WO2023201670A1 - 一种反馈信息的发送/接收方法及其装置 - Google Patents

一种反馈信息的发送/接收方法及其装置 Download PDF

Info

Publication number
WO2023201670A1
WO2023201670A1 PCT/CN2022/088323 CN2022088323W WO2023201670A1 WO 2023201670 A1 WO2023201670 A1 WO 2023201670A1 CN 2022088323 W CN2022088323 W CN 2022088323W WO 2023201670 A1 WO2023201670 A1 WO 2023201670A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback information
prb
pieces
information
time
Prior art date
Application number
PCT/CN2022/088323
Other languages
English (en)
French (fr)
Inventor
赵群
赵文素
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001256.7A priority Critical patent/CN115004821A/zh
Priority to PCT/CN2022/088323 priority patent/WO2023201670A1/zh
Publication of WO2023201670A1 publication Critical patent/WO2023201670A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and device for sending/receiving feedback information.
  • Embodiments of the present application provide a method and device for sending/receiving feedback information. N pieces of different feedback information are sent and received through a first IRB.
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, instead of transmitting multiple feedback information on multiple IRBs, which can avoid interference and improve system reliability and transmission efficiency.
  • embodiments of the present application provide a method for sending feedback information.
  • the method includes: when the terminal device performs sidelink SL transmission, sending different N pieces of feedback information through a first interleaved resource block IRB. , the N is a positive integer.
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • embodiments of the present application provide a method for receiving feedback information.
  • the method includes: when the terminal device performs SL reception, receiving different N pieces of feedback information in a first IRB, where N is a positive integer.
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
  • the functions of the communication device may have some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • embodiments of the present application provide another communication device that has some or all of the functions of the terminal device in the method example described in the second aspect.
  • the functions of the communication device may have some of the functions in this application.
  • the functions in all embodiments may also be used to implement any one embodiment of the present application independently.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present application provide a communication system for PDCCH transmission.
  • the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect.
  • the communication device according to the tenth aspect includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 2 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application
  • Figure 3 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application
  • Figure 4 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application
  • Figure 5 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application
  • Figure 6 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • Figure 7 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • Figure 8 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • Figure 9 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • Figure 10 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • Figure 11 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • Figure 12 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • Figure 13 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • Figure 14 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining”
  • the terms used in this article are “greater than” or “less than”, “higher than” or “lower than” when characterizing size relationships. But for those skilled in the art, it can be understood that: the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of “less than” also covers the meaning of "less than or equal to”.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Share Channel
  • SCI sidelink control information
  • PSSCH Physical Sidelink Share Channel
  • Physical Resource Block (PRB) is used to describe the allocation of actual physical resources.
  • Interlaced Resource Block refers to a fixed number of resource blocks between two consecutive interlaced resource blocks in the same interlaced resource block index. For example, if two interleaved resource blocks are separated by M resource blocks, then the IRB with index index m includes physical resource blocks (PhysicalResourceBlock, PRB) as ⁇ m, m+M, 2M+m, 3M+m ,... ⁇ , where m ⁇ 0, 1,..., M-1 ⁇ .
  • PRB physical resource blocks
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • NR 5th generation new radio
  • side link in the embodiment of the present application may also be called a side link or a through link.
  • the network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • side-link transmission modes there are 4 side-link transmission modes.
  • Side link transmission mode 1 and side link transmission mode 2 are used for terminal device direct (device-to-device, D2D) communication.
  • Side-link transmission mode 3 and side-link transmission mode 4 are used for V2X communications.
  • resource allocation is scheduled by the network device 101.
  • the network device 101 can send resource allocation information to the terminal device 102, and then the terminal device 102 allocates resources to another terminal device, so that the other terminal device can send information to the network device 101 through the allocated resources.
  • a terminal device with better signal or higher reliability can be used as the terminal device 102 .
  • the first terminal device mentioned in the embodiment of this application may refer to the terminal device 102, and the second terminal device may refer to the other terminal device.
  • Figure 2 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 2.
  • the method may include but is not limited to the following steps:
  • N different pieces of feedback information are sent through a first IRB.
  • N is a positive integer.
  • the terminal device may perform a sidelink (SL) on an unlicensed spectrum (unlicensed spectrum) or a shared spectrum (shared spectrum).
  • SL sidelink
  • the terminal equipment can receive transmissions of N PSCCHs or PSSCHs, and the terminal equipment needs to provide feedback information corresponding to these PSCCH/PSSCH transmissions.
  • the feedback information can be fed back through a Physical Sidelink Feedback Channel (PSFCH).
  • PSFCH Physical Sidelink Feedback Channel
  • one of the N pieces of feedback information is Hybrid Automatic Repeat request feedback information (Hybrid Automatic Repeat request-ACK, HARQ-ACK) corresponding to PSCCH/PSSCH transmission.
  • Hybrid Automatic Repeat request-ACK Hybrid Automatic Repeat request-ACK, HARQ-ACK
  • the terminal device can obtain a sidelink resource pool for PSCCH and/or PSSCH, where the sidelink resource pool includes multiple interlaced resource blocks (IRBs).
  • the terminal The device can use one of the first IRBs to feedback N pieces of feedback information, that is, the N pieces of feedback information can be mapped to different frequency domain resources on the first IRB, and N pieces of feedback information can be mapped to different frequency domain resources on the first IRB.
  • Send feedback information may be determined from multiple IRBs corresponding to the terminal device based on the frequency domain position of the IRB and/or the index number of the IRB.
  • the frequency domain resource on the first IRB is a PRB
  • the first IRB may include M PRBs, where M is a positive integer greater than or equal to 1. That is to say, the terminal device can map N pieces of feedback information to M PRBs in the first IRB for transmission.
  • the terminal device when the terminal device performs SL transmission, different N pieces of feedback information are transmitted through a first interleaved resource block IRB.
  • the terminal device when the terminal device receives multiple PSCCH/PSSCH transmissions, the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • Figure 3 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 3.
  • the method may include but is not limited to the following steps:
  • M indicates the number of PRBs included in the first IRB, and M is a positive integer.
  • the first IRB may include M PRBs.
  • the terminal device can determine the corresponding relationship through network instructions or network configuration, or determine the mapping relationship between the M PRBs included in the first IRB and the N pieces of feedback information based on predefined mapping rules or preconfigured mapping rules. .
  • the above correspondence relationship can indicate the PRB corresponding to each feedback information.
  • the feedback information I i corresponds to PRB m
  • the feedback information I j corresponds to PRB n and PRB l . That is, the correspondence relationship can indicate the PRB used for transmission.
  • the corresponding relationship may be a list, which includes mapping relationships between N pieces of feedback information and M PRBs in the first IRB.
  • S32 Determine the first information transmitted on PRB m belonging to the first IRB according to the corresponding relationship.
  • PRB m is one PRB among M PRBs included in the first IRB, and the value of m is 1 to M.
  • the first information may be feedback information belonging to one of the N pieces of feedback information; the first information may also be feedback information that is not among the N pieces of feedback information, that is, the first information may also be feedback information that does not indicate any of the N pieces of feedback information.
  • Feedback information can be other information or signals other than N pieces of feedback information.
  • the first information transmitted on the PRB m is other information or signals except the N pieces of feedback information.
  • the first information may be a predefined signal, or a preconfigured signal, or a signal configured by the network device through downlink signaling, that is, the above-mentioned predefined, preconfigured, or downlink configured signal of the network device. , does not indicate any feedback information among the N pieces of feedback information.
  • the terminal device may be configured based on the base sequence and/or cyclic shift value; for example, the base sequence and/or cyclic shift value may be predefined, preconfigured, or configured through downlink signaling of the network device. Further, the first information transmitted on PRB m is determined based on the base sequence and/or the cyclic shift value.
  • the feedback information may be directly transmitted on PRB m .
  • the first information transmitted is not one of the N pieces of feedback information, that is, when the first information is a predefined or preconfigured signal or a signal configured by the network device through downlink signaling, it can be directly This signal is transmitted on PRB m .
  • the feedback information with the highest priority is replaced with the first information,
  • the feedback information with the highest priority is transmitted on the PRB m .
  • the signal transmitted on PRB m is determined based on the base sequence and/or the cyclic shift value.
  • the first information is transmitted on PRB m using different cyclic shift values of the base sequence.
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • Figure 4 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 4.
  • the method may include but is not limited to the following steps:
  • the time-frequency location set includes multiple time-frequency locations, where the time-domain location may include, and the time-frequency location includes at least one of a time-domain location, a frequency-domain location, and a time-frequency starting location.
  • the set formed by the time-frequency domain and frequency domain positions of the PSCCH/PSSCH corresponding to the first IRB is the time-frequency position set: ⁇ time domain position 1, frequency domain position 1 ⁇ , ⁇ time domain position 2, frequency domain position 2 ⁇ ..., ⁇ time domain position N, frequency domain position N ⁇ ;
  • the set formed by the time domain positions of the PSCCH/PSSCH corresponding to the first IRB is the time-frequency position set: ⁇ time domain position 1, time domain Position 2,..., time domain position N ⁇ ;
  • the set of frequency domain positions of the PSCCH/PSSCH corresponding to the first IRB is the time-frequency position set: ⁇ frequency domain position 1, frequency domain position 2,..., frequency Domain position N ⁇ .
  • the time-frequency position set is a set of possible time-frequency starting positions of PSCCH/PSSCH transmission corresponding to the feedback information transmitted using the first IRB.
  • the set formed by the time domain starting position and the frequency domain starting position of the PSCCH/PSSCH corresponding to the first IRB is the time-frequency position set: ⁇ time domain starting position 1, frequency domain starting position 1 ⁇ , ⁇ Time domain starting position 2, frequency domain starting position 2 ⁇ ..., ⁇ time domain starting position N, frequency domain starting position N ⁇ ; another example, another example, the time domain of the PSCCH/PSSCH corresponding to the first IRB
  • the set formed by the starting positions is the time-frequency position set: ⁇ time domain starting position 1, time domain starting position 2,..., time domain starting position N ⁇ ; for another example, the PSCCH/PSSCH corresponding to the first IRB
  • the set formed by the frequency domain starting position is the time-frequency position set: ⁇ frequency domain starting position 1, frequency domain starting position 2,..., frequency domain starting position N ⁇ .
  • the time-frequency location set is a set of time-frequency resource locations within the feedback time window in the sidelink resource pool; where the start and end time of the feedback time window are determined based on the time location of the first IRB.
  • the time slot (slot) where the first IRB is located is slot #n
  • the PSCCH/PSSCH that can use the first IRB for feedback information transmission can only be within the time window [n-X, n-Y].
  • the time-frequency resource location set of is the time-frequency location set.
  • the values of X and Y are determined based on predefinition and/or (pre)configuration.
  • the determination of the correspondence between the N time-frequency positions and the M PRBs in the first IRB includes:
  • the M PRBs in the first IRB are divided into N orthogonal PRB subsets.
  • M PRBs are divided into N orthogonal PRB subsets in order from low to high in the frequency domain, or M PRBs are divided into N orthogonal PRB sub-sets in order from high to low in the frequency domain. set.
  • time-frequency positions in the time-frequency position set are sorted according to the second setting order.
  • each time-frequency position in the time-frequency position set can be sorted according to time domain order or according to frequency domain order. For example, you can sort the time-domain positions in the time domain from earliest to earliest, or you can sort the time-frequency positions in the frequency domain from low to high in the frequency domain.
