务小区中为UE提供上行通信服务的载波可以称为上行服务载波,该下行服务小区中为UE提供下行通信服务的载波可以称为下行服务载波。
在另一种实现方式中,UE的上行服务小区和下行服务小区属于不同的小区。为UE提供上行通信服务的上行服务小区包括1个下行载波、1个或2个上行载波,该上行服务小区中的1个或2个上行载波为UE提供上行通信服务。为UE提供下行通信服务的下行服务小区包括1个下行载波、1个或2个上行载波,该下行服务小区中的下行载波为UE提供下行通信服务。其中,该上行服务小区中为UE提供上行通信服务的载波可以称为上行服务载波,该下行服务小区中为UE提供下行通信服务的载波可以称为下行服务载波。
在另一种实现方式中,UE的上行服务小区和下行服务小区属于相同的小区。为UE提供上行通信服务和下行通信服务的服务小区包括1个下行载波、1个或2个上行载波,该服务小区中的1个或2个上行载波为UE提供上行通信服务,该服务小区中的下行载波为UE提供下行通信服务。其中,该服务小区中为UE提供上行通信服务的载波可以称为上行服务载波,该服务小区中为UE提供下行通信服务的载波可以称为下行服务载波。
可选的,UE的上行服务载波与该UE的下行服务载波可以是相同频带内的载波,也可以是不同频带内的载波。
在本申请实施例提出的技术方案中,UE发送用于确定上行服务小区的参考信号,基站1、或、基站1和基站2可以接收UE发送的上行参考信号,基站1根据在第一小区上接收到的参考信号的第一质量信息,或根据第一质量信息和基站2在第二小区上接收到的参考信号的第二质量信息,确定该UE的上行服务小区。该方案确定的UE的上行服务小区是该UE的上行通信质量较优的服务小区,因此,能够提高UE的上行通信质量。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图7至图9为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端(UE)或第一无线接入网设备(基站1)的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯片)。
如图7所示,通信装置700包括收发单元710。通信装置700用于实现上述图6所示的方法实施例中UE的功能。
所述收发单元710,用于发送参考信号,所述参考信号用于确定上行服务小区;
所述收发单元710还用于,接收来自基站1的指示信息,所述指示信息包括所述上行服务小区的信息。
可选的,所述收发单元710还用于,接收来自所述基站1的配置信息,所述配置信息包括参考信 号的载波信息、参考信号的时频资源信息、参考信号的序列信息、参考信号的扰码信息、参考信号的功率信息和候选上行服务小区的区域标识中的至少一项,其中,所述候选上行服务小区包括所述上行服务小区。
可选的,所述收发单元710具体用于,发送上行接入消息,所述上行接入消息包括所述上行服务小区的标识。
有关上述收发单元710更详细的描述可以参考图6所示的方法实施例中相关描述。
如图8所示,通信装置800包括收发单元810和处理单元820。通信装置800用于实现上述图6所示的方法实施例中基站1的功能。
所述收发单元810,用于在第一小区上接收来自UE的参考信号,得到所述参考信号的第一质量信息;
所述处理单元820,用于根据所述参考信号的第一质量信息,确定所述UE的上行服务小区;
所述收发单元810还用于,向所述UE发送指示信息,所述指示信息包括所述上行服务小区的信息。
可选的,所述收发单元810还用于,接收来自基站2的第一信息,所述第一信息指示在所述基站2的第二小区上接收到的所述参考信号的第二质量信息。
可选的,所述处理单元820具体用于,根据所述第一质量信息和所述第二质量信息,确定所述第一小区为所述UE的上行服务小区。
可选的,所述收发单元810还用于,向所述UE发送配置信息,所述配置信息包括参考信号的载波信息、参考信号的时频资源信息、参考信号的序列信息、参考信号的扰码信息、参考信号的功率信息和候选上行服务小区的区域标识中的至少一项,其中,所述候选上行服务小区包括所述上行服务小区。可选的,所述收发单元810还用于,接收来自所述UE的上行接入消息,所述上行接入消息包括所述上行服务小区的标识。
有关上述收发单元810更详细的描述可以参考图6所示的方法实施例中相关描述。
如图9所示,通信装置900包括处理器910和接口电路920。处理器910和接口电路920之间相互耦合。可以理解的是,接口电路920可以为收发器或输入输出接口。可选的,通信装置900还可以包括存储器930,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据。
当通信装置900用于实现图6所示的方法时,处理器910用于实现上述处理单元820的功能,接口电路920用于实现上述收发单元710或收发单元810的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open-RAN,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的 组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (15)

