WO2021085497A1 - がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品 - Google Patents

がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品 Download PDF

Info

Publication number
WO2021085497A1
WO2021085497A1 PCT/JP2020/040503 JP2020040503W WO2021085497A1 WO 2021085497 A1 WO2021085497 A1 WO 2021085497A1 JP 2020040503 W JP2020040503 W JP 2020040503W WO 2021085497 A1 WO2021085497 A1 WO 2021085497A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
nucleic acid
cell
cancer
ccl19
Prior art date
Application number
PCT/JP2020/040503
Other languages
English (en)
French (fr)
Inventor
耕治 玉田
幸美 佐古田
圭志 安達
Original Assignee
ノイルイミューン・バイオテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17/771,991 priority Critical patent/US20220401480A1/en
Priority to BR112022007952A priority patent/BR112022007952A2/pt
Priority to AU2020373899A priority patent/AU2020373899A1/en
Priority to CA3156231A priority patent/CA3156231A1/en
Priority to IL292542A priority patent/IL292542A/en
Priority to CN202080074877.9A priority patent/CN114599400A/zh
Application filed by ノイルイミューン・バイオテック株式会社 filed Critical ノイルイミューン・バイオテック株式会社
Priority to JP2021553665A priority patent/JP7436056B2/ja
Priority to EP20880671.1A priority patent/EP4062920A4/en
Priority to KR1020227017777A priority patent/KR20220092543A/ko
Priority to MX2022004962A priority patent/MX2022004962A/es
Publication of WO2021085497A1 publication Critical patent/WO2021085497A1/ja
Priority to JP2024014353A priority patent/JP2024038512A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1774Immunoglobulin superfamily (e.g. CD2, CD4, CD8, ICAM molecules, B7 molecules, Fc-receptors, MHC-molecules)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/195Chemokines, e.g. RANTES
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2046IL-7
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39541Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against normal tissues, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39566Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against immunoglobulins, e.g. anti-idiotypic antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4632T-cell receptors [TCR]; antibody T-cell receptor constructs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4635Cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4636Immune checkpoint inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464424CD20
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • C07K14/523Beta-chemokines, e.g. RANTES, I-309/TCA-3, MIP-1alpha, MIP-1beta/ACT-2/LD78/SCIF, MCP-1/MCAF, MCP-2, MCP-3, LDCF-1, LDCF-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5418IL-7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/867Retroviral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/48Blood cells, e.g. leukemia or lymphoma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10041Use of virus, viral particle or viral elements as a vector
    • C12N2740/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Definitions

  • the present disclosure relates to drugs, combination drugs, pharmaceutical compositions, immune-responsive cells, nucleic acid delivery media, and products for treating cancer.
  • Cancer is also called a malignant neoplasm, and its treatment is one of the major goals in medicine. Conventionally, treatments using radiation and chemical anticancer agents have been performed, but the effects vary greatly depending on the type of cancer, and not all cancers can be highly effective.
  • CAR-T cell therapy using CAR-T cells obtained by modifying T cells so that a special protein called CAR (chimeric antigen receptor) can be produced using gene therapy technology has been developed in recent years. ing.
  • B-ALL B-cell acute lymphoblastic leukemia
  • DLBCL diffuse large B-cell lymphoma
  • T-cell therapy has been shown to be effective.
  • International Publication No. 2017/159736 describes interleukin 7 (IL-7) and chemokines (CC motifs) in immunocompetent cells that express cell surface molecules that specifically recognize cancer antigens such as CAR-T cells.
  • IL-7 interleukin 7
  • CC motifs chemokines
  • WO 2019/073973 is a T cell or B cell enhancer having memory function in the administration subject and T in the administration subject, which comprises a nucleic acid delivery medium, a nucleic acid encoding IL-7, and a nucleic acid encoding CCL19. Inducing agents that induce memory function in cells or B cells are described.
  • Japanese Patent Application Laid-Open No. 2018-538339 states that cells expressing mesothelin-specific CAR are administered in combination with an antibody against PD-L1 from the viewpoint of enhancing the effectiveness of treatment using CAR-T cells. It is described to provide compositions and methods for the treatment of diseases associated with the expression of mesothelin, including.
  • the present disclosure provides drugs, combination drugs, pharmaceutical compositions, immune-responsive cells, nucleic acid delivery media, and products for treating cancer, which have high anticancer effects. That is the issue.
  • the present disclosure includes the following aspects.
  • IL-7 interleukin 7
  • CC motif chemokine ligand 19
  • a combination drug for treating cancer in a subject including an immunosuppressive inhibitor.
  • the disclosure also includes the following aspects: In a subject comprising (a) one or more cells or nucleic acid delivery media or combinations thereof that jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19, and (b) an immunosuppressive inhibitor.
  • a combination drug for treating cancer comprising (a) one or more cells or nucleic acid delivery media or combinations thereof that jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19, and (b) an immunosuppressive inhibitor.
  • a combination drug for treating cancer comprising (a) one or more cells or nucleic acid delivery media or combinations thereof that jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19, and (b) an immunosuppressive inhibitor.
  • a combination drug for treating cancer further includes the following aspects: Immune-responsive cells expressing cell surface molecules that specifically recognize cancer antigens, interleukin 7, CCL19, and immuno
  • a drug, a combination drug, a pharmaceutical composition, an immunoresponsive cell, a nucleic acid delivery medium, and a product for treating cancer, which have a high anticancer effect are provided.
  • the pMSGV vector containing eGFP and not containing IL-7 and CCL19 (hereinafter, also referred to as eGFP-Conv. Vector; IL-7-F2A-CCL19-F2A-eGFP DNA fragment (SEQ ID NO: 10)) described in Examples. It is a figure which shows the map of the pMSGV vector (the vector which extracted the region encoding IL-7 and CCL19). It is a figure which shows the map of the pMSGV vector (hereinafter, also referred to as 7 ⁇ 19 expression vector) containing IL-7-F2A-CCL19-F2A-eGFP DNA fragment (SEQ ID NO: 10) described in Example.
  • eGFP-Conv. Vector IL-7-F2A-CCL19-F2A-eGFP DNA fragment (SEQ ID NO: 10)
  • Vector-introduced TCR-T cells (specifically, mouse T cells expressing spleen cell-derived P815 tumor antigen P1A-specific TCR without vector introduction.
  • vector-unintroduced P1A-TCRT Also referred to as cells.
  • Mouse T cells expressing P1A-specific TCR with or without vector introduction are collectively referred to as P1A-TCRT cells), eGFP-Conv.
  • each of the vector-introduced P1A-TCRT cells (hereinafter, also referred to as eGFP-expressing P1A-TCRT cells) and the 7 ⁇ 19 expression vector-introduced P1A-TCRT cells (hereinafter, also referred to as eGFP-expressing P1A-7 ⁇ 19 TCRT cells).
  • eGFP-expressing P1A-TCRT cells the vector-introduced P1A-TCRT cells
  • 7 ⁇ 19 expression vector-introduced P1A-TCRT cells hereinafter, also referred to as eGFP-expressing P1A-7 ⁇ 19 TCRT cells.
  • mastocytoma cells were subcutaneously injected into DBA / 2 mice, and after the DBA / 2 mice were irradiated, vector-unintroduced P1A-TCRT cells or eGFP-expressing P1A-TCRT cells and / or It is a graph which shows the relationship between the elapsed days and the survival rate when the anti-PD-1 monoclonal antibody was administered to the DBA / 2 mouse. In Examples, the relationship between the number of days elapsed and the tumor volume when no treatment was performed after subcutaneously injecting mastocytoma cells (P815) into DBA / 2 mice and irradiating the DBA / 2 mice is shown. It is a graph.
  • mastocytoma cells were subcutaneously injected into DBA / 2 mice, and after the DBA / 2 mice were irradiated, eGFP-expressing P1A-TCRT cells and anti-PD-1 monoclonal antibody were injected into the DBA / 2 is a graph showing the relationship between the number of days elapsed when administered to mice and the tumor volume.
  • mastocytoma cells (P815) were subcutaneously injected into DBA / 2 mice, the DBA / 2 mice were irradiated, and then eGFP-expressing P1A-7 ⁇ 19 TCRT cells were administered to the DBA / 2 mice.
  • mastocytoma cells P815 were subcutaneously injected into DBA / 2 mice, the DBA / 2 mice were irradiated, and then eGFP-expressing P1A-7 ⁇ 19 TCRT cells and anti-PD-1 monoclonal antibody were injected.
  • eGFP expression in which the PD-1 gene or ROSA26 gene was knocked down (disrupted).
  • Is. 6 is a graph showing the relationship between the number of days elapsed and tumor volume when neither P1A-TCRT cells nor anti-PD-1 monoclonal antibody were administered in the experiment of FIG. 6A.
  • FIG. 6 is a graph showing the relationship between the number of days elapsed and tumor volume when eGFP-expressing P1A-7 ⁇ 19 TCRT cells in which the ROSA26 gene was knocked down were administered in the experiment of FIG. 6A.
  • 6 is a graph showing the relationship between the number of days elapsed and tumor volume when eGFP-expressing P1A-7 ⁇ 19 TCRT cells in which the PD-1 gene was knocked down were administered in the experiment of FIG. 6A.
  • FIG. 6 is a graph showing the relationship between the number of days elapsed and tumor volume when eGFP-expressing P1A-7 ⁇ 19 TCRT cells in which the PD-1 gene was knocked down were administered in the experiment of FIG. 6A.
  • FIG. 6 is a graph showing the relationship between the number of days elapsed and tumor volume when eGFP-expressing P1A-7 ⁇ 19 TCRT cells in which the PD-1 gene was knocked down and an anti-PD-1 monoclonal antibody were administered in the experiment of FIG. 6A. ..
  • DBA / 2 mice inoculated with cancer cells were administered eGFP-expressing P1A-TCRT cells or eGFP-expressing P1A-7 ⁇ 19TCRT cells to express both eGFP and CD8 after complete tumor regression.
  • 3 is a graph showing the proportion of T cells expressing eGFP without expressing CD8 and the proportion of T cells expressing both CD8 and eGFP in the spleen cells obtained in the experiment of FIG. 7.
  • 3 is a graph showing the number of T cells expressing eGFP without expressing CD8 and the number of T cells expressing both CD8 and eGFP in the spleen cells obtained in the experiment of FIG. 7.
  • FIG. 3 is a graph showing the relationship between the number of days elapsed and the number of T cells expressing both CD8 and eGFP when the spleen cells obtained in the experiment of FIG. 7 were further co-cultured with P815 tumor cells.
  • 6 is a graph showing the relationship between the number of days elapsed and the IFN- ⁇ concentration in the culture supernatant when the spleen cells obtained in the experiment of FIG. 7 were further co-cultured with P815 tumor cells.
  • FIG. 5 is a graph showing the relationship between the number of days elapsed and tumor volume when P815 tumor cells were re-inoculated after complete tumor regression in the experiment of FIG. 5F and when P815 tumor cells were inoculated into naive DBA / 2 mice.
  • DBA / 2 mice are inoculated with P815 tumor cells (P815-hCD20 tumor cells) expressing human CD20 (hCD20), followed by intraperitoneal administration of cyclophosphamide, followed by anti-hCD20 CAR-expressing T cells or anti-anti-hCD20.
  • FIG. 5 is a graph showing the relationship between the passage of time and tumor volume when neither CAR-T nor antibody was administered in the experiment of FIG. 10A. In the experiment of FIG.
  • FIG. 10A it is a graph which shows the relationship between the time passage and the tumor volume when CAR-T was not administered but the anti-PD-1 monoclonal antibody was administered.
  • FIG. 5 is a graph showing the relationship between the passage of time and tumor volume when anti-hCD20 CAR-expressing T cells were administered and anti-PD-1 antibody was administered in the experiment of FIG. 10A.
  • FIG. 5 is a graph showing the relationship between the passage of time and tumor volume when anti-hCD20 CAR-IL7 / CCL19-expressing T cells were administered and control IgG was administered in the experiment of FIG. 10A.
  • FIG. 5 is a graph showing the relationship between the passage of time and tumor volume when anti-hCD20 CAR-IL7 / CCL19-expressing T cells were administered and an anti-PD-1 monoclonal antibody was administered in the experiment of FIG. 10A.
  • TIL tumor-infiltrating lymphocytes
  • c. -It is a scatter diagram which shows the result of having examined based on the expression of kit, CD11c, CD3, eGFP, CD4, and CD8.
  • FIG. 5 is a conceptual diagram showing a vector encoding CAR and anti-mouse PD-1scFv and a vector encoding CAR, IL-7, CCL19, and anti-mouse PD-1scFv used in Examples.
  • the contents of the present disclosure will be described in detail below.
  • the description of the constituent elements described below may be based on the representative embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition described in the present disclosure is a plurality of applicable substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. It means the total amount of substances.
  • a immune-responsive cells expressing cell surface molecules specifically recognizing cancer antigens, interleukin 7 (IL-7), and CCL19, and (b) immunity.
  • a combination drug (hereinafter, also referred to as “combination drug A according to the present disclosure”) for treating cancer in a subject, which contains an inhibitory inhibitor, is provided.
  • the present inventors have found that an extremely high cancer treatment effect can be obtained by the combination drug A according to the present disclosure.
  • the combination drug A according to the present disclosure immune-responsive cells expressing cell surface molecules, IL-7 and CCL19, which specifically recognize cancer antigens (hereinafter, "immune response according to the present disclosure”). (Also referred to as "sex cell A”) is used.
  • sex cell A immune response according to the present disclosure
  • One or more of the events such as induction of intracellular signal transduction occur, and an attack on cancer cells of a person suffering from cancer (hereinafter, also referred to as “cancer-affected person") is started.
  • cancer-affected person an attack on cancer cells of a person suffering from cancer
  • cancer-affected person an attack on cancer cells of a person suffering from cancer
  • cancer cells have an immunosuppressive mechanism that suppresses immune-responsive cells from attacking cancer cells or issuing instructions to attack cancer cells. The immune attack on cancer cells is suppressed.
  • the immunosuppressive inhibitor which is one of the components of the combination drug A according to the present disclosure, inhibits the immunosuppressive mechanism by cancer cells, so that the immune system of the cancer-affected person attacks the cancer cells. It will be easier.
  • the immune-responsive cell A according to the present disclosure also expresses IL-7 and CCL19, so that not only the immune-responsive cell A according to the present disclosure but also the endogenous immunity of the cancer-affected person Responsive cells also accumulate around the cancer cells, which may enable them to attack the cancer cells more effectively.
  • the combination drug A according to the present disclosure contains a cell surface molecule that specifically recognizes a cancer antigen, immune-responsive cells expressing IL-7 and CCL19, and an immunosuppressive inhibitor, thereby producing a cancer antigen.
  • the combination of immune-responsive cells expressing specifically recognized cell surface molecules, secreted IL-7 and CCL19, and factors consisting of immunosuppressive inhibitors exerted a synergistic effect, which was greatly improved. It is thought to be effective in treating cancer. This synergistic effect is unpredictable from the individual effects of each factor.
  • the cell surface molecule that specifically recognizes a cancer antigen in the present disclosure is a molecule that specifically binds to a cancer antigen, and even if it is a polypeptide as long as it specifically binds to a cancer antigen, it is an aptamer. It may be a nucleic acid such as, or a molecule other than these.
  • the cancer antigen means a substance such as a protein or glycolipid that is expressed higher in cancer cells than in normal cells or specifically expressed in cancer cells, and the cancer antigen is tumor-related. Examples thereof include antigens, cancer testis antigens, angiogenesis-related antigens, and epitope peptides of cancer neoantigens (neoantigens) due to gene mutations.
