WO2021120135A1 - 一种资源确定方法及资源确定装置 - Google Patents

一种资源确定方法及资源确定装置 Download PDF

Info

Publication number
WO2021120135A1
WO2021120135A1 PCT/CN2019/126787 CN2019126787W WO2021120135A1 WO 2021120135 A1 WO2021120135 A1 WO 2021120135A1 CN 2019126787 W CN2019126787 W CN 2019126787W WO 2021120135 A1 WO2021120135 A1 WO 2021120135A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
search space
search spaces
resource
search
Prior art date
Application number
PCT/CN2019/126787
Other languages
English (en)
French (fr)
Inventor
杭海存
施弘哲
纪刘榴
王明哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/126787 priority Critical patent/WO2021120135A1/zh
Priority to CN201980102854.1A priority patent/CN114788371A/zh
Priority to EP19957000.3A priority patent/EP4068879A4/en
Publication of WO2021120135A1 publication Critical patent/WO2021120135A1/zh
Priority to US17/843,849 priority patent/US20220330245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • This application relates to the field of communication technology, and in particular to a resource determination method and resource determination device.
  • the reliability requirement of the control channel is higher than the reliability requirement of the data.
  • a scheme of repeated transmission of the control channel can be used to ensure the reliability of the control channel.
  • the determination of uplink control channel resources becomes a problem.
  • the uplink control channel resources are determined based on the control channel element (CCE) position where the downlink control channel is located, and in the downlink control channel repeated transmission scheme, each repeated downlink control channel
  • CCE control channel element
  • the present application provides a resource determination method and resource determination device, which can determine a unique uplink control channel resource for multiple search spaces.
  • this application provides a resource determination method.
  • a terminal device can select a search space that meets a preset condition from a plurality of search spaces, so as to control channel elements CCEs in the search space that meets the preset condition.
  • Location determine the uplink control channel resources.
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted, or the determined uplink control channel resource indicates a search space in which PRI is one, or search spaces in which the same downlink control information is jointly transmitted, etc., which have an association relationship. Search space.
  • the joint transmission of the same downlink control information by multiple search spaces means that each of the multiple search spaces transmits part of the downlink control information, and the terminal device needs to detect the downlink control channels carried by the multiple search spaces to obtain The downlink control information.
  • Multiple search spaces repeatedly transmitting the same downlink control channel means that the same downlink control channel information is separately transmitted on different search spaces, and the terminal device can detect part or all of the search spaces in the multiple search spaces to obtain the downlink control information.
  • the terminal device can determine the position of the CCE according to the search space that meets the preset conditions The only uplink control channel resource.
  • the CCE position when the uplink control channel resource is determined according to the CCE position of the search space that meets the preset condition, the CCE position may be the start CCE position or the end CCE position among the CCE positions occupied by the search space.
  • a search space consists of l CCEs on time-frequency resources, l is the aggregation level, that is, the number of CCEs occupied by a downlink control channel.
  • the terminal device can determine the search space according to the search space group and the control resource set configured by the network device. Among them, the search space group is used to define the possibility of detecting the downlink control channel in the time domain.
  • the control resource set is used to define the possibility of detecting the downlink control channel in the frequency domain.
  • a search space group and a control resource set can determine multiple search spaces.
  • the preset conditions include one or more of the following: the identification of the corresponding control resource set is the smallest or the largest; the identification of the search space group is the smallest or largest; the corresponding aggregation level is the smallest or largest; the identification of the CCE start position is the smallest or largest; The identification of the corresponding control resource collection group is the smallest or the largest. In this way, the only search space that meets the preset conditions is determined.
  • the multiple search spaces have an association relationship as described above, so they can be referred to as multiple search spaces that are mutually associated or associated. That is, the terminal device can determine multiple associated search spaces through the following optional implementation manners.
  • multiple search spaces are determined based on one search space group associating multiple control resource sets. That is, the terminal device determines multiple associated search spaces according to the search space group and the multiple control resource sets.
  • a search space group is associated with two control resource sets.
  • the two control resource sets are the control resource set M 1 and the control resource set M 2 , and the terminal device is based on the search space group and the control resource set.
  • the multiple control resource sets associated with the search space group determine multiple search spaces that are associated with each other, including:
  • the terminal device is determined based on the search space set of control resources and a set of a first set of search spaces M 1, a first set of search spaces comprising: a search space M1 1, the search space M1 2, ..., a search space M1 N1;
  • the terminal device is determined based on the search space set of control resources and a set of second set of search spaces M 2, the second set of search spaces comprising: a search space M2 1, the search space M2 2, ..., a search space M2 N2; wherein, Nl may be equal or Not equal to N2, respectively represent the number of determined search spaces;
  • the terminal device determines that there is a one-to-one correspondence between the first K search spaces in the first search space set and the first K search spaces in the second search space set. That is, the search space M1 k is associated with the search space M2 k , where the value interval of k is [1, K], and K is the minimum value of N 1 and N 2.
  • an indication may be predefined through a protocol: there is a one-to-one correspondence between the last K search spaces in the first search space set and the last K search spaces in the second search space set.
  • the first search space set includes multiple aggregation levels
  • the second search space set includes multiple aggregation levels, each from two search space sets, and multiple search spaces with the same aggregation level are associated with each other.
  • the search spaces in the first search space set and the search spaces in the second search space set may be sorted separately in a predetermined manner.
  • the predetermined manner may include: sorting according to the starting position of the CCE occupied; or sorting according to the starting symbol (or starting symbol position) occupied first, the search space of the same starting symbol, and then according to the occupied CCE Sort the starting position; or sort according to the corresponding aggregation level first, for example, the aggregation level is sorted from small to large or from large to small.
  • the search space of the same aggregation level is based on the CCE starting position occupied or occupied
  • the starting symbols are sorted; or first according to the occupied CCE starting position, the search space of the same CCE starting position, and then sorted according to the occupied starting symbol.
  • a similar implementation method can be used to determine that every three search spaces are associated. For example, the three associated search The same downlink control information is repeatedly transmitted in space.
  • the identifiers of the control resource sets corresponding to the interrelated search spaces are different, and the preset condition may be that the identifiers of the corresponding control resource sets are the smallest or the largest.
  • the terminal device can select a search space that meets the preset condition from multiple search spaces that are associated with each other, and then determine the uplink control channel resource.
  • the search space M1 k is associated with the search space M2 k . If M1 is greater than M2, and the preset condition is that the identifier of the corresponding control resource set is the smallest, then the search space meeting the preset condition is the search space M2 k .
  • the multiple search spaces associated with each other are determined based on the configured N search space groups and the M control resource sets respectively associated with the N search space groups.
  • N is greater than or equal to 1
  • M is greater than or equal to 1.
  • the terminal device determines a search space set based on the N search space groups and the M control resource sets respectively associated with the N search space groups;
  • the terminal device sorts each search space in the search space set according to certain rules, the sorted search space set is obtained: search space 1, search space 2, ..., search space N 3 ;
  • the network side issues a signaling to the terminal device to notify the offset value of the search space associated with the terminal device.
  • the terminal device determines multiple search spaces that are associated with each other from the search space set according to the offset value configured by the signaling. For example, search space 1 is related to search space (1+offset value); or search space 1, search space (1+offset value) and search space (1+offset value*2) are related to each other.
  • the certain rule may be based on the starting position of the CCE occupied, the identification ID of the corresponding search space group, and the corresponding control resource
  • One or more of the identification of the set and the corresponding aggregation level are sorted.
  • the following examples illustrate the optional sorting methods.
  • a possible implementation manner is to sort the search spaces in the search space set according to the starting position of the CCE occupied by each search space from small to large.
  • Another possible implementation is to sort each search space in the search space set according to the identification ID of the search space group corresponding to each search space from small to large (or from large to small), and then to identify the search space group
  • the search spaces with the same ID are sorted according to the identification ID of the control resource set corresponding to each search space from small to large (or from large to small), and finally the search spaces with the same identification ID of the control resource set are sorted according to each search space
  • the aggregation level is sorted from small to large (or from large to small).
  • Another possible implementation is to sort the search spaces in the search space set from small to large (or from large to small) according to the identification ID of the control resource set corresponding to each search space, and then target the identification of the control resource set
  • the search spaces with the same ID are sorted according to the identification ID of the search space group corresponding to each search space from small to large (or from large to small), and finally search spaces with the same identification ID of the search space group are sorted according to each search space
  • the aggregation level is sorted from small to large (or from large to small).
  • the preset conditions include one or more of the following: the identification of the corresponding control resource set is the smallest or largest; the identification of the search space group is the smallest or largest; the corresponding aggregation level is the smallest or largest; the starting position of the CCE The identification is the smallest or the largest; the identification of the corresponding control resource collection group is the largest or smallest.
  • search space 1 is associated with search space (1+offset value)
  • the preset condition is that the CCE starting position has the smallest identifier, and each search space in the search space set is from small to small according to the CCE starting position occupied by each search space. Sorting is performed in a large order, then the search space that satisfies the preset condition is search space 1.
  • the identifier of the control resource set group corresponding to the search space refers to the identifier of the control resource set group included in the control resource set corresponding to the search space.
  • the identities of the control resource collection groups included in each control resource collection are different. For the identifiers of the control resource set groups included in a control resource set that do not exist or are 0, it means that the identifiers of these control resource set groups are the same. If the ID of the control resource collection group included in one control resource set does not exist or is 0, and the ID of the control resource collection group included in the other control resource collection is 1, it means that the ID does not exist or is 0.
  • the identifier of is smaller than the identifier of the control resource collection group whose identifier is 1.
  • the protocol stipulates that the associated search spaces must have the same aggregation level, or the terminal does not expect to receive the associated search spaces with different aggregation levels. Then, to sort the search spaces in the search space set, the search space set can be divided into search space sub-sets corresponding to each aggregation level first according to the aggregation level, and the aggregation levels of the search spaces in each search space sub-set are the same.
  • the offset value of the signaling configuration is for the search space subset. Since the number of search spaces in the search space subset is less than the number of search spaces in the search space set, the offset can be reduced. The value range of the offset value further reduces the bit overhead of the offset value.
  • sorting manner of each search space in each search space sub-set can refer to the optional implementation manner of the "certain rule" described above, which will not be described in detail here.
  • multiple search spaces are determined based on multiple search space groups associated with one control resource set, that is, multiple search spaces are determined based on the association relationship between one control resource set and multiple search space groups of.
  • the terminal device can determine multiple search spaces that are associated with each other based on the control resource set and multiple associated search space groups.
  • the terminal device can determine the multiple search spaces associated with each other based on the control resource set and the multiple associated search space groups, including: the terminal device determines the third search space set based on the SS set O 1 and the control resource set, and the third search space set Including: search space O1 1 , search space O1 2 , ..., search space O1 N4 ; the terminal device determines the fourth search space set based on SS set O 2 and the control resource set, the fourth search space set includes: search space O2 1 , search Space O2 2 ,..., search space O2 N5 .
  • N4 may be equal to or not equal to N5, respectively representing the number of search spaces in each search space set.
  • the terminal device determines that there is a one-to-one correspondence between the first K search spaces in the third search space set and the first K search spaces in the fourth search space set. That is, the search space O1 k is associated with the search space O2 k , where the value interval of k is [1, K], and K is the minimum value of N 4 and N 5.
  • an indication may be predefined through a protocol: there is a one-to-one correspondence between the last K search spaces in the third search space set and the last K search spaces in the fourth search space set.
  • the third search space set includes multiple aggregation levels
  • the fourth search space set includes multiple aggregation levels
  • multiple search spaces with the same aggregation level from the two search space sets are associated with each other.
  • a similar implementation method can be used to determine that every three search spaces are associated, and can be repeated on the three associated search spaces The same downlink control information is transmitted.
  • the identities of the search space groups corresponding to the mutually related search spaces are different, and the preset condition may be that the identities of the corresponding search space groups are the smallest or the largest.
  • the terminal device can select a search space that meets the preset condition from multiple search spaces that are associated with each other, and then determine the uplink control channel resource.
  • the search space O1 k is associated with the search space O2 k . If O1 is greater than O2, and the preset condition is that the identifier of the corresponding search space group is the smallest, then the search space that meets the preset condition is the search space O2 k .
  • the third search space set and the fourth search space set determined in the above two implementation manners may also be distinguished for different aggregation levels.
  • the terminal device determines multiple search spaces associated with each other according to the control resource set and its associated SS set O 1 and SS set O 2 , including: the terminal device determines the second search space based on the SS set O 1 and the control resource set.
  • the search spaces of aggregation level l are ⁇ search space l O1 1 , search space l O1 2 ,..., search space l O1 N6 ⁇ , N6 is less than or equal to N4; the terminal equipment is based on SS set O 2 and
  • the control resource set determines that in the fourth search space set, the search spaces of the aggregation level 1 are ⁇ search space l O2 1 , search space l O2 2 , ..., search space l O2 N7 ⁇ , and N7 is less than or equal to N5.
  • N6 may be equal to or not equal to N7.
  • the association relationship between the protocol predefined or signaling configuration search space is: the search space l O1 k is associated with the search space l O2 k , where the value range of k is [1,K], and K is N 6 , N 7
  • the smallest value in l represents the aggregation level of the search space.
  • the terminal device determines multiple search spaces associated with each other according to the search space group and its associated CORESET M 1 and CORESET M 2 , including: the terminal device determines the first search based on the CORESET M 1 and the search space group In the space set, the search space of aggregation level l is ⁇ search space l M1 1 , search space l M1 2 ,..., search space l M1 N8 ⁇ , N8 is less than or equal to N1; terminal equipment is based on CORESET M 2 and search space group It is determined that in the second search space set, the search spaces of the aggregation level 1 are ⁇ search space 1 M2 1 , search space 1 M2 2 , ..., search space 1 M2 N9 ⁇ , and N9 is less than or equal to N2.
  • N8 can be equal to or not equal to N9.
  • the association relationship between the protocol predefined or signaling configuration search space is: the search space l M1 k is associated with the search space l M2 k , where the value range of k is [1, K], and K is N 8 , N 9
  • the smallest value in, l represents the aggregation level of the search space.
  • the multiple search spaces include a search space in which a downlink control channel is detected, and at least one search space associated with the search space.
  • the method before the terminal device selects a search space that satisfies a preset condition from a plurality of search spaces, the method further includes: when the terminal device detects a downlink control channel, determining and At least one search space associated with the search space of the downlink control channel is detected, and multiple search spaces associated with each other are obtained.
  • this application also provides a channel transmission method.
  • the terminal device determines the uplink control channel resource according to the control channel element CCE starting position of the search space of the downlink control channel detected; the terminal device sends the uplink control channel on the uplink control channel resource.
  • the search space in which the downlink control channel is detected is one of multiple search spaces; the ratio between the CCE starting position of each search space in the multiple search spaces and the number of CCEs in the corresponding control resource set is equal.
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted, or the determined uplink control channel resource indicates a search space in which PRI is one, or search spaces in which the same downlink control information is jointly transmitted, etc., which have an association relationship. Search space.
  • the ratio between the CCE starting position of each search space and the number of CCEs in the control resource set corresponding to the search space is equal to the same value. Therefore, the uplink control channel resources determined by the terminal device based on any one of the multiple search spaces are the same.
  • the number of uplink control channel resource indications determined by the multiple search spaces is one PRI.
  • the starting position of the CCE occupied by each search space corresponds to the control resource set corresponding to the search space.
  • the ratio between the number of CCEs in the middle is equal. Therefore, the terminal device can determine the unique uplink control channel resource based on the CCE position occupied by the search space of the detected downlink control channel.
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted. It can be seen that in the scenario of repeated downlink control channel transmission, since the ratio between the starting position of the CCE in each search space and the number of CCEs in the control resource set corresponding to the search space is equal to the same value, the terminal device can use Any search space, such as detecting the CCE position occupied by the search space of the downlink control channel, determines the unique uplink control channel resource.
  • the method described in the second aspect adds a certain limit to the multiple search spaces that are related to each other.
  • the above-mentioned ratios are all equal or equal to the same value, so that the uplink control channel resource can be uniquely determined for the terminal device.
  • the terminal device when the terminal device correctly decodes a piece of downlink control information, it can ignore the detection of other search spaces with the same ratio, thereby reducing the complexity of blind detection of the terminal device.
  • this application also provides a resource determination method, which is explained from the perspective of a network device.
  • the network device can perform operations similar to the terminal device described in the first aspect.
  • the network device selects a search space that meets a preset condition from a plurality of search spaces; the network device controls channel elements according to the search space that meets the preset condition
  • the CCE location determines the uplink control channel resources. It can be seen that the network device can determine the same and unique uplink control channel resource for multiple search spaces, so as to obtain uplink control information.
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted, or the determined uplink control channel resource indicates a search space in which PRI is one, or search spaces in which the same downlink control information is jointly transmitted, etc., which have an association relationship. Search space.
  • the CCE position in the search space can be referred to as the CCE position occupied by the search space.
  • the CCE position occupied by the search space when determining the uplink control channel resource, it can be determined based on the start position of the CCE occupied by the search space or the end position of the CCE occupied by the search space.
  • the number of uplink control channel resource indications determined by multiple search spaces is one PRI. In this way, when considering the number of uplink control channel resources in the uplink control channel resource set, a search space satisfying a preset condition among multiple search spaces can be used to determine a unique uplink control channel resource.
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted. It can be seen that for a scenario where the same downlink control channel is repeatedly transmitted, the network device can determine a unique uplink control channel resource by using a search space that meets a preset condition among multiple search spaces.
  • the preset condition includes one or more of the following: the identification of the corresponding control resource set is the smallest or largest; the identification of the search space group is the smallest or largest; the corresponding aggregation level is the smallest or largest; CCE The identification of the starting position is the smallest or the largest; the identification of the control resource set is the largest or smallest.
  • the multiple search spaces are determined based on one or more control resource sets associated with the search space group; or the multiple search spaces are multiple search space groups associated with one control resource set Determined; or the multiple search spaces are determined based on the offset value configured by the signaling.
  • This aspect can refer to the related content of the first aspect, which will not be described in detail here.
  • the present application also provides a method for determining resources. Compared with the second aspect, the method is explained from the perspective of a network device.
  • the network device determines the uplink control channel resource according to the position of the control channel element CCE in any search space in the multiple search spaces; the network device receives the uplink control channel on the uplink control channel resource; in the multiple search spaces, The ratio between the CCE position occupied by each search space and the number of CCEs in the corresponding control resource set is equal.
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted, or the determined uplink control channel resource indicates a search space in which PRI is one, or search spaces in which the same downlink control information is jointly transmitted, etc., which have an association relationship. Search space.
  • the ratios between the CCE positions occupied by each search space of the multiple search spaces and the number of CCEs in the corresponding control resource set are all equal .
  • the CCE position occupied by each search space may be the CCE start position or the CCE end position respectively occupied by each search space.
  • the number of uplink control channel resource indications determined by the multiple search spaces is one PRI.
  • the CCE position occupied by each search space corresponds to the CCE in the control resource set corresponding to the search space.
  • the ratios between the numbers are equal. Therefore, the network device can determine the unique uplink control channel resource based on the CCE position occupied by any of the search spaces.
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted. It can be seen that in the scenario of repeated downlink control channel transmission, since the ratio between the CCE position of each search space and the number of CCEs in the control resource set corresponding to the search space is equal to the same value, the network equipment can use any of them.
  • a search space determines the unique uplink control channel resource.
  • the network device can determine the same uplink control channel resource for any one of the multiple search spaces, thereby reducing the complexity of detecting uplink control information.
  • this application also provides a communication device that has some or all of the functions of the terminal device in the method examples described in the first aspect to the second aspect.
  • the function of the communication device can be provided by the application.
  • Some or all of the functions in the embodiments in may also have the function of independently implementing any of the embodiments in this application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit for coupling with the processing unit and the sending unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • the processing unit is configured to select a search space that meets a preset condition from a plurality of search spaces, the multiple search spaces are search spaces that repeatedly transmit the same downlink control channel; and a control channel according to the search space that meets the preset condition Element CCE start position, determine the uplink control channel resource;
  • the communication unit is configured to send the uplink control channel on the uplink control channel resource.
  • the communication device includes:
  • a processing unit configured to determine the uplink control channel resource according to the start position of the control channel element CCE in any search space in the multiple search spaces;
  • a communication unit configured to receive an uplink control channel on the uplink control channel resource
