WO2022151404A1 - 基于接入回传一体化的通信方法及装置 - Google Patents

基于接入回传一体化的通信方法及装置 Download PDF

Info

Publication number
WO2022151404A1
WO2022151404A1 PCT/CN2021/072283 CN2021072283W WO2022151404A1 WO 2022151404 A1 WO2022151404 A1 WO 2022151404A1 CN 2021072283 W CN2021072283 W CN 2021072283W WO 2022151404 A1 WO2022151404 A1 WO 2022151404A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab
node
communication device
iab node
frequency domain
Prior art date
Application number
PCT/CN2021/072283
Other languages
English (en)
French (fr)
Inventor
袁世通
刘凤威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112023014183A priority Critical patent/BR112023014183A2/pt
Priority to PCT/CN2021/072283 priority patent/WO2022151404A1/zh
Priority to EP21918608.7A priority patent/EP4266787A4/en
Priority to JP2023542947A priority patent/JP2024504301A/ja
Priority to CN202180089157.4A priority patent/CN116686358A/zh
Priority to KR1020237027394A priority patent/KR20230133879A/ko
Publication of WO2022151404A1 publication Critical patent/WO2022151404A1/zh
Priority to US18/352,865 priority patent/US20230362727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0864Load balancing or load distribution among access entities between base stations of different hierarchy levels, e.g. Master Evolved Node B [MeNB] or Secondary Evolved node B [SeNB]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device based on the integration of access and backhaul.
  • a wireless relay node establishes a connection with the core network through a wireless backhaul link, which can save some fiber deployment costs.
  • a relay node establishes a wireless backhaul link with one or more upper nodes (also referred to as upstream nodes), and accesses the core network through the upper nodes.
  • the upper node can perform certain control (eg, data scheduling, timing modulation, power control, etc.) on the relay node through various signaling.
  • a relay node may serve multiple subordinate nodes (which may also be referred to as downstream nodes).
  • the upper-level node of the relay node may be a base station or another relay node; the lower-level node of the relay node may be a terminal device or another relay node.
  • In-band relay is a relay scheme in which the backhaul link and the access link share the same frequency band.
  • IAB node The in-band relay scheme of new radio (NR) is called integrated access and backhaul (IAB), and the relay node is called IAB node (IAB node).
  • the IAB node may include a mobile terminal (mobile-Termination) (also referred to as IAB MT) and a distributed unit (distributed unit, DU) (also referred to as IAB DU).
  • the present application provides a communication method and device based on the integration of access and backhaul, which can effectively ensure that the mobile terminal (mobile-termination, MT) of the IAB node and the distributed unit (distributed unit, DU) of the IAB node work synchronously.
  • the present application provides a communication method based on the integration of access and backhaul, the method comprising:
  • the IAB node reports first information to the host node of the IAB node, where the first information is used to indicate a first condition, and the first condition is the mobile terminal MT of the IAB node and the distributed unit of the IAB node Condition when DU works synchronously; under the first condition, the DU of the IAB node communicates with the subordinate node or terminal device of the IAB node, and in synchronization, the MT of the IAB node communicates with the superior of the IAB node Node communication.
  • the MT of the IAB node may also be referred to as the IAB MT
  • the DU of the IAB node may also be referred to as the IAB DU.
  • the conditions when the IAB MT works synchronously with the IAB DU include: the conditions when the first carrier of the IAB MT works synchronously with the first cell of the IAB MT. That is to say, under the first condition, the IAB DU provides services for the lower node or UE of the IAB node in the first cell, and the synchronous IAB MT communicates with the upper node of the IAB node through the first carrier. It can be understood that, regarding the introduction of the synchronous work of the IAB DU and the IAB MT, reference may also be made to the implementation manners shown below, which will not be described in detail here.
  • the synchronous work shown in this application can also be understood as simultaneous work.
  • the first condition is a condition when the IAB MT and the IAB DU work simultaneously.
  • the IAB DU communicates with the lower node or UE of the IAB node
  • the IAB MT communicates with the upper node of the IAB node. It can be understood that for this description, other embodiments shown in this application are also applicable.
  • the IAB node increases the restriction condition for the synchronization work of the IAB node by reporting the first information. Therefore, the IAB node can communicate with its upper-level node or lower-level node or UE, etc. on the basis of the restriction condition. That is to say, through the technical solution provided in this application, the IAB node can ensure that the IAB MT and the IAB DU can work synchronously on the basis of certain restrictive conditions (that is, the above-mentioned first condition). For example, the IAB MT and the IAB DU can be more A good implementation of synchronous reception or synchronous transmission, etc.
  • the IAB node reports first indication information to the home node of the IAB node, where the first indication information is used to indicate that the MT of the IAB node is synchronized with the DU of the IAB node When working, whether the first condition needs to be met.
  • the host node can be clearly informed by the first indication information whether the first condition needs to be satisfied when the IAB MT and the IAB DU work synchronously.
  • the first indication information may be used to indicate the limit shown in Table 2 below. In this case, the first indication information may be used to indicate that when the IAB DU and the IAB MT work synchronously, the first indication needs to be satisfied. condition.
  • the first indication information may indicate that when the IAB DU and the IAB MT work synchronously, the IAB MT needs to meet the conditions of the available frequency domain resources shown below, which will not be described in detail here.
  • the first indication information may be used to indicate the supported (supported) shown in Table 2 below. In this case, the first indication information may be used to indicate that the IAB DU and the IAB MT unconditionally support synchronous operation.
  • the first condition includes: available frequency domain resources of the MT of the IAB node when the MT of the IAB node works synchronously with the DU of the IAB node.
  • the technical solution provided by this application by reporting the available frequency domain resources of the IAB MT, can make the host node configure resources for the IAB MT or the IAB DU according to the available frequency domain resources.
  • the host node can be informed of the frequency domain resources used for communication in the IAB MT if the IAB MT and the IAB DU need to work synchronously.
  • the available frequency domain resources include any one or more of the following: a starting physical resource block (PRB) of the available frequency domain resources; the available frequency domain resources Absolute radio frequency channel number (absolute radio frequency channel number, ARFCN); the number of resource blocks RB of the available frequency domain resources.
  • PRB physical resource block
  • ARFCN absolute radio frequency channel number
  • the first condition includes: when the MT of the IAB node works synchronously with the DU of the IAB node, the expected transmit power of the DU of the upper node, and/or the IAB The expected transmit power of the MT of the IAB node when the MT of the node works synchronously with the DU of the IAB node.
  • the technical solution provided by the present application enables the host node to determine the power parameter according to the expected transmission power of the DU of the upper node reported by the IAB node by reporting the transmission power of the DU of the desired upper node. Therefore, the uplink transmission power determined by the upper node according to the above-mentioned power parameter will largely be the above-mentioned expected transmission power of the DU of the upper node.
  • the power difference between the uplink transmit power determined by the superior node according to the power parameter and the above-mentioned expected transmit power of the DU of the superior node may be within a certain range (eg, within an acceptable range).
  • the power difference between the received power when the IAB MT receives the signal of the DU from the upper node and the received power when the IAB DU receives the signal from the lower node or the UE is within a certain range (such as the first numerical value range). etc.), which improves the problem of performance loss due to the excessive power difference between the received power of the IAB MT and the received power of the IAB DU.
  • the host node determines the power parameter according to the expected transmit power of the IAB MT. Therefore, the uplink transmit power of the IAB MT determined by the IAB node according to the power parameter may be the same as the expected transmit power of the IAB MT, or the power difference between the two may be within a certain range. Furthermore, the power difference between the uplink transmit power when the IAB MT sends a signal to its superior node and the transmit power when the IAB DU sends a signal to its inferior node or UE can be guaranteed to be within a certain range as much as possible, which improves the IAB MT and the UE. The transmission power difference between IAB DUs is too large, resulting in serious interference, which can effectively reduce the interference between IAB MT and IAB DU.
  • the first condition includes any one or more of the following:
  • the port number of the MT of the IAB node is the port of the demodulation reference signal DMRS used for data transmission and/or data demodulation number;
  • the number of ports of the DU of the IAB node is the demodulation reference signal DMRS used for data transmission and/or data demodulation The number of ports; the number of layers of the IAB node when the MT of the IAB node works synchronously with the DU of the IAB node.
  • the first information includes indication information used to indicate a reference sub-carrier spacing (SCS), where the reference SCS is used to determine the bandwidth length of the available frequency domain resources .
  • SCS sub-carrier spacing
  • the reference SCS may be the SCS of the serving cell of the IAB MT.
  • the method further includes: the IAB node sending second information to an upper node of the IAB node, where the second information is used to indicate a first frequency domain resource, the first The frequency domain resources are included in the available frequency domain resources of the MT of the IAB node.
  • the second information includes second indication information, where the second indication information is used to indicate a starting resource block RB of the first frequency domain resource and the first frequency domain resource the number of RBs.
  • the second indication information is an index value
  • the index value is used to indicate the starting RB of the first frequency domain resource and the number of RBs of the first frequency domain resource.
  • the second information includes third indication information
  • the third indication information includes N bits
  • each bit in the first N-1 bits of the N bits is used for Indicates whether a preset number of PRBs are available
  • the last bit in the N bits is used to indicate whether the remaining number of PRBs is available
  • the remaining number is based on the number of PRBs included in the first frequency domain resource and the The number of PRBs corresponding to the N-1 bits is determined, and the N is an integer greater than 0.
  • the second information further includes fourth indication information, where the fourth indication information is used to indicate a working mode of the IAB node, and the working mode of the IAB node includes any one of the following :
  • the DU of the IAB node receives the signal from the lower node of the IAB node or the terminal device, and synchronously, the MT of the IAB node receives the signal of the upper node of the IAB node; the DU of the IAB node is directed to the IAB node.
  • the lower node of the IAB node or the terminal device sends a signal, and synchronously, the MT of the IAB node sends a signal to the upper node of the IAB node; the DU of the IAB node sends a signal to the lower node of the IAB node or The terminal device sends a signal, synchronously, the MT of the IAB node receives the signal from the upper node of the IAB node; the DU of the IAB node receives the signal from the lower node of the IAB node or the terminal device , synchronously, the MT of the IAB node sends a signal to the upper node of the IAB node.
  • the second information is included in medium access control-control element (medium access control-control element, MAC-CE) signaling.
  • medium access control-control element medium access control-control element, MAC-CE
  • the present application provides a communication apparatus for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication apparatus as described comprises means having means for performing the first aspect or the method in any possible implementation of the first aspect.
  • the communication device includes a processing unit and a transceiver unit.
  • a processing unit for the specific description of the processing unit and the transceiver unit, reference may be made to the embodiments shown below, which will not be described in detail here.
  • the present application provides a communication device, where the communication device includes a processor, configured to execute the method shown in the first aspect or any possible implementation manner of the first aspect.
  • the processor is configured to execute computer-executable instructions stored in the memory, so that the method shown in the above-mentioned first aspect or any possible implementation manner of the first aspect is performed.
  • the process of sending information (such as reporting the first information or second information, etc.) or receiving information (such as receiving information sent by the host node, etc.) in the above method can be understood as the output of the above-mentioned information by the processor.
  • the processor When outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. After the above-mentioned information is output by the processor, other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • the reporting of the first information mentioned in the foregoing method may be understood as the processor outputting the first information and the like.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the memory is located outside the communication device.
  • the memory is located within the communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication apparatus further includes a transceiver for receiving and/or transmitting signals.
  • the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit is coupled to the interface, the interface is used for outputting first information; the logic circuit is used for Under the first condition, communicate with the lower node or terminal device of the communication device, and communicate with the upper node of the communication device synchronously.
  • the logic circuit shown here is used to communicate with the lower node or terminal device of the communication device under the first condition, and communicate with the upper node of the communication device synchronously, and it can also be understood as: the logic circuit , through the interface, under the first condition, communicate with the lower node or terminal device of the communication device, and communicate with the upper node of the communication device synchronously.
  • the interface is used to output the first indication information.
  • the interface is further used to output the second information.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, which, when running on a computer, enables the first aspect or any possible implementation of the first aspect The method shown is executed.
  • the present application provides a computer program product, the computer program product comprising a computer program or computer code, when it is run on a computer, the above-mentioned first aspect or any possible implementation of the first aspect is shown. method is executed.
  • the present application provides a computer program, when the computer program runs on a computer, the method shown in the first aspect or any possible implementation manner of the first aspect is executed.
  • FIG. 1 is a schematic structural diagram of an IAB node provided by an embodiment of the present application.
  • FIGS. 2a to 2c are schematic diagrams of a network architecture of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scenario of IAB space division reception provided by an embodiment of the present application.
  • 4a and 4b are schematic diagrams of frequency division multiplexing of an IAB node provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of frequency domain resources of an IAB MT and an IAB DU provided by an embodiment of the present application;
  • FIGS. 6 and 7 are schematic flowcharts of an IAB-based communication method provided by an embodiment of the present application.
  • FIG. 8 a is a schematic flowchart of reusing capability information on an IAB node provided by an embodiment of the present application.
  • FIG. 8b is a schematic flowchart of an IAB node reporting first information according to an embodiment of the present application.
  • FIG. 9 is a bit schematic diagram of a second information provided by an embodiment of the present application.
  • 10 to 12 are schematic structural diagrams of a communication device provided by an embodiment of the present application.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (item) means two or three and three
  • “and/or” is used to describe the relationship of related objects, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and both A and B exist three a situation.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items. For example, at least one (a) of a, b or c, can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ".
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • IoT Internet of Things
  • NB-IoT narrowband Internet of Things
  • WiFi wireless fidelity
  • 5G 5th generation
  • NR new radio
  • the technical solutions provided in this application can also be applied to machine type communication (MTC), long term evolution-machine (LTE-M), and device-to-device (D2D) networks.
  • M2M Machine to Machine
  • IoT Internet of Things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as vehicle-to-everything (V2X, X can represent anything), for example, the V2X can include: vehicle-to-vehicle (Vehicle to vehicle, V2V) communication, Vehicle to infrastructure (V2I) communication, vehicle to pedestrian (V2P) or vehicle to network (V2N) communication, etc.
  • V2X vehicle-to-everything
  • the terminal device can communicate with the terminal device through the D2D technology, the M2M technology, or the V2X technology.
  • the terminal device in this application is a device with wireless transceiver function.
  • a terminal device may communicate with an access network device (or may also be referred to as an access device or a network device, etc.) in a radio access network (radio access network, RAN).
  • radio access network radio access network
  • Terminal equipment may also be referred to as user equipment (UE), access terminal, terminal (terminal), subscriber unit (subscriber unit), subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent or user device, etc.
  • terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, a sensor, a terminal in the Internet of Things, a terminal in the Internet of Vehicles, a fifth generation (5th generation, 5G) ) network and any form of terminal equipment in the future network, etc., which are not limited in this application.
  • terminal equipment shown in this application may not only include vehicles (such as complete vehicles) in the Internet of Vehicles, but also include in-vehicle devices or vehicle-mounted terminals in the Internet of Vehicles.
  • vehicle such as complete vehicles
  • vehicle-mounted terminals in the Internet of Vehicles.
  • the specific form is not limited.
  • the terminal device is hereinafter referred to as UE.
  • the network device in this application may be a device deployed in a wireless access network to provide wireless communication services for terminal devices.
  • the network device may also be referred to as an access device or a RAN device or an access network device or the like.
  • the network equipment may include, but is not limited to: a next generation node B (gNB) in the 5G system, an evolved node B (eNB) in the LTE system, a radio network controller (RNC) ), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved nodeB, or home node B, HNB), baseband unit (base band unit, BBU), transmitting and receiving point (TRP), transmitting point (transmitting point, TP), small base station equipment (pico), mobile switching center or network equipment in future networks, etc.
  • gNB next generation node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS home base station
  • home evolved nodeB home evolved nodeB, or home node B, HNB
  • baseband unit base band unit
  • TRP transmit
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a wearable device or a vehicle-mounted device.
  • the network device may also be a device carrying base station functions in D2D, V2X, or M2M, etc.
  • the specific type of the network device is not limited in this application. In systems of different wireless access technologies, the names of devices with network device functions may be different.
  • the network device may include a centralized unit (centralized unit, CU), a distributed unit (distributed unit, DU), and the like.
  • the CU can also be divided into CU-control plane (CP) and CU-user plan (UP), etc.
  • the network device may also be an open radio access network (open radio access network, ORAN) architecture, etc. This application does not limit the specific deployment method of the network device.
  • the network equipment shown above can also be called a donor base station, also can be called a host node or an IAB donor node, etc.
  • the embodiment of this application does not limit the name of the network equipment in the IAB system. .
  • the network device is hereinafter referred to as a host node.
  • the IAB node may include a mobile terminal (mobile-Termination) (also called IAB MT) and a distributed unit (distributed unit, DU) (also called IAB DU), as shown in FIG. 1 .
  • the MT can be understood as a component similar to a terminal device (eg, UE) in the IAB node, and the MT can also be referred to as a function residing on the IAB node. Since the MT is similar to the function of a common UE, it can be understood that the IAB node accesses the upper-level node (or called the parent node) or the upper-level network through the MT.
  • the DU is relative to the centralized unit (CU) function in the network equipment.
  • a DU can be understood as a base station functional module of an IAB node, that is, an IAB node can communicate with a subordinate node (or called a sub-node) or a UE through the DU.
  • Both the MT and the DU of the IAB node can have a complete transceiver module, and there is an interface between the two.
  • the MT and the DU are logical modules, and in practical applications, the MT and the DU may share some sub-modules, such as sharing a transceiver antenna, a baseband processing module, and the like.
  • the upper-level node may be a base station or other IAB nodes, etc.
  • the lower-level node may be other IAB nodes and the like.
  • FIG. 2a is a schematic diagram of a network architecture of a communication system provided by an embodiment of the present application.
  • the IAB node may provide wireless access and wireless backhaul of the access service for the terminal device.
  • the host node can provide the wireless backhaul function to the IAB node and provide the interface between the terminal device and the core network. That is to say, the IAB node can be connected to the host node through the wireless backhaul link, so that the terminal equipment served by the IAB node is connected to the core network.
  • the host node may include CUs and DUs.
  • the CU includes the radio resource control (RRC) layer and the packet data convergence protocol (PDCP) layer of the original LTE base station
  • the DU includes the radio link control (radio link control, RLC) layer, media access control sublayer (media access control, MAC) layer and physical layer (physical layer, PHY).
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the CU and the DU can be physically connected by optical fibers, and there is a specially defined F1 interface logically, which is used for communication between the CU and the DU.
  • CU is mainly responsible for radio resource control and configuration, cross-cell mobility management, bearer management, etc.
  • DU is mainly responsible for scheduling, physical signal generation and transmission, etc.
  • the F1 interface application protocol (F1 application, F1-AP) data packet generated by the CU of the host node is encapsulated into IP Packets are transmitted between multi-hop nodes on the air interface.
  • F1-AP data packet reaches IAB node 1, it is processed at the adaptation layer of the IAB MT, and then the F1-AP data packet is transferred to the local IAB DU for processing, and finally the F1-AP data packet is parsed in the IAB DU.
  • the IAB node 1 can communicate with the host node through the MT and communicate with the IAB node 2 through the DU. And the IAB node 1 can also communicate with the terminal device 2 through the DU.
  • the host node can not only provide services for the IAB node 1 , but also provide services for the terminal device 1 . It can be understood that, in the network architecture shown in FIG. 2 a , the subordinate node of the IAB node 1 may be the terminal device 2 or the IAB node 2 .
  • the link between the MT and the upper-level node is called the upper-level backhaul link (parent backhaul link), and the DU and the lower-level IAB node (the IAB node 2 shown in Figure 2a)
  • the communication link is called the child backhaul link, and the link through which the DU communicates with its subordinate terminal equipment (terminal equipment 2 shown in Figure 2a) is called the access link.
  • An IAB node can connect to a host node through multiple levels of superior nodes.
  • the lower-level backhaul link may also be called an access link, etc., and the embodiment of the present application does not limit the name of the lower-level backhaul link.
  • the upper backhaul link includes an upper backhaul uplink (uplink, UL) and an upper backhaul downlink (downlink, DL), and the lower backhaul link includes a lower backhaul UL and a lower backhaul DL,
  • the access link includes access UL and access DL, as shown in Figure 2b.
  • the network architecture may not be limited to include a terminal device, an IAB node and a host node.
  • the network architecture may also include core network equipment or equipment for carrying virtualized network functions, etc., which will not be described in detail here.
  • the present application does not limit the number of terminal devices, IAB nodes and host nodes included in the network architecture.
  • FIG. 2c is a schematic diagram of another network architecture provided by an embodiment of the present application.
  • the network architecture includes one terminal device, multiple IAB nodes (IAB node 1, IAB node 2 and IAB node 3 in Fig. 2c) and a host node.
  • Terminal devices can access the host node through two paths. One of the paths passes through the terminal device, the IAB node 2, the IAB node 1 and the host node in sequence. The other path goes through the terminal device, IAB node 2, IAB node 3, IAB node 1 and the host node in sequence.
  • the terminal device accesses the host node through multiple paths, which can be understood as a multi-connection wireless backhaul scenario, which can ensure the reliability of service transmission.
  • FIG. 2a and FIG. 2c are only examples, and the application does not limit the specific form or specific networking scenario in the network architecture.
  • the scenario of space division multiplexing can be shown in Figure 3.
  • the IAB node 1 synchronously (also can be understood as simultaneously) receives the downlink signal sent by the upper node on the backhaul link, and the upper and lower nodes on the access link. (such as IAB node 2 or terminal equipment) to send the uplink signal.
  • FIG. 3 shows a space division reception scenario of an IAB node.
  • the IAB node may also synchronously (also can be understood as simultaneously) send a signal to the upper node and send a signal to the lower node, that is, a space division sending scenario of the IAB node.
  • frequency division multiplexing mainly refers to frequency division multiplexing between IAB MT and IAB DU. That is, IAB MT and IAB DU can realize frequency division multiplexing by using resources in different frequency domains. Through frequency division multiplexing, the IAB MT and the IAB DU can effectively improve the mutual influence of the signals sent and received between the IAB MT and the IAB DU (for example, the mutual influence can be reduced).
  • FIG. 4a is a schematic diagram of frequency division multiplexing between an IAB MT and an IAB DU provided by an embodiment of the present application.
  • IAB MT and IAB DU can use different frequency domain resources.
  • IAB MT communicates with the upper-level node of the IAB node through frequency domain resource 1 (ie, 1 shown in Figure 4a).
  • the IAB DU communicates with the subordinate node of the IAB node or the UE through the frequency domain resource 2 (that is, 2 shown in FIG. 4a ). That is, the IAB DU can provide access services for the subordinate nodes or UEs of the IAB node through the frequency domain resource 2.
  • the scenario is downlink full-duplex.
  • the IAB MT sends uplink data to the upper-level node through frequency domain resource 1
  • the IAB DU receives the uplink data sent by the lower-level node or UE of the IAB node through frequency domain resource 2
  • the scenario is uplink full-duplex.
  • FIG. 4b is a schematic diagram of frequency division multiplexing in a multi-connection wireless backhaul scenario provided by an embodiment of the present application.
  • the MT of the IAB node can communicate through different upper-level nodes with different frequency domain resources.
  • Figure 4b only exemplarily shows two upper nodes of the IAB node, for example, the IAB MT can communicate with the upper node 1 and the upper node 2 respectively through different frequency domain resources.
  • the IAB MT and the IAB DU are time-division multiplexed, that is, the IAB MT and the IAB DU can transmit signals on different OFDM symbols.
  • the synchronization work shown in this application mainly refers to the synchronization work between the IAB MT and the IAB DU.
  • synchronization work may include:
  • the IAB DU receives the signal from the lower node or UE of the IAB node
  • the IAB MT receives the signal from the upper node of the IAB node (that is, the IAB DU and the IAB MT support synchronous reception, denoted as DU_RX/MT_RX).
  • the IAB DU sends a signal to the lower node or UE of the IAB node
  • the IAB MT sends a signal to the upper node of the IAB node (that is, the IAB DU and the IAB MT support synchronous transmission, denoted as DU_TX/MT_TX).
  • the IAB DU sends a signal to the subordinate node of the IAB node or the UE, and synchronously, the IAB MT receives the signal from the upper-level node of the IAB node (that is, the synchronous IAB MT that the IAB DU supports to send and supports to receive, denoted as DU_TX/MT_RX).
  • the IAB DU receives a signal from the subordinate node of the IAB node or the UE, and synchronously, the IAB MT sends a signal to the superior node of the IAB node (that is, the synchronous IAB MT that the IAB DU supports to receive is supported to send, denoted as DU_RX/MT_TX).
  • the synchronous operation of the IAB MT and the IAB DU includes: synchronous operation of the first carrier (carrier, CC) of the IAB MT and the first cell (cell) of the IAB DU.
  • the IAB DU provides services for the subordinate nodes or UEs of the IAB node in the first cell (also referred to as the IAB DU provides access services for the subordinate nodes or UEs of the IAB node in the first cell), synchronously, the IAB MT passes The first carrier communicates with the superior node of the IAB node.
  • synchronization work may include:
  • the IAB DU receives the signal from the subordinate node or UE of the IAB node in the first cell, and synchronously, the IAB MT receives the signal from the superior node of the IAB node through the first carrier (for example, the first cell of the IAB DU and the IAB