  • a one-to-one mapping is performed between the sorted time-frequency positions and the PRB subsets to obtain the corresponding relationship between the N time-frequency positions and the M PRBs in the first IRB.
  • time domain position is the time unit where the PSCCH/PSSCH transmission is located.
  • the time unit may be one of the following: Orthogonal Frequency Division Multiplexing (OFDM) symbol, subslot, slot or subframe.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the frequency domain position is the PRB, IRB or sub-channel at the lowest frequency position used for PSCCH/PSSCH transmission.
  • determining the time-frequency position occupied by the PSCCH and/or PSSCH transmission corresponding to the feedback information I i and query the above-mentioned corresponding relationship based on the time-frequency position corresponding to the feedback information I i , from which the PRB corresponding to the time-frequency position can be determined.
  • m which is the PRB m corresponding to the feedback information I i .
  • the corresponding relationship is the corresponding relationship between the time-frequency position and the PRB subset.
  • the PRB m corresponding to the feedback information I i can be determined based on the corresponding relationship between the time-frequency position and the PRB subset.
  • the time-frequency position occupied by the PSCCH and/or PSSCH transmission corresponding to the feedback information I i is determined from the above correspondence relationship to determine the PRB subset associated with the time-frequency position corresponding to the feedback information I i .
  • the PRBs included in the PRB subset associated with the time-frequency position corresponding to the feedback information I i are determined as PRB m corresponding to the feedback information I i .
  • step S43 please refer to the relevant content in the above embodiments, and will not be described again here.
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • FIG. 5 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 5.
  • the method may include but is not limited to the following steps:
  • S52 Determine the first information transmitted on PRB m belonging to the first IRB according to the corresponding relationship.
  • steps S51 to S52 any possible implementation in the embodiments of the present application may be adopted, and will not be described again here.
  • the feedback information in the N pieces of feedback information is configured with its own priority, and the priorities of different feedback information may be the same or different.
  • the feedback information can be based on the N pieces of feedback information.
  • the priority information of the information determines the feedback information with the highest priority from the N pieces of feedback information.
  • S54 Determine the feedback information with the highest priority to be the feedback information transmitted on PRB m , and transmit the feedback information with the highest priority on PRB m .
  • the feedback information can be selected from the two or more feedback messages with the highest priority according to the agreement or instruction. Determine one as feedback information transmitted on PRB m .
  • the corresponding first information on PRB m does not belong to the N pieces of feedback information, and N pieces of feedback information can be re-mapped to PRB m .
  • the feedback information with the highest priority among the feedback information improves the transmission success rate of the feedback information with the highest priority.
  • FIG. 6 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 6.
  • the method may include but is not limited to the following steps:
  • S62 Determine the first information transmitted on PRB m belonging to the first IRB according to the corresponding relationship.
  • S64 Determine the feedback information with the highest priority to be the feedback information transmitted on PRB m .
  • steps S61 to S64 please refer to the relevant content in the above embodiments, and will not be described again here.
  • the terminal device may determine that the feedback information with the highest priority is the PRB n corresponding to the feedback information I k based on the correspondence between the M PRBs belonging to the first IRB and the N pieces of feedback information.
  • the physical layer transmission parameters transmitted on PRB m and PRB n are the same or different; wherein the physical layer transmission parameters include at least a base sequence (Sequence, SN), a cyclic shift (Cyclic Shift, CS) value and power. one.
  • the feedback information with the highest priority is feedback information I k .
  • the physical layer transmission parameters used when transmitting on PRB m such as base sequence, cyclic shift value and power, etc., are determined based on the corresponding relationship with the feedback information I k .
  • the physical layer transmission parameters used for transmission on outgoing PRB n are the same.
  • the physical layer transmission parameters used when the feedback information I k is transmitted on PRB m such as base sequence, cyclic shift value, power, etc., are in correspondence with the feedback information I k to determine the physical layer transmission used for transmission on PRB n .
  • the parameters are different;
  • the elements in have a one-to-one correspondence; for feedback information I k, when it is sent on PRB n , it uses CSm in CS set 1, and when it is sent on PRB n , it uses the corresponding C m ' in CS set 2.
  • the base sequence SN 1 is used when it is sent on PRB n
  • the base sequence SN 2 is used when it is sent on PRB n .
  • the two base sequences are different.
  • the feedback information with the highest priority among the N pieces of feedback information can be transmitted on two PRBs, thereby improving the transmission success rate of the feedback information with the highest priority.
  • FIG. 7 is a schematic flowchart of a method for sending feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 7.
  • the method may include but is not limited to the following steps:
  • S72 Determine the feedback information to be transmitted on PRB m according to the corresponding relationship and the priority information corresponding to the N pieces of feedback information.
  • PRB m corresponds to the feedback information I i among the N pieces of feedback information.
  • the process of determining that PRB m corresponds to the feedback information I i among the N pieces of feedback information based on the corresponding relationship please refer to the relevant content in the above embodiments and will not be described again here.
  • the feedback information I j with the highest priority among other feedback information among the N pieces of feedback information except the feedback information I i is determined. Based on the priority corresponding to the feedback information I i and the priority of the feedback information I j , the feedback information transmitted on the PRB m is further determined. Optionally, compare the priority corresponding to the feedback information I i and the priority of the feedback information I j , and determine that the priority corresponding to the feedback information I i is not lower than the priority level of the feedback information I j , then determine The feedback information I i is the feedback information transmitted on PRB m .
  • the feedback information I j is determined to be the feedback information transmitted on PRB m .
  • the priority of feedback information I i is p i and the priority of feedback information I j is p j . If p i ⁇ p j +X, the smaller the value, the higher the priority. The larger the value, the higher the priority. The lower it is, the feedback information I j is transmitted in PRB m ; otherwise p i >p j +X, the feedback information I i is transmitted in PRB m ; among them, the value of command configuration and/or instructions.
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • FIG. 8 is a schematic flowchart of a method for receiving feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 8.
  • the method may include but is not limited to the following steps:
  • a first IRB receives different N pieces of feedback information, where N is a positive integer.
  • N is a positive integer.
  • the terminal device may perform a sidelink (SL) on an unlicensed spectrum (unlicensed spectrum) or a shared spectrum (shared spectrum).
  • SL sidelink
  • the terminal device sends N PSCCH or PSSCH transmissions to another terminal device, and the terminal device can also receive feedback information of these PSCCH/PSSCH transmissions sent by the other terminal device.
  • the feedback information can be received through the physical sidelink feedback channel PSFCH.
  • one piece of feedback information among the N pieces of feedback information corresponds to HARQ-ACK transmitted by PSCCH or PSSCH.
  • the terminal device can obtain a sidelink resource pool for PSCCH and/or PSSCH, where the sidelink resource pool includes multiple IRBs.
  • the terminal device can use one of the first IRB pairs. N pieces of feedback information are received, that is, N pieces of feedback information are mapped to different frequency domain resources on the first IRB by the terminal device on the other side, and the N pieces of feedback information are received through different frequency domain resources on the first IRB.
  • the first IRB may be determined from multiple IRBs corresponding to the terminal device based on the frequency domain position of the IRB and/or the index number of the IRB.
  • the frequency domain resource on the first IRB is a PRB
  • the first IRB may include M PRBs, where M is a positive integer greater than or equal to 1. That is to say, the terminal device can receive and send in M PRBs in the first IRB.
  • the terminal device when the terminal device performs SL transmission, N different pieces of feedback information are received through a first IRB.
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • FIG. 9 is a schematic flowchart of a method for receiving feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 9.
  • the method may include but is not limited to the following steps:
  • S92 Determine the first information transmitted on PRB m belonging to the first IRB according to the corresponding relationship.
  • steps S91 to S92 please refer to the relevant content in the above embodiments, and will not be described again here.
  • the feedback information may be directly received on PRB m .
  • the first information transmitted is not one of the N pieces of feedback information, that is, when the first information is a predefined or preconfigured signal or a signal configured by the network device through downlink signaling, it can be directly The signal is received on PRB m .
  • a specific feedback information among the N pieces of feedback information can be used, for example, the feedback information with the highest priority is replaced with the first information, The feedback information with the highest priority is received on the PRB m .
  • the signal transmitted on PRB m is determined based on the base sequence and/or the cyclic shift value.
  • the first information is transmitted on PRB m using different cyclic shift values of the base sequence.
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • FIG. 10 is a schematic flowchart of a method for receiving feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 10.
  • the method may include but is not limited to the following steps:
  • steps S101 to S102 please refer to the relevant content in the above embodiments, and will not be described again here.
  • step S103 please refer to the relevant content in the above embodiments, and will not be described again here.
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • Figure 11 is a schematic flowchart of a method for receiving feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 11.
  • the method may include but is not limited to the following steps:
  • S112 Determine the first information transmitted on PRB m belonging to the first IRB according to the corresponding relationship.
  • steps S111 to S112 any possible implementation in the embodiments of the present application may be adopted, and details will not be described again here.
  • the feedback information with the highest priority in the information improves the transmission success rate of the feedback information with the highest priority.
  • Figure 12 is a schematic flowchart of a method for receiving feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 12.
  • the method may include but is not limited to the following steps:
  • S122 Determine the first information transmitted on PRB m belonging to the first IRB according to the corresponding relationship.
  • the terminal device may determine that the feedback information with the highest priority is the PRB n corresponding to the feedback information I k based on the correspondence between the M PRBs belonging to the first IRB and the N pieces of feedback information.
  • the physical layer transmission parameters transmitted on PRB m and PRB n are the same or different; wherein the physical layer transmission parameters include at least a base sequence (Sequence, SN), a cyclic shift (Cyclic Shift, CS) value and power. one.
  • the feedback information with the highest priority is feedback information I k .
  • the physical layer transmission parameters used when transmitting on PRB m such as base sequence, cyclic shift value and power, etc., are determined based on the corresponding relationship with the feedback information I k .
  • the physical layer transmission parameters used for transmission on outgoing PRB n are the same.
  • the physical layer transmission parameters used when the feedback information I k is transmitted on PRB m such as base sequence, cyclic shift value, power, etc., are in correspondence with the feedback information I k to determine the physical layer transmission used for transmission on PRB n .
  • the parameters are different;
  • the feedback information with the highest priority among the N pieces of feedback information can be transmitted on two PRBs, thereby improving the transmission success rate of the feedback information with the highest priority.
  • Figure 13 is a schematic flowchart of a method for receiving feedback information provided by an embodiment of the present application.
  • the method is executed by the terminal device, as shown in Figure 13.
  • the method may include but is not limited to the following steps:
  • S132 Determine the feedback information to be transmitted on PRB m according to the corresponding relationship and the priority information corresponding to the N pieces of feedback information.
  • PRB m corresponds to the feedback information I i among the N pieces of feedback information.
  • the process of determining that PRB m corresponds to the feedback information I i among the N pieces of feedback information based on the corresponding relationship please refer to the relevant content in the above embodiments and will not be described again here.