  • cancer antigens specifically recognized by cell surface molecules include WT1, MART-1, NY-ESO-1, MAGE-A1, MAGE-A3, MAGE-A4, and MAGE-A10.
  • WT1 MART-1
  • NY-ESO-1 MAGE-A1, MAGE-A3, MAGE-A4, and MAGE-A10.
  • Glypican-3 KIF20A
  • Survivin AFP, gp100, MUC1, PLL3, PRSS21, Antigen4, FAP, Integrin ⁇ 7, CT-83 (KK-LC-1), KRAS (variant, including mKRAS), Epha2, PRAME, HA-1, PAP-10, PAP-5, TRP2-1, SART-1, VEGFR1, VEGFR2, NEIL3, MPHOSPH1, DEPDC1, FOXM1, CDH3, TTK, TOMM34, URLC10, KOC1, UBE2T, TOPK, ECT2,
  • proteins such as MESOTHELIN, NKG2D and P1A, and glycolipids such
  • CD20 examples include CD20, EGFR (EGFRvIII, etc.), EGFRvariant, FITC, CD19, CD22, CD33, PSMA, ROR1, c-Met, HER2, CEA, CD7, CD10, CD30, CD34, CD38, CD41, CD44, CD74.
  • the cell surface molecule one or more kinds of cell surface molecules such as these may be contained.
  • the organism from which these antigens are derived can be the species to be treated by the combination drug A according to the present disclosure, for example, human.
  • cell surface molecules that specifically recognize cancer antigens include cell surface receptors, artificial receptors, and adhesion factors that specifically recognize cancer antigens.
  • the cell surface molecule that specifically recognizes a cancer antigen may have only the function of binding to the cancer antigen and arranging the immune-responsive cell A according to the present disclosure in the vicinity of the cancer cell. In order to further enhance the therapeutic effect, the cell may also have a function of inducing signal transduction that activates the immune response of the immune-responsive cell.
  • the cell surface molecule that specifically recognizes a cancer antigen may be, for example, an antibody or an antibody fragment that specifically recognizes a cancer antigen.
  • the antibody or antibody fragment is not limited to IgM, IgD, IgG, IgA, IgE and the like, and may be a low molecular weight antibody such as Fab and scFv.
  • the cell surface molecule that specifically recognizes a cancer antigen include a T cell receptor (TCR) that specifically recognizes a cancer antigen, a chimeric antigen receptor (CAR) that specifically recognizes a cancer antigen, and the like.
  • TCR T cell receptor
  • CAR chimeric antigen receptor
  • a molecule that imparts a specific ability to discriminate against cancer to a cell by being expressed on the cell surface can be mentioned.
  • TCR is an example of the cell surface receptor
  • CAR is an example of the artificial receptor
  • antibodies including small molecule antibodies such as Fab, Fab', F (ab') 2 , scFv
  • the adhesion factor may be a molecule other than an antibody, such as a sugar chain or an aptamer.
  • TCR is an antigen receptor molecule expressed on the cell membrane of T cells.
  • TCR exists as a heterodimer consisting of alpha and beta chains, or gamma and delta chains, and activates T cells by recognizing antigen molecules bound to major histocompatibility complex (MHC) molecules. It is known to become.
  • MHC major histocompatibility complex
  • the TCR is a heterodimer consisting of an alpha chain and a beta chain (alpha beta TCR) as long as it specifically recognizes a cancer antigen, but a heterodimer consisting of a gamma chain and a delta chain (gamma delta). It may be TCR).
  • the TCR may be endogenous or exogenous TCR (recombinant TCR).
  • TIL tumor-infiltrating lymphocytes
  • TIL tumor-affiliating lymph nodes
  • peripheral blood lymphocytes peripheral blood lymphocytes
  • pleural lymphocytes pleural lymphocytes
  • ascites examples include, but are not limited to, lymphocytes.
  • Techniques for the separation of TCR expressing TCR with a given antigen-binding property include density gradient centrifugation; resetting; coupling to particles that change cell density; magnetic separation with antibody-coated magnet beads; affinity. Chromatography (eg, affinity chromatography with negative selection); cytotoxic agents linked to or used in combination with monoclonal antibodies, including complements and cytotoxins.
  • transgenic animals such as transgenic mice modified to express a specific TCR have also been developed.
  • CAR is an artificial chimeric protein that fuses a single-chain antibody that recognizes cell surface antigens of cancer cells with a signal transduction region that induces activation of T cells.
  • the CAR may include, for example, a single chain antibody region that recognizes a cell surface antigen of a cancer cell, a transmembrane region, and a signal transduction region that induces activation of T cells.
  • the cell surface molecule that specifically recognizes a cancer antigen in the combination drug A according to the present disclosure is CAR, the number of immune-responsive cells A according to the present disclosure administered as a component of the combination drug A is determined. Even if the number of CAR-T cells is smaller than the number of CAR-T cells (usually 1 ⁇ 10 6 or more) administered in the conventional method using CAR-T cells alone, it is possible to achieve the same or higher effect.
  • the single chain antibody (scFv) in CAR includes a light chain variable region and a heavy chain variable region derived from the antigen binding site of the monoclonal antibody, and a linker peptide is located between the light chain variable region and the heavy chain variable region. Oligos or polypeptides can be mentioned.
  • a single chain antibody that recognizes a target cancer antigen can be produced by a known method. For example, after inoculating a mouse or the like with an antigen, lymphoid tissue is collected, a library of antibody genes is prepared, and a base sequence encoding an antibody that recognizes a cancer antigen is obtained by antibody direct cloning, and the base sequence is used as the basis.
  • a single chain antibody may be designed.
  • a hybridoma may be prepared using the collected lymphoid tissue, a hybridoma encoding an antibody that recognizes a cancer antigen may be identified to obtain a monoclonal antibody, and a single-chain antibody may be designed based on the sequence information. Good.
  • a single-chain antibody library prepared from healthy human B cells, an antibody library prepared from cancer-affected B cells having an antiserum showing high neutralizing activity against cancer antigens, and the like.
  • a single-chain antibody library may be prepared and presented on a phage display to select a single-chain antibody that recognizes a cancer antigen.
  • the immune-responsive cell activation signal transduction region is a region capable of signaling intracellularly when the single-stranded antibody recognizes a cell surface antigen of a cancer cell, and is CD28, 4-1BB (CD28, 4-1BB). It may contain at least one or more selected from the polypeptides of any of the intracellular regions of CD137), GITR, CD27, OX40, HVEM, CD3 ⁇ , and FcReceptor-associated ⁇ chain, CD28, It may contain polypeptides of three intracellular regions, 4-1BB and CD3 ⁇ .
  • polypeptides of each intracellular region may be linked via an oligopeptide linker consisting of 2 to 10 amino acids or a polypeptide linker, and examples of such a linker sequence include a glycine-serine continuous sequence.
  • Activation of immune-responsive cells means initiating an immune response by inducing intracellular signal transduction or changes in protein expression.
  • CD3 chains assemble in response to ligand binding and immunoreceptor tyrosine-based inhibitory motifs (ITAMs)
  • ITAMs immunoreceptor tyrosine-based inhibitory motifs
  • an endogenous TCR or an extrinsic CAR binds to an antigen, it contains a collection of many molecules near the bound receptor (eg, CD4 or CD8, CD3 ⁇ / ⁇ / ⁇ / ⁇ , etc.).
  • the formation of immunological synapses can occur. This assembly of membrane-bound signaling molecules phosphorylates the ITM motif contained within the CD3 chain.
  • This phosphorylation can thus initiate the immune-responsive cell activation pathway and ultimately activate transcription factors such as NF- ⁇ B and AP-1. These transcription factors produce IL-2 for the proliferation and expression of major regulatory T cell proteins, eg, to elicit overall T cell gene expression and initiate a T cell-mediated immune response. To increase.
  • the cell membrane penetrating region in CAR includes CD8, ⁇ chain of T cell receptor, ⁇ chain, CD28, CD3 ⁇ , CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134. , CD137, CD154, or GITR-derived polypeptide in the transmembrane region.
  • the transmembrane region may be, for example, a polypeptide of the human CD8 transmembrane region.
  • the transmembrane region anchors CAR to the cell membrane of T cells.
  • the transmembrane region may include a hinge region consisting of any oligopeptide or polypeptide and having a length of 1 to 100 amino acids, more specifically 10 to 70 amino acids.
  • the hinge region the hinge region of the human CD8 can be mentioned.
  • a spacer made of any oligopeptide or polypeptide is provided between the single-chain antibody that recognizes the cell surface antigen of cancer cells and the transmembrane region, the transmembrane region and the immunoresponsive cell activation signal transduction region.
  • a region may be provided.
  • the length of the spacer region can be 1 to 100 amino acids, more specifically 10 to 50 amino acids, and the spacer region can be a glycine-serine continuous sequence.
  • the amino acid sequence of the cell surface molecule that specifically recognizes the cancer antigen is, for example, a mammalian-derived amino acid sequence, and may be a human-derived amino acid sequence from the viewpoint of suppressing rejection when administered to humans.
  • the amino acid sequence can be appropriately obtained by searching public literature and databases such as NCBI (http://www.ncbi.nlm.nih.gov/guide/).
  • the cell surface molecule that specifically recognizes a cancer antigen may be a human TCR or a CAR in which a single-chain antibody region is humanized.
  • the cell surface molecule that specifically recognizes the cancer antigen may be indirectly recognized as long as the recognition of the cancer antigen is specific.
  • a molecule such as an antibody that specifically recognizes a cancer antigen is administered to a subject simultaneously or continuously with the immune-responsive cell A according to the present disclosure to recognize the molecule such as the antibody, or the antibody or the like.
  • the immune-responsive cell A according to the present disclosure can indirectly and specifically recognize the cancer antigen.
  • examples of the case of recognizing an antibody include CD16 as a cell surface molecule
  • examples of a tag labeling a molecule such as an antibody include FITC and the like.
  • IL-7 is a cytokine of approximately 25 kDa structurally produced from bone marrow and thymus-derived stroma cells. IL-7 signals through the IL-7 receptor to promote the differentiation of hematopoietic stem cells into lymph progenitor cells, giving rise to T cells, B cells, and NK cells.
  • the amino acid sequence of IL-7 is, for example, a mammalian-derived amino acid sequence, and may be a human-derived amino acid sequence from the viewpoint of suppressing rejection.
  • the amino acid sequence can be appropriately obtained by searching public literature and databases such as NCBI (http://www.ncbi.nlm.nih.gov/guide/).
  • Chemokine (CC motif) ligand 19 is a cytokine belonging to the CC chemokine family and is highly expressed in the thymus and lymph nodes.
  • the amino acid sequence of CCL19 is, for example, a mammalian-derived amino acid sequence, and may be a human-derived amino acid sequence from the viewpoint of suppressing rejection.
  • the amino acid sequence can be appropriately obtained by searching public literature and databases such as NCBI (http://www.ncbi.nlm.nih.gov/guide/).
  • Immune-responsive cells refer to cells involved in the immune response.
  • immune-responsive cells include lymphocytes such as T cells, natural killer cells (NK cells) and B cells, antigen-presenting cells such as monospheres, macrophages and dendritic cells, neutrophils and eosinophils. , Basophils, granulocytes such as mast cells.
  • T cells include alpha beta T cells, gamma delta T cells, CD8 + T cells, CD4 + T cells, tumor infiltrating T cells, memory T cells, naive T cells, natural killer T (NKT) cells, etc. Can be mentioned.
  • Immune-responsive cells are isolated from immune cells that invade body fluids such as blood and bone marrow fluid, tissues such as spleen, thoracic gland, and lymph nodes, or cancer tissues such as primary tumors, metastatic tumors, and cancerous ascites. , And immune-responsive cells prepared from pluripotent stem cells such as iPS cells and ES cells or somatic stem cells such as hematopoietic stem cells may be used.
  • the immune-responsive cells may be T cells derived from mammals such as chicks, dogs, cats, pigs, and mice, and may be T cells derived from chicks.
  • the immune-responsive cell A expresses IL-7 and CCL19, which are cell surface molecules that specifically recognize cancer antigens.
  • IL-7 and CCL19 are cell surface molecules that specifically recognize cancer antigens.
  • "expressing IL-7 and CCL19, cell surface molecules that specifically recognize cancer antigens” means that the cell surface molecules that specifically recognize cancer antigens, IL-7 and CCL19, have an immune response.
  • At least a part of the cell surface molecules produced by sex cells that specifically recognize cancer antigens are located on the cell surface (cell surface outside the cell), and IL-7 and CCL19 are secreted extracellularly. Point to.
  • the immune-responsive cell A is, for example, an immune-responsive cell collected from a living body, a pluripotent stem cell such as iPS cell or ES cell, or an immune-responsive cell derived from a somatic stem cell such as a hematopoietic stem cell. It can be obtained by introducing a gene encoding a cell surface molecule that specifically recognizes a cancer antigen, a gene encoding IL-7, and a gene encoding CCL19. Alternatively, immunoreactive cells that endogenously express a cell surface molecule that specifically recognizes a cancer antigen (for example, a TCR that specifically recognizes a cancer antigen) are collected from a living body to obtain IL-7.
  • a pluripotent stem cell such as iPS cell or ES cell
  • an immune-responsive cell derived from a somatic stem cell such as a hematopoietic stem cell. It can be obtained by introducing a gene encoding a cell surface molecule that specifically recognizes a
  • the expression of a gene encoding XX and the expression of a nucleic acid encoding XX are used interchangeably.
  • the nucleic acid may be single-stranded or double-stranded, DNA or RNA, but is preferably double-stranded DNA.
  • rejection can be minimized by collecting the immune-responsive cells of the cancer-affected person treated by the combination drug A according to the present disclosure (that is, his own). it can. However, it does not preclude the use of allogeneic immune-responsive cells. That is, the immunoresponsive cell A according to the present disclosure may or may not be an immunoresponsive cell derived from the subject itself.
  • the gene encoding the cell surface molecule that specifically recognizes the cancer antigen, the gene encoding IL-7, and the gene encoding CCL19 are each present in the genome of the immune-responsive cell A according to the present disclosure. It may be carried in a vector outside the genome, or may be present in the genome from the viewpoint of stability of gene carrying, for example. In addition, the gene encoding the cell surface molecule that specifically recognizes the cancer antigen, the gene encoding IL-7, and the gene encoding CCL19 may be present together in the genome, and may be present separately ( It may exist (separately).
  • the cell surface molecule that specifically recognizes a cancer antigen is a heterodimer or a heteromultimer, for example, a TCR consisting of an ⁇ dimer or a ⁇ dimer
  • the heterodimer Genes encoding each molecule that constitutes a body or heteromultimer may be present collectively in the genome or may be present separately (separately).
  • the gene encoding IL-7 and the gene encoding CCL19 are exogenous and both are integrated into the genome of immunoresponsive cell A according to the present disclosure, or said immunoresponsive cell. It is encoded together or separately in one or more vectors present in A. Whether or not each gene is present in the cell can be easily confirmed by using a known method such as PCR.
  • exogenous means that the gene or nucleic acid is not a gene or nucleic acid originally present in the cell, but a gene or nucleic acid introduced from the outside.
  • MART1-specific TCR (Cancer Res. 54,5265-5268 (1994)), MAGE-A3-specific TCR (Anticancer Res., 20,1793-1799 (2000)), gp100-specific TCR ( J.Immunol.170,2186-2194 (2003)), NY-ESO-1 specific TCR (J.Immunol.,174,4415-4423 (2005)), WT1-specific TCR (Blood, 106,470-476 (2005)) )), MAGE-A1-specific TCR (Int.Immunol., 8,1463-1466 (1996)), P1A-specific TCR (Sarma, S., Y. Guo, Y. Guilloux, C.