  • the first carrier of the MT supports synchronous reception).
  • the IAB DU sends a signal to the subordinate node or UE of the IAB node in the first cell
  • the IAB MT sends a signal to the upper node of the IAB node through the first carrier (for example, the first cell of the IAB DU and the IAB node for short)
  • the first carrier of the MT supports synchronous transmission).
  • the IAB DU sends a signal to the lower node or UE of the IAB node in the first cell, and synchronously, the IAB MT receives the signal from the upper node of the IAB node through the first carrier (for example, the first cell that can be referred to as the IAB DU supports transmit, synchronized, IAB MT's first carrier supports receive).
  • the first carrier for example, the first cell that can be referred to as the IAB DU supports transmit, synchronized, IAB MT's first carrier supports receive.
  • the IAB DU receives a signal from a subordinate node or UE of the IAB node in the first cell, and synchronously, the IAB MT sends a signal to the upper-level node of the IAB node through the first carrier (for example, the first cell that can be referred to as the IAB DU supports receive, synchronous, the first carrier of IAB MT supports transmit).
  • the first carrier for example, the first cell that can be referred to as the IAB DU supports receive, synchronous, the first carrier of IAB MT supports transmit.
  • the synchronous operation described above may also be referred to as the duplex multiplexing mode or the operation mode of the IAB. That is to say, the above description of the synchronization operation is also applicable to the duplex multiplexing mode of the IAB node.
  • the duplex multiplexing mode supported by the IAB node may be different according to different implementation forms or hardware capabilities of the IAB section.
  • the IAB node can report its duplex multiplexing capability.
  • the IAB node can enable the host node to configure or coordinate the resources used by the IAB node for access and backhaul by uploading the application capability.
  • the IAB DU can report to the donor node (donor CU) whether a cell (cell) of the IAB DU and a serving cell (which can also be understood as a carrier) on the IAB MT can transmit or receive synchronously, that is, the IAB DU. retrieve ability information to the host node.
  • the multiplexing capability information is shown in Table 1.
  • the multiplexing capability information shown in Table 1 is configured for one IAB DU cell and one IAB MT serving cell (ie, CC).
  • a cell such as an IAB DU can be identified by a new radio (new radio, NR) cell identity (NR cell identity), and a cell of an MT can be identified by a configured serving cell (such as an IAB MT cell item).
  • supported (supported) means that the corresponding multiplexing capability is supported, and not supported (not supported) means that the corresponding multiplexing capability is not supported.
  • DU_RX/MT-RX in Table 1 indicates whether IAB DU and IAB MT support synchronous reception
  • DU_TX/MT_TX indicates whether IAB DU and IAB MT support synchronous transmission
  • DU_TX/MT_RX and DU_RX/MT_TX in Table 1 Reference may be made to the above description, which will not be described in detail here.
  • the simultaneous work includes: the IAB DU receives the signal from the lower node of the IAB node or the UE, and at the same time, the IAB MT receives the signal from the upper node of the IAB node (that is, the IAB DU and the IAB MT support simultaneous reception, denoted as DU_RX/ MT_RX).
  • the IAB DU sends a signal to the subordinate node of the IAB node or the UE, and at the same time, the IAB MT receives the signal from the upper-level node of the IAB node (that is, while the IAB DU supports sending, the IAB MT supports receiving, denoted as DU_TX/MT_RX).
  • the relationship between the simultaneous work and the synchronous work is only exemplarily described here, and the description of the simultaneous work and the synchronous work will not be described in detail in this application.
  • the synchronous work of the IAB DU and the IAB MT described below is described in some places that the IAB DU and the IAB MT work at the same time, which should not be construed as a limitation on this application.
  • the first condition that the IAB node needs to meet can be replaced by: IAB MT supports receiving, synchronous, IAB DU supports sending, in this case, the IAB node The first condition that needs to be met.
  • the first condition that the IAB node needs to meet can be replaced by: IAB MT supports sending, synchronous, IAB DU supports receiving. In this case, the IAB node needs to meet the the first condition. Similar descriptions will not be described in detail here.
  • the synchronization work of the IAB MT and the IAB DU can be understood as the first carrier of the IAB MT (which can also be understood as a certain carrier) and the first cell of the IAB DU (which can also be understood as a certain carrier). synchronization between cells).
  • the bandwidth occupied by the first carrier of the IAB MT and the bandwidth occupied by the first cell of the IAB DU may be respectively shown in FIG. 5 .
  • the bandwidth 2 occupied by the first cell of the IAB DU is often unavailable at the above-mentioned moment (that is, the moment when the IAB MT communicates with the superior node of the IAB node through bandwidth 1) .
  • the first carrier and the first cell shown in this application are only examples.
  • the present application provides an IAB-based communication method and device, which can effectively improve the waste of spectrum resources and help improve the spectrum efficiency of the network.
  • FIG. 6 is a schematic flowchart of an IAB-based communication method provided by an embodiment of the present application.
  • the method includes:
  • the IAB node reports first information to the host node of the IAB node, where the first information is used to indicate a first condition, and the first condition is a condition when the IAB MT and the IAB DU work synchronously.
  • the host node of the IAB node receives the first information.
  • the IAB MT is the MT of the IAB node
  • the IAB DU is the DU of the IAB node.
  • the conditions when the IAB MT works synchronously with the IAB DU include: the conditions when the first carrier of the IAB MT works synchronously with the first cell of the IAB MT.
  • the IAB DU provides services for the lower node or UE of the IAB node in the first cell, and synchronously, the IAB MT communicates with the upper node of the IAB node through the first carrier.
  • the method provided by the embodiments of the present application will be described below by taking the synchronous operation of the IAB MT and the IAB DU as an example.
  • the reporting of the first information by the IAB node to a donor node of the IAB node includes: the IAB DU reporting the first information to the donor node of the IAB node; or, the IAB DU reporting the first information to the IAB node through F1-AP signaling.
  • the host node reports the first information (that is, the first information may be included in the F1-AP signaling). By reporting the first information to the host node of the IAB node, the host node can configure or coordinate the resources used by the IAB node for access and return according to the first information.
  • the synchronous operation of the IAB MT and the IAB DU means that the IAB MT receives a signal from the upper node of the IAB node, and synchronously, the IAB DU receives the signal from the lower node or the UE of the IAB node.
  • the synchronization shown here can be considered without limitation that all actions of the IAB MT and the IAB DU are simultaneous. time point to receive the signal.
  • synchronization may mean that the IAB MT and the IAB DU receive signals synchronously within the same time period, or receive signals synchronously within the same time slot, or receive signals synchronously within the same orthogonal frequency division multiplexing (OFDM) ) Intrasymbol synchronous receive signal, etc.
  • OFDM orthogonal frequency division multiplexing
  • synchronization can also mean that the IAB MT and the IAB DU receive signals at the same time point, etc.
  • synchronization work illustrated by the IAB MT and the IAB DU supporting synchronous reception as an example.
  • the first information indicates that the first condition needs to be satisfied when the IAB MT and the IAB DU work synchronously.
  • the IAB node needs to report its frequency division multiplexing condition information to the host node. For example, when the IAB MT and the IAB DU support synchronous reception, the IAB node needs to meet the first condition. For another example, when the IAB MT and the IAB DU support synchronous reception, the IAB node needs to satisfy the first condition. For another example, when the IAB MT supports receiving and the IAB DU supports sending, the first condition that the IAB node needs to meet. For another example, when the IAB MT supports sending and the IAB DU supports receiving, the IAB node needs to meet the first condition.
  • the IAB node when the IAB node is connected to the network, or when the IAB node is connected to a new host node, the IAB node can re-use the capability information from the host node. It can be understood that, for the description of the multiplexing capability information, reference may be made to the synchronization work introduced above or Table 1, etc., which will not be described in detail here.
  • the first information when reusing the capability information on the IAB node, the first information may be reported to the host node, that is, the first information and the multiplexing capability information may be included in the same signaling, such as F1-AP signaling.
  • the multiplexing capability information reported by the IAB node and the first information may not be in the same signaling. It can be understood that when the IAB node reports the multiplexing capability information and the first information, it can be tacitly (that is, implicitly indicate) that when the IAB MT and the IAB DU work synchronously, the first condition needs to be satisfied.
  • the embodiment of the present application also provides another kind of multiplexing capability information, as shown in Table 2.
  • Supported in Table 2 indicates that the IAB MT and the IAB DU unconditionally support the corresponding multiplexed transmission.
  • supported means that IAB MT and IAB DU unconditionally support synchronous reception or synchronous transmission.
  • Not supported means that IAB MT and IAB DU do not support the corresponding multiplexing transmission.
  • Limited means that IAB MT and IAB DU support corresponding multiplexing transmission under certain conditions.
  • limited means that the IAB MT and the IAB DU support synchronous reception or synchronous transmission under the first condition. That is, the limited (limited) can expressly express whether the first condition needs to be satisfied when the IAB MT and the IAB DU work synchronously.
  • IAB MT and IAB DU work synchronously, which can be understood as any one or more of the following:
  • IAB MT and IAB DU unconditionally support synchronous reception (such as DU_RX/MT_RX in Table 2, and supported); IAB MT and IAB DU unconditionally support synchronous transmission (such as DU_TX/MT_TX in Table 2, and supported); In this case, while IAB MT supports receiving, IAB DU supports sending (such as DU_TX/MT_RX, and supported in Table 2); in the absence of conditions, while IAB MT supports sending, IAB DU supports receiving (such as Table 2).
  • IAB MT and IAB DU support synchronous reception under the first condition (such as DU_RX/MT_RX in Table 2, and limited) (it can also be understood as the first carrier of IAB MT and IAB DU
  • the first cell of the IAB MT supports synchronous reception
  • the IAB MT and the IAB DU support synchronous transmission under the first condition (such as DU_TX/MT_TX in Table 2, and limited) (it can also be understood as the first carrier of the IAB MT and the IAB DU.
  • the first cell supports simultaneous transmission); in the case of the first condition, while the IAB MT supports reception, the IAB DU supports transmission (such as DU_TX/MT_RX in Table 2, and limited) (it can also be understood as the first IAB MT While the carrier supports reception, the first cell of the IAB DU supports transmission); in the case of the first condition, while the IAB MT supports transmission, the IAB DU supports reception (such as DU_RX/MT_TX in Table 2, and limited) (also It can be understood that while the first carrier of the IAB MT supports sending, the first cell of the IAB DU supports receiving).
  • transmission such as DU_TX/MT_RX in Table 2, and limited
  • the IAB node may also report first indication information to the host node of the IAB node, where the first indication information is used to indicate the IAB Whether the first condition needs to be met when the MT and IAB DU work synchronously.
  • the first indication information can be understood as limited in Table 2, and the first information is used to indicate the first condition that the IAB MT and the IAB DU need to meet under the limited multiplexing capability information. It is understandable that the first information and the first indication information may be included in the same signaling, or may also be included in different signaling, which is not limited in this embodiment of the present application.
  • the method shown in FIG. 6 includes step 602 .
  • the host node configures resources for the IAB node.
  • the host node may configure resources for the IAB MT and/or the IAB DU. For example, taking DU_TX/MT_TX as an example, based on the multiplexing capability information reported by the IAB node and the first condition, the host node can configure hard type resources for the IAB DU in a certain time slot or symbol (that is, it means that the IAB DU is always available. resources), and the transmission direction is downlink (DL). For example, the IAB MT determines that the transmission direction is upstream according to the time division duplex (TDD) configuration. When the IAB MT is scheduled to transmit the uplink signal at the resource location, if the IAB DU synchronization also occurs in the downlink signal, it can work synchronously.
  • TDD time division duplex
  • the method shown in FIG. 6 includes step 603 .
  • the host node configures resources for the superior node of the IAB node.
  • the host node may configure resources for the DU of the superior node of the IAB node. It can be understood that for the specific description of the host node configuring resources for the IAB node or configuring resources for the DU of the upper node of the IAB node, reference may be made to relevant standards or protocols, etc., which will not be described in detail here.
  • the method shown in FIG. 6 may include step 601 , step 602 and step 604 .
  • the upper-level node of the IAB node may be a host node or the like, and the specific network architecture in this case is not limited in this embodiment of the present application.
  • the method shown in FIG. 6 may include steps 601 to 604 .
  • the upper-level node of the IAB node may be other IAB nodes, and the upper-level node of the other IAB node is the host node, such as the network architecture shown in FIG. 2a, the specific network architecture in this case is not limited in the embodiments of the present application . It is understandable that this embodiment of the present application does not limit the sequence of step 602 and step 603 .
  • the IAB DU communicates with the lower node or UE of the IAB node, and synchronously, the IAB MT communicates with the upper node of the IAB node.
  • the IAB DU shown in the embodiments of this application communicates with the lower-level node or UE of the IAB node, and synchronously, the IAB MT communicates with the upper-level node of the IAB node, which means that under the multiplexing capability information of the IAB node, the IAB DU communicates with the IAB node.
  • the subordinate node or UE communicates with the IAB MT, and the IAB MT communicates with the superior node of the IAB node.
  • the multiplexing capability information is to support synchronous reception, and the IAB node needs to satisfy the first condition. Then the IAB DU receives the signal from the lower node or UE of the IAB node, and the IAB MT receives the signal from the upper node of the IAB node. It is understandable that for the description of the multiplexing capability information, reference may be made to the respective descriptions shown above, and details are not repeated here.
  • the IAB node reports the first information, that is, on the basis of the multiplexing capability information, adding a restriction condition for supporting multiplexing. Therefore, the IAB node can communicate with its upper-level node or lower-level node or UE, etc. on the basis of the restriction condition. At the same time, the IAB node can be made to ensure that the IAB MT and the IAB DU can work synchronously on the basis of this restriction. For example, the IAB MT and the IAB DU can better achieve synchronous reception or synchronous transmission.
  • the first condition includes: available frequency domain resources of the IAB MT when the IAB MT and the IAB DU work synchronously. Or, the first condition includes: when the IAB MT works synchronously with the IAB DU, the frequency domain resources of the IAB MT are unavailable.
  • the IAB MT and the IAB DU when the IAB MT and the IAB DU work synchronously, the IAB MT and the IAB DU may be in a frequency division multiplexing mode, and thus, the frequency domain resources of the IAB MT and the IAB DU need not overlap.
  • the frequency domain resources of the IAB MT and the IAB DU overlap, or the occupied frequency domain resources are smaller than the guard band, either the IAB MT or the IAB DU will not work. Therefore, by reporting the available frequency domain resources of the IAB MT, the host node can be made to configure resources for the IAB MT or IAB DU according to the available frequency domain resources.
  • the host node can be informed of the frequency domain resources used by the IAB MT for communication if the IAB MT and the IAB DU need to work synchronously.
  • the available frequency domain resources may also include bandwidth resources available to the IAB MT. That is, the available frequency domain resources may include available bandwidth resources.
  • the available frequency domain resources include any one or more of the following:
  • the starting physical resource block (PRB) of the available frequency domain resource PRB
  • ARFCN Absolute radio frequency channel number
  • the number of resource blocks (RBs) of the available frequency domain resources is the number of resource blocks (RBs) of the available frequency domain resources.
  • the available frequency domain resources include the starting PRB.
  • the end PRB of the available frequency domain resource may be the last PRB in the bandwidth resource by default.
  • the bandwidth resource may be a frequency domain resource where the first carrier of the IAB MT is located.
  • the bandwidth resource may be the frequency domain resource of the serving cell (eg, the first carrier, etc.) of the IAB MT.
  • the available frequency domain resources include ending PRBs.
  • the starting PRB of the available frequency domain resource may be PRB 0.
  • the frequency domain resources of the serving cell or bandwidth part (BWP) are usually PRB0 in the order from low to high. Therefore, when the end of the PRB is indicated by the first information, the available frequency domain resources can be defaulted to The starting PRB of is PRB0.
  • the available frequency domain resources include ARFCN.
  • the ARFCN can be used to indicate the starting frequency of available frequency domain resources.
  • the available frequency domain resources include the number of RBs (which can also be understood as the frequency domain length of the available frequency domain resources).
  • the starting position of the available frequency domain resource may be PRB0 or the like, and this embodiment of the present application does not limit how the starting position is set.
  • the measurement of the frequency domain length of the available frequency domain resources in the unit of RB shown here is only an example.
  • the frequency domain length of the available frequency domain resources may also be measured in units of PRBs or resource elements (resource elements, REs).
  • the available frequency domain resources include the number of PRBs, or the number of REs, etc., which are not limited in this embodiment of the present application.
  • the available frequency domain resources are indicated by a common resource block (CRB).
  • CRB common resource block
  • the available frequency domain resources include a start position (which may also be referred to as a start position, etc.) and an end position (which may also be referred to as an end position, etc.) of the available frequency domain resources.
  • the start position and the end position can indicate the conditions that the frequency domain resources of the IAB MT need to meet when the IAB MT and the IAB DU work synchronously.
  • the starting position and ending position of the available frequency domain resources may be measured by any one of the following units: PRB, RB, or RE, and so on.
  • PRB Physical Broadband
  • RB Physical channels dedicated to Physical channels
  • the second row of Table 3 may indicate that the IAB DU and the IAB MT support synchronous reception, the starting PRB of the available frequency domain resources of the IAB MT is X1, and the ending PRB is X2.
  • the third row of Table 3 may indicate that the IAB DU and the IAB MT support synchronous transmission, and the starting PRB of the available frequency domain resources of the IAB MT is X3.
  • the end PRB of the available frequency domain resource of the IAB MT is the last PRB in the bandwidth resource.
  • the operation mode (operation mode) shown in Table 3 can be understood as the duplex multiplexing mode of the IAB node, that is, the multiplexing capability information of the IAB node.
  • Table 3 shows the re-use capability information and the first information on the IAB node as an example.
  • the working mode of frequency domain resource allocation is not explicitly configured, it is considered that the IAB node does not perform frequency division multiplexing.
  • the IAB node does not perform frequency division multiplexing. Nodes can perform time division multiplexing, etc.
  • the available frequency domain resources include ARFCN and the number of RBs. As shown in Table 4, the semi-static frequency division multiplexing resources are divided by indicating the starting frequency point and the number of RBs through ARFCN.
  • the second row of Table 4 indicates that the IAB DU and the IAB MT support synchronous reception, the starting frequency point of the available frequency domain resources of the IAB MT is Y1, and the number of RBs is Y2.
  • the third row of Table 4 indicates that the IAB DU and the IAB MT support synchronous transmission, the starting frequency of the available frequency domain resources of the IAB MT is Y3, and the number of RBs is Y4. It can be understood that Y1, Y2, Y3 and Y4 shown here are only examples, and the specific numerical values represented by them are not limited in the embodiments of the present application.
  • the available frequency domain resources of the IAB MT may also include the ARFCN and the end PRB, or the number of RBs and the start PRB, or the number of RBs and the end PRB, etc., which will not be described in detail here.
  • the host node needs to combine the sub-carrier spacing (SCS) to know the bandwidth resources of the IAB MT.
  • the available frequency domain resources include ARFCN and the number of RBs, and the number of RBs is 20 RBs.
  • the donor node needs to know the bandwidth resources of the IAB MT according to the subcarrier length corresponding to each RB.
  • the host node and/or the IAB node need to determine the bandwidth length of the available frequency domain resources of the IAB MT according to the reference SCS. That is, the reference SCS is used to determine the bandwidth length of the available frequency domain resources of the IAB MT. The following will explain in detail how to configure the reference SCS.
  • the reference SCS is the SCS of the serving cell of the IAB MT.
  • the reference SCS is the SCS of the first carrier of the IAB MT.
  • the reference SCS is the SCS of the serving cell (eg, the first carrier) of the IAB MT by default.
  • the reference SCS indicated in the first information is the SCS of the serving cell of the IAB MT.
  • the reference SCS is defined by the protocol, for example, the reference SCS is the SCS configured by the initial bandwidth part (initial bandwidth part, initial BWP, or default BWP) of the reference MT.
  • Method 3 Explicitly configure the reference SCS.
  • the first information includes indication information for indicating the reference SCS.
  • the IAB node reports fifth indication information to its home node, where the fifth indication information is used to indicate the reference SCS.
  • the reference SCS may be included in the first information, or the IAB node may also indicate the reference SCS to its home node through other information (eg, fifth indication information), and so on. SCS is not limited.
  • the IAB node reports the available frequency domain resources of its IAB MT to the host node, on the one hand, so that the host node can configure the access and return resources for the IAB DU according to the available frequency domain resources of the IAB MT;
  • the IAB DU can try to avoid the frequency domain resource overlapping the available frequency domain resource. Therefore, not only the waste of frequency domain resources as shown in FIG. 5 is improved, but also the spectral efficiency of the network is improved.
  • each of the above-mentioned embodiments is illustrated by taking the available frequency domain resources of the IAB MT as an example when the first condition includes that the IAB MT and the IAB DU work synchronously.
  • the first condition may also include the unavailable frequency domain resources of the IAB MT when the IAB MT and the IAB DU work synchronously.
  • the indication manner of the unavailable frequency domain resources of the IAB MT, etc. reference may be made to the description of the available frequency domain resources of the IAB MT, which will not be described in detail here.
  • the first condition includes: when the IAB MT works synchronously with the IAB DU, the expected transmit power of the DU of the upper node, and/or when the IAB MT works synchronously with the IAB DU, the expected transmit power of the IAB MT.
  • the first condition includes: when the first carrier of the IAB MT works synchronously with the first cell of the IAB DU, the expected transmit power of the DU of the upper node, and/or the difference between the first carrier of the IAB MT and the IAB DU The expected transmit power of the IAB MT when the first cell works synchronously.
  • the transmit power shown in the embodiments of the present application is only the transmit power of the DU of the desired upper node (hereinafter referred to as the desired first transmit power), or the desired transmit power of the IAB MT (hereinafter referred to as the desired second transmit power). transmit power).
  • the relevant node can still determine the transmission power of the DU of the upper node or the transmission power of the IAB MT according to other constraints and the like.
  • the desired first transmit power shown in this application may also be referred to as the reference transmit power of the DU of the upper node, and the desired second transmit power may also be referred to as the reference transmit power of the IAB MT.
  • the IAB DU and the IAB MT work synchronously, for example, when the received power of the IAB DU receives a signal and the received power of the IAB MT receives a signal, the difference is too large, which will lead to a loss of system performance. For another example, when the transmission power when the IAB DU sends a signal and the transmission power when the IAB MT sends a signal is too different, it will cause interference problems.
  • the synchronization work shown here is only an example, and the description of the synchronization work may also refer to the above, which will not be described in detail here.
  • the IAB node may report the desired first transmit power or the desired second transmit power to the host node.
  • Example 1 By reporting the expected first transmit power to its host node, the IAB node can make the host node configure relevant power parameters for the DU of the upper-level node according to the expected first transmit power (for example, it can be referred to as the first power parameter. ). That is, the first power parameter is determined according to the expected first transmit power. It is understandable that the first power parameter may be understood as one power parameter, or may be understood as multiple power parameters, etc., which is not limited in this embodiment of the present application. As for the specific parameters included in the first power parameter, the embodiment of the present application also does not limit it. Exemplarily, for the method of determining the power according to the power parameter, reference may be made to relevant standards or protocols, etc., which will not be described in detail here.
  • the upper node can determine the uplink transmission power of the upper node according to the first power parameter. Since the host node is the first power parameter determined according to the expected first transmission power reported by the IAB node, the uplink transmission power determined by the upper node according to the first power parameter is largely the above-mentioned expected first transmission power. Alternatively, the power difference between the uplink transmit power determined by the upper node according to the first power parameter and the above-mentioned expected first transmit power may be within a certain range (eg, within an acceptable range).
  • the power difference between the received power when the IAB MT receives the signal of the DU from the upper node and the received power when the IAB DU receives the signal from the lower node or UE can be guaranteed to be within a certain range (such as the first numerical value range). Wait).
  • Example 2 When the upper-level node of the IAB node is the host node, the IAB node reports the expected first transmit power to the host node.
  • the transmission power of the donor node may be made equal to the expected first transmission power as much as possible, or the power difference between the transmission power of the donor node and the expected first transmission power may be within a certain range. Therefore, the power difference between the received power when the IAB MT receives the signal from the host node and the received power when the IAB DU receives the signal from the subordinate node or the UE can also be guaranteed to be within a certain range.
  • the desired transmission power of the DU of the upper node can be determined by measuring the reference signal sent by the DU of the upper node according to the IAB MT. Specifically, the received power RSRP or SINR (Signal to Interference and Noise Ratio) of the downlink reference signal sent by the upper node DU may be measured.
  • the desired transmission power of the DU of the upper node can be determined according to the range of the received power of the IAB MT or the IAB DU, etc. The embodiment of the present application does not limit the specific value of the transmission power of the DU of the desired upper node.
  • the IAB node may indicate the expected first transmission power to the donor node through the power range of the expected first transmission power.
  • the first information includes the maximum value of the expected first transmission power and the minimum value of the expected first transmission power.
  • the IAB node may indicate the expected first transmission power to the donor node through an offset value of the expected first transmission power.
  • the first information includes a desired offset value of the first transmit power, such as -xdB.
  • Example 3 The IAB node reports the expected second transmit power to its host node, so that the host node can configure the relevant power parameters (for example, it can be referred to as the second power parameter) for the IAB MT according to the expected second transmit power. It can be understood that, for the description of the second power parameter, reference may be made to the above description of the first power parameter, which will not be described in detail here.
  • the IAB node determines the uplink transmit power of the IAB MT according to the second power parameter. Since the donor node is the second power parameter determined according to the expected second transmission power, the uplink transmission power of the IAB MT determined by the IAB node according to the second power parameter may be the same as the expected second transmission power, or it may be this The power difference between the two is within a certain range. Furthermore, the power difference between the uplink transmit power when the IAB MT sends a signal to its superior node and the transmit power when the IAB DU sends a signal to its inferior node or UE can be guaranteed to be within a certain range as much as possible.