  • the feedback information I j with the highest priority among other feedback information among the N pieces of feedback information except the feedback information I i is determined. Based on the priority corresponding to the feedback information I i and the priority of the feedback information I j , the feedback information transmitted on the PRB m is further determined. Optionally, compare the priority corresponding to the feedback information I i and the priority of the feedback information I j , and determine that the priority corresponding to the feedback information I i is not lower than the priority level of the feedback information I j , then determine The feedback information I i is the feedback information transmitted on PRB m .
  • the feedback information I j is determined to be the feedback information transmitted on PRB m .
  • the priority of feedback information I i is p i and the priority of feedback information I j is p j . If p i ⁇ p j +X, the smaller the value, the higher the priority. The larger the value, the higher the priority. The lower it is, the feedback information I j is transmitted in PRB m ; otherwise p i >p j +X, the feedback information I i is transmitted in PRB m ; where the value of command configuration and/or instructions.
  • S133 Receive feedback information I i or I j on PRB m .
  • the feedback information corresponding to these PSCCH/PSSCH transmissions can be mapped to the same IRB for transmission, and the multiple feedback information is no longer stored in multiple Transmitting on an IRB can avoid interference and improve system reliability and transmission efficiency.
  • Figure 14 is a schematic flow chart of a method for receiving feedback information provided by an embodiment of the present application. As shown in Figure 14, based on the method for receiving feedback information provided by the present disclosure, the feedback information can be used in actual application scenarios.
  • the receiving process includes the following steps:
  • PSCCH/PSSCH uses slot n IRB0 for transmission, or uses slot k for IRB0 transmission
  • its associated PSFCH transmission resources include the PSFCH resource IRB0 on slot m.
  • PSCCH/PSSCH1 is received in slot n IRB0
  • PSCCH/PSSCH2 is received in slot m IRB0.
  • PSCCH/PSSCH1 has a high priority
  • feedback information corresponding to PSCCH/PSSCH2 is transmitted in PRB25
  • feedback information corresponding to PSCCH/PSSCH1 is transmitted in other PRBs of IRB0.
  • PSCCH/PSSCH1 is received in slot n IRB0
  • PSCCH/PSSCH2 is received in slot m IRB0.
  • the corresponding relationship between PSCCH/PSSCH1 and PSCCH/PSSCH2 and the PRB on IRB0 is determined, which corresponds to PRB0 and PRB25 on IRB0 respectively.
  • PSCCH/PSSCH2 has a high priority
  • feedback information corresponding to PSCCH/PSSCH1 is transmitted in PRB0
  • feedback information corresponding to PSCCH/PSSCH2 is transmitted in other PRBs of IRB0.
  • the terminal device may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 15 is a schematic structural diagram of a communication device 150 provided by an embodiment of the present application.
  • the communication device 150 shown in FIG. 15 may include a transceiver module 151 and a processing module 152.
  • the transceiving module 151 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 151 may implement the sending function and/or the receiving function.
  • the communication device 150 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 150 is a terminal device, including:
  • the transceiver module 151 is configured to transmit N different pieces of feedback information through a first interleaved resource block IRB when the terminal device performs sidelink SL transmission, where N is a positive integer.
  • one piece of feedback information among the N pieces of feedback information is hybrid automatic repeat request feedback information HARQ-ACK corresponding to transmission on the physical sidelink control channel PSCCH or the physical sidelink shared channel PSSCH.
  • the communication device 150 further includes a processing module 152 for determining a correspondence between M physical resource blocks PRBs belonging to the first IRB and N pieces of feedback information, where M is a positive integer indicating the PRBs included in the first IRB.
  • M is a positive integer indicating the PRBs included in the first IRB.
  • the number of PRBs determine the first information transmitted on PRB m belonging to the first IRB according to the corresponding relationship, and PRB m is one PRB among M PRBs; the transceiver module 151 is also used to: transmit the first information on PRB m ; where , the first information belongs to N pieces of feedback information or the first information does not indicate any feedback information.
  • the transceiver module 151 is also configured to transmit the first information on PRB m using different cyclic shift values of the base sequence.
  • the first information is N pieces of feedback information and one piece of feedback information I i .
  • the processing module 152 is also used to: determine the time-frequency position occupied by the PSCCH and/or PSSCH transmission corresponding to the feedback information I i .
  • the time-frequency position includes the time-frequency position. At least one of the domain position, the frequency domain position and the time-frequency starting position; based on the time-frequency position and corresponding relationship corresponding to the feedback information I i , determine the PRB m corresponding to the feedback information I i .
  • the processing module 152 is also configured to: determine the corresponding relationship as the corresponding relationship between N time-frequency positions and M PRBs in the time-frequency position set; and determine the PRB m corresponding to the feedback information I i based on the corresponding relationship.
  • the time-frequency location set is one of the following: a set of possible time domain locations and/or frequency domain locations of PSCCH/PSSCH transmission corresponding to the feedback information transmitted using the first IRB; or a set of possible time domain locations and/or frequency domain locations transmitted using the first IRB.
  • the processing module 152 is also configured to: divide the M PRBs into N orthogonal PRB subsets according to the first setting order; and divide the time-frequency positions in the time-frequency position set according to the second setting order. Sort; perform one-to-one mapping between the sorted time-frequency positions and PRB subsets to obtain the corresponding relationship.
  • the processing module 152 is also configured to: determine the PRB subset associated with the time-frequency position corresponding to the feedback information I i from the corresponding relationship; determine that the PRB in the associated PRB subset is PRB m .
  • the time domain location is the time unit in which PSCCH/PSSCH transmission occurs; the frequency domain location is the PRB, IRB or sub-channel at the lowest frequency location used for PSCCH/PSSCH transmission.
  • the processing module 152 is also configured to: determine the base sequence and/or cyclic shift value when the first information does not indicate feedback information among the N pieces of feedback information; determine based on the base sequence and/or cyclic shift value.
  • the processing module 152 is also used to: determine that the corresponding first information on PRB m is not the feedback information among the N pieces of feedback information, determine the feedback information with the highest priority among the N pieces of feedback information; determine the feedback with the highest priority The information is the feedback information transmitted on PRB m .
  • the transceiver module 151 is also configured to determine that the feedback information with the highest priority is the feedback information transmitted on PRB n in the first IRB, and then transmit the feedback information with the highest priority on PRB m and PRB n respectively.
  • the processing module 152 is also configured to determine the first information to be transmitted on PRB m according to the corresponding relationship and the priority information corresponding to the N pieces of feedback information.
  • the processing module 152 is also configured to: based on the corresponding relationship, determine that PRB m corresponds to the feedback information I i in the N pieces of feedback information; determine other feedback information in the N pieces of feedback information except the feedback information I i The highest priority feedback information I j in Otherwise, it is determined that the feedback information I j is the feedback information transmitted on PRB m .
  • the communication device 150 is another type of terminal equipment, including:
  • the transceiver module 151 is configured to receive different N pieces of feedback information in a first IRB when the terminal device performs SL reception, where N is a positive integer.
  • one piece of feedback information among the N pieces of feedback information is HARQ-ACK corresponding to PSCCH or PSSCH transmission.
  • the communication device 150 further includes a processing module 152 for determining a correspondence between M PRBs belonging to the first IRB and N pieces of feedback information, where M is a positive integer indicating the number of PRBs included in the first IRB. ; According to the corresponding relationship, the first information transmitted on PRB m belonging to the first IRB is determined, and PRB m is one PRB among M PRBs; the transceiver module 151 is also used to: receive the first information on PRB m ; wherein, the first The information belongs to N pieces of feedback information or the first information does not indicate any feedback information.
  • the first information is N pieces of feedback information and one piece of feedback information I i .
  • the processing module 152 is also used to: determine the time-frequency position occupied by the PSCCH and/or PSSCH transmission corresponding to the feedback information I i .
  • the time-frequency position includes the time-frequency position. At least one of the domain position, the frequency domain position and the time-frequency starting position; based on the time-frequency position and corresponding relationship corresponding to the feedback information I i , determine the PRB m corresponding to the feedback information I i .
  • the processing module 152 is also configured to: determine the corresponding relationship as the corresponding relationship between N time-frequency positions and M PRBs in the time-frequency position set; and determine the PRB m corresponding to the feedback information I i based on the corresponding relationship.
  • the processing module 152 is also configured to: divide the M PRBs into N orthogonal PRB subsets according to the first setting order; and divide the time-frequency positions in the time-frequency position set according to the second setting order. Sort; perform one-to-one mapping between the sorted time-frequency positions and PRB subsets to obtain the corresponding relationship.
  • the processing module 152 is also configured to: determine the PRB subset associated with the time-frequency position corresponding to the feedback information I i from the corresponding relationship; determine that the PRB in the associated PRB subset is PRB m .
  • the transceiver module 151 is also configured to: if the corresponding first information on PRB m is not the feedback information among the N pieces of feedback information, receive the feedback information with the highest priority among the N pieces of feedback information on PRB m .
  • the transceiver module 151 is also configured to: when it is determined that the feedback information with the highest priority is the feedback information transmitted on PRB n in the first IRB, receive the feedback information with the highest priority on PRB m and PRB n respectively. .
  • the processing module 152 is also configured to determine the first information to be transmitted on PRB m according to the corresponding relationship and the priority information corresponding to the N pieces of feedback information.
  • the processing module 152 is also configured to: based on the corresponding relationship, determine that PRB m corresponds to the feedback information I i in the N pieces of feedback information; determine other feedback information in the N pieces of feedback information except the feedback information I i The highest priority feedback information I j in ; determine that the corresponding priority of feedback information I i is not lower than the priority of feedback information I j , and determine that feedback information I i is the feedback information transmitted on PRB m , Otherwise, it is determined that the feedback information I j is the feedback information transmitted on PRB m .
  • FIG. 16 is a schematic structural diagram of another communication device 160 provided by an embodiment of the present application.
  • the communication device 160 may be a terminal device, or a chip, chip system, or processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 160 may include one or more processors 161.
  • the processor 161 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 160 may also include one or more memories 162, on which a computer program 164 may be stored.
  • the processor 161 executes the computer program 164, so that the communication device 160 performs the steps described in the above method embodiments. method.
  • the memory 162 may also store data.
  • the communication device 160 and the memory 162 can be provided separately or integrated together.
  • the communication device 160 may also include a transceiver 165 and an antenna 166.
  • the transceiver 165 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 165 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 160 may also include one or more interface circuits 167.
  • the interface circuit 167 is used to receive code instructions and transmit them to the processor 161 .
  • the processor 161 executes the code instructions to cause the communication device 160 to perform the method described in the above method embodiment.
  • the processor 161 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 161 may store a computer program 163, and the computer program 163 runs on the processor 161, causing the communication device 160 to perform the method described in the above method embodiment.
  • the computer program 163 may be solidified in the processor 161, in which case the processor 161 may be implemented by hardware.
  • the communication device 160 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 16 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 17 refer to the schematic structural diagram of the chip shown in FIG. 17 .
  • the chip shown in FIG. 17 includes a processor 171 and an interface 172.
  • the number of processors 171 may be one or more, and the number of interfaces 172 may be multiple.
  • the chip also includes a memory 173, which is used to store necessary computer programs and data.
  • the chip is used to implement the functions of any of the above method embodiments when executed.
  • Embodiments of the present application also provide a system for sending feedback information.
  • the system includes the communication device as the terminal device in the embodiment of FIG. 15 , or the system includes the communication device as the terminal device in the embodiment of FIG. 16 .
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种反馈信息的发送方法及其装置,该方法包括:当终端设备进行侧行链路SL发送时,通过一个第一交错资源块IRB进行不同的N个反馈信息的发送,所述N为正整数。本申请实施例通过一个第一IRB进行不同的N个反馈信息的发送,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。