  • the base sequence of the gene encoding TCR is as long as it can recognize the target antigen molecule and activate T cells. For example, 80% or more, more specifically 85% or more, more specifically 90% or more, more specifically 95% or more, more specifically 98% or more with the base sequence encoding the TCR described in 1. It may be a base sequence having the sequence identity of.
  • the sequence identity of amino acid sequences and the sequence identity of base sequences can be evaluated by default parameters using, for example, the BLAST (National Library of Medicine) program.
  • the base sequence of the gene encoding TCR maintains the base sequence encoding CDR in the base sequence encoding TCR described in the above document, and in the base sequence of a region other than the base sequence encoding CDR. 60% or more, more specifically 70% or more, more specifically 80% or more, more specifically 90% or more of the base sequence of the region in the base sequence encoding TCR described in the above document. More specifically, it may be a base sequence having 95% or more sequence identity.
  • the base sequence of TCR varies depending on the antigen specificity of TCR, and T cells expressing TCR that binds to a desired antigen may be isolated and the base sequence of the TCR may be analyzed.
  • the nucleotide sequence of a gene encoding a TCR that specifically recognizes a specific antigen is a cytotoxic T cell (CTL) induced using the specific antigen by using a method known in the art. It can be obtained by analyzing the nucleotide sequences encoding the alpha chain and beta chain as the TCR subunit of (International Publication No. 2007/032255, and Morgan et al., J Immunol, 171, 3288 (2003)). ..
  • the base sequence encoding each strand may be amplified and analyzed by the PCR method.
  • the PCR primers are, for example, a 5'-R primer as a 5'side primer (5'-gtccagcatcgttcat-3': SEQ ID NO: 1) and a 3-'specification for the TCR alpha chain C region as a 3'side primer.
  • TRa-C primer (5'-tcagctggaccaccagcggcgt-3': SEQ ID NO: 2), 3-TRb-C1 primer specific for TCR beta chain C1 region (5'-tcagaatccctttctctttgtgac-3': SEQ ID NO: 3), or TCR beta It may be, but is not limited to, a 3-TRbeta-C2 primer (5'-ctagccctgtggaatccttttctctcttt-3': SEQ ID NO: 4) specific for the chain C2 region.
  • the antigen-specific TCR can bind to a target cell presenting an antigen (eg, a peptide) with high binding strength.
  • an antigen eg, a peptide
  • proper selection of immune-responsive cell types can mediate the efficient killing of target cells that present antigenic peptides.
  • the base sequence encoding CAR is not particularly limited as long as it is a base sequence encoding a polypeptide constituting CAR, and is a single-chain antibody that recognizes a cell surface antigen of a cancer cell, a transmembrane region, and a T cell. Contains a base sequence encoding a polypeptide in the signaling region that induces activation of.
  • Genbank number: NM_006139.2 (updated: May 10, 2014) for human CD28
  • Genbank number: NM_001561.5 (updated: March 16, 2014) for human 4-1BB
  • human As for CD3 ⁇ the one registered as Genbank number: NM_000734.3 (updated date: August 12, 2014) can be exemplified.
  • a monoclonal antibody that recognizes the target cell surface antigen is prepared, and the amino acid sequence of the monoclonal antibody is determined by a known method such as the Edman method. However, it can also be obtained based on such an amino acid sequence.
  • a method for producing a monoclonal antibody a method for producing a monoclonal antibody, a method for producing by transforming a host with an expression vector containing an antibody gene by a genetic engineering method, or a method for immunizing a transgenic animal with a desired antigen. A method of producing the above can be mentioned.
  • the base sequence encoding IL-7 can be appropriately selected according to the type of immune-responsive cell A according to the present disclosure, and is, for example, a base sequence encoding the amino acid sequence of human IL-7 (SEQ ID NO: 5). Also, as long as it has an effect of enhancing the cell proliferation rate as IL-7, for example, 80% or more, more specifically 85% or more, more specifically 90% or more of the base sequence shown in SEQ ID NO: 5. , More specifically, it may be a base sequence having 95% or more, more specifically 98% or more sequence identity.
  • the base sequence encoding CCL19 can be appropriately selected according to the type of immune-responsive cell A according to the present disclosure, and may be, for example, a base sequence encoding the amino acid sequence (SEQ ID NO: 6) of human CCL19. , For example, 80% or more, more specifically 85% or more, more specifically 90% or more, more specifically 95% with the nucleotide sequence shown in SEQ ID NO: 6, as long as it has a T cell migration action as CCL19. As described above, more specifically, it may be a base sequence having 98% or more sequence identity.
  • the gene encoding the cell surface molecule that specifically recognizes the cancer antigen, the gene encoding IL-7, and the gene encoding CCL19 are the appropriate promoter controls. Make sure it is below.
  • the immune-responsive cells A include IL-1, IL-2, IL-3, IL-4, in addition to cell surface molecules, IL-7, and CCL19, which specifically recognize cancer antigens.
  • Techniques for the separation of immune-responsive cells A include density gradient centrifugation; resetting; coupling to particles that alter cell density; magnetic separation with antibody-coated magnet beads; affinity chromatography (eg, affinity chromatography). , Affinity chromatography with negative selection); Cytotoxic agents linked to or used in combination with monoclonal antibodies, including complements and cytotoxins. (Not limited to); Panning with an antibody bound to a solid matrix such as a plate, chip; Eltriation; Selective proliferation by antigen stimulation; Separation using a complex of MHC and antigen, but is not limited thereto.
  • T cells expressing a TCR that specifically recognizes a predetermined cancer antigen are isolated.
  • One or more of the gene encoding IL-7, the gene encoding CCL19, and the gene encoding CCL19 are introduced from the outside.
  • Nucleic acids containing a gene encoding a cell surface molecule that specifically recognizes a cancer antigen for introduction into an immune-responsive cell a nucleic acid containing a gene encoding IL-7, and a nucleic acid containing a gene encoding CCL19
  • a nucleic acid containing a gene encoding IL-7 a nucleic acid containing a gene encoding CCL19
  • Each can be produced by a known technique such as a method of chemically synthesizing or a method of amplifying by PCR based on the information of the base sequence encoding the molecule.
  • the codon in the coding region may be modified to optimize the expression of the gene in the immune-responsive cell into which the nucleic acid containing the gene is introduced.
  • the gene to be introduced may be introduced in a state of being carried on different vectors, or may be introduced in a state of carrying two or more kinds of genes on the same vector.
  • the gene encoding IL-7 and the gene encoding CCL19 may be introduced in separate vectors.
  • Both genes may be carried and introduced into the same vector.
  • a gene encoding a cell surface molecule that specifically recognizes a cancer antigen, a gene encoding IL-7, and a gene encoding CCL19 may be introduced by supporting them on separate vectors.
  • a gene encoding a cell surface molecule that specifically recognizes a cancer antigen and a gene encoding IL-7 are carried on the same vector, and a gene encoding CCL19 is carried on a separate vector and introduced.
  • a gene encoding a cell surface molecule that specifically recognizes a cancer antigen and a gene encoding CCL19 are carried on the same vector, and a gene encoding IL-7 is carried on a separate vector and introduced. It ’s okay, (Iv) A gene encoding IL-7 and a gene encoding CCL19 are carried on the same vector, and a gene encoding a cell surface molecule that specifically recognizes a cancer antigen is carried on a separate vector and introduced. It ’s okay, (V) A gene encoding a cell surface molecule that specifically recognizes a cancer antigen, a gene encoding IL-7, and a gene encoding CCL19 may be carried on the same vector and introduced.
  • two or more kinds of genes may be introduced while being carried on the same vector.
  • the two or more genes will be present together in the immune-responsive cell.
  • vectors or group of vectors can be used.
  • A Vector containing a gene encoding a cell surface molecule that specifically recognizes a cancer antigen, a gene encoding IL-7, and a gene encoding CCL19
  • B-1 The following vectors (b-1) and Vector group consisting of vector (b-2):
  • B-1 A vector containing a gene encoding a cell surface molecule that specifically recognizes a cancer antigen;
  • B-2) A vector containing a gene encoding IL-7 and a gene encoding CCL19;
  • C Vector group consisting of the following vectors (c-1) and vector (c-2): (C-1) A vector containing a gene encoding a cell surface molecule that specifically recognizes a cancer antigen and a gene encoding IL-7;
  • C-2) Vector containing a gene encoding CCL19;
  • D Vector group consisting of the following vectors (d-1) and vector (d-2): (D-1) A vector
  • the vector group may be designed so that the gene is included in redundancy, and for example, the vector group consisting of the above (c-1) and (d-2) may be designed.
  • the gene encoding the cell surface molecule that specifically recognizes the cancer antigen is contained in both vectors, but the gene that encodes the cell surface molecule that specifically recognizes the cancer antigen contained in both vectors. May be the same or different from each other.
  • the method for introducing a gene-carrying vector into immune-responsive cells is not particularly limited, but known methods such as a virus infection method, a transposon method, a calcium phosphate method, a lipofection method, a microinjection method, and an electroporation method can be used. Can be mentioned. A method of introducing a foreign gene by a viral infection method capable of introducing the gene into the genome can bring about stability of gene support.
  • GP2-293 cells manufactured by Takara Bio
  • Plat-GP cells manufactured by Cosmo Bio
  • PG13 cells ATCC CRL-10686
  • PA317 cells ATCC CRL-
  • a method of transfecting packaging cells such as 9078) to prepare a recombinant virus and infecting immune-responsive cells with the recombinant virus can be mentioned, such as Retrovirus packaging Kit Eco (manufactured by Takara Bio Co., Ltd.). It may be carried out using a commercially available kit. By using an MSCV retrovirus expression system or the like, it is possible to introduce a foreign gene into the genome.
  • the gene encoding IL-7, the gene encoding CCL19, and if necessary, the gene encoding the cell surface molecule that specifically recognizes a cancer antigen are integrated into the genome using a known gene editing technique. You can also do it.
  • Known gene editing techniques include techniques using endonucleases such as zinc finger nucleases, TALENs (transcriptional activation-like effector nucleases), and CRISPR (Crustered Regularly Interspaced Short Palindromic Repeat) -Cas systems.
  • endonucleases such as zinc finger nucleases, TALENs (transcriptional activation-like effector nucleases), and CRISPR (Crustered Regularly Interspaced Short Palindromic Repeat) -Cas systems.
  • the integration of a gene encoding another foreign protein, which is optionally introduced, into the genome can be performed by the same method.
  • genes when these genes are integrated into the genome of immunoresponsive cells, they can be actuated in a non-coding region of the genome together with an upstream promoter that controls the gene (that is, can be expressed under the control of the promoter). ) It may be integrated or it may be operably integrated downstream of a promoter already present in the genome without a promoter. Examples of promoters already present in the genome include promoters of TCR ⁇ and TCR ⁇ .
  • a vector carrying two or more of a gene encoding a cell surface molecule that specifically recognizes a cancer antigen, a gene encoding IL-7, and a gene encoding CCL19 is introduced into immune-responsive cells.
  • the order of the two or more genes in the vector is not particularly limited.
  • a sequence of these three types of genes The order is not limited.
  • a gene encoding a cell surface molecule that specifically recognizes a cancer antigen in the order from upstream (5'terminal side) to downstream (3'terminal side), a gene encoding a cell surface molecule that specifically recognizes a cancer antigen, a gene encoding IL-7, and CCL19. Regardless of the order in which the genes encoding cancer antigens are arranged, the genes encoding cell surface molecules that specifically recognize cancer antigens, the genes encoding CCL19, and the genes encoding IL-7 are arranged in this order. Even if the gene encoding IL-7, the gene encoding CCL19, and the gene encoding the cell surface molecule that specifically recognizes the cancer antigen are arranged in this order, the gene encoding IL-7 and the cancer antigen can be selected.
  • the gene encoding the cell surface molecule that specifically recognizes and the gene encoding CCL19 are arranged in the order, the gene encoding CCL19, the gene encoding the cell surface molecule that specifically recognizes the cancer antigen, and IL Even if the gene encoding -7 is arranged, the gene encoding CCL19, the gene encoding IL-7, and the gene encoding the cell surface molecule that specifically recognizes the cancer antigen are arranged in the order. May be good.
  • the order of the IL-7-encoding gene and the CCL19-encoding gene is not particularly limited, and IL
  • the gene encoding CCL19 may be located upstream or downstream with respect to the gene encoding -7.
  • C-1 In a vector containing a gene encoding a cell surface molecule that specifically recognizes a cancer antigen and a gene encoding IL-7, the cell surface molecule that specifically recognizes a cancer antigen is encoded.
  • the order of the genes encoding IL-7 and the genes encoding IL-7 is not particularly limited, and the gene encoding IL-7 is placed upstream of the gene encoding the cell surface molecule that specifically recognizes a cancer antigen. Or it may be arranged downstream.
  • (D-2) A gene encoding a cell surface molecule that specifically recognizes a cancer antigen in a vector containing a gene encoding a cell surface molecule that specifically recognizes a cancer antigen and a gene encoding CCL19.
  • the order of the genes encoding CCL19 is not particularly limited, and even if the gene encoding CCL19 is arranged upstream with respect to the gene encoding the cell surface molecule that specifically recognizes a cancer antigen, it is arranged downstream. You may.
  • the gene encoding the cell surface molecule that specifically recognizes the cancer antigen, the gene encoding IL-7, and the gene encoding CCL19 may be transcribed by different promoters, and the internal ribosome entry site (IRES) may be transcribed. : International ribosome entry site) or self-cleaving 2A peptide may be used for transcription with a single promoter.
  • the base sequence between the respective genes may contain any base sequence as long as each gene can be expressed, but a self-cleaving peptide (2A peptide) or a self-cleaving peptide (2A peptide) or It may contain a base sequence encoding an IRES, or may contain a base sequence encoding a 2A peptide.
  • the base sequence between genes that can contain a self-cleaving peptide (2A peptide) or a base sequence encoding IRES may be, for example, a base sequence between a gene encoding IL-7 and a gene encoding CCL19.
  • each of the regions between these genes can contain a self-cleaving peptide (2A peptide) or a base sequence encoding an IRES, if desired.
  • the 2A peptide is a self-cleaving peptide derived from a virus.
  • the endoplasmic reticulum is between GP and GP (the position of one residue from the C-terminal) in the amino acid sequence. It has the characteristic of being cut by (Szymczak et al., Expert Opin. Biol. Ther. 5 (5): 627-638 (2005)). Therefore, the nucleic acids integrated before and after the 2A peptide are expressed independently of each other in the cell.
  • the 2A peptide may be a 2A peptide derived from picornavirus, rotavirus, insect virus, aft virus or tripanosoma virus, or a 2A peptide (F2A) derived from picornavirus shown in SEQ ID NO: 8. Good.
  • the vector used for gene transfer into immune-responsive cells may be linear or cyclic, and may be a non-viral vector such as a plasmid, a viral vector, or a transposon vector.
  • the vector used for gene transfer into immune-responsive cells may contain one or more of a control sequence such as a promoter and a terminator, and a selectable marker sequence such as a drug resistance gene and a reporter gene. Even after the gene is introduced into immune-responsive cells, the promoter contained in the vector may be used to express the gene.
  • one or more of a gene encoding a cell surface molecule that operably recognizes a cancer antigen, a gene encoding IL-7, and a gene encoding CCL19 are placed downstream of the promoter sequence in the vector. By doing so, the gene can be efficiently transcribed.
  • the promoter examples include a retrovirus LTR promoter, an SV40 early promoter, a cytomegalovirus promoter, a virus-derived promoter such as the thymidine kinase promoter of simple herpesvirus, a phosphoglycerate kinase (PGK) promoter, an Xist promoter, and ⁇ -actin.