  • the first information may include a desired reference power (nominal power) of the second transmit power and/or an offset value (eg -XdB) of the reference power.
  • a desired reference power nominal power
  • an offset value eg -XdB
  • the IAB node can effectively improve the system performance by reporting the above-mentioned expected first transmit power to the host node, and improve the problem that the received power when the IAB DU receives the signal is too different from the received power when the IAB MT receives the signal. .
  • the IAB node can effectively improve the interference problem by reporting the above-mentioned expected second transmit power to the host node, and improve the problem that the transmit power when the IAB DU sends a signal and the transmit power when the IAB MT sends a signal is too different.
  • the first condition includes any one or more of the following:
  • the number of ports of the IAB MT which is the number of ports of the demodulation reference signal (DMRS) used for data transmission and/or data demodulation;
  • DMRS demodulation reference signal
  • IAB MT works synchronously with IAB DU, the number of ports of IAB DU, which is the number of DMRS ports used for data transmission and/or data demodulation;
  • the IAB node may include a total of 4 TRX radio frequency channels, and the IAB node may expect to use two of them for backhaul and the other two for access, so as to realize space division transmission. Therefore, the IAB node can report the number of layers or ports, so that the host node can know the number of layers or ports available for the IAB node in a certain multiplexing scenario.
  • the available frequency domain resources, the desired first transmit power, the desired second transmit power, the number of ports or the number of layers shown above may be individually included in the first information, that is, the first information may include any of the above item. Alternatively, the first information may further include at least two items of the foregoing information, etc., which are not limited in this embodiment of the present application.
  • the IAB DU can re-use capability information (as shown in Table 1) to the host node, and the multiplexing capability information can be carried through the F1 interface application protocol.
  • the relevant information is configured through the application protocol through the F1 interface, the transmission delay is relatively large. In other words, when the relevant information needs to be updated in time, it is difficult to perform dynamic configuration through the F1 interface application protocol configuration.
  • the embodiments of the present application provide an IAB-based communication method and device, which can dynamically adjust the available frequency domain resources of the IAB MT.
  • FIG. 7 is a schematic flowchart of an IAB-based communication method provided by an embodiment of the present application.
  • the method includes:
  • the method shown in FIG. 7 includes step 701 .
  • step 701 For the description of step 701, reference may be made to FIG. 8a and FIG. 8b shown below, which will not be described in detail here.
  • the IAB node sends second information to an upper node of the IAB node, where the second information is used to indicate the first frequency domain resource.
  • the upper node of the IAB node receives the second information.
  • the second information may be included in a medium access control-control element (medium access control-control element, MAC-CE).
  • the IAB MT may send the second information to the upper node of the IAB node.
  • the upper-level node of the IAB node may be the host node, or may be other IAB nodes or the like.
  • the first frequency domain resource shown in the embodiment of the present application can be understood as the available frequency domain resource of the IAB MT, or the first frequency domain resource can also be understood as the unavailable frequency domain resource of the IAB MT.
  • the unavailable frequency domain resources of the IAB MT reference may be made to Figure 8a shown below, and the unavailable frequency domain resources will not be introduced here.
  • the first frequency domain resource may be included in the available frequency domain resources of the IAB MT shown in FIG. 6 , or the first frequency domain resource may be included in the unavailable frequency domain of the IAB MT shown in FIG. 6 . in the resource.
  • the available frequency domain resources of the IAB MT can be included in the serving cell of the IAB MT, such as a certain carrier of the IAB MT (such as the first shown above). carrier).
  • step 701 may include:
  • the IAB node reports the application capability information to its host node.
  • the host node receives the multiplexing capability information.
  • the multiplexing capability information includes any one of the following: IAB MT and IAB DU support synchronous reception, IAB MT and IAB DU support synchronous transmission, while IAB MT supports transmission, IAB DU supports transmission, and IAB MT supports reception. At the same time, IAB DU supports reception.
  • the host node configures resources for the IAB node.
  • the host node configures resources for the superior node of the IAB node.
  • step 7012 and step 7013 reference may be made to the above, and details are not repeated here.
  • the IAB node can also dynamically send the first frequency domain resource to the superior node of the IAB node.
  • the first frequency domain resource can be understood as the available frequency domain resource of the IAB MT when the IAB MT and the IAB DU work synchronously. That is to say, if the method shown in FIG. 7 is not combined with the method shown in FIG. 6 , the first frequency domain resource can be understood as the available frequency domain resource of the IAB MT when the IAB MT and the IAB DU work synchronously.
  • the embodiment of the present application does not limit it.
  • the superior node of the IAB node when the superior node of the IAB node does not receive the second information, the superior node of the IAB node can time-division multiplex the IAB MT of the sub-node and the IAB DU of the sub-node by default. That is, the upper node will not schedule the MT for transmission by frequency division multiplexing, that is, the upper node will not schedule the MT of the child node for transmission on the time resource where the DU of the child node is working.
  • the bandwidth resources required by IAB MT or IAB DU are often not constant due to the fluctuation of data throughput. If the semi-static configuration is performed through high-layer signaling, when the data transmission requirements on either side of the MT or DU are small, and the pre-allocated frequency domain resources are excessive/redundant, resources will be wasted. In the method shown in Fig. 6, the semi-static frequency domain resource division of the IAB MT and the IAB DU is realized. But IAB MT and IAB DU do not always work according to the bandwidth configured above. For example, IAB DU can use 100Mhz frequency domain resources in the bandwidth.
  • IAB MT and IAB DU need to work synchronously, IAB MT can only use 0 ⁇ 50Mhz in 100Mhz. Depending on the size of the data that needs to be transmitted at each moment, IAB MT may not always use 50Mhz when frequency division multiplexing with IAB DU. Therefore, the embodiment of the present application can also be combined with the method shown in FIG. 6 , so that the IAB MT can use its available frequency domain resources.
  • step 701 may include:
  • the IAB node reports the first information to its host node, where the first information is used to indicate the first condition, and the first condition is the condition when the IAB MT and the IAB DU work synchronously.
  • the host node receives the first information.
  • the first condition includes available frequency domain resources of the IAB MT, in this case, the first frequency domain resources are included in the available frequency domain resources of the IAB MT.
  • the first frequency domain resource can be understood as a subset of the available frequency domain resources of the IAB MT.
  • the host node configures resources for the IAB node.
  • the host node configures resources for the superior node of the IAB node.
  • the available frequency domain resources of the IAB MT reported by the default IAB node when the IAB MT and the IAB DU work synchronously, the available frequency domain resources of the IAB MT ), can be frequency division multiplexed. That is, all bandwidths of the IAB MT under the constraint of the first condition can be multiplexed in the frequency domain.
  • step 7015 and step 7016 reference may be made to the above, and details are not repeated here.
  • steps 7011 to 7013 and steps 7014 to 7016 can be understood as mutually independent embodiments, which do not mean that steps 7011 to 7016 are an embodiment.
  • the IAB node communicates with an upper-level node of the IAB node through the first frequency domain resource.
  • the available frequency domain resources of the IAB MT as described above may be included in the first carrier of the IAB MT. That is, the first frequency domain resource is also included in the first carrier. Therefore, the IAB MT communicates with the superior node of the IAB node through the first frequency domain resource. Or, the IAB MT communicates with the DU of the upper node of the IAB node through the first frequency domain resource.
  • the second information includes second indication information, where the second indication information is used to indicate the starting RB and the number of RBs of the first frequency domain resource.
  • the second indication information may be an index value, where the index value is used to indicate the starting RB and the number of RBs of the first frequency domain resource.
  • the IAB node can indicate the starting RB and the number of RBs of the first frequency domain resource to its upper node through an index value.
  • the relationship between the initial RB and the number of RBs of the first frequency domain resource and the index value may be as shown in Table 5.
  • Z1, Z2 and Z3 shown in Table 5 are only examples, and the specific values of Z1, Z2 and Z3 are not limited in the embodiments of the present application.
  • the values of the number of RBs such as Z11 to Z18, Z21 to Z28, Z31 to Z33, etc., are only the number of RBs related to the number of the initial RB, and the specific values of the above letters are not limited in the embodiments of the present application.
  • the starting RB corresponding to index 0 is Z1
  • the number of RBs is Z11.
  • the upper node of the IAB node can know that the number of the starting RB of the first frequency domain resource is Z1 according to the index value 0, and the number of RBs of the first frequency domain resource is Z11 .
  • Tables 5 and 6 are only examples, and the above-mentioned tables only exemplarily show combinations of some index values and their indicated bandwidths.
  • the measurement of the first frequency domain resource in the unit of RB is only an example.
  • the first frequency domain resource may also be measured in the unit of RE or PRB.
  • the second indication information is used to indicate the starting RE and the number of REs of the first frequency domain resource.
  • the second indication information is used to indicate the starting PRB and the number of PRBs (or the number of RBs) of the first frequency domain resource, and the like.
  • the second information may respectively include information for indicating the starting RB and the number of RBs of the first frequency domain resource.
  • the second information may include information used to indicate the starting RB of the first frequency domain resource, and information used to indicate the number of RBs of the first frequency domain resource.
  • the second information includes third indication information, where the third indication information includes N bits, and each bit in the first N-1 bits of the N bits is used to indicate a preset number Whether the PRB is available, the last bit of the N bits is used to indicate whether the remaining number of PRBs are available.
  • the remaining number is determined according to the number of PRBs included in the first frequency domain resource and the number of PRBs corresponding to N-1 bits, where N is an integer greater than 0.
  • the third indication information may be used to indicate that part of the bandwidth in the first frequency domain resource is available, and/or part of the bandwidth is unavailable.
  • the remaining number is determined according to the number of PRBs included in the available frequency domain resources of the IAB MT and the number of PRBs corresponding to N-1 bits, where N is an integer greater than 0.
  • the third indication information may be used to indicate that part of the bandwidth in the available frequency domain resources of the IAB MT is available, and/or part of the bandwidth is unavailable.
  • the remaining number is determined according to the number of PRBs included in the available frequency domain resources of the IAB MT and the number of PRBs corresponding to N-1 bits as an example, and the third indication information provided by the embodiment of the present application will be described in conjunction with a specific example.
  • N may be a fixed value, or N may be determined according to the number of PRBs included in the first frequency domain resource and a preset number, or N may be determined according to the number of PRBs included in the available frequency domain resources of the IAB MT and the preset number. Wait.
  • each of the first N-1 bits of the N bits is used to indicate whether a fixed number of PRBs are available.
  • the preset quantity can be understood as a fixed quantity, and the specific value of the fixed quantity is not limited in this embodiment of the present application.
  • the preset number is equal to any one of 10, 20, or 30, and so on.
  • the bandwidth of the first frequency domain resource is 200 MHz, and at the same time, the number of PRBs of the 200 MHz is 275, and the preset number is 20.
  • the third indication information includes 14 bits, and each of the first 13 bits is used to indicate whether 20 PRBs are available.
  • the preset number is shown by taking the preset number as a fixed number as an example.
  • the preset number may also be determined according to the bandwidth length and N of the first frequency domain resource.
  • the bandwidth of the first frequency domain resource is 200 MHz
  • the number of PRBs in the 200 MHz is 275
  • each of the first N-1 bits of the N bits is used to indicate whether 19 PRBs are available.
  • the 19 can be rounded down according to 275/14, that is, 275/14 ⁇ 19.64, and the 19.64 is rounded down to 19.
  • N can be configured by the protocol, for example, N is a fixed value.
  • N may also be determined according to the bandwidth of the first frequency domain resource and the number of PRBs indicated by each bit, etc. The specific value of N is not limited in this embodiment of the present application.
  • each bit shown above indicates whether a certain number of PRBs are available, and the unit of PRB is only an example.
  • the unit may also be RB or RE, for example, each bit may indicate whether a certain number of RBs are available, and for example, each bit may indicate whether a certain number of REs are available, and so on.
  • the second information includes information for indicating the first frequency domain resource, for example, the second information includes second indication information or third indication information.
  • the second information may also include fourth indication information, where the fourth indication information is used to indicate the working mode of the IAB node, and the working mode of the IAB node may include any of the following: IAB DU receiving The signal from the lower node or UE of the IAB node, and the IAB MT receives the signal of the upper node of the IAB node, that is, it can also be understood that the above-mentioned IAB DU and IAB MT support synchronous reception;
  • the IAB DU sends a signal to the lower node or UE of the IAB node
  • the IAB MT sends a signal to the upper node of the IAB node, that is, it can also be understood that the above-mentioned IAB DU and IAB MT support synchronous transmission;
  • the IAB DU sends a signal to the lower node or UE of the IAB node, and the IAB MT receives the signal from the upper node of the IAB node, that is, it can also be understood that the above-mentioned IAB DU supports sending while the IAB MT supports receiving;
  • the IAB DU receives the signal from the lower node or UE of the IAB node, and at the same time the IAB MT sends the signal to the upper node of the IAB node, that is, it can also be understood that the above-mentioned IAB DU supports reception while the IAB MT supports transmission.
  • FIG. 9 shows a schematic diagram of 16 bits included in the second information.
  • the first two bits of the 16 bits can be used to indicate the working mode
  • the 16 bits from the third bit to the sixteenth bit can be used to indicate the first frequency domain resource.
  • Table 7 exemplarily shows the indication method of the working mode.
  • FIG. 9 exemplarily shows that the working mode is that the IAB MT and the IAB DU support synchronous reception.
  • the third to sixteenth bits in FIG. 9 may represent the bandwidth that may be occupied starting from PRB No. 0 of the first frequency domain resource.
  • the third to fifteenth bits are used to indicate whether 20 PRBs are available
  • the sixteenth bit is used to indicate whether 15 PRBs are available.
  • PRB0 to PRB19 (denoted as PRB0-PRB19) are unavailable
  • PRB20-PRB39 are unavailable
  • PRB40-PRB59 are unavailable
  • PRB60-PRB79 are unavailable
  • PRB80-PRB99 are unavailable.
  • the frequency domain resources used by IAB MT are PRB140 to PRB275.
  • the PRB0-PRB275 shown here can be understood as the available frequency that the IAB MT needs to meet when the IAB MT and the IAB DU shown in FIG. 6 work synchronously.
  • the frequency domain resources, PRB140-PRB275 can be understood as the first frequency domain resources shown in FIG. 7 .
  • the second information includes 16 bits only as an example, and it should be understood that the second information may also include other numbers of bits, which is not limited in this embodiment of the present application.
  • the working mode may further include any of the following:
  • the IAB DU receives the signal from the lower node of the IAB node or the UE, and synchronously, the IAB MT receives the signal of the upper node of the IAB node, that is, it can also be understood as the above-mentioned IAB DU and IAB MT support unconditionally synchronous reception;
  • the IAB DU sends a signal to the lower node of the IAB node or the UE.
  • the IAB MT sends a signal to the upper node of the IAB node, that is, it can also be understood that the above-mentioned IAB DU and IAB MT support synchronization unconditionally send;
  • the IAB DU sends a signal to the lower node of the IAB node or the UE, and synchronously, the IAB MT receives the signal from the upper node of the IAB node, that is, it can also be understood as the above-mentioned In the case of no conditions, IAB DU supports sending synchronous IAB MT supports receiving;
  • the IAB DU receives the signal from the lower node of the IAB node or the UE, and synchronously, the IAB MT sends a signal to the upper node of the IAB node, that is, it can also be understood as the above-mentioned In the case of no conditions, IAB DU supports receiving synchronous IAB MT supports sending;
  • the IAB DU receives the signal from the subordinate node of the IAB node or the UE, and synchronously, the IAB MT receives the signal of the superior node of the IAB node, that is, it can also be understood that the above-mentioned IAB DU and IAB MT are in the first Support synchronous reception under conditions;
  • the IAB DU sends a signal to the lower node of the IAB node or the UE, and synchronously, the IAB MT sends a signal to the upper node of the IAB node, that is, it can also be understood that the above-mentioned IAB DU and IAB MT are in the first condition Support synchronous sending;
  • the IAB DU sends a signal to the lower node of the IAB node or the UE, and synchronously, the IAB MT receives the signal from the upper node of the IAB node, that is, it can also be understood that under the first condition described above, the IAB DU Synchronous IAB MT support for sending; support for receiving;
  • the IAB DU receives a signal from the lower node of the IAB node or the UE, and synchronously, the IAB MT sends a signal to the upper node of the IAB node, that is, it can also be understood that under the first condition described above, the IAB DU Synchronous IAB MT that supports receive supports transmit.
  • the above working mode may include: in the absence of conditions, the IAB DU receives the signal from the lower node of the IAB node or the UE, and at the same time, the IAB MT receives the signal of the upper node of the IAB node, that is, it can also be understood as
  • the IAB DU and IAB MT described above unconditionally support simultaneous reception.
  • the IAB DU receives the signal from the subordinate node of the IAB node or the UE, and at the same time, the IAB MT receives the signal of the superior node of the IAB node, that is, it can also be understood that the above-mentioned IAB DU and IAB MT are in the same location.
  • Simultaneous reception is supported under the first condition. It can be understood that the relationship between simultaneous work and synchronous work is only exemplarily given here.
  • the IAB node can dynamically change the resource allocation of frequency division multiplexing between the IAB MT and the IAB DU by reporting the second information, thereby improving the spectral efficiency.
  • the present application divides the communication device into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that the division of modules in this application is schematic, and is only a logical function division, and other division methods may be used in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 10 to FIG. 12 .
  • FIG. 10 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus includes a processing unit 1001 and a transceiver unit 1002 .
  • the communication device may be the IAB node shown above or a chip in the IAB node, or the like. That is, the communication apparatus may be used to perform the steps or functions performed by the IAB node (including the IAB MT and/or the IAB DU) in the above method embodiments.
  • the transceiver unit 1002 is configured to output the first information (including reporting the first information to the host node of the IAB node, or sending the first information to the host node of the IAB node, etc.); Under certain conditions, communicate with the lower node or UE of the communication device, and synchronously, communicate with the upper node of the communication device.
  • the processing unit 1001 shown here communicates with the lower node or UE of the communication device under the first condition, and communicates with the upper node of the communication device synchronously, which can be understood as follows:
  • the processing unit 1001 can communicate with the lower node or UE of the communication device through the transceiver unit 1002 under the first condition, and synchronously, communicate with the upper node of the communication device.
  • the processing unit 1001 is used to process the signal input by the transceiver unit 1002 , or used to process the signal output by the transceiver unit 1002 .
  • the signal input by the transceiver unit 1002 shown here includes the signal sent by the lower node of the communication device, or the signal sent by the upper node of the communication device, and the like.
  • the signal output by the transceiver unit 1002 shown here includes the signal processed by the processing unit 1001 and the like.
  • the transceiver unit 1002 is configured to output the first indication information (including reporting the first indication information to the home node of the IAB node, or sending the first indication information to the home node of the IAB node).
  • the transceiver unit 1002 is further configured to output the second information (including sending the second information to the upper node of the IAB node, etc.).
  • the processing unit 1001 is further configured to communicate with the upper node of the communication device through the first frequency domain resource. It can be understood that, for the description of the processing unit here, reference may be made to the above description of the processing unit, which will not be described in detail here.
  • the first information for the description of the first condition, the first information, the first indication information, the second information, the second indication information, the third indication information, etc., reference may be made to the illustrated embodiments, which are not repeated here. a detailed description.
  • the transceiver unit 1002 may be configured to perform the sending step in step 601 and the receiving step in step 602 shown in FIG. 6
  • the processing unit 1001 may be configured to perform step 604 shown in FIG. 6
  • the transceiver unit 1002 may also be configured to perform the sending step in the step 702 shown in FIG. 7
  • the processing unit 1001 may also be configured to perform the step 703 shown in FIG. 7 .
  • the transceiver unit 1002 may also be configured to perform the sending step of step 7011 and the receiving step of step 7012 shown in FIG. 8a.
  • the transceiver unit 1002 may also be configured to perform the sending step of step 7014 and the receiving step of step 7015 shown in FIG. 8b .
  • IAB nodes of the embodiments of the present application are described above, and possible product forms of the IAB nodes are described below. It should be understood that any product having the functions of the IAB node described in FIG. 10 above falls within the protection scope of the embodiments of the present application. It should also be understood that the following description is only an example, and the product form of the IAB node in the embodiment of the present application is not limited thereto.
  • the processing unit 1001 may be one or more processors
  • the transceiver unit 1002 may be a transceiver, or the transceiver unit 1002 may also be a sending unit and a receiving unit
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the connection manner of the processor and the transceiver is not limited in the embodiment of the present application.
  • the communication device 110 includes one or more processors 1120 and a transceiver 1110 .
  • the method, function or operation performed by the processor 1120 may refer to the method, function or operation performed by the above-mentioned processing unit 1001, the method performed by the transceiver 1110 or For functions or operations, etc., reference may be made to the methods, functions or operations performed by the transceiver unit 1002 described above.
  • the transceiver may include a receiver for performing the function (or operation) of receiving and a transmitter for performing the function (or operation) of transmitting ). And transceivers are used to communicate with other devices/devices over the transmission medium.
  • the communication device 110 may further include one or more memories 1130 for storing program instructions and/or data.
  • Memory 1130 and processor 1120 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1120 may cooperate with the memory 1130.
  • the processor 1120 may execute program instructions stored in the memory 1130 .
  • at least one of the above-mentioned one or more memories may be included in the processor.
  • the specific connection medium between the transceiver 1110 , the processor 1120 , and the memory 1130 is not limited in the embodiments of the present application.
  • the memory 1130, the processor 1120, and the transceiver 1110 are connected through a bus 1140 in FIG. 11.
  • the bus is represented by a thick line in FIG. 11, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor, or the like.
  • the memory may include, but is not limited to, a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), a random access memory (Random Access Memory, RAM), Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), Read-Only Memory (Read-Only Memory, ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM) and so on.
  • a memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and can be read and/or written by a computer (such as the communication devices shown in this application, etc.), but is not limited thereto.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data. As an example, the memory may be used to store configuration information of the reference signal sequence.
  • the communication device shown in the embodiment of the present application may also have more components and the like than those shown in FIG. 11 , which is not limited in the embodiment of the present application.
  • the method performed by the processor and the transceiver shown above is only an example, and for the specific steps performed by the processor and the transceiver, reference may be made to the method described above.
  • the processing unit 1001 may be one or more logic circuits, and the transceiver unit 1002 may be an input and output interface, or a communication interface, or an interface circuit , or interfaces, etc.
  • the transceiver unit 1002 may also be a sending unit and a receiving unit, the sending unit may be an output interface, and the receiving unit may be an input interface, the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
  • the communication device shown in FIG. 12 includes a logic circuit 1201 and an interface 1202 .
  • the above-mentioned processing unit 1001 can be implemented by the logic circuit 1201
  • the transceiver unit 1002 can be implemented by the interface 1202 .
  • the logic circuit 1201 may be a chip, a processing circuit, an integrated circuit, or a system on chip (SoC) chip, etc.
  • the interface 1202 may be a communication interface, an input-output interface, or the like.
  • the logic circuit and the interface may also be coupled to each other.
  • the specific connection manner of the logic circuit and the interface is not limited in the embodiment of the present application.
  • the interface 1202 is used to output the first information; the logic circuit 1201 is used to communicate with the lower node or UE of the communication device under the first condition, and synchronously, communicate with the upper node of the communication device.
  • the interface 1202 is further configured to output the first indication information.
  • the interface 1202 is further configured to output the second information.
  • the communication apparatus shown in FIG. 12 may not include a memory; or, the communication apparatus shown in FIG. 12 may further include a memory. Whether the communication device shown in FIG. 12 includes a memory is not limited in this embodiment of the present application.
  • the first information for the description of the first condition, the first information, the first indication information, the second information, the second indication information, the third indication information, etc., reference may be made to the illustrated embodiments, which are not repeated here. a detailed description.
  • the communication apparatus shown in the embodiments of the present application may implement the methods provided in the embodiments of the present application in the form of hardware, and may also implement the methods provided in the embodiments of the present application in the form of software, etc., which are not limited in the embodiments of the present application.
  • the present application also provides a computer program for implementing the operations and/or processing performed by the IAB node in the method provided by the present application.
  • the present application also provides a computer-readable storage medium, where computer codes are stored in the computer-readable storage medium, and when the computer codes are run on the computer, the computer is made to perform the operations performed by the IAB node in the method provided by the present application and/or or processing.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on a computer, the operation performed by the IAB node in the method provided by the present application and/or Processing is executed.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc. that can store program codes medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种基于接入回传一体化的通信方法及装置,该方法包括:IAB节点向该IAB节点的宿主节点上报第一信息,该第一信息用于指示第一条件,该第一条件为IAB节点的MT与该IAB节点的DU同步工作时的条件;在该第一条件下,IAB节点的DU与该IAB节点的下级节点或终端设备通信,同步的,该IAB节点的MT与该IAB节点的上级节点通信。本申请提供的技术方案,能够有效保证IAB节点的MT和IAB节点的DU同步工作。