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted; in the multiple search spaces, the ratio between the CCE starting position of each search space and the number of CCEs in the corresponding control resource set is equal.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • the processor is configured to select a search space that meets a preset condition from a plurality of search spaces, where the multiple search spaces are search spaces that repeatedly transmit the same downlink control channel; and a search space that satisfies the preset condition The starting position of the control channel element CCE to determine the uplink control channel resource;
  • the transceiver is configured to send an uplink control channel on the uplink control channel resource.
  • the communication device includes:
  • the processor is configured to determine the uplink control channel resource according to the start position of the control channel element CCE in the search space of the downlink control channel detected;
  • the transceiver is configured to send an uplink control channel on the uplink control channel resource
  • the search space in which the downlink control channel is detected is one of multiple search spaces; the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted, and among the multiple search spaces, each search space
  • the ratio between the starting position of the CCE and the number of CCEs in the corresponding control resource set is equal.
  • this application also provides a communication device.
  • the communication device can implement part or all of the functions of the network device in the method example described in the third aspect, or part or all of the functions of the network device in the method embodiment described in the fourth aspect.
  • the function of the communication device may have the function of some or all of the embodiments of the network device in this application, or it may have the function of independently implementing any of the embodiments of this application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the communication unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices, such as communication with terminal devices.
  • the communication device may further include a storage unit, which is configured to be coupled with the acquisition unit and the transmission unit, and stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • the processing unit is configured to select a search space that meets a preset condition from a plurality of search spaces, where the multiple search spaces are search spaces that repeatedly transmit the same downlink control channel; and a control channel according to the search space that meets the preset condition Element CCE start position, determine the uplink control channel resource;
  • a communication unit configured to receive an uplink control channel on the uplink control channel resource
  • the multiple associated search spaces are search spaces in which the same downlink control channel is repeatedly transmitted.
  • the communication device includes:
  • a processing unit configured to determine the uplink control channel resource according to the start position of the control channel element CCE in any search space in the multiple search spaces;
  • a communication unit configured to receive an uplink control channel on the uplink control channel resource
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted; in the multiple search spaces, the ratio between the CCE starting position of each search space and the number of CCEs in the corresponding control resource set is equal.
  • the communication device includes:
  • the processor is configured to determine the uplink control channel resource according to the start position of the control channel element CCE in the search space of the downlink control channel detected;
  • the transceiver is configured to send an uplink control channel on the uplink control channel resource
  • the search space in which the downlink control channel is detected is one of multiple search spaces; the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted, and among the multiple search spaces, each search space
  • the ratio between the starting position of the CCE and the number of CCEs in the corresponding control resource set is equal.
  • the communication device includes:
  • the processor is configured to determine the uplink control channel resource according to the start position of the control channel element CCE in any search space in a plurality of search spaces;
  • the transceiver is configured to receive an uplink control channel on the uplink control channel resource
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted; in the multiple search spaces, the ratio between the CCE starting position of each search space and the number of CCEs in the corresponding control resource set is equal.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least partly or fully arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system on chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the specific needs of product design. The embodiment of the present invention does not limit the specific implementation form of the foregoing device.
  • the present application also provides a processor, which is configured to execute the above-mentioned various methods.
  • the processes of sending the above information and receiving the above information in the above methods can be understood as the process of outputting the above information by the processor and the process of receiving the input information of the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. Furthermore, after the above-mentioned information is output by the processor, other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the receiving of joint feedback information mentioned in the foregoing method can be understood as the processor inputting joint feedback information.
  • sending joint feedback information can be understood as the processor outputting joint feedback information.
  • the processor outputs and receives, inputs and other operations, instead of transmitting, sending, and receiving directly by the radio frequency circuit and antenna.
  • the foregoing processor may be a processor specifically configured to execute these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated with the processor on the same chip, or may be separately arranged on different chips.
  • ROM read only memory
  • the present invention The embodiment does not limit the type of the memory and the setting mode of the memory and the processor.
  • an embodiment of the present invention provides a computer-readable storage medium for storing computer software instructions used by the aforementioned terminal, which includes a program for executing the first aspect or the second aspect of the aforementioned method.
  • an embodiment of the present invention provides a computer-readable storage medium for storing computer software instructions used by the above-mentioned network device, which includes a program used to execute the third or fourth aspect of the above-mentioned method .
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect or the second aspect.
  • this application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the third or fourth aspect.
  • the present application provides a chip system that includes a processor and an interface, and is used to support the terminal to implement the functions involved in the first aspect or the second aspect, for example, to determine or process the functions involved in the above methods At least one of the data and information.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor and an interface, and is used to support a network device to implement the functions involved in the third or fourth aspect, for example, to determine or process the above-mentioned methods. At least one of the data and information involved.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a V2N system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of PDCCH repeated transmission provided by an embodiment of the present application.
  • FIG. 4 is another schematic diagram of a PDCCH repeated transmission provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a time-frequency resource determined based on CORESET and SSset according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a method for determining a resource provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another resource determination method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a time-frequency resource determined based on CORESET M1, CORESET M1, and SS set respectively according to an embodiment of the present application;
  • FIG. 9 is a schematic diagram of a method for determining multiple search spaces that are related to each other according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another method for determining multiple search spaces that are related to each other according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of time-frequency resources respectively determined based on SS set O 1 , SS set O 2 and CORESET according to an embodiment of the present application;
  • FIG. 12 is a schematic diagram of yet another method for determining multiple search spaces that are related to each other according to an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a channel transmission method provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the technical solution of the present application can be specifically applied to various communication systems.
  • the technical solution of this application can also be used in future networks, such as 5G systems, also called new radio (NR) systems, or can be used in device to device (device to device, D2D) system, machine to machine (M2M) system and so on.
  • 5G systems also called new radio (NR) systems
  • NR new radio
  • D2D device to device
  • M2M machine to machine
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • the communication system may include, but is not limited to, one network device and one terminal device.
  • the number and form of devices shown in FIG. Network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 uses a network device that can provide repeated transmission of downlink control channels for terminal devices as an example for illustration.
  • the network device in FIG. 1 uses the TRP as an example of the transmission and reception point
  • the terminal device uses a mobile phone as an example.
  • FIG. 2 is a schematic structural diagram of a V2N system provided by an embodiment of the present application.
  • the roadside infrastructure may include a roadside unit (RSU) of the network device type.
  • the RSU of this network device type can provide timing synchronization and resource scheduling for vehicles or vehicle components communicating with network devices, as well as repeated transmission of downlink control channels.
  • the network architecture and business scenarios described in the embodiments of this application are intended to illustrate the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided in the embodiments of this application.
  • Those of ordinary skill in the art will know that With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • the network device may be a device with a wireless transceiver function or a chip that can be installed in the network device.
  • the network device includes but is not limited to: evolved node B (evolved node B, eNB), radio network controller (radio network controller).
  • RNC node B
  • BSC base station controller
  • BTS base transceiver station
  • HNB home evolved node B
  • BBU baseband unit
  • wireless fidelity wireless fidelity, WIFI
  • access point access point, AP
  • wireless relay node wireless backhaul node
  • transmission point transmission and Reception point, TRP or transmission point, TP, etc.
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple) of base stations in the 5G system Antenna panel) Antenna panel, or, it can also be a network node that constitutes a gNB or transmission point, such as a BBU, or a distributed unit (DU, distributed unit), etc., the aforementioned network equipment or network equipment type RSU in the V2X car network .
  • the gNB or transmission point may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB or transmission point
  • DU implements some functions of gNB or transmission point.
  • CU implements radio resource control (RRC) and packet data convergence protocol (PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • Function, DU realizes the functions of radio link control (RLC), media access control (MAC) and physical (physical, PHY) layers. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited here.
  • terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication equipment , User agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, the wireless terminal in the aforementioned V2X car networking, or the wireless terminal type RSU, etc.
  • the embodiments of this application do not limit the application scenarios.
  • the term "exemplary” is used to indicate an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • the multiple search spaces described in this document may be search spaces where the same downlink control channel is repeatedly transmitted, or a search space where the determined uplink control channel resource indicates a PRI, or a search space where the same downlink control information is jointly transmitted. Search space for relations.
  • the number of uplink control channel resources determined by the multiple search spaces indicates that there is one PRI.
  • the multiple search spaces jointly transmit one downlink control information, and the terminal device needs to detect the downlink control channels carried by all the search spaces to obtain the downlink control information.
  • the multiple search spaces are search spaces in which the same downlink control channel or downlink control information is repeatedly transmitted. That is, in the scenario of repeated downlink control channel transmission, the downlink control channel can be repeatedly transmitted in the time domain, frequency domain, time-frequency domain, or code domain to improve the reliability of the downlink control channel.
  • the channel characteristics or parameters of the repeatedly transmitted downlink control channel in each time domain, frequency domain, time-frequency domain, or code domain may be different. For example, the code rate used by each downlink control channel is different, but the downlink control channel carried is different.
  • the control information (downlink control information, DCI) is the same.
  • FIG. 3 is a schematic diagram of PDCCH repeated transmission according to an embodiment of the present application.
  • the physical downlink control channel (PDCCH) can be repeatedly transmitted on two time domain resources.
  • the channel characteristics or parameters of the PDCCH repeatedly transmitted on each time domain resource may be different, but the downlink control information carried is the same.
  • FIG. 4 is another schematic diagram of a PDCCH repeated transmission provided by an embodiment of the present application.
  • the physical downlink control channel (PDCCH) can be repeatedly transmitted on two frequency domain resources.
  • the channel characteristics or parameters of the PDCCH repeatedly transmitted on each frequency domain resource may be different, but the downlink control information carried is the same.
  • the terminal equipment can feed back uplink control information on the uplink control channel resources.
  • the uplink control information includes hybrid automatic repeat request (HARQ)-acknowledgement (ACK) information and channel state information (CSI), etc.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgenowledgement
  • CSI channel state information
  • Uplink control channel resources can be determined according to high-level parameters and downlink control information.
  • the terminal device selects the corresponding uplink control channel resource set from the uplink control channel resource pool according to the number of bits of the uplink control information; the terminal device selects the corresponding uplink control channel resource set according to the uplink control channel resource indication in the downlink control information. Determine the uplink control channel resource in the resource set.
  • the uplink control channel resource pool is configured for terminal equipment by high-level parameters or high-level signaling, such as RRC signaling.
  • the uplink control channel resource pool includes multiple uplink control channel resource sets. Different sets of uplink control channel resources correspond to different uplink control information bit intervals.
  • the uplink control channel resource indicator is a physical uplink control channel resource indicator (PUCCH resource indicator, PRI).
  • the PRI in the DCI occupies 3 bits.
  • the PRI can be used to indicate a maximum of 8 uplink control channel resources respectively.
  • the uplink control channel resource set in the uplink control channel resource pool may include more than 8 uplink control channel resources. For example, it includes 32 uplink control channel resources, which cannot be fully indicated by PRI alone. Therefore, for the uplink control channel resource set with the number of uplink control channel resources greater than 8, it is also necessary to combine the start position of the control channel element (CCE) of the search space carrying the DCI to determine the uplink from the uplink control channel resource set. Control channel resources.
  • CCE control channel element
  • the resource number r PUCCH of the uplink control channel resource determined by the terminal device according to the resource indication information in the DCI and the start position of the CCE can be determined by the following formula:
  • N CCE,p is the total number of CCEs in the control resource set (CORESET) where the DCI is located, which is configured by high-level signaling;
  • n CCE,p is occupied by the PDCCH carrying the DCI CCE starting position of the carrier or the search space of CCE locations DCI (e.g., CCE starting position);
  • [Delta] PRI is PRI resource indication information of the DCI; PUCCH resource in the total group of R & lt CORESET the PUCCH allocated located CORESET number.
  • the basic component unit of the time-frequency resource occupied by the PDCCH is the CCE.
  • One PDCCH occupies one or more CCEs. The more CCEs occupied, the higher the reliability of the PDCCH and the more resources consumed.
  • a user or terminal equipment specific PDCCH occupies a part of the CCE, then this part of the CCE will not carry the PDCCH of other users or terminal equipment.
  • CCE is composed of 6 resource element groups (REG).
  • the resource of a REG is composed of a resource block (RB) in the frequency domain and a symbol in the time domain.
  • RB resource block
  • the control resource set defines the possibility of detecting the frequency domain of the PDCCH.
  • the network side can configure the terminal equipment with the CORESET identifier, PDCCH DMRS scrambling ID, frequency domain precoding granularity, symbol length, frequency domain position, mapping between CCE and REG, quasi co-location assumption for receiving PDCCH, and the CORESET Whether there is information such as the TCI field in the DCI of the received PDCCH.
  • a search space set (search space set, SS set) defines the possibility of detecting the PDCCH in the time domain.
  • the network side can configure the terminal device with the identification of the SS set, the identification of its associated CORESET, the detection time unit period and time unit offset of the PDCCH, the time domain detection mechanism (pattern), and the possible candidate PDCCH (PDCCH candidate) for each aggregation level.
  • Number such as 0
  • SS set type indicating whether it is public or terminal device-specific; public means that other users can detect this SS set, and terminal device-specific means that no other users can detect the SS set This SS set
  • the configuration related to the DCI format such as the format possibility of the DCI to be detected
  • the continuous length etc.
  • search space set described below refers to a set formed by one or more search spaces determined by the terminal device based on the search space group and the control resource set configured on the network device side. That is, the search space set described in this article is different from the concept of search space group.
  • the time domain detection pattern is used to indicate that the terminal equipment may detect the symbol position of the PDCCH in a time slot.
  • the time domain detection pattern can indicate one or more symbol positions. These symbol positions correspond to the first symbol position where possible PDCCH starts. If the time-domain detection pattern can indicate the symbol positions l1, l2, and l3, the terminal device may detect the PDCCH at the positions starting with the symbol l1, the symbol l2, and the symbol l3, respectively.
  • the number of possible PDCCH candidates for each aggregation level refers to the number of possible PDCCH candidates for each aggregation level in a search space. For example, the number of possible PDCCH candidates for aggregation level 1; the number of possible PDCCH candidates for aggregation level 2.
  • the continuous length refers to the duration of the SS set configured for the terminal device on the network side in the time domain time unit.
  • the continuous length is d, which means that it starts at a time slot, and all d time slots can be used to detect PDCCH.
  • the initial time slot is a time slot that satisfies the detection time unit period and time unit offset.
  • the terminal device can determine a time-frequency resource according to the information described in point 4 of the above concept description, such as a control resource set (CORESET) and a search space set (search space set, SS set).
  • CORESET control resource set
  • search space set search space set, SS set
  • M the identification of the control resource set
  • O the identification of the search space group.
  • the time-frequency resource contains many CCEs.
  • a search space is composed of l CCEs on the time-frequency resource, and l represents the aggregation level. Therefore, the terminal device can determine multiple search spaces based on CORESET and SS set, and the terminal device blindly checks each search space to receive downlink control information.
  • the starting position of the CCE of a search space is related to the aggregation level 1, for example, the identification or index number of the starting CCE is an integer multiple of 1.
  • CORESET is used to determine the frequency domain range and time domain duration symbol time
  • SSset is used to determine the start symbol position in the time domain.
  • the search space is used to indicate the time domain resources where the terminal device may detect the PDCCH.
  • the terminal device can detect the PDCCH in multiple search spaces, and the DCI carried by the detected PDCCH is the same.
  • the terminal device in the scenario of repeated downlink control channel transmission, the terminal device does not need to detect all the PDCCHs in the search space, but only needs to correctly detect the PDCCH in one of the search spaces.
  • the terminal device has a lower probability of detecting all PDCCHs, and may miss some PDCCHs. Since the DCI of the repeatedly transmitted PDCCH is the same, that is, the PRI is the same, but the search space that carries the DCI is different, that is, the CCE position is different, so the CCE starting position determined by the terminal equipment will be different according to the search space of the detected PDCCH, and When the number of uplink control channel resources in the uplink control channel resource set is greater than 8, the uplink control channel resource cannot be uniquely determined according to the above formula.
  • this application provides a resource determination method.
  • the terminal device can select a search space that meets a preset condition from a plurality of search spaces, so as to determine the uplink control channel resource according to the start position of the control channel element CCE of the search space that meets the preset condition.
  • the resource determination method can select a search space that satisfies a preset condition from a plurality of search spaces, so that a unique uplink control channel resource can be determined.
  • the present application also provides a channel transmission method.
  • the ratio between the starting position of the CCE in each search space in the multiple search spaces and the number of CCEs in the corresponding control resource set is equal, thus, as can be seen from the above formula
  • the unique uplink control channel resource can be determined, and then the uplink control channel can be sent on the uplink control channel resource.
  • FIG. 6 is a schematic flowchart of a method for determining a resource according to an embodiment of the present application.
  • the resource determination method may include the following steps:
  • the terminal device selects a search space that meets preset conditions from multiple search spaces;
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted, or the determined uplink control channel resource indicates a search space in which the PRI is one, or are search spaces in which the same downlink control information is jointly transmitted, etc., which have an association relationship. Search space.
  • the terminal device determines the uplink control channel resource according to the CCE position in the search space that meets the preset condition, for example, the start position of the control channel element CCE.
  • the resource determination method shown in FIG. 6 can determine the unique uplink control channel resource according to the position of the control channel element CCE in the search space of the detected downlink control channel.
  • the multiple search spaces described in FIG. 6 may be determined based on one or more control resource sets associated with the search space group; or may be determined based on multiple search space groups associated with one control resource set; or may be determined based on the offset configured by signaling
  • the offset value is determined; or it can be configured by the network side or pre-defined by the protocol; or determined according to the relevant parameters configured on the network side.
  • the multiple determined search spaces may be multiple associated or mutually associated search spaces configured by the network device through an optional implementation manner. Therefore, as shown in FIG. 7, compared with the resource determination method shown in FIG. 6, before performing step 101, the terminal device may further include:
  • the terminal device determines multiple search spaces that are associated with each other.
  • the terminal device determines the search space associated with the search space of the detected downlink control channel according to the search space of the detected downlink control channel, so as to obtain multiple search spaces associated with each other. That is, the search space in which the downlink control channel is detected is one of the multiple search spaces associated with each other.
  • the network device may also perform step 101 to step 102, and then receive uplink control information based on the determined uplink control channel resource.
  • the network device may also perform the operation of determining multiple search spaces associated with each other in step 103.
  • step 103 and step 101 from the perspective of the terminal device in combination with the association relationship that may be configured by the network device. It should be noted that the embodiments of the present application include but are not limited to the following implementation manners 1 to 4.
  • the network device configures one SS set for the terminal device and multiple CORESETs associated with the SS set.
  • Step 103 may include: the terminal device determines multiple search spaces associated with each other according to the SS set and multiple associated CORESETs.
  • the multiple CORESETs belong to different control resource collection groups (CORESET group) or different control resource pool indexes (CORESET pool index).
  • CORESET group or CORESET pool index to which the multiple CORESETs belong are determined by the CORESET group identifier or CORESET pool index in each CORESET.
  • the flag of CORESET group can be the default, or 0, 1, etc. When the CORESET group logo is the default, it can default to 0.
  • a search space group is associated with two control resource sets, and the two control resource sets are the control resource set M 1 and the control resource set M 2 respectively .
  • the time-frequency resources composed of the search space group and the control resource set M 1 are respectively shown in FIG. 8.
  • the search space contained in the time-frequency resource formed by the search space group and the control resource set M 1 is the first search space set;
  • the search space contained in the time-frequency resource formed by the search space group and the control resource set M 2 is the second search space Search space collection.
  • step 103 the terminal device determines multiple associated search spaces according to the search space group and its associated multiple control resource sets, including:
  • the terminal device is determined based on the search space set of control resources and a set of a first set of search spaces M 1, a first set of search spaces comprising: a search space M1 1, the search space M1 2, ..., a search space M1 N1;
  • the terminal device based on the search space set of control resources and a set of M 2 to determine a second set of search space, the search space of the second set comprising: a search space M2 1, the search space M2 2, ..., a search space M2 N2;
  • the terminal device determines that there is a one-to-one correspondence between the first K search spaces in the first search space set and the first K search spaces in the second search space set, that is, the search space M1 k and the search space M2 k Correlation, where the value interval of k is [1, K], and K is the minimum value of N 1 and N 2.
  • N1 represents the number of search spaces in the first search space set
  • N2 represents the number of search spaces in the first search space set.