  • Mammalian-derived promoters such as promoters, RNA polymerase II promoters, and polypeptide chain elongation factor gene promoters can be mentioned.
  • a tetracycline-responsive promoter induced by tetracycline, an Mx1 promoter induced by interferon, or the like may be used.
  • a gene whose transcription is regulated by the promoter for example, a gene encoding a cell surface molecule that specifically recognizes a cancer antigen, a gene encoding IL-7, and CCL19 can be obtained. It is possible to control the expression of one or more of the encoding genes) according to the course of cancer treatment.
  • the viral vector examples include a retrovirus vector, a lentivirus vector, an adenovirus vector, and an adeno-associated virus vector.
  • retrovirus vector examples include a pMSGV vector (Tamada K. et al., Clin Cancer Res 18: 6436-6445 (2002)), a pMSCV vector (manufactured by Takara Bio Inc.), and the like. If a retrovirus vector is used, the transgene is incorporated into the genome of the host cell, so that the transgene can be stably expressed for a long period of time.
  • IL-7 and CCL19 which are cell surface molecules that specifically recognize cancer antigens in immune-responsive cells
  • flow cytometry ELISA
  • Western blotting or the like.
  • introduction of the gene encoding these can be confirmed by confirming the expression product as described above, or by PCR such as Northern blotting, Southern blotting, RT-PCR and the like.
  • the vector used for gene transfer contains a marker gene
  • the gene transfer can be confirmed by examining the expression of the marker gene inserted in the expression vector.
  • the immune-responsive cell A further expresses suicide genes such as herpes simplex virus thymidine kinase (HSV-TK) and inducible caspase-9 (inducible caspase-9) in order to induce apoptosis.
  • suicide genes such as herpes simplex virus thymidine kinase (HSV-TK) and inducible caspase-9 (inducible caspase-9) in order to induce apoptosis.
  • HSV-TK herpes simplex virus thymidine kinase
  • inducible caspase-9 inducible caspase-9
  • the genes of these enzymes can also be introduced into immune-responsive cells (for example, into the genome of immune-responsive cells) by the same procedure as described above.
  • the suicide gene means a gene having a function of directly or secondarily inducing a substance having cytotoxicity by expression and causing the cell expressing the suicide gene to die.
  • a drug that activates the function of the suicide gene is administered according to the course of cancer treatment, for example, when the tumor disappears, and is present in vivo.
  • the immunoresponsive cells A according to the present disclosure can be reduced or eliminated.
  • Examples of the suicide gene include genes encoding the herpes simplex virus thymidine kinase (HSV-TK) and inducible caspase-9 (inducible caspase-9) described in the following documents, and activate the functions of such genes.
  • Examples of the drug to be converted include ganciclovir for the former and AP1903, which is a dimer-inducing compound (chemical induction of dimerization: CID) for the latter (Cooper LJ., Et. Al. Cytotherapy. 2006; 8 (2): 105-17., Jensen M. C. et. Al. Biol Blood Marrow Transplant. 2010 Sep; 16 (9): 1245-56., Jones BS. Front Pharmacol. 2014 Nov 27; 5 : 254., Minagawa K., Pharmaceuticals (Basel). 2015 May 8; 8 (2): 230-49., Bole-Richard E., Front Pharmaceuticals. 2015 Aug 25; 6: 174).
  • An immunosuppressive inhibitor refers to a substance that releases or reduces the suppression of immune-responsive cell activation. Suppression of immune-responsive cell activation includes, for example, inhibition of the binding of cytotoxic T cells or helper T cells to dendritic cells by binding of regulatory T cells (Tregs) to dendritic cells; Inhibition of activation of cytotoxic T cells, helper T cells, etc. by secreting inhibitory cytokines such as - ⁇ and IL-10 and cytotoxic substances such as perforin and granzyme; PD-1 and PD-L1 It is caused by suppression of cytotoxic T cell activation by immunocheckpoints due to the interaction between CTLA-4 and CD80 / CD86.
  • An immunosuppressive inhibitor is a substance that releases the above-mentioned suppression of immune-responsive cell activation and enables the activation of immune-responsive cells.
  • immunosuppressive inhibitors include immune checkpoint inhibitors, Tregs, molecular target drugs that inhibit the infiltration, survival, or function of immunosuppressive cells such as bone marrow-derived immunosuppressive cells (MDSCs), CCR4 inhibitors, and indoleamines.
  • immunosuppressive cells such as bone marrow-derived immunosuppressive cells (MDSCs), CCR4 inhibitors, and indoleamines.
  • MDSCs bone marrow-derived immunosuppressive cells
  • CCR4 inhibitors CCR4 inhibitors
  • indoleamines examples include amine 2,3-dioxygenase (IDO) inhibitors, prostaglandin E2 [PGE2] inhibitors, and cytotoxic anticancer agents.
  • IDO amine 2,3-dioxygenase
  • PGE2 prostaglandin E2
  • cytotoxic anticancer agents cytotoxic anticancer agents.
  • the immunosuppressive inhibitor may be an antibody, for example, an IgG mono
  • the immune checkpoint inhibitor is, for example, an immune checkpoint molecule (eg PD-1, CTLA-4, BTLA, TIM-3, TIGIT, LAG-3, etc.) or a ligand of an immune checkpoint molecule (eg PD-L1, PD). -L2, CD80 / CD86, Signal-15, etc.) can be bound to prevent the ligand from initiating signal transduction from the immune checkpoint molecule, thereby reducing the inhibitory response to the immune response.
  • Molecular-targeted drugs that inhibit the infiltration, survival, or function of immunosuppressive cells such as Tregs and MDSCs reduce the amount of Tregs that infiltrate into cancer tissues by, for example, inhibiting tyrosine kinases, resulting in cancer.
  • CCR4 inhibitors can reduce immunosuppression in the cancer microenvironment by inhibiting the action of the chemokine receptor CCR4 to attract Tregs.
  • the IDO inhibitor can suppress the production of kynurenine by inhibiting the enzymatic activity of IDO or suppressing the expression of IDO itself, and can reduce the Treg activation by kynurenine.
  • the PGE2 inhibitor can reduce immunosuppression in the cancer microenvironment by suppressing PGE2 from binding to the prostaglandin EP4 receptor on the surface of the Treg to increase the immunosuppressive effect of the Treg.
  • Cytotoxic anticancer agents can reduce inhibition of the immune response by reducing the number of immunosuppressive cells such as Tregs.
  • immune checkpoint inhibitors include PD-1 inhibitors, PD-L1 inhibitors, CTLA-4 inhibitors, CD47 inhibitors, SIRP ⁇ inhibitors, BTLA inhibitors, TIM-3 inhibitors, TIGIT inhibitors, Examples include LAG-3 inhibitor, Sigma-15 inhibitor, galectin-9 inhibitor and the like.
  • molecular-targeted drugs that inhibit the infiltration, survival, or function of immunosuppressive cells such as Treg and MDSC include sorafenib, sunitinib, and the like.
  • CCR4 inhibitors include anti-CCR4 antibodies (eg, mogamulizumab) and the like.
  • IDO inhibitors include epacadostat and the like.
  • prostaglandin E2 [PGE2] inhibitors include aspirin and the like.
  • cytotoxic anticancer agents include cyclophosphamide, gemcitabine and the like.
  • Immunosuppression inhibitors are PD-1 inhibitor, PD-L1 inhibitor, PD-L2 inhibitor, CTLA-4 inhibitor, BTLA (B-and T-lymphocyte attenuator) inhibitor, TIM-3 (T-cell). Selected from the group consisting of immunoglobulin and mucin domain 3) inhibitors, TIGIT (T-cell immunoreceptor with Ig and ITIM domains) inhibitors, LAG-3 (Lymphocyte Activation Gene-3) inhibitors, and Sigma-15 inhibitors. It may contain one or more kinds.
  • the immunosuppressive inhibitor in the combination drug A according to the present disclosure may be an immune checkpoint inhibitor, more specifically, a PD-1 inhibitor or a PD-L1 inhibitor, and more specifically. May be an antibody against PD-1 or an antibody against PD-L1.
  • antibodies against PD-1 include Nivolumab, Pembrolizumab, Tripalimab, Cemiplimab-rwlc, Sintilimab and the like.
  • Examples of antibodies against PD-L1 include Atezolizumab, Durvalumab, Avelumab, and the like.
  • Examples of antibodies against CTLA-4 include Ipilimumab and the like.
  • Other examples include antibodies against CD47 and SIRP ⁇ .
  • IL-7 and CCL19 are also expressed, and an immunosuppressive inhibitor. Not only does it exert a cancer-suppressing effect by cell surface molecules that specifically recognize cancer antigens, but it also has immunosuppressive properties in the cancer microenvironment due to the combination of IL-7, CCL19 and an immunosuppressive inhibitor. It is considered that the effect of inducing and activating endogenous cytotoxic T cells and the like around cancer cells can be obtained.
  • the combination drug A according to the present disclosure when the immunoresponsive cell A according to the present disclosure is simply administered and no immunosuppressive inhibitor is administered, or a cell surface molecule that specifically recognizes a cancer antigen is used. Although it is expressed, IL-7 and CCL19 can bring about an improved cancer therapeutic effect that cannot be achieved by co-administration of immune-responsive cells that are not expressed and an immunosuppressive inhibitor.
  • the cancer therapeutic effect can be evaluated by, for example, a decrease in the number of tumor cells, a decrease in tumor size, a disappearance of a tumor, a decrease in tumor load, etc. in a mammal, for example, a human subject.
  • the immunosuppressive inhibitor activates the functions of immune-responsive cells in general in the immunosuppressive microenvironment around the cancer, not only the immune-responsive cells A according to the present disclosure but also endogenous immunity It improves the cancer cell attack activity of responsive cells. Therefore, even if the immunosuppressive inhibitor is, for example, an immune checkpoint inhibitor that targets a specific molecule, the immune-responsive cell A according to the present disclosure needs to express the target molecule on the cell surface. Is not always present, and the target molecule may or may not be expressed.
  • the term “antibody” can refer not only to a complete antibody molecule but also to a fragment of an antibody molecule that retains its ability to bind an antigen. Such antibody fragments are also known in the art and are commonly used both in vitro and in vivo. Thus, as used herein, the term “antibody” refers to a concept that includes not only complete immunoglobulin molecules, but also known antibody functional fragments F (ab') 2 and Fab. In the present disclosure, antibodies also include fully native antibodies, bispecific antibodies, chimeric antibodies, Fabs, Fab', single chain antibodies (scFv), fusion polypeptides, and non-conventional antibodies.
  • a single chain antibody is a fusion protein of the variable regions of heavy and light chains (VH) and light chains (VL) of immunoglobulins that are covalently linked to form a VH :: VL heterodimer. ..
  • the heavy chain (VH) and light chain (VL) are directly linked, or the N-terminal of VH and the C-terminal of VL are bound, or the C-terminal of VH and the N-terminal of VL are bound by a peptide linker.
  • the length of the peptide linker is, for example, 10 amino acids, 15 amino acids, 20 amino acids, or 25 amino acids.
  • Peptide linkers are usually rich in glycine, which contributes to flexibility, and serine or threonine, which contributes to solubility. Despite removing the constant region and introducing a peptide linker, the scFv protein maintains the antigen-binding specificity of the underlying immunoglobulin. As described by Huston et al. (Proc.Nat.Acad.Sci.USA, 85: 5879-5883, 1988), scFv can be expressed from nucleic acids containing VH-encoding sequences and VL-encoding sequences. For scFv, US Pat. Nos. 5,091,513, 5,132,405, and 4,965,778; and US Patent Publications 20050196754 and 20050196754 can also be referred to.
  • An antibody as an immune checkpoint inhibitor is an IgG monoclonal antibody, a Fab fragment, a scFv, or any other antibody or antibody fragment as long as it has a predetermined antigen-binding property.
  • For scFv for example, a method of producing a mouse hybridoma clone and then converting a complete IgG (or IgM) to scFv, a method of producing an immunized phage display scFv, and then a method of screening a library using the antigen. It can be obtained by a method of directly obtaining scFv by screening an off-the-shelf scFv phage display library using an antigen.
  • Antibodies obtained in animals other than humans may provoke an immune response when administered to humans.
  • the portion other than the determining region (CDR) may be modified into a humanized antibody prepared by recombining with a human antibody gene.
  • a fully humanized antibody may be obtained by using a phage display or a genetically modified mouse that produces a human antibody instead of causing a mouse or the like to produce the antibody.
  • the administration composition containing the immune-responsive cell A according to the present disclosure (hereinafter, also referred to as the first administration composition) further contains a pharmaceutically acceptable additive.
  • the additives may be saline, buffered saline, cell culture medium, dextrose, water for injection, glycerol, ethanol and combinations thereof, stabilizers, solubilizers, surfactants, buffers. Examples include agents, preservatives, tonicity agents, fillers, and lubricants.
  • the administration composition containing an immunosuppressive inhibitor may further contain a pharmaceutically acceptable additive.
  • a pharmaceutically acceptable additive for example, physiological saline, buffered physiological saline, cell culture medium, dextrose, water for injection, glycerol, ethanol and combinations thereof, stabilizers, solubilizers, surfactants, buffers, preservatives, etc. Isotonic agents, fillers, and lubricants can be mentioned.
  • the second administration composition may be the same composition as the first administration composition, in which case one administration composition is immunosuppressed with the immunoresponsive cells A according to the present disclosure. It will contain both inhibitory inhibitors.
  • the first dosing composition and the second dosing composition are administered together, as described below. It may be administered at different timings (points of time). That is, the immunoreactive cell A according to the present disclosure and the immunosuppressive inhibitor may be administered together or separately at different time points.
  • the amount of immune-responsive cells A according to the present disclosure contained in the first composition for administration can be appropriately adjusted according to the type, location, severity of cancer, age, body weight, condition of the subject to be treated, and the like. However, for example, 1 ⁇ 10 4 to 1 ⁇ 10 11 pieces, more specifically 1 ⁇ 10 5 to 1 ⁇ 10 10 pieces, more specifically 1 ⁇ 10 6 to 1 ⁇ 10 9 pieces per administration. May be administered.
  • the amount of immune-responsive cells A according to the present disclosure is less than 1 ⁇ 10 6 cells per administration, for example, 1 ⁇ 10 5 to 5 ⁇ 10 5 cells, more specifically 1.5 ⁇ 10 5 cells. It may be as small as ⁇ 4 ⁇ 10 5 pieces.
  • the amount of immune-responsive cells A according to the present disclosure contained in the first composition for administration is the same when the same amount (same number of cells) of immune-responsive cells A according to the present disclosure is used alone.
  • the amount may be so small that it does not have an anticancer effect.
  • the lower limit of the amount of immune-responsive cells A is not particularly limited as long as the amount can exert an anticancer effect due to the synergistic effect with the immunosuppressive inhibitor.
  • the first composition for administration is 4 times a day, 3 times a day, 2 times a day, once a day, every 1 day, every 2 days, every 3 days, every 4 days, every 5 days, a week. It may be administered once, every 7 days, every 8 days, every 9 days, twice a week, once a month or twice a month.
  • the total number of administrations may be, for example, 1 to 10 times, that is, 1 time, 2 times, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times or 10 times. It may be administered more than 10 times.
  • the amount of the immunosuppressive inhibitor contained in the second composition for administration can be appropriately adjusted according to the type, location, severity of the cancer, the age, weight and condition of the subject to be treated, etc., but once.