Description

一种反馈信息的发送/接收方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种反馈信息的发送/接收方法及其装置。
背景技术
当终端设备与终端设备在非授权频谱(unlicensedspectrum)或共享频谱(sharedspectrum)上进行侧行链路(sidelink,SL)通信的场景下,如何使用交错资源块(Interlaced Resource block,IRB)传输多个物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)/物理侧行共享信道(Physical Sidelink Share Channel,PSSCH)的反馈信息,成为需要解决的问题。
发明内容
本申请实施例提供一种反馈信息的发送/接收方法及其装置,通过一个第一IRB进行不同的N个反馈信息的发送和接收,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。
第一方面,本申请实施例提供一种反馈信息的发送方法,该方法包括:当终端设备进行侧行链路SL发送时,通过一个第一交错资源块IRB进行不同的N个反馈信息的发送,所述N为正整数。
本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。
第二方面,本申请实施例提供一种反馈信息的接收方法,该方法包括:当终端设备进行SL接收时,在一个第一IRB接收不同的N个反馈信息,所述N为正整数。
本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行 相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种PDCCH传输的通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数 据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图3是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图4是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图5是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图6是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图7是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图8是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图9是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图10是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图11是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图12是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图13是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图14是本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图15是本申请实施例提供的一种通信装置的结构示意图;
图16是本申请实施例提供的一种通信装置的结构示意图;
图17是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
为了便于理解,首先介绍本申请涉及的术语。
终端设备与终端设备之间通过侧行链路sidelink通信。其中,sidelink包括物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Physical Sidelink Share Channel,PSSCH)。PSCCH中的侧行控制信息(sidelink control information,SCI)可以指示接收PSSCH所需的信息,如PSSCH信道资源以及传输参数等。PSSCH用于承载sidelink通信的数据。
物理资源块(Physical Resource Block,PRB),用来描述实际物理资源的分配情况。
交错资源块(Interlaced Resource block,IRB),指同一个交错资源块索引中连续的两个交错资源块间相隔固定数量的资源块。举例来说,两个交错资源块间相隔M个资源块,则索引index为m的IRB,其包括的物理资源块(PhysicalResourceBlock,PRB)为{m,m+M,2M+m,3M+m,……},其中m∈{0,1,…,M-1}。在新空口非授权(new radio unlicensed,NR-U)系统中,针对15kHz和30kHz两种子载波间隔(sub carrier space,SCS)分别定义了IRB结构,15kHz,M=10,有10个IRBindex,30kHzM=5,有5个IRBindex。也就是说,SCS=30khz,M=5时,共有5个梳尺索引,对于第一个1个IRB索引,即IRB索引为0,该交错索引中含有的交错资源块对应的PRB为{0,5,10,15,20,25,30,35,40,45}。
为了更好的理解本申请实施例公开的反馈信息的发送/接收方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile  phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在侧链路通信中,存在4种侧链路传输模式。侧链路传输模式1和侧链路传输模式2用于终端设备直通(device-to-device,D2D)通信。侧链路传输模式3和侧链路传输模式4用于V2X通信。当采用侧链路传输模式3时,资源分配由网络设备101调度。具体的,网络设备101可以将资源分配信息发送给终端设备102,然后由该终端设备102向另一终端设备分配资源,以使得该另一终端设备可以通过分配到的资源向网络设备101发送信息。在V2X通信中,可以将信号较好或者可靠性较高的终端设备作为终端设备102。本申请实施例中提及的第一终端设备可以指该终端设备102,第二终端设备可以指该另一终端设备。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的一种反馈信息的发送/接收方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种反馈信息的发送方法的流程示意图。该方法由终端设备执行,如图2所示,该方法可以包括但不限于如下步骤:
S21,当终端设备进行侧行链路SL发送时,通过一个第一IRB进行不同的N个反馈信息的发送。
其中,N为正整数。
可选地,终端设备可以在非授权频谱(unlicensedspectrum)或共享频谱(sharedspectrum)上进行侧行链路(sidelink,SL)。
本申请实施例中,终端设备可以接收到N个PSCCH或PSSCH的传输,并且终端设备需要对这些PSCCH/PSSCH传输对应的反馈信息需要进行反馈。可选地,该反馈信息可以通过物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)进行反馈。
可选地,N个反馈信息中的一个反馈信息为对应于PSCCH/PSSCH传输的混合自动重传请求反馈信息(Hybrid Automatic Repeat request-ACK,HARQ-ACK)。
可选地,终端设备可以获取用于PSCCH和/或PSSCH的侧行资源池,其中,该侧行资源池中包括多个交错资源块(Interlaced Resource block,IRB),本申请实施例中,终端设备可以使用其中一个第一IRB对N个反馈信息进行反馈,即可以将N个反馈信息映射到该第一IRB上不同的频域资源上,通过第一IRB上不同的频域资源对N个反馈信息进行发送。在一些实施例中可以基于IRB的频域位置和/或IRB的索引号,从终端设备对应的多个IRB中,确定出第一IRB。
例如,第一IRB上的频域资源为PRB,第一IRB中可以包括M个PRB,M为大于或者等于1的正整数。也就是说,终端设备可以将N个反馈信息映射到第一IRB中的M个PRB进行发送。
本申请实施例中在终端设备进行SL发送时,通过一个第一交错资源块IRB进行不同的N个反馈信息的发送。本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上 进行传输,可以避免干扰提供系统的可靠性和传输效率。
请参见图3,图3是本申请实施例提供的一种反馈信息的发送方法的流程示意图。该方法由终端设备执行,如图3所示,该方法可以包括但不限于如下步骤:
S31,当终端设备进行SL发送时,确定属于第一IRB的M个PRB和N个反馈信息之间的对应关系。
其中,M为指示所述第一IRB中包括的PRB的数目,M为正整数。
可选地,第一IRB中可以包括M个PRB,为了实现在第一IRB中传输N个反馈信息,本申请实施例中,属于第一IRB的M个PRB和N个反馈信息之间存在对应关系。可选地,终端设备可以通过网络指示或者网络配置确定该对应关系,或基于预定义映射规则或预配置映射规则,确定第一IRB中包括的M个PRB与N个反馈信息之间的映射关系。
本申请实施例中,上述对应关系可以指示出每个反馈信息所对应的PRB,例如,反馈信息I i对应PRB m,反馈信息I j对应PRB n和PRB l,即对应关系可以指示用于传输任一反馈信息所需要占用的一个或多个PRB。可选地,对应关系可以为一个列表,该列表中包括N个反馈信息和第一IRB中M个PRB之间的映射关系。
S32,根据对应关系确定属于第一IRB的PRB m上传输的第一信息。
其中,PRB m为第一IRB中包括的M个PRB中一个PRB,m的取值为1至M。
需要说明的是,第一信息可以为属于N个反馈信息中的一个反馈信息;第一信息也可以非N个反馈信息中反馈信息,即第一信息也可为不指示N个反馈信息中任何反馈信息,即可以为除N个反馈信息之外的其他信息或信号。
可选地,在第一信息未指示N个反馈信息中任一反馈信息的情况下,在PRB m上传输的第一信息为除N个反馈信息之外的其他信息或信号。可选地,第一信息可以为预定义的信号,或者为预配置的信号,或者为网络设备通过下行信令配置的信号,也就是说,上述预定义、预配置或者网络设备下行配置的信号,并未指示N个反馈信息中任一反馈信息。
可选地,终端设备可以根据基序列和/或循环移位值;例如,基序列和/或循环移位值可以通过预定义、预配置或者通过网络设备下行信令配置。进一步地,基于基序列和/或循环移位值确定在PRB m上传输的该第一信息。
S33,在PRB m上传输第一信息。
可选地,在PRB m上确定传输的第一信息为N个反馈信息中一个反馈信息时,可以直接在PRB m上传输该反馈信息。
可选地,在PRB m上确定传输的第一信息非N个反馈信息中一个反馈信息时,即第一信息为预定义或者为预配置或者网络设备通过下行信令配置的信号时,可以直接在PRB m上传输该信号。
可选地,在PRB m上确定传输的第一信息非N个反馈信息中一个反馈信息时,可以使用N个反馈信息中一个特定反馈信息,如优先级最高的反馈信息替换到第一信息,在该PRB m上传输该优先级最高的反馈信息。
可选地,基于基序列和/或循环移位值确定在PRB m上传输的信号。
可选地,在PRB m上使用基序列的不同循环移位值传输第一信息。
本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可 以避免干扰提供系统的可靠性和传输效率。
请参见图4,图4是本申请实施例提供的一种反馈信息的发送方法的流程示意图。该方法由终端设备执行,如图4所示,该方法可以包括但不限于如下步骤:
S41,当终端设备进行SL发送时,确定时频位置集合中N个时频位置与第一IRB中M个PRB之间的对应关系。
其中,时频位置集合中包括多个时频位置,其中,时域位置可以包括,时频位置包括时域位置、频域位置和时频起始位置中至少一个。
可选地,为使用第一IRB进行传输的反馈信息对应的PSCCH/PSSCH传输的可能时域位置和/或频域位置的集合。例如,第一IRB对应的PSCCH/PSSCH的时间频域和频域位置形成的集合即为时频位置集合:{{时域位置1,频域位置1},{时域位置2,频域位置2}…,{时域位置N,频域位置N}};再例如,第一IRB对应的PSCCH/PSSCH的时域位置形成的集合即为时频位置集合:{时域位置1,时域位置2,…,时域位置N};又例如,第一IRB对应的PSCCH/PSSCH的频域位置形成的集合即为时频位置集合:{频域位置1,频域位置2,…,频域位置N}。
可选地,时频位置集合为使用第一IRB进行传输的反馈信息对应的PSCCH/PSSCH传输的可能时频起始位置的集合。例如,第一IRB对应的PSCCH/PSSCH的时域起始位置和频域起始位置形成的集合即为时频位置集合:{{时域起始位置1,频域起始位置1},{时域起始位置2,频域起始位置2}…,{时域起始位置N,频域起始位置N}};再例如,再例如,第一IRB对应的PSCCH/PSSCH的时域起始位置形成的集合即为时频位置集合:{时域起始位置1,时域起始位置2,…,时域起始位置N};又例如,第一IRB对应的PSCCH/PSSCH的频域起始位置形成的集合即为时频位置集合:{频域起始位置1,频域起始位置2,…,频域起始位置N}。