  • N1 may or may not be equal to N2.
  • the terminal device determines that there is a one-to-one correspondence between the first K search spaces in the first search space set and the first K search spaces in the second search space set. That is, the search space M1 k is associated with the search space M2 k , where the value interval of k is [1, K], and K is the minimum value of N 1 and N 2.
  • the terminal device in 1033 may also determine the search space associated with each other according to the protocol predefined.
  • the protocol is predefined: the last K search spaces in the first search space set and the last K search spaces in the second search space set have a one-to-one, or one-to-many, or many-to-one association relationship.
  • the first search space set includes multiple aggregation levels
  • the second search space set includes multiple aggregation levels
  • a similar implementation method can be used to determine that every three search spaces are associated, and the three associated search spaces can be Repeat the same downlink control information.
  • the terminal device can select a search space that meets the preset condition from multiple search spaces that are associated with each other, and then determine the uplink control channel resource. For example, the search space M1 k is associated with the search space M2 k . If M1 is greater than M2, and the preset condition is that the identifier of the corresponding control resource set is the smallest, then the search space meeting the preset condition is the search space M2 k .
  • the terminal device may select a search space that meets the preset condition from multiple search spaces that are associated with each other.
  • the terminal device may select all search spaces from multiple search spaces that are associated with each other.
  • the search space M1 k is associated with the search space M2 k . If the start position of the CCE occupied by the search space M1 k is smaller than the start position of the CCE occupied by the search space M2 k , then the selected search space can be the occupied CCE The search space M1 k with the smallest starting position.
  • Embodiment 2 N SS sets are associated with M CORESET, N is greater than or equal to 1, and M is greater than or equal to 1.
  • the network device can configure N SS sets and M CORESETs associated with the N SS sets for the terminal device.
  • step 103 may include: the terminal device may determine multiple search spaces associated with each other according to the SS set and its associated CORESET.
  • the terminal device may determine multiple search spaces associated with each other according to the SS set and its associated CORESET, which may include:
  • the terminal device determines a search space set based on N SS sets and M CORESET;
  • the terminal device sorts the search space set according to the aggregation level of each search space or/and the CCE starting position from small to large to obtain: search space 1, search space 2, ..., search space N 3 ;
  • the terminal device determines multiple search spaces associated with each other from the search space set according to the offset value configured by the signaling.
  • the search spaces in the search space set are sorted in step 1035, and the search space set can be divided into search space sub-sets corresponding to each aggregation level in priority according to the aggregation level, and each search space sub-set is The aggregation levels of the search spaces in the collection are the same.
  • the terminal device may determine multiple search spaces associated with each other from the same search space subset according to the offset value configured by the signaling. In this implementation manner, mutually related search spaces are determined from the search space subsets corresponding to the same aggregation level. Therefore, the value range of the offset value can be reduced, and further, the bit overhead of the offset value can be reduced.
  • step 1035 may be: the terminal device sorts the search spaces in the search space set according to a certain rule.
  • the certain rule may be sorted according to one or more of the occupied CCE starting position, the identification ID of the corresponding search space group, the identification of the corresponding control resource set, and the corresponding aggregation level.
  • the following examples illustrate the optional sorting methods.
  • the search spaces in the search space set are sorted, which may be sorted according to the aggregation level first, and then sorted according to the CCE position for the search spaces with the same aggregation level.
  • the CCE position may be the starting position of the CCE.
  • multiple search spaces that are related to each other can be determined from the sorted search space set.
  • step 1035 the search spaces in the search space set are sorted, and the corresponding control resource sets can be sorted first (such as from large to small or from small to large), and then the corresponding search space groups can be sorted. The identities are sorted (such as from big to small or from small to big), and finally, sorted according to the corresponding aggregation level or the occupied CCE position.
  • step 1036 multiple search spaces that are related to each other can be determined from the sorted search space set. For example, in method 1, search space k is associated with search space (k+offset value), where the value range of k is [1,N 3 -offset value], for example, search space 1 and search space (1+offset value) ) Association.
  • a search space that meets the following preset conditions may be selected from them to determine the uplink control channel resource.
  • the preset conditions may include one or more of the following: the identification of the corresponding control resource set is the smallest or the largest; the identification of the search space group is the smallest or largest; the corresponding aggregation level is the smallest or largest; the identification of the CCE start position is the smallest or largest ; The identifier of the corresponding control resource collection group is the smallest or the largest.
  • search space 1 is associated with search space (1+offset value)
  • the preset condition is that the identification of the CCE starting position is the smallest.
  • the preset condition is that the identification of the CCE starting position is the smallest.
  • the search space that satisfies the preset condition is search space 1.
  • the size of the CCE start position or the CCE end position may refer to the size of the CCE start position identifier or the CCE end position identifier.
  • the network device configures multiple CORESETs for the terminal device, and associates multiple SS sets with respect to a certain CORESET.
  • Step 103 may include: the terminal device determines the mutually associated SS sets according to the CORESET and its associated multiple SS sets. Multiple search spaces.
  • two search space groups are associated with one control resource set, and the two search space groups are SS set O 1 and SS set O 2 respectively .
  • the time-frequency resources composed of the search space group O 1 and the control resource set, and the time-frequency resources composed of the search space group O 2 and the control resource set are respectively shown in FIG. 11.
  • the search space contained in the time-frequency resource formed by the search space group O 1 and the control resource set is the third search space set;
  • the search space contained in the time-frequency resource formed by the search space group O 2 and the control resource set is the fourth search space Search space collection.
  • the terminal device can determine multiple search spaces associated with each other based on CORESET and multiple associated SS sets, including:
  • the terminal device determines a third search space set based on SS set O 1 and CORESET, and the third search space set includes: search space O1 1 , search space O1 2 , ..., search space O1 N4 ;
  • the terminal device determines a fourth search space set based on SS set O 2 and CORESET, and the fourth search space set includes: search space O2 1 , search space O2 2 , ..., search space O2 N5 ;
  • the terminal device determines that there is a one-to-one correspondence between the first K search spaces in the third search space set and the first K search spaces in the fourth search space set. That is, the search space O1 k is associated with the search space O2 k , where the value interval of k is [1, K], and K is the minimum value of N 4 and N 5.
  • N4 represents the number of search spaces in the third search space set
  • N5 represents the number of search spaces in the fourth search space set.
  • N4 may or may not be equal to N5.
  • step 1039 For the optional implementation manner of step 1039, refer to the related description of step 1033 in the above-mentioned implementation manner 1, which will not be described in detail here.
  • a similar implementation method can be used to determine that every three search spaces are associated.
  • the same downlink control information is repeatedly transmitted in space.
  • the identifiers of the search space groups corresponding to the mutually related search spaces are different, and the preset condition may be that the identifier of the corresponding search space group is the smallest or the largest.
  • the terminal device can select a search space that meets the preset condition from multiple search spaces that are associated with each other, and then determine the uplink control channel resource.
  • the search space O1 k is associated with the search space O2 k . If O1 is greater than O2, and the preset condition is that the identifier of the corresponding search space group is the smallest, then the search space that meets the preset condition is the search space O2 k .
  • Embodiment 4 For the multiple search space sets determined in the first and third embodiments, the associated search space can be further determined by combining the aggregation level
  • the terminal device determines multiple search spaces associated with each other according to the control resource set and its associated SS set O 1 and SS set O 2, including:
  • the terminal device determines the third search space set based on the SS set O 1 and the control resource set, the search space of aggregation level l is ⁇ search space l O1 1 , search space l O1 2 ,..., search space l O1 N6 ⁇ , N6 Less than or equal to N4;
  • the terminal device determines the fourth search space set based on the SS set O 2 and the control resource set.
  • the search spaces of the aggregation level l are ⁇ search space l O2 1 , search space l O2 2 ,..., search space l O2 N7 ⁇ , N7 Less than or equal to N5.
  • N6 may be equal to or not equal to N7.
  • the association relationship between the protocol predefined or signaling configuration search space is: the search space l O1 k is associated with the search space l O2 k , where the value range of k is [1,K], and K is N 6 , N 7
  • the smallest value in l represents the aggregation level of the search space.
  • the terminal device determines multiple search spaces associated with each other according to the search space group and its associated CORESET M 1 and CORESET M 2, including:
  • the terminal device determines the first search space set based on CORESET M 1 and the search space group, the search spaces of aggregation level l are ⁇ search space l M1 1 , search space l M1 2 ,..., search space l M1 N8 ⁇ , N8 is less than Or equal to N1;
  • the terminal device determines the second search space set based on CORESET M 2 and the search space group, the search spaces of aggregation level l are ⁇ search space l M2 1 , search space l M2 2 ,..., search space l M2 N9 ⁇ , N9 is less than Or equal to N2.
  • N8 can be equal to or not equal to N9.
  • the association relationship between the protocol predefined or signaling configuration search space is: the search space l M1 k is associated with the search space l M2 k , where the value range of k is [1, K], and K is N 8 , N 9
  • the smallest value in, l represents the aggregation level of the search space.
  • FIG. 13 is a schematic flowchart of a channel transmission method according to an embodiment of the present application.
  • the channel transmission method described in FIG. 13 adds a certain limit to multiple search spaces that are related to each other, so that for the terminal device, the uplink control channel resource can be uniquely determined.
  • the uplink control channel resource can be uniquely determined.
  • it may include:
  • the terminal device determines the uplink control channel resource according to the position of the control channel element CCE in the search space of the downlink control channel detected;
  • the search space in which the downlink control channel is detected is one of multiple search spaces; the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted, or the determined uplink control channel resource indicates a search for one PRI Space, or a search space with an association relationship, such as a search space for joint transmission of the same downlink control information.
  • the ratio between the CCE position (such as the CCE start position) of each search space in the multiple search spaces and the number of CCEs in the corresponding control resource set is equal. That is, for each search space in the multiple search spaces, the ratio between the CCE position of the search space and the number of CCEs in the control resource set corresponding to the search space is equal.
  • the CCE position may be the start identifier of the identifier corresponding to the CCE, or the CCE start position may be the identifier corresponding to the CCE or the start identifier of the CCE.
  • the terminal device sends an uplink control channel on the uplink control channel resource.
  • the network device may determine multiple search spaces, where the CCE position (such as the CCE starting position) of each search space in the multiple search spaces is between the number of CCEs in the corresponding control resource set The ratios are equal. Furthermore, the network device may jointly send the same downlink control information or repeatedly send the same downlink control channel on the multiple search spaces.
  • the terminal device can determine the uplink control channel resource based on the search space in which the downlink control channel is detected.
  • the CCE start position occupied by each search space in the multiple search spaces used by the downlink control channel for sending the downlink control information by the network device and the CCE in the corresponding control resource set The ratios between the numbers are equal.
  • the ratio between the CCE starting position occupied by each search space in the multiple associated search spaces and the number of CCEs in the corresponding control resource set that the terminal device does not expect to receive is not equal; or , The ratio between the CCE starting position occupied by each search space in the multiple search spaces that the terminal device expects to receive and the number of CCEs in the corresponding control resource set is equal; or the association issued by the network device The ratio between the CCE starting position occupied by each search space in the multiple search spaces and the number of CCEs in the corresponding control resource set is equal.
  • the network device may pre-configure multiple associated search spaces for the terminal device or notify the multiple associated search spaces of the terminal device through a protocol predefined manner, and each of the associated multiple search spaces occupies The ratio between the starting position of the CCE and the number of CCEs in the corresponding control resource set is equal.
  • each search space corresponds to Are equal.
  • the terminal device determines that the transmission of downlink control information is one of the above-mentioned optional scenarios, the associated multiple search spaces are activated, and the uplink is determined according to the CCE position occupied by one of the multiple search spaces. Control channel resources.
  • the terminal device determines that the transmission of downlink control information is not one of the above-mentioned optional scenarios, the multiple associated search spaces are not activated.
  • the terminal device can determine that the downlink control information is jointly or repeatedly transmitted through multiple associated search spaces, then the terminal device can The multiple search spaces associated with the association are activated, and then steps 201 to 202 are executed.
  • the multiple search spaces associated with each other in the channel transmission method described in FIG. 12 must meet certain conditions.
  • the aforementioned ratios are all equal or equal to the same value, so that the uplink control channel resource can be uniquely determined for the terminal device.
  • the terminal device when the terminal device correctly decodes a downlink control information, it can ignore the detection of other search spaces with the same ratio, thereby reducing the complexity of blind detection of the terminal device.
  • the search space used when a network device sends downlink control information to a terminal device, the search space used must also satisfy "the CCE starting position of the search space corresponds to the number of CCEs in the control resource set corresponding to the search space. The condition that the ratios between the numbers are equal", so that both the terminal equipment and the network equipment can uniquely determine the uplink control channel resources.
  • a downlink control information is repeatedly transmitted through a downlink control channel (or called downlink control channel transmission enhancement), or is jointly transmitted through multiple downlink control channels (or multiple search spaces), which can be displayed by displaying Way notification, or implicit way notification, or display way combined with implicit way and other notifications.
  • the number of CORESET contained in the SS set can be limited.
  • the terminal device can consider that the downlink control information is repeatedly transmitted through the downlink control channel or multiple downlink control channels are jointly transmitted, and the corresponding search The spaces are related, or it can be specified that the PDCCH is repeatedly transmitted at this time.
  • the CORESET groups contained in different CORESETs are different, that is, when multiple CORESETs do not belong to the same CORESET group, it can be considered that the downlink control information is repeatedly transmitted through the downlink control channel or jointly transmitted by multiple downlink control channels, and the corresponding search space There is a connection between them.
  • the CORESET group included in CORESET is omitted, it defaults to 0.
  • the network device can issue a signaling to notify the adoption of the downlink control channel repeated transmission scheme or the multiple downlink control channel joint transmission scheme, when the terminal knows that the downlink control channel repeated transmission scheme or the multiple downlink control channel joint transmission scheme is adopted After that, the association relationship described in each of the foregoing embodiments is established or activated.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspectives of network equipment and terminal equipment.
  • the network device and the terminal device may include a hardware structure and a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above-mentioned functions can be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device 1400 shown in FIG. 15 may include a communication unit 1401 and a processing unit 1402.
  • the communication unit 1401 may include a sending unit and a receiving unit.
  • the sending unit is used to implement a sending function
  • the receiving unit is used to implement a receiving function
  • the communication unit 1401 may implement a sending function and/or a receiving function.
  • the communication unit can also be described as a transceiving unit.
  • the communication device 1400 may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device 1400 includes a communication unit 1401 and a processing unit 1402;
  • the processing unit 1402 is configured to select a search space that meets a preset condition from a plurality of search spaces, the multiple search spaces are search spaces that repeatedly transmit the same downlink control channel; and control according to the search space that meets the preset condition The starting position of the channel element CCE to determine the uplink control channel resource;
  • the communication unit 1401 is configured to send an uplink control channel on the uplink control channel resource.
  • the processing unit 1402 is configured to determine the uplink control channel resource according to the start position of the control channel element CCE in any search space in the multiple search spaces;
  • the communication unit 1401 is configured to receive an uplink control channel on the uplink control channel resource
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted; in the multiple search spaces, the ratio between the CCE starting position of each search space and the number of CCEs in the corresponding control resource set is equal.
  • the communication device 1400 may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the processing unit 1402 is configured to select a search space that meets a preset condition from a plurality of search spaces, the multiple search spaces are mutually related and are search spaces for repeatedly transmitting the same downlink control channel; and according to satisfying the preset conditions
  • the starting position of the control channel element CCE of the conditional search space is used to determine the uplink control channel resource;
  • the communication unit 1401 is configured to receive an uplink control channel on the uplink control channel resource
  • the multiple associated search spaces are search spaces in which the same downlink control channel is repeatedly transmitted.
  • the processing unit 1401 is configured to determine the uplink control channel resource according to the start position of the control channel element CCE in any search space in the multiple search spaces;
  • the communication unit 1402 is configured to receive an uplink control channel on the uplink control channel resource
  • the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted; in the multiple search spaces, the ratio between the CCE starting position of each search space and the number of CCEs in the corresponding control resource set is equal.
  • the communication device can determine the uplink control channel resource based on the CCE starting position of the search space that meets the preset condition in the multiple search spaces, so that the uplink control channel resource can be determined in the scenario of repeated downlink control channel transmission.
  • the communication device adds a certain limit to multiple search spaces.
  • the ratios are all equal or equal to the same value, so that for terminal equipment or network equipment, the uplink control channel resource can be uniquely determined.
  • the terminal device when the terminal device correctly decodes a piece of downlink control information, it can ignore the detection of other search spaces, thereby reducing the complexity of blind detection of the terminal device.
  • FIG. 15 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device 1500 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip or a chip system that supports the terminal device to implement the above method. , Or processor, etc.
  • the device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the communication device 1500 may include one or more processors 1501.
  • the processor 1501 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process The data of the software program.
  • the communication device 1500 may include one or more memories 1502, on which instructions 1504 may be stored, and the instructions may be executed on the processor 1501, so that the communication device 1500 executes the foregoing method The method described in the examples.
  • the memory 1502 may also store data.
  • the processor 1501 and the memory 1502 can be provided separately or integrated together.
  • the communication device 1500 may further include a transceiver 1505 and an antenna 1506.
  • the transceiver 1505 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing the transceiver function.
  • the transceiver 1505 may include a receiver and a transmitter.
  • the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function;
  • the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication device 1500 is a terminal device: the processor 1501 is configured to execute steps 101 and 102 in FIG. 6; execute step 103 in FIG. 7; or step 201 in FIG.
  • the transceiver 1505 is used to send the uplink control channel on the uplink control channel resource determined in step 102 in Fig. 6 and Fig. 7; or step 202 in Fig. 13.
  • the processor 1501 executing step 103 in FIG. 7 may include the related operations described in FIG. 8, FIG. 9, and FIG. 10.
  • the communication device 1500 is a network device: the processor 1501 is configured to execute steps 101 and 102 in FIG. 6; execute step 103 in FIG. 7; or step 201 in FIG.
  • the transceiver 1505 is used to receive the uplink control channel on the uplink control channel resource determined by the processor 1501 in step 103 in FIG. 6 and FIG. 7; or in step 202 in FIG. 13, but need to replace "send" with "receive” operating.
  • the processor 1501 executing step 103 in FIG. 7 may include the related operations described in FIG. 8, FIG. 9, and FIG. 10.
  • the processor 1501 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces, or interface circuits used to implement the receiving and transmitting functions can be separate or integrated.
  • the foregoing transceiver circuit, interface, or interface circuit can be used for code/data reading and writing, or the foregoing transceiver circuit, interface, or interface circuit can be used for signal transmission or transmission.
  • the processor 1501 may store an instruction 1503, and the instruction 1503 runs on the processor 1501, so that the communication device 1500 can execute the method described in the foregoing method embodiment.
  • the instruction 1503 may be solidified in the processor 1501.
  • the processor 1501 may be implemented by hardware.
  • the communication device 1500 may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured by various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiment may be a network device or a terminal device, but the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 14.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the set of ICs may also include storage components for storing data and instructions;
  • ASIC such as a modem (Modem)
  • the communication device may be a chip or a chip system
  • the chip 1600 shown in FIG. 16 includes a processor 1601 and an interface 1602.
  • the number of processors 1601 may be one or more, and the number of interfaces 1602 may be more than one.
  • the processor 1601 and the processor 1601 are configured to select a search space that meets a preset condition from a plurality of search spaces, and the plurality of search spaces are those that repeatedly transmit the same downlink control channel.
  • Search space the processor 1601 is further configured to determine the uplink control channel resource according to the CCE starting position of the control channel element of the search space that meets the preset condition.
  • the interface 1602 is configured to send an uplink control channel on the uplink control channel resource.
  • the processor 1601 is configured to determine the uplink control channel resource according to the start position of the control channel element CCE in the search space of the downlink control channel detected; the interface 1602 is configured to control the uplink The uplink control channel is sent on the channel resource; the search space in which the downlink control channel is detected is one of multiple search spaces; the multiple search spaces are search spaces in which the same downlink control channel is repeatedly transmitted, and the multiple In each search space, the ratio between the starting position of the CCE in each search space and the number of CCEs in the corresponding control resource set is equal.
  • the processor 1601 and the processor 1601 are configured to select a search space that meets a preset condition from a plurality of search spaces, and the plurality of search spaces are those that repeatedly transmit the same downlink control channel.
  • Search space the processor 1601 is further configured to determine the uplink control channel resource according to the CCE starting position of the control channel element of the search space that meets the preset condition.
  • the interface 1602 is configured to send an uplink control channel on the uplink control channel resource.
  • the processor 1601 is configured to determine the uplink control channel resource according to the start position of the control channel element CCE in any search space in the plurality of search spaces; the interface 1602 is configured to The uplink control channel is received on the uplink control channel resource; the multiple search spaces are search spaces where the same downlink control channel is repeatedly transmitted; among the multiple search spaces, the CCE starting position of each search space and its corresponding control resource set The ratios between the numbers of CCEs are all equal.
  • the chip further includes a memory 1603, and the memory 1603 is used to store necessary program instructions and data for the terminal device.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also be other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源确定方法及资源确定装置。该方法中,多个搜索空间为互相关联的。例如,该多个搜索空间承载的下行控制信息是相同的或联合传输同一下行控制信息,终端设备基于该多个搜索空间中满足预设条件的搜索空间的CCE起始位置来确定上行控制信道资源,从而能够确定唯一的上行控制信道资源。另外,本申请还提供一种信道传输方法,可对互相关联的多个搜索空间增加了一定的限制,如各搜索空间的CCE起始位置与各搜索空间对应的控制资源集合中CCE个数之间的比值均相等,从而可确定唯一的上行控制信道资源进行信道传输。