  1. 一种服务小区选择方法,由终端或应用于终端中的模块执行,其特征在于,包括:
    发送参考信号,所述参考信号用于确定上行服务小区;
    接收来自第一无线接入网设备的指示信息,所述指示信息包括所述上行服务小区的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一无线接入网设备的配置信息,所述配置信息包括所述参考信号的载波信息、所述参考信号的时频资源信息、所述参考信号的序列信息、所述参考信号的扰码信息、所述参考信号的功率信息和候选上行服务小区的区域标识中的至少一项,其中,所述候选上行服务小区包括所述上行服务小区。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述上行服务小区的信息包括所述上行服务小区的标识。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述指示信息还包括所述上行服务小区的临时小区无线网络临时标识TC-RNTI、定时提前调整信息和频率偏移调整信息中的至少一项。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    发送上行接入消息,所述上行接入消息包括所述上行服务小区的标识。
  6. 一种服务小区选择方法,由第一无线接入网设备或应用于第一无线接入网设备的模块执行,其特征在于,包括:
    在第一小区上接收来自终端的参考信号,得到所述参考信号的第一质量信息;
    根据所述参考信号的第一质量信息,确定所述终端的上行服务小区;
    向所述终端发送指示信息,所述指示信息包括所述上行服务小区的信息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收来自第二无线接入网设备的第一信息,所述第一信息指示在所述第二无线接入网设备的第二小区上接收到的所述参考信号的第二质量信息。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述参考信号的第一质量信息,确定所述终端的上行服务小区,包括:
    根据所述第一质量信息和所述第二质量信息,确定所述第一小区为所述终端的上行服务小区。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送配置信息,所述配置信息包括所述参考信号的载波信息、所述参考信号的时频资源信息、所述参考信号的序列信息、所述参考信号的扰码信息、所述参考信号的功率信息和候选上行服务小区的区域标识中的至少一项,其中,所述候选上行服务小区包括所述上行服务小区。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述上行服务小区的信息包括所述上行服务小区的标识。
  11. 根据权利要求6至10中任一项所述的方法,其特征在于,所述指示信息还包括所述上行服务小区的临时小区无线网络临时标识TC-RNTI、定时提前调整信息和频率偏移调整信息中的至少一项。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述第一信息还指示在所述第二小区上接收到的所述参考信号的标识信息、所述定时提前调整信息和所述频率偏移调整信息中的至少一项。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端的上行接入消息,所述上行接入消息包括所述上行服务小区的标识。
  14. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至13中任一项所述的方法。
PCT/CN2023/105278 2022-08-27 2023-06-30 服务小区选择方法和装置 WO2024045882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211036219.8A CN117676732A (zh) 2022-08-27 2022-08-27 服务小区选择方法和装置
CN202211036219.8 2022-08-27

Publications (1)

Publication Number Publication Date
WO2024045882A1 true WO2024045882A1 (zh) 2024-03-07

Family

ID=90077554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105278 WO2024045882A1 (zh) 2022-08-27 2023-06-30 服务小区选择方法和装置

Country Status (2)

Country Link
CN (1) CN117676732A (zh)
WO (1) WO2024045882A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003336A1 (en) * 2014-07-02 2016-01-07 Telefonaktiebolaget L M Ericsson (Publ) Network node and method of taking a mobility decision by considering the beamforming capabilities of the neighbouring nodes
US20170118700A1 (en) * 2015-10-22 2017-04-27 Samsung Electronics Co., Ltd. Cell selection method and electronic device
CN109076412A (zh) * 2016-05-13 2018-12-21 高通股份有限公司 基于上行链路的小区选择
CN109982396A (zh) * 2017-12-27 2019-07-05 中国移动通信集团山东有限公司 基于上行信道质量的小区切换方法和基站
CN113938902A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 小区选择方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003336A1 (en) * 2014-07-02 2016-01-07 Telefonaktiebolaget L M Ericsson (Publ) Network node and method of taking a mobility decision by considering the beamforming capabilities of the neighbouring nodes
CN106576272A (zh) * 2014-07-02 2017-04-19 瑞典爱立信有限公司 通过考虑相邻节点的波束成形能力进行移动性判定的方法和网络节点
US20170118700A1 (en) * 2015-10-22 2017-04-27 Samsung Electronics Co., Ltd. Cell selection method and electronic device
CN109076412A (zh) * 2016-05-13 2018-12-21 高通股份有限公司 基于上行链路的小区选择
CN109982396A (zh) * 2017-12-27 2019-07-05 中国移动通信集团山东有限公司 基于上行信道质量的小区切换方法和基站
CN113938902A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 小区选择方法和装置

Also Published As

Publication number Publication date
CN117676732A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US10925107B2 (en) Fast activation of multi-connectivity utilizing uplink signals
CN111345109B (zh) 用于无线通信中的低频带锚定高频带连接的技术
CN112544094B (zh) 空闲小区重选和用户设备能力信令
JP2018033142A (ja) 再確立候補としてオーバーレイマクロセルを用いるHetNetロバスト性における再確立
CN113965978A (zh) 系统信息更新
EP3360365B1 (en) Arrangement of measurement reporting groups
JP2019506804A (ja) ネットワーク制御ハンドオーバー及びue自律的ハンドオーバーのためのハイブリッド解決策
WO2023083354A1 (zh) 一种小区接入方法、装置、介质及终端
US11792757B2 (en) Identifying a synchronization master for radio nodes
US20230199709A1 (en) Information processing method, terminal device, and network device
US20230239767A1 (en) Network access method, network access apparatus, terminal, and network-side device
WO2019096285A1 (zh) 一种接入网络的控制方法和装置
US20220385428A1 (en) Signal quality information obtaining method, device, and system
WO2024103920A1 (zh) 拥塞处理方法及装置、终端设备及存储介质
US20230224741A1 (en) Carrier configuration method and apparatus
JP7165744B2 (ja) ユーザ装置
WO2024045882A1 (zh) 服务小区选择方法和装置
JP2023523521A (ja) リソースの処理方法、装置、機器及び記憶媒体
WO2022156485A1 (zh) 一种通信方法及设备
US20230397068A1 (en) Method for wireless communication, terminal, and storage medium
WO2023109575A1 (zh) 通信方法及装置
WO2024032326A1 (zh) 一种通信方法和装置
WO2023133832A1 (zh) 无线通信的方法和装置
CN113543192B (zh) 一种测量配置方法及装置
US11805477B2 (en) Method to reduce recovery time from out-of-service event in dual receive (DR) or dual sim dual access (DSDA) capable user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858920

Country of ref document: EP

Kind code of ref document: A1