可选地,时频位置集合为侧行资源池中反馈时间窗口内的时频资源位置的集合;其中,反馈时间窗口的起始和结束时间根据第一IRB所在的时间位置确定。例如,第一IRB所处的时隙(slot)为slot#n,那么能够使用该第一IRB进行反馈信息传输的PSCCH/PSSCH只能处于时间窗口[n-X,n-Y]之内,该时间窗口内的时频资源位置集合即为时频位置集合。其中,X和Y的取值根据预定义和/或(预)配置确定。
作为一种可能的实现方式,N个时频位置与第一IRB内的M个PRB之间的对应关系的确定包括:
按照第一设定顺序,将第一IRB内的M个PRB划分为N个正交的PRB子集。例如,例如,将M个PRB按照频域有低到高的顺序划分为N个正交的PRB子集,或者M个PRB按照频域有高到低的顺序划分为N个正交的PRB子集。
进一步地,按照第二设定顺序,将时频位置集合中时频位置进行排序。例如,可以对时频位置集合中每个时频位置按照时域顺序进行排序或者按照频域顺序进行排序。比方可以时域上按照从早到位的顺序对时域位置进行排序,或者案在频域上按照频域从低到高的顺序对时频位置进行排序。
在排序后,对排序后的时频位置与PRB子集进行一对一映射,得到N个时频位置与第一IRB内M个PRB之间的对应关系。
需要说明的是,时域位置为PSCCH/PSSCH传输所在的时间单元。其中,时间单元可以为以下一种情况:正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号(symbol)、子时隙(subslot)、时隙(slot)或者子帧(subframe)。
可选地,频域位置为PSCCH/PSSCH传输使用的最低频率位置的PRB、IRB或子信道。
S42,根据对应关系,确定N个反馈信息中反馈信息I i所对应的PRB m
可选地,确定反馈信息I i对应的PSCCH和/或PSSCH传输占用的时频位置,并基于反馈信息I i对应的时频位置,查询上述对应关系,可以从中确定时频位置所对应的PRB m,即为反馈信息I i所对应的PRB m
本申请实施例中,对应关系为时频位置与PRB子集之间的对应关系,可以基于时频位置与PRB子集之间的对应关系确定反馈信息I i所对应的PRB m。可选地,确定反馈信息I i对应的PSCCH和/或PSSCH传输占用的时频位置从上述对应关系中确定反馈信息I i对应的时频位置所关联的PRB子集。进一步地,将反馈信息I i对应的时频位置所关联的PRB子集中包括的PRB,确定为反馈信息I i对应的PRB m
S43,在PRB m上传输反馈信息I i
关于步骤S43的具体实现方式可参见上述实施例中相关内容的记载,此处不再赘述。
本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。
请参见图5,图5是本申请实施例提供的一种反馈信息的发送方法的流程示意图。该方法由终端设备执行,如图5所示,该方法可以包括但不限于如下步骤:
S51,当终端设备进行SL发送时,确定属于第一IRB的M个PRB和N个反馈信息之间的对应关系。
S52,根据对应关系确定属于第一IRB的PRB m上传输的第一信息。
关于步骤S51~步骤S52的具体实现方式,可采用本申请实施例中任一可能的实现方式,此处不再赘述。
S53,当PRB m上对应的第一信息非N个反馈信息中的反馈信息,确定N个反馈信息中优先级最高的反馈信息。
N个反馈信息中的反馈信息配置有各自的优先级,不同反馈信息之间的优先级可能相同或不同。本申请实施例中,当PRB m上对应的第一信息非N个反馈信息中的反馈信息,即第一信息为除N个反馈信息之前的其他信息或信号,可以基于N个反馈信息中反馈信息的优先级信息,从N个反馈信息中确定出优先级最高的反馈信息。
S54,确定优先级最高的反馈信息为PRB m上传输的反馈信息,并在PRB m上传输优先级最高的反馈信息。
可选地,N个反馈信息中可能存在两个或两个以上优先级最高的反馈信息,此种情况下,可以通过根据约定或者指示,从两个或两个以上优先级最高的反馈信息中确定出一个作为PRB m上传输的反馈信息。
本申请实施例中,在第一IRB的M个PRB和N个反馈信息之间的对应关系,确定出PRB m上对应的第一信息未属于N个反馈信息,可以重新为PRB m映射N个反馈信息中优先级最高的反馈信息,提高优先级最高的反馈信息的传输成功率。
请参见图6,图6是本申请实施例提供的一种反馈信息的发送方法的流程示意图。该方法由终端设备执行,如图6所示,该方法可以包括但不限于如下步骤:
S61,当终端设备进行SL发送时,确定属于第一IRB的M个PRB和N个反馈信息之间的对应关系。
S62,根据对应关系确定属于第一IRB的PRB m上传输的第一信息。
S63,当PRB m上对应的第一信息非N个反馈信息中的反馈信息,确定N个反馈信息中优先级最高的反馈信息。
S64,确定优先级最高的反馈信息为PRB m上传输的反馈信息。
关于步骤S61~步骤S64的具体实现方式可参见上述实施例中相关内容的记载,此处不再赘述。
S65,确定优先级最高的反馈信息为第一IRB中PRB n上传输的反馈信息,则在PRB m和PRB n上分别传输优先级最高的反馈信息。
本申请实施例中,终端设备可以基于属于第一IRB的M个PRB和N个反馈信息之间的对应关系,确定出优先级最高反馈信息为反馈信息I k对应的PRB n。可选地,在PRB m和PRB n上传输的物理层传输参数相同或不同;其中,物理层传输参数包括基序列(Sequence,SN)、循环移位(Cyclic Shift,CS)值和功率中至少一个。
也就是说,优先级最高反馈信息为反馈信息I k,在PRB m上传输时使用的物理层传输参数,如基序列、循环移位值和功率等,与反馈信息I k在基于对应关系确定出PRB n上传输使用的物理层传输参数相同。或者,反馈信息I k在PRB m上传输时使用的物理层传输参数,如基序列、循环移位值和功率等,与反馈信息I k在对应关系确定出PRB n上传输使用的物理层传输参数不同;
例如,可以定义不重合的CS值集合1{CS 1,CS 2,…,C m,…}和集合2{CS 1’,CS 2’,…,C m’,…},且两个集合中的元素一一对应;对于反馈信息I k其在PRB n上发送时使用CS集合1中的CSm,而在PRB n上发送时使用CS集合2中对应的C m’。
再例如,对于反馈信息I k其在PRB n上发送时使用基序列SN 1,而在PRB n上发送时使用基序列SN 2。可选地,两个基序列不同。
本申请实施例中,可以在两个PRB上传输N个反馈信息中优先级最高的反馈信息,提高优先级最高的反馈信息的传输成功率。
请参见图7,图7是本申请实施例提供的一种反馈信息的发送方法的流程示意图。该方法由终端设备执行,如图7所示,该方法可以包括但不限于如下步骤:
S71,当终端设备进行SL发送时,确定属于第一IRB的M个PRB和N个反馈信息之间的对应关系。
S72,根据对应关系和N个反馈信息对应的优先级信息,确定在PRB m上传输的反馈信息。
可选地,基于对应关系,确定PRB m对应于N个反馈信息中的反馈信息I i。关于基于对应关系,确定PRB m对应于N个反馈信息中的反馈信息I i的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
进一步地,确定除了反馈信息I i之外的N个反馈信息中的其他反馈信息中的最高优先级的反馈信息I j。基于反馈信息I i对应的优先级和反馈信息I j的优先级,进一步确定该PRB m上传输的反馈信息。可选地,将反馈信息I i对应的优先级和反馈信息I j的优先级进行比较,确定反馈信息I i对应的优先级不低于反馈信息I j的优先级设定个级别,则确定反馈信息I i为在PRB m上传输的反馈信息。
可选地,确定反馈信息I i对应的优先级高于反馈信息I j的优先级,或者,反馈信息I i对应的优先级虽然低于反馈信息I j的优先级,但是两者的优先级差值大于设定个数,此种情况下确定反馈信息I j为在PRB m上传输的反馈信息。
例如,反馈信息I i的优先级为p i,反馈信息I j的优先级为p j,若p i≤p j+X,其中在数值越小优先级越高的情况,值越大优先级越低,在PRB m传输反馈信息I j;否则p i>p j+X,在PRB m传输反馈信息I i; 其中,X的取值可以是预定义或者预配置或者网络设备通过下行控制信令配置和/或指示。
S73,在PRB m上传输反馈信息I i或I j
本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。
请参见图8,图8是本申请实施例提供的一种反馈信息的接收方法的流程示意图。该方法由终端设备执行,如图8所示,该方法可以包括但不限于如下步骤:
S81,当终端设备进行SL接收时,在一个第一IRB接收不同的N个反馈信息,所述N为正整数。
其中,N为正整数。
可选地,终端设备可以在非授权频谱(unlicensedspectrum)或共享频谱(sharedspectrum)上进行侧行链路(sidelink,SL)。
本申请实施例中,终端设备向另一终端设备发送N个PSCCH或PSSCH的传输,并且终端设备还可以接收到另一终端设备发送的这些PSCCH/PSSCH传输的反馈信息。可选地,该反馈信息可以通过物理侧行反馈信道PSFCH进行接收。
可选地,N个反馈信息中的一个反馈信息对应于PSCCH或PSSCH传输的HARQ-ACK。
可选地,终端设备可以获取用于PSCCH和/或PSSCH的侧行资源池,其中,该侧行资源池中包括多个IRB,本申请实施例中,终端设备可以使用其中一个第一IRB对N个反馈信息进行接收,即N个反馈信息被另一侧终端设备映射到该第一IRB上不同的频域资源上,通过第一IRB上不同的频域资源对N个反馈信息进行接收。在一些实施例中可以基于IRB的频域位置和/或IRB的索引号,从终端设备对应的多个IRB中,确定出第一IRB。
例如,第一IRB上的频域资源为PRB,第一IRB中可以包括M个PRB,M为大于或者等于1的正整数。也就是说,终端设备可以在该第一IRB中的M个PRB接收进行发送。
本申请实施例中在终端设备进行SL发送时,通过一个第一IRB进行不同的N个反馈信息的接收。本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。
请参见图9,图9是本申请实施例提供的一种反馈信息的接收方法的流程示意图。该方法由终端设备执行,如图9所示,该方法可以包括但不限于如下步骤:
S91,当终端设备进行SL发送时,确定属于第一IRB的M个PRB和N个反馈信息之间的对应关系。
S92,根据对应关系确定属于第一IRB的PRB m上传输的第一信息。
关于步骤S91~步骤S92的具体实现方式可参见上述实施例中相关内容的记载,此处不再赘述。
S93,在PRB m上接收第一信息。
可选地,在PRB m上确定传输的第一信息为N个反馈信息中一个反馈信息时,可以直接在PRB m上接收该反馈信息。
可选地,在PRB m上确定传输的第一信息非N个反馈信息中一个反馈信息时,即第一信息为预定义或者为预配置或者网络设备通过下行信令配置的信号时,可以直接在PRB m上接收该信号。
可选地,在PRB m上确定传输的第一信息非N个反馈信息中一个反馈信息时,可以使用N个反馈信 息中一个特定反馈信息,如优先级最高的反馈信息替换到第一信息,在该PRB m上接收该优先级最高的反馈信息。
可选地,基于基序列和/或循环移位值确定在PRB m上传输的信号。
可选地,在PRB m上使用基序列的不同循环移位值传输第一信息。
本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。
请参见图10,图10是本申请实施例提供的一种反馈信息的接收方法的流程示意图。该方法由终端设备执行,如图10所示,该方法可以包括但不限于如下步骤:
S101,当终端设备进行SL发送时,确定时频位置集合中N个时频位置与第一IRB中M个PRB之间的对应关系。
S102,根据对应关系,确定N个反馈信息中反馈信息I i所对应的PRB m
关于步骤S101~步骤S102的具体实现方式可参见上述实施例中相关内容的记载,此处不再赘述。
S103,在PRB m上传输反馈信息I i
关于步骤S103的具体实现方式可参见上述实施例中相关内容的记载,此处不再赘述。
本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。
请参见图11,图11是本申请实施例提供的一种反馈信息的接收方法的流程示意图。该方法由终端设备执行,如图11所示,该方法可以包括但不限于如下步骤:
S111,当终端设备进行SL发送时,确定属于第一IRB的M个PRB和N个反馈信息之间的对应关系。
S112,根据对应关系确定属于第一IRB的PRB m上传输的第一信息。
关于步骤S111~步骤S112的具体实现方式,可采用本申请实施例中任一可能的实现方式,此处不再赘述。
S113,当PRB m上对应的所述第一信息非N个反馈信息中的反馈信息,在PRB m上接收所述N个反馈信息中所述优先级最高的反馈信息。