Description

基于接入回传一体化的通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种基于接入回传一体化的通信方法及装置。
背景技术
随着移动通信技术的不断发展,频谱资源日趋紧张。为了提高频谱利用率,未来的基站部署将会更加密集。此外,密集部署还可以避免覆盖空洞的出现。在传统蜂窝网络架构下,基站通过光纤与核心网建立连接。然而在很多场景下,光纤的部署成本非常高昂。无线中继节点(relay node,RN)通过无线回传链路与核心网建立连接,可节省部分光纤部署成本。
一般情况下,中继节点与一个或多个上级节点(也可以称为上游节点)建立无线回传链路,并通过上级节点接入核心网。上级节点可通过多种信令对中继节点进行一定的控制(例如,数据调度、定时调制、功率控制等)。另外,中继节点可为多个下级节点(也可以称为下游节点)提供服务。中继节点的上级节点可以是基站,也可以是另一个中继节点;中继节点的下级节点可以是终端设备,也可以是另一个中继节点。带内中继是回传链路与接入链路共享相同频段的中继方案,由于没有使用额外的频谱资源,带内中继具有频谱效率高及部署成本低等优点。新无线(new radio,NR)的带内中继方案被称为接入回传一体化(integrated access and backhaul,IAB),而中继节点被称为IAB节点(IAB node)。该IAB节点可以包括移动终端(mobile-Termination)(也可以称为IAB MT)与分布式单元(distributed unit,DU)(也可以称为IAB DU)。
由此,如何使得IAB MT与IAB DU能够同步工作亟待解决。
发明内容
本申请提供一种基于接入回传一体化的通信方法及装置,能够有效保证IAB节点的移动终端(mobile-termination,MT)和IAB节点的分布式单元(distributed unit,DU)同步工作。
第一方面,本申请提供一种基于接入回传一体化的通信方法,所述方法包括:
IAB节点向所述IAB节点的宿主节点上报第一信息,所述第一信息用于指示第一条件,所述第一条件为所述IAB节点的移动终端MT与所述IAB节点的分布式单元DU同步工作时的条件;在所述第一条件下,所述IAB节点的DU与所述IAB节点的下级节点或终端设备通信,同步的,所述IAB节点的MT与所述IAB节点的上级节点通信。
本申请实施例中,IAB节点的MT也可以称为IAB MT,IAB节点的DU也可以称为IAB DU。IAB MT与IAB DU同步工作时的条件包括:IAB MT的第一载波与IAB MT的第一小区同步工作时的条件。也就是说,在第一条件下,该IAB DU为第一小区内的IAB节点的下级节点或UE提供服务,同步IAB MT通过第一载波与IAB节点的上级节点通信。可理解,关于IAB DU与IAB MT同步工作的介绍,还可以参考下文示出的实现方式,这里 先不详述。
可理解,本申请示出的同步工作,也可以理解为同时工作。示例性的,第一条件为IAB MT与IAB DU同时工作时的条件。示例性的,在第一条件下,IAB DU与IAB节点的下级节点或UE通信,同时IAB MT与该IAB节点的上级节点通信。可理解,对于该说明,本申请示出的其他实施例同样适用。
本申请实施例中,IAB节点通过上报第一信息,增加了IAB节点同步工作的限制条件。从而,该IAB节点可以在该限制条件的基础上,与其上级节点或下级节点或UE通信等。也就是说,通过本申请提供的技术方案,可以使得IAB节点在一定的限制条件(即上述第一条件)的基础上,保证IAB MT与IAB DU能够同步工作,如IAB MT与IAB DU可以更好地实现同步接收或同步发送等。
在一种可能的实现方式中,所述IAB节点向所述IAB节点的宿主节点上报第一指示信息,所述第一指示信息用于指示所述IAB节点的MT与所述IAB节点的DU同步工作时,是否需要满足所述第一条件。
本申请提供的技术方案中,通过第一指示信息可以使得宿主节点明确得知,IAB MT与IAB DU同步工作时,是否需要满足第一条件。示例性的,第一指示信息可以用于指示下文表2中示出的受限(limited),该情况下,第一指示信息可以用于指示IAB DU与IAB MT同步工作时,需要满足第一条件。示例性的,第一指示信息可以指示IAB DU与IAB MT同步工作时,IAB MT需要满足下文示出的可用频域资源的条件等,这里先不详述。示例性的,第一指示信息可以用于指示下文表2中示出的支持(supported),该情况下,第一指示信息可以用于指示IAB DU与IAB MT无条件的支持同步工作。
在一种可能的实现方式中,所述第一条件包括:所述IAB节点的MT与所述IAB节点的DU同步工作时,所述IAB节点的MT的可用频域资源。
本申请提供的技术方案,通过上报IAB MT的可用频域资源,可使得宿主节点根据该可用频域资源为IAB MT或IAB DU配置资源。或者,通过上报IAB MT的可用频域资源,可使得宿主节点获知如果IAB MT与IAB DU需要同步工作,则IAB MT中用于通信的频域资源有哪些。
在一种可能的实现方式中,所述可用频域资源包括以下任一项或多项:所述可用频域资源的起始物理资源块(physical resource block,PRB);所述可用频域资源的结束PRB;绝对无线频道编号(absolute radio frequency channel number,ARFCN);所述可用频域资源的资源块RB数量。
可理解,关于上述各个信息的说明,还可以参考下文示出的关于表3或表4等,这里不再一一详述。
在一种可能的实现方式中,所述第一条件包括:所述IAB节点的MT与所述IAB节点的DU同步工作时,期望的上级节点的DU的发送功率,和/或,所述IAB节点的MT与所述IAB节点的DU同步工作时,期望的所述IAB节点的MT的发送功率。
本申请提供的技术方案,通过上报期望的上级节点的DU的发送功率,可使得宿主节点根据IAB节点上报的期望的上级节点的DU的发送功率确定的功率参数。因此该上级节点根据上述功率参数确定的上行发送功率很大程度会是上述期望的上级节点的DU的发送 功率。或者,该上级节点根据功率参数确定的上行发送功率与上述期望的上级节点的DU的发送功率的功率差会在一定范围内(如可接受的范围内)。进而,可以保证IAB MT接收来自上级节点的DU的信号时的接收功率,与IAB DU接收来自下级节点或UE的信号时的接收功率之间的功率差在一定范围内(如第一数值范围内等),改善了由于IAB MT的接收功率与IAB DU的接收功率之间的功率差过大,导致性能损失的问题。
本申请提供的技术方案,通过上报期望的IAB MT的发送功率,可宿主节点是根据期望的IAB MT的发送功率确定功率参数。因此IAB节点根据该功率参数确定的IAB MT的上行发送功率可能与期望的IAB MT的发送功率相同,或者,这两者之间的功率差在一定范围内。进而,IAB MT向其上级节点发送信号时的上行发送功率,与IAB DU向其下级节点或UE发送信号时的发送功率之间的功率差可以尽可能保证在一定范围内,改善了IAB MT与IAB DU之间的发送功率差过大,导致干扰严重的问题,能够有效减少IAB MT与IAB DU之间的干扰。
在一种可能的实现方式中,所述第一条件包括以下任一项或多项:
所述IAB节点的MT与所述IAB节点的DU同步工作时,所述IAB节点的MT的端口数,所述端口数为用于数据传输和/或数据解调的解调参考信号DMRS的端口数;所述IAB节点的MT与所述IAB节点的DU同步工作时,所述IAB节点的DU的端口数,所述端口数为用于数据传输和/或数据解调的解调参考信号DMRS的端口数;所述IAB节点的MT与所述IAB节点的DU同步工作时,所述IAB节点的层数。
在一种可能的实现方式中,所述第一信息包括用于指示参考子载波间隔(sub-carrier spacing,SCS)的指示信息,所述参考SCS用于确定所述可用频域资源的带宽长度。
本申请实施例中,参考SCS可以为IAB MT的服务小区的SCS。
在一种可能的实现方式中,所述方法还包括:所述IAB节点向所述IAB节点的上级节点发送第二信息,所述第二信息用于指示第一频域资源,所述第一频域资源包含于所述IAB节点的MT的可用频域资源中。
在一种可能的实现方式中,所述第二信息包括第二指示信息,所述第二指示信息用于指示所述第一频域资源的起始资源块RB和所述第一频域资源的RB数量。
在一种可能的实现方式中,所述第二指示信息为索引值,所述索引值用于指示所述第一频域资源的起始RB和所述第一频域资源的RB数量。
本申请实施例中,关于索引值的说明可以参考下文示出的关于表5或表6等的描述。
在一种可能的实现方式中,所述第二信息包括第三指示信息,所述第三指示信息包括N个比特,所述N个比特的前N-1个比特中的每个比特用于指示预设数量的物理资源块PRB是否可用,所述N个比特中的最后一个比特用于指示剩余数量的PRB是否可用,所述剩余数量根据所述第一频域资源包含的PRB数量以及所述N-1个比特对应的PRB数量确定,所述N为大于0的整数。
在一种可能的实现方式中,所述第二信息还包括第四指示信息,所述第四指示信息用于指示所述IAB节点的工作模式,所述IAB节点的工作模式包括以下任一项:
所述IAB节点的DU接收来自所述IAB节点的下级节点或所述终端设备的信号,同步的,所述IAB节点的MT接收所述IAB节点的上级节点的信号;所述IAB节点的DU向所 述IAB节点的下级节点或所述终端设备发送信号,同步的,所述IAB节点的MT向所述IAB节点的上级节点发送信号;所述IAB节点的DU向所述IAB节点的下级节点或所述终端设备发送信号,同步的,所述IAB节点的MT接收来自所述IAB节点的上级节点的信号;所述IAB节点的DU接收来自所述IAB节点的下级节点或所述终端设备的信号,同步的,所述IAB节点的MT向所述IAB节点的上级节点发送信号。
可理解,这里所示的工作模式仅为示例,对于其他工作模式的说明还可以参考下文示出的实施例。
在一种可能的实现方式中,所述第二信息包含于媒体接入控制-控制元素(medium access control-control element,MAC-CE)信令中。
第二方面,本申请提供一种通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。如所述通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
示例性的,所述通信装置包括处理单元和收发单元。对于处理单元和收发单元的具体说明,可以参考下文示出的实施例,这里先不详述。
第三方面,本申请提供一种通信装置,所述通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的计算机执行指令,以使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
在执行上述方法的过程中,上述方法中有关发送信息(如上报第一信息或第二信息等)或接收信息(如接收宿主节点发送的信息等)的过程,可以理解为由处理器输出上述信息的过程,或者处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的上报第一信息可以理解为处理器输出第一信息等。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器等。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实现方式中,存储器位于所述通信装置之外。
在一种可能的实现方式中,存储器位于所述通信装置之内。
本申请实施例中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可 以被集成在一起。
在一种可能的实现方式中,所述通信装置还包括收发器,所述收发器,用于接收信号和/或发送信号。
第四方面,本申请提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合,所述接口,用于输出第一信息;所述逻辑电路,用于在第一条件下,与所述通信装置的下级节点或终端设备通信,同步与所述通信装置的上级节点通信。
可理解,这里所示的逻辑电路,用于在第一条件下,与所述通信装置的下级节点或终端设备通信,同步与所述通信装置的上级节点通信,还可以理解为:该逻辑电路,通过接口,在第一条件下,与所述通信装置的下级节点或终端设备通信,同步与所述通信装置的上级节点通信。
在一种可能的实现方式中,所述接口,用于输出第一指示信息。
在一种可能的实现方式中,所述接口,还用于输出第二信息。
可理解,关于第一信息、第一条件或第二信息等的说明还可以参考第一方面的描述,这里不再详述。
第五方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第六方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第七方面,本申请提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
附图说明
图1是本申请实施例提供的一种IAB节点的结构示意图;
图2a至图2c是本申请实施例提供的一种通信系统的网络架构示意图;
图3是本申请实施例提供的一种IAB空分接收的场景示意图;
图4a和图4b是本申请实施例提供的一种IAB节点的频分复用示意图;
图5是本申请实施例提供的一种IAB MT与IAB DU的频域资源示意图;
图6和图7是本申请实施例提供的一种基于IAB的通信方法的流程示意图;
图8a是本申请实施例提供的一种IAB节点上报复用能力信息的流程示意图;
图8b是本申请实施例提供的一种IAB节点上报第一信息的流程示意图;
图9是本申请实施例提供的一种第二信息的比特示意图;
图10至图12是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步 地详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、物联网(internet of things,IoT)系统、窄带物联网系统(narrow band-internet of things,NB-IoT)、无线保真(wireless fidelity,WiFi)、第五代(5th generation,5G)通信系统或新无线(new radio,NR)以及未来的其他通信系统等。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-todevice,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车与任何事物(vehicle-to-everything,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。示例性的,下文示出的通信系统中终端设备与终端设备之间便可以通过D2D技术、M2M技术或V2X技术通信等。
以下详细介绍本申请涉及的术语。
1、终端设备
本申请中的终端设备是一种具有无线收发功能的装置。终端设备可以与无线接入网(radio access network,RAN)中的接入网设备(或者也可以称为接入设备或网络设备等)进行通信。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、终端(terminal)、 用户单元(subscriber unit)、用户站、移动站、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。在一种可能的实现方式中,终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。在一种可能的实现方式中,终端设备可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、传感器、物联网中的终端、车联网中的终端、第五代(5th generation,5G)网络以及未来网络中的任意形态的终端设备等,本申请对此不作限定。
可理解,本申请示出的终端设备不仅可以包括车联网中的车(如整车)、而且还可以包括车联网中的车载设备或车载终端等,本申请对于该终端设备应用于车联网时的具体形态不作限定。
为便于描述,以下将终端设备称为UE。
2、网络设备
本申请中的网络设备可以是一种部署在无线接入网中,为终端设备提供无线通信服务的装置。该网络设备也可以称为接入设备或RAN设备或接入网设备等。
该网络设备可以包括但不限于:5G系统中的下一代基站(next generation node B,gNB)、LTE系统中的演进型基站(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、小基站设备(pico)、移动交换中心或者未来网络中的网络设备等。示例性的,网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。或者,网络设备还可以是可穿戴设备或车载设备等。该网络设备还可以为D2D、V2X或M2M中承载基站功能的设备等,本申请对网络设备的具体类型不作限定。在不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同。
可选的,在网络设备的一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)等。在网络设备的另一些部署中,CU还可以划分为CU-控制面(control plane,CP)和CU-用户面(user plan,UP)等。在网络设备的又一些部署中,网络设备还可以是开放的无线接入网(open radio access network,ORAN)架构等,本申请对于网络设备的具体部署方式不作限定。
可理解,以上所示的网络设备还可以称为宿主基站(donor base station),也可以称为宿主节点或IAB donor节点等,本申请实施例对于在IAB系统中,该网络设备的名称不作限定。
为便于描述,以下将网络设备称为宿主节点。
3、IAB节点
IAB节点可以包括移动终端(mobile-Termination)(也可以称为IAB MT)与分布式单元(distributed unit,DU)(也可以称为IAB DU),如图1所示。MT可以理解为在IAB节点中类似终端设备(如UE)的一个组件,MT也可以被称为驻留在IAB节点上的功能。由于MT类似一个普通UE的功能,因此可以理解为IAB节点是通过MT接入到上级节点(或称为父节点)或上级网络的。DU是相对于网络设备中的集中单元(centralized unit,CU) 功能而言的。如DU可以理解为是IAB节点的基站功能模块,即IAB节点可以通过DU与下级节点(或称为子节点)或UE进行通信。IAB节点的MT与DU均可以具有完整的收发模块,且两者之间具有接口。可理解,MT与DU为逻辑模块,在实际应用中,该MT和该DU可以共享部分子模块,例如共用收发天线,基带处理模块等。示例性的,上级节点可以是基站或其他IAB节点等,下级节点可以是其他IAB节点等。
基于上述介绍的各个设备,本申请实施例提供了一种通信系统。图2a是本申请实施例提供的一种通信系统的网络架构示意图。示例性的,IAB节点可以为终端设备提供无线接入和接入业务的无线回传。宿主节点可以向IAB节点提供无线回传功能,并提供终端设备与核心网之间的接口。也就是说,IAB节点可以通过无线回传链路连接到宿主节点,从而使得该IAB节点服务的终端设备与核心网进行连接。
如图2a所示,如宿主节点可以包括CU和DU。从协议栈角度,CU包括了原LTE基站的无线资源控制(radio resource control,RRC)层和分组数据汇聚协议(packet data convergence protocol,PDCP)层,DU包括了无线链路控制(radio link control,RLC)层、媒体访问控制子层(media access control,MAC)层和物理层(physical layer,PHY)。示例性的,CU与DU物理上可以通过光纤连接,逻辑上存在一个专门定义的F1接口,用于CU与DU之间进行通信。从功能的角度,CU主要负责无线资源控制与配置,跨小区移动性管理,承载管理等;DU主要负责调度,物理信号生成与发送等。
如图2a所示,示例性的,以宿主节点通过CU向IAB节点1的DU发送配置信息为例,宿主节点的CU生成的F1接口应用协议(F1application,F1-AP)数据包被封装成IP包,在空口多跳节点之间传递。该F1-AP数据包到达IAB节点1后,在IAB MT的适配层处理,然后将F1-AP数据包转给本地IAB DU进行处理,最终在IAB DU解析该F1-AP数据包。
基于图2a,IAB节点1可以通过MT与宿主节点通信,通过DU与IAB节点2通信。以及该IAB节点1还可以通过DU与终端设备2通信。该宿主节点不仅可以为IAB节点1提供服务,还可以为终端设备1提供服务。可理解,图2a所示的网络架构中,IAB节点1的下级节点可以为终端设备2,也可以为IAB节点2。
可理解,MT与上级节点(如图2a所示的宿主节点)通信的链路称为上级回传链路(parent backhaul link),DU与下级IAB节点(如图2a所示的IAB节点2)通信的链路称为下级回传链路(child backhaul link),而DU与其下属终端设备(如图2a所示的终端设备2)通信的链路称为接入链路。IAB节点可通过多级上级节点连接至宿主节点。在一些实施例中,下级回传链路也可以被称为接入链路等,本申请实施例对于该下级回传链路的名称不作限定。示例性的,上级回传链路包括上级回传上行链路(uplink,UL)以及上级回传下行链路(downlink,DL),下级回传链路包括下级回传UL和下级回传DL,接入链路包括接入UL和接入DL,如图2b所示。
需要说明的是,在如图2a所示的网络架构图中,尽管示出了终端设备、IAB节点及宿主节点,但该网络架构可以并不限于包括终端设备、IAB节点及宿主节点。例如,还可以包括核心网设备或用于承载虚拟化网络功能的设备等,这里不一一详述。另外,本申请不限制该网络架构中所包括的终端设备、IAB节点及宿主节点的数量。
示例性的,图2c是本申请实施例提供的另一种网络架构的示意图。如图2c所示,该 网络架构包括1个终端设备、多个IAB节点(如图2c中的IAB节点1、IAB节点2和IAB节点3)和一个宿主节点。终端设备可通过两条路径接入宿主节点。其中的一条路径依次经过终端设备、IAB节点2、IAB节点1和宿主节点。另一条路径依次经过终端设备、IAB节点2、IAB节点3、IAB节点1和宿主节点。终端设备通过多条路径接入宿主节点,可以理解为多连接无线回传场景,可以保证业务传输的可靠性。
可理解,图2a和图2c所示的网络架构仅为示例,对于网络架构中的具体形式或具体的组网场景,本申请不作限定。
4、空分复用(spatial duplex multiplexing,SDM)
示例性的,空分复用的场景可以如图3所示,IAB节点1同步(也可以理解为同时)接收回传链路上,上级节点发送的下行信号,以及接入链路上下级节点(如IAB节点2或终端设备)发送的上行信号。可理解,图3示出的是IAB节点的空分接收场景。示例性的,IAB节点还可以同步(也可以理解为同时)向上级节点发送信号,以及向下级节点发送信号,即IAB节点的空分发送场景。
