WO2023109575A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023109575A1
WO2023109575A1 PCT/CN2022/136873 CN2022136873W WO2023109575A1 WO 2023109575 A1 WO2023109575 A1 WO 2023109575A1 CN 2022136873 W CN2022136873 W CN 2022136873W WO 2023109575 A1 WO2023109575 A1 WO 2023109575A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
measurement result
network device
network
Prior art date
Application number
PCT/CN2022/136873
Other languages
English (en)
French (fr)
Inventor
胡星星
王瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023109575A1 publication Critical patent/WO2023109575A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • the network side may configure multiple frequency points (carriers) or multiple cells for a terminal device, so that the resources of multiple frequency points (carriers) or multiple cells can be used to provide communication services for the terminal device, thereby Provide high-speed transmission for terminal equipment.
  • These multiple frequency points or multiple cells may belong to different base stations, that is, a terminal device may communicate with multiple base stations, that is, dual-connectivity (DC), also known as MR-DC (Multi-Radio dual connectivity) .
  • DC dual-connectivity
  • MR-DC Multi-Radio dual connectivity
  • These multiple base stations may be base stations belonging to the same radio access technology (radio access technology, RAT) (for example, all are 4G base stations, or all are 5G base stations), or they may be base stations of different RATs (for example, one is a fourth-generation 4G base station). base station, one is a generation 5G base station).
  • RAT radio access technology
  • base station one is a generation 5G base station
  • These multiple frequency points or multiple cells may belong to the same base station, that is, carrier aggregation (Carrier Aggregation, CA).
  • CA carrier aggregation
  • the network side can also configure MR-DC and CA for the terminal equipment at the same time, that is, different base stations form the MR-DC
  • the network side will deliver the measurement configuration to the terminal device, and then the terminal device will report the measurement result.
  • the network side configures CA or MR-DC for the terminal based on the measurement result reported by the terminal device, that is, selects a suitable cell to form the CA or MR-DC.
  • the network side configures measurement for the terminal (measurement of the neighboring cell of the current serving cell), and then the terminal device reports the measurement result, so that the network side configures CA or MR-DC for the terminal according to the measurement result.
  • the process takes time. How to reduce the time delay of configuring CA or MR-DC becomes an urgent problem to be solved.
  • the embodiments of the present application provide a communication method and device, so that a reasonable CA and/or MR-DC can be configured for a terminal device earlier, so as to improve user experience.
  • the first aspect provides a communication method. It can be understood that the method of the first aspect can be executed by a first device, and the first device can be a first network device or a device capable of supporting the first network device to implement the method.
  • a functional communication device such as a chip or a circuit or a system-on-a-chip.
  • the method may include: the first network device receives a first measurement result from the terminal device, where the first measurement result includes the location where the terminal device is located when receiving the redirection information.
  • the measurement result of at least one cell obtained by the serving cell (source cell), and the first network device is the network device to which the second cell that the terminal device accesses after receiving the redirection information belongs, and the first network device is based on the The first measurement result indicates that the terminal device is configured with carrier aggregation CA and/or dual connectivity DC.
  • the time delay for the network side device to configure the measurement configuration for the terminal device and receive the measurement result from the terminal device after redirection can be reduced, so that the network side can configure a reasonable CA and /or MR-DC to improve user experience.
  • the first measurement result when the first measurement result includes the measurement result of the first neighboring cell and the terminal device supports CA and/or DC of the second cell and the first neighboring cell, the above-mentioned The configuration of CA and/or DC for the terminal device by the first measurement result may be: the first network device configures the first neighboring cell of the second cell as the secondary cell.
  • a communication method is also provided. It can be understood that the method in the second aspect can be executed by a second device, and the second device can be a second network device or be able to support the second network device to implement the method.
  • Functional communication devices such as chips or circuits or chip systems.
  • the method may include: the second network device generates a first message including redirection information, instructs the terminal device to redirect to the cell of the first frequency point and triggers the terminal device to send the first message A measurement result, where the first measurement result includes a measurement result of at least one cell obtained by the terminal device in a first cell, where the first cell is the serving cell where the terminal device receives the redirection information (source cell); the second network device sends the first message to the terminal device.
  • the first measurement result is used to configure CA and/or DC for the terminal device.
  • a communication method is also provided.
  • the method in the third aspect can be executed by a third device, and the third device can be a terminal device or a communication device capable of supporting the terminal device to realize the functions required by the method, such as a chip or circuit or system-on-a-chip.
  • the method may include: generating a first measurement result, wherein the first measurement result includes a measurement result of at least one cell obtained by the terminal device in a first cell, where the first cell is the service where the terminal device receives the redirection information cell (source cell); sending the obtained first measurement result to the first network device, wherein the first network device is the second cell (target cell) accessed by the terminal device after receiving the redirection information
  • the first measurement result is used to configure CA and/or DC for the terminal device.
  • the above-mentioned first measurement result includes at least one of the following: the cell signal quality of each cell of at least one cell, the beam signal quality of each cell, at least one The cell identification information of the cell.
  • the first neighboring cell when the terminal device supports CA/DC between the target cell and the first neighboring cell, the first neighboring cell is configured as a secondary Cell, used for the CA/DC of the terminal equipment.
  • the first measurement result is a measurement result obtained by the terminal device during a cell reselection and/or cell selection process.
  • the first indication information in the first message instructs the terminal device to send the first measurement result to the cell accessed according to the redirection information, or, the The first indication information instructs the terminal device to send the identifier of the first cell to the cell accessed according to the redirection information, or the first indication information instructs the terminal device to save the first measurement result.
  • the first message may also include a measurement result indicating that the first measurement result needs to include the second frequency point and/or the cell of the first standard The second indication information, so that the signaling overhead between the terminal device and the target network device can be saved.
  • the first message may further include third indication information for instructing the terminal device to send the first measurement result that meets the preset condition, thereby saving the terminal device and Signaling overhead between target network devices.
  • the terminal device may also receive fourth indication information, instructing the terminal device to save the second measurement result obtained in the cell reselection process before accessing the source cell, Further, the terminal device can send the second measurement result iehe to the source cell, so that the success rate of redirection can be improved. It can be understood that this implementation manner can also be implemented independently of the method in the second aspect or the third aspect.
  • the terminal device may also receive fifth indication information, instructing the terminal device to send the second measurement results of which wireless access technologies and/or frequency points, so that it can save Signaling overhead between the end device and the source network device.
  • the terminal device may also receive sixth indication information used to instruct the terminal device to send the second measurement result that meets the preset condition, thereby saving the terminal device and the target network Signaling overhead between devices.
  • a communication method is also provided, and the method in the fourth aspect can be implemented by a network device or a component (such as a chip or a circuit) that can be used in the network device, and the method can include: the network device generates fourth indication information and sends to The terminal device sends the fourth indication information, instructing the terminal device to save the second measurement result obtained in the cell reselection process before accessing the source cell.
  • the network device may further send fifth indication information to the terminal device, instructing the terminal device which wireless access technologies and/or frequency points to send the second measurement results.
  • the network device may further send sixth indication information to the terminal device, instructing the terminal device to send the second measurement result that meets the preset condition.
  • a fifth aspect further provides a communication method, and the method of the fifth aspect can be implemented by a third network device or a component (such as a chip or a circuit) that can be used for the third network device.
  • the method may include: the third network device generates a third message and sends the third message to the terminal device, indicating that the terminal device enters the RRC idle state or the RRC deactivation state, wherein , the third message includes seventh indication information, instructing the terminal device to save the geographic location of the terminal device and/or the distance information between the terminal device and each cell reference point in the idle measurement result, so that the network side can configure CA for the terminal device and/or MR-DC to improve communication performance and user experience.
  • a sixth aspect further provides a communication method, and the method of the sixth aspect can be implemented by a terminal device or a component (such as a chip or a circuit) that can be used for the terminal device.
  • the method may include: receiving a third message, wherein the third message includes seventh indication information, instructing the terminal device to save the geographic location of the terminal device and/or the distance between the terminal device and each cell reference point in the idle measurement result information; perform measurements according to the third message, and save the obtained measurement results; send the obtained measurement results.
  • the measurement result may include an idle measurement result and/or a measurement result obtained by continuous measurement during the connection establishment or recovery process, where the measurement result obtained by continuous measurement during the connection establishment or recovery process also includes the terminal device's The physical location and/or the distance of the terminal device from the respective cell reference points.
  • the above measurement result may be used by the network device receiving the measurement result to configure the CA and/or DC to improve communication performance and user experience.
  • a communication method is also provided, and the method in the seventh aspect can be implemented by a fourth network device or a component (such as a chip or a circuit) that can be used in the fourth network device.
  • the method may include: the fourth network device receives a measurement result from the terminal device, the measurement result includes an idle measurement result and/or a measurement obtained by continuing to measure during the connection establishment or recovery process As a result, the measurement result includes the physical location of the terminal device and/or the distance between the terminal device and each cell reference point; the fourth network device configures CA and/or DC for the terminal device according to the received measurement result.
  • the fourth network device configures CA and/or DC for the terminal device according to the received measurement result.
  • a communication device has a function of implementing the actions or steps in any one of the methods from the first aspect to the seventh aspect above.
  • the above functions can be implemented by hardware, or can be implemented by executing corresponding software by hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • a communication device in a ninth aspect, is provided, and the communication device may be a communication device that implements any one method in the first aspect to the seventh aspect above.
  • the communications device includes a processor and memory.
  • the memory is used to store computer programs or instructions or data
  • the processor is coupled to the memory, and when the processor reads the computer programs or instructions or data, the communication device is made to execute the method in any aspect.
  • the communication device may further include a communication interface.
  • the communication interface may be a transceiver in the communication device.
  • the transceiver can be used for the communication device to communicate with other devices.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, configured to implement any method in the first aspect to the seventh aspect.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the present application provides a communication system, where the system includes at least one of a first network device, a second network device, a third network device, a fourth network device, and a terminal device.
  • a computer program product includes: computer program code, when the computer program code is executed, any method in the above aspects is executed.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, any method in the above-mentioned aspects is implemented.
  • Fig. 1a and Fig. 1b are the NTN network architecture schematic diagram of the embodiment of the present application.
  • FIG. 2 is an application scenario of an embodiment of the present application
  • FIG. 3 is a schematic flowchart of an example of a communication method in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another example of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another communication device according to an embodiment of the present application.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one (item) of the following” or similar expressions refer to any combination of these items, including any combination of single item(s) or plural item(s).
  • At least one item (unit) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, wherein a, b, c
  • Each of the can be itself an element, or a collection containing one or more elements.
  • transmit may include sending and/or receiving and may be a noun or a verb.
  • the terminal device is a device with a wireless transceiver function, which can be called a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) ), access terminal equipment, vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • Terminal equipment can be fixed or mobile.
  • the terminal device may support at least one wireless communication technology, such as LTE, NR, wideband code division multiple access (wideband code division multiple access, WCDMA), and the like.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a notebook computer, an all-in-one computer, a vehicle terminal, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless Local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, wearable devices, future mobile communications
  • the terminal may also be a device capable of transmitting
  • the network device in the embodiment of the present application is a device that provides a wireless communication function for a terminal device, and may also be referred to as an access network device, a radio access network (radio access network, RAN) device, or the like.
  • the network equipment includes but is not limited to: a next-generation base station (generation nodeB, gNB) in a fifth-generation mobile communication system (5th-generation, 5G), a home base station (for example, home evolved node B, or home node B, HNB), baseband unit (baseband unit, BBU), transmitting and receiving point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, non-terrestrial base station, etc.
  • generation nodeB generation nodeB, gNB
  • 5G fifth-generation mobile communication system
  • a home base station for example, home evolved node B, or home node B, HNB
  • baseband unit baseband unit
  • TRP transmitting and receiving point
  • TP transmitting
  • the network device can also be a wireless controller, a centralized unit (centralized unit, CU) and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can be Relay stations, access points, vehicle-mounted devices, terminal devices, wearable devices, and network devices in future mobile communications or network devices in future evolved PLMNs, etc.
  • the network device may also be an apparatus having a wireless communication function for the terminal device, such as a chip system.
  • the system-on-a-chip may include a chip, and may also include other discrete devices.
  • CU and DU can be physically separated or deployed together. Multiple DUs can share one CU. One DU can also be connected to multiple CUs. The CU and the DU may be connected through an interface, such as an F1 interface. CU and DU can be divided according to the protocol layer of the wireless network. For example, one of the possible division methods is: CU is used to execute the radio resource control (Radio Resource Control, RRC) layer, service data adaptation protocol (service data adaptation protocol, SDAP) layer and packet data convergence layer protocol (packet data convergence) Protocol, PDCP) layer functions, and DU is used to perform functions such as radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer, physical (physical) layer, etc.
  • RRC Radio Resource Control
  • SDAP service data adaptation protocol
  • packet data convergence layer protocol packet data convergence layer protocol
  • PDCP packet data convergence protocol
  • DU is used to perform functions such as radio link control (radio link control, RLC) layer, media access control (media access
  • a CU or DU can be divided into functions with more protocol layers.
  • a CU or DU can also be divided into some processing functions having a protocol layer.
  • some functions of the RLC layer and functions of the protocol layers above the RLC layer are set in the CU, and the remaining functions of the RLC layer and functions of the protocol layers below the RLC layer are set in the DU.
  • the functions of the CU or DU may also be divided according to service types or other system requirements.
  • the functions whose processing time needs to meet the delay requirement are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the network architecture shown in the above figure can be applied to the 5G communication system, and it can also share one or more components or resources with the LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio functions, or the radio functions can be set remotely.
  • the functions of the CU can be implemented by one entity or by different entities.
  • the functions of the CU can be further divided, for example, the control plane (control panel, CP) and the user plane (user panel, UP) are separated, that is, the control plane (CU-CP) of the CU and the user plane (CU-CP) of the CU -UP).
  • the CU-CP and CU-UP can be implemented by different functional entities, and the CU-CP and CU-UP can be coupled with the DU to jointly complete the functions of the access network device.
  • the base station that interacts with the core network for control plane signaling is called the master node (MN), and the other base stations are called secondary nodes (SN) ).
  • MN master node
  • SN secondary nodes
  • the master node and the core network can establish a data plane connection; the secondary base station can establish a data plane connection with the core network.
  • the set of cells that the MN provides services to terminal devices may be called a master cell group (MCG); the set of cells that an SN provides services to terminal devices may be called a secondary cell group (SCG).