本申请实施例中,在第一IRB的M个PRB和N个反馈信息之间的对应关系,确定出PRB m上对应的第一信息未属于N个反馈信息,可以在PRB m传输N个反馈信息中优先级最高的反馈信息,提高优先级最高的反馈信息的传输成功率。
请参见图12,图12是本申请实施例提供的一种反馈信息的接收方法的流程示意图。该方法由终端设备执行,如图12所示,该方法可以包括但不限于如下步骤:
S121,当终端设备进行SL发送时,确定属于第一IRB的M个PRB和N个反馈信息之间的对应关系。
S122,根据对应关系确定属于第一IRB的PRB m上传输的第一信息。
关于步骤S121~步骤S122的具体实现方式,可采用本申请实施例中任一可能的实现方式,此处不再赘述。
S123,当PRB m上对应的第一信息非N个反馈信息中的反馈信息,在PRB m和PRB n上分别接收优 先级最高的反馈信息。
本申请实施例中,终端设备可以基于属于第一IRB的M个PRB和N个反馈信息之间的对应关系,确定出优先级最高反馈信息为反馈信息I k对应的PRB n。可选地,在PRB m和PRB n上传输的物理层传输参数相同或不同;其中,物理层传输参数包括基序列(Sequence,SN)、循环移位(Cyclic Shift,CS)值和功率中至少一个。
也就是说,优先级最高反馈信息为反馈信息I k,在PRB m上传输时使用的物理层传输参数,如基序列、循环移位值和功率等,与反馈信息I k在基于对应关系确定出PRB n上传输使用的物理层传输参数相同。或者,反馈信息I k在PRB m上传输时使用的物理层传输参数,如基序列、循环移位值和功率等,与反馈信息I k在对应关系确定出PRB n上传输使用的物理层传输参数不同;
本申请实施例中,可以在两个PRB上传输N个反馈信息中优先级最高的反馈信息,提高优先级最高的反馈信息的传输成功率。
请参见图13,图13是本申请实施例提供的一种反馈信息的接收方法的流程示意图。该方法由终端设备执行,如图13所示,该方法可以包括但不限于如下步骤:
S131,当终端设备进行SL发送时,确定属于第一IRB的M个PRB和N个反馈信息之间的对应关系。
S132,根据对应关系和N个反馈信息对应的优先级信息,确定在PRB m上传输的反馈信息。
可选地,基于对应关系,确定PRB m对应于N个反馈信息中的反馈信息I i。关于基于对应关系,确定PRB m对应于N个反馈信息中的反馈信息I i的过程,可参见上述实施例中相关内容的记载,此处不再赘述。
进一步地,确定除了反馈信息I i之外的N个反馈信息中的其他反馈信息中的最高优先级的反馈信息I j。基于反馈信息I i对应的优先级和反馈信息I j的优先级,进一步确定该PRB m上传输的反馈信息。可选地,将反馈信息I i对应的优先级和反馈信息I j的优先级进行比较,确定反馈信息I i对应的优先级不低于反馈信息I j的优先级设定个级别,则确定反馈信息I i为在PRB m上传输的反馈信息。
可选地,确定反馈信息I i对应的优先级高于反馈信息I j的优先级,或者,反馈信息I i对应的优先级虽然低于反馈信息I j的优先级,但是两者的优先级差值大于设定个数,此种情况下确定反馈信息I j为在PRB m上传输的反馈信息。
例如,反馈信息I i的优先级为p i,反馈信息I j的优先级为p j,若p i≤p j+X,其中在数值越小优先级越高的情况,值越大优先级越低,在PRB m传输反馈信息I j;否则p i>p j+X,在PRB m传输反馈信息I i;其中,X的取值可以是预定义或者预配置或者网络设备通过下行控制信令配置和/或指示。
S133,在PRB m上接收反馈信息I i或I j
本申请实施例中,当终端设备接收到多个PSCCH/PSSCH传输的情况下,可以将这些PSCCH/PSSCH传输对应的反馈信息映射到同一个IRB上进行传输,不再将多个反馈信息在多个IRB上进行传输,可以避免干扰提供系统的可靠性和传输效率。
请参见图14,图14是本申请实施例提供的一种反馈信息的接收方法的流程示意图,如图14所示,基于本公开提供的反馈信息的接收方法,在实际应用场景下反馈信息的接收过程包括以下步骤:
假设PSCCH/PSSCH使用slot n IRB0传输,或者使用slot k的IRB0传输,其关联的PSFCH传输资源都包括slot m上的PSFCH资源IRB0。
情况1:在slot n IRB0接收到PSCCH/PSSCH,在slot m IRB0没有接收到PSCCH/PSSCH时,在slot  m的IRB0的所有PRB传输slot n IRB0的PSCCH/PSSCH对应的反馈信息。
情况2:在slot n IRB0没有接收到PSCCH/PSSCH,在slot m IRB0接收到PSCCH/PSSCH时,在slot m的IRB0的所有PRB传输slot m IRB0的PSCCH/PSSCH对应的反馈信息。
情况3:在slot n IRB0接收到PSCCH/PSSCH1,在slot m IRB0接收到PSCCH/PSSCH2,确定PSCCH/PSSCH1和PSCCH/PSSCH2和IRB0上的PRB的对应关系,分别对应到IRB0上的PRB0和PRB25。假设PSCCH/PSSCH1优先级高时,在PRB25传输PSCCH/PSSCH2对应的反馈信息,在IRB0的其它PRB传输PSCCH/PSSCH1对应的反馈信息。
情况4:在slot n IRB0接收到PSCCH/PSSCH1,在slot m IRB0接收到PSCCH/PSSCH2,确定PSCCH/PSSCH1和PSCCH/PSSCH2和IRB0上的PRB的对应关系,分别对应到IRB0上的PRB0和PRB25。假设PSCCH/PSSCH2优先级高时,在PRB0传输PSCCH/PSSCH1对应的反馈信息,在IRB0的其它PRB传输PSCCH/PSSCH2对应的反馈信息。
为了实现上述本申请实施例提供的方法中的各功能,终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图15,为本申请实施例提供的一种通信装置150的结构示意图。图15所示的通信装置150可包括收发模块151和处理模块152。收发模块151可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块151可以实现发送功能和/或接收功能。
通信装置150可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置150为终端设备,包括:
收发模块151,用于当终端设备进行侧行链路SL发送时,通过一个第一交错资源块IRB进行不同的N个反馈信息的发送,所述N为正整数。
可选地,N个反馈信息中的一个反馈信息为对应于物理侧行控制信道PSCCH或物理侧行共享信道PSSCH传输的混合自动重传请求反馈信息HARQ-ACK。
可选地,通信装置150还包括处理模块152,用于确定属于第一IRB的M个物理资源块PRB和N个反馈信息之间的对应关系,M为正整数,指示第一IRB中包括的PRB的数目;根据对应关系确定属于第一IRB的PRB m上传输的第一信息,PRB m为M个PRB中一个PRB;收发模块151,还用于:在PRB m上传输第一信息;其中,第一信息属于N个反馈信息或第一信息不指示任何反馈信息。
可选地,收发模块151,还用于:在PRB m上使用基序列的不同循环移位值传输第一信息。
可选地,第一信息为N个反馈信息一个反馈信息I i,处理模块152,还用于:确定反馈信息I i对应的PSCCH和/或PSSCH传输占用的时频位置,时频位置包括时域位置、频域位置和时频起始位置中至少一个;基于反馈信息I i对应的时频位置和对应关系,确定反馈信息反馈信息I i所对应的PRB m
可选地,处理模块152,还用于:确定对应关系为时频位置集合中N个时频位置与M个PRB之间的对应关系;基于对应关系确定反馈信息I i所对应的PRB m
可选地,时频位置集合为以下一种:使用第一IRB进行传输的反馈信息对应的PSCCH/PSSCH传输的可能时域位置和/或频域位置的集合;或者使用第一IRB进行传输的反馈信息对应的PSCCH/PSSCH传输的可能时频起始位置的集合;或者侧行资源池中反馈时间窗口内的时频资源位置的集合;其中,反馈时间窗口的起始和结束时间根据第一IRB所在的时间位置确定。
可选地,处理模块152,还用于:按照第一设定顺序,将M个PRB划分为N个正交的PRB子集;按照第二设定顺序,将时频位置集合中时频位置进行排序;对排序后的时频位置与PRB子集进行一对一映射,得到对应关系。
可选地,处理模块152,还用于:从对应关系中确定反馈信息I i对应的时频位置所关联的PRB子集;确定关联的PRB子集中的PRB为PRB m
可选地,时域位置为PSCCH/PSSCH传输所在的时间单元;频域位置为PSCCH/PSSCH传输使用的最低频率位置的PRB、IRB或子信道。
可选地,处理模块152,还用于:第一信息未指示N个反馈信息中的反馈信息时,确定基序列和/或循环移位值;基于基序列和/或循环移位值确定在PRB m上传输的第一信息。
可选地,处理模块152,还用于:确定PRB m上对应的第一信息非N个反馈信息中的反馈信息,确定N个反馈信息中优先级最高的反馈信息;确定优先级最高的反馈信息为PRB m上传输的反馈信息。
可选地,收发模块151,还用于:确定优先级最高的反馈信息为第一IRB中PRB n上传输的反馈信息,则在PRB m和PRB n上分别传输优先级最高的反馈信息。
可选地,处理模块152,还用于:根据对应关系和N个反馈信息对应的优先级信息,确定在PRB m上传输的第一信息。
可选地,处理模块152,还用于:基于对应关系,确定PRB m对应于N个反馈信息中的反馈信息I i;确定除了反馈信息I i之外的N个反馈信息中的其他反馈信息中的最高优先级的反馈信息I j;确定反馈信息I i对应的优先级未低于反馈信息I j的优先级设定个级别,确定反馈信息I i为在PRB m上传输的反馈信息,否则确定反馈信息I j为在PRB m上传输的反馈信息。
通信装置150为另一种终端设备,包括:
收发模块151,用于当终端设备进行SL接收时,在一个第一IRB接收不同的N个反馈信息,N为正整数。
可选地,N个反馈信息中的一个反馈信息为对应于PSCCH或PSSCH传输的HARQ-ACK。
可选地,通信装置150还包括处理模块152,用于确定属于第一IRB的M个PRB和N个反馈信息之间的对应关系,M为正整数,指示第一IRB中包括的PRB的数目;根据对应关系确定属于第一IRB的PRB m上传输的第一信息,PRB m为M个PRB中一个PRB;收发模块151,还用于:在PRB m上接收第一信息;其中,第一信息属于N个反馈信息或第一信息不指示任何反馈信息。
可选地,第一信息为N个反馈信息一个反馈信息I i,处理模块152,还用于:确定反馈信息I i对应的PSCCH和/或PSSCH传输占用的时频位置,时频位置包括时域位置、频域位置和时频起始位置中至少一个;基于反馈信息I i对应的时频位置和对应关系,确定反馈信息反馈信息I i所对应的PRB m
可选地,处理模块152,还用于:确定对应关系为时频位置集合中N个时频位置与M个PRB之间的对应关系;基于对应关系确定反馈信息I i所对应的PRB m
可选地,处理模块152,还用于:按照第一设定顺序,将M个PRB划分为N个正交的PRB子集;按照第二设定顺序,将时频位置集合中时频位置进行排序;对排序后的时频位置与PRB子集进行一对一映射,得到对应关系。
可选地,处理模块152,还用于:从对应关系中确定反馈信息I i对应的时频位置所关联的PRB子集;确定关联的PRB子集中的PRB为PRB m
可选地,收发模块151,还用于:PRB m上对应的第一信息非N个反馈信息中的反馈信息,在PRB m 上接收N个反馈信息中优先级最高的反馈信息。
可选地,收发模块151,还用于:当确定出优先级最高的反馈信息为第一IRB中PRB n上传输的反馈信息,则在PRB m和PRB n上分别接收优先级最高的反馈信息。
可选地,处理模块152,还用于:根据对应关系和N个反馈信息对应的优先级信息,确定在PRB m上传输的第一信息。
可选地,处理模块152,还用于:基于对应关系,确定PRB m对应于N个反馈信息中的反馈信息I i;确定除了反馈信息I i之外的N个反馈信息中的其他反馈信息中的最高优先级的反馈信息I j;确定反馈信息I i对应的优先级不低于反馈信息I j的优先级设定个级别,确定反馈信息I i为在PRB m上传输的反馈信息,否则确定反馈信息I j为在PRB m上传输的反馈信息。
请参见图16,图16是本申请实施例提供的另一种通信装置160的结构示意图。通信装置160可以是终端设备,也可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置160可以包括一个或多个处理器161。处理器161可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置160中还可以包括一个或多个存储器162,其上可以存有计算机程序164,处理器161执行所述计算机程序164,以使得通信装置160执行上述方法实施例中描述的方法。可选的,所述存储器162中还可以存储有数据。通信装置160和存储器162可以单独设置,也可以集成在一起。
可选的,通信装置160还可以包括收发器165、天线166。收发器165可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器165可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置160中还可以包括一个或多个接口电路167。接口电路167用于接收代码指令并传输至处理器161。处理器161运行所述代码指令以使通信装置160执行上述方法实施例中描述的方法。