5、频分复用
在IAB中,频分复用主要是指IAB MT和IAB DU之间的频分复用。即IAB MT和IAB DU可以通过使用不同频域上的资源实现频分复用。IAB MT和IAB DU通过频分复用,可以有效改善IAB MT和IAB DU之间收发信号的相互影响(如可以降低该相互影响)。
示例性的,图4a是本申请实施例提供的一种IAB MT和IAB DU之间频分复用的示意图。如图4a所示,在同一时域资源上,IAB MT和IAB DU可以使用不同的频域资源,如IAB MT通过频域资源1(即图4a示出的1)与IAB节点的上级节点通信,IAB DU通过频域资源2(即图4a示出的2)与IAB节点的下级节点或UE通信。即IAB DU可以通过频域资源2为该IAB节点的下级节点或UE提供接入服务。示例性的,当IAB MT通过频域资源1接收上级节点发送的下行数据的同时,IAB DU通过频域资源2向IAB节点的下级节点或UE发送下行数据,则该场景为下行全双工。示例性的,当IAB MT通过频域资源1向上级节点发送上行数据的同时,IAB DU通过频域资源2接收IAB节点的下级节点或UE发送上行数据,则该场景为上行全双工。
示例性的,图4b是本申请实施例提供的一种多连接无线回传场景下的频分复用的示意图。如IAB节点具有多个上级节点时,该IAB节点的MT可以通过不用的频域资源不同的上级节点通信。图4b仅示例性地示出了IAB节点的两个上级节点,如IAB MT可以通过不同的频域资源分别与上级节点1和上级节点2通信。同时,IAB MT与IAB DU之间是时分复用,即IAB MT与IAB DU可以在不同的OFDM符号上传输信号。
可理解,关于图4a和图4b示出的保护带的说明,可以参考相关标准或协议等,本申请不作详述。
6、同步工作,也可以称为同时(simultaneous)工作
本申请示出的同步工作主要指的是IAB MT与IAB DU之间的同步工作。
示例性的,同步工作可以包括:
IAB DU接收来自IAB节点的下级节点或UE的信号,同步的,IAB MT接收来自IAB节点的上级节点的信号(即IAB DU与IAB MT支持同步接收,记为DU_RX/MT_RX)。或 者,IAB DU向IAB节点的下级节点或UE发送信号,同步的,IAB MT向IAB节点的上级节点发送信号(即IAB DU与IAB MT支持同步发送,记为DU_TX/MT_TX)。或者,IAB DU向IAB节点的下级节点或UE发送信号,同步的,IAB MT接收来自IAB节点的上级节点的信号(即IAB DU支持发送的同步IAB MT支持接收,记为DU_TX/MT_RX)。或者,IAB DU接收来自IAB节点的下级节点或UE的信号,同步的,IAB MT向IAB节点的上级节点发送信号(即IAB DU支持接收的同步IAB MT支持发送,记为DU_RX/MT_TX)。
示例性的,IAB MT与IAB DU同步工作包括:IAB MT的第一载波(carrier,CC)和IAB DU的第一小区(cell)同步工作。如IAB DU为第一小区内的IAB节点的下级节点或UE提供服务(也可以称为IAB DU为第一小区内的IAB节点的下级节点或UE提供接入服务),同步的,IAB MT通过第一载波与IAB节点的上级节点通信。
示例性的,同步工作可以包括:
IAB DU接收来自第一小区内的IAB节点的下级节点或UE的信号,同步的,IAB MT通过第一载波接收来自IAB节点的上级节点的信号(如可以简称为IAB DU的第一小区与IAB MT的第一载波支持同步接收)。或者,IAB DU向第一小区内的IAB节点的下级节点或UE发送信号,同步的,IAB MT通过第一载波向IAB节点的上级节点发送信号(如可以简称为IAB DU的第一小区与IAB MT的第一载波支持同步发送)。或者,IAB DU向第一小区内的IAB节点的下级节点或UE发送信号,同步的,IAB MT通过第一载波接收来自IAB节点的上级节点的信号(如可以简称为IAB DU的第一小区支持发送,同步的,IAB MT的第一载波支持接收)。或者,IAB DU接收来自第一小区内的IAB节点的下级节点或UE的信号,同步的,IAB MT通过第一载波向IAB节点的上级节点发送信号(如可以简称为IAB DU的第一小区支持接收,同步的,IAB MT的第一载波支持发送)。
以上所示的同步工作的情况,还可以称为IAB的双工复用模式或工作模式等。也就是说,上述对同步工作的说明,也适用于IAB节点的双工复用模式。例如,根据IAB节具有的不同实现形式或硬件能力等,IAB节点支持的双工复用模式可能会所有不同。根据IAB节点支持的双工复用模式的不同,IAB节点可以上报其双工复用能力。IAB节点通过上报复用能力,可使得宿主节点配置或协调IAB节点用于接入与回传的资源等。
示例性的,IAB DU可以向宿主节点(donor CU)上报IAB DU的一个小区(cell)与IAB MT上的一个服务小区(也可以理解为载波)能否同步进行发送或接收等,即IAB DU向宿主节点上报复用能力信息。该复用能力信息如表1所示。该表1示出的复用能力信息是针对一个IAB DU的小区与一个IAB MT的服务小区(即CC)配置的。示例性的,如IAB DU的小区可以通过新无线(new radio,NR)小区标识(NR cell identity)标识,MT的小区可以通过配置的服务小区(如IAB MT cell item)进行标识。表1中,支持(supported)表示支持对应的复用能力,不支持(not supported)表示不支持对应的复用能力。示例性的,表1中的DU_RX/MT-RX表示IAB DU与IAB MT是否支持同步接收,DU_TX/MT_TX表示IAB DU与IAB MT是否支持同步发送,对于表1中的DU_TX/MT_RX和DU_RX/MT_TX可以参考上述说明,这里不再详述。
表1
Figure PCTCN2021072283-appb-000001
Figure PCTCN2021072283-appb-000002
可理解,关于IAB节点同步工作,或双工复用模式等的说明,还可以参考相关标准或协议等,本申请不再详述。示例性的,对于双工复用模式的说明可以参考[TS 38.473中的说明等。
可理解,本申请涉及的同步工作,也可以替换为同时工作。示例性的,同时工作包括:IAB DU接收来自IAB节点的下级节点或UE的信号,同时,IAB MT接收来自IAB节点的上级节点的信号(即IAB DU与IAB MT支持同时接收,记为DU_RX/MT_RX)。或者,IAB DU向IAB节点的下级节点或UE发送信号,同时,IAB MT接收来自IAB节点的上级节点的信号(即IAB DU支持发送的同时,IAB MT支持接收,记为DU_TX/MT_RX)。可理解,这里仅示例性的描述了同时工作与同步工作的关系,关于同时工作与同步工作的描述,本申请不再一一详述。根据同步工作和同时工作的关系,下文描述的关于IAB DU与IAB MT同步工作,有些地方描述的是IAB DU与IAB MT同时工作,对此,不应理解为对本申请的限定。例如,下文描述的IAB MT支持接收的同时,IAB DU支持发送时,IAB节点需要满足的第一条件,可以替换为:IAB MT支持接收,同步的,IAB DU支持发送,该情况下,IAB节点需要满足的第一条件。又例如,IAB MT支持发送的同时,IAB DU支持接收时,IAB节点需要满足的第一条件,可以替换为:IAB MT支持发送,同步的,IAB DU支持接收,该情况下,IAB节点需要满足的第一条件。对于类似的说明,这里不再一一详述。
从上述介绍的同步工作的说明来看,IAB MT与IAB DU的同步工作可以理解为IAB MT的第一载波(也可以理解为某个载波)与IAB DU的第一小区(也可以理解为某个小区)之间的同步工作。IAB MT的第一载波占用的带宽与IAB DU的第一小区占用的带宽可以分别如图5所示。示例性的,在IAB MT的第一载波与IAB DU的第一小区同步工作的场景下,当IAB MT的第一载波占用带宽1,通过带宽1与IAB节点的上级节点通信时,由于IAB MT与IAB DU之间不能满足同步工作的条件,因此,往往会导致IAB DU的第一小区占用的带宽2在上述时刻(即IAB MT通过带宽1与IAB节点的上级节点通信时的时刻)无法使用。可理解,本申请示出的第一载波与第一小区仅为示例。
换句话说,当IAB MT与IAB DU中的任意一个通过图5所示的带宽进行传输(如IAB MT通过带宽1传输信号,IAB DU通过带宽2传输信号)时,例如图5中的IAB MT占用了部分带宽资源,则会导致IAB DU在当前传输时机整个带宽资源不可用。从而导致了频谱资源的浪费,影响网络的频谱效率。
鉴于此,本申请提供一种基于IAB的通信方法及装置,能够有效改善频谱资源浪费的 情况,有利于提高网络的频谱效率。
图6是本申请实施例提供的一种基于IAB的通信方法的流程示意图。关于该方法所适用的通信系统以及通信装置的说明等,可以参考上文,这里不再赘述。如图6所示,该方法包括:
601、IAB节点向IAB节点的宿主节点上报第一信息,该第一信息用于指示第一条件,该第一条件为IAB MT与IAB DU同步工作时的条件。
对应的,IAB节点的宿主节点接收该第一信息。
可理解,本申请实施例中IAB MT即为IAB节点的MT,IAB DU即为该IAB节点的DU。IAB MT与IAB DU同步工作时的条件包括:IAB MT的第一载波与IAB MT的第一小区同步工作时的条件。换句话说,在第一条件下,该IAB DU为第一小区内的IAB节点的下级节点或UE提供服务,同步的,IAB MT通过第一载波与IAB节点的上级节点通信。为简洁起见,下文将以IAB MT与IAB DU同步工作为例说明本申请实施例提供的方法。
示例性的,IAB节点向IAB节点的宿主节点(donor node)上报第一信息包括:IAB DU向该IAB节点的宿主节点上报第一信息;或者,IAB DU通过F1-AP信令向该IAB节点的宿主节点上报第一信息(也就是说,第一信息可以包含于F1-AP信令中)。IAB节点通过向其宿主节点上报第一信息,该宿主节点可以根据该第一信息配置或协调IAB节点用于接入与回传的资源等。
在一种可能的实现方式中,关于IAB MT与IAB DU同步工作的说明,可以参考上文介绍。示例性的,IAB MT与IAB DU同步工作表示该IAB MT接收来自IAB节点的上级节点的信号,同步的,IAB DU接收来自该IAB节点的下级节点或UE的信号。这里所示的同步,可以不局限性地认为是IAB MT与IAB DU所有的动作均是同时的,如可以不局限地认为IAB MT在某个时间点接收信号,则IAB DU就在该某个时间点接收信号。例如,同步可以表示IAB MT与IAB DU在同一时间段内同步接收信号,或者,在同一时隙(slot)内同步接收信号,或者,在同一正交频分复用(orthogonal frequency division multiplexing,OFDM)符号内同步接收信号等。当然,同步也可以表示IAB MT与IAB DU在同一时间点同时接收信号等。这里仅仅是以IAB MT与IAB DU支持同步接收为例说明的同步工作,对于同步工作的说明,可以参考上文介绍的同步工作,这里不再一一详述。
结合第一条件,则第一信息表示IAB MT与IAB DU同步工作时,需要满足第一条件。换句话说,IAB节点需要向宿主节点上报其频分复用的条件信息。例如,IAB MT与IAB DU支持同步接收时,IAB节点需要满足的第一条件。又例如,IAB MT与IAB DU支持同步接收时,IAB节点需要满足的第一条件。又例如,IAB MT支持接收的同时,IAB DU支持发送时,IAB节点需要满足的第一条件。又例如,IAB MT支持发送的同时,IAB DU支持接收时,IAB节点需要满足的第一条件。
示例性的,在IAB节点入网时,或者,该IAB节点连接至一个新的宿主节点时,该IAB节点可以向宿主节点上报复用能力信息。可理解,对于该复用能力信息的说明,可以参考上文介绍的同步工作或表1等,这里不再详述。可选的,IAB节点上报复用能力信息时,可以向宿主节点上报第一信息,即第一信息和复用能力信息可以包含于同一个信令中,如F1-AP信令中等。可选的,IAB节点上报的复用能力信息与第一信息也可以不在同一个信 令中。可理解,当IAB节点上报了复用能力信息以及第一信息时,可以默认(即隐式地指示)IAB MT与IAB DU同步工作时,需要满足第一条件。
可理解,上述实现方式是在如表1所示的复用能力信息的基础上示出的。然而,本申请实施例还提供了另一种复用能力信息,如表2所示。表2中的支持(supported)表示IAB MT与IAB DU无条件的支持相应的复用传输。如支持(supported)表示IAB MT与IAB DU无条件的支持同步接收或同步发送等。不支持(not supported)表示IAB MT与IAB DU不支持相应的复用传输。受限(limited)表示IAB MT与IAB DU在一定条件下支持相应的复用传输。例如,受限(limited)表示IAB MT与IAB DU在第一条件下,支持同步接收或同步发送等。即该受限(limited)可以明式地表示IAB MT与IAB DU同步工作时,是否需要满足第一条件。
也就是说,基于表2,IAB节点上报复用能力信息时,该复用能力信息中包括受限(limited)的能力信息。由此,IAB MT与IAB DU同步工作,可以理解为以下任一项或多项:
IAB MT与IAB DU无条件支持同步接收(如表2中的DU_RX/MT_RX,以及supported);IAB MT与IAB DU无条件支持同步发送(如表2中的DU_TX/MT_TX,以及supported);在没有条件的情况下,IAB MT支持接收的同时,IAB DU支持发送(如表2中的DU_TX/MT_RX,以及supported);在没有条件的情况下,IAB MT支持发送的同时,IAB DU支持接收(如表2中的DU_RX/MT_TX,以及supported);IAB MT与IAB DU在第一条件下支持同步接收(如表2中的DU_RX/MT_RX,以及limited)(也可以理解为IAB MT的第一载波与IAB DU的第一小区支持同步接收);IAB MT与IAB DU在第一条件下支持同步发送(如表2中的DU_TX/MT_TX,以及limited)(也可以理解为IAB MT的第一载波与IAB DU的第一小区支持同时发送);在第一条件的情况下,IAB MT支持接收的同时,IAB DU支持发送(如表2中的DU_TX/MT_RX,以及limited)(也可以理解为IAB MT的第一载波支持接收的同时,IAB DU的第一小区支持发送);在第一条件的情况下,IAB MT支持发送的同时,IAB DU支持接收(如表2中的DU_RX/MT_TX,以及limited)(也可以理解为IAB MT的第一载波支持发送的同时,IAB DU的第一小区支持接收)。
表2
Figure PCTCN2021072283-appb-000003
本申请实施例中,示例性的,IAB节点向该IAB节点的宿主节点上报第一信息之外,该IAB节点还可以向其宿主节点上报第一指示信息,该第一指示信息用于指示IAB MT与 IAB DU同步工作时,是否需要满足第一条件。换句话说,该第一指示信息可以理解为表2中的limited,第一信息用于指示IAB MT与IAB DU在受限的复用能力信息下,需要满足的第一条件。可理解,该第一信息与该第一指示信息可以包含于同一个信令中,或者也可以包含于不同的信令中,本申请实施例对此不作限定。
可理解,以上所示的同步工作是以复用能力信息为支持或受限的情况下示出的,对于复用能力信息为不支持的情况下,本申请实施例同样适用。例如,IAB MT与IAB DU在第一条件下,不支持同步接收或同步发送等。
可理解,关于第一条件的具体说明,还可以参考下文示出的具体示例,这里先不一一详述。
在一种可能的实现方式中,图6所示的方法包括步骤602。
602、宿主节点为IAB节点配置资源。
本申请实施例中,宿主节点可以为IAB MT和/或IAB DU配置资源。例如,以DU_TX/MT_TX为例,宿主节点基于IAB节点上报的复用能力信息和第一条件后,在某个时隙或符号上可以为IAB DU配置hard类型资源(即表示IAB DU始终可用的资源),且传输方向为下行(DL)。例如,IAB MT根据时分双工(time division duplex,TDD)配置确定传输方向为上行。当IAB MT在该资源位置被调度传输上行信号时,如果IAB DU同步也在发生下行信号,则可以同步工作。
在一种可能的实现方式中,图6所示的方法包括步骤603。
603、宿主节点为IAB节点的上级节点配置资源。
本申请实施例中,宿主节点可以为IAB节点的上级节点的DU配置资源。可理解,关于宿主节点为IAB节点配置资源或为IAB节点的上级节点的DU配置资源的具体描述,可以参考相关标准或协议等,这里不作详述。
可选的,图6所示的方法可以包括步骤601、步骤602和步骤604。该情况下,IAB节点的上级节点可以为宿主节点等,对于该情况下的具体网络架构,本申请实施例不作限定。可选的,图6所示的方法可以包括步骤601至步骤604。该情况下,IAB节点的上级节点可以为其他IAB节点,该其他IAB节点的上级节点为宿主节点,如图2a所示的网络架构,对于该情况下的具体网络架构,本申请实施例不作限定。可理解,本申请实施例对于步骤602和步骤603的先后顺序不作限定。
604、在第一条件下,IAB DU与该IAB节点的下级节点或UE通信,同步的,IAB MT与该IAB节点的上级节点通信。
本申请实施例示出的IAB DU与IAB节点的下级节点或UE通信,同步的,IAB MT与该IAB节点的上级节点通信,指的是在IAB节点的复用能力信息下,IAB DU与IAB节点的下级节点或UE通信,同时IAB MT与该IAB节点的上级节点通信。
示例性的,复用能力信息为支持同步接收,且IAB节点需要满足第一条件。则IAB DU接收来自IAB节点的下级节点或UE的信号,同时IAB MT接收来自IAB节点的上级节点的信号。可理解,关于复用能力信息的说明,可以参考上文示出的各个说明,这里不再一一赘述。
本申请实施例中,IAB节点通过上报第一信息,即在复用能力信息的基础上,增加支 持复用的限制条件。从而,该IAB节点可以在该限制条件的基础上,与其上级节点或下级节点或UE通信等。同时,可以使得IAB节点在该限制条件的基础上,保证IAB MT与IAB DU能够同步工作,如IAB MT与IAB DU可以更好地实现同步接收或同步发送等。
以下将具体描述本申请实施例示出的第一条件。
实现方式一、
第一条件包括:IAB MT与IAB DU同步工作时,IAB MT的可用(available)频域资源。或者,第一条件包括:IAB MT与IAB DU同步工作时,IAB MT的不可用频域资源。
本申请实施例中,IAB MT与IAB DU同步工作时,该IAB MT与IAB DU可以为频分复用的模式,由此,需要IAB MT与IAB DU的频域资源不重叠。如图5所示,若IAB MT与IAB DU的频域资源存在重叠,或占用的频域资源小于保护带,则会导致IAB MT或IAB DU中的任一个不能工作。因此,通过上报IAB MT的可用频域资源,可使得宿主节点根据该可用频域资源为IAB MT或IAB DU配置资源。或者,通过上报IAB MT的可用频域资源,可使得宿主节点获知如果需要IAB MT与IAB DU同步工作,IAB MT用来通信的频域资源有哪些。可理解,该可用频域资源也可以包括IAB MT可用的带宽资源。即该可用频域资源可以包括可用带宽资源。
示例性的,可用频域资源包括以下任一项或多项:
该可用频域资源的起始物理资源块(physical resource block,PRB);
该可用频域资源的结束PRB;
绝对无线频道编号(absolute radio frequency channel number,ARFCN);
该可用频域资源的资源块(resource block,RB)数量。
在一些实现方式中,可用频域资源包括起始PRB。该情况下,可用频域资源的结束PRB可以默认是带宽资源内最后一个PRB。该带宽资源可以是IAB MT的第一载波所在的频域资源。或者,该带宽资源可以是IAB MT的服务小区(如第一载波等)的频域资源。
在另一些实现方式中,可用频域资源包括结束PRB。该情况下,可用频域资源的起始PRB可以是PRB 0。一般的,服务小区或带宽部分(bandwidth part,BWP)的频域资源按照从低到高顺序第一个往往是PRB0,因此,在通过第一信息指示结束PRB时,可以默认该可用频域资源的起始PRB为PRB0。
在又一些实现方式中,可用频域资源包括ARFCN。该ARFCN可以用于表示可用频域资源的起始频点。
在又一些实现方式中,可用频域资源包括RB数量(也可以理解为该可用频域资源的频域长度)。该情况下,可用频域资源的起始位置可以是PRB0等,本申请实施例对于该起始位置如何设置不作限定。可理解,这里所示的以RB为单位衡量可用频域资源的频域长度仅为示例。示例性的,还可以以PRB或资源元素(resource element,RE)为单位衡量该可用频域资源的频域长度。如,可用频域资源包括PRB数量,或RE数量等,本申请实施例对此不作限定。
在又一些实现方式中,可用频域资源通过公共资源块(common resource block,CRB)指示。
在又一些实现方式中,可用频域资源包括该可用频域资源的起始位置(也可以称为开 始位置等)和结束位置(也可以称为截止位置等)。换句话说,可以通过起始位置和结束位置可以指示IAB MT与IAB DU同步工作时,IAB MT的频域资源需满足的条件。示例性的,该可用频域资源的起始位置和结束位置可以通过以下任一项单位来衡量:PRB、RB或RE等。示例性的,如表3所示,可以通过起始PRB和结束PRB进行半静态频分复用资源的划分。
表3
Figure PCTCN2021072283-appb-000004
示例性的,表3的第二行可以表示IAB DU与IAB MT支持同步接收,IAB MT的可用频域资源的起始PRB为X1,结束PRB为X2。表3的第三行可以表示IAB DU与IAB MT支持同步发送,IAB MT的可用频域资源的起始PRB为X3。该情况下,IAB MT的可用频域资源的结束PRB即为带宽资源内的最后一个PRB。可理解,这里所示的X1、X2和X3仅为示例,对于其代表的具体数值,本申请实施例不作限定。可理解,表3中示出的工作模式(operation mode)可以理解为IAB节点的双工复用模式,也即IAB节点的复用能力信息。表3是以IAB节点上报复用能力信息与第一信息为例示出的,当没有显式配置频域资源分配的工作模式时,则认为该IAB节点不进行频分复用,例如,该IAB节点可以进行时分复用等。
在又一些实现方式中,可用频域资源包括ARFCN和RB数量。如表4所示,通过ARFCN指示起始频点,以及RB数量进行半静态频分复用资源的划分。
表4
Figure PCTCN2021072283-appb-000005
Figure PCTCN2021072283-appb-000006
示例性的,表4的第二行表示IAB DU与IAB MT支持同步接收,IAB MT的可用频域资源的起始频点为Y1,RB数量为Y2。表4的第三行表示IAB DU与IAB MT支持同步发送,IAB MT的可用频域资源的起始频点为Y3,RB数量为Y4。可理解,这里所示的Y1、Y2、Y3和Y4仅为示例,对于其代表的具体数值,本申请实施例不作限定。