  • MCG master cell group
  • SCG secondary cell group
  • Each cell in each cell group (that is, MCG or SCG) jointly provides transmission resources for a terminal device through a carrier aggregation (carrier aggregation, CA) technology.
  • carrier aggregation carrier aggregation, CA
  • Each cell in the MCG and the SCG may be called a serving cell of the terminal device.
  • the MCG and the SCG respectively include at least one cell (Cell).
  • the PCell and the PSCell are collectively referred to as a special cell (special cell, SpCell).
  • special cell special cell
  • the cells other than the SpCell may be called secondary cells (secondary cells, SCells).
  • SCells cells in the MCG and SCG except for the PCell.
  • SCells cells in the MCG and SCG except for the PCell.
  • SCells and SpCells in each cell group can perform carrier aggregation and jointly provide services for terminal equipment.
  • Primary cell It is a cell that works on the primary carrier.
  • the terminal device performs the initial connection establishment process in this cell, or starts the connection re-establishment process, or the cell is indicated as the primary cell during the handover process.
  • Primary secondary cell Among the cells belonging to the SCG, it refers to the cell where the terminal device initiates the random access process at the secondary node or when the terminal device skips the random access process and initiates data transmission during the process of changing the secondary node ( For example, the terminal device directly performs physical uplink shared channel (PUSCH) transmission in the target cell), or the secondary cell (SCell) of the secondary node that initiates random access during the synchronous reconfiguration process : It is the cell working on the secondary carrier.
  • PUSCH physical uplink shared channel
  • SCell secondary cell of the secondary node that initiates random access during the synchronous reconfiguration process
  • RRC radio resource control
  • the secondary cell may be configured to provide additional radio resources.
  • MR-DC A terminal device in the RRC connected (CONNECTED) state. If CA/DC is not configured, there is only one Serving Cell, that is, PCell; if CA/DC is configured, the Serving Cell set is composed of PCell and SCell composition. Each component carrier (CC) corresponds to an independent Cell. A terminal device configured with CA/DC is connected to 1 PCell and at most 31 SCells.
  • MR-DC can include EN-DC, NGEN-DC, NE-DC, NR-DC and other types according to different structures of network deployment. in:
  • the primary node in EN-DC is a Long Term Evolution (LTE) base station eNB connected to the control plane of the 4G core network EPC, and the secondary node is an NR base station.
  • LTE Long Term Evolution
  • the NR base station in the EN-DC is also called a non-standalone (NSA) NR base station, and terminal devices cannot reside in the NR cell under the non-standalone NR base station.
  • An NR base station capable of hosting a terminal device is called an independent networking (standalone, SA) NR base station.
  • the master node is the LTE base station ng-eNB that is connected to the control plane of the 5G core network 5GC, and the slave node is the NR base station.
  • the master node is an NR base station connected to the 5G core network 5GC on the control plane, and the slave node is an LTE base station.
  • the primary node is the NR base station connected to the 5G core network 5GC on the control plane, and the secondary node is the NR base station.
  • the network device is a high-speed mobile network device.
  • CA and/or MR-DC can also be configured for the UE.
  • the difference in signal quality between the edge and center of a cell is not particularly large.
  • Non-terrestrial communication can also be called non-terrestrial networks (NTN) communication system.
  • the NTN communication system deploys the functions of access network equipment or some access network equipment on non-terrestrial equipment such as high-altitude platforms or satellites.
  • the terminal equipment provides seamless coverage, and since the high-altitude platform or satellite is located high in the sky, the cells in the NTN communication system are called NTN cells.
  • FIG. 1a and Figure 1b schematically show the network architecture diagram of NTN.
  • the network architecture shown in FIG. 1 a includes a core network device 110 , a radio access network device 120 , a satellite 130 and at least one terminal device (such as the terminal device 140 shown in FIG. 1 a ).
  • the core network equipment, radio access network equipment and terminal equipment in Figure 1a are located on the ground, while the satellite is located in the sky.
  • the radio access network device may communicate with the core network device in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of radio access network equipment.
  • the wireless access network equipment mentioned in the embodiments of this application may correspond to different equipment in different communication systems, for example, in a 5G system, it corresponds to an access network equipment in 5G, such as gNB or ng-eNB, in The 4G system corresponds to the access network equipment in 4G, such as eNB or en-gNB.
  • the communication between wireless access network equipment and terminal equipment transmits signals through non-terrestrial equipment, that is, non-ground equipment can receive signals from wireless access network equipment and forward the signals to the ground to form cells or will receive signals from wireless access network equipment.
  • the signal is converted into a signal of other frequency points and sent to the ground to form a cell, thereby providing service coverage for terminal equipment on the ground.
  • the non-terrestrial equipment is to forward the content related to the wireless protocol in the Uu port between the wireless access network equipment and the terminal equipment.
  • the satellite is equivalent to a relay node or transponder, so this scenario can also be called a transparent forwarding (transparent) form of the satellite.
  • gateway may also be a gateway (gateway) device between the wireless access network device and the non-terrestrial network device, which is responsible for forwarding related content between the wireless access network device and the non-terrestrial network device (also the wireless access network device related to the wireless protocol in the Uu port between terminal devices).
  • gateway gateway
  • the non-terrestrial device as a satellite as an example, the relevant content of the cell formed by the non-terrestrial device will be explained below.
  • the satellite cell can be fixed on the ground (can be recorded as “fixed cell”), and can also move on the ground with the movement of the satellite (can be recorded as “mobile cell”).
  • the satellite cell is fixed on the ground, which means that the coverage of the satellite cell on the ground is fixed, and may be fixed for a period of time or permanently.
  • the satellite cells formed by it are generally fixed relative to the ground.
  • the satellite can adjust the launch angle of its antenna or other physical parameters so that the formed satellite cell is fixed relative to the ground.
  • the satellite cell moves with the movement of the satellite, that is, when the satellite moves, the satellite cell also moves on the ground following the satellite.
  • the mobile cell is generated because, with the movement of the satellite, the satellite does not dynamically adjust the direction of the beam, which causes the projection of the beam generated by the satellite on the ground to move with the movement of the satellite.
  • a possible scenario for the existence of a mobile cell can be: the satellite establishes a connection with the original wireless access network equipment, and as the satellite moves, the original wireless access network equipment forwarded by the satellite The cell below moves with the satellite for a period of time, that is, the satellite maintains a connection with the original wireless access network equipment for a period of time; disconnected, the satellite is connected to a new radio access network device, after that, the satellite starts to forward the signal of the new radio access network device to form a new satellite cell. It can be understood that although the satellite is running non-stop, the location of the wireless access network equipment on the ground remains unchanged.
  • the moving range of the satellite cell is usually around the periphery of the wireless access network equipment.
  • FIG. 1b is a schematic diagram of another network architecture of a satellite communication system applicable to the embodiment of the present application.
  • the network architecture includes a core network device 110, a satellite 130 and at least one terminal device (such as the terminal device 140 shown in FIG. 1b).
  • the core network equipment and terminal equipment in Figure 1b are located on the ground, while the satellite is located in the sky.
  • the non-terrestrial network equipment may have the function of radio access network equipment or be deployed with radio access network equipment, such as base stations.
  • Non-terrestrial network devices can generate cell signals by themselves and send them to the ground to form cells, thereby providing service coverage for terminal devices on the ground. Therefore, this scenario may also be referred to as a regenerative (regenerative) form of non-terrestrial network equipment.
  • a gateway device deployed on the ground between the radio access network device and the core network, which is responsible for forwarding related content between the radio access network device and the core network.
  • non-terrestrial network equipment in the regenerative form there may also be a communication interface between non-terrestrial network equipment in the regenerative form, and the communication interface between two regenerative satellites may adopt the same protocol as the communication interface between two base stations, such as Xn or X2 interface .
  • non-terrestrial network equipment in regenerative form can be used as DU, while CU can be implemented on other base stations or network equipment on the ground, and the non-terrestrial network equipment is connected to other base stations or network equipment on the ground through the F1 interface.
  • the satellite cell can be fixed on the ground, or it can move on the ground as the satellite moves.
  • one radio access network device or satellite or core network device can provide services for one or more terminal devices.
  • the number of core network equipment, wireless access network equipment, satellites and terminal equipment included in the system is not limited.
  • the terminal device may be fixed or mobile, which is not limited in this application.
  • the network device can instruct the terminal device to redirect to the target radio access technology or target frequency point through redirection information (for example, carrying the redirection information in the RRC release message), and the terminal device enters the idle state after receiving the redirection information and according to the received
  • the received redirection information is accessed to the target radio access technology or the target frequency point (that is, to access the cell corresponding to the target radio access technology or the target frequency point).
  • the foregoing redirection information may include one or more of target radio access technology and target frequency point information.
  • the current serving cell may be due to the load or the inability to carry certain services (for example, the current serving cell is an NR cell, the terminal device initiates an RRC establishment request triggered by the voice service establishment requirement or the current serving cell corresponds to The base station receives a request from the core network to establish a voice service for the terminal device, and the base station corresponding to the current serving cell determines that the terminal device needs to perform voice fallback to the LTE network (it can be called an evolved packet system fallback, EPS fallback)) and other reasons , thereby instructing the terminal device to access at the target radio access technology or target frequency.
  • EPS fallback evolved packet system fallback
  • FIG. 2 is a schematic structural diagram of a dual connectivity communication system.
  • the master node 202 has a control plane connection with the core network 201 , and the terminal device 204 establishes wireless connections with the master node 202 and the slave node 203 .
  • the master node 202 is also connected to the slave node 203 .
  • the master node 202 may be connected to the core network 201 through an S1 or NG interface. There is at least a control plane connection between the master node 202 and the core network 201, and there may also be a user plane connection.
  • the interfaces between the master node 202 and the core network 201 include S1-U/NG-U and S1-C/NG-C. Among them, S1-U/NG-U represents a user plane connection, and S1-C/NG-C represents a control plane connection. There may or may not be a user plane connection between the secondary node 203 and the core network 201 .
  • the data of the terminal device 204 can be distributed to the secondary node 203 by the primary node 201 at the packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the primary node 202 may also be called primary base station or primary access network device, and the secondary node 203 may also be called secondary base station or secondary access network device.
  • Both the above-mentioned primary node 202 and secondary node 203 belong to network devices.
  • this embodiment of the present application provides a communication method, which may include:
  • the source network device sends a first message to the terminal device, instructing the terminal device to redirect to a cell corresponding to a target radio access technology and/or a target frequency (also referred to as a first frequency).
  • the terminal device When S301 is executed, the terminal device may be in any one of RRC connected (connected) state, RRC idle (idle) state, and RRC inactive (inactive) state.
  • the serving cell of the terminal device under the source network device may be called a source cell (also may be called a first cell).
  • the first message may include redirection information, where the redirection information is used to instruct the terminal device to redirect to a cell corresponding to the target radio access technology and/or target frequency point.
  • the first message may be an RRC release (RRRelease) message.
  • RRRelease RRC release
  • the embodiment of the present application does not limit the manner in which the source network device sends the first message.
  • the redirection information may include target frequency point information, or the redirection information may include target radio access technology (RAT) information, or the redirection information may include target RAT and target frequency point information .
  • the redirection information may not include specific cell identifiers in the specified target RAT and target frequency.
  • the terminal device enters an idle state.
  • the terminal device After receiving the first message, the terminal device enters an idle state.
  • the terminal device entering the idle state accesses the cell corresponding to the target radio access technology and/or target frequency indicated in the redirection information.
  • the terminal device may access the cell corresponding to the target radio access technology and/or target frequency according to the redirection information, thereby accessing the target cell (also called the second cell).
  • the terminal device can select the cell corresponding to the target radio access technology and/or target frequency through the cell selection process.
  • Determine a target cell in the cell to camp on that is, the terminal device performs cell selection according to the information of the target wireless access technology and/or target frequency point indicated in the redirection information, and selects the cell that belongs to the target wireless access technology and/or target frequency point camp on a suitable cell), and then access the target cell.
  • the network equipment mentioned in the target cell is the target network equipment.
  • the terminal device sends the first measurement result to the target network device.
  • the above-mentioned first measurement result includes the measurement result of at least one cell obtained when the terminal device camps or accesses in the source cell (that is, the first measurement result includes the measurement result of at least one cell obtained when the serving cell of the terminal device is the source cell.
  • measurement results may include measurement results of the source cell and/or measurement results of other neighboring cells.
  • the first measurement result may be a measurement result obtained by the terminal device in an RRC connected (connected) state, an RRC idle (idle) state, or an RRC deactivated (inactive) state.
  • the first measurement result may include any one or more of the following: the measurement result obtained by the terminal device in the RRC connected state according to the configuration of the network side, the measurement result obtained by the terminal device in the RRC idle state or deactivated state
  • the result for example, the measurement result obtained by the terminal device during the cell reselection process and/or cell selection.
  • the first measurement result may be the latest measurement result of each cell obtained by the terminal device.
  • the foregoing first measurement result may include at least one of the following: cell signal quality of each cell of the at least one cell, beam signal quality of each cell, and cell identity information of at least one cell.
  • the first measurement result may include the cell signal quality S1 of the source cell, and the signal quality B1 of beam 1 and the signal quality B2 of beam 2 in the source cell; or the first measurement result may include the cell signal quality of a neighboring cell of the source cell S2 is not listed here.
  • the cell identification information may be cell global identifier (CGI), physical cell identifier (PCI) and frequency point, cell identifier (cell identifier, cell ID), non-public network identifier (non-public network identifier) of the cell.
  • CGI cell global identifier
  • PCI physical cell identifier
  • frequency point cell identifier
  • cell identifier, cell ID cell ID
  • non-public network identifier non-public network identifier
  • NPN ID non-terrestrial network identifier
  • NTN ID non-terrestrial network identifier
  • the signal quality mentioned above can be determined by receiving signal code power (received signal code power, RSCP), reference signal receiving power (reference signal receiving power, RSRP), reference signal receiving quality (reference signal receiving quality, RSRQ ), signal noise ratio (signal noise ratio, SNR), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), reference signal strength indication (reference signal strength indication, RSSI) or at least one of other signal qualities
  • signal code power reference signal code power
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • signal noise ratio signal noise ratio
  • SINR signal to interference plus noise ratio
  • SINR reference signal strength indication
  • RSSI reference signal strength indication
  • the above-mentioned beam can be understood as a space resource, and can refer to a transmitting or receiving precoding vector with energy transmission directivity.