Description

一种资源确定方法及资源确定装置 技术领域
本申请涉及通信技术领域,尤其涉及一种资源确定方法及资源确定装置。
背景技术
随着通信技术的快速发展,在通信过程中有很多小包突发业务产生,例如,高可靠低时延的突发业务。而这类业务对数据的可靠性要求相当高。相应的,控制信道的可靠性要求比数据的可靠性要求更高。目前,可采用控制信道重复传输的方案,以保证控制信道的可靠性。
然而,下行控制信道重复传输的方案中,上行控制信道资源的确定成为一个问题。原因在于:一些情况下,上行控制信道资源是基于下行控制信道所在的控制信道元素(control channel element,CCE)位置确定的,而在下行控制信道重复传输的方案中,各重复传输的下行控制信道携带的下行控制信息相同,但占据的CCE位置不同。因此,导致无法确定唯一的上行控制信道资源,也就是说,终端设备无法确定出上行控制信道资源,以进行上行传输。
发明内容
本申请提供一种资源确定方法及资源确定装置,能够针对多个搜索空间确定出唯一的上行控制信道资源。
第一方面,本申请提供一种资源确定方法,该方法中,终端设备可从多个搜索空间中选择满足预设条件的搜索空间,从而根据该满足预设条件的搜索空间的控制信道元素CCE位置,确定上行控制信道资源。
其中,该多个搜索空间为重复传输同一下行控制信道的搜索空间,或所确定的上行控制信道资源指示PRI为一个的搜索空间,或为联合传输同一下行控制信息的搜索空间等具有关联关系的搜索空间。
其中,多个搜索空间联合传输同一下行控制信息是指:多个搜索空间中每个搜索空间传输下行控制信息中的部分内容,终端设备需要检测该多个搜索空间承载的下行控制信道,才能获得该下行控制信息。多个搜索空间重复传输同一下行控制信道是指:同一下行控制信道信息在不同的搜索空间上分别传输,终端设备可以检测该多个搜索空间中的部分或者全部搜索空间来获得该下行控制信息。
针对上行控制信道资源集合中包括的上行控制信道资源的个数较多,超过上行控制信道资源指示所能指示的个数时,终端设备可根据满足预设条件的搜索空间所占的CCE位置确定唯一的上行控制信道资源。
其中,根据满足预设条件的搜索空间的CCE位置确定上行控制信道资源时,该CCE位置可为该搜索空间所占的CCE位置中的起始CCE位置,或者结束CCE位置等。下文主要以CCE的起始位置为例。
一个搜索空间由时频资源上的l个CCE组成,l为聚合等级,即一个下行控制信道所 占的CCE个数。终端设备可根据网络设备配置的搜索空间组和控制资源集合确定搜索空间。其中,搜索空间组用于定义检测下行控制信道的时域上的可能性。控制资源集合用于定义检测下行控制信道的频域上的可能性。一个搜索空间组和一个控制资源集合可确定多个搜索空间。
预设条件包括以下的一个或多个:对应的控制资源集合的标识最小或最大;所在搜索空间组的标识最小或最大;对应的聚合等级最小或最大;CCE起始位置的标识最小或最大;对应的控制资源集合组的标识最小或最大。从而确定出满足预设条件的唯一的搜索空间。
以下针对多个搜索空间的确定阐述可选的,但不限于以下几种的实施方式。其中,该多个搜索空间如上所述具有关联关系,故可称为互相关联或关联的多个搜索空间。即终端设备可通过以下可选的实施方式确定关联的多个搜索空间。
一种实施方式中,多个搜索空间是基于一个搜索空间组关联多个控制资源集合确定的。也就是说,终端设备根据该搜索空间组和该多个控制资源集合确定关联的多个搜索空间。
一种可能的实现方式中,假设一个搜索空间组与两个控制资源集合相关联,两个控制资源集合分别为控制资源集合M 1和控制资源集合M 2,终端设备根据该搜索空间组和该搜索空间组关联的多个控制资源集合,确定互相关联的多个搜索空间,包括:
终端设备基于搜索空间组和控制资源集合M 1确定第一搜索空间集合,第一搜索空间集合包括:搜索空间 M1 1,搜索空间 M1 2,…,搜索空间 M1 N1
终端设备基于该搜索空间组和控制资源集合M 2确定第二搜索空间集合,第二搜索空间集合包括:搜索空间 M2 1,搜索空间 M2 2,…,搜索空间 M2 N2;其中,N1可等于或不等于N2,分别表示所确定的搜索空间的个数;
可通过协议预定义指示:第一搜索空间集合中前K个搜索空间与第二搜索空间集合中前K个搜索空间之间具有一一对应的关联关系。终端设备确定第一搜索空间集合中的前K个搜索空间与第二搜索空间集合中的前K个搜索空间之间具有一一对应的关联关系。即搜索空间 M1 k与搜索空间 M2 k关联,其中,k的取值区间为[1,K],K为N 1、N 2中的最小值。
可选的,可通过协议预定义指示:第一搜索空间集合中后K个搜索空间与第二搜索空间集合中后K个搜索空间之间具有一一对应的关联关系。
可选的,可通过信令配置的方式指示:第一搜索空间集合中选择K个搜索空间与第二搜索空间集合中选择K个搜索空间之间具有一一对应的关联关系。
可选的,第一搜索空间集合中包含多个聚合等级,第二搜索空间集合中包含多个聚合等级,分别来自两个搜索空间集合,且聚合等级相同的多个搜索空间之间互相关联。
可选的,第一搜索空间集合中的搜素空间和第二搜索空间集合中的搜索空间可按照预定的方式分别排序。该预定的方式可包括:按照所占的CCE起始位置进行排序;或者先按照所占的起始符号(或起始符号位置)排序,同一起始符号的搜索空间,再按照所占的CCE起始位置进行排序;或者先按照对应的聚合等级排序,例如聚合等级按照从小到大排序或者从大到小排序,同一聚合等级的搜索空间,在按照所占的CCE起始位置或所占的起始符号进行排序;或者先按照所占的CCE起始位置排序,同一CCE起始位置的搜索空间,再按照所占的起始符号排序。
在另一种可能的实现方式中,假设一个搜索空间组与三个控制资源集合相关联,则可 采用类似上述实现方式确定每三个搜索空间相关联,例如,可在该三个关联的搜索空间上重复传输相同的下行控制信息。
该实施方式中,互相关联的搜索空间对应的控制资源集合的标识不同,预设条件可为对应的控制资源集合的标识最小或最大。这样,终端设备可从互相关联的多个搜索空间中选择满足该预设条件的搜索空间,进而确定上行控制信道资源。例如,搜索空间 M1 k与搜索空间 M2 k关联,若M1大于M2,预设条件为对应的控制资源集合的标识最小,那么,满足该预设条件的搜索空间为搜索空间 M2 k
另一种实施方式中,互相关联的多个搜索空间是基于配置的N个搜索空间组及该N个搜索空间组分别关联的M个控制资源集合确定的。N大于等于1,M大于等于1。终端设备基于N个搜索空间组和该N个搜索空间组分别关联的M个控制资源集合确定一个搜索空间集合;
终端设备根据一定的规则将搜索空间集合中的每个搜索空间进行排序后,得到排序后的搜索空间集合:搜索空间1,搜索空间2,…,搜索空间N 3
进一步,网络侧给终端设备下发一个信令,通知终端设备关联的搜索空间的偏移offset值。终端设备根据信令配置的偏移offset值从该搜索空间集合中确定互相关联的多个搜索空间。如搜索空间1与搜索空间(1+offset值)关联;或者,搜索空间1、搜索空间(1+offset值)和搜索空间(1+offset值*2)三者互相关联。
其中,终端设备根据一定的规则将该搜索空间集合中的各搜索空间进行排序时,该一定的规则可以是根据所占的CCE起始位置、对应的搜索空间组的标识ID、对应的控制资源集合的标识、对应的聚合等级中的一种或多种进行排序。以下对可选的排序方式进行举例阐述。
一种可能的实现方式,针对搜索空间集合中的各搜索空间,按照各搜索空间分别所占的CCE起始位置从小到大的顺序进行排序。
另一种可能的实现方式,针对搜索空间集合中的各搜索空间,按照各搜索空间分别对应的搜索空间组的标识ID从小到大(或从大到小)排序,然后针对搜索空间组的标识ID相同的搜索空间,按照各搜索空间分别对应的控制资源集合的标识ID从小到大(或从大到小)进行排序,最后针对控制资源集合的标识ID相同的搜索空间,再按照各搜索空间的聚合等级从小到大(或从大到小)进行排序。
又一种可能的实现方式,针对搜索空间集合中的各搜索空间,按照各搜索空间分别对应的控制资源集合的标识ID从小到大(或从大到小)排序,然后针对控制资源集合的标识ID相同的搜索空间,按照各搜索空间分别对应的搜索空间组的标识ID从小到大(或从大到小)进行排序,最后针对搜索空间组的标识ID相同的搜索空间,再按照各搜索空间的聚合等级从小到大(或从大到小)进行排序。
该实施方式中,预设条件包括以下的一个或多个:对应的控制资源集合的标识最小或最大;所在搜索空间组的标识最小或最大;对应的聚合等级最小或最大;CCE起始位置的标识最小或最大;对应的控制资源集合组的标识最大或最小。如搜索空间1与搜索空间(1+offset值)关联,预设条件为CCE起始位置的标识最小,且对搜索空间集合中各搜索空间按照各搜索空间分别所占的CCE起始位置从小到大的顺序进行排序,那么,满足该预 设条件的搜索空间为搜索空间1。
其中,搜索空间对应的控制资源集合组的标识是指搜索空间对应的控制资源集合中包含的控制资源集合组的标识。在多站场景中,各控制资源集合中包含的控制资源集合组的标识是不同的。对于一控制资源集合中包含的控制资源集合组的标识不存在或为0,表示这些控制资源集合组的标识是相同的。若一控制资源集合中包含的控制资源集合组的标识不存在或为0,另一控制资源集合中包含的控制资源集合组的标识为1,则表示标识不存在或为0的控制资源集合组的标识小于标识为1的控制资源集合组的标识。
可选的,协议规定关联的搜索空间必须具有相同的聚合等级,或者终端不期望接收到关联的搜索空间的聚合等级不相同。那么,对搜索空间集合中的搜索空间进行排序,可优先按照聚合等级将该搜索空间集合划分为各聚合等级对应的搜索空间子集合,每个搜索空间子集合中搜索空间的聚合等级相同。相应的,信令配置的偏移offset值是针对搜索空间子集合而言的,由于搜索空间子集合中搜索空间的个数小于搜索空间集合中的搜索空间的个数,因此,可降低偏移offset值的取值范围,进而,降低该offset值的比特开销。
其中,每个搜索空间子集合中各搜索空间的排序方式可参见上述所述的“一定的规则”的可选的实现方式,此处不再详述。
又一种实施方式中,多个搜索空间是基于一个控制资源集合关联的多个搜索空间组确定的,即多个搜索空间是基于一个控制资源集合与多个搜索空间组之间的关联关系确定的。这样,终端设备可基于该控制资源集合和关联的多个搜索空间组,确定互相关联的多个搜索空间。
一种可能的实现方式中,假设两个搜索空间组与一个控制资源集合相关联,两个搜索空间组分别为SS set O 1和SS set O 2。终端设备可基于控制资源集合和关联的多个搜索空间组,确定互相关联的多个搜索空间,包括:终端设备基于SS set O 1和控制资源集合确定第三搜索空间集合,第三搜索空间集合包括:搜索空间 O1 1,搜索空间 O1 2,…,搜索空间 O1 N4;终端设备基于SS set O 2和控制资源集合确定第四搜索空间集合,第四搜索空间集合包括:搜索空间 O2 1,搜索空间 O2 2,…,搜索空间 O2 N5
其中,N4可等于或不等于N5,分别表示每个搜索空间集合中搜索空间的个数。终端设备确定第三搜索空间集合中的前K个搜索空间与第四搜索空间集合中的前K个搜索空间之间具有一一对应的关联关系。即搜索空间 O1 k与搜索空间 O2 k关联,其中,k的取值区间为[1,K],K为N 4、N 5中的最小值。
可选的,可通过协议预定义指示:第三搜索空间集合中后K个搜索空间与第四搜索空间集合中后K个搜索空间之间具有一一对应的关联关系。
可选的,可通过信令配置的方式指示:第三搜索空间集合中选择K个搜索空间与第四搜索空间集合中选择K个搜索空间之间具有一一对应的关联关系。
可选的,第三搜索空间集合中包含多个聚合等级,第四搜索空间集合中包含多个聚合等级,将分别来自两个搜索空间集合且聚合等级相同的多个搜索空间之间互相关联。
在另一种可能的实现方式中,假设三个搜索空间组与一个控制资源集合相关联,则可采用类似上述实现方式确定每三个搜索空间相关联,可在三个关联的搜索空间上重复传输相同的下行控制信息。
该实施方式中,互相关联的搜索空间对应的搜索空间组的标识不同,预设条件可为对应的搜索空间组的标识最小或最大。这样,终端设备可从互相关联的多个搜索空间中选择满足该预设条件的搜索空间,进而确定上行控制信道资源。例如,搜索空间 O1 k与搜索空间 O2 k关联,若O1大于O2,预设条件为对应的搜索空间组的标识最小,那么,满足该预设条件的搜索空间为搜索空间 O2 k
又一种实施方式中,上述两种实施方式确定的第三搜索空间集合和第四搜索空间集合,还可以针对不同的聚合等级进行区分。
在一种实现方式中,终端设备根据控制资源集合和其关联的SS set O 1、SS set O 2确定互相关联的多个搜索空间,包括:终端设备基于SS set O 1和控制资源集合确定第三搜索空间集合中,聚合等级l的搜索空间分别为{搜索空间l O1 1,搜索空间l O1 2,…,搜索空间l O1 N6},N6小于或等于N4;终端设备基于SS set O 2和控制资源集合确定第四搜索空间集合中,聚合等级l的搜索空间分别为{搜索空间l O2 1,搜索空间l O2 2,…,搜索空间l O2 N7},N7小于或等于N5。
其中,N6可等于或不等于N7。协议预定义或信令配置搜索空间之间的关联关系为:搜索空间l O1 k与搜索空间l O2 k关联,其中,k的取值区间为[1,K],K为N 6、N 7中的最小值,l表示搜索空间的聚合等级。
在另一种实现方式中,终端设备根据搜索空间组和其关联的CORESET M 1、CORESET M 2确定互相关联的多个搜索空间,包括:终端设备基于CORESET M 1和搜索空间组确定第一搜索空间集合中,聚合等级l的搜索空间分别为{搜索空间l M1 1,搜索空间l M1 2,…,搜索空间l M1 N8},N8小于或等于N1;终端设备基于CORESET M 2和搜索空间组确定第二搜索空间集合中,聚合等级l的搜索空间分别为{搜索空间l M2 1,搜索空间l M2 2,…,搜索空间l M2 N9},N9小于或等于N2。
其中,N8可等于或不等于N9。协议预定义或信令配置搜索空间之间的关联关系为:搜索空间l M1 k与搜索空间l M2 k关联,其中,k的取值区间为[1,K],K为N 8、N 9中的最小值,l表示搜索空间的聚合等级。
在一种实施方式中,多个搜索空间包括检测到下行控制信道的搜索空间,以及与该搜索空间关联的至少一个搜索空间。在一种可能的实现方式中,终端设备从多个搜索空间中,选择满足预设条件的搜索空间之前,所述方法还包括:终端设备检测到下行控制信道时,基于上述各实施方式确定与检测到该下行控制信道的搜索空间关联的至少一个搜索空间,获得互相关联的多个搜索空间。
第二方面,本申请还提供一种信道传输方法。该方法中,终端设备根据检测到下行控制信道的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;终端设备在该上行控制信道资源上发送上行控制信道。其中,检测到下行控制信道的搜索空间为多个搜索空间中的一个;该多个搜索空间中各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
其中,该多个搜索空间为重复传输同一下行控制信道的搜索空间,或所确定的上行控制信道资源指示PRI为一个的搜索空间,或为联合传输同一下行控制信息的搜索空间等具 有关联关系的搜索空间。
可见,针对多个搜索空间,每个搜索空间的CCE起始位置与该搜索空间对应的控制资源集合中CCE个数之间的比值均等于同一值。从而使得终端设备基于该多个搜索空间中的任一搜索空间确定的上行控制信道资源是相同的。
一种可能的实施方式中,该多个搜索空间所确定的上行控制信道资源指示PRI为一个。这样,上行控制信道资源集合中上行控制信道资源的个数大于PRI能够指示的上行控制信道资源的个数时,由于每个搜索空间所占的CCE起始位置与该搜索空间对应的控制资源集合中CCE个数之间的比值相等,因此,终端设备可基于检测到下行控制信道的搜索空间所占的CCE位置,确定唯一的上行控制信道资源。
另一种可能的实施方式中,该多个搜索空间分别为重复传输同一下行控制信道的搜索空间。可见,在下行控制信道重复传输的场景中,由于每个搜索空间的CCE起始位置与该搜索空间对应的控制资源集合中CCE个数之间的比值均等于同一值,因此,终端设备可利用任一搜索空间,如检测到下行控制信道的搜索空间所占的CCE位置,确定唯一的上行控制信道资源。
可见,第二方面所述的方法对互相关联的多个搜索空间增加了一定的限制,如上述比值均相等或等于同一值,从而对于终端设备来说,可唯一确定上行控制信道资源。进一步,终端设备正确译码出一个下行控制信息时,即可忽略该比值相同的其他搜索空间的检测,从而降低了终端设备的盲检复杂度。
第三方面,本申请还提供一种资源确定方法,该方法是从网络设备的角度进行阐述的。网络设备可执行第一方面所述的终端设备类似的操作,网络设备从多个搜索空间中,选择满足预设条件的搜索空间;所述网络设备根据满足预设条件的搜索空间的控制信道元素CCE位置,确定上行控制信道资源。可见,网络设备可针对多个搜索空间,确定相同的,唯一的上行控制信道资源,从而获得上行控制信息。
其中,该多个搜索空间为重复传输同一下行控制信道的搜索空间,或所确定的上行控制信道资源指示PRI为一个的搜索空间,或为联合传输同一下行控制信息的搜索空间等具有关联关系的搜索空间。
其中,搜索空间的CCE位置可称为搜索空间所占的CCE位置。例如,在确定上行控制信道资源时,可基于该搜索空间所占的CCE起始位置或所占的CCE结束位置来确定。
一种实施方式中,多个搜索空间所确定的上行控制信道资源指示PRI为一个。这样,上行控制信道资源集合中上行控制信道资源的个数时,可利用多个搜索空间中满足预设条件的搜索空间确定唯一的上行控制信道资源。
另一种实施方式中,多个搜索空间分别为重复传输同一下行控制信道的搜索空间。可见,针对重复传输同一下行控制信道的场景,网络设备可利用多个搜索空间中满足预设条件的搜索空间确定唯一的上行控制信道资源。
在一种实施方式中,所述预设条件包括以下的一个或多个:对应的控制资源集合的标识最小或最大;所在搜索空间组的标识最小或最大;对应的聚合等级最小或最大;CCE起始位置的标识最小或最大;控制资源集合的标识最大或最小。
在一种实施方式中,所述多个搜索空间是基于搜索空间组关联的一个或多个控制资源集合确定的;或者所述多个搜索空间是基于一个控制资源集合关联的多个搜索空间组确定的;或者所述多个搜索空间是基于信令配置的偏移offset值确定的。
该方面可参考第一方面的相关内容,此处不再详述。
第四方面,本申请还提供一种资源确定方法,该方法与第二方面相比,是从网络设备的角度进行阐述的。网络设备根据多个搜索空间中任一搜索空间的控制信道元素CCE位置,确定上行控制信道资源;所述网络设备在所述上行控制信道资源上接收上行控制信道;所述多个搜索空间中,各搜索空间所占的CCE位置与其对应的控制资源集合中CCE个数之间的比值均相等。
其中,该多个搜索空间为重复传输同一下行控制信道的搜索空间,或所确定的上行控制信道资源指示PRI为一个的搜索空间,或为联合传输同一下行控制信息的搜索空间等具有关联关系的搜索空间。
相应的,网络设备采用多个搜索空间下发下行控制信息或下行控制信道时,该多个搜索空间各搜索空间所占的CCE位置与其对应的控制资源集合中CCE个数之间的比值均相等。其中,各搜索空间所占的CCE位置可为各搜索空间分别所占的CCE起始位置或CCE结束位置。
一种可能的实施方式中,该多个搜索空间所确定的上行控制信道资源指示PRI为一个。这样,上行控制信道资源集合中上行控制信道资源的个数大于PRI能够指示的上行控制信道资源的个数时,由于每个搜索空间所占的CCE位置与该搜索空间对应的控制资源集合中CCE个数之间的比值相等,因此,网络设备可基于其中的任一搜索空间所占的CCE位置,确定唯一的上行控制信道资源。
另一种可能的实施方式中,该多个搜索空间分别为重复传输同一下行控制信道的搜索空间。可见,在下行控制信道重复传输的场景中,由于每个搜索空间的CCE位置与该搜索空间对应的控制资源集合中CCE个数之间的比值均等于同一值,因此,网络设备可利用其中任一搜索空间确定唯一的上行控制信道资源。
可见,网络设备可针对多个搜索空间中的任一个确定相同的上行控制信道资源,降低上行控制信息的检测复杂度。
该方面可参考第二方面的相关内容进行阐述,此处不再详述。
第五方面,本申请还提供了一种通信装置,该通信装置具有实现上述第一方面至第二方面所述的方法示例中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
处理单元,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;以及根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
通信单元,用于在所述上行控制信道资源上发送上行控制信道。
在另一种实施方式中,所述通信装置包括:
处理单元,用于根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
通信单元,用于在所述上行控制信道资源上接收上行控制信道;
所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