在一种实现方式中,处理器161中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器161可以存有计算机程序163,计算机程序163在处理器161上运行,可使得通信装置160执行上述方法实施例中描述的方法。计算机程序163可能固化在处理器161中,该种情况下,处理器161可能由硬件实现。
在一种实现方式中,通信装置160可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、 硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图16的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图17所示的芯片的结构示意图。图17所示的芯片包括处理器171和接口172。其中,处理器171的数量可以是一个或多个,接口172的数量可以是多个。
可选的,芯片还包括存储器173,存储器173用于存储必要的计算机程序和数据。
该芯片用于执行时实现上述任一方法实施例的功能。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种反馈信息的发送系统,该系统包括前述图15实施例中作为终端设备的通信装置,或者,该系统包括前述图16实施例中作为终端设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    当终端设备进行侧行链路SL发送时,通过一个第一交错资源块IRB进行不同的N个反馈信息的发送,所述N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述N个反馈信息中的一个反馈信息为对应于物理侧行控制信道PSCCH或物理侧行共享信道PSSCH传输的混合自动重传请求反馈信息HARQ-ACK。
  3. 根据权利要求1所述的方法,其特征在于,所述通过一个第一交错资源块IRB进行不同的N个反馈信息的发送,包括:
    确定属于所述第一IRB的M个物理资源块PRB和所述N个反馈信息之间的对应关系,所述M为正整数,指示所述第一IRB中包括的PRB的数目;
    根据所述对应关系确定属于所述第一IRB的PRB m上传输的第一信息,所述PRB m为所述M个PRB中一个PRB;
    在所述PRB m上传输所述第一信息;
    其中,所述第一信息属于所述N个反馈信息或所述第一信息不指示任何反馈信息。
  4. 根据权利要求3所述的方法,其特征在于,所述在所述PRB m上传输所述第一信息,包括:
    在所述PRB m上使用基序列的不同循环移位值传输所述第一信息。
  5. 根据权利要求3所述的方法,其特征在于,所述第一信息为所述N个反馈信息一个反馈信息I i,其中,根据所述对应关系,确定所述反馈信息I i所对应的PRB m,包括:
    确定所述反馈信息I i对应的PSCCH和/或PSSCH传输占用的时频位置,所述时频位置包括时域位置、频域位置和时频起始位置中至少一个;
    基于所述反馈信息I i对应的所述时频位置和所述对应关系,确定所述反馈信息反馈信息I i所对应的PRB m
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述反馈信息I i对应的所述时频位置和所述对应关系,确定所述反馈信息反馈信息I i所对应的PRB m,包括:
    确定所述对应关系为时频位置集合中N个时频位置与所述M个PRB之间的对应关系;
    基于所述对应关系确定所述反馈信息I i所对应的PRB m
  7. 根据权利要求6所述的方法,其特征在于,所述时频位置集合为以下一种:
    使用所述第一IRB进行传输的反馈信息对应的PSCCH/PSSCH传输的可能时域位置和/或频域位置的集合;或者
    使用所述第一IRB进行传输的反馈信息对应的PSCCH/PSSCH传输的可能时频起始位置的集合;或者
    侧行资源池中反馈时间窗口内的时频资源位置的集合;其中,所述反馈时间窗口的起始和结束时间根据所述第一IRB所在的时间位置确定。
  8. 根据权利要求6所述的方法,其特征在于,所述N个时频位置与所述M个PRB之间的对应关系关系的确定,包括:
    按照第一设定顺序,将所述M个PRB划分为N个正交的PRB子集;
    按照第二设定顺序,将所述时频位置集合中时频位置进行排序;
    对排序后的所述时频位置与所述PRB子集进行一对一映射,得到所述对应关系。
  9. 根据权利要求8所述的方法,其特征在于,所述基于所述对应关系确定所述反馈信息I i所对应的PRB m,包括:
    从所述对应关系中确定所述反馈信息I i对应的时频位置所关联的PRB子集;
    确定所述关联的PRB子集中的PRB为所述PRB m
  10. 根据权利要求5所述的方法,其特征在于,所述时域位置为PSCCH/PSSCH传输所在的时间单元;所述频域位置为PSCCH/PSSCH传输使用的最低频率位置的PRB、IRB或子信道。
  11. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述第一信息未指示所述N个反馈信息中的反馈信息时,确定基序列和/或循环移位值;
    基于所述基序列和/或循环移位值确定在所述PRB m上传输的所述第一信息。
  12. 根据权利要求3所述的方法,其特征在于,所述方法包括:
    确定所述PRB m上对应的所述第一信息非所述N个反馈信息中的反馈信息,确定所述N个反馈信息中优先级最高的反馈信息;
    确定所述优先级最高的反馈信息为所述PRB m上传输的反馈信息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    确定所述优先级最高的反馈信息为所述第一IRB中PRB n上传输的反馈信息,则在所述PRB m和所述PRB n上分别传输所述优先级最高的反馈信息。
  14. 根据权利要求3所述的方法,其特征在于,所述根据所述对应关系确定所述第一IRB上物理资源块PRB m上传输的第一信息,包括,
    根据所述对应关系和所述N个反馈信息对应的优先级信息,确定在所述PRB m上传输的第一信息。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述对应关系和所述N个反馈信息对应的优先级信息,确定在所述PRB m上传输的第一信息,包括,
    基于所述对应关系,确定所述PRB m对应于所述N个反馈信息中的反馈信息I i
    确定除了所述反馈信息I i之外的所述N个反馈信息中的其他反馈信息中的最高优先级的反馈信息I j
    确定所述反馈信息I i对应的优先级未低于所述反馈信息I j的优先级设定个级别,确定所述反馈信息I i为在所述PRB m上传输的反馈信息,否则确定所述反馈信息I j为在所述PRB m上传输的反馈信息。
  16. 一种反馈信息的接收方法,其特征在于,所述方法包括:
    当终端设备进行SL接收时,在一个第一IRB接收不同的N个反馈信息,所述N为正整数。
  17. 根据权利要求16所述的方法,其特征在于,所述N个反馈信息中的一个反馈信息为对应于PSCCH或PSSCH传输的HARQ-ACK。
  18. 根据权利要求16所述的方法,其特征在于,所述在一个第一IRB接收不同的N个反馈信息,包括:
    确定属于所述第一IRB的M个PRB和所述N个反馈信息之间的对应关系,所述M为正整数,指示所述第一IRB中包括的PRB的数目;
    根据所述对应关系确定属于所述第一IRB的PRB m上传输的第一信息,所述PRB m为所述M个PRB中一个PRB;
    在所述PRBm上接收所述第一信息;
    其中,所述第一信息属于所述N个反馈信息或所述第一信息不指示任何反馈信息。
  19. 根据权利要求18所述的方法,其特征在于,所述第一信息为所述N个反馈信息一个反馈信息I i,其中,根据所述对应关系,确定所述反馈信息I i所对应的PRB m,包括:
    确定所述反馈信息I i对应的PSCCH和/或PSSCH传输占用的时频位置,所述时频位置包括时域位置、频域位置和时频起始位置中至少一个;
    基于所述反馈信息I i对应的所述时频位置和所述对应关系,确定所述反馈信息反馈信息I i所对应的PRB m
  20. 根据权利要求19所述的方法,其特征在于,所述基于所述反馈信息I i对应的所述时频位置和所述对应关系,确定所述反馈信息反馈信息I i所对应的PRB m,包括:
    确定所述对应关系为时频位置集合中N个时频位置与所述M个PRB之间的对应关系;
    基于所述对应关系确定所述反馈信息I i所对应的PRB m
  21. 根据权利要求20所述的方法,其特征在于,所述N个时频位置与所述M个PRB之间的对应关系的确定,包括:
    按照第一设定顺序,将所述M个PRB划分为N个正交的PRB子集;
    按照第二设定顺序,将所述时频位置集合中时频位置进行排序;
    对排序后的所述时频位置与所述PRB子集进行一对一映射,得到所述对应关系。
  22. 根据权利要求21所述的方法,其特征在于,所述基于所述对应关系确定所述反馈信息I i所对应的PRB m,包括:
    从所述对应关系中确定所述反馈信息I i对应的时频位置所关联的PRB子集;
    确定所述关联的PRB子集中的PRB为所述PRB m
  23. 根据权利要求18所述的方法,其特征在于,所述方法包括:
    所述PRB m上对应的所述第一信息非所述N个反馈信息中的反馈信息,在所述PRB m上接收所述N个反馈信息中所述优先级最高的反馈信息。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    当确定出所述优先级最高的反馈信息为所述第一IRB中PRB n上传输的反馈信息,则在所述PRB m和所述PRB n上分别接收所述优先级最高的反馈信息。
  25. 根据权利要求18所述的方法,其特征在于,所述根据所述对应关系确定所述第一交错资源块IRB上PRB m上传输的第一信息,包括:
    根据所述对应关系和所述N个反馈信息对应的优先级信息,确定在所述PRB m上传输的第一信息。
  26. 根据权利要求25所述的方法,其特征在于,所述根据所述对应关系和所述N个反馈信息对应的优先级信息,确定在所述PRB m上传输的第一信息,包括:
    基于所述对应关系,确定所述PRB m对应于所述N个反馈信息中的反馈信息I i
    确定除了所述反馈信息I i之外的所述N个反馈信息中的其他反馈信息中的最高优先级的反馈信息I j
    确定所述反馈信息I i对应的优先级不低于所述反馈信息I j的优先级设定个级别,确定所述反馈信息I i为在所述PRB m上传输的反馈信息,否则确定所述反馈信息I j为在所述PRB m上传输的反馈信息。
  27. 一种通信装置,其特征在于,包括:
    收发模块,用于当终端设备进行侧行链路SL发送时,通过一个第一交错资源块IRB进行不同的N个反馈信息的发送,所述N为正整数。
  28. 一种通信装置,其特征在于,包括:
    收发模块,用于当终端设备进行SL接收时,在一个第一IRB接收不同的N个反馈信息,所述N为正整数。
  29. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1~15中任一项所述的方法。
  30. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求16~26中任一项所述的方法。
  31. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1~15中任一项所述的方法。
  32. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求16~26中任一项所述的方法。
  33. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1~15中任一项所述的方法被实现。
  34. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求16~26中任一项所述的方法被实现。。
PCT/CN2022/088323 2022-04-21 2022-04-21 一种反馈信息的发送/接收方法及其装置 WO2023201670A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001256.7A CN115004821A (zh) 2022-04-21 2022-04-21 一种反馈信息的发送/接收方法及其装置
PCT/CN2022/088323 WO2023201670A1 (zh) 2022-04-21 2022-04-21 一种反馈信息的发送/接收方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088323 WO2023201670A1 (zh) 2022-04-21 2022-04-21 一种反馈信息的发送/接收方法及其装置