  • the sending or receiving precoding vector can be identified by index information, and the index information can correspond to the resource identifier (identity, ID) of the configured terminal, for example, the index information can correspond to the identifier or resource of the configured CSI-RS ; It may also be the identifier or resource of the correspondingly configured SSB; it may also be the identifier or resource of the correspondingly configured uplink sounding reference signal (Sounding Reference Signal, SRS).
  • the index information may also be index information explicitly or implicitly carried by a signal carried by a beam or a channel.
  • the energy transmission directivity may refer to precoding the signal to be sent through the precoding vector, the precoding signal has a certain spatial directivity, and receiving the precoding vector through the precoding vector
  • the signal has better received power, such as satisfying the receiving demodulation signal-to-noise ratio, etc.; the energy transmission directivity may also mean that the same signal transmitted from different spatial positions received through the precoding vector has different received power.
  • the terminal device may directly send the first measurement result to the target network device.
  • the terminal device may send the first measurement result to the target network device based on a request from the network side.
  • the target network device may send information for requesting the first measurement result (which may be referred to as first information) to the terminal device, and the terminal device may send the first measurement result to the target network device based on the first information.
  • the terminal device may indicate to the target network device that the terminal device stores information about the first measurement result, then the target network device may send the first information to the terminal device, and then the terminal device sends the first measurement result to the target network device.
  • the terminal device may carry an indication in the RRC setup complete (RRCsetupComplete) message that the terminal device saves the first measurement result and send it to the target network device, and the target network device sends a UE information request carrying the first information to the terminal device (UEInformationRequest) message, the terminal device sends a UE Information Response (UEInformationResponse) message carrying the first measurement result to the target network device.
  • RRCsetupComplete UE information request carrying the first information to the terminal device
  • UEInformationResponse UE Information Response
  • the target network device may send an RRC resume (RRCResume) message carrying the first information to the terminal device, then the terminal device may send the first measurement result to the target network device through an RRC resume complete (RRCResumeComplete) message.
  • RRC resume RRCResume
  • RRCResumeComplete RRC resume complete
  • the above redirection information may carry first indication information, where the first indication information is used to trigger the terminal device to send the first measurement result.
  • the source network device can trigger the terminal device to send the first measurement result according to needs or actual scenarios, thereby saving storage of the terminal device and saving signaling overhead between the terminal device and the target network device.
  • the source network device may decide whether to trigger the terminal device to send the first measurement result according to the CA/MR-DC capability of the terminal device.
  • the source network device determines that the terminal device does not support CA or MR-DC at the frequency point of the source cell and the target radio access technology and/or target frequency point in the first message according to the CA or MR-DC capability of the terminal device, then The source network device does not need to send the first indication information to the terminal device, so the terminal device does not need to send the first measurement result to the target network device; when the source network device determines that the terminal device supports The frequency point and the target radio access technology and/or target frequency point in the first message perform CA or MR-DC, the source network device sends the first indication information to the terminal device, and the terminal device sends the first measurement result to the target network device.
  • the first indication information may not be carried in the redirection information, but may be carried in the first message.
  • the source network device may also send the first indication information through other messages.
  • the embodiment of the present application does not limit the manner in which the source network device sends the first indication information.
  • the first indication information may instruct the terminal device to send the first measurement result to the target cell.
  • the first indication information may instruct the terminal device to send the identity of the source cell to the target cell.
  • the target cell can learn that the signal quality of the terminal device in the source cell is relatively good according to the identifier of the source cell.
  • the target network device may determine whether to configure CA and/or MR-DC between the target cell and the source cell for the terminal device according to the CA or MR-DC capability of the terminal device. Since the first measurement result only carries the identity of the source cell, signaling overhead between the terminal device and the target cell can be saved.
  • the first indication information may instruct the terminal device to save the first measurement result. Further, the terminal device may decide whether to send and when to send the saved first measurement result according to the request or instruction of the network device.
  • the terminal device may send the first measurement result to the target network device according to the first indication information.
  • the terminal device may also send the first measurement result to the target network device based on the first information and the first indication information.
  • the terminal device may determine whether the terminal device supports the frequency point (first frequency point) of the target cell and the frequency point ( MR-DC or CA between the second frequency point), when the terminal device determines to support MR-DC or CA between the first frequency point and the second frequency point, the terminal device sends the first measurement result.
  • the first measurement result may be a measurement result of the first neighboring cell. It can be understood that the determination by the terminal device whether to support MR-DC or CA between the first frequency point and the second frequency point may also be combined with the above-mentioned solution of the first information and/or the first indication information.
  • the terminal device After receiving the first information sent by the target network device, the terminal device determines that the terminal device supports MR-DC or CA between the first frequency point and the second frequency point, so that the terminal device sends the first information to the target network device A measurement result; for another example, when the terminal device receives the first indication information and determines that the terminal device supports MR-DC or CA between the first frequency point and the second frequency point, the terminal device The information sends the first measurement result to the target network device, which will not be listed one by one here.
  • the terminal device may determine which wireless access technologies and/or frequency point measurement results to send to the target network device according to an instruction from the network device (which may be the source network device or the target network device). For example, the network device may send second indication information to the terminal device, where the second indication information indicates that the first measurement result needs to include the measurement result of the second frequency point and/or the cell of the first standard. Through the second indication information, the network device instructs the terminal device to report the measurement results of the specified frequency point or standard cell (for example, the network device determines that the terminal device supports the first frequency point and the second frequency point according to the CA or MR-DC capability of the terminal device.
  • the network device may send second indication information to the terminal device, where the second indication information indicates that the first measurement result needs to include the measurement result of the second frequency point and/or the cell of the first standard.
  • the network device instructs the terminal device to report the measurement results of the specified frequency point or standard cell (for example, the network device determines that the terminal device supports the first frequency point and the second frequency point according to the
  • the network device may send third indication information to the terminal device, where the third indication information instructs the terminal device to send a first measurement result that meets a preset condition or to send a first measurement result when the signal quality of at least one cell meets a preset condition. measurement results.
  • the preset condition may be, for example, that the signal quality of a cell or the signal quality of a beam exceeds a preset threshold.
  • the signaling overhead between the terminal device and the target network device can also be saved by using the third indication information.
  • the source network device may carry the second indication information and the third indication information in the first message.
  • the target network device may carry the second indication information and the third indication information in sending the UE information request message carrying the first information to the terminal device.
  • the terminal device may carry the first measurement result in the second message.
  • the second message may be, for example, an RRCsetupComplete message.
  • the second message may also include cell identity information of the source cell.
  • the second message may also be a message that carries the cell information of the source cell but does not carry the first measurement result, that is, the terminal device may send the cell information of the source cell to the target network device in the redirection scenario. It is not coupled with the aforementioned scheme of sending the first measurement result.
  • the target network device configures CA and/or MR-DC for the terminal device according to the first measurement result.
  • the target network device may configure CA and/or MR-DC for the terminal device according to the first measurement result. That is to say, the target network device can select a suitable cell according to the first measurement result, and configure it for the terminal device, so that the cell and the target cell are used for communication with the terminal device in the manner of CA and/or MR-DC.
  • the terminal device supports CA between the target cell and the first neighboring cell, and the cell signal quality of at least one cell in the first neighboring cell is higher than the preset threshold, the target network device can at least one of the cells in the first neighboring cell
  • One cell is configured as SCell or PSCell in CA, or, if the terminal device supports CA between the target cell and the first neighboring cell, at least one cell in the first neighboring cell can be configured as SCell or PSCell in MR-DC , or, the terminal device supports CA/DC between the target cell and the first neighboring cell, the cells in the first neighboring cell that belong to different network devices from the target cell can form an MR-DC, and the first neighboring cell and the target cell Cells belonging to the same base station form a CA.
  • S305 is optional.
  • the terminal device can report the available measurement results without imposing an additional measurement burden on the terminal device, which facilitates the network side to obtain the measurement results in advance, and reduces the need for the network side device after redirection.
  • the terminal device configures the measurement configuration and the delay of receiving the measurement result from the terminal device, so that the network side can configure a reasonable CA and/or MR-DC for the terminal device earlier, which improves the ability of the terminal device to use CA and/or MR-DC.
  • the time of the DC further enables the terminal equipment to use the communication resources of the cell to send and receive data earlier, thereby improving communication performance and user experience. .
  • the terminal device may receive fourth indication information, and the fourth indication information instructs the terminal device to save or report the cell reselection before accessing the source cell
  • the second measurement result may include at least one of the following: cell signal quality of at least one cell, signal quality of a beam of at least one cell, and cell identity information of at least one cell.
  • the fourth indication information may be sent by the source network device or other network devices to the terminal device through a broadcast message, or sent to the terminal by a network device that previously configured the terminal device to enter the RRC idle state or RRC deactivated state equipment.
  • the terminal device accesses the source cell, it can send the second measurement result obtained from cell reselection to the source network device, so that the source network device can select a suitable target wireless access network when sending redirection information to the terminal device.
  • technology and/or frequency of interest For example, the source network device selects the radio access technology and/or frequency point corresponding to the cell with better signal quality as the target radio access technology and/or target frequency point according to the second measurement result reported by the terminal device, thereby improving the redirection efficiency. Success rate.
  • the measurement result obtained by cell reselection since the measurement result obtained by cell reselection is used, no additional measurement burden is brought to the terminal equipment, and the processing complexity and power consumption of the terminal equipment are reduced.
  • the fourth indication information may be optional, then the terminal device may directly send the second measurement result obtained in the cell reselection process before accessing the source cell to the source cell.
  • the terminal device may also receive fifth indication information, where the fifth indication information indicates which radio access technologies and/or frequency points the terminal device sends the second measurement results.
  • the network device may send fifth indication information to the terminal device, where the fifth indication information indicates that the second measurement result needs to include the measurement result of the first frequency point and/or the cell of the second standard.
  • the network device may send sixth indication information to the terminal device, where the sixth indication information instructs the terminal device to send a measurement result that meets a preset condition or to send a second measurement result when the signal quality of at least one cell meets a preset condition .
  • the preset condition may be, for example, that the signal quality of the cell or the signal quality of the beam exceeds a preset threshold, so that signaling overhead between the terminal device and the source network device can be saved.
  • the terminal device may also receive indication information, the indication information instructing the terminal device to report the second measurement result only when it initiates an RRC establishment request triggered by a voice service establishment requirement.
  • the source network device only needs to use the second measurement result when the voice falls back, so the signaling overhead between the end device and the source network device can be saved by using the indication information.
  • a specific implementation method may be as follows: when a terminal device in RRC idle state and RRC deactivation resides in an NR cell, it performs measurement on an evolved universal terrestrial radio access (E-UTRA) cell to obtain The second measurement result: after the terminal device enters the connection state, it will report the second measurement result to the network device corresponding to the NR cell, and assist the network device corresponding to the NR cell to select the target when the voice service falls back to the LTE system (also called EPS fallback). Frequency point of E-UTRA.
  • E-UTRA evolved universal terrestrial radio access
  • the terminal device can only measure the E-UTRA frequency point and/or E-UTRA cell for cell reselection when it is currently camped on the NR cell, and report to the network device corresponding to the NR cell to support this type of measurement (That is, it supports the ability to "measure E-UTRA frequency points/cells in the RRC idle state and RRC inactive state for EPS fallback, and report the measurement results to the network device in the connected state"). Further optionally, the terminal device obtains the above-mentioned E-UTRA frequency point and/or cell through the broadcast information of the cell where it resides, without requiring the network device corresponding to the NR cell to be configured through dedicated signaling.
  • the above-mentioned measurement results for the E-UTRA frequency points and/or/cells used for cell reselection are obtained in the existing cell reselection mechanism, that is, to obtain the second measurement results of the above-mentioned auxiliary EPS fallback, no terminal equipment consumption is required Additional measurement capabilities or to take additional measurements.
  • the acquisition method of the above-mentioned fourth indication information may be any one or more of the following methods: 1.
  • the broadcast message sent by the network device corresponding to the NR cell indicates that it supports RRC idle state and RRC inactivation for EPS fallback 2.
  • the broadcast message sent by the network device corresponding to the NR cell indicates that when the voice service of the terminal device triggers the terminal device to initiate RRC connection establishment, the terminal device needs to report the second measurement result; 3.
  • the corresponding NR cell The broadcast message sent by the network device indicates when the terminal device receives the paging message sent by the NR base station, which indicates that the cause of the paging is voice service.
  • the solution of sending the fourth indication information and/or the fifth indication information and/or the sixth indication information can also be implemented independently of S301-305, then the terminal device receives the fourth indication information and/or The fifth indication information and/or the sixth indication information and the sending of the measurement results may be combined with the scheme shown in FIG. 3 , or may be applied to other schemes or scenarios, which are not limited in this embodiment of the present application.
  • the terminal device may send the second measurement result obtained from cell reselection to the source network device. Afterwards, the terminal device and the source network device execute the corresponding content in S301-S303.
  • the first indication information, the second indication information, the third indication information, the fourth indication information, the fifth indication information and the sixth indication information in the foregoing embodiments may be implemented independently or in combination.
  • the network device may send one or more of the first indication information, the second indication information, the third indication information, the fourth indication information, the fifth indication information, and the sixth indication information.
  • the foregoing first indication information, second indication information, and third indication information may be carried in the same message, or may be carried in different messages.
  • the aforementioned target network device may be called a first network device, and the source network device may be called a second network device.
  • the first network device and the second network device may be the same network device,
  • the embodiment of the present application also provides a communication method, which can be applied to an NTN communication system or a non-NTN communication system.
  • the communication method can be shown in FIG. 4, including:
  • the third network device sends a third message to the terminal device, instructing the terminal device to enter an RRC idle state or an RRC deactivated state.
  • the third message may include information indicating that the terminal device enters the RRC idle state or the RRC deactivated state.
  • the third message may also include measurement configuration information, the measurement configuration information indicates configuration information for the terminal device to perform measurement in the RRC idle state or RRC deactivated state, for example, may include information such as frequency points and/or cells.
  • the measurement result obtained by the terminal device in the RRC idle state or the RRC deactivated state may be called the idle measurement result, and the corresponding measurement process may be called the idle measurement.
  • the third message may further include seventh indication information, instructing the terminal device to save the geographic location of the terminal device and/or the distance information between the terminal device and each cell reference point in the idle measurement result.
  • the seventh indication information may be included in the foregoing measurement configuration information. It can be understood that the seventh indication information and the measurement configuration information may also be carried in different messages, which is not limited in this embodiment of the present application.