  • the dose of the immunosuppressive inhibitor per administration can be, for example, 0.1 to 500 mg / kg, more specifically 0.5 to 250 mg / kg, and more specifically 1 to 100 mg / kg.
  • the second composition for administration is 4 times a day, 3 times a day, 2 times a day, once a day, every 1 day, every 2 days, every 3 days, every 4 days, every 5 days, a week. It may be administered once, every 7 days, every 8 days, every 9 days, twice a week, once a month or twice a month.
  • the total number of administrations is, for example, 1 to 30 times, that is, 1 time, 2 times, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, or 11 times. It may be administered 30 times, but it may be administered more than 30 times.
  • the relationship between the timing of administering the first composition for administration and the timing of administering the second composition for administration is not particularly limited, and administration of the first composition for administration may be started first. Then, the administration of the second administration composition may be started first, or the administration of the first administration composition and the second administration composition may be started at the same time.
  • the relationship between the number of administrations and the frequency of administration of each composition for administration is not particularly limited.
  • the first administration composition and the second administration composition may be the same composition, and in this case, the medicament containing both the immunoresponsive cell A and the immunosuppressive inhibitor according to the present disclosure.
  • the composition (mixture) is provided.
  • the first administration composition and the second administration composition in the combination drug A according to the present disclosure are different compositions, the first administration composition and the second administration composition are simultaneously used. It may be administered at different times (ie, at intervals).
  • the timing of administering the first administration composition and the administration of the second administration composition is 3 months. It may be within 2 months, within 1 month, or within 2 weeks. The interval may be within 1 week or 3 days, but as shown in Examples described later, the immune-responsive cells A according to the present disclosure are maintained in vivo for a long period of time. Therefore, it is not necessary to make the interval extremely short.
  • the immunoresponsive cells A according to the present disclosure and the immunosuppressive inhibitor can be administered at independent timings (for example, different timings).
  • the terms "co-administration” and “combination” mean that when a plurality of agents are contained in the same composition and administered, the plurality of agents are contained in different compositions but are administered at the same time. In the case of, it is used in the sense of including the case where a plurality of agents are contained in different compositions and administered at different time points.
  • the combination drug A according to the present disclosure is a factor consisting of immune-responsive cells expressing a cell surface molecule that specifically recognizes a cancer antigen, secreted IL-7 and CCL19, and an immunosuppressive inhibitor. Due to the synergistic effect of the combination of, a surprisingly improved cancer treatment effect is achieved.
  • the first composition for administration can be administered to a subject in need of treatment for cancer using methods known to those skilled in the art, such as topical injection (including catheter administration), systemic injection, intravenous. It can be administered by internal injection or parenteral administration (for example, transdermal administration, transmucosal administration, more specifically, nasal drops, eye drops, sublingual administration, suppositories, patches, etc.). From the viewpoint of handling, the first composition for administration may be formulated in an injectable form (solution, suspension, emulsion) of a unit dose.
  • administration method include intravenous, intratumoral, intradermal, subcutaneous, intramuscular, intraperitoneal, intraarterial, intramedullary, intracardiac, intraarticular, intrasynovial, intracranial, and intrathecal.
  • submucosal (cerebrospinal fluid) injections can be mentioned.
  • the second composition for administration can be administered to a subject in need of treatment for cancer using methods known to those skilled in the art, such as oral administration, local injection (including catheter administration), systemic administration. It can be administered by injection, intravenous injection or parenteral administration (eg, transdermal administration, transmucosal administration, more specifically nasal drops, eye drops, sublingual, suppositories, patches, etc.).
  • the second composition for administration may be formulated in an injectable form (solution, suspension, emulsion) at a unit dose from the viewpoint of handling.
  • administration method include intravenous, intratumoral, intradermal, subcutaneous, intramuscular, intraperitoneal, intraarterial, intramedullary, intracardiac, intraarticular, intrasynovial, intracranial, and intrathecal.
  • submucosal (cerebrospinal fluid) injections can be mentioned.
  • the immune-responsive cell A according to the present disclosure is obtained by obtaining the original immune-responsive cell or a precursor cell thereof from a patient to be treated, and introducing a gene necessary for obtaining the immune-responsive cell A according to the present disclosure. Later, it may be administered to the same patient (self-administration) or to another patient (allogeneic administration).
  • the source immune-responsive cells or progenitor cells thereof may be prepared from pluripotent stem cells such as iPS cells and ES cells or somatic stem cells such as hematopoietic stem cells.
  • the first administration composition and the second administration composition are, for example, sterile liquid preparations which may be buffered to a predetermined pH, for example, isotonic aqueous solutions, suspensions, emulsions, etc. It can be administered as a dispersion or a viscous composition.
  • the liquid preparation may be a liquid preparation for injection. Further, in order to prolong the contact time with a specific structure, the liquid preparation may be in the form of a viscous composition having a viscosity within an appropriate viscosity range.
  • the liquid preparation comprises, for example, a solvent or dispersion medium consisting of water, saline, phosphate buffered saline, polyols (eg, glycerol, propylene glycol, liquid polyethylene glycol, etc.) and mixtures thereof. May be good.
  • a solvent or dispersion medium consisting of water, saline, phosphate buffered saline, polyols (eg, glycerol, propylene glycol, liquid polyethylene glycol, etc.) and mixtures thereof. May be good.
  • the liquid preparation can be prepared by blending the immunoresponsive cells A and / or the immunosuppressive inhibitor according to the present disclosure with various amounts of other components in an appropriate amount of a suitable solvent.
  • the liquid preparation may contain suitable carriers, diluents, or excipients.
  • the liquid preparation may also be lyophilized.
  • the liquid preparation may further contain a variety of co-auxiliaries, depending on the desired route of administration, examples of co-auxiliaries include wetting agents, dispersants or emulsifiers (eg, methylcellulose), pH buffering agents. , Gelling agents or viscosity-enhancing additives, preservatives, flavoring agents, coloring agents and the like.
  • co-auxiliaries include wetting agents, dispersants or emulsifiers (eg, methylcellulose), pH buffering agents. , Gelling agents or viscosity-enhancing additives, preservatives, flavoring agents, coloring agents and the like.
  • the liquid preparation may also further contain various additives that enhance the stability and sterility of the liquid preparation, such as antibacterial preservatives, antioxidants, chelating agents, and buffers. And so on.
  • various antibacterial and antifungal agents such as parabens, chlorobutanol, phenol, sorbic acid and the like can be used to prevent the action of microorganisms.
  • Vehicles, diluents or additives used in liquid preparations must be compatible with the immunoresponsive cells A and / or immunosuppressive inhibitors according to the present disclosure contained therein.
  • the liquid preparation may be isotonic with blood.
  • Isotonicity is a liquid preparation of sodium chloride, or other pharmaceutically acceptable osmoregulators (eg, dextrose, boric acid, sodium tartrate, propylene glycol, or other inorganic or organic solutes). It can be achieved by containing it in.
  • the combination drug A according to the present disclosure may further contain other anticancer agents in addition to the immunoresponsive cells A and the immunosuppressive inhibitor according to the present disclosure.
  • anticancer agents include alkylating agents such as bendamstin, iosfamide and dacarbazine, metabolic antagonists such as pentostatin, fludalabine, cladribine, methotrexate, 5-fluorouracil, 6-mercaptopurine and enocitabine, rituximab and cetuximab.
  • Molecular-targeted drugs such as trastuzumab, kinase inhibitors such as imatinib, gefetinib, errotinib, afatinib, dasatinib, snitinib, tramethinib, proteasome inhibitors such as bortezomib, calcinurine inhibitors such as cyclosporin and tachlorimus
  • anticancer antibiotics plant alkaloids such as irinotecan and etoposide, platinum preparations such as cisplatin, oxaliplatin and carboplatin, hormonal therapeutic agents such as tamoxyphene and bicardamide, and immunomodulators such as interferon.
  • Other anti-cancer agents may include, for example, at least one of an alkylating agent and an antimetabolite.
  • the treatment target may be, for example, any mammal, but may be, for example, a primate animal, and more specifically, a human.
  • the treatment target may be a pet animal or a domestic animal, and examples thereof include dogs, cats, pigs, cows, horses, sheep, and goats.
  • the cancers to be treated may be solid cancers or blood cancers, adenocarcinoma, squamous cell carcinoma, glandular squamous cell carcinoma, undifferentiated cancer, large cell cancer, small cell cancer, skin.
  • sarcoma such as chondrosarcoma, Ewing sarcoma, malignant vascular endothelial tumor, malignant Schwan tumor, osteosarcoma, soft tissue sarcoma, hepatoblastoma, myeloma, nephrblastoma, neuroblastoma, pancreas
  • blastomas such as blastoma, pleural lung blastoma, and retinal blastoma, embryonic cell tumors
  • the combination drug A according to the present disclosure it is possible to reduce the immunosuppressive property in the cancer microenvironment, so that the cancer to be treated is not limited to blood cell type cancer, but for solid cancer. However, it has a therapeutic effect. Therefore, it can be highly effective against solid cancers that were difficult to treat by conventional methods.
  • the combination drug A according to the present disclosure may be prophylactically administered to a subject even before a definitive diagnosis of cancer is made, in a situation where the presence of cancer cells in the subject is suspected.
  • usage patterns are also included in the concept of use for the treatment of cancer.
  • Subjects including (a) immune-responsive cells expressing cancer antigen-specifically recognizing cell surface molecules, IL-7, and CCL19, and (b) immunosuppressive inhibitors combined and administered to the subject.
  • a method for treating cancer in the above (hereinafter, also referred to as a cancer treatment method A according to the present disclosure) is provided.
  • the immune-responsive cell in the cancer treatment method A according to the present disclosure is the immune-responsive cell A according to the present disclosure
  • the detailed configuration and examples thereof are the immune-responsive cell A according to the present disclosure.
  • the above explanation applies as it is.
  • the above description of the immunosuppressive inhibitor in the combination drug A according to the present disclosure applies as it is.
  • the immunoresponsive cells (a) and the immunosuppressive inhibitor (b) may be administered simultaneously or at different time points.
  • both the immune-responsive cells (a) and the immunosuppressive inhibitor (b) can be administered in therapeutically effective amounts.
  • the cancer treatment method A according to the present disclosure is synergistic with a combination of factors consisting of a cell surface molecule that specifically recognizes a cancer antigen, immune-responsive cells expressing IL-7 and CCL19, and an immunosuppressive inhibitor. It has a surprisingly improved cancer treatment effect.
  • the above-mentioned description of the combination drug A according to the present disclosure applies as it is to the details of the immunoresponsive cells, the immunosuppressive inhibitor, the composition for administration, the treatment of cancer and the like.
  • IL-7 and CCL19 cell surface molecules that specifically recognize cancer antigens, used in combination with immunosuppressive inhibitors to treat cancer in a subject.
  • Drugs containing immunoresponsive cells are also provided.
  • the medicament containing the immunoreactive cell A according to the present disclosure produces a synergistic effect when used in combination with an immunosuppressive inhibitor, and exhibits a surprisingly improved cancer therapeutic effect.
  • immune-responsive cells immunosuppressive inhibitors, compositions for administration, treatment of cancer, etc.
  • the above-mentioned description of the combination drug A according to the present disclosure applies as it is.
  • immune-responsive cells expressing IL-7 and CCL19, cell surface molecules that specifically recognize cancer antigens, used in combination with immunosuppressive inhibitors to treat cancer in a subject are also provided.
  • immunity used to treat cancer in a subject in combination with immune-responsive cells expressing IL-7 and CCL19 cell surface molecules that specifically recognize cancer antigens.
  • Pharmaceuticals containing inhibitory inhibitors are also provided.
  • a drug containing an immunosuppressive inhibitor is used in combination with the immune-responsive cell A according to the present disclosure, a synergistic effect is produced, and a surprisingly improved cancer therapeutic effect is exhibited.
  • immunosuppressive inhibitors, compositions for administration, treatment of cancer, etc. the above-mentioned description of the combination drug A according to the present disclosure applies as it is.
  • immunosuppressive inhibitors used to treat cancer in a subject in combination with immune-responsive cells expressing IL-7 and CCL19, cell surface molecules that specifically recognize cancer antigens are also provided.
  • immunoresponsiveness that is contained in a container indicated to be used in combination with an immunosuppressive inhibitor and expresses cell surface molecules, IL-7 and CCL19, which specifically recognize cancer antigens.
  • Drugs containing cells are also provided.
  • the above-mentioned description of the combination drug A according to the present disclosure applies as it is.
  • the above-mentioned description of the first administration composition can be applied as it is.
  • the container labeled to be used in combination with the immunosuppressive inhibitor may be a vial with a usage label, an intravenous bag, a cell storage bag, a drip bag, or the like, or an Eppendorf tube. It may be a container such as. In such a container, the drug containing the immunoreactive cell A according to the present disclosure is contained, for example, in the state described in the above description of the first administration composition.
  • the indication that it is used in combination with an immunosuppressive inhibitor may be attached to any surface of the container, but may be attached to the outer surface of the container in consideration of visibility. Further, the indication may be attached not to the container itself but to a case such as a box for further storing one or more containers.
  • the indication that it is used in combination with an immunosuppressive inhibitor is not limited to the indication that it is used in combination with an immunosuppressive inhibitor, and mentions the possibility of concomitant use with an immunosuppressive inhibitor. It may be any display that is displayed.
  • an attachment describing that it is used in combination with an immunosuppressive inhibitor and immune-responsive cells expressing cell surface molecules that specifically recognize cancer antigens, IL-7 and CCL19, are included.
  • Products containing, and containers containing the drug, are also provided.
  • the above-mentioned description of the combination drug A according to the present disclosure applies as it is.
  • the above-mentioned description of the first administration composition can be applied as it is.
  • the container containing the immunoresponsive cells A according to the present disclosure may be a container such as a vial with a usage indication, an intravenous injection bag, a cell storage bag, a drip bag, etc., or an Eppendorf tube. It may be such a container.
  • the drug containing the immunoreactive cell A according to the present disclosure is contained, for example, in the state described in the above description of the first administration composition.
  • the description in the package insert that it is used in combination with an immunosuppressive inhibitor is not limited to the description that explicitly indicates that it is used in combination with an immunosuppressive inhibitor, and it can be used in combination with an immunosuppressive inhibitor. It may be any description that refers to sex.
  • a synergistic effect of a combination of a cell surface molecule that specifically recognizes a cancer antigen, immune-responsive cells expressing IL-7 and CCL19, and an immunosuppressive inhibitor is possible to obtain a surprisingly improved cancer therapeutic effect.
  • the embodiments according to the present disclosure include the following.
  • ⁇ 1> Treat cancer in a subject, including (a) cell surface molecules that specifically recognize cancer antigens, immune-responsive cells expressing interleukin 7 and CCL19, and (b) immunosuppressive inhibitors.
  • ⁇ 2> The combination drug according to ⁇ 1>, wherein the immunoresponsive cells and the immunosuppressive inhibitor are separately administered at different time points.
  • ⁇ 3> The gene encoding interleukin 7 and the gene encoding CCL19 are exogenous, and both are integrated into the genome of the immune-responsive cell, or one or one present in the immune-responsive cell.
  • the combination drug according to ⁇ 1> or ⁇ 2> which is encoded together or separately in a plurality of vectors.
  • the cell surface molecule that specifically recognizes the cancer antigen is one of ⁇ 1> to ⁇ 3>, which is a chimeric antigen receptor (CAR) or a T cell receptor (TCR).
  • the immunosuppressive inhibitor is a PD-1 inhibitor, PD-L1 inhibitor, PD-L2 inhibitor, CTLA-4 inhibitor, BTLA (B- and T-lymphocyte attenuator) inhibitor, TIM-3.