Publications (1)

Publication Number Publication Date
WO2023201670A1 true WO2023201670A1 (zh) 2023-10-26

Family

ID=83022991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088323 WO2023201670A1 (zh) 2022-04-21 2022-04-21 一种反馈信息的发送/接收方法及其装置

Country Status (2)

Country Link
CN (1) CN115004821A (zh)
WO (1) WO2023201670A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605330A (zh) * 2016-02-05 2018-09-28 联发科技股份有限公司 eLAA中的峰值平均功率比降低
CN111800244A (zh) * 2019-04-01 2020-10-20 英特尔公司 Nr-v2x的物理侧链路反馈信道的设计
US20210091901A1 (en) * 2019-09-20 2021-03-25 Qualcomm Incorporated Waveform design for sidelink in new radio-unlicensed (nr-u)
US20210160857A1 (en) * 2018-08-16 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, terminal device and network device
CN112930707A (zh) * 2018-09-27 2021-06-08 Lg 电子株式会社 在支持nb-iot的无线通信系统中发送或接收反馈的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605330A (zh) * 2016-02-05 2018-09-28 联发科技股份有限公司 eLAA中的峰值平均功率比降低
US20210160857A1 (en) * 2018-08-16 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, terminal device and network device
CN112930707A (zh) * 2018-09-27 2021-06-08 Lg 电子株式会社 在支持nb-iot的无线通信系统中发送或接收反馈的方法和系统
CN111800244A (zh) * 2019-04-01 2020-10-20 英特尔公司 Nr-v2x的物理侧链路反馈信道的设计
US20210091901A1 (en) * 2019-09-20 2021-03-25 Qualcomm Incorporated Waveform design for sidelink in new radio-unlicensed (nr-u)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHARP: "Remaining issues on physical layer structure for NR sidelink", 3GPP DRAFT; R1-2002386, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online Meeting ;20200420 - 20200430, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875595 *

Also Published As

Publication number Publication date
CN115004821A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN113273286B (zh) 一种时域资源分配的方法及装置
WO2023245521A1 (zh) 一种控制资源的位置信息的确定方法及其装置
WO2023197271A1 (zh) 一种资源配置的方法及其装置
CN115088359A (zh) 资源配置方法及装置
WO2023201669A1 (zh) 一种pscch的发送/接收方法及其装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023201497A1 (zh) 一种确定非授权频谱中频域资源的方法及装置
WO2023201670A1 (zh) 一种反馈信息的发送/接收方法及其装置
WO2023178622A1 (zh) 一种dmrs端口指示方法及其装置
WO2024026701A1 (zh) 一种信道占用时间cot的共享方法及其装置
WO2023240418A1 (zh) 一种多小区调度的调度信息的检测方法及其装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
US20240188052A1 (en) Method and device for determining time domain resources
WO2024031578A1 (zh) 信道发送方法、信道接收方法、装置、设备及存储介质
WO2024000201A1 (zh) 一种指示方法及装置
WO2023193277A1 (zh) 一种pdcch的传输方法及其装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2024021130A1 (zh) 一种信道估计方法及其装置
WO2024031577A1 (zh) 时域资源分配方法、装置、设备及存储介质
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
CN113261235B (zh) 一种混合自动重传请求确认的反馈方法及其装置
WO2024000528A1 (zh) 一种非授权频段中占用信道的方法及其装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2024026799A1 (zh) 数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937906

Country of ref document: EP

Kind code of ref document: A1