  • the network side may broadcast the cell reference point (generally the center point of the physical area covered by the cell) of the geographical area covered by each cell, and the terminal device may The reference point obtains the distance information between the terminal equipment and the reference point of each cell.
  • the embodiment of the present application does not limit the manner in which the terminal device acquires the distance information from the terminal device to each cell reference point.
  • the third message may include a value of an idle measurement valid timer (for example, the timer may be called T331).
  • the terminal device receives the third message, it starts an idle measurement validation timer.
  • the terminal device performs idle measurement in the RRC idle state or the RRC deactivated state.
  • the measurement configuration information may also include effective area information of the measurement configuration.
  • the effective area can be a collection of one or more cells on one or more designated frequency points. When the cell where the terminal device resides is not in this effective area, the effective timer can be stopped, that is, the terminal device can stop idle measurement , and release the measurement configuration.
  • the third message may be, for example, an RRCrelease message.
  • the terminal device enters an RRC idle state or an RRC deactivated state.
  • the terminal device after receiving the third message, the terminal device enters the RRC idle state or the RRC deactivated state according to the third message, and executes S403.
  • the terminal device performs measurement according to the above measurement configuration information, and saves the obtained measurement result.
  • the measurement result may be referred to as a third measurement result, and the third measurement result may include at least one of the following: cell signal quality of at least one cell, signal quality of a beam of at least one cell, and identification information of at least one cell.
  • the third measurement includes an idle measurement.
  • the third measurement result may also include the geographic location of the terminal device and/or information about the distance between the terminal device and each cell reference point. It can be understood that the geographical location of the terminal device and/or information about the distance between the terminal device and each cell reference point may also be included in other information different from the third measurement result.
  • the physical location of the terminal device and/or the distance between the terminal device and each cell reference point refers to the physical location of the terminal device and/or the distance between the terminal device and each cell reference point when the terminal device obtains the signal quality of each cell distance.
  • the terminal device can perform the following actions for each frequency point in the measurement frequency points in the measurement configuration information:
  • the terminal device If the terminal device supports MR-DC or CA between the frequency point of the cell where it resides and the measurement frequency point, the terminal device will measure the measurement frequency point and save the measurement result of the cell corresponding to the measurement frequency point.
  • the measurement configuration information indicates the threshold for saving the measurement result of the cell, only when the measurement result of a certain cell exceeds the threshold, the terminal device will save the measurement result of the cell.
  • the terminal device may also save the beam measurement result of each cell.
  • the terminal device saves the above measurement results it may also include the geographical location of the terminal device and/or the distance between the terminal device and the reference point of each cell when the terminal device obtains the above measurement results of each cell. In some possible implementation manners, the terminal device may periodically measure each measurement frequency point, and only save the latest measurement result of each cell.
  • the terminal device sends the measurement result to the fourth network device.
  • the terminal device may send the third measurement result to the accessed network device after re-accessing the network and returning to the connected state.
  • the accessed network device is the fourth network device.
  • the terminal device may send the third measurement result to the corresponding network device during the connection restoration process.
  • the corresponding network device is the fourth network device.
  • the foregoing third network device may be the same network device as the fourth network device, or may be different network devices.
  • the terminal device returns to the connected state during or after re-accessing the network and before the terminal device reports the third measurement result, or the terminal device reports the third measurement result during or after the connection recovery process and the terminal device reports the third measurement result.
  • the terminal device can continue to measure each frequency point according to the above measurement configuration information, and save the obtained measurement result, which can be understood as the measurement result obtained by continuing to measure during the establishment or recovery process of the terminal device.
  • the measurement result obtained by continuing to measure during the establishment or recovery process of the terminal device may also be stored in the third measurement result, or saved as the fourth measurement result.
  • the fourth measurement result obtained above may replace all or part of the third measurement result obtained by the terminal device in S403, that is, the terminal device only saves the latest measurement result of each cell.
  • both the third measurement result and the fourth measurement result may be stored by the terminal device and sent to the fourth network device. It should be noted that the fourth measurement result may also include the physical location of the terminal device and/or the distance between the terminal device and each cell reference point.
  • the measurement result sent by the terminal device to the fourth network device may be the third measurement result and/or the fourth measurement result, which may be different according to different scenarios.
  • the fourth network device configures CA and/or MR-DC for the terminal device according to the received measurement result.
  • the fourth network device may refer to or use the received measurement result to perform corresponding processing.
  • One possible processing may be to configure CA and/or MR-DC for the terminal device.
  • the idle measurement result sent by the terminal device and/or the measurement result obtained by continuous measurement during the connection establishment or recovery process includes the physical location of the terminal device and/or the distance between the terminal device and each cell reference point, so that It is convenient for the network side to select a suitable SCell/PSCell for the terminal equipment to configure CA and/or MR-DC (for example, the network side bases on the moving direction of the non-ground network equipment, the location information of the terminal equipment and/or the relationship between the terminal equipment and each cell The distance of the reference point and the coverage of each cell can be used to know the time that each cell can continue to cover the terminal device.
  • the network side can select a cell that continues to cover the terminal device for the longest time and whose signal quality meets a certain threshold as a suitable SCell. /PSCell), which can avoid the signaling overhead and delay caused by the inappropriate cell selected by the network side for the terminal device, and improve communication performance and user experience.
  • the method in this embodiment of the present application further includes: the CU sends the foregoing Part or all of the received information is given to the DU.
  • the first measurement result may also carry the geographic location of the terminal device and/or the distance information of the terminal device from each cell reference point, and the terminal device obtains the terminal device's
  • the terminal device obtains the terminal device's
  • the first measurement result in the embodiment shown in FIG. 3 may carry the geographic location and/or Or the distance information between the terminal equipment and the reference points of each cell.
  • the first measurement result may be a measurement result obtained in the manner of S401-S403, that is, in S304, the first measurement result sent by the terminal device to the target network device may be obtained by executing S401-S403. After S403, the terminal device obtains the measurement result in the source cell.
  • the terminal device and/or the network device may perform some or all of the steps in the embodiment of the present application, these steps or operations are only examples, and the embodiment of the present application may also perform other operations or various Operational deformation.
  • each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all operations in the embodiment of the present application.
  • each network element or device may include a hardware structure and/or a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module .
  • FIG. 5 is a schematic block diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 can correspondingly realize the functions or steps implemented by the network device (such as any one of the first network device to the fourth network device) or the terminal device in the above method embodiments shown in FIGS. 3-4 .
  • the communication device 500 may be a terminal device or a component (such as a chip or a circuit) applicable to a terminal device; in another possible implementation manner, the communication device 500 may be a network device or It may be applicable to components of the network device (such as chips or circuits); or, the communication device 500 may be a chip system.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the communication device 500 includes a transceiver module 501 and a processing module 502 .
  • the communication device may further include a storage module.
  • the storage module can be used to store one or more of data, information and instructions.
  • the communication apparatus 500 when the communication apparatus 500 is used to realize the above-mentioned functions of the target network device (first network device):
  • the transceiver module 501 is configured to receive a first measurement result from the terminal device; the processing module 502 is configured to configure CA and/or MR-DC for the terminal device according to the first measurement result.
  • the communication apparatus 500 when used to implement the functions of the above-mentioned source network device (second network device):
  • the processing module 502 is configured to generate a first message, instructing the terminal device to redirect to a cell of the first frequency and triggering the terminal device to send the first measurement result; the transceiver module 501 is configured to send the first message to the terminal device.
  • the processing module 502 of the communication apparatus 500 may be configured to generate fourth indication information, and the transceiver module 501 may be configured to send at least one of the following to the terminal device: fourth indication information, fifth indication information, and sixth indication information.
  • the communication device 500 when used to implement the functions of the above third network device:
  • the processing module 502 may be configured to generate a third message; the transceiving module 501 may be configured to send the third message to the terminal device.
  • the communication apparatus 500 when used to implement the functions of the fourth network device above:
  • the transceiver module 501 can be used to receive the idle measurement result from the terminal device, and the processing module 502 can be used to configure CA and/or MR-DC for the terminal device according to the idle measurement result.
  • the communication device 500 when the communication device 500 is used to realize the functions of terminal equipment:
  • the processing module 502 can be used to generate the first measurement result, and the transceiver module can be used to send the first measurement result to the target network device.
  • the transceiving module 501 may also be configured to receive the first message from the source network device.
  • the transceiving module 501 may also be configured to receive one or more of the first indication information, the second indication information, the third indication information, and the fourth indication information.
  • the storage module can be used to store the first measurement result.
  • the transceiver module 501 may be configured to receive a third message from a third network device, and the processing module 502 may be configured to perform measurement according to the measurement configuration information and save the obtained third measurement result.
  • the third measurement result may include terminal The geographic location of the device and/or the distance information between the terminal device and each cell reference point.
  • the transceiver module 501 may also be configured to send the third measurement result.
  • the transceiving module 501 may also be configured to receive seventh indication information.
  • the storage module can be used to store the third measurement result.
  • processing module 502 in this embodiment of the present application may be implemented by at least one processor or processor-related circuit components
  • transceiver module 501 may be implemented by a transceiver or transceiver-related circuit components or a communication interface
  • the storage module can be realized by at least one memory.
  • the foregoing modules may be separated or integrated, which is not limited in this embodiment of the present application.
  • the embodiment of the present application also provides a communication device 600, which can be used to implement or support the communication device 600 to realize the functions of the network device or the terminal device in the methods provided by various embodiments of the present application.
  • the communication device 600 includes at least one processor 610 and at least one memory 620 for storing program instructions and/or data and/or information.
  • the memory 620 is coupled to the processor 610 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 610 may cooperate with memory 620 .
  • the processor 610 may read program instructions and/or data and/or information stored in the memory 620, so that the communication device 600 implements a corresponding method.
  • at least one of the at least one memory may be included in the processor.
  • the communication device 600 may further include a communication interface 630 for communicating with other devices through a transmission medium, so that devices used in the communication device 600 can communicate with other devices.
  • a specific connection medium among the communication interface 630, the processor 610, and the memory 620 is not limited.
  • the memory 620, the processor 610, and the communication interface 630 are connected through a bus in FIG.
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may realize or execute Various methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., or a volatile memory (volatile memory), such as random Access memory (random-access memory, RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • the embodiment of the present application also provides a communication system, which is used to implement all or part of the steps in the foregoing method embodiments.
  • the communication system may include one or more of the foregoing first network device, second network device, third network device, fourth network device, and terminal device.
  • An embodiment of the present application further provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the method performed by the terminal device in the embodiments shown in FIGS. 3-4 to be executed.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the method performed by the network device in the embodiments shown in FIGS. 3-4 to be executed.
  • the network device here may be one of the first network device, the second network device, the third network device, and the fourth network device.
  • An embodiment of the present application further provides a computer program product, including instructions, which, when run on a computer, cause the method performed by the network device or the terminal device in the embodiments shown in FIGS. 3-4 to be executed.