一种实施方式中,所述通信装置包括:
所述处理器,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;以及根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
所述收发器,用于在所述上行控制信道资源上发送上行控制信道。
在另一种实施方式中,所述通信装置包括:
所述处理器,用于根据检测到下行控制信道的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
所述收发器,用于在所述上行控制信道资源上发送上行控制信道;
所述检测到下行控制信道的搜索空间为多个搜索空间中的一个;所述多个搜索空间为重复传输同一所述下行控制信道的搜索空间,且所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
第六方面,本申请还提供了一种通信装置。该通信装置具有实现上述第三方面所述的方法示例中网络设备的部分或全部功能,或者第四方面所述的方法实施例中网络设备的部分或全部功能。比如,通信装置的功能可具备本申请中网络设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述通信单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信,如与终端设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与获取单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
处理单元,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;以及根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
通信单元,用于在所述上行控制信道资源上接收上行控制信道;
所述关联的多个搜索空间分别为重复传输同一下行控制信道的搜索空间。
另一种实施方式中,所述通信装置包括:
处理单元,用于根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
通信单元,用于在所述上行控制信道资源上接收上行控制信道;
所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
一种实施方式中,所述通信装置包括:
所述处理器,用于根据检测到下行控制信道的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
所述收发器,用于在所述上行控制信道资源上发送上行控制信道;
所述检测到下行控制信道的搜索空间为多个搜索空间中的一个;所述多个搜索空间为重复传输同一所述下行控制信道的搜索空间,且所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
另一种实施方式中,所述通信装置包括:
所述处理器,用于根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
所述收发器,用于在所述上行控制信道资源上接收上行控制信道;
所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
第七方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收联合反馈信息可以理解为处理器输 入联合反馈信息。又例如,发送联合反馈信息可以理解为处理器输出联合反馈信息。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第七方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述终端所用的计算机软件指令,其包括用于执行上述方法的第一方面或第二方面所涉及的程序。
第八方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述网络设备所用的计算机软件指令,其包括用于执行上述方法的第三方面或第四方面所涉及的程序。
第九方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面所述的方法。
第十方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面或第四方面所述的方法。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持终端实现第一方面或第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持网络设备实现第三方面或第四方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种V2N系统的结构示意图;
图3是本申请实施例提供的一种PDCCH重复传输的示意图;
图4是本申请实施例提供的一种PDCCH重复传输的另一示意图;
图5是本申请实施例提供的一种基于CORESET和SS set确定的时频资源的示意图;
图6是本申请实施例提供的一种资源确定方法的流程示意图;
图7是本申请实施例提供的另一种资源确定方法的流程示意图;
图8是本申请实施例提供的一种基于CORESET M1、CORESET M1和SS set分别确定 的时频资源的示意图;
图9是本申请实施例提供的一种互相关联的多个搜索空间确定方法的示意图;
图10是本申请实施例提供的另一种互相关联的多个搜索空间确定方法的示意图;
图11是本申请实施例提供的一种基于SS set O 1、SS set O 2和CORESET分别确定的时频资源的示意图;
图12是本申请实施例提供的又一种互相关联的多个搜索空间确定方法的示意图;
图13是本申请实施例提供的一种信道传输方法的流程示意图;
图14是本申请实施例提供的一种通信装置的结构示意图;
图15是本申请实施例提供的另一种通信装置的结构示意图;
图16是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可具体应用于各种通信系统中。例如,随着通信技术的不断发展,本申请的技术方案还可用于未来网络,如5G系统,也可以称为新空口(new radio,NR)系统,或者可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统等等。
如图1所示,图1为本申请实施例提供的一种通信系统的结构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以一个网络设备,且该网络设备能够为终端设备提供下行控制信道重复传输为例进行阐述。其中,图1中的网络设备以传输接收点TRP为例,终端设备以手机为例。
本申请,还可以应用到车辆与网络(vehicle to network,V2N)之间的通信等车联网中。也就是说,本申请所述的终端也可以为车辆或应用于车辆中的车辆组件。图2是本申请实施例提供的一种V2N系统的结构示意图。如图2所示,路边基础设施可以包括网络设备类型的路侧单元(road side unit,RSU)。该网络设备类型的RSU可以给与网络设备通信的车辆或车辆组件提供定时同步及资源调度,以及下行控制信道重复传输等。
其中,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中,网络设备可为具有无线收发功能的设备或可设置于网络设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and  reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如BBU,或,分布式单元(DU,distributed unit)等,前述的V2X车联网中网络设备或网络设备类型的RSU。
在一些部署中,gNB或传输点可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB或传输点的部分功能,DU实现gNB或传输点的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
本申请中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。本申请的实施例对应用场景不做限定。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“的(of)”,“相应的(relevant)”,“关联的”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
为便于理解本申请实施例的相关内容,对本申请实施例涉及的一些概念进行阐述。
1、多个搜索空间
本文所述的多个搜索空间可为重复传输同一下行控制信道的搜索空间,或所确定的上行控制信道资源指示PRI为一个的搜索空间,或为联合传输同一下行控制信息的搜索空间等具有关联关系的搜索空间。
一种可能的实施方式中,该多个搜索空间确定的上行控制信道资源指示PRI为一个。例如,该多个搜索空间联合传输一个下行控制信息,终端设备需要检测所有搜索空间承载的下行控制信道,才能获得该下行控制信息。
另一种可能的实施方式中,该多个搜索空间为重复传输同一下行控制信道或下行控制信息的搜索空间。即下行控制信道重复传输场景中,下行控制信道可在时域、频域、时频域或码域上重复传输,以提高下行控制信道的可靠性。本申请实施例中,重复传输的下行控制信道在各时域、频域、时频域或码域上的信道特性或参数可能不同,如各下行控制信道采用的码率不同,但携带的下行控制信息(downlink control information,DCI)相同。
例如,请参阅图3,图3是本申请实施例提供的一种PDCCH重复传输的示意图。如图3所示,物理下行控制信道(physical downlink control channel,PDCCH)可以在两个时域资源上重复传输。其中,每个时域资源上重复传输的PDCCH的信道特性或参数可能不同,但承载的下行控制信息相同。
再例如,请参阅图4,图4是本申请实施例提供的一种PDCCH重复传输的另一示意图。如图4所示,物理下行控制信道(physical downlink control channel,PDCCH)可以在两个频域资源上重复传输。其中,每个频域资源上重复传输的PDCCH的信道特性或参数可能不同,但承载的下行控制信息相同。
2、上行控制信道资源
终端设备可在上行控制信道资源上反馈上行控制信息。上行控制信息包括混合自动重传请求(hybrid automatic repeat request,HARQ)-确认(ACK)信息和信道状态信息(channel state information,CSI)等。
上行控制信道资源可根据高层参数和下行控制信息确定。
一种实施方式中,终端设备根据上行控制信息的比特数从上行控制信道资源池中,选择对应的上行控制信道资源集合;终端设备根据下行控制信息中的上行控制信道资源指示,从上行控制信道资源集合中确定上行控制信道资源。
上行控制信道资源池是由高层参数或高层信令,如RRC信令,为终端设备配置的。该上行控制信道资源池包括多个上行控制信道资源集合。不同上行控制信道资源集合对应不同的上行控制信息比特区间。
上行控制信道资源指示为物理上行控制信道资源指示(PUCCH resource indicator,PRI)。DCI中PRI占用3个比特,当上行控制信道资源集合小于8个的上行控制信道资源,PRI可用于分别指示最多8个上行控制信道资源。
另一种实施方式中,上行控制信道资源池中的上行控制信道资源集合可包含大于8个的上行控制信道资源,如包含32个上行控制信道资源,仅采用PRI无法完全指示。故针对上行控制信道资源的个数大于8的上行控制信道资源集合,还需结合承载DCI的搜索空间的控制信道元素(control channel element,CCE)起始位置,从上行控制信道资源集合中确定上行控制信道资源。
如上述两种实施方式所述,终端设备根据该DCI中的资源指示信息和CCE起始位置确定的上行控制信道资源的资源编号r PUCCH可采用以下公式确定:
Figure PCTCN2019126787-appb-000001
其中,mod表示求余;N CCE,p是该DCI所在的控制资源集合(CORESET)中的CCE总个数,是由高层信令配置的;n CCE,p是承载该DCI的PDCCH所占据的CCE起始位置或承载该DCI的搜索空间的CCE位置(如CCE起始位置);Δ PRI是该DCI中的资源指示信息PRI;R PUCCH该CORESET所在的CORESET组被分配的PUCCH资源的总个数。
3、控制信道元素(control channel element,CCE)
PDCCH所占据的时频资源的基本组成单元为CCE。一个PDCCH占据一个或多个CCE。占据的CCE越多,表示PDCCH的可靠性越高,消耗的资源也越多。一个用户或终端设备特定的PDCCH占据了一部分CCE,那么该部分CCE就不会承载其他用户或终端设备的PDCCH。
CCE是由6个资源元素组(resource element group,REG)组成的。一个REG的资源是频域上的一个资源块(resource block,RB)和时域上的一个符号组成的。CCE与REG之间具有映射关系,该映射关系可为直接映射或交织映射。连续的6个REG可组成一个CCE,不连续的6个REG可进行交织后映射为一个CCE等。
4、控制资源集合、搜索空间组
控制资源集合(control resource set,COREST)定义了检测PDCCH的频域的可能性。网络侧可以给终端设备配置CORESET的标识、PDCCH的DMRS加扰ID、频域预编码粒度、符号长度、频域位置、CCE与REG之间的映射方式、接收PDCCH的准共址假设以及该CORESET中所收到的PDCCH的DCI中是否有TCI域等信息。
搜索空间组(search space set,SS set)定义了检测PDCCH的时域上的可能性。网络侧可以给终端设备配置SS set的标识、其关联的CORESET的标识、PDCCH的检测时间单元周期和时间单元偏移、时域检测机制(pattern)、对于各聚合等级可能的候选PDCCH(PDCCH candidate)的个数(如为0个)、SS set的类型(表示是公共的还是终端设备特定的;公共的表示还有其他用户可以检测这个SS set,终端设备特定的表示没有其他用户可以检测到这个SS set)、与DCI格式相关的配置(如要检测的DCI的格式可能性),连续长度等。
另外,下文所述的搜索空间集合是指终端设备基于网络设备侧配置的搜索空间组、控制资源集合确定的一个或多个搜索空间,所构成的集合。即本文所述的搜索空间集合不同于搜索空间组的概念。
其中,时域检测pattern用于指示终端设备在一个时隙内可能的检测PDCCH的符号位置。如时域检测pattern可以指示一个或者多个符号位置。这些符号位置分别对应了可能的PDCCH所开始的第一个符号位置。如时域检测pattern可以指示符号位置l1、l2、l3,则终端设备可能分别在以符号l1、符号l2、符号l3为起始符号的位置检测到PDCCH。
其中,对于各聚合等级可能的PDCCH candidate的个数是指对于一个搜索空间内,各聚合等级各自可能的PDCCH的备选个数。例如,聚合等级1可能的PDCCH的备选的个数;聚合等级2可能的PDCCH的备选的个数。
其中,连续长度是指网络侧为终端设备配置的SS set在时域时间单元的持续长度。以时域时间单元为时隙为例,连续长度是d,则表示在一个时隙为起始的,持续d个时隙都可以用于检测PDCCH。其中,该起始的时隙为满足检测时间单元周期和时间单元偏移的时隙。
5、终端设备的盲检过程
终端设备根据控制资源集合(CORESET)和搜索空间组(search space set,SS set)等上述概念阐述的第4点所述的各信息,可确定一时频资源。请参阅图5,根据控制资源集合M与搜索空间组O确定如图5所示的一时频资源,其中,M表示控制资源集合的标识,O表示搜索空间组的标识。该时频资源包含很多个CCE。一个搜索空间由该时频资源上的l个CCE组成,l表示聚合等级。因此,终端设备基于CORESET和SS set可以确定多个搜索空间,终端设备通过盲检各个搜索空间,以接收下行控制信息。
其中,一个搜索空间的CCE起始位置与聚合等级l有关,如起始CCE的标识或索引号是l的整数倍。CORESET用于确定频域范围和时域持续符号时间,SS set用于确定时域起始符号位置。搜索空间用于表示终端设备可能检测到PDCCH的时域资源。
可见,在多个搜索空间联合传输或重复传输同一下行控制信息,或多个搜索空间确定的PRI为同一个的情况,各搜索空间的CCE位置不同,采用上述公式确定上行控制信道资源时,当上行控制信道资源集合中的上行控制信道资源个数大于8个时,无法根据上述公式唯一确定出上行控制信道资源。
例如,在下行控制信道重复传输的场景,如图3、图4所示,终端设备可在多个搜索空间上检测到PDCCH,并且所检测到的PDCCH携带的DCI相同。但对于终端设备来说,在下行控制信道重复传输的场景,终端设备不需要检测出所有搜索空间的PDCCH,只需要正确检测出其中一个搜索空间的PDCCH即可。
例如,在高频传输场景,由于信道的阻塞率比较高,终端设备能够检测出所有PDCCH的概率更低,还可能会漏检一些PDCCH。由于重复传输的PDCCH的DCI相同,即PRI相同,但是承载DCI的搜索空间不同,即CCE位置不同,故会导致终端设备确定的CCE起始位置根据检测到PDCCH的搜索空间的不同而不同,进而在上行控制信道资源集合中上行控制信道资源个数大于8个时,无法根据上述公式唯一确定出上行控制信道资源。
为了解决该问题,本申请提供一种资源确定方法。该方法中,终端设备可从多个搜索空间中选择满足预设条件的搜索空间,从而根据该满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源。可见,该资源确定方法能够从多个搜索空间中选择满足预设条件的搜索空间,从而能够针对确定唯一的上行控制信道资源。
本申请还提供一种信道传输方法,该方法中,多个搜索空间中各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等,从而,如上述公式可知,可根据检测到的其中一个下行控制信道的搜索空间的控制信道元素CCE位置,确定唯一的上 行控制信道资源,进而在该上行控制信道资源上发送上行控制信道。
以下结合附图对本申请实施例进行阐述。
请参阅图6,图6是本申请实施例提供的一种资源确定方法的流程示意图。如图6所示,该资源确定方法可包括以下步骤:
101、终端设备从多个搜索空间中,选择满足预设条件的搜索空间;
其中,所述多个搜索空间为重复传输同一下行控制信道的搜索空间,或所确定的上行控制信道资源指示PRI为一个的搜索空间,或为联合传输同一下行控制信息的搜索空间等具有关联关系的搜索空间。
102、终端设备根据满足预设条件的搜索空间的CCE位置,例如控制信道元素CCE起始位置,确定上行控制信道资源。
可见,图6所示的资源确定方法可根据检测到下行控制信道的搜索空间的控制信道元素CCE位置,确定唯一的上行控制信道资源。
图6所述的多个搜索空间可基于搜索空间组关联的一个或多个控制资源集合确定;或者可基于一个控制资源集合关联的多个搜索空间组确定;或者可基于信令配置的偏移offset值确定;或者可由网络侧进行配置或者协议预定义;或者根据网络侧配置的相关参数进行确定。可选的,确定的多个搜索空间可为网络设备通过可选的实施方式配置的关联的或互相关联的多个搜索空间。因此,如图7所示,与图6所示的资源确定方法相比,终端设备在执行步骤101之前,还可以包括:
103、终端设备确定互相关联的多个搜索空间。
也就是说,终端设备根据检测到下行控制信道的搜索空间,确定与该检测到下行控制信道的搜索空间相关联的搜索空间,从而获得互相关联的多个搜索空间。即检测到下行控制信道的搜索空间为该互相关联的多个搜索空间中的一个。
相应的,网络设备也可以执行步骤101至步骤102,进而基于确定的上行控制信道资源接收上行控制信息。可选的,网络设备还可以执行步骤103中确定互相关联的多个搜索空间的操作。
以下结合网络设备可能配置的关联关系,从终端设备的角度,对步骤103、步骤101的可能的实施方式进行阐述。需要注意的是,本申请实施例包括但不限于以下所述的实施方式一至四。
实施方式一:一个SS set关联多个CORESET
该实施方式中,网络设备为终端设备配置一个SS set,以及该SS set关联的多个CORESET。步骤103可包括:终端设备根据该SS set和其关联的多个CORESET,确定互相关联的多个搜索空间。