可理解,表3和表4仅为示例,本申请实施例对于可用频域资源的具体内容不作限定。示例性的,IAB MT的可用频域资源还可以包括ARFCN和结束PRB,或者,RB数量和起始PRB,或者,RB数量和结束PRB等,这里不再一一详述。
不管是通过上述何种方式指示IAB MT的可用频域资源,宿主节点均需要结合子载波间隔(sub-carrier spacing,SCS)才能获知IAB MT的带宽资源。示例性的,可用频域资源包括ARFCN和RB数量,该RB数量为20个RB。则宿主节点需要根据每个RB对应的子载波长度才能获知IAB MT的带宽资源。换句话说,宿主节点和/或IAB节点需要根据参考SCS确定IAB MT的可用频域资源的带宽长度。即该参考SCS用于确定IAB MT的可用频域资源的带宽长度。以下将详细说明参考SCS如何配置。
方法1、参考SCS为IAB MT的服务小区的SCS。换句话说,参考SCS为IAB MT的第一载波的SCS。例如,该参考SCS默认为IAB MT的服务小区(如第一载波)的SCS。又例如,第一信息中指示的参考SCS即为IAB MT的服务小区的SCS。
方法2、参考SCS由协议定义,如参考SCS为参考MT的初始带宽部分(initial bandwidth part,initial BWP,或称为default BWP)配置的SCS。
方法3、显式地配置参考SCS。示例性的,第一信息包括用于指示参考SCS的指示信息。示例性的,IAB节点向其宿主节点上报第五指示信息,该第五指示信息用于指示参考SCS。换句话说,该参考SCS可以包含于第一信息中,或者,IAB节点还可以通过其他信息(如第五指示信息)向其宿主节点指示该参考SCS等,本申请实施例对于如何显示配置参考SCS不作限定。
本申请实施例中,IAB节点通过向宿主节点上报其IAB MT的可用频域资源,一方面,使得宿主节点可以根据该IAB MT的可用频域资源为IAB DU配置接入与回传的资源;另一方面,IAB MT占用该可用频域资源时,IAB DU可以尽量避开与该可用频域资源重叠的频域资源。从而不仅改善了如图5所示的频域资源浪费的情况,而且提高了网络的频谱效率。
可理解,以上所示的各个实施例均是以第一条件包括IAB MT与IAB DU同步工作时,该IAB MT的可用频域资源为例示出的。然而,该第一条件也可以包括IAB MT与IAB DU同步工作时,该IAB MT的不可用频域资源。对于该IAB MT的不可用频域资源的指示方式等的说明,可以参考上述IAB MT的可用频域资源的描述,这里不再详述。
实现方式二、
第一条件包括:IAB MT与IAB DU同步工作时,期望的上级节点的DU的发送功率,和/或,IAB MT与IAB DU同步工作时,期望的IAB MT的发送功率。换句话说,第一条件包括:IAB MT的第一载波与IAB DU的第一小区同步工作时,期望的上级节点的DU的 发送功率,和/或,IAB MT的第一载波与IAB DU的第一小区同步工作时,期望的IAB MT的发送功率。
可理解,本申请实施例示出的发送功率仅为期望的上级节点的DU的发送功率(以下简称为期望的第一发送功率),或期望的IAB MT的发送功率(以下简称为期望的第二发送功率)。换句话说,即使第一信息用于指示第一条件,相关节点仍可以根据其他约束条件等确定上级节点的DU的发送功率或IAB MT的发送功率等。本申请示出的期望的第一发送功率还可以称为上级节点的DU的参考发送功率,期望的第二发送功率还可以称为IAB MT的参考发送功率。
一般的,当IAB DU与IAB MT同步工作时,如IAB DU接收信号时的接收功率与IAB MT接收信号时的接收功率相差过大时,会导致系统性能有所损失。又如,IAB DU发送信号时的发送功率与IAB MT发送信号时的发送功率相差过大时,会导致干扰问题。这里所示的同步工作仅为示例,对于同步工作的说明还可以参考上文,这里不再详述。
鉴于此,IAB节点可以向宿主节点上报期望的第一发送功率,或者期望的第二发送功率。
示例一、IAB节点通过向其宿主节点上报期望的第一发送功率,可使得该宿主节点根据该期望的第一发送功率为该上级节点的DU配置相关功率参数(如可以称为第一功率参数)。即该第一功率参数根据期望的第一发送功率确定。可理解,该第一功率参数可以理解为一个功率参数,也可以理解为多个功率参数等,本申请实施例对此不作限定。至于该第一功率参数中所包括的具体参数,本申请实施例也不作限定。示例性的,根据功率参数确定功率的方法可以参考相关标准或协议等,这里不作详述。
从而,该上级节点可以根据第一功率参数确定该上级节点的上行发送功率。由于宿主节点是根据IAB节点上报的期望的第一发送功率确定的第一功率参数,因此该上级节点根据第一功率参数确定的上行发送功率很大程度会是上述期望的第一发送功率。或者,该上级节点根据第一功率参数确定的上行发送功率与上述期望的第一发送功率的功率差会在一定范围内(如可接受的范围内)。进而,IAB MT接收来自上级节点的DU的信号时的接收功率,与IAB DU接收来自下级节点或UE的信号时的接收功率之间的功率差可以保证在一定范围内(如第一数值范围内等)。
示例二、当IAB节点的上级节点为宿主节点时,该IAB节点通过向该宿主节点上报期望的第一发送功率。可使得该宿主节点的发送功率尽量与该期望的第一发送功率相等,或者,可使得宿主节点的发送功率与期望的第一发送功率之间的功率差在一定范围内。从而,IAB MT接收来自宿主节点的信号时的接收功率,与IAB DU接收来自下级节点或UE的信号时的接收功率之间的功率差也可以保证在一定范围内。
根据以上所示的示例一和示例二可知,示例性的,期望的上级节点的DU的发送功率可以根据IAB MT对上级节点DU发送的参考信号进行测量确定。具体的,可以测量上级节点DU发送的下行参考信号的接收功率RSRP,或SINR(信号干扰噪声比)。示例性的,期望的上级节点的DU的发送功率可以根据IAB MT或IAB DU的接收功率的范围确定等,本申请实施例对于上述期望的上级节点的DU的发送功率的具体取值不作限定。
示例性的,IAB节点可以通过期望的第一发送功率的功率范围向宿主节点指示该期望 的第一发送功率。例如,第一信息包括期望的第一发送功率的最大值和期望的第一发送功率的最小值。示例性的,IAB节点可以通过期望的第一发送功率的偏移值向宿主节点指示该期望的第一发送功率。例如,第一信息包括期望的第一发送功率的偏移值,如-xdB。
示例三、IAB节点通过向其宿主节点上报期望的第二发送功率,可使得宿主节点根据该期望的第二发送功率为该IAB MT配置相关功率参数(如可以称为第二功率参数)。可理解,关于第二功率参数的说明可以参考上述对第一功率参数的说明,这里不再详述。
从而,IAB节点根据该第二功率参数确定该IAB MT的上行发送功率。由于宿主节点是根据期望的第二发送功率确定的第二功率参数,因此IAB节点根据第二功率参数确定的IAB MT的上行发送功率可能与期望的第二发送功率相同,或者,也可以是这两者之间的功率差在一定范围内。进而,IAB MT向其上级节点发送信号时的上行发送功率,与IAB DU向其下级节点或UE发送信号时的发送功率之间的功率差可以尽可能保证在一定范围内。
由此,改善了IAB MT与IAB DU这两者之间的发送功率差过大,导致干扰严重的问题,从而有效减少了IAB MT与IAB DU之间的干扰。
示例性的,第一信息可以包括期望的第二发送功率的基准功率(nominal power)和/或该基准功率的偏移值(如-XdB)。
本申请实施例中,IAB节点通过向宿主节点上报上述期望的第一发送功率,可以有效改善系统性能,改善IAB DU接收信号时的接收功率与IAB MT接收信号时的接收功率相差过大的问题。或者,IAB节点通过向宿主节点上报上述期望的第二发送功率,可以有效改善干扰问题,改善IAB DU发送信号时的发送功率与IAB MT发送信号时的发送功率相差过大的问题。
实现方式三、
第一条件包括以下任一项或多项:
IAB MT与IAB DU同步工作时,该IAB MT的端口数,该端口数为用于数据传输和/或数据解调的解调参考信号(demodulation reference signal,DMRS)的端口数;
IAB MT与IAB DU同步工作时,IAB DU的端口数,该端口数为用于数据传输和/或数据解调的DMRS的端口数;
IAB MT与IAB DU同步工作时,IAB节点的层数。
示例性的,IAB节点总共可以包括4个TRX射频通道,同时该IAB节点可能期望将其中两个用于回传,另外两个用于接入,从而实现空分传输。因此,该IAB节点可以上报层数或端口数,可使得宿主节点获知该IAB节点在某种复用场景下的可用层数或端口数等。
可理解,以上所示的可用频域资源、期望的第一发送功率、期望的第二发送功率、端口数或层数可以单独包含于第一信息中,即第一信息中可以包括上述任一项。或者,该第一信息中还可以包括上述信息的至少两项等,本申请实施例对此不作限定。
一般的,IAB DU可以向宿主节点上报复用能力信息(如表1所示),该复用能力信息可以通过F1接口应用协议承载。然而,通过F1接口应用协议配置相关信息时,传输时延较大。换句话说,当相关信息需要及时更新时,通过F1接口应用协议配置难以进行动态的配置。
鉴于此,本申请实施例提供一种基于IAB的通信方法及装置,可以动态调整IAB MT的可用频域资源。
图7是本申请实施例提供的一种基于IAB的通信方法的流程示意图。关于该方法所适用的通信系统以及通信装置的说明等,可以参考上文,这里不再赘述。如图7所示,该方法包括:
在一种可能的实现方式中,图7所示的方法包括步骤701。
关于步骤701的说明,可以参考下文示出的图8a和图8b,这里先不详述。
702、IAB节点向该IAB节点的上级节点发送第二信息,该第二信息用于指示第一频域资源。对应的,IAB节点的上级节点接收该第二信息。
示例性的,该第二信息可以包含于媒体接入控制-控制元素(medium access control-control element,MAC-CE)中。示例性的,IAB MT可以向IAB节点的上级节点发送第二信息。该IAB节点的上级节点可以为宿主节点,也可以为其他IAB节点等。
可选的,本申请实施例所示的第一频域资源可以理解为IAB MT的可用频域资源,或者,该第一频域资源也可以理解为IAB MT的不可用频域资源,对于该IAB MT的不可用的频域资源的描述可以参考下文示出的图8a,这里不再对不可用频域资源做介绍。可选的,该第一频域资源可以包含于图6所示的IAB MT的可用频域资源中,或者,该第一频域资源可以包含于图6所示的IAB MT的不可用频域资源中。但是,无论是IAB MT的可用频域资源,还是IAB MT的不可用频域资源,其均可以包含于IAB MT的服务小区中,如IAB MT的某个载波中(如上文示出的第一载波)。
在一种可能的实现方式中,IAB节点向宿主节点上报复用能力信息之后,该IAB节点向其上级节点发送第二信息。如图8a所示,步骤701可以包括:
7011、IAB节点向其宿主节点上报复用能力信息。对应的,宿主节点接收该复用能力信息。可理解,关于该复用能力信息的说明可以参考上文关于表1的介绍。示例性的,该复用能力信息包括以下任一项:IAB MT与IAB DU支持同步接收、IAB MT与IAB DU支持同步发送、IAB MT支持发送的同时,IAB DU支持发送、IAB MT支持接收的同时,IAB DU支持接收。
7012、宿主节点为IAB节点配置资源。
7013、宿主节点为IAB节点的上级节点配置资源。
可理解,关于步骤7012和步骤7013的说明,可以参考上文,这里不再赘述。
也就是说,图8a中,IAB节点向其宿主节点上报复用能力信息之后,该IAB节点还可以动态地向IAB节点的上级节点发送第一频域资源。该第一频域资源即可以理解为IAB MT与IAB DU同步工作时,IAB MT的可用频域资源。也就是说,若图7所示的方法不与图6所示的方法结合,则该第一频域资源可以理解为IAB MT与IAB DU同步工作时,IAB MT的可用频域资源。至于这里所示的IAB MT的可用频域资源与上述图6所述的IAB MT的可用频域资源的关系,本申请实施例不作限定。
本申请实施例中,当IAB节点的上级节点未接收到该第二信息,则IAB节点的上级节点可以默认子节点的IAB MT和子节点的IAB DU时分复用。即上级节点不会频分复用的调度MT进行传输,即上级节点不会在子节点DU工作的时间资源上调度子节点的MT进 行传输。
在实际传输中,受数据吞吐的波动的影响,IAB MT或IAB DU需要的带宽资源往往不是恒定的。如果通过高层信令进行半静态的配置,当MT或DU的任意一侧数据传输的需求较小,预先分配的频域资源过剩/冗余时,也会造成资源的浪费。如图6所示的方法中,实现了IAB MT与IAB DU的半静态的频域资源划分。但是IAB MT与IAB DU不一定总是按照上述配置的带宽进行工作。例如,IAB DU可以使用带宽中的100Mhz频域资源,若需要IAB MT与IAB DU同步工作,则IAB MT只能使用100Mhz中的0~50Mhz。根据每时刻需要传输的数据大小,IAB MT在与IAB DU频分复用时不一定总是使用50Mhz。因此本申请实施例还可以结合图6所示的方法,使得IAB MT可以其可用的频域资源。
鉴于此,在另一种可能的实现方式中,IAB节点向宿主节点上报第一信息之后,该IAB节点向其上级节点发送第二信息。如图8b所示,步骤701可以包括:
7014、IAB节点向其宿主节点上报第一信息,该第一信息用于指示第一条件,该第一条件为IAB MT与IAB DU同步工作时的条件。对应的,宿主节点接收该第一信息。
可理解,关于第一信息或第一条件等的说明,可以参考上文图6所示的方法,这里不再详述。示例性的,第一条件包括IAB MT的可用频域资源,该情况下,第一频域资源包含于该IAB MT的可用频域资源中。换句话说,结合图6和图7所示的方法,则该第一频域资源可以理解为IAB MT的可用频域资源的子集。
7015、宿主节点为IAB节点配置资源。
7016、宿主节点为IAB节点的上级节点配置资源。
本申请实施例中,当IAB节点的上级节点未接收到该第二信息,则默认IAB节点上报的IAB MT的可用频域资源(IAB MT与IAB DU同步工作时,IAB MT的可用频域资源),都可以被频分复用。即在第一条件约束下的IAB MT的所有带宽均可以被频域复用。
可理解,关于步骤7015和步骤7016的说明,可以参考上文,这里不再赘述。
可理解,上述步骤7011至步骤7013和步骤7014至步骤7016可以理解为相互独立的实施例,并不表示步骤7011至步骤7016为一个实施例。
703、IAB节点通过第一频域资源与该IAB节点的上级节点通信。
如上述IAB MT的可用频域资源可以包含于IAB MT的第一载波中。即该第一频域资源还包含于第一载波中。因此,IAB MT通过第一频域资源与IAB节点的上级节点通信。或者,IAB MT通过第一频域资源与IAB节点的上级节点的DU通信。
以下详细介绍本申请实施例提供的第二信息。
在一种可能的实现方式中,第二信息包括第二指示信息,该第二指示信息用于指示第一频域资源的起始RB和RB数量。
示例性的,第二指示信息可以为索引值,该索引值用于指示第一频域资源的起始RB和RB数量。换句话说,IAB节点可以通过一个索引值向其上级节点指示第一频域资源的起始RB和RB数量。示例性的,第一频域资源的起始RB和RB数量与索引值的关系可以如表5所示。
表5
Figure PCTCN2021072283-appb-000007
Figure PCTCN2021072283-appb-000008
可理解,表5所示的Z1、Z2和Z3仅为示例,对于该Z1、Z2和Z3的具体取值,本申请实施例不作限定。同时,RB数量的取值如Z11至Z18、Z21至Z28、Z31至Z33等仅为与起始RB的编号相关的RB数量,对于上述各个字母的具体取值,本申请实施例也不作限定。示例性的,如表5所示,索引0对应的起始RB为Z1,RB数量为Z11。换句话说,若第二指示信息为0,则IAB节点的上级节点便可以根据该索引值0获知第一频域资源的起始RB的编号为Z1,第一频域资源的RB数量为Z11。
为便于理解,本申请实施例示出了一个具体例子,如表6所示。
表6
Figure PCTCN2021072283-appb-000009
Figure PCTCN2021072283-appb-000010
可理解,表5和表6仅为示例,如上述表格仅示例性地示出了部分索引值与其指示的带宽的组合。
可理解,上述以RB为单位衡量第一频域资源仅为示例,如还可以以RE或PRB等为单位衡量该第一频域资源。示例性的,如第二指示信息用于指示第一频域资源的起始RE和RE数量。又如,第二指示信息用于指示第一频域资源的起始PRB和PRB数量(或RB数量)等。
在另一种可能的实现方式中,第二信息中可以分别包括用于指示第一频域资源的起始RB和RB数量的信息。示例性的,第二信息中可以包括用于指示第一频域资源的起始RB的信息,以及用于指示第一频域资源的RB数量的信息。
在又一种可能的实现方式中,第二信息包括第三指示信息,该第三指示信息包括N个比特,N个比特的前N-1个比特中的每个比特用于指示预设数量的PRB是否可用,N个比特中的最后一个比特用于指示剩余数量的PRB是否可用。
可选的,剩余数量根据第一频域资源包含的PRB数量以及N-1个比特对应的PRB数量确定,N为大于0的整数。该情况下,第三指示信息可以用于指示第一频域资源中的部分带宽可用,和/或部分带宽不可用。
可选的,剩余数量根据IAB MT的可用频域资源包含的PRB数量以及N-1个比特对应的PRB数量确定,N为大于0的整数。该情况下,第三指示信息可以用于指示IAB MT的可用频域资源中的部分带宽可用,和/或部分带宽不可用。下文将以剩余数量根据IAB MT的可用频域资源包括的PRB数量以及N-1个比特对应的PRB数量确定为例,结合具体例子说明,本申请实施例提供的第三指示信息。
可理解,上述预设数量可能与剩余数量相同,也可能不同,本申请实施例对此不作限定。对于上述N的具体取值,本申请实施例不作限定。示例性的,N可以为固定值,或者N可以根据第一频域资源包括的PRB数量以及预设数量确定,或者,N可以根据IAB MT的可用频域资源包括的PRB数量以及预设数量确定等。
可选的,N个比特的前N-1个比特中的每个比特用于指示固定数量的PRB是否可用。即预设数量可以理解为固定数量,对于该固定数量的具体取值,本申请实施例不作限定。示例性的,预设数量等于10、20或30等中的任一项。示例性的,第一频域资源的带宽为200MHz,同时,该200MHz的PRB个数为275,预设数量为20。第三指示信息包括14个比特,前13个比特中的每个比特用于指示20个PRB是否可用。前13个比特可以表示13*20=260个PRB是否可用,则最后一个比特用于指示275-260=15个PRB是否可用。
可理解,上述示出的例子是以预设数量为固定数量为例示出的,可选的,预设数量还可以根据第一频域资源的带宽长度以及N确定。示例性的,第一频域资源的带宽为200MHz,该200MHz的PRB个数为275,N=14。则N个比特的前N-1个比特中的每个比特用于指示19个PRB是否可用。该19可以根据275/14向下取整得到,即275/14≈19.64,该19.64向下取整为19。N个比特的最后一个比特用于指示275-19*13=28个PRB是否可用。可理解,以上所示的通过向下取整得到19仅为示例,如还可以通过向上取整275/14得到20。
可理解,这里所示的N=14仅为示例。可选的,N可以由协议配置,如N为固定值。可选的,N还可以根据第一频域资源的带宽与每个比特指示的PRB数量确定等,本申请实施例对于N的具体取值不作限定。
可理解,以上所示的每个比特指示一定数量的PRB是否可用中,以PRB为单位仅为示例。本申请实施例中,还可以以RB或RE为单位,如每个比特可以指示一定数量的RB是否可用,又如每个比特可以指示一定数量的RE是否可用等。可理解,以上所示的各个实现方式,介绍的是第二信息中包括用于指示第一频域资源的信息,如第二信息包括第二指示信息或第三指示信息等。该第二信息中除了包括上述信息之外,还可以包括第四指示信息,该第四指示信息用于指示IAB节点的工作模式,该IAB节点的工作模式可以包括以下任一项:IAB DU接收来自IAB节点的下级节点或UE的信号,同时IAB MT接收IAB节点的上级节点的信号,即也可以理解为上述介绍的IAB DU与IAB MT支持同步接收;
IAB DU向IAB节点的下级节点或UE发送信号,同时IAB MT向IAB节点的上级节点发送信号,即也可以理解为上述介绍的IAB DU与IAB MT支持同步发送;
IAB DU向IAB节点的下级节点或UE发送信号,同时IAB MT接收来自IAB节点的上级节点的信号,即也可以理解为上述介绍的IAB DU支持发送的同时IAB MT支持接收;
IAB DU接收来自IAB节点的下级节点或UE的信号,同时IAB MT向IAB节点的上级节点发送信号,即也可以理解为上述介绍的IAB DU支持接收的同时IAB MT支持发送。
可理解,以上所示的工作模式仅为示例,对于工作模式的介绍还可以参考上述关于表1的介绍等,这里不再详述。
举例来说,图9示出的是第二信息包括的16个比特的示意图。如图9所示,该16个比特中的前两个比特可以用于指示工作模式,该16个比特从第三个比特至第十六个比特可以用于指示第一频域资源。如表7所示,表7示例性地示出了工作模式的指示方法。如“00”可以表示IAB MT与IAB DU支持同步接收(即DU_RX/MT_RX),“01”可以表示IAB MT与IAB DU支持同步发送(即DU_TX/MT_TX),“10”可以表示IAB MT支持接收的同时IAB DU支持发送(即DU_TX/MT_RX),“11”可以表示IAB MT支持发送的同时IAB DU支持接收(即DU_RX/MT_TX)。因此,图9示例性的示出了工作模式为IAB MT与IAB DU 支持同步接收。从第三个比特至第十六个比特,“0”可以表示预设数量的PRB不可用,“1”可以表示预设数量的PRB不可用。可理解,第十六个比特与前面的比特所指示的PRB的数量是否相同,本申请实施例不作限定。
示例性的,图9的第三个比特至第十六个比特可以表示从第一频域资源的0号PRB开始,可以占用的带宽。例如,第三个比特至第十五个比特用于表示20个PRB是否可用,第十六个比特用于表示15个PRB是否可用。则根据图9所示,从PRB0开始,PRB0至PRB19(记为PRB0-PRB19)均不可用,PRB20-PRB39均不可用,PRB40-PRB59均不可用,PRB60-PRB79均不可用,PRB80-PRB99均不可用,PRB100-PRB119均不可用,PRB120-PRB139均不可用,PRB140-PRB159可用,PRB160-PRB179可用,PRB180-PRB199可用,PRB200-PRB219可用,PRB220-PRB239可用,PRB240-PRB259可用,PRB600-PRB275可用。换句话说,IAB MT使用的频域资源为PRB140至PRB275。结合图6所示的IAB MT的可用频域资源以及第一频域资源,这里所示的PRB0-PRB275可以理解为图6所示的IAB MT与IAB DU同步工作时,IAB MT需要满足的可用频域资源,PRB140-PRB275则可以理解为图7所示的第一频域资源。
表7
模式 比特
DU_RX/MT_RX 00
DU_TX/MT_TX 01
DU_TX/MT_RX 10
DU_RX/MT_TX 11