  • each functional module in each embodiment of the present application can be integrated in In one processor, it may also exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the above-mentioned modules may also be referred to as units.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present invention will be generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, a digital video disc (digital video disc, DVD for short)
  • a semiconductor medium for example, SSD

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本实施例的方法和装置,在重定向场景中,目标网络设备从终端设备接收在源小区获得的第一测量结果,并根据该第一测量结果为终端设备配置载波聚合CA和/或双连接DC,从而便于网络侧提早获得测量结果,减少了在重定向之后网络侧设备再为终端设备配置测量配置和从终端设备接收测量结果的时延,可以使得网络侧可以更早为终端设备配置合理的CA和/或MR-DC。

Description

通信方法及装置
本申请要求于2021年12月13日提交国家知识产权局、申请号为202111522756.9、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种通信方法及装置。
背景技术
在无线网络中,网络侧可能为一个终端设备配置多个频点(载波)或多个小区,从而可以利用多个频点(载波)或多个小区的资源为该终端设备提供通信服务,从而为终端设备提供高速率传输。
这多个频点或多个小区可能属于不同的基站,即一个终端设备可能和多个基站通信,即双连接(dual-connectivity,DC),也称为MR-DC(Multi-Radio dual connectivity)。这多个基站可能是属于同一无线接入技术(radio access technology,RAT)的基站(比如都是4G基站,或者都是5G基站),也可能是不同RAT的基站(比如一个是第四代4G基站,一个是代5G基站)。这多个频点或多个小区可能属于同一个基站,即载波聚合(Carrier Aggregation,CA)。网络侧还可以为终端设备同时配置MR-DC和CA,即不同基站组成MR-DC,同一个基站中的不同小区组成CA。
一般来说,终端设备接入网络后,网络侧会为终端设备下发测量配置,之后终端设备上报测量结果。网络侧基于终端设备上报的测量结果为该终端配置CA或MR-DC,即选择合适的小区来组成CA或MR-DC。由于终端设备接入后,网络侧再为该终端配置测量(测量当前服务小区的邻区),之后终端设备再上报测量结果,从而网络侧再根据测量结果为终端配置CA或MR-DC,整个过程需要消耗时间。如何减少配置CA或MR-DC的时延,成为亟待解决的问题。
发明内容
本申请实施例提供了一种通信方法和装置,使得可以更早为终端设备配置合理的CA和/或MR-DC,提升用户体验。
本申请实施例具体可以通过如下技术方案实现:
第一方面,提供了一种通信方法,可以理解的是,该第一方面的方法可由第一装置执行,第一装置可以是第一网络设备或能够支持第一网络设备实现该方法所需的功能的通信装置,例如芯片或者电路或者芯片系统。以第一网络设备实现该方法为例,该方法可以包括:第一网络设备从终端设备接收第一测量结果,其中,所述第一测量结果包括该终端设备在收到重定向信息时所在的服务小区(源小区)获得的至少一个小区的测量结果,而第一网络设备是该终端设备在收到重定向信息之后所接入的第二小区所属的网络设备,该第一网络设备根据所述第一测量结果为所述终端设备配置载波聚合CA和/或双连接DC。
通过本申请实施例的方法,可以减少在重定向之后网络侧设备再为终端设备配置测 量配置和从终端设备接收测量结果的时延,可以使得网络侧可以更早为终端设备配置合理的CA和/或MR-DC,提升用户体验。
一些可能的实现方式中,在该第一测量结果包括第一邻区的测量结果且该终端设备支持所述第二小区和所述第一邻区的CA和/或DC的情况下,上述根据所述第一测量结果为所述终端设备配置CA和/或DC可以是:第一网络设备将第二小区的第一邻区配置为辅小区。
第二方面,还提供了一种通信方法,可以理解的是,该第二方面的方法可由第二装置执行,第二装置可以是第二网络设备或能够支持第二网络设备实现该方法所需的功能的通信装置,例如芯片或者电路或者芯片系统。以第二网络设备实现该方法为例,该方法可以包括:第二网络设备生成包括重定向信息的第一消息,指示终端设备重定向到第一频点的小区以及触发所述终端设备发送第一测量结果,该第一测量结果包括所述终端设备在第一小区获得的至少一个小区的测量结果,该第一小区是所述终端设备收到所述重定向信息时所在的服务小区(源小区);该第二网络设备向终端设备发送第一消息。可选的,该第一测量结果用于为终端设备配置CA和/或DC。
第三方面,还提供了一种通信方法,该第三方面的方法可由第三装置执行,第三装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,例如芯片或者电路或者芯片系统。该方法可以包括:生成第一测量结果,其中,该第一测量结果包括终端设备在第一小区获得的至少一个小区的测量结果,该第一小区是终端设备收到重定向信息时所在的服务小区(源小区);向第一网络设备发送获得的第一测量结果,其中,所述第一网络设备是所述终端设备在收到重定向信息之后所接入的第二小区(目标小区)所属的网络设备,第一小区属于第二网络设备(源网络设备)。可选的,该第一测量结果用于为终端设备配置CA和/或DC。
通过上述第一方面至第三方面的的方法,可以减少在重定向之后网络侧设备再为终端设备配置测量配置和从终端设备接收测量结果的时延,可以使得网络侧可以更早为终端设备配置合理的CA和/或MR-DC,提升用户体验。
结合第一方面至第三方面任一方面,一些可能的实现方式中,上述第一测量结果包括以下至少一种:至少一个小区的各个小区的小区信号质量、各个小区的波束信号质量、至少一个小区的小区标识信息。
结合第一方面至第三方面任一方面,一些可能的实现方式中,在该终端设备支持目标小区和第一邻区之间的CA/DC的情况下,该第一邻区被配置为辅小区,用于该终端设备的CA/DC。
结合第一方面至第三方面任一方面,一些可能的实现方式中,第一测量结果是该终端设备在小区重选和/或小区选择过程中获得的测量结果。
结合第二方面或者第三方面,一些可能的实现方式中,第一消息中的第一指示信息指示该终端设备向根据所述重定向信息所接入的小区发送第一测量结果,或者,该第一指示信息指示终端设备向根据所述重定向信息所接入的小区发送第一小区的标识,或者,该第一指示信息指示所述终端设备保存第一测量结果。
结合第二方面或者第三方面,一些可能的实现方式中,该第一消息还可以包括用于指示所述第一测量结果中需要包括第二频点和/或第一制式的小区的测量结果的第二指示信息,从而可以节省终端设备和目标网络设备之间的信令开销。
结合第二方面或者第三方面,一些可能的实现方式中,该第一消息还可以包括用于 指示终端设备发送满足预设条件的第一测量结果的第三指示信息,从而可以节省终端设备和目标网络设备之间的信令开销。
结合第二方面或者第三方面,一些可能的实现方式中,终端设备还可以接收到第四指示信息,指示终端设备保存在接入源小区之前的小区重选过程中获得的第二测量结果,进一步的,终端设备可以将第二测量结果发送iehe给源小区,从而可以提高重定向的成功率。可以理解的是,该实现方式也可以独立于第二方面或者第三方面的方法实现。
结合第二方面或者第三方面,一些可能的实现方式中,终端设备还可以接收到第五指示信息,指示终端设备发送哪些无线接入技术和/或频点的第二测量结果,从而可以节省终端设备和源网络设备之间的信令开销。
结合第二方面或者第三方面,一些可能的实现方式中,终端设备还可以接收用于指示终端设备发送满足预设条件的第二测量结果的第六指示信息,从而可以节省终端设备和目标网络设备之间的信令开销。
第四方面,还提供了一种通信方法,该第四方面的方法可由网络设备或可用于网络设备的部件(例如芯片或者电路)实现,该方法可以包括:网络设备生成第四指示信息并向终端设备发送该第四指示信息,指示终端设备保存在接入源小区之前的小区重选过程中获得的第二测量结果。
结合第四方面,一些可能的实现方式中,该网络设备还可以向终端设备发送第五指示信息,指示终端设备发送哪些无线接入技术和/或频点的第二测量结果。
结合第四方面,一些可能的实现方式中,该网络设备还可以向终端设备发送第六指示信息,指示终端设备发送满足预设条件的第二测量结果。
第五方面,还提供了一种通信方法,该第五方面的方法可由第三网络设备或可用于第三网络设备的部件(例如芯片或者电路)实现。以第三网络设备实现该方法为例,该方法可以包括:第三网络设备生成第三消息并向终端设备发送该第三消息,指示该终端设备进入到RRC空闲态或RRC去激活态,其中,该第三消息中包括第七指示信息,指示终端设备在空闲测量结果中保存终端设备的地理位置和/或该终端设备与各个小区参考点的距离信息,从而便于网络侧为终端设备配置CA和/或MR-DC,提升通信性能和用户体验。
第六方面,还提供了一种通信方法,该第六方面的方法可由终端设备或可用于终端设备的部件(例如芯片或者电路)实现。该方法可以包括:接收第三消息,其中,该第三消息中包括第七指示信息,指示终端设备在空闲测量结果中保存终端设备的地理位置和/或该终端设备与各个小区参考点的距离信息;根据第三消息进行测量,并保存获得的测量结果;发送获得的测量结果。可选的,该测量结果可以包括空闲测量结果和/或在连接建立或恢复过程中继续测量获得的测量结果,其中,在连接建立或恢复过程中继续测量获得的测量结果中也包括终端设备的物理位置和/或该终端设备与各个小区参考点的距离。可选的,上述测量结果可以被接收到该测量结果的网络设备用于配置CA和/或DC,提升通信性能和用户体验。
第七方面,还提供了一种通信方法,该第七方面的方法可由第四网络设备或可用于第四网络设备的部件(例如芯片或者电路)实现。以第四网络设备实现该方法为例,该方法可以包括:第四网络设备从终端设备接收测量结果,该测量结果中包括空闲测量结果和/或在连接建立或恢复过程中继续测量获得的测量结果,该测量结果中包括终端设备的物理位置和/或该终端设备与各个小区参考点的距离;该第四网络设备根据接收到的测 量结果为终端设备配置CA和/或DC。从而可以提升通信性能和用户体验。
第八方面,提供了一种通信装置,该通信装置具有实现上述第一方面至第七方面任一的方法中的行为或者步骤的功能。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
第九方面,提供了一种通信装置,该通信装置可以为实现上述第一方面至第七方面中任何一个方法的通信装置。该通信装置包括处理器和存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器耦合,当处理器读取计算机程序或指令或数据时,使通信装置执行任一方面的方法。可选的,该通信装置还可以包括通信接口。
示例性的,该通信接口可以是通信装置中的收发器。该收发器可以用于该通信装置与其它设备进行通信。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于实现第一方面至七方面中的任一方法。在一种可能的设计中,该芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供了一种通信系统,该系统包括第一网络设备、第二网络设备、第三网络设备、第四网络设备和终端设备中的至少一个。
第十二方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被运行时,使得上述各方面中任一方法被执行。
第十三方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,使得上述各方面任一方法被实现。
附图说明
图1a和图1b为本申请实施例的NTN网络架构示意图;
图2为本申请实施例的一种应用场景;
图3为本申请实施例的通信方法的一种示例的流程示意图;
图4为本申请实施例的通信方法的又一种示例的流程示意图;
图5为本申请实施例的一种通信装置示意图;
图6为本申请实施例的另一种通信装置示意图。
具体实施方式
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c中的每一个本身可以是元素,也可以是包含一个或多个元素的集合。
在本申请实施例中,“示例的”“在一些实施例中”“在另一实施例中”“作为一种实现方式”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词 旨在以具体方式呈现概念。
本申请实施例中通信、传输有时可以混用,应当指出的是,在不强调区别时,其所表达的含义是一致的。例如传输可以包括发送和/或接收,可以为名词,也可以是动词。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案,需要说明的是,当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
以下对本申请实施例中的部分用语进行说明。
1、终端设备。本申请实施例中终端设备是一种具有无线收发功能的设备,可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如LTE、NR、宽带码分多址(wideband code division multiple access,WCDMA)等。例如,终端设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。在本申请的一些实施例中,终端还可以是具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
2、网络设备。本申请实施例中网络设备是一种为终端设备提供无线通信功能的设备,也可称之为接入网设备、无线接入网(radio access network,RAN)设备等。示例的,网络设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB,gNB)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心、非地面基站等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的网络设备或者未来演进的PLMN中的网络设备等。在一些实施例中,网络设备还可以为具有为终端设备提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
CU和DU在物理上可以是分离的也可以部署在一起。多个DU可以共用一个CU。 一个DU也可以连接多个CU。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如其中一种可能的划分方式是:CU用于执行无线资源控制(Radio Resouce Control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,而DU用于执行无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层,物理(physical)层等的功能。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。上图所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现也可以由不同的实体实现。例如,可以对CU的功能进行进一步切分,例如,将控制面(control panel,CP)和用户面(user panel,UP)分离,即CU的控制面(CU-CP)和CU用户面(CU-UP)。例如,CU-CP和CU-UP可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成接入网设备的功能。
3.MR-DC
在MR-DC中,与终端设备进行通信的多个基站中,与核心网有控制面信令交互的基站称为主节点(master node,MN),其他基站称为辅节点(secondary node,SN)。除了控制面信令交互,主节点与核心网可以建立数据面连接;辅基站与核心网可以建立数据面连接。
MN为终端设备提供服务的小区的集合,可以称为主小区组(master cell group,MCG);SN为终端设备提供服务的小区的集合,可以称为辅小区组(secondary cell group,SCG)。每个小区组(即MCG或SCG)中的各小区通过载波聚合(carrier aggregation,CA)技术,共同为终端设备提供传输资源。MCG和SCG中的各小区均可以称为终端设备的服务小区。其中,MCG和SCG中分别包含至少一个小区(Cell)。
在一些协议中,例如新空口(new radio,NR)中,将PCell和PSCell统称为特别小区(special cell,SpCell)。当MCG或SCG中有多个小区时,除了SpCell之外的小区,可以称之为辅小区(secondary cell,SCell)。在另一些协议中,则将MCG和SCG中除PCell外的小区,均称为SCell。本申请中,若没有特殊说明,则SCell用于表示MCG和SCG中除了SpCell之外的小区。各个小区组中的SCell与SpCell可以进行载波聚合,共同为终端设备提供服务。下面具体解释一些名词。