可选的,该多个CORESET属于不同的控制资源集合组(CORESET group)或不同的控制资源池索引(CORESET pool index)。相应的,该多个CORESET分别所属的CORESET group或CORESET pool index是通过每个CORESET中的CORESET group的标识或CORESET pool index确定的。CORESET group的标识可为缺省的,或为0、1等。当CORESET group的标识是缺省时,可以默认为0。
一种可能的实现方式中,假设一个搜索空间组与两个控制资源集合相关联,两个控制资源集合分别为控制资源集合M 1和控制资源集合M 2。例如,搜素空间组和控制资源集合M 1组成的时频资源,搜索空间组和控制资源集合M 2组成的时频资源,分别如图8所示。其中,搜素空间组和控制资源集合M 1组成的时频资源包含的搜索空间为第一搜索空间集合;搜素空间组和控制资源集合M 2组成的时频资源包含的搜索空间为第二搜索空间集合。
如图9所示,步骤103中终端设备根据该搜索空间组和其关联的多个控制资源集合,确定关联的多个搜索空间,包括:
1031、终端设备基于搜索空间组和控制资源集合M 1确定第一搜索空间集合,第一搜索空间集合包括:搜索空间 M1 1,搜索空间 M1 2,…,搜索空间 M1 N1
1032、终端设备基于该搜索空间组和控制资源集合M 2确定第二搜索空间集合,第二搜索空间集合包括:搜索空间 M2 1,搜索空间 M2 2,…,搜索空间 M2 N2
1033、终端设备确定第一搜索空间集合中的前K个搜索空间与第二搜索空间集合中的前K个搜索空间之间具有一一对应的关联关系,即搜索空间 M1 k与搜索空间 M2 k关联,其中,k的取值区间为[1,K],K为N 1、N 2中的最小值。
其中,N1表示第一搜索空间集合中的搜索空间的个数;N2表示第一搜索空间集合中的搜索空间的个数。N1可等于或不等于N2。终端设备确定第一搜索空间集合中的前K个搜索空间与第二搜索空间集合中的前K个搜索空间之间具有一一对应的关联关系。即搜索空间 M1 k与搜索空间 M2 k关联,其中,k的取值区间为[1,K],K为N 1、N 2中的最小值。
可选的,1033中终端设备还可根据协议预定义确定互相关联的搜索空间。例如,协议预定义:第一搜索空间集合中后K个搜索空间与第二搜索空间集合中后K个搜索空间之间具有一对一、或一对多、或多对一的关联关系。再例如,第一搜索空间集合中选择K个搜索空间与第二搜索空间集合中选择K个搜索空间之间具有一对一、或一对多、或多对一的关联关系。又例如,第一搜索空间集合中包含多个聚合等级,第二搜索空间集合中包含多个聚合等级,那么,分别来自两个搜索空间集合且聚合等级相同的多个搜索空间之间互相关联。
在另一种可能的实现方式中,假设一个搜索空间组与三个控制资源集合相关联,则可采用类似上述实现方式确定每三个搜索空间相关联,可在该三个关联的搜索空间上重复传输相同的下行控制信息。
该实施方式中,互相关联的搜索空间对应的控制资源集合的标识不同,预设条件可为对应的控制资源集合的标识最小或最大。这样,步骤101中终端设备可从互相关联的多个搜索空间中选择满足该预设条件的搜索空间,进而确定上行控制信道资源。例如,搜索空间 M1 k与搜索空间 M2 k关联,若M1大于M2,预设条件为对应的控制资源集合的标识最小,那么,满足该预设条件的搜索空间为搜索空间 M2 k
可选的,该实施方式中,步骤101中终端设备可从互相关联的多个搜索空间中选择满足该预设条件的搜索空间可以为:终端设备从互相关联的多个搜索空间中,选择所占的CCE起始位置最小或最大的搜索空间。例如,搜索空间 M1 k与搜索空间 M2 k关联,若搜索空间 M1 k所占的CCE起始位置小于搜索空间 M2 k所占的CCE起始位置,那么,选择的搜索空间可为所占的CCE起始位置最小的搜索空间 M1 k
实施方式二:N个SS set关联M个CORESET,N大于或等于1,M大于或等于1
该实施方式中,网络设备可为终端设备配置N个SS set及N个SS set关联的M个CORESET。相应的,步骤103可包括:终端设备可根据该SS set及其关联的CORESET确定互相关联的多个搜索空间。
一种可能的实现方式中,如图10所示,终端设备可根据该SS set及其关联的CORESET确定互相关联的多个搜索空间,可包括:
1034、终端设备基于N个SS set和M个CORESET确定一个搜索空间集合;
1035、终端设备根据每个搜索空间的聚合等级或/和CCE起始位置从小到大的顺序,对该搜索空间集合进行排序,获得:搜索空间1,搜索空间2,…,搜索空间N 3
1036、终端设备根据信令配置的偏移offset值从该搜索空间集合中确定互相关联的多个搜索空间。
一种可能的实现方式中,步骤1035中对该搜索空间集合中的搜索空间进行排序,可优先按照聚合等级将该搜索空间集合划分为各聚合等级对应的搜索空间子集合,每个搜索空间子集合中搜索空间的聚合等级相同。步骤1036中,终端设备可根据信令配置的偏移offset值从同一搜索空间子集合中确定互相关联的多个搜索空间。该实施方式是从同一聚合等级对应的搜索空间子集合中确定互相关联的搜索空间的,因此,可降低偏移offset值的取值范围,进而,降低该offset值的比特开销。
另一种可能的实现方式中,步骤1035可以为:终端设备根据一定的规则将该搜索空间集合中的各搜索空间进行排序。其中,该一定的规则可以是根据所占的CCE起始位置、对应的搜索空间组的标识ID、对应的控制资源集合的标识、对应的聚合等级中的一种或多种进行排序。以下对可选的排序方式进行举例阐述。
例如,步骤1035中对该搜索空间集合中的搜索空间进行排序,可优先按照聚合等级排序,再针对聚合等级相同的搜索空间按照CCE位置进行排序。其中,该CCE位置可为CCE起始位置。进而,步骤1036中可从排序后的搜索空间集合中确定互相关联的多个搜索空间。
再例如,步骤1035中对该搜索空间集合中的搜索空间进行排序,可优先按照对应的控制资源集合的标识进行排序(如从大到小或从小到大),然后可按照对应的搜索空间组的标识进行排序(如从大到小或从小到大),最后,按照对应的聚合等级或所占的CCE位置进行排序。进而,步骤1036中可从排序后的搜索空间集合中确定互相关联的多个搜索空间。例如,方式一,搜索空间k与搜索空间(k+offset值)关联,其中,k的取值区间为[1,N 3-offset值],例如,搜索空间1与搜索空间(1+offset值)关联。
或者方式二,搜索空间k、搜索空间(k+offset值)、…、搜索空间(k+offset值*x)多个之间互相关联,其中,x为大于1的整数,(k+offset值*x)小于或等于N 3,k的取值区间为[1,offset值*x]。例如,k=1,x=2,搜索空间1、搜索空间(1+offset值)和搜索空间(1+offset值*2)三者互相关联。
可选的,上述各实施方式确定互相关联的多个搜索空间后,可从中选择满足以下预设条件的一个搜索空间,以确定上行控制信道资源。该预设条件可包括以下一个或多个:对应的控制资源集合的标识最小或最大;所在搜索空间组的标识最小或最大;对应的聚合等 级最小或最大;CCE起始位置的标识最小或最大;对应的控制资源集合组的标识最小或最大。例如,搜索空间1与搜索空间(1+offset值)关联,预设条件为CCE起始位置的标识最小,那么假设搜索空间1所占的CCE起始位置小于搜索空间(1+offset值)所占的CCE起始位置,则满足该预设条件的搜索空间为搜索空间1。
本文中,CCE起始位置或CCE结束位置的大小可指CCE起始位置的标识或CCE结束位置的标识的大小。
实施方式三:一个CORESET关联多个SS set
该实施方式中,网络设备为终端设备配置多个CORESET,针对其中的某个CORESET关联多个SS set,步骤103可包括:终端设备根据该CORESET和其关联的多个SS set,确定互相关联的多个搜索空间。
一种可能的实现方式中,假设两个搜索空间组与一个控制资源集合相关联,两个搜索空间组分别为SS set O 1和SS set O 2。例如,搜索空间组O 1和控制资源集合组成的时频资源,搜索空间组O 2和控制资源集合组成的时频资源,分别如图11所示。其中,搜素空间组O 1和控制资源集合组成的时频资源包含的搜索空间为第三搜索空间集合;搜素空间组O 2和控制资源集合组成的时频资源包含的搜索空间为第四搜索空间集合。
相应的,如图12所示,终端设备可基于CORESET和关联的多个SS set,确定互相关联的多个搜索空间,包括:
1037、终端设备基于SS set O 1和CORESET确定第三搜索空间集合,第三搜索空间集合包括:搜索空间 O1 1,搜索空间 O1 2,…,搜索空间 O1 N4
1038、终端设备基于SS set O 2和CORESET确定第四搜索空间集合,第四搜索空间集合包括:搜索空间 O2 1,搜索空间 O2 2,…,搜索空间 O2 N5
1039、终端设备确定第三搜索空间集合中的前K个搜索空间与第四搜索空间集合中的前K个搜索空间之间具有一一对应的关联关系。即搜索空间 O1 k与搜索空间 O2 k关联,其中,k的取值区间为[1,K],K为N 4、N 5中的最小值。
其中,N4表示第三搜索空间集合中的搜索空间的个数;N5表示第四搜索空间集合中的搜索空间的个数。N4可等于或不等于N5。
其中,步骤1039的可选的实施方式可参见上述实施方式一中步骤1033的相关阐述,此处不再详述。
在另一种可能的实现方式中,假设网络设备配置三个搜索空间组与一个控制资源集合相关联,则可采用类似上述实现方式确定每三个搜索空间相关联,可在三个关联的搜索空间上重复传输相同的下行控制信息。
该实施方式中,互相关联的搜索空间对应的搜索空间组的标识不同,预设条件可为对应的搜索空间组的标识最小或最大。这样,终端设备可从互相关联的多个搜索空间中选择满足该预设条件的搜索空间,进而确定上行控制信道资源。例如,搜索空间 O1 k与搜索空间 O2 k关联,若O1大于O2,预设条件为对应的搜索空间组的标识最小,那么,满足该预设条件的搜索空间为搜索空间 O2 k
实施方式四:针对实施方式一、三中确定的多个搜索空间集合,可进一步结合聚合等级从中确定关联的搜索空间
在一种实现方式中,终端设备根据控制资源集合和其关联的SS set O 1、SS set O 2确定互相关联的多个搜索空间,包括:
终端设备基于SS set O 1和控制资源集合确定第三搜索空间集合中,聚合等级l的搜索空间分别为{搜索空间l O1 1,搜索空间l O1 2,…,搜索空间l O1 N6},N6小于或等于N4;
终端设备基于SS set O 2和控制资源集合确定第四搜索空间集合中,聚合等级l的搜索空间分别为{搜索空间l O2 1,搜索空间l O2 2,…,搜索空间l O2 N7},N7小于或等于N5。
其中,N6可等于或不等于N7。协议预定义或信令配置搜索空间之间的关联关系为:搜索空间l O1 k与搜索空间l O2 k关联,其中,k的取值区间为[1,K],K为N 6、N 7中的最小值,l表示搜索空间的聚合等级。
在另一种实现方式中,终端设备根据搜索空间组和其关联的CORESET M 1、CORESET M 2确定互相关联的多个搜索空间,包括:
终端设备基于CORESET M 1和搜索空间组确定第一搜索空间集合中,聚合等级l的搜索空间分别为{搜索空间l M1 1,搜索空间l M1 2,…,搜索空间l M1 N8},N8小于或等于N1;
终端设备基于CORESET M 2和搜索空间组确定第二搜索空间集合中,聚合等级l的搜索空间分别为{搜索空间l M2 1,搜索空间l M2 2,…,搜索空间l M2 N9},N9小于或等于N2。
其中,N8可等于或不等于N9。协议预定义或信令配置搜索空间之间的关联关系为:搜索空间l M1 k与搜索空间l M2 k关联,其中,k的取值区间为[1,K],K为N 8、N 9中的最小值,l表示搜索空间的聚合等级。
请参阅图13,图13是本申请实施例提供的一种信道传输方法的流程示意图。其中,图13所述的信道传输方法通过对互相关联的多个搜索空间增加了一定的限制,从而对于终端设备来说,可唯一确定上行控制信道资源。具体的,如图13所示,可包括:
201、终端设备根据检测到下行控制信道的搜索空间的控制信道元素CCE位置,确定上行控制信道资源;
其中,检测到下行控制信道的搜索空间为多个搜索空间中的一个;所述多个搜索空间为重复传输同一下行控制信道的搜索空间,或所确定的上行控制信道资源指示PRI为一个的搜索空间,或为联合传输同一下行控制信息的搜索空间等具有关联关系的搜索空间。该多个搜索空间中各搜索空间的CCE位置(如CCE起始位置)与其对应的控制资源集合中CCE个数之间的比值均相等。也就是说,针对该多个搜索空间中的每个搜索空间,该搜索空间的CCE位置与该搜索空间对应的控制资源集合中CCE个数之间的比值均相等。
本文中,该CCE位置可为CCE对应的标识的起始标识,或CCE起始位置可为CCE对应的标识或CCE的起始标识。
202、终端设备在该上行控制信道资源上发送上行控制信道。
相应的,终端设备执行步骤201之前,网络设备可确定多个搜索空间,该多个搜索空间中各搜索空间的CCE位置(如CCE起始位置)与其对应的控制资源集合中CCE个数之间的比值均相等。进而,网络设备可在该多个搜索空间上联合发送同一个下行控制信息或 重复发送同一下行控制信道。
也就是说,对于终端设备侧来说,无论是下行控制信道重复传输场景、或者是多个搜索空间联合传输同一下行控制信息的场景、或者是多个搜索空间所确定的PRI为同一个的场景,终端设备可基于检测到下行控制信道的搜索空间确定上行控制信道资源。对于网络设备侧来说,在上述可选的场景,网络设备发送下行控制信息的下行控制信道所采用的多个搜索空间中各搜索空间所占的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值是相等的。
一种实施方式中,终端设备不期望接收到的关联的多个搜索空间中各搜索空间所占的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值是不相等的;或者,终端设备期望接收到的关联的多个搜索空间中各搜索空间所占的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值是相等的;或者,网络设备下发的关联的多个搜索空间中各搜索空间所占的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值是相等的。
本申请实施例中,网络设备可预先为终端设备配置关联的多个搜索空间或通过协议预定义方式告知终端设备关联的该多个搜索空间,该关联的多个搜索空间中各搜索空间所占的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值是相等的。
例如,采用上述公式确定上行共享信道资源或上行共享信道资源的索引时,每个搜索空间对应的
Figure PCTCN2019126787-appb-000002
均相等。
进而,当终端设备确定下行控制信息的传输是上述所述的可选的场景之一时,启用该关联的多个搜索空间,根据该多个搜索空间中的一个搜索空间所占的CCE位置确定上行控制信道资源。当终端设备确定下行控制信息的传输不是上述所述的可选的场景之一时,不启用该关联的多个搜索空间。
或者,当终端设备在检测到的下行控制信息包括一指示或一指示为预设值时,可确定该下行控制信息是通过关联的多个搜索空间联合传输的或重复传输的,那么终端设备可启用该关联的多个搜索空间,进而执行步骤201至202。
可见,图12所述的信道传输方法中互相关联的多个搜索空间满需一定的条件,如上述比值均相等或等于同一值,从而对于终端设备来说,可唯一确定上行控制信道资源。同时,终端设备正确译码出一个下行控制信息时,即可忽略该比值相同的其他搜索空间的检测,从而降低了终端设备的盲检复杂度。
相应的,从网络侧的角度来看,网络设备向终端设备发送下行控制信息时,所采用的搜索空间也需满足“搜索空间的CCE起始位置与该搜索空间对应的控制资源集合中CCE个数之间的比值均相等”的条件,从而,使得终端设备和网络设备均能够唯一确定出上行控制信道资源。
本申请实施例中,一个下行控制信息是通过下行控制信道重复传输(或称下行控制信道传输增强)的,或是通过多个下行控制信道(或多个搜索空间)联合传输的,可通过显示方式通知,或隐式方式通知,或显示方式结合隐式方式等通知。
例如,可对SS set中包含的CORESET数量限制,当CORESET数量超过1个,此时 终端设备可以认为下行控制信息是通过下行控制信道重复传输的或多个下行控制信道联合传输的,相应的搜索空间之间是有关联的,或者可以规定此时PDCCH重复传输。
再例如,对SS set中包含的多个CORESET是否属于同一CORESET组进行限制。当不同的CORESET所包含的CORESET组不同时,即多个CORESET不属于同一CORESET组时,可以认为下行控制信息是通过下行控制信道重复传输的或多个下行控制信道联合传输的,相应的搜索空间之间是有关联的。其中,CORESET中所包含的CORESET组是省略时,默认为0。
再例如,网络设备可下发一条信令,通知采用下行控制信道重复传输方案或多个下行控制信道联合传输方案,当终端知道采用了下行控制信道重复传输方案或多个下行控制信道联合传输方案后,上述各实施方式所述的关联关系才成立或启用。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图14,为本申请实施例提供的一种通信装置的结构示意图。图15所示的通信装置1400可包括通信单元1401和处理单元1402。通信单元1401可包括发送单元和接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,通信单元1401可以实现发送功能和/或接收功能。通信单元也可以描述为收发单元。
通信装置1400可以是终端设备,也可以终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
一种实施方式中,通信装置1400包括通信单元1401和处理单元1402;
处理单元1402,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;以及根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
通信单元1401,用于在所述上行控制信道资源上发送上行控制信道。
其中,该实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
另一种实施方式中,通信装置1400中:
处理单元1402,用于根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
通信单元1401,用于在所述上行控制信道资源上接收上行控制信道;
所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
其中,该实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
通信装置1400可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
在一种实施方式中,通信装置1400中,
处理单元1402,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为互相关联的,且为重复传输同一下行控制信道的搜索空间;以及根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
通信单元1401,用于在所述上行控制信道资源上接收上行控制信道;
所述关联的多个搜索空间分别为重复传输同一下行控制信道的搜索空间。
其中,该实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
另一种实施方式中,通信装置1400中,
处理单元1401,用于根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
通信单元1402,用于在所述上行控制信道资源上接收上行控制信道;
所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
可见,该通信装置可基于该多个搜索空间中满足预设条件的搜索空间的CCE起始位置来确定上行控制信道资源,从而能够在下行控制信道重复传输的场景中确定上行控制信道资源。另外,该通信装置对多个搜索空间增加了一定的限制,如上述所述比值均相等或等于同一值,从而对于终端设备或网络设备来说,可唯一确定上行控制信道资源。本申请实施例中,终端设备正确译码出一个下行控制信息时,即可忽略其他搜索空间的检测,从而降低了终端设备的盲检复杂度。
请参阅图15,图15是本申请实施例提供的另一种通信装置的结构示意图。所述通信装置1500可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1500可以包括一个或多个处理器1501。所述处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1500中可以包括一个或多个存储器1502,其上可以存有指令1504,所述指令可在所述处理器1501上被运行,使得所述通信装置1500执行上述方法实施例中描述的方法。可选的,所述存储器1502中还可以存储有数据。所述处理器1501和存储器1502可以单独设置,也可以集成在一起。