可理解,上述示出的图9中,第二信息包括16个比特仅为示例,应理解第二信息还可以包括其他数量的比特,本申请实施例不做限定。
示例性的,工作模式还可以包括以下任一项:
在没有条件的情况下,IAB DU接收来自IAB节点的下级节点或UE的信号,同步的,IAB MT接收IAB节点的上级节点的信号,即也可以理解为上述介绍的IAB DU与IAB MT无条件支持同步接收;
在没有条件的情况下,IAB DU向IAB节点的下级节点或UE发送信号,同步的,IAB MT向IAB节点的上级节点发送信号,即也可以理解为上述介绍的IAB DU与IAB MT无条件支持同步发送;
在没有条件的情况下,IAB DU向IAB节点的下级节点或UE发送信号,同步的,IAB MT接收来自IAB节点的上级节点的信号,即也可以理解为上述介绍的在没有条件的情况下,IAB DU支持发送的同步IAB MT支持接收;
在没有条件的情况下,IAB DU接收来自IAB节点的下级节点或UE的信号,同步的,IAB MT向IAB节点的上级节点发送信号,即也可以理解为上述介绍的在没有条件的情况下,IAB DU支持接收的同步IAB MT支持发送;
在第一条件下,IAB DU接收来自IAB节点的下级节点或UE的信号,同步的,IAB MT接收IAB节点的上级节点的信号,即也可以理解为上述介绍的IAB DU与IAB MT在第一条件下支持同步接收;
在第一条件下,IAB DU向IAB节点的下级节点或UE发送信号,同步的,IAB MT向IAB节点的上级节点发送信号,即也可以理解为上述介绍的IAB DU与IAB MT在第一条件支持同步发送;
在第一条件下,IAB DU向IAB节点的下级节点或UE发送信号,同步的,IAB MT接收来自IAB节点的上级节点的信号,即也可以理解为上述介绍的在第一条件下,IAB DU支持发送的同步IAB MT支持接收;
在第一条件下,IAB DU接收来自IAB节点的下级节点或UE的信号,同步的,IAB MT向IAB节点的上级节点发送信号,即也可以理解为上述介绍的在第一条件下,IAB DU支持接收的同步IAB MT支持发送。
示例性的,如上述工作模式可以包括:在没有条件的情况下,IAB DU接收来自IAB节点的下级节点或UE的信号,同时,IAB MT接收IAB节点的上级节点的信号,即也可以理解为上述介绍的IAB DU与IAB MT无条件支持同时接收。又如,在第一条件下,IAB DU接收来自IAB节点的下级节点或UE的信号,同时,IAB MT接收IAB节点的上级节点的信号,即也可以理解为上述介绍的IAB DU与IAB MT在第一条件下支持同时接收。可理解,这里仅示例性的给出了同时工作与同步工作的关系。
可理解,本申请实施例示出的没有条件是相对于第一条件而言的。对于第一条件的具体说明,可以参考上文关于图6的描述,这里不再详述。
本申请实施例中,IAB节点通过上报第二信息,可使得IAB MT与IAB DU之间可以动态的改变频分复用的资源分配,提高频谱效率。
可理解,以上所示的各个实施例中,其中一个实施例未详细描述的地方,还可以参考其他实施例等。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图10至图12详细描述本申请实施例的通信装置。
图10是本申请实施例提供的一种通信装置的结构示意图,如图10所示,该通信装置包括处理单元1001和收发单元1002。该通信装置可以是上文示出的IAB节点或IAB节点中的芯片等。即该通信装置可以用于执行上文方法实施例中由IAB节点(包括IAB MT和/或IAB DU)执行的步骤或功能等。
示例性的,收发单元1002,用于输出第一信息(包括向IAB节点的宿主节点上报第一信息,或向IAB节点的宿主节点发送第一信息等);处理单元1001,用于在第一条件下,与通信装置的下级节点或UE通信,同步的,与该通信装置的上级节点通信。
这里所示的处理单元1001在第一条件下,与该通信装置的下级节点或UE通信,同步与该通信装置的上级节点通信,可以有以下理解:
1、处理单元1001,可以通过收发单元1002,在第一条件下,与该通信装置的下级节点 或UE通信,同步的,与该通信装置的上级节点通信。
2、处理单元1001,用于处理收发单元1002输入的信号,或用于处理收发单元1002输出的信号。这里所示的收发单元1002输入的信号包括该通信装置的下级节点发送的信号,或,该通信装置的上级节点发送的信号等。这里所示的收发单元1002输出的信号包括经过处理单元1001处理的信号等。
示例性的,收发单元1002,用于输出第一指示信息(包括向IAB节点的宿主节点上报第一指示信息,或者向IAB节点的宿主节点发送第一指示信息)。
示例性的,收发单元1002,还用于输出第二信息(包括向IAB节点的上级节点发送第二信息等)。该情况下,处理单元1001,还用于通过第一频域资源与该通信装置的上级节点通信。可理解,这里关于处理单元的说明,可以参考上述对处理单元的描述,这里不再详述。
本申请实施例中,关于第一条件、第一信息、第一指示信息、第二信息、第二指示信息、第三指示信息等的描述,可以参考示出的各个实施例,这里不再一一详述。
可理解,以上示出的收发单元和处理单元的具体说明,还可以参考上述方法实施例中由IAB节点执行的步骤。示例性的,收发单元1002可以用于执行图6所示的步骤601中的发送步骤、步骤602中的接收步骤,处理单元1001可以用于执行图6所示的步骤604。示例性的,收发单元1002还可以用于执行图7所示的步骤702中的发送步骤,处理单元1001还可以用于执行图7所示的步骤703。示例性的,收发单元1002还可以用于执行图8a所示的步骤7011的发送步骤以及步骤7012的接收步骤。示例性的,收发单元1002还可以用于执行图8b所示的步骤7014的发送步骤以及步骤7015的接收步骤。
以上介绍了本申请实施例的IAB节点,以下介绍所述IAB节点可能的产品形态。应理解,但凡具备上述图10所述的IAB节点的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的IAB节点的产品形态仅限于此。
在一种可能的实现方式中,图10所示的通信装置中,处理单元1001可以是一个或多个处理器,收发单元1002可以是收发器,或者收发单元1002还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。
如图11所示,该通信装置110包括一个或多个处理器1120和收发器1110。
在本申请实施例中,当该通信装置110为IAB节点时,处理器1120执行的方法或功能或操作等,可以参考上述处理单元1001执行的方法或功能或操作,收发器1110执行的方法或功能或操作等,可以参考上述收发单元1002执行的方法或功能或操作。
可理解,对于处理器和收发器的具体说明还可以参考图10所示的处理单元和收发单元的介绍,这里不再赘述。
在图11所示的通信装置的各个实施例中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用 于通过传输介质和其他设备/装置进行通信。
可选的,通信装置110还可以包括一个或多个存储器1130,用于存储程序指令和/或数据。存储器1130和处理器1120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1120可能和存储器1130协同操作。处理器1120可可以执行存储器1130中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1110、处理器1120以及存储器1130之间的具体连接介质。本申请实施例在图11中以存储器1130、处理器1120以及收发器1110之间通过总线1140连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。作为示例,存储器中可以用于存储参考信号序列的配置信息。
可理解,本申请实施例示出的通信装置还可以具有比图11更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图10所示的通信装置中,处理单元1001可以是一个或多个逻辑电路,收发单元1002可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元1002还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图12所示,图12所示的通信装置(图12是以芯片为例示出的)包括逻辑电路1201和接口1202。即上述处理单元1001可以用逻辑电路1201实现,收发单元1002可以用接口1202实现。其中,该逻辑电路1201可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1202可以为通信接口、输入输出接口等。本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
接口1202,用于输出第一信息;逻辑电路1201,用于用于在第一条件下,与通信装置 的下级节点或UE通信,同步的,与该通信装置的上级节点通信。
示例性的,接口1202,还用于输出第一指示信息。
示例性的,接口1202,还用于输出第二信息。
图12所示的通信装置可以不包括存储器;或者,图12所示的通信装置还可以包括存储器。对于图12所示的通信装置中是否包括存储器,本申请实施例不作限定。
对于图12所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。示例性的,逻辑电路的描述可以参考上述处理单元的说明,接口的描述可以参考上述收发单元的说明,这里不再一一详述。
本申请实施例中,关于第一条件、第一信息、第一指示信息、第二信息、第二指示信息、第三指示信息等的描述,可以参考示出的各个实施例,这里不再一一详述。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中IAB节点执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由IAB节点执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由IAB节点执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机 设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种基于接入回传一体化IAB的通信方法,其特征在于,所述方法包括:
    IAB节点向所述IAB节点的宿主节点上报第一信息,所述第一信息用于指示第一条件,所述第一条件为所述IAB节点的移动终端MT与所述IAB节点的分布式单元DU同步工作时的条件;
    在所述第一条件下,所述IAB节点的DU与所述IAB节点的下级节点或终端设备通信,同步的,所述IAB节点的MT与所述IAB节点的上级节点通信。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述IAB节点向所述IAB节点的宿主节点上报第一指示信息,所述第一指示信息用于指示所述IAB节点的MT与所述IAB节点的DU同步工作时,是否需要满足所述第一条件。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一条件包括:所述IAB节点的MT与所述IAB节点的DU同步工作时,所述IAB节点的MT的可用频域资源。
  4. 根据权利要求3所述的方法,其特征在于,所述可用频域资源包括以下任一项或多项:
    所述可用频域资源的起始物理资源块PRB;
    所述可用频域资源的结束PRB;
    绝对无线频道编号ARFCN;
    所述可用频域资源的资源块RB数量。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一条件包括:所述IAB节点的MT与所述IAB节点的DU同步工作时,期望的上级节点的DU的发送功率,和/或,所述IAB节点的MT与所述IAB节点的DU同步工作时,期望的所述IAB节点的MT的发送功率。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一条件包括以下任一项或多项:
    所述IAB节点的MT与所述IAB节点的DU同步工作时,所述IAB节点的MT的端口数,所述端口数为用于数据传输和/或数据解调的解调参考信号DMRS的端口数;
    所述IAB节点的MT与所述IAB节点的DU同步工作时,所述IAB节点的DU的端口数,所述端口数为用于数据传输和/或数据解调的解调参考信号DMRS的端口数;
    所述IAB节点的MT与所述IAB节点的DU同步工作时,所述IAB节点的层数。
  7. 根据权利要求3-6任一项所述的方法,其特征在于,所述第一信息包括用于指示参考子载波间隔SCS的指示信息,所述参考SCS用于确定所述可用频域资源的带宽长度。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述IAB节点向所述IAB节点的上级节点发送第二信息,所述第二信息用于指示第一频域资源,所述第一频域资源包含于所述IAB节点的MT的可用频域资源中。
  9. 根据权利要求8所述的方法,其特征在于,所述第二信息包括第二指示信息,所述第二指示信息用于指示所述第一频域资源的起始资源块RB和所述第一频域资源的RB数量。
  10. 根据权利要求9所述的方法,其特征在于,所述第二指示信息为索引值,所述索引值用于指示所述第一频域资源的起始RB和所述第一频域资源的RB数量。
  11. 根据权利要求8所述的方法,其特征在于,所述第二信息包括第三指示信息,所述第三指示信息包括N个比特,所述N个比特的前N-1个比特中的每个比特用于指示预设数量的物理资源块PRB是否可用,所述N个比特中的最后一个比特用于指示剩余数量的PRB是否可用,所述剩余数量根据所述第一频域资源包含的PRB数量以及所述N-1个比特对应的PRB数量确定,所述N为大于0的整数。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述第二信息还包括第四指示信息,所述第四指示信息用于指示所述IAB节点的工作模式,所述IAB节点的工作模式包括以下任一项:
    所述IAB节点的DU接收来自所述IAB节点的下级节点或所述终端设备的信号,同步的,所述IAB节点的MT接收所述IAB节点的上级节点的信号;
    所述IAB节点的DU向所述IAB节点的下级节点或所述终端设备发送信号,同步的,所述IAB节点的MT向所述IAB节点的上级节点发送信号;
    所述IAB节点的DU向所述IAB节点的下级节点或所述终端设备发送信号,同步的,所述IAB节点的MT接收来自所述IAB节点的上级节点的信号;
    所述IAB节点的DU接收来自所述IAB节点的下级节点或所述终端设备的信号,同步的,所述IAB节点的MT向所述IAB节点的上级节点发送信号。
  13. [根据细则91更正 27.01.2021] 
    根据权利要求8-12任一项所述的方法,其特征在于,所述第二信息包含于媒体接入控制-控制元素MAC-CE信令中。
  14. 一种通信装置,其特征在于,所述通信装置包括:
    收发单元,用于向所述通信装置的宿主节点上报第一信息,所述第一信息用于指示第一条件,所述第一条件为所述通信装置的移动终端MT与所述通信装置的分布式单元DU同步工作时的条件;
    处理单元,用于在所述第一条件下,所述通信装置的DU与所述通信装置的下级节点或终端设备通信,同步的,所述通信装置的MT与所述通信装置的上级节点通信。
  15. 根据权利要求14所述的通信装置,其特征在于,
    所述收发单元,还用于向所述通信装置的宿主节点上报第一指示信息,所述第一指示信息用于指示所述通信装置的MT与所述通信装置的DU同步工作时,是否需要满足所述第一条件。
  16. 根据权利要求14或15所述的通信装置,其特征在于,所述第一条件包括:所述通信装置的MT与所述通信装置的DU同步工作时,所述通信装置的MT的可用频域资源。
  17. 根据权利要求16所述的通信装置,其特征在于,所述可用频域资源包括以下任一项或多项:
    所述可用频域资源的起始物理资源块PRB;
    所述可用频域资源的结束PRB;
    绝对无线频道编号ARFCN;
    所述可用频域资源的资源块RB数量。
  18. 根据权利要求14-17任一项所述的通信装置,其特征在于,所述第一条件包括:所述通信装置的MT与所述通信装置的DU同步工作时,期望的上级节点的DU的发送功率,和/或,所述通信装置的MT与所述通信装置的DU同步工作时,期望的所述通信装置的MT的发送功率。
  19. 根据权利要求14-18任一项所述的通信装置,其特征在于,所述第一条件包括以下任一项或多项:
    所述通信装置的MT与所述通信装置的DU同步工作时,所述通信装置的MT的端口数,所述端口数为用于数据传输和/或数据解调的解调参考信号DMRS的端口数;
    所述通信装置的MT与所述通信装置的DU同步工作时,所述通信装置的DU的端口数,所述端口数为用于数据传输和/或数据解调的解调参考信号DMRS的端口数;
    所述通信装置的MT与所述通信装置的DU同步工作时,所述通信装置的层数。
  20. 根据权利要求16-19任一项所述的通信装置,其特征在于,所述第一信息包括用于指示参考子载波间隔SCS的指示信息,所述参考SCS用于确定所述可用频域资源的带宽长度。
  21. 根据权利要求13-20任一项所述的通信装置,其特征在于,
    所述收发单元,还用于向所述通信装置的上级节点发送第二信息,所述第二信息用于指示第一频域资源,所述第一频域资源包含于所述通信装置的MT的可用频域资源中。
  22. 根据权利要求21所述的通信装置,其特征在于,所述第二信息包括第二指示信息,所述第二指示信息用于指示所述第一频域资源的起始资源块RB和所述第一频域资源的RB数量。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第一指示信息为索引值,所述索引值用于指示所述第一频域资源的起始RB和所述第一频域资源的RB数量。
  24. 根据权利要求21所述的通信装置,其特征在于,所述第二信息包括第三指示信息,所述第三指示信息包括N个比特,所述N个比特的前N-1个比特中的每个比特用于指示预设数量的物理资源块PRB是否可用,所述N个比特中的最后一个比特用于指示剩余数量的PRB是否可用,所述剩余数量根据所述第一频域资源包含的PRB数量以及所述N-1个比特对应的PRB数量确定,所述N为大于0的整数。
  25. 根据权利要求22-24任一项所述的通信装置,其特征在于,所述第二信息还包括第四指示信息,所述第四指示信息用于指示所述通信装置的工作模式,所述通信装置的工作模式包括以下任一项:
    所述通信装置的DU接收来自所述通信装置的下级节点或所述终端设备的信号,同步的,所述通信装置的MT接收所述通信装置的上级节点的信号;
    所述通信装置的DU向所述通信装置的下级节点或所述终端设备发送信号,同步的,所述通信装置的MT向所述通信装置的上级节点发送信号;
    所述通信装置的DU向所述通信装置的下级节点或所述终端设备发送信号,同步的,所述通信装置的MT接收来自所述通信装置的上级节点的信号;
    所述通信装置的DU接收来自所述通信装置的下级节点或所述终端设备的信号,同步的,所述通信装置的MT向所述通信装置的上级节点发送信号。
  26. 根据权利要求21-25任一项所述的通信装置,其特征在于,所述第二信息包含于媒体接入控制-控制元素MAC-CE信令中。
  27. 一种通信装置,其特征在于,包括处理器;
    所述处理器用于执行存储器中的计算机执行指令,以使权利要求1-13任一项所述的方法被执行。
  28. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的所述计算机执行指令,以使权利要求1-13任一项所述的方法被执行。
  29. 一种通信装置,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于接收和/或发送信号;
    所述存储器,用于存储计算机执行指令;
    所述处理器,用于执行所述计算机执行指令,以使权利要求1-13任一项所述的方法被执行。
  30. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和所述接口耦合;
    所述接口用于输入和/或输出代码指令;
    所述逻辑电路用于执行所述代码指令,以使权利要求1-13任一项所述的方法被执行。
  31. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1-13任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,如权利要求1-13任一项所述的方法被执行。
  33. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序被执行时,如权利要求1-13任一项所述的方法被执行。
  34. 一种计算机程序,其特征在于,所述计算机程序被执行时,如权利要求1-13任一项所述的方法被执行。
PCT/CN2021/072283 2021-01-15 2021-01-15 基于接入回传一体化的通信方法及装置 WO2022151404A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112023014183A BR112023014183A2 (pt) 2021-01-15 2021-01-15 Método e aparelho de comunicação baseados em acesso e backhaul integrados
PCT/CN2021/072283 WO2022151404A1 (zh) 2021-01-15 2021-01-15 基于接入回传一体化的通信方法及装置
EP21918608.7A EP4266787A4 (en) 2021-01-15 2021-01-15 COMMUNICATION METHOD AND APPARATUS BASED ON INTEGRATED ACCESS AND BACKHAUL
JP2023542947A JP2024504301A (ja) 2021-01-15 2021-01-15 アクセス・バックホール統合に基づいた通信方法及び装置
CN202180089157.4A CN116686358A (zh) 2021-01-15 2021-01-15 基于接入回传一体化的通信方法及装置
KR1020237027394A KR20230133879A (ko) 2021-01-15 2021-01-15 통합 액세스 및 백홀에 기초한 통신 방법 및 장치
US18/352,865 US20230362727A1 (en) 2021-01-15 2023-07-14 Communication method and apparatus based on integrated access and backhaul