主小区(primary cell,PCell):是工作在主载波上的小区。终端设备在该小区进行初始连接建立过程,或开始连接重建立过程,或者在切换过程中该小区被指示为主小区。
主辅小区(primary secondary cell,PSCell):属于SCG的小区中,指终端设备在辅节点发起随机接入过程的小区或者当终端设备在辅节点改变过程中跳过随机接入过程发 起数据传输(例如终端设备直接在目标小区进行物理上行共享信道(physical uplink shared channel,PUSCH)传输)的小区,或者执行同步的重配过程中发起随机接入的辅节点的小区辅小区(secondary cell,SCell):是工作在辅载波上的小区。当无线资源控制(radio resource control,RRC)连接建立后,辅小区可能被配置以提供额外的无线资源。
服务小区(serving cell):处于RRC连接(CONNECTED)态的终端设备,如果没有配置CA/DC,仅有一个Serving Cell,即PCell;如果配置了CA/DC,则Serving Cell集合是由PCell和SCell组成。每个成分载波(component carrier,CC)对应一个独立的Cell。配置了CA/DC的终端设备与1个PCell和至多31个SCell相连。在目前的应用中,按照网络部署的不同结构,MR-DC可以包括EN-DC,NGEN-DC,NE-DC,NR-DC等种类。其中:
EN-DC中主节点为与4G核心网EPC有控制面连接的长期演进(Long Term Evolution,LTE)基站eNB,辅节点为NR基站。在一些场景中,EN-DC中的NR基站也被称为非独立组网(non standalone,NSA)NR基站,终端设备不能驻留在非独立组网的NR基站下的NR小区。能驻留终端设备的NR基站,称之为独立组网(standalone,SA)NR基站。
NGEN-DC中主节点为与5G核心网5GC有控制面连接的LTE基站ng-eNB,辅节点为NR基站。
NE-DC中主节点为与5G核心网5GC有控制面连接的NR基站,辅节点为LTE基站。
NR-DC中主节点为与5G核心网5GC有控制面连接的NR基站,辅节点为NR基站。
此外,对于非地面通信(比如卫星通信中)中,网络设备是一个高速移动的网络设备,为了UE提供高吞吐率的通信,也可以为UE配置CA和/或MR-DC。并且在非地面通信系统中,一个小区的边缘和中心位置的信号质量差别不是特别大。非地面通信也可以称为非陆地网络(non terrestrial networks,NTN)通信系统,NTN通信系统通过将接入网设备或部分接入网设备的功能部署在高空平台或者卫星等非地面设备上,为终端设备提供无缝覆盖,并且由于高空平台或卫星位于高空中,NTN通信系统中的小区称为NTN小区。
图1a和图1b示意性的给出了NTN的网络架构示意图。
图1a所示的网络架构中包括核心网设备110、无线接入网设备120、卫星130和至少一个终端设备(如图1a中所示的终端设备140)。作为一种示例,图1a中的核心网设备、无线接入网设备和终端设备位于地面,而卫星位于高空中。
其中,无线接入网设备可通过无线或有线的方式与核心网设备通信。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。应理解,本申请实施例中所提及的无线接入网设备在不同的通信系统可对应不同的设备,例如在5G系统中对应5G中的接入网设备,例如gNB或者ng-eNB,在4G系统中对应4G中的接入网设备,例如eNB或者en-gNB。
无线接入网设备与终端设备之间的通信通过非地面设备转发信号,即非地面设备可以接收无线接入网设备的信号并将信号转发至地面形成小区或将从无线接入网设备接收的信号转换为其他频点的信号发送至地面形成小区,进而为地面上的终端设备提供服务覆盖。或非地面设备是转发无线接入网设备和终端设备之间的Uu口中的无线协议相关的 内容。此时,卫星相当于一个中继节点或转发器,因此,该场景也可以称为卫星的透明转发(transparent)形式。可选的,无线接入网设备和非地面网络设备之间还可以有一个网关(gateway)设备,负责转发无线接入网设备和非地面网络设备之间的相关内容(也是无线接入网设备和终端设备之间的Uu口中的无线协议相关的内容)。
下面以非地面设备为卫星为例,解释通过非地面设备形成的小区的相关内容。
在透明转发形式下,卫星小区可以是地面固定的(可以记为“固定小区”),也可以随着卫星的移动而在地面上移动(可以记为“移动小区”)。对于“固定小区”的场景,卫星小区是地面固定的,是指卫星小区在地面上的覆盖是固定的,可以是在一段时间内是固定的,也可以是永久固定的。例如,对于高轨卫星,由于卫星相对地面保持静止,其形成的卫星小区一般相对地面也是固定的。对于低轨卫星,由于卫星相对地面移动,卫星可以通过调整其天线的发射角或是其它物理参数,使得形成的卫星小区相对地面是固定的。
对于“移动小区”的场景,卫星小区随着卫星的移动而移动,即当卫星移动时,卫星小区也跟随卫星在地面上移动。通常移动小区产生的原因是因为,随着卫星的移动,卫星并不会动态地调整波束的方向,进而导致卫星生成的波束在地面上的投影跟随着卫星的移动而移动。
应注意,本申请实施例对移动小区的存在场景不作具体限定。当卫星采用透明转发形式提供服务覆盖区域时,一种可能的移动小区的存在场景可以为:卫星与原无线接入网设备建立连接,随着卫星的移动,卫星转发的原无线接入网设备下的小区跟随卫星移动一段时间,即卫星与原无线接入网设备保持一段时间的连接;在某一时刻,卫星与原无线接入网设备的连接由于距离较远、信号较弱等原因而断开,卫星连接至一个新的无线接入网设备,此后,卫星开始转发新的无线接入网设备的信号,形成新的卫星小区。可以理解,虽然卫星在不停地运行,但是由于地面的无线接入网设备的位置不变,因此,对于存在移动小区的场景,若卫星转发地面的某一无线接入网设备的信号,那么形成的该无线接入网设备下的卫星小区虽然也会随着卫星的运行,有一定范围的移动,但是该卫星小区的移动范围通常是围绕无线接入网设备的周边。
图1b为本申请实施例适用的卫星通信系统的另一种网络架构示意图,该网络架构中包括核心网设备110、卫星130和至少一个终端设备(如图1b中所示的终端设备140)。作为一种示例,图1b中的核心网设备和终端设备位于地面,而卫星位于高空中。
与图1a中所示的网络架构的区别之处在于,图1b所示的网络架构中,非地面网络设备上可以具有无线接入网设备的功能或部署有无线接入网设备,例如基站。非地面网络设备可以自己生成小区信号,并发送至地面形成小区,进而为地面上的终端设备提供服务覆盖区域。因此,该场景也可以称为非地面网络设备的再生(regenerative)形式。可选的,无线接入网设备和核心网之间还可以有一个部署于地面上的网关设备,负责转发无线接入网设备和核心网之间的相关内容。可以理解的是,再生形式的非地面网络设备之间也可以存在通信接口,两个再生形式的卫星之间的通信接口可以采用和两个基站之间通信接口相同的协议,例如Xn或X2接口。此外,再生形式的非地面网络设备可以作为DU,而CU可以在位于地面上的其他基站或者网络设备上实现,非地面网络设备和地面上的其他基站或网络设备之间通过F1接口相连。在再生形式的场景下,卫星小区可以是地面固定的,也可以随着卫星的移动而在地面上移动。
尽管图1a和图1b中仅示出了一个终端设备,但应理解,一个无线接入网设备或卫 星或核心网设备可以为一个或多个终端设备提供服务,本申请实施例对该卫星通信系统中包括的核心网设备、无线接入网设备、卫星和终端设备的数量不作限定。此外,所述终端设备可以是固定位置的,也可以是可移动的,本申请也不限定。
4.重定向
网络设备可以通过重定向信息(例如在RRC释放消息中携带重定向信息)指示终端设备重定向到目标无线接入技术或者目标频点,终端设备在接收到重定向信息后进入空闲态并根据接收到的重定向信息接入到目标无线接入技术或者目标频点(即接入到目标无线接入技术或者目标频点对应的小区)。上述重定向信息中可以包括目标无线接入技术、目标频点信息中的一个或者多个。一些可能的场景中当前服务小区可能是由于负载或者由于无法继续承载某些业务(例如当前服务小区为NR小区,终端设备发起了由于语音业务建立需求而触发的RRC建立请求或当前服务小区对应的基站从核心网收到为终端设备建立语音业务的请求,当前服务小区对应的基站确定需要让终端设备进行语音回落到LTE网络(可以称为演进分组系统evolved packet system fallback,EPS fallback))等原因,从而指示终端设备在目标无线接入技术或者目标频点接入。
示例性的,图2为一种双连接的通信系统的结构示意图。其中,主节点202与核心网201有控制面连接,终端设备204与主节点202、辅节点203均建立无线连接。另外,主节点202还与辅节点203连接。
主节点202与核心网201之间可以通过S1或NG接口连接。主节点202与核心网201之间至少包括控制面连接,还可以有用户面连接。主节点202与核心网201之间接口包括S1-U/NG-U和S1-C/NG-C。其中,S1-U/NG-U代表用户面连接,S1-C/NG-C代表控制面连接。辅节点203与核心网201之间可以具有用户面连接,也可以不具有用户面连接。当辅节点203与核心网201之间不具有用户面连接时,终端设备204的数据可以由主节点201在分组数据汇聚协议(packet data convergence protocol,PDCP)层分流给辅节点203。该主节点202又可被称为主基站或主接入网设备,辅节点203又可被称为辅基站或辅接入网设备。
上述主节点202和辅节点203均属于网络设备。
如图3所示,本申请实施例提供了一种通信方法,该方法可以包括:
S301,源网络设备向终端设备发送第一消息,指示该终端设备重定向到目标无线接入技术和/或目标频点(也可以称为第一频点)对应的小区。
当S301被执行时,该终端设备可能处于RRC连接(connected)态、RRC空闲(idle)态、RRC去激活(inactive)态中的任意一种状态。该终端设备在源网络设备下的服务小区可以称为源小区(也可以称为第一小区)。
其中,该第一消息中可以包括重定向信息,该重定向信息用于指示该终端设备重定向到目标无线接入技术和/或目标频点对应的小区。一种可能的实现方式中,该第一消息可以是RRC释放(RRCrelease)消息。本申请实施例对于源网络设备发送第一消息的方式不做限定。示例性的,该重定向信息中可以包括目标频点信息,或者该重定向信息中可以包括目标无线接入技术(RAT)的信息,或者该重定向信息中可以包括目标RAT和目标频点信息。可选的,重定向信息中可以不包括指定目标RAT和目标频点中具体的小区标识。
S302,终端设备进入空闲态。
终端设备在接收到第一消息后,进入空闲态。
S303,进入空闲态的终端设备在重定向信息中指示的目标无线接入技术和/或目标频点对应的小区接入。
当终端设备接收到第一消息后,可以根据重定向信息接入到目标无线接入技术和/或目标频点对应的小区,从而接入到目标小区(也可以称为第二小区)。
可以理解的是,重定向信息中指示的目标无线接入技术和/或目标频点对应的小区可能不止一个,终端设备可以通过小区选择流程在目标无线接入技术和/或目标频点对应的小区中确定一个目标小区进行驻留(即终端设备根据重定向信息中指示的目标无线接入技术和/或目标频点的信息进行小区选择,选择属于目标无线接入技术和/或目标频点中一个合适的小区进行驻留),之后接入该目标小区。其中,该目标小区所述的网络设备为目标网络设备。
S304,终端设备向目标网络设备发送第一测量结果。
其中,上述第一测量结果包括该终端设备驻留或接入在源小区获得的至少一个小区的测量结果(即第一测量结果包括该终端设备的服务小区为源小区时获得的至少一个小区的测量结果),例如可以包括源小区的测量结果和/或其他邻区的测量结果。示例性的,第一测量结果可以是终端设备在RRC连接(connected)态或者RRC空闲(idle)态或者RRC去激活(inactive)态下获取的测量结果。例如,该第一测量结果可以包括以下任意一种或者多种:终端设备在RRC连接态根据网络侧的配置进行测量得到的测量结果,终端设备在RRC空闲态或者去激活态进行测量得到的测量结果(比如是该终端设备在小区重选过程和/或小区选择中获得的测量结果)。进一步可选的,该第一测量结果可以是终端设备获得的每个小区的最新的测量结果。
可以理解的是,上述第一测量结果可以包括以下至少一种:至少一个小区的各个小区的小区信号质量、各个小区的波束信号质量、至少一个小区的小区标识信息。例如,第一测量结果可以包括源小区的小区信号质量S1,以及源小区中波束1的信号质量B1和波束2的信号质量B2;或者第一测量结果可以包括源小区的邻区的小区信号质量S2,此处不一一例举。
其中,小区标识信息可以为小区的小区全局标识(cell global identifier,CGI)、物理小区标识(physical cell identifier,PCI)和频点、小区标识(cell identifier,cell ID)、非公网标识(non-public network identifier,NPN ID)、非陆地网络标识(non-terrestrial network identifier,NTN ID)或者其它小区标识中的至少一种。
可以理解的是,上述提到的信号质量可以通过接收信号码功率(received signal code power,RSCP)、参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信噪比(signal noise ratio,SNR)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、参考信号强度指示(reference signal strength indication,RSSI)或其它信号质量中的至少一种来表征,相应的,对于不同的信号质量的表征量也有对应的质量门限。
此外,上述波束可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识,所述索引信息可以对应配置终端的资源标识(identity,ID),比如,所述索引信息可以对应配置的CSI-RS的标识或者资源;也可以是对应配置的SSB的标识或者资源;也可以是对应配置的上行探测参考信号(Sounding Reference Signal,SRS)的标识或者资源。可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息。所述能 量传输指向性可以指通过该预编码向量对所需发送的信号进行预编码处理,经过该预编码处理的信号具有一定的空间指向性,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。
一种可能的实现方式中,可以是终端设备直接向目标网络设备发送第一测量结果。
一种可能的实现方式中,可以是终端设备基于网络侧的请求向目标网络设备发送第一测量结果。例如,目标网络设备可以向终端设备发送用于请求第一测量结果的信息(可以称之为第一信息),终端设备可以基于第一信息向目标网络设备发送第一测量结果。例如,终端设备可以向目标网络设备指示该终端设备保存有第一测量结果的信息,那么目标网络设备可以向终端设备发送第一信息,然后终端设备向目标网络设备发送第一测量结果。示例性的,终端设备可以在RRC建立完成(RRCsetupComplete)消息中携带指示在该终端设备保存有第一测量结果并发送给目标网络设备,目标网络设备向终端设备发送携带第一信息的UE信息请求(UEInformationRequest)消息,终端设备向目标网络设备发送携带第一测量结果的UE信息响应(UEInformationResponse)消息。
示例性的,例如可以目标网络设备向终端设备发送携带第一信息的RRC恢复(RRCResume)消息,那么终端设备可以通过RRC恢复完成(RRCResumeComplete)消息向目标网络设备发送第一测量结果。
可选的,上述重定向信息中可以携带第一指示信息,该第一指示信息用于触发该终端设备发送第一测量结果。源网络设备可以根据需要或者实际场景来触发该终端设备发送第一测量结果,从而可以节省终端设备的存储,可以节省终端设备与目标网络设备之间的信令开销。例如,源网络设备可以根据终端设备的CA/MR-DC能力来决定是否触发该终端设备发送第一测量结果。当源网络设备根据终端设备的CA或MR-DC能力确定终端设备不支持在源小区的频点和第一消息中的目标无线接入技术和/或目标频点进行CA或MR-DC,则源网络设备无需向终端设备发送第一指示信息,从而终端设备就无需向目标网络设备发送第一测量结果;当源网络设备根据终端设备的CA或MR-DC能力确定终端设备支持在源小区的频点和第一消息中的目标无线接入技术和/或目标频点进行CA或MR-DC,源网络设备向终端设备发送第一指示信息,终端设备向目标网络设备发送第一测量结果。
可以理解的是,第一指示信息也可以不携带在重定向信息中,而是携带在第一消息中。或者,也可以是源网络设备通过其他的消息发送该第一指示信息。本申请实施例对源网络设备发送第一指示信息的方式不做限定。
一些可能的实现方式中,该第一指示信息可以指示该终端设备向目标小区发送第一测量结果。
又一些可能的实现方式中,该第一指示信息可以指示该终端设备向目标小区发送源小区的标识。目标小区根据源小区的标识能获知该终端设备在源小区的信号质量较好。进一步的,目标网络设备可以根据终端设备的CA或MR-DC能力确定是否为终端设备配置目标小区与源小区之间的CA和/或MR-DC。由于第一测量结果只携带源小区的标识,从而可以节省终端设备与目标小区之间的信令开销。