  • the combination drug according to any one of ⁇ 1> to ⁇ 4> which comprises one or more selected from.
  • ⁇ 6> The combination drug according to any one of ⁇ 1> to ⁇ 5>, wherein the immunosuppressive inhibitor is an antibody.
  • ⁇ 7> The combination drug according to ⁇ 6>, wherein the antibody is an IgG monoclonal antibody or an antibody fragment.
  • ⁇ 8> The combination drug according to any one of ⁇ 1> to ⁇ 7>, wherein the cancer is a solid cancer.
  • the immunoresponsive cell is an immunoresponsive cell derived from the subject itself.
  • the immune-responsive cells include lymphocytes such as T cells, natural killer cells (NK cells), and B cells, antigen-presenting cells such as monospheres, macrophages, and dendritic cells, and neutrophils.
  • the combination drug according to any one of ⁇ 1> to ⁇ 9>, which is selected from the group consisting of neutrophils, basophils, and mast cells.
  • ⁇ 11> Includes immune-responsive cells expressing interleukin 7 and CCL19, cell surface molecules that specifically recognize cancer antigens, used in combination with immunosuppressive inhibitors to treat cancer in a subject. Medicine.
  • ⁇ 12> An immunosuppressive inhibitor used to treat cancer in a subject in combination with immune-responsive cells expressing cell surface molecules that specifically recognize cancer antigens, interleukin 7, and CCL19. Including medicine.
  • ⁇ 13> The medicament according to ⁇ 11> or ⁇ 12>, which is used in a form in which the immunosuppressive inhibitor and the immune-responsive cells are separately administered at different time points.
  • ⁇ 14> Contains immune-responsive cells that are housed in a container labeled to be used in combination with an immunosuppressive inhibitor and that express cell surface molecules that specifically recognize cancer antigens, interleukin 7 and CCL19. Medicine.
  • ⁇ 15> The package insert stating that it is used in combination with an immunosuppressive inhibitor, A container containing a drug containing immune-responsive cells expressing interleukin 7 and CCL19, a cell surface molecule that specifically recognizes a cancer antigen, and a container.
  • Products including. ⁇ 16> Treat cancer in a subject, including (a) cell surface molecules that specifically recognize cancer antigens, immune-responsive cells expressing interleukin 7 and CCL19, and (b) immunosuppressive inhibitors.
  • Pharmaceutical composition for. ⁇ 17> The pharmaceutical composition according to ⁇ 16>, wherein the cell surface molecule that specifically recognizes the cancer antigen is a chimeric antigen receptor (CAR) or a T cell receptor (TCR).
  • CAR chimeric antigen receptor
  • TCR T cell receptor
  • ⁇ 18> Includes (a) a combination of a cell surface molecule that specifically recognizes a cancer antigen, immune-responsive cells expressing IL-7 and CCL19, and (b) an immunosuppressive inhibitor to be administered to a subject in combination. , How to treat cancer in a subject.
  • ⁇ 19> In the manufacture of drugs for treating cancer, (a) cell surface molecules that specifically recognize cancer antigens, immune-responsive cells expressing IL-7 and CCL19, and (b) immunosuppression. The use of inhibitors is provided.
  • A One or more types of cells or nucleic acid delivery media or combinations thereof containing a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19 in cooperation, and (b) an immunosuppressive inhibitor.
  • a combination drug for treating cancer in a subject hereinafter, also referred to as “combination drug B according to the present disclosure”.
  • interleukin 7, CCL19 the details of the definitions, examples, amino acid sequences, base sequences, preferred embodiments and the like of the interleukin 7, CCL19, the nucleic acid encoding interleukin 7, the nucleic acid encoding CCL19, and the immunosuppressive inhibitor in the combination drug B are described.
  • the details such as the amino acid sequence, the base sequence, and the preferred embodiment are the same.
  • cooperatively included means that a plurality of elements (for example, a plurality of cells, a plurality of nucleic acid delivery media, or one or more cells and one or more nucleic acid delivery media) are present.
  • the substance indicated as an object to be included eg, a nucleic acid encoding a particular polypeptide
  • cooperatively included can also be expressed as “included as a whole”.
  • the meaning of "cooperatively included” also includes the case where all of the plurality of substances indicated as objects to be included are contained in a single cell or nucleic acid delivery medium, and such a configuration is also preferable. It is one of the configurations.
  • cell I contains a nucleic acid encoding interleukin 7 and does not contain a nucleic acid encoding CCL19, and cell II encodes CCL19. It may be a configuration containing nucleic acid and not containing nucleic acid encoding interleukin 7.
  • the combination drug B according to the present disclosure contains a nucleic acid delivery medium I and a nucleic acid delivery medium II
  • the nucleic acid delivery medium I contains a nucleic acid encoding interleukin 7 and does not contain a nucleic acid encoding CCL19, and is a nucleic acid.
  • the delivery medium II may be configured to contain a nucleic acid encoding CCL19 and not a nucleic acid encoding interleukin 7.
  • the combination drug B according to the present disclosure may comprise a single cell or nucleic acid delivery medium containing both the nucleic acid encoding interleukin 7 and the nucleic acid encoding CCL19.
  • the "combination thereof" in “one or more kinds of cells or nucleic acid delivery media or a combination thereof jointly containing a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19" is one kind or a plurality of kinds.
  • a polypeptide generally refers to a polymer in which amino acid residues are linked by peptide bonds, and so-called proteins are also included in the examples.
  • the number of amino acid residues in the polypeptide may be 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, 70 or more. It may be 100 or more.
  • the upper limit of the number of amino acid residues is not particularly limited, but the number of amino acid residues may be 10,000 or less, 5000 or less, 2000 or less, or 1000 or less. It may be 500 or less, 200 or less, 100 or less, 70 or less, 50 or less, 40 or less, 30 or less. It may be 20 or less.
  • the above lower limit value and upper limit value can be freely combined to form a range as long as there is no contradiction.
  • the cell is a cell capable of expressing the nucleic acid referred to as the content target (for example, the nucleic acid encoding interleukin 7 and / or the nucleic acid encoding CCL19).
  • the cells are preferably cells that accumulate or infiltrate around the cancer cells when introduced into the body.
  • the nucleic acids are independently contained in the cell in a state of being integrated into the genome or in a state of being carried on a plasmid. It may be contained in a state of being linked to each other and integrated into the genome or in a state of being carried on a plasmid. Examples of such cells include immune-responsive cells, anaerobic cells, and mesenchymal stem cells (MSCs).
  • MSCs mesenchymal stem cells
  • the nucleic acid delivery medium is to deliver and express a nucleic acid referred to as a inclusion target (for example, a nucleic acid encoding interleukin 7 and / or a nucleic acid encoding CCL19) to cells.
  • a nucleic acid referred to as a inclusion target for example, a nucleic acid encoding interleukin 7 and / or a nucleic acid encoding CCL19
  • the cell is preferably a human cell, more preferably a cell in the human body, and even more preferably a cancer cell or an immunoresponsive cell in the human body. That is, the nucleic acid delivery medium is preferably a nucleic acid delivery medium that delivers nucleic acid into cancer cells or immune-responsive cells when introduced into the body.
  • nucleic acid delivery medium examples include viruses, liposomes and nanoparticles.
  • a nucleic acid delivery medium known in the art may be used according to conventional methods. It is also possible to use a viral vector as a nucleic acid delivery medium.
  • the nucleic acids may be contained independently or linked to each other in the nucleic acid delivery medium. It may be included in the state of being.
  • Cancer cells have an immunosuppressive mechanism that suppresses immune-responsive cells from attacking cancer cells or issuing instructions to attack cancer cells. Attacks on cancer cells are suppressed.
  • the immunosuppressive inhibitor which is one of the components of the combination drug B according to the present disclosure, inhibits the immunosuppressive mechanism by cancer cells, so that the immune system of the cancer-affected person attacks the cancer cells. It will be easier.
  • one or more cells or nucleic acid delivery media or combinations thereof that jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19 can cause IL-7 in the vicinity of cancer tissue.
  • the combination drug B comprises one or more types of cells or nucleic acid delivery media or a combination thereof, which jointly contains a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19, and an immunosuppressive inhibitor.
  • the one or more cell or nucleic acid delivery medium in Combination Medicine B delivers nucleic acid to cells other than cancer cells, such as immunity-responsive cells.
  • the one or more cell or nucleic acid delivery media or combinations thereof in the combination drug B according to the present disclosure further comprises a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen. You may be.
  • the cell or nucleic acid delivery medium containing the nucleic acid encoding the cell surface molecule that specifically recognizes the cancer antigen may or may not contain the nucleic acid encoding interleukin 7, and the nucleic acid encoding CCL19. May or may not be included.
  • the one or more types of cells or nucleic acid delivery medium or a combination thereof in the combination drug B according to the present disclosure further contains a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen.
  • the one or more types of cell or nucleic acid delivery medium or a combination thereof comprises a nucleic acid encoding interleukin 7, a nucleic acid encoding CCL19, and a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen. It may be included in cooperation (in other words, as a whole).
  • the one or more types of cells or nucleic acid delivery medium or a combination thereof in the combination drug B according to the present disclosure further expresses a cell surface molecule that specifically recognizes a cancer antigen in the cells to which the nucleic acid has been delivered. Therefore, the cancer therapeutic effect can be further enhanced.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen is contained in a nucleic acid delivery medium
  • the nucleic acid delivery medium is administered to a subject to introduce the nucleic acid into T cells in the target body. Thereby, the cell surface molecule is expressed in the T cell.
  • the one or more types of cell or nucleic acid delivery medium in Combination Medicine B has a molecule on its surface that specifically recognizes the cancer cell in order to deliver the nucleic acid to the cancer cell.
  • the details of the molecule that specifically recognizes the cancer cell and the preferred embodiment are the same as the details of the cell surface molecule that specifically recognizes the cancer cell and the preferred embodiment.
  • the one or more types of cells or nucleic acid delivery medium in the combination drug B is a "cell", for example, a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen is introduced into the cell, and the combination drug is used.
  • scFv or the like that specifically recognizes a cancer antigen By culturing before administration of B, scFv or the like that specifically recognizes a cancer antigen can be expressed on the surface thereof.
  • the one or more types of cells or nucleic acid delivery medium in the combination drug B is a "virus", for example, a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen is incorporated into the virus genome, and an appropriate cell is used.
  • scFv or the like that specifically recognizes a cancer antigen By transfecting into a virus to produce and propagate a virus, scFv or the like that specifically recognizes a cancer antigen can be expressed on the surface thereof.
  • Antibodies such as scFv may be contained in the envelope or capsid of the virus.
  • the envelope glycoprotein gD which is responsible for invasion of the herpes virus, cannot bind to the original receptor.
  • An antibody such as scFv that specifically recognizes a cancer antigen may be inserted into the envelope glycoprotein gD.
  • the one or more types of cells or nucleic acid delivery medium in the combination drug B are liposomes, nanoparticles, or the like, a molecule that specifically recognizes cancer cells on the surface is previously known by a known method or equivalent. It can be combined by a method.
  • Nucleic acids encoding cell surface molecules that specifically recognize cancer antigens are preferably contained in immune-responsive cells.
  • the one or more types of cell or nucleic acid delivery medium or a combination thereof in the combination drug B according to the present disclosure is immunoresponsive including a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen. It preferably contains cells.
  • the immunoresponsive cells may or may not contain a nucleic acid encoding interleukin 7 and may or may not contain a nucleic acid encoding CCL19.
  • Cell surface molecules that specifically recognize cancer antigens include T cell receptors (TCRs) that specifically recognize cancer antigens, chimeric antigen receptors (CARs) that specifically recognize cancer antigens, and the like.
  • the combination drug B according to the present disclosure can be used in combination with treatment using CAR-T or TCR-T.
  • one or more types of cells or nucleic acid delivery media or combinations thereof that jointly contain the nucleic acid encoding interleukin 7 and the nucleic acid encoding CCL19 specifically comprises a cancer antigen. It may contain immunoreactive cells expressing the recognized cell surface molecules, interleukin 7 and CCL19. Further, the immunosuppressive inhibitor may be an immunosuppressive inhibitory polypeptide expressed by cells, and the combination drug B according to the present disclosure may contain cells expressing an immunosuppressive inhibitory polypeptide.
  • the cells include one or more types of cells cooperatingly containing a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19, or a cell described below as an example of a cell in a nucleic acid delivery medium or a combination thereof. Can be mentioned.
  • a nucleic acid delivery medium containing a nucleic acid encoding an immunosuppressive inhibitory polypeptide instead of the immunosuppressive inhibitor in the combination drug B according to the present disclosure is also included in the scope of the embodiment according to the present disclosure. ..
  • the nucleic acid delivery medium may be the same nucleic acid delivery medium as a nucleic acid delivery medium containing other nucleic acids, or may be a separate nucleic acid delivery medium. Therefore, according to an embodiment of the present disclosure, the immunosuppressive inhibitor is a polypeptide, and the cell or nucleic acid delivery medium or a combination thereof further cooperates with a nucleic acid encoding an immunosuppressive inhibitor polypeptide. And include.
  • the combination drug B comprises an immunoresponsive cell expressing a cell surface molecule specifically recognizing a cancer antigen, interleukin 7 and CCL19, and a cell expressing an immunosuppressive inhibitory polypeptide.
  • a cell surface molecule specifically recognizing a cancer antigen such as interleukin 7 and CCL19
  • an immunosuppressive inhibitory polypeptide such as interleukin 7 and CCL19
  • they may be the same cell or different cells.
  • the immune-responsive cells expressing the cell surface molecules, interleukin 7 and CCL19, which specifically recognize the cancer antigen, and the cells expressing the immunosuppressive inhibitory polypeptide are the same immune-responsive cells, the present disclosure is made.
  • the combination drug B according to the above is one or a plurality of types of cells or nucleic acid delivery media or a combination thereof, which jointly contains a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19 by containing the immune-responsive cells.
  • an immunosuppressive inhibitor is disclosed as a component independent of one or more types of cells or nucleic acid delivery media or combinations thereof, which jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19. May be included in the combination drug B according to the above. In other words, it may be contained in the combination drug B according to the present disclosure as a substance added separately, not as a substance expressed by the one or more kinds of cells or nucleic acid delivery medium or a combination thereof.
  • the cell or nucleic acid delivery medium or combination thereof in the combination drug B according to the present disclosure consists of a group consisting of immune-responsive cells, viruses, anaerobic bacteria, liposomes, mesenchymal stem cells (MSCs), and nanoparticles. It may be at least one selected, or a plurality selected from these may be mixed and used.
  • the immune-responsive cell is particularly any cell that is involved in the immune response and can be expressed containing a nucleic acid to be contained (for example, a nucleic acid encoding interleukin 7 and / or a nucleic acid encoding CCL19).
  • a nucleic acid to be contained for example, a nucleic acid encoding interleukin 7 and / or a nucleic acid encoding CCL19.
  • the nucleic acid to be delivered may be contained in the genome of an immune-responsive cell or may be carried on a vector outside the genome. For example, it may be contained in the genome from the viewpoint of gene-supporting stability. Good.
  • the immunoreactive cells are preferably immunoreactive cells collected from a living body, for example, lymphocytes such as T cells, natural killer cells (NK cells), and B cells, neutrophils, macrophages, and trees.
  • Examples thereof include antigen-presenting cells such as morphocytes, and granulocytes such as neutrophils, neutrophils, neutrophils, and mast cells.
  • Preferred examples include T cells collected from mammals such as humans, dogs, cats, pigs and mice, and more preferably T cells collected from humans.
  • the cell population may contain other cells in addition to T cells, but 50% or more of the total number of cells based on the number of cells.