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072283 WO2022151404A1 (zh) 2021-01-15 2021-01-15 基于接入回传一体化的通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/352,865 Continuation US20230362727A1 (en) 2021-01-15 2023-07-14 Communication method and apparatus based on integrated access and backhaul

Publications (1)

Publication Number Publication Date
WO2022151404A1 true WO2022151404A1 (zh) 2022-07-21

Family

ID=82446891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072283 WO2022151404A1 (zh) 2021-01-15 2021-01-15 基于接入回传一体化的通信方法及装置

Country Status (7)

Country Link
US (1) US20230362727A1 (zh)
EP (1) EP4266787A4 (zh)
JP (1) JP2024504301A (zh)
KR (1) KR20230133879A (zh)
CN (1) CN116686358A (zh)
BR (1) BR112023014183A2 (zh)
WO (1) WO2022151404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220407671A1 (en) * 2021-06-18 2022-12-22 At&T Intellectual Property I, L.P. Dynamic resource coordination for full-duplex integrated access and backhaul (iab)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11974232B2 (en) * 2021-12-07 2024-04-30 Qualcomm Incorporated Coordination of transmit power for distributed units

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190394738A1 (en) * 2018-06-26 2019-12-26 Qualcomm Incorporated Timing alignment timer in a wireless communication network
WO2020144398A1 (en) * 2019-01-08 2020-07-16 Nokia Solutions And Networks Oy Method and apparatus for intra-node resource allocation
CN111436145A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 资源配置的方法和装置
CN111884777A (zh) * 2019-05-03 2020-11-03 华为技术有限公司 一种通信的方法及装置
CN112075115A (zh) * 2018-04-06 2020-12-11 Lg电子株式会社 无线通信系统中用于回程和接入链路时隙的格式的方法及使用该方法的终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202190A1 (en) * 2019-03-29 2020-10-08 Centre Of Excellence In Wireless Technology Method and system for resource allocation and timing alignment in integrated access and backhaul (iab) network
US11595811B2 (en) * 2019-04-19 2023-02-28 Qualcomm Incorporated Supporting spatial division multiplexing operation in integrated access and backhaul networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112075115A (zh) * 2018-04-06 2020-12-11 Lg电子株式会社 无线通信系统中用于回程和接入链路时隙的格式的方法及使用该方法的终端
US20190394738A1 (en) * 2018-06-26 2019-12-26 Qualcomm Incorporated Timing alignment timer in a wireless communication network
WO2020144398A1 (en) * 2019-01-08 2020-07-16 Nokia Solutions And Networks Oy Method and apparatus for intra-node resource allocation
CN111436145A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 资源配置的方法和装置
CN111884777A (zh) * 2019-05-03 2020-11-03 华为技术有限公司 一种通信的方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements for simultaneous operation of MT and DU", 3GPP DRAFT; R1-2007595, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946436 *
LENOVO, MOTOROLA MOBILITY: "Enhancements to resource multiplexing for IAB", 3GPP DRAFT; R1-2009108, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946835 *
See also references of EP4266787A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220407671A1 (en) * 2021-06-18 2022-12-22 At&T Intellectual Property I, L.P. Dynamic resource coordination for full-duplex integrated access and backhaul (iab)
US11902219B2 (en) * 2021-06-18 2024-02-13 At&T Intellectual Property I, L.P. Dynamic resource coordination for full-duplex integrated access and backhaul (IAB)

Also Published As

Publication number Publication date
EP4266787A1 (en) 2023-10-25
US20230362727A1 (en) 2023-11-09
BR112023014183A2 (pt) 2023-10-31
EP4266787A4 (en) 2024-05-29
JP2024504301A (ja) 2024-01-31
KR20230133879A (ko) 2023-09-19
CN116686358A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN112997437B (zh) 分开传送针对多个发送接收点的基于解调参考信号的信道信息
JP7330990B2 (ja) 送信ギャップ構成
US10631296B2 (en) Resource allocation method, apparatus, and wireless access system
JP7206296B2 (ja) 超高信頼性低レイテンシ通信(urllc)に対する物理アップリンク制御チャネル(pucch)リソース割り振り
JP5602239B2 (ja) 柔軟な搬送波集約のための信号方式
US20200229181A1 (en) Method for integrated access backhaul resource multiplexing
CN110999529A (zh) 用于经由多层隧道传送和集中控制在多跳无线网络中进行转发的技术和装置
WO2019205970A1 (zh) 一种资源配置方法及节点
WO2021159467A1 (zh) 一种资源的配置方法及网络设备
JP2022536535A (ja) 同期信号ブロック構成
CN111567107A (zh) 寻呼监视时机确定
US20230362727A1 (en) Communication method and apparatus based on integrated access and backhaul
CN114467351A (zh) 用于多发送-接收点部署中的通信的波束选择
JP2022547984A (ja) サイドリンクcsi報告送信方法および条件
JP2021520727A (ja) チャネル状態情報に対する物理アップリンク制御チャネル(pucch)リソースの選択
CN113330708A (zh) 带宽部分(bwp)选择
TWI652921B (zh) 用戶設備及虛擬載波的操作方法
JP2022520405A (ja) 共有無線周波数スペクトルチャネル構成のための技法
WO2023051755A1 (zh) 一种资源配置方法及通信装置
WO2023011518A1 (zh) 一种通信方法及通信装置
WO2022082789A1 (zh) 复用关系上报方法及通信装置
WO2024108585A1 (zh) 用于侧行通信的方法、终端设备以及网络设备
WO2023116809A1 (zh) 一种通信方法及装置
WO2023011372A1 (zh) 数据传输方法及装置
WO2023044677A1 (zh) 一种测量间隔增强的方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089157.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023542947

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021918608

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021918608

Country of ref document: EP

Effective date: 20230720

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023014183

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237027394

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027394

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202305341R

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112023014183

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230714

WWE Wipo information: entry into national phase

Ref document number: 523441587

Country of ref document: SA