又一些可能的实现方式中,该第一指示信息可以指示该终端设备保存第一测量结果。进一步的,终端设备可以根据网络设备的请求或者指示决定是否发送以及何时发送保存的第一测量结果。
可选的,终端设备可以根据第一指示信息向目标网络设备发送第一测量结果。
可以理解的是,终端设备也可以基于第一信息以及第一指示信息向目标网络设备发送第一测量结果。
一种可能的实现方式中,终端设备可以确定该终端设备是否支持目标小区的频点(第一频点)和第一测量结果中其他邻区(可以称为第一邻区)的频点(第二频点)之间的MR-DC或CA,在该终端设备确定支持第一频点和第二频点之间的MR-DC或CA的情况下,该终端设备发送第一测量结果。可选的,该第一测量结果可以是第一邻区的测量结果。可以理解的是,终端设备确定是否支持第一频点和第二频点之间的MR-DC或CA也可以和前述第一信息和/或第一指示信息的方案结合。例如,在终端设备接收到目标网络设备发送的第一信息后,确定该终端设备支持第一频点和第二频点之间的MR-DC或CA,从而该终端设备向目标网络设备发送第一测量结果;又例如,在终端设备接收到第一指示信息的情况下,并且确定该终端设备支持第一频点和第二频点之间的MR-DC或CA,终端设备根据第一指示信息向目标网络设备发送第一测量结果,此处不一一例举。
可选的,终端设备可以根据网络设备(可以是源网络设备或者目标网络设备)的指示确定向目标网络设备发送哪些无线接入技术和/或频点的测量结果。例如,网络设备可以向终端设备发送第二指示信息,该第二指示信息指示所述第一测量结果中需要包括第二频点和/或第一制式的小区的测量结果。通过第二指示信息,网络设备设备指示终端设备上报指定的频点或制式的小区的测量结果(例如网络设备根据终端设备的CA或MR-DC能力确定终端设备支持第一频点和第二频点之间进行CA或MR-DC,指示终端设备发送第二频点的测量结果),从而可以节省终端设备和目标网络设备之间的信令开销。又例如,网络设备可以向终端设备发送第三指示信息,该第三指示信息指示终端设备发送满足预设条件的第一测量结果或者是在至少一个小区的信号质量满足预设条件时发送第一测量结果。该预设条件例如可以是小区信号质量或者波束信号质量超过预设门限。通过第三指示信息,也可以节省终端设备和目标网络设备之间的信令开销。示例性的,源网络设备可以在第一消息中携带第二指示信息、第三指示信息。或者,目标网络设备可以在向终端设备发送携带第一信息的UE信息请求消息中携带第二指示信息、第三指示信息。
一种可能的实现方式中,终端设备可以在第二消息中携带该第一测量结果。其中,该第二消息例如可以是RRCsetupComplete消息。可选的,该第二消息中还可以包括源小区的小区标识信息。
需要说明的是,第二消息也可以是携带源小区的小区信息但不携带第一测量结果的消息,也就是说,终端设备在重定向的场景中向目标网络设备发送源小区的小区信息可以不和前述发送第一测量结果的方案耦合。
S305,目标网络设备根据第一测量结果为终端设备配置CA和/或MR-DC。
目标网络设备在收到第一测量结果之后,可以根据第一测量结果为终端设备配置CA和/或MR-DC。也就说目标网络设备可以根据第一测量结果,选择合适的小区,并配置给终端设备,使得该小区和目标小区以CA和/或MR-DC的方式用于和终端设备之间的通信。例如该终端设备支持目标小区和第一邻区之间的CA,且该第一邻区中至少一个小区的小区信号质量高于预设门限,则目标网络设备可以将该第一邻区中至少一个小区配置为CA中的SCell或者PSCell,或者,该终端设备支持目标小区和第一邻区之间的CA,可以将第一邻区中的至少一个小区配置为MR-DC中的SCell或者PSCell,或者,该终端 设备支持目标小区和第一邻区之间的CA/DC,可以将第一邻区中和目标小区属于不同网络设备的小区组成MR-DC,将第一邻区中和目标小区属于相同基站的小区组成CA。S305为可选的。
通过上述本实施例,可以在不给终端设备带来额外测量负担的情况下,终端设备可以上报可得的测量结果,便于网络侧提早获得测量结果,减少了在重定向之后网络侧设备再为终端设备配置测量配置和从终端设备接收测量结果的时延,从而可以使得网络侧可以更早为终端设备配置合理的CA和/或MR-DC,提高了终端设备可以利用CA和/或MR-DC的时间,进一步的,使得终端设备能更早利用小区的通信资源来收发数据,从而提升通信性能和用户体验。。
可选的,在S301之前,例如,在终端设备接入到源小区之前,终端设备可以接收第四指示信息,该第四指示信息指示终端设备保存或上报在接入源小区之前的小区重选过程中获得的第二测量结果。该第二测量结果可以包括以下至少一种:至少一个小区的小区信号质量、至少一个小区的波束的信号质量、至少一个小区的小区标识信息。可选的,该第四指示信息可以是源网络设备或者其他网络设备通过广播消息发送给终端设备的,或者是前一次配置终端设备进入进入RRC空闲态或RRC去激活态的网络设备发送给终端设备的。那么,终端设备在接入到源小区时,可以把小区重选中获得的第二测量结果发送给源网络设备,从而便于源网络设备向终端设备发送重定向信息时能够选择合适的目标无线接入技术和/或目标频点。例如源网络设备根据终端设备上报的第二测量结果,选择信号质量比较好的小区对应的无线接入技术和/或频点作为目标无线接入技术和/或目标频点,从而提高重定向的成功率。此外,由于利用的是小区重选中获得的测量结果,不会给终端设备带来额外的测量负担,减少了终端设备的处理复杂度和功耗。第四指示信息可以是可选的,那么终端设备可以直接向源小区发送在接入源小区之前的小区重选过程中获得的第二测量结果。
可选的,在终端设备接入到源小区之前,终端设备还可以接收第五指示信息,该第五指示信息指示终端设备发送哪些无线接入技术和/或频点的第二测量结果。例如,网络设备可以向终端设备发送第五指示信息,该第五指示信息指示所述第二测量结果中需要包括第一频点和/或第二制式的小区的测量结果。通过第五指示信息,可以节省终端设备和源网络设备之间的信令开销。又例如,网络设备可以向终端设备发送第六指示信息,该第六指示信息指示终端设备发送满足预设条件的测量结果或者是在至少一个小区的信号质量满足预设条件时发送第二测量结果。该预设条件例如可以是小区信号质量或者波束信号质量超过预设门限,从而可以节省终端设备和源网络设备之间的信令开销。
可选的,在终端设备接入到源小区之前,终端设备还可以接收指示信息,该指示信息指示终端设备发起由于语音业务建立需求而触发的RRC建立请求时才上报第二测量结果。某些场景下,源网络设备只是在语音回落时才需要利用第二测量结果,从而通过该指示信息,可以节省端设备和源网络设备之间的信令开销。
一种具体的实现方式可以为:RRC空闲态、RRC去激活的终端设备在NR小区驻留时,进行演进的通用陆基无线接入(evolved universal terrestrial radio access,E-UTRA)小区的测量获得第二测量结果;终端设备进入连接态后将第二测量结果上报给NR小区对应的网络设备,辅助NR小区对应的网络设备进行语音业务回落到LTE系统(也可称为EPS fallback)时选择目标E-UTRA的频点。可选的,终端设备可以仅针对当前驻留在NR小区时进行小区重选的E-UTRA频点和/或E-UTRA小区进行测量,并向NR小区对 应的网络设备上报支持该类型的测量(即支持“为EPS fallback,在RRC空闲态、RRC非激活态测量E-UTRA频点/小区,并将测量结果在连接态报告给网络设备”的能力)。进一步可选的,终端设备通过驻留小区的广播信息获得上述E-UTRA频点和/或小区,无需NR小区对应的网络设备通过专用信令配置。同时,上述针对用于小区重选的E-UTRA频点和/或/小区的测量结果为现有小区重选机制中获得,即为获取上述辅助EPS fallback的第二测量结果,无需终端设备消耗额外的测量能力或者进行额外的测量。
可选的,上述第四指示信息的获取方式可以为以下方式的任意一种或者多种:1.NR小区对应的网络设备发送的广播消息中指示支持为EPS fallback进行RRC空闲态、RRC非激活态的测量结果上报;2.NR小区对应的网络设备发送的广播消息中指示当终端设备的语音业务触发终端设备发起RRC连接建立时,终端设备需要上报第二测量结果;3.NR小区对应的网络设备发送的广播消息中指示当终端设备收到NR基站下发的寻呼消息,其中指示寻呼原因为语音业务时。
可以理解的是,终端设备发送第二测量结果的方式可以参考发送第一测量结果的方式,此处不再赘述。
可以理解的是,该发送第四指示信息和/或第五指示信息和/或第六指示信息的方案也可以独立于S301-305实现,那么终端设备从网络设备接收第四指示信息和/或第五指示信息和/或第六指示信息并进行测量结果的发送可以结合图3所示的方案,也可以应用于其他的方案或者场景中,本申请实施例对此不做限定。例如,终端设备在接收到第四指示信息和/或第五指示信息和/或第六指示信息之后,终端设备在接入到源小区时,可以把小区重选中获得的第二测量结果发送给源网络设备。之后终端设备和源网络设备执行S301~S303中对应的内容。
需要说明的是,上述实施例中的第一指示信息、第二指示信息、第三指示信息、第四指示信息、第五指示信息和第六指示信息可以独立实现,也可以组合实现。例如,网络设备可以发送第一指示信息、第二指示信息、第三指示信息、第四指示信息、第五指示信息和第六指示信息中的一个或者多个信息。上述第一指示信息、第二指示信息和第三指示信息可以携带在相同的消息中发送,也可以携带在不同的消息中发送。上述的目标网络设备可以称为第一网络设备,源网络设备可以称为第二网络设备。第一网络设备和第二网络设备可以是相同的网络设备,
本申请实施例还提供了一种通信方法,该方法可以适用于NTN通信系统中,也可以适用于非NTN通信系统中,该通信方法可以如图4所示,包括:
S401,第三网络设备向终端设备发送第三消息,指示该终端设备进入到RRC空闲态或RRC去激活态。
其中,该第三消息中可以包括指示该终端设备进入到RRC空闲态或RRC去激活态的信息。该第三消息中还可以包括测量配置信息,该测量配置信息指示终端设备在RRC空闲态或者RRC去激活态进行测量的配置信息,例如可以包括频点和/或小区等信息。本申请实施例中,可以将终端设备在RRC空闲态或者RRC去激活态进行测量得到的测量结果称为空闲测量结果,将相应的测量过程称为空闲测量。
可选的,该第三消息中还可以包括第七指示信息,指示终端设备在空闲测量结果中保存终端设备的地理位置和/或该终端设备与各个小区参考点的距离信息。例如,该第七指示信息可以包括在上述测量配置信息中。可以理解的是,第七指示信息和测量配置信息也可以携带在不同的消息中,本申请实施例对此不做限定。
其中,网络侧(例如第三网络设备)可以广播各个小区覆盖的地理区域的小区参考点(一般为小区覆盖的物理区域的中心点),终端设备可以根据该终端设备的地理位置和各个小区的参考点获得该终端设备离各个小区参考点的距离信息。本申请实施例对于终端设备获取该终端设备离各个小区参考点的距离信息的方式不做限定。
可选的,该第三消息中可以包含空闲测量的生效计时器(例如该定时器可以称为T331)的取值。当终端设备收到第三消息时,启动空闲测量的生效计时器。在计时器未停止或未超时时,终端设备在RRC空闲态或者RRC去激活态进行空闲测量。此外,测量配置信息还可以包括测量配置的生效区域信息。其中,生效区域可以是一个或多个指定频点上的一个或多个小区的集合,当终端设备的驻留小区不在这个生效区域中,则可以停止生效计时器,即终端设备可以停止空闲测量,并释放测量配置。
一些可能的实现方式中,该第三消息例如可以是RRCrelease消息。
S402,终端设备进入RRC空闲态或RRC去激活态。
其中,终端设备在接收到第三消息后,根据第三消息进入RRC空闲态或RRC去激活态,并执行S403。
S403,终端设备按照上述测量配置信息进行测量,并保存获得的测量结果。
该测量结果可以称为第三测量结果,该第三测量结果可以包括以下至少一种:至少一个小区的小区信号质量、至少一个小区的波束的信号质量和至少一个小区的标识信息。该第三测量结果包括空闲测量结果。
可选的,该第三测量结果还可以包括终端设备的地理位置和/或该终端设备离各个小区参考点的距离信息。可以理解的是,终端设备的地理位置和/或该终端设备离各个小区参考点的距离信息也可以包括在不同于第三测量结果的其他信息中。
可选的,终端设备的物理位置和/或该终端设备离各个小区参考点的距离是指终端设备获得各个小区的信号质量时,终端设备的物理位置和/或该终端设备离各个小区参考点的距离。
例如,当终端设备驻留在某个小区(称为驻留小区)时,终端设备可以对于测量配置信息中的测量频点中每一个频点执行如下动作:
如果终端设备支持驻留小区的频点和该测量频点之间的MR-DC或CA,则终端设备会测量该测量频点并保存该测量频点对应的小区的测量结果。可选的,如果测量配置信息中指示了保存测量小区结果的门限,则只有当某个小区的测量结果超过该门限时,终端设备才会保存该小区的测量结果。可选的,如果测量配置信息中指示终端设备需要上报波束测量结果,则终端设备还可能保存各个小区的波束测量结果。终端设备在保存以上测量结果时还可以包括终端设备在获得以上各个小区的测量结果时,终端设备的地理位置和/或该终端设备离各个小区参考点的距离。一些可能的实现方式中,终端设备可以会周期性对各个测量频点进行测量,只会保存每个小区的最新的测量结果。
S404,终端设备向第四网络设备发送测量结果。
以第三测量结果包括终端设备的地理位置和/或该终端设备离各个小区参考点的距离信息为例:
一些可能的实现方式中,终端设备可以在重新接入网络恢复到连接态后,向接入的网络设备发送该第三测量结果。该接入的网络设备即为第四网络设备。
又一些可能的实现方式中,终端设备可以在连接恢复过程中,向对应的网络设备发送该第三测量结果。该对应的网络设备即为第四网络设备。
上述第三网络设备可以和第四网络设备是相同的网络设备,也可以是不同的网络设备。
可选的,终端设备在重新接入网络恢复到连接态过程中或之后,并且在在终端设备上报第三测量结果之前,或者终端设备在连接恢复过程中或之后并且在在终端设备上报第三测量结果之前,终端设备可以继续按照以上测量配置信息继续测量每一个频点,并保存获得的测量结果,该测量结果可以理解为终端设备建立或恢复过程中继续测量获得的测量结果。该终端设备建立或恢复过程中继续测量获得的测量结果也可以保存在第三测量结果中,或者作为第四测量结果保存。一些可能的实现方式中,以上获得的第四测量结果可以替换终端设备在S403中获得的第三测量结果的全部或者部分,即终端设备只保存每个小区的最新的测量结果。又一些可能的实现方式中,第三测量结果和第四测量结果可以都被终端设备保存,并发送给第四网络设备。需要说明的是,该第四测量结果中也可以包括包括终端设备的物理位置和/或该终端设备与各个小区参考点的距离。
可以理解的是,终端设备向第四网络设备发送的测量结果可以是第三测量结果和/或第四测量结果,根据不同的场景可能有所不同。
S405,第四网络设备根据接收到的测量结果为该终端设备配置CA和/或MR-DC。
可选的,第四网络设备在接收到终端设备发送的测量结果后,可以参考或者利用该接收到的测量结果进行相应的处理。其中一种可能的处理可以是为该终端设备配置CA和/或MR-DC。
本实施例中,终端设备发送的空闲测量结果和/或在连接建立或恢复过程中继续测量获得的测量结果中包括终端设备的物理位置和/或该终端设备与各个小区参考点的距离,从而便于网络侧为终端设备选择合适的SCell/PSCell以配置CA和/或MR-DC(例如网络侧根据非地面上的网络设备的移动方向、终端设备的位置信息和/或该终端设备与各个小区参考点的距离、及各个小区的覆盖范围可以获知各个小区可以继续覆盖该终端设备的时间,网络侧可以选择一个继续覆盖该终端设备的时间最长且信号质量满足一定门限的小区作为合适的SCell/PSCell),可以避免网络侧为终端设备选择的小区不合适而导致的信令开销和延时,提升通信性能和用户体验。
一些可能的实现方式中,若上述各个实施例中网络设备(源网络设备、目标网络设备、第三网络设备或者第四网络设备)为CU,本申请实施例的方法还包括:CU发送上述所接收到的信息的部分或全部给DU。
可以理解的是,上述图3所示实施例的方案中,第一测量结果中也可以携带终端设备的地理位置和/或该终端设备离各个小区参考点的距离信息,终端设备获取终端设备的地理位置和/或该终端设备离各个小区参考点的距离信息可以参考上述实施例的相关描述,此处不再赘述。
可选的,图4所示实施例的全部或者部分步骤也可以和图3所示实施例结合,例如,图3所示实施例中的第一测量结果中可以携带终端设备的地理位置和/或该终端设备离各个小区参考点的距离信息。一些可能的实现方式中,该第一测量结果可以是根据S401-S403的方式得到的测量结果,也就是说,S304中,终端设备向目标网络设备发送的第一测量结果可以是通过执行S401-S403后终端设备在源小区获得测量结果。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且 有可能并非要执行本申请实施例中的全部操作。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。为了实现上述本申请实施例提供的方法中的各功能,各网元或者装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。
图5为本申请实施例提供的通信装置500的示意性框图。该通信装置500可以对应实现上述图3-图4所示方法实施例中由网络设备(例如第一网络设备至第四网络设备中的任意一种网络设备)或者终端设备实现的功能或者步骤。一种可能的实现方式中,该通信装置500可以为终端设备或者可以适用于终端设备的部件(例如芯片或者电路等);又一种可能的实现方式中,该通信装置500可以为网络设备或者可以适用于该网络设备的部件(例如芯片或者电路等);或者,该通信装置500可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图5所示,该通信装置500包括收发模块501和处理模块502。可选的,该通信装置还可以包括存储模块。该存储模块可以用于存储数据、信息、指令中的一种或者多种。