  • T cells may be contained in a proportion of 60% or more, 70% or more, 80% or more, or 90% or more.
  • Immune-responsive cells such as T cells infiltrate, for example, body fluids such as blood and bone marrow fluid, tissues such as spleen, thymus, and lymph nodes, or cancer tissues such as primary tumors, metastatic tumors, and cancerous ascites. It can be obtained by collecting a cell population containing immune-responsive cells from immune cells. In order to increase the proportion of immune-responsive cells such as T cells contained in the cell population, the separated cell population may be subjected to a routine isolation step or purification step, if necessary. Further, the immune-responsive cells may be immune-responsive cells prepared from ES cells or iPS cells.
  • T cells examples include alpha beta T cells, gamma delta T cells, CD8 + T cells, CD4 + T cells, tumor infiltrating T cells, memory T cells, naive T cells, And NKT cells.
  • the origin of the immune-responsive cells and the administration target of the combination drug may be the same individual or different individuals, but the same individuals are preferable.
  • the immune-responsive cells may be autologous cells collected from the patient himself / herself as the administration target or allogeneic cells collected from another person. That is, the donor and the recipient may or may not match, but they are preferably matched.
  • the virus as a nucleic acid delivery medium is preferably a virus that can enclose a nucleic acid to be delivered (for example, a nucleic acid encoding interleukin 7 and / or a nucleic acid encoding CCL19) and can infect cancer cells. More preferably, it is an oncolytic virus.
  • the above-mentioned oncolytic virus is a virus that hardly proliferates even when infected with normal cells, but proliferates when infected with cancer cells and has the ability to kill cancer cells (cancer cell damage). Meaning, for example, is reviewed in Molecular Therapy, Vol. 18, No. 2, February 2010, pp. 233-234.
  • the oncolytic virus is not particularly limited as long as it has the ability to infect cancer cells and kill the cancer cells, and examples thereof include oncolytic vaccinia virus, oncolytic adenovirus, and oncolytic simple herpes. Examples include viruses, oncolytic leovirus, oncolytic measles virus, oncolytic Newcastle disease virus, oncolytic bovine hemorrhoid virus, oncolytic mumps virus, and oncolytic coxsackie virus.
  • Oncolytic vaccinia virus is, for example, Kim MK et al. Science Translational Medicine. 2013 May 15; 5 (185): 185ra63, Heo J, et al. Nature Medicine, 2013 (3): 329-36. Doi: 10.1038 /nm.3089.Epub2013Feb10., International Publication No. 2012/094386, but not limited to this vaccinia virus.
  • Examples of oncolytic adenovirus are Tedcastle A et al. Mol Ther. 2016; 24: 796-804, Marino N, Illingworth S, Kodialbail P, Patel A, Calderon H, Lear R, Fisher KD, Champion BR, Brown ACN.
  • Examples of oncolytic herpes simplex virus include Mazzacurati et al., Mol Ther, 2015 Jan; 23 (1): 99-107, Hirooka Y, et al.
  • oncolytic reovirs include, but are not limited to, the reovirs described in Mahalingam, et al, Cancers 2018, 10, 160.
  • oncolytic Newcastle disease viruses include, but are not limited to, the Newcastle disease virus described in Journal of Virology. 2016 Jun; 90 (11): 5343-5352.
  • oncolytic blister mouth ulcer virus disease virus examples include, but are not limited to, the blister mouth ulcer virus disease virus described in Muik A. et al. Cancer Res; 74 (13); 3567-78.
  • Some oncolytic viruses have a protein expression function added by genetic modification.
  • a polypeptide encoded by the nucleic acid to be delivered for example, interleukin 7 and / or CCL19 may be expressed.
  • An anaerobic bacterium as a cell in "one or more types of cells or nucleic acid delivery medium or a combination thereof jointly containing a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19" is a nucleic acid to be contained.
  • a nucleic acid encoding interleukin 7 and / or a nucleic acid encoding CCL19 is not particularly limited as long as it is a cell of an anaerobic bacterium that can be expressed.
  • the anaerobic bacterium is preferably an anaerobic gram-positive bacterium having an ability to accumulate in cancer cells, and examples thereof include bifidobacteria such as bifidobacteria, Lactobacillus spp., And Listeria spp. Can be mentioned. It is known that anaerobic bacteria easily accumulate in cancer cells because they easily grow in an environment with little oxygen. Anaerobic bacteria can also be taken up by cells in the body to which the combination drug B according to the present disclosure is administered.
  • the liposome as a nucleic acid delivery medium may be a lipid nanocapsule composed of a phospholipid bilayer membrane capable of encapsulating the nucleic acid to be delivered (for example, a nucleic acid encoding interleukin 7 and / or a nucleic acid encoding CCL19).
  • a nucleic acid encoding interleukin 7 and / or a nucleic acid encoding CCL19 for example, a nucleic acid encoding interleukin 7 and / or a nucleic acid encoding CCL19.
  • Such liposomes may be commercially available products or may be liposomes synthesized by a conventional method. Liposomes may be PEG-modified or have targeted probe molecules such as lectins or proteins (eg, antibodies) on the surface to improve their accumulation in cancer cells.
  • MSCs Membrane stem cells as cells in "one or more types of cells or nucleic acid delivery media or combinations thereof that cooperatively contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19" are contained.
  • the MSC is not particularly limited as long as it can be expressed by containing the nucleic acid of interest (for example, the nucleic acid encoding interleukin 7 and / or the nucleic acid encoding CCL19).
  • the MSCs are preferably MSCs that accumulate in cancer cells.
  • Nanoparticles as a nucleic acid delivery medium have the ability to deliver nucleic acids to be delivered (eg, nucleic acids encoding interleukin 7 and / or nucleic acids encoding CCL19) to cancer cells, preferably on the order of nanometers. Is not particularly limited as long as it is a particle body having a diameter of 5 to 800 nm.
  • Examples of nanoparticles include metal nanoparticles such as gold nanoparticles and silica nanoparticles. Such nanoparticles may be commercially available products or may be nanoparticles synthesized by a conventional method. Nanoparticles can reach cancer cells, for example, by Enhanced Permeability and Retention Effect (EPR effect).
  • EPR effect Enhanced Permeability and Retention Effect
  • the nucleic acid can be included in the nanoparticles in the form of binding to the surface of the nanoparticles, encapsulation in the nanoparticles, or the like.
  • a nucleic acid encoding interleukin 7 contained in a cell or a nucleic acid delivery medium, a nucleic acid encoding CCL19, and a cell surface molecule that specifically recognizes an optionally contained cancer antigen are used. It is preferred that each of the encoding nucleic acids is operably linked downstream of the promoter. The operation of incorporating these nucleic acids into cells or nucleic acid delivery media may be performed according to a conventional method.
  • nucleic acid into cells for example, an electroporation method (see, for example, Cytotechnology, 3,133 (1990)), a calcium phosphate method (see, for example, JP-A-2-227075), and a lipofection method (for example, Proc. Natl. Acad).
  • the introduction can be performed using a method selected from .Sci.U.SA, 84,7413 (1987)) and virus infection methods.
  • virus infection method a vector containing the nucleic acid to be introduced and a packaging plasmid are used as GP2-293 cells (manufactured by Takara Bio), Plat-GP cells (manufactured by Cosmo Bio), and PG13 cells (ATCC CRL-10686).
  • the nucleic acid to be introduced may be integrated into the genome of the cell so that it can be expressed under the control of an appropriate promoter using a known gene editing technique.
  • known gene editing techniques include techniques using endonucleases such as zinc finger nucleases, TALENs (transcriptional activation-like effector nucleases), and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) -Cas systems.
  • nucleic acid to be contained When a nucleic acid to be contained is contained in a cell, the nucleic acid may be integrated into the genome of the cell or may be supported by an intracellular vector. When two or more nucleic acids to be contained are contained in the same cell, they may be integrated into the genome of the cell adjacently or separately. However, they may be contained in the same vector or separately in separate vectors. In addition, some of the nucleic acids to be contained may be contained in the genome, and the rest may be contained in the vector.
  • nucleic acid to be contained When the nucleic acid to be contained is contained in the nucleic acid delivery medium, the nucleic acid may be contained alone or supported on a vector. When two or more nucleic acids to be contained are contained in the same nucleic acid delivery medium, they may be contained in the same vector or separately in separate vectors. However, it may be contained in the same virus or in a separate virus. Further, the different nucleic acids may be contained in the same nucleic acid delivery medium or may be contained in different nucleic acid delivery media.
  • the vector may be linear or cyclic, and may be a non-viral vector such as a plasmid, a viral vector, or a transposon vector.
  • the vector may contain one or more of a control sequence such as a promoter and a terminator, and a selectable marker sequence such as a drug resistance gene and a reporter gene.
  • the promoter contained in the vector may be used to express the gene contained in the vector.
  • the combination drug B according to the present disclosure exhibits a surprisingly improved cancer therapeutic effect due to the synergistic effect of the combination of IL-7 and CCL19 and a factor consisting of an immunosuppressive inhibitor.
  • the effect is more remarkable when the combination drug B according to the present disclosure contains a cell containing a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen or a nucleic acid delivery medium, and is specific to the cancer antigen. It is even more prominent when it contains immunoreactive cells containing nucleic acids encoding cell surface molecules that are recognized in.
  • a composition for administration containing one or more types of cells or nucleic acid delivery media or a combination thereof containing a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19 in cooperation.
  • a third composition for administration may further contain a pharmaceutically acceptable additive, and the additive includes a physiological saline solution, a buffered physiological saline solution, a cell culture medium, and dextrose.
  • the first administration composition is read as the third administration composition
  • the administration composition for the administration of the combination drug B according to the present disclosure can be applied to.
  • the second dosing composition may be the same composition as the third dosing composition, in which case one dosing composition may deliver one or more of the cells or nucleic acids. It will include both the vehicle or a combination thereof and an immunosuppressive inhibitor.
  • the second dosing composition is a composition separate from the third dosing composition
  • the third dosing composition and the second dosing composition may be administered together. It may be administered at different timings (points of time). Therefore, the cell or nucleic acid delivery medium or a combination thereof and the immunosuppressive inhibitor may be administered separately at different time points.
  • the description of the amount of immune-responsive cells A according to the present disclosure in the description of the administration composition in the combination drug A according to the present disclosure is that one or more of the above-mentioned cells or nucleic acid delivery medium or a combination thereof is a cell. It shall be read as the description of the amount of cells in the third composition for administration in the case containing
  • the combination drug A according to the present disclosure may be read as the combination drug B according to the present disclosure, and the immunoresponsive cells A and the "cancer antigen specifically" according to the present disclosure.
  • it can be read as a combination thereof, and can be applied to the combination drug B according to the present disclosure unless there is a particular contradiction. This includes explanations of the usage patterns of the combination drug, such as the species to be treated, the individual, the type of disease, the dose, and the administration schedule.
  • the amount of the nucleic acid delivery medium in the third composition for administration is determined by the type, location, severity, and the like of the cancer. It can be appropriately adjusted according to the age, weight, condition, etc. of the subject to be treated, but the amount of nucleic acid to be delivered may be an appropriate amount for delivering a therapeutically effective amount.
  • the combination drug A according to the present disclosure may be read as the combination drug B according to the present disclosure, and the immunoresponsive cell A and the cancer antigen according to the present disclosure.
  • A One or more types of cells or nucleic acid delivery media or combinations thereof containing a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19 in cooperation, and (b) an immunosuppressive inhibitor in combination.
  • a method for treating a cancer in a subject, including administration (hereinafter, also referred to as a cancer treatment method B according to the present disclosure) is provided.
  • one or more types of cells or cells in the manufacture of a medicament for treating cancer (a) a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19.
  • Nucleic acid delivery media or combinations thereof, as well as the use of (b) immunosuppressive inhibitors are provided.
  • delivery of one or more types of cells or nucleic acids containing a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19 which are used in combination with an immunosuppressive inhibitor to treat cancer in a subject.
  • Nucleic acids containing vehicles or combinations thereof are also provided.
  • one or more types of cell or nucleic acid delivery that jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19, which is used in combination with an immunosuppressive inhibitor to treat cancer in a subject.
  • Media or combinations thereof are also provided.
  • One or more types of cells or nucleic acid delivery media or combinations thereof containing a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19 in cooperation, and an immunosuppressive inhibitor are different even when administered together. It may be administered separately at the time.
  • one or more types of cells or nucleic acid delivery media, or combinations thereof, which jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19 can be used in combination with a cancer in a subject.
  • Nucleic acids containing immunosuppressive inhibitors used for treatment are also provided.
  • it is used to treat cancer in a subject in combination with one or more types of cells or nucleic acid delivery media or combinations thereof that jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19.
  • Immunosuppressive inhibitors are also provided.
  • nucleic acids that are contained in a container labeled to be used in combination with an immunosuppressive inhibitor and that jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19.
  • Pharmaceuticals containing cells or nucleic acid delivery media or combinations thereof are also provided. Details of the container, labeling, etc. are as described above.
  • a container containing a nucleic acid containing a combination thereof and a product containing the same are also provided. Details of the container, package insert, etc. are as described above.
  • one or more types of cells or nucleic acid delivery media or combinations thereof which jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19, and a combination thereof. Due to the synergistic effect of the combination of immunosuppressive inhibitors, a surprisingly improved cancer therapeutic effect can be obtained.
  • immunoreactive cells expressing cell surface molecules specifically recognizing cancer antigens, interleukin 7, CCL19, and immunosuppressive inhibitory polypeptides (hereinafter, according to the present disclosure).
  • Immune-responsive cells C are provided.
  • a cell surface molecule that specifically recognizes a cancer antigen interleukin 7, CCL19
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen Details of the definition, eg, amino acid sequence, base sequence, preferred embodiment, etc. of the nucleic acid encoding interleukin 7, the nucleic acid encoding CCL19, and the immunosuppressive inhibitor are described in Immunoresponsive Cell A according to the present disclosure and the present disclosure.
  • a cell surface molecule that specifically recognizes a cancer antigen interleukin 7, CCL19
  • a nucleic acid that encodes a cell surface molecule that specifically recognizes a cancer antigen and a gene encoding interleukin 7.
  • the immunoresponsive cell C according to the present disclosure can be considered to be a cell in which the immunoresponsive cell A according to the present disclosure further expresses an immunosuppressive inhibitory polypeptide. Therefore, the matters already explained in the description of the immune-responsive cell A (explanation of the cell surface molecule that specifically recognizes the cancer antigen, interleukin 7, CCL19, etc.) will be described in the immune-responsive cell A. Since it is the same as those described in the above, the description thereof will be omitted.
  • the immunosuppressive inhibitory polypeptide refers to a substance that falls under the category of immunosuppressive inhibitor in the combination drug A according to the present disclosure and corresponds to the polypeptide.
  • the immunosuppressive inhibitory polypeptide releases or reduces the suppression of immune-responsive cell activation.
  • immunosuppressive polypeptides include immune checkpoint-inhibiting polypeptides, Tregs, polypeptides that inhibit the infiltration, survival, or function of immunosuppressive cells such as bone marrow-derived immunosuppressive cells (MDSCs), CCR4 inhibition.
  • immunosuppressive cells such as bone marrow-derived immunosuppressive cells (MDSCs), CCR4 inhibition.
  • examples include sex polypeptides, indoleamine 2,3-dioxygenase (IDO) -inhibiting polypeptides, prostaglandin E2 [PGE2] -suppressing polypeptides, and cytotoxic anticancer polypeptides.
  • the immunosuppressive inhibitory polypeptide may be an antibody, for example, an IgG monoclonal antibody or an antibody fragment, as long as it has these functions.