可选的,所述通信装置1500还可以包括收发器1505、天线1506。所述收发器1505可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
所述通信装置1500为终端设备:处理器1501用于执行图6中的步骤101、102;执行图7中的步骤103;或图13中的步骤201。收发器1505用于在图6、图7步骤102确定的 上行控制信道资源上发送上行控制信道;或图13中的步骤202。其中,处理器1501执行图7中步骤103可包括图8、图9、图10所述的相关操作。
所述通信装置1500为网络设备:处理器1501用于执行图6中的步骤101、102;执行图7中的步骤103;或图13中的步骤201。收发器1505用于在处理器1501执行图6、图7中步骤103确定的上行控制信道资源上接收上行控制信道;或执行图13中的步骤202,但是需将“发送”替换为“接收”操作。其中,处理器1501执行图7中步骤103可包括图8、图9、图10所述的相关操作。
在另一种可能的设计中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,可选的,处理器1501可以存有指令1503,指令1503在处理器1501上运行,可使得所述通信装置1500执行上述方法实施例中描述的方法。指令1503可能固化在处理器1501中,该种情况下,处理器1501可能由硬件实现。
在又一种可能的设计中,通信装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图14的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图16所示的芯片的结构示意图。图16所示的芯片1600包括处理器1601和接口1602。其中,处理器1601的数量可以是一个或多个,接口1602的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
一种实施方式中,所述处理器1601,所述处理器1601,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述处理器1601,还用于根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源。接口1602,用于在所述上行控制信道资源上发送上行控制信道。
一种实施方式中,所述处理器1601,用于根据检测到下行控制信道的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;所述接口1602,用于在所述上行控制信道资源上发送上行控制信道;所述检测到下行控制信道的搜索空间为多个搜索空间中的一个;所述多个搜索空间为重复传输同一所述下行控制信道的搜索空间,且所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
一种实施方式中,所述处理器1601,所述处理器1601,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述处理器1601,还用于根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源。接口1602,用于在所述上行控制信道资源上发送上行控制信道。
另一种实施方式中,所述处理器1601,用于根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;所述接口1602,用于在所述上行控制信道资源上接收上行控制信道;所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
可选的,芯片还包括存储器1603,存储器1603用于存储终端设备必要的程序指令和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指 令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种资源确定方法,其特征在于,包括:
    终端设备从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;
    所述终端设备根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源。
  2. 根据权利要求1所述的方法,其特征在于,所述预设条件包括以下的一个或多个:
    对应的控制资源集合的标识最小或最大;
    对应的搜索空间组的标识最小或最大;
    对应的聚合等级最小或最大;
    对应的CCE起始位置的标识最小或最大;
    对应的控制资源集合组的标识最小或最大。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述多个搜索空间是基于搜索空间组关联的一个或多个控制资源集合确定的;或者
    所述多个搜索空间是基于一个控制资源集合关联的一个或多个搜索空间组确定的;或者
    所述多个搜索空间是基于信令配置的偏移offset值确定的。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述多个搜索空间包括检测到下行控制信道的搜索空间,以及与检测到下行控制信道的搜索空间关联的至少一个搜索空间。
  5. 一种信道传输方法,其特征在于,包括:
    终端设备根据检测到下行控制信道的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    所述终端设备在所述上行控制信道资源上发送上行控制信道;
    所述检测到下行控制信道的搜索空间为多个搜索空间中的一个;所述多个搜索空间为重复传输同一所述下行控制信道的搜索空间,且所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
  6. 一种资源确定方法,其特征在于,包括:
    网络设备从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;
    所述网络设备根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源。
  7. 根据权利要求6所述的方法,其特征在于,所述预设条件包括以下的一个或多个:
    对应的控制资源集合的标识最小或最大;
    所在搜索空间组的标识最小或最大;
    对应的聚合等级最小或最大;
    CCE起始位置的标识最小或最大;
    对应的控制资源集合组的标识最小或最大。
  8. 根据权利要求6或7所述的方法,其特征在于,
    所述多个搜索空间是基于搜索空间组关联的一个或多个控制资源集合确定的;或者
    所述多个搜索空间是基于一个控制资源集合关联的多个搜索空间组确定的;或者
    所述多个搜索空间是基于信令配置的偏移offset值确定的。
  9. 一种资源确定方法,其特征在于,包括:
    网络设备根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    所述网络设备在所述上行控制信道资源上接收上行控制信道;
    所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
  10. 一种通信装置,其特征在于,包括:
    处理单元,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;以及根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    通信单元,用于在所述上行控制信道资源上发送上行控制信道。
  11. 根据权利要求10所述的终端设备,其特征在于,所述预设条件包括以下的一个或多个:
    对应的控制资源集合的标识最小或最大;
    对应的搜索空间组的标识最小或最大;
    对应的聚合等级最小或最大;
    对应的CCE起始位置的标识最小或最大;
    对应的控制资源集合组的标识最小或最大。
  12. 根据权利要求10或11所述的通信装置,其特征在于,
    所述多个搜索空间是所述处理单元基于搜索空间组关联的一个或多个控制资源集合确定的;或者
    所述多个搜索空间是所述处理单元基于一个控制资源集合关联的一个或多个搜索空间 组确定的;或者
    所述多个搜索空间是所述处理单元基于信令配置的偏移offset值确定的。
  13. 根据权利要求10至12任一项所述的通信装置,其特征在于,所述多个搜索空间包括检测到下行控制信道的搜索空间,以及与检测到下行控制信道的搜索空间关联的至少一个搜索空间。
  14. 一种通信装置,其特征在于,包括:
    处理单元,用于根据检测到下行控制信道的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    通信单元,用于在所述上行控制信道资源上发送上行控制信道;
    所述检测到下行控制信道的搜索空间为多个搜索空间中的一个;所述多个搜索空间为重复传输同一所述下行控制信道的搜索空间,且所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;以及根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    通信单元,用于在所述上行控制信道资源上接收上行控制信道。
  16. 根据权利要求15所述的通信装置,其特征在于,所述预设条件包括以下的一个或多个:
    对应的控制资源集合的标识最小或最大;
    所在搜索空间组的标识最小或最大;
    对应的聚合等级最小或最大;
    CCE起始位置的标识最小或最大;
    对应的控制资源集合组的标识最小或最大。
  17. 根据权利要求15或16所述的通信装置,其特征在于,
    所述多个搜索空间是所述处理单元基于搜索空间组关联的一个或多个控制资源集合确定的;或者
    所述多个搜索空间是所述处理单元基于一个控制资源集合关联的多个搜索空间组确定的;或者
    所述多个搜索空间是所述处理单元基于信令配置的偏移offset值确定的。
  18. 一种通信装置,其特征在于,包括:
    处理单元,用于根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确 定上行控制信道资源;
    通信单元,用于在所述上行控制信道资源上接收上行控制信道;
    所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
  19. 一种通信装置,其特征在于,包括:收发器和处理器;
    所述处理器,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;以及根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    所述收发器,用于在所述上行控制信道资源上发送上行控制信道。
  20. 根据权利要求19所述的通信装置,其特征在于,所述预设条件包括以下的一个或多个:
    对应的控制资源集合的标识最小或最大;
    对应的搜索空间组的标识最小或最大;
    对应的聚合等级最小或最大;
    对应的CCE起始位置的标识最小或最大;
    对应的控制资源集合组的标识最小或最大。
  21. 根据权利要求19或20所述的通信装置,其特征在于,
    所述多个搜索空间是所述处理器基于搜索空间组关联的一个或多个控制资源集合确定的;或者
    所述多个搜索空间是所述处理器基于一个控制资源集合关联的一个或多个搜索空间组确定的;或者
    所述多个搜索空间是所述处理器基于信令配置的偏移offset值确定的。
  22. 根据权利要求19至21任一项所述的通信装置,其特征在于,所述多个搜索空间包括检测到下行控制信道的搜索空间,以及与检测到下行控制信道的搜索空间关联的至少一个搜索空间。
  23. 一种通信装置,其特征在于,包括:处理器和收发器,
    所述处理器,用于根据检测到下行控制信道的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    所述收发器,用于在所述上行控制信道资源上发送上行控制信道;
    所述检测到下行控制信道的搜索空间为多个搜索空间中的一个;所述多个搜索空间为重复传输同一所述下行控制信道的搜索空间,且所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
  24. 一种通信装置,其特征在于,包括:处理器和收发器,
    所述处理器,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;以及根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    所述收发器,用于在所述上行控制信道资源上接收上行控制信道。
  25. 根据权利要求24所述的通信装置,其特征在于,所述预设条件包括以下的一个或多个:
    对应的控制资源集合的标识最小或最大;
    所在搜索空间组的标识最小或最大;
    对应的聚合等级最小或最大;
    CCE起始位置的标识最小或最大;
    对应的控制资源集合组的标识最小或最大。
  26. 根据权利要求24或25所述的通信装置,其特征在于,
    所述多个搜索空间是所述处理器基于搜索空间组关联的一个或多个控制资源集合确定的;或者
    所述多个搜索空间是所述处理器基于一个控制资源集合关联的多个搜索空间组确定的;或者
    所述多个搜索空间是所述处理器基于信令配置的偏移offset值确定的。
  27. 一种通信装置,其特征在于,包括:处理器和收发器;
    所述处理器,用于根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    所述收发器,用于在所述上行控制信道资源上接收上行控制信道;
    所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
  28. 一种芯片系统,其特征在于,包括:至少一个处理器和接口,
    所述处理器,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;
    所述处理器,还用于根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源。
  29. 根据权利要求28所述的芯片系统,其特征在于,所述接口,用于在所述上行控制信道资源上发送上行控制信道。
  30. 根据权利要求28或29所述的芯片系统,其特征在于,所述预设条件包括以下的 一个或多个:
    对应的控制资源集合的标识最小或最大;
    对应的搜索空间组的标识最小或最大;
    对应的聚合等级最小或最大;
    对应的CCE起始位置的标识最小或最大;
    对应的控制资源集合组的标识最小或最大。
  31. 根据权利要求28至30任一项所述的芯片系统,其特征在于,
    所述多个搜索空间是所述处理器基于搜索空间组关联的一个或多个控制资源集合确定的;或者
    所述多个搜索空间是所述处理器基于一个控制资源集合关联的一个或多个搜索空间组确定的;或者
    所述多个搜索空间是所述处理器基于信令配置的偏移offset值确定的。
  32. 根据权利要求28至31任一项所述的芯片系统,其特征在于,所述多个搜索空间包括检测到下行控制信道的搜索空间,以及与检测到下行控制信道的搜索空间关联的至少一个搜索空间。
  33. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    所述处理器,用于根据检测到下行控制信道的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    所述接口,用于在所述上行控制信道资源上发送上行控制信道;
    所述检测到下行控制信道的搜索空间为多个搜索空间中的一个;所述多个搜索空间为重复传输同一所述下行控制信道的搜索空间,且所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
  34. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    所述处理器,用于从多个搜索空间中,选择满足预设条件的搜索空间,所述多个搜索空间为重复传输同一下行控制信道的搜索空间;
    所述处理器,还用于根据满足预设条件的搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源。
  35. 根据权利要求34所述的芯片系统,其特征在于,所述接口,用于在所述上行控制信道资源上接收上行控制信道。
  36. 根据权利要求34或35所述的芯片系统,其特征在于,所述预设条件包括以下的一个或多个:
    对应的控制资源集合的标识最小或最大;
    所在搜索空间组的标识最小或最大;
    对应的聚合等级最小或最大;
    CCE起始位置的标识最小或最大;
    对应的控制资源集合组的标识最小或最大。
  37. 根据权利要求34至36任一项所述的芯片系统,其特征在于,
    所述多个搜索空间是所述处理器基于搜索空间组关联的一个或多个控制资源集合确定的;或者
    所述多个搜索空间是所述处理器基于一个控制资源集合关联的多个搜索空间组确定的;或者
    所述多个搜索空间是所述处理器基于信令配置的偏移offset值确定的。
  38. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    所述处理器,用于根据多个搜索空间中任一搜索空间的控制信道元素CCE起始位置,确定上行控制信道资源;
    所述接口,用于在所述上行控制信道资源上接收上行控制信道;
    所述多个搜索空间为重复传输同一下行控制信道的搜索空间;所述多个搜索空间中,各搜索空间的CCE起始位置与其对应的控制资源集合中CCE个数之间的比值均相等。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至4任一项所述的方法,或,执行如权利要求5所述的方法,或,执行如权利要求6至8任一项所述的方法,或,执行如权利要求9所述的方法。
  40. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至4任一项所述的方法,或,执行如权利要求5所述的方法,或,执行如权利要求6至8任一项所述的方法,或,执行如权利要求9所述的方法。
PCT/CN2019/126787 2019-12-19 2019-12-19 一种资源确定方法及资源确定装置 WO2021120135A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/126787 WO2021120135A1 (zh) 2019-12-19 2019-12-19 一种资源确定方法及资源确定装置
CN201980102854.1A CN114788371A (zh) 2019-12-19 2019-12-19 一种资源确定方法及资源确定装置
EP19957000.3A EP4068879A4 (en) 2019-12-19 2019-12-19 RESOURCE IDENTIFICATION PROCEDURE AND RESOURCE IDENTIFICATION DEVICE
US17/843,849 US20220330245A1 (en) 2019-12-19 2022-06-17 Resource determining method and resource determining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126787 WO2021120135A1 (zh) 2019-12-19 2019-12-19 一种资源确定方法及资源确定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/843,849 Continuation US20220330245A1 (en) 2019-12-19 2022-06-17 Resource determining method and resource determining apparatus