一些示例中,通信装置500用于实现上述目标网络设备(第一网络设备)的功能时:
收发模块501用于从终端设备接收第一测量结果;处理模块502用于根据该第一测量结果为终端设备配置CA和/或MR-DC。
一些示例中,通信装置500用于实现上述源网络设备(第二网络设备)的功能时:
处理模块502用于生成第一消息,指示终端设备重定向到第一频点的小区并触发终端设备发送第一测量结果;收发模块501用于向终端设备发送第一消息。
一些示例中,通信装置500的处理模块502可以用于生成第四指示信息,收发模块501可以用于向终端设备发送以下至少一种:第四指示信息、第五指示信息和第六指示信息。
一些示例中,通信装置500用于实现上述第三网络设备的功能时:
处理模块502可以用于生成第三消息;收发模块501可以用于向终端设备发送该第三消息。
一些示例中,通信装置500用于实现上述第四网络设备的功能时:
收发模块501可以用于从终端设备接收空闲测量结果,处理模块502可以用于根据该空闲测量结果为终端设备配置CA和/或MR-DC。
一些示例中,通信装置500用于实现终端设备的功能时:
处理模块502可以用于生成第一测量结果,收发模块可以用于向目标网络设备发送第一测量结果。可选的,收发模块501还可以用于从源网络设备接收第一消息。可选的,收发模块501还可以用于接收第一指示信息、第二指示信息、第三指示信息、第四指示信息中的一个或者多个。可选的,存储模块可以用于存储第一测量结果。
一些示例中,通信装置用于实现终端设备的功能时:
收发模块501可以用于从第三网络设备接收第三消息,处理模块502可以用于按照测量配置信息进行测量,并保存获得的第三测量结果,可选的,该第三测量结果可以包括终端设备的地理位置和/或该终端设备离各个小区参考点的距离信息。可选的,收发模块501还可以用于发送第三测量结果。可选的,收发模块501还可以用于接收第七指示信息。可选的,存储模块可以用于存储第三测量结果。
可以理解的是,关于通信装置500各个模块之间的耦合以及具体实现可以参考方法实施例中的描述,此处不再赘述。
应理解,本申请实施例中的处理模块502可以由至少一个处理器或处理器相关电路组件实现,收发模块501可以由收发器或收发器相关电路组件或者通信接口实现。存储模块可以通过至少一个存储器实现。此外,上述各个模块可以分离也可以集成,本申请实施例对此不做限定。
如图6所示,本申请实施例还提供了一种通信装置600,可以用于实现或用于支持通信装置600实现本申请各个实施例提供的方法中网络设备或终端设备的功能。该通信装置600包括至少一个处理器610和至少一个存储器620,用于存储程序指令和/或数据和/或信息。存储器620和处理器610耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器610可能和存储器620协同操作。处理器610可能读取存储器620中存储的程序指令和/或数据和/或信息,以使得通信装置600实现相应的方法。可选的,所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置600还可以包括通信接口630,用于通过传输介质和其它设备进行通信,从而用于通信装置600中的装置可以和其它设备进行通信。
本申请实施例中不限定上述通信接口630、处理器610以及存储器620之间的具体连接介质。示例性的,本申请实施例在图6中以存储器620、处理器610以及通信接口630之间通过总线连接,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。
本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例还提供一种通信系统,用于实现上述方法实施例的全部或者部分步骤。例如,该通信系统可以包括上述第一网络设备、第二网络设备、第三网络设备、第四网络设备和终端设备中的一个或者多个。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得图3-图4所示实施例中终端设备执行的方法被执行。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得图3-图4所示实施例中网络设备执行的方法被执行。此处的网络设备可以是第一网络设备、第二网络设备、第三网络设备、第四网络设备中的一种。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得图3-图4所示实施例中网络设备或终端设备执行的方法被执行。
本申请上述各个实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。上述模块也可以称为单元。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种通信方法,其特征在于,应用于第一网络设备,包括:
    从终端设备接收第一测量结果,其中,所述第一测量结果包括所述终端设备在第一小区获得的至少一个小区的测量结果,所述第一小区是所述终端设备收到重定向信息时所在的服务小区,第一网络设备是所述终端设备在收到重定向信息之后所接入的第二小区所属的网络设备;
    根据所述第一测量结果为所述终端设备配置载波聚合CA和/或双连接DC。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个小区的测量结果包括所述第一小区的信号质量,其中,所述第一小区的信号质量包括第一小区的小区信号质量和/或波束信号质量。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个小区的测量结果还包括所述第一小区的邻区的信号质量,其中,所述邻区的信号质量包括所述邻区的小区信号质量和/或波束信号质量。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述根据所述第一测量结果为所述终端设备配置CA和/或DC包括:将所述第二小区的第一邻区配置为辅小区,所述第一测量结果包括第一邻区的测量结果且所述终端设备支持所述第二小区和所述第一邻区的CA和/或DC。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一测量结果是所述终端设备在小区重选过程和/或小区选择过程中获得的测量结果。
  6. 一种通信方法,其特征在于,应用于第二网络设备,包括:
    生成第一消息,所述第一消息包括重定向信息,指示终端设备重定向到第一频点的小区,其中,所述重定向信息包括用于触发所述终端设备发送第一测量结果的第一指示信息,所述第一测量结果包括所述终端设备在第一小区获得的至少一个小区的测量结果,所述第一小区是所述终端设备收到所述重定向信息时所在的服务小区;
    向所述终端设备发送所述第一消息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一指示信息指示所述终端设备向根据所述重定向信息所接入的小区发送第一测量结果,或者,所述第一指示信息指示所述终端设备向根据所述重定向信息所接入的小区发送第一小区的标识,或者,所述第一指示信息指示所述终端设备保存第一测量结果,其中,所述根据所述重定向信息所接入的小区是属于第一频点的小区。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一消息还包括第二指示信息,其中,所述第二指示信息指示所述第一测量结果中需要包括第二频点和/或第一制式的小区的测量结果。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述第一测量结果是所述终端设备在小区重选过程中获得的测量结果。
  10. 一种通信方法,其特征在于,包括:
    生成第一测量结果,其中,所述第一测量结果包括终端设备在第一小区获得的至少一个小区的测量结果,所述第一小区是所述终端设备收到重定向信息时所在的服务小区;
    向第一网络设备发送所述第一测量结果,其中,所述第一网络设备是所述终端设备在收到重定向信息之后所接入的第二小区所属的网络设备,所述第一小区属于第二网络设备。
  11. 根据权利要求10所述的方法,其特征在于,所述向第一网络设备发送所述第一测量结果之前还包括:
    从所述第二网络设备接收第一消息,其中,所述第一消息指示终端设备重定向到第一频点的小区,所述第一消息包括所述重定向信息;
    其中,所述第二小区的频点为所述第一频点。
  12. 根据权利要求11所述的方法,其特征在于,所述第一消息包括用于触发所述终端设备发送第一测量结果的第一指示信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息指示所述终端设备向根据所述重定向信息所接入的小区发送第一测量结果,或者,所述第一指示信息指示所述终端设备向根据所述重定向信息所接入的小区发送第一小区的标识,或者,所述第一指示信息指示所述终端设备保存第一测量结果,其中,所述根据所述重定向信息所接入的小区属于第一频点的小区。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一消息还包括第二指示信息,其中,所述第二指示信息指示所述第一测量结果中需要包括第二频点和/或第一制式的小区的测量结果。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述第一测量结果是所述终端设备在小区重选过程中获得的测量结果。
  16. 根据权利要求11所述的方法,其特征在于,所述向第一网络设备发送所述第一测量结果包括:
    确定所述终端设备支持所述第一频点和所述第一测量结果中所述第二小区的第一邻区的频点的双链接或者载波聚合;
    向所述第一网络设备发送所述第一邻区的测量结果。
  17. 根据权利要求10-16所述的方法,其特征在于,所述第一测量结果用于所述第一网络设备为所述终端设备配置载波聚合CA和/或双连接DC。
  18. 一种通信装置,其特征在于,所述装置包括用于实现如权利要求1-5任一项所述的方法的至少一个模块。
  19. 一种通信装置,其特征在于,所述装置包括用于实现如权利要求6-9任一项所述的方法的至少一个模块。
  20. 一种通信装置,其特征在于,所述装置包括用于实现如权利要求10-16任一项所述的方法的至少一个模块。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被运行时,使得如权利要求1至17任一项所述的方法被执行。
  22. 一种通信系统,其特征在于,包括如权利要求18-20任一项所述的通信装置。
  23. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码被运行时,使得如权利要求1至17任一项所述的方法被执行。
PCT/CN2022/136873 2021-12-13 2022-12-06 通信方法及装置 WO2023109575A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111522756.9 2021-12-13
CN202111522756.9A CN116264701A (zh) 2021-12-13 2021-12-13 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023109575A1 true WO2023109575A1 (zh) 2023-06-22

Family

ID=86723292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136873 WO2023109575A1 (zh) 2021-12-13 2022-12-06 通信方法及装置

Country Status (2)

Country Link
CN (1) CN116264701A (zh)
WO (1) WO2023109575A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111107591A (zh) * 2018-10-26 2020-05-05 电信科学技术研究院有限公司 一种进行切换的方法及设备
WO2021015561A1 (en) * 2019-07-25 2021-01-28 Lg Electronics Inc. Method and apparatus for measurement reporting during a conditional pcell handover in a wireless communication system
CN112702768A (zh) * 2019-10-22 2021-04-23 中国移动通信有限公司研究院 双连接切换方法、装置、基站及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111107591A (zh) * 2018-10-26 2020-05-05 电信科学技术研究院有限公司 一种进行切换的方法及设备
WO2021015561A1 (en) * 2019-07-25 2021-01-28 Lg Electronics Inc. Method and apparatus for measurement reporting during a conditional pcell handover in a wireless communication system
CN112702768A (zh) * 2019-10-22 2021-04-23 中国移动通信有限公司研究院 双连接切换方法、装置、基站及终端

Also Published As

Publication number Publication date
CN116264701A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
TWI687122B (zh) 多連接配置之方法及其使用者設備
US9860835B2 (en) Method for cell selection in multi-rat environment
US20140335882A1 (en) Method for configuring dual connectivity
US20240064600A1 (en) Handover processing method, terminal, and storage medium
CN108713330A (zh) 用于网络控制的切换和ue自主切换的混合方案
US20180242226A1 (en) Ap group information processing method and enb
US20220394604A1 (en) Method for providing network slice, and communication apparatus
EP4171108A1 (en) Report transmission method, apparatus and system
US20230239767A1 (en) Network access method, network access apparatus, terminal, and network-side device
WO2024103920A1 (zh) 拥塞处理方法及装置、终端设备及存储介质
US10264521B2 (en) System and method for paging in a communications system
US20230164685A1 (en) Access Control Method and Apparatus for Terminal Device
US20230224741A1 (en) Carrier configuration method and apparatus
WO2023011424A1 (zh) 中继通信方法、通信装置和通信系统
WO2023109575A1 (zh) 通信方法及装置
JP2023531807A (ja) セル選択方法及び装置
CN111801963A (zh) 多无线电接入技术双连接中的移动性中断减少
WO2022083518A1 (zh) 无线通信方法与装置、终端和存储介质
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
WO2024045882A1 (zh) 服务小区选择方法和装置
WO2023004545A1 (zh) 通信方法及通信装置
US20230370922A1 (en) Method for entering connected mode, and terminal device
WO2024016933A1 (zh) 一种小区搜索方法以及通信装置
WO2022262506A1 (zh) 中继通信的方法、装置和系统
WO2023039829A1 (zh) 无线通信方法、终端设备以及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906325

Country of ref document: EP

Kind code of ref document: A1