Publications (1)

Publication Number Publication Date
WO2021120135A1 true WO2021120135A1 (zh) 2021-06-24

Family

ID=76478070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126787 WO2021120135A1 (zh) 2019-12-19 2019-12-19 一种资源确定方法及资源确定装置

Country Status (4)

Country Link
US (1) US20220330245A1 (zh)
EP (1) EP4068879A4 (zh)
CN (1) CN114788371A (zh)
WO (1) WO2021120135A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111614434B (zh) * 2019-02-25 2021-08-31 华为技术有限公司 搜索空间的盲检方法及通信装置
US11758514B2 (en) * 2019-12-20 2023-09-12 Qualcomm Incorporated Physical downlink control channel candidates related to physical downlink control channel repetitions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104754741A (zh) * 2013-12-31 2015-07-01 上海贝尔股份有限公司 一种确定搜索空间的方法
CN104811263A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 控制信息的传输方法及装置
CN109150463A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信息发送、接收方法及装置
WO2019099435A1 (en) * 2017-11-14 2019-05-23 Idac Holdings, Inc. Methods for physical downlink control channel (pdcch) candidate determination
CN110169174A (zh) * 2017-03-02 2019-08-23 Oppo广东移动通信有限公司 用于无线通信系统的网络节点、用户装置和方法
US20190313437A1 (en) * 2018-04-06 2019-10-10 Lenovo (Singapore) Pte. Ltd. Configuring for bandwidth parts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013318674B2 (en) * 2012-09-19 2016-04-07 Telefonaktiebolaget L M Ericsson (Publ) Method and communication node for mapping an enhanced physical downlink control channel, EPDCCH, message
US11523376B2 (en) * 2017-01-05 2022-12-06 Huawei Technologies Co., Ltd. Method for downlink control channel design

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104754741A (zh) * 2013-12-31 2015-07-01 上海贝尔股份有限公司 一种确定搜索空间的方法
CN104811263A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 控制信息的传输方法及装置
CN110169174A (zh) * 2017-03-02 2019-08-23 Oppo广东移动通信有限公司 用于无线通信系统的网络节点、用户装置和方法
CN109150463A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信息发送、接收方法及装置
WO2019099435A1 (en) * 2017-11-14 2019-05-23 Idac Holdings, Inc. Methods for physical downlink control channel (pdcch) candidate determination
US20190313437A1 (en) * 2018-04-06 2019-10-10 Lenovo (Singapore) Pte. Ltd. Configuring for bandwidth parts

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.213, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V15.7.0, 28 September 2019 (2019-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 108, XP051785089 *
HUAWEI, HISILICON: "PDCCH enhancements for URLLC", 3GPP DRAFT; R1-1903954, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 2 April 2019 (2019-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707069 *
OPPO: "Summary of offline discussion on PUCCH resource allocation", 3GPP DRAFT; R1-1805667, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 19 April 2018 (2018-04-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051427794 *
See also references of EP4068879A4 *

Also Published As

Publication number Publication date
CN114788371A (zh) 2022-07-22
EP4068879A1 (en) 2022-10-05
US20220330245A1 (en) 2022-10-13
EP4068879A4 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2021032015A1 (zh) 反馈信息传输方法及通信装置
US20240188054A1 (en) Method and device for time-domain resource allocation
WO2021031294A1 (zh) 传输模式确定方法及装置
US20220330245A1 (en) Resource determining method and resource determining apparatus
WO2024026701A1 (zh) 一种信道占用时间cot的共享方法及其装置
WO2023245521A1 (zh) 一种控制资源的位置信息的确定方法及其装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024092772A1 (zh) 侧行链路sl通信方法及装置
US20240284417A1 (en) Time domain resource assignment method and apparatus
WO2022213289A1 (zh) 一种混合自动重传请求确认的反馈方法及其装置
WO2023193277A1 (zh) 一种pdcch的传输方法及其装置
WO2024031578A1 (zh) 信道发送方法、信道接收方法、装置、设备及存储介质
WO2023193279A1 (zh) 频域资源配置方法及装置
WO2023201670A1 (zh) 一种反馈信息的发送/接收方法及其装置
WO2023193270A1 (zh) 频域资源配置方法及装置
US12108370B2 (en) Communication method and apparatus for determining a first and second time subunit
WO2023245499A1 (zh) 一种发送接收点trp的配置方法、装置、设备及存储介质
WO2023240418A1 (zh) 一种多小区调度的调度信息的检测方法及其装置
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2024021130A1 (zh) 一种信道估计方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2023010474A1 (zh) 一种多播广播服务mbs的半持续调度方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019957000

Country of ref document: EP

Effective date: 20220627

NENP Non-entry into the national phase

Ref country code: DE