  • Immune checkpoint-inhibiting polypeptides are polypeptides that typically release or reduce the immunosuppressive mechanism mediated by immune checkpoint molecules expressed on the surface of T cells.
  • the immune checkpoint inhibitory polypeptide is, for example, an immune checkpoint molecule (eg PD-1, CTLA-4, BTLA, TIM-3, TIGIT, LAG-3, etc.) or a ligand for an immune checkpoint molecule (eg PD-L1). , PD-L2, CD80 / CD86, Signal-15, etc.) to prevent the ligand from initiating signal transduction from immune checkpoint molecules, thereby reducing the inhibitory response to the immune response. it can.
  • an immune checkpoint molecule eg PD-1, CTLA-4, BTLA, TIM-3, TIGIT, LAG-3, etc.
  • a ligand for an immune checkpoint molecule eg PD-L1.
  • PD-L2 CD80 / CD86, Signal-15, etc.
  • immune checkpoint inhibitory polypeptides include PD-1 inhibitory polypeptide, PD-L1 inhibitory polypeptide, CTLA-4 inhibitory polypeptide, CD47 inhibitory polypeptide, SIRP ⁇ inhibitory polypeptide, BTLA inhibition.
  • examples thereof include a sex polypeptide, a TIM-3 inhibitory polypeptide, a TIGIT inhibitory polypeptide, a LAG-3 inhibitory polypeptide, a Sigma-15 inhibitory polypeptide, and a galectin-9 inhibitory polypeptide.
  • CCR4 inhibitory polypeptides include anti-CCR4 antibodies (eg, mogamulizumab) and the like.
  • Immunosuppressive inhibitors include PD-1 inhibitory polypeptide, PD-L1 inhibitory polypeptide, PD-L2 inhibitory polypeptide, CTLA-4 inhibitory polypeptide, BTLA (B-and T-lymphocyte attenuator).
  • Inhibitory polypeptide TIM-3 (T-cell immunoglobulin and mucin domain 3) Inhibiting polypeptide, TIGIT (T-cell immunoreceptor with Ig and ITIM domains) Inhibiting polypeptide, LAG-3 (Lymphocyte Activation Gene-3)
  • TIGIT T-cell immunoreceptor with Ig and ITIM domains
  • LAG-3 Lymphocyte Activation Gene-3
  • It may contain one or more selected from the group consisting of an inhibitory polypeptide and a Signal-15 inhibitory polypeptide.
  • the immunosuppressive inhibitory polypeptide may be an immune checkpoint inhibitory polypeptide, more specifically a PD-1 inhibitory polypeptide or a PD-L1 inhibitory polypeptide, and more specifically. May be an antibody against PD-1 or an antibody against PD-L1.
  • antibodies against PD-1 include Nivolumab, Pembrolizumab, Tripalimab, Cemiplimab-rwlc, Sintilimab and the like.
  • Examples of antibodies against PD-L1 include Atezolizumab, Durvalumab, Avelumab, and the like.
  • Examples of antibodies against CTLA-4 include Ipilimumab and the like.
  • Other examples include antibodies against CD47 and SIRP ⁇ .
  • the antibody may be an IgG monoclonal antibody, a Fab fragment, a scFv, or another antibody or antibody fragment as long as it has a predetermined antigen-binding property.
  • the anti-PD-1scFv as an immunosuppressive inhibitory polypeptide include the amino acid sequence at positions 592 to 835 counting from the N-terminal in SEQ ID NO: 16, and an example of the nucleic acid sequence encoding the amino acid sequence is SEQ ID NO: 16. Examples thereof include the nucleic acid sequences of the 1717th residue to the 2505th residue counting from the 5'terminal at 15.
  • a single chain antibody (scFv) against a target of interest can also be produced by a known method. For example, after inoculating a mouse or the like with an antigen, lymphoid tissue is collected to prepare a library of antibody genes, and a base sequence encoding an antibody that recognizes a cancer antigen is obtained by antibody direct cloning, and the base sequence is used as the basis.
  • a single chain antibody may be designed.
  • a hybridoma may be prepared using the collected lymphoid tissue, a hybridoma encoding an antibody that recognizes a cancer antigen may be identified to obtain a monoclonal antibody, and a single-chain antibody may be designed based on the sequence information. Good.
  • an antibody library prepared from cancer-affected B cells having an antiserum showing high neutralizing activity against cancer antigens may be prepared and presented on a phage display to select a single-chain antibody that recognizes a cancer antigen.
  • the immune-responsive cell C expresses cell surface molecules that specifically recognize cancer antigens, IL-7, CCL19, and immunosuppressive inhibitory polypeptides.
  • "expressing a cell surface molecule that specifically recognizes a cancer antigen, IL-7, CCL19, and an immunosuppressive inhibitory polypeptide” means a cell surface molecule that specifically recognizes a cancer antigen.
  • IL-7, CCL19, and immunosuppressive inhibitory polypeptides are produced by immune-responsive cells, and at least some of the cell surface molecules that specifically recognize cancer antigens are located on the cell surface (cell surface outside the cell). It means that IL-7, CCL19, and immunosuppressive inhibitory polypeptides are secreted extracellularly.
  • Cancer cells have an immunosuppressive mechanism that suppresses immune-responsive cells from attacking cancer cells or issuing instructions to attack cancer cells. Attacks on cancer cells are suppressed.
  • the immunosuppressive inhibitory polypeptide expressed by the immune-responsive cell C according to the present disclosure makes it possible for the immune system of a cancer-affected person to attack the cancer cell by inhibiting the immunosuppressive mechanism by the cancer cell. It is thought to be easy.
  • the immune-responsive cell C according to the present disclosure also expresses IL-7 and CCL19, so that not only the immune-responsive cell C according to the present disclosure but also the endogenous immunity of the cancer-affected person Responsive cells also accumulate around the cancer cells, which may enable them to attack the cancer cells more effectively.
  • the immune-responsive cell C specifically recognizes a cancer antigen by expressing a cell surface molecule that specifically recognizes the cancer antigen, interleukin 7, CCL19, and an immunosuppressive inhibitory polypeptide.
  • a cell surface molecule that specifically recognizes the cancer antigen, interleukin 7, CCL19, and an immunosuppressive inhibitory polypeptide.
  • the combination of immune-responsive cells expressing recognized cell surface molecules, secreted IL-7, CCL19, and immunosuppressive inhibitory polypeptide exerted a synergistic effect, which resulted in significant improvement. It is thought to have a therapeutic effect. This synergistic effect is unpredictable from the individual effects of each factor.
  • immune-responsive cells expressing cell surface molecules specifically recognizing cancer antigens, interleukin 7, and CCL19 but not immunosuppressive inhibitors were used. Cancer that is difficult to treat when using immune-responsive cells that express cell surface molecules and immunosuppressive inhibitors that specifically recognize cancer antigens, but do not express interleukin 7 and CCL19. Even in the case of treatment, it may be possible to treat by using the immunoresponsive cells C according to the present disclosure. In addition, due to such a high therapeutic effect, it is possible to obtain a therapeutic effect even when the dose of cells is reduced, and even when a sufficient number of immune-responsive cells cannot be collected when using autologous cells, treatment is performed. It becomes possible to obtain the effect.
  • Such effects include co-expression of cell surface molecules that specifically recognize cancer antigens, interleukin 7, and CCL19, or cell surface molecules that specifically recognize cancer antigens and immunosuppressive inhibitory polypeptides. This is an effect that cannot be predicted from the co-expression of.
  • the immune-responsive cell C is, for example, an immune-responsive cell collected from a living body, a pluripotent stem cell such as iPS cell or ES cell, or an immune-responsive cell derived from a somatic stem cell such as a hematopoietic stem cell. Obtained by introducing a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide. be able to.
  • immunoreactive cells that endogenously express a cell surface molecule that specifically recognizes a cancer antigen are collected from a living body to obtain IL-7. It can also be obtained by introducing a nucleic acid encoding, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide.
  • a nucleic acid encoding for example, a TCR that specifically recognizes a cancer antigen
  • CCL19 a nucleic acid encoding an immunosuppressive inhibitory polypeptide.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are all related to the present disclosure. It may be present in the genome of immunoresponsive cell C or may be carried in a vector outside the genome, and may be present in the genome from the viewpoint of stability of nucleic acid carrying, for example.
  • nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are integrated in the genome. They may exist (for example, in a concatenated manner), they may exist separately (separately), or only some of them may exist together (for example, in a concatenated manner), and others. Things may exist separately (separately).
  • the cell surface molecule that specifically recognizes a cancer antigen is a heterodimer or a heteromultimer, for example, a TCR consisting of an ⁇ dimer or a ⁇ dimer
  • the heterodimer Nucleic acids encoding the respective molecules constituting the body or heteromultimer may be present collectively in the genome or may be present separately (separately).
  • At least one of the nucleic acids encoding IL-7, the nucleic acid encoding CCL19, and the nucleic acid encoding the immunosuppressive inhibitory polypeptide is exogenous, even if all are exogenous. Good.
  • the nucleic acid encoding IL-7, the nucleic acid encoding CCL19, and the nucleic acid encoding the immunosuppressive inhibitory polypeptide may be independently integrated into the genome or the vector. In certain embodiments, is the nucleic acid encoding IL-7, the nucleic acid encoding CCL19, and the nucleic acid encoding the immunosuppressive inhibitory polypeptide all integrated into the genome of immunoreactive cell C according to the present disclosure?
  • nucleic acid encoding IL-7 is integrated into the genome of immunoreactive cell C according to the present disclosure. However, the rest are integrated into one or more vectors present in the immunoresponsive cell C.
  • nucleic acid encoding the immunosuppressive inhibitory polypeptide is integrated into the genome of the immune-responsive cell or is present in the immune-responsive cell, the nucleic acid encoding IL-7 and the CCL19.
  • each nucleic acid is present in the cell can be easily confirmed by using a known method such as PCR.
  • immunoresponsive cells When immunoresponsive cells endogenously express a cell surface molecule that specifically recognizes a cancer antigen, for example, T cells expressing a TCR that specifically recognizes a predetermined cancer antigen are isolated. In this case, it is not necessary to introduce a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen from the outside, but in other cases, a cell surface molecule that specifically recognizes a cancer antigen is introduced. One or more of the encoding nucleic acid, the nucleic acid encoding IL-7, the nucleic acid encoding CCL19, and the immunosuppressive inhibitory polypeptide are introduced from the outside.
  • nucleic acid encodes a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen for introduction into an immune-responsive cell, a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and an immunosuppressive inhibitory polypeptide.
  • Each nucleic acid can be produced by a known technique such as a method of chemically synthesizing or a method of amplifying by PCR based on the information of the base sequence encoding the molecule.
  • the codon in the coding region may be modified to optimize the expression of the gene in the immune-responsive cell into which the nucleic acid containing the gene is introduced.
  • the nucleic acid group to be introduced can be introduced by including the nucleic acid group in one or more nucleic acid delivery media.
  • nucleic acid delivery media in this case include the viruses, liposomes and nanoparticles described above. Liposomes and nanoparticles may contain nucleic acids in a vector.
  • one or more types of nucleic acid delivery media also jointly contain a nucleic acid encoding interleukin 7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide.
  • the nucleic acid delivery medium encodes a cell surface molecule that specifically recognizes a cancer antigen, such as when an immune-responsive cell does not endogenously express a cell surface molecule that specifically recognizes a cancer antigen. It may further contain nucleic acids.
  • a vector containing a group of nucleic acids will be described, but the same description applies to the case of a nucleic acid delivery medium as long as there is no contradiction.
  • the nucleic acid delivery medium may include a vector as described below.
  • the nucleic acid to be introduced may be introduced in a state of being carried on different vectors, or may be introduced in a state of carrying two or more kinds of nucleic acids on the same vector.
  • nucleic acid encoding IL-7 when introducing a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide into an immunoresponsive cell, the nucleic acid encoding IL-7 and the nucleic acid encoding CCL19 It may be introduced in a separate vector from the above, or both nucleic acids may be carried and introduced in the same vector.
  • the nucleic acid encoding CCL19 and the nucleic acid encoding the immunosuppressive inhibitory polypeptide may be introduced in separate vectors, or both nucleic acids may be supported and introduced in the same vector.
  • the nucleic acid encoding IL-7 and the nucleic acid encoding the immunosuppressive inhibitory polypeptide may be introduced in separate vectors, or both nucleic acids may be supported and introduced in the same vector.
  • the following description of the case where a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen is also introduced also excludes "a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen”.
  • a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide in other words, a cell surface molecule that specifically recognizes a cancer antigen.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are introduced into immune-responsive cells. If, (I) A nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are separated from each other.
  • Nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen and a nucleic acid encoding IL-7 are carried on the same vector, and a nucleic acid encoding CCL19 is carried on a separate vector to inhibit immunosuppression.
  • the nucleic acid encoding the sex polypeptide may be carried on a separate additional vector and introduced.
  • Nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen and nucleic acid encoding CCL19 are carried on the same vector, and nucleic acid encoding IL-7 is carried on a separate vector to inhibit immunosuppression.
  • the nucleic acid encoding the sex polypeptide may be carried on a separate additional vector and introduced.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are carried on the same vector, and a nucleic acid encoding IL-7 is carried on a separate vector.
  • the nucleic acid encoding CCL19 may be carried on a separate additional vector for introduction.
  • nucleic acid encoding IL-7 and nucleic acid encoding CCL19 are carried on the same vector, and nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen is carried on a separate vector to inhibit immunosuppression.
  • the nucleic acid encoding the sex polypeptide may be carried on a separate additional vector and introduced.
  • a nucleic acid encoding IL-7 and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are carried on the same vector, and a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen is carried on a separate vector.
  • the nucleic acid encoding CCL19 may be carried on a separate additional vector for introduction.
  • a nucleic acid encoding CCL19 and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are carried on the same vector, and a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen is carried on a separate vector.
  • the nucleic acid encoding IL-7 may be carried on a separate additional vector and introduced.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen and a nucleic acid encoding IL-7 are carried on the same vector, and a nucleic acid encoding CCL19 and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are carried. May be introduced by carrying them together in separate vectors.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen and a nucleic acid encoding CCL19 are carried on the same vector, and a nucleic acid encoding IL-7 and a nucleic acid encoding an immunosuppression-inhibiting polypeptide are carried.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are carried on the same vector, and a nucleic acid encoding IL-7 and a nucleic acid encoding CCL19 are supported. May be introduced by carrying them together in separate vectors.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, a nucleic acid encoding IL-7, and a nucleic acid encoding CCL19 are carried on the same vector to encode an immunosuppression-inhibiting polypeptide.
  • Nucleic acid may be introduced by supporting it on a separate vector, or it may be introduced.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, a nucleic acid encoding IL-7, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are carried on the same vector to encode CCL19.
  • Nucleic acid may be introduced by supporting it on a separate vector.
  • a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are carried on the same vector to encode IL-7.
  • Nucleic acid may be introduced by supporting it on a separate vector.
  • a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are carried on the same vector to encode a cell surface molecule that specifically recognizes a cancer antigen.
  • Nucleic acid may be introduced by supporting it on a separate vector, or it may be introduced.
  • Nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, nucleic acid encoding IL-7, nucleic acid encoding CCL19, and nucleic acid encoding an immunosuppressive inhibitory polypeptide are put into the same vector. It may be carried and introduced.
  • two or more kinds of nucleic acids may be introduced while being supported on the same vector.
  • the two or more kinds of nucleic acids are collectively present in the immune-responsive cell.
  • the following vectors or group of vectors can be used.
  • F A vector containing a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide (f).
  • G A group of vectors consisting of the following vectors (g-1) and vectors (g-2) (corresponding to the case of xiv above).
  • G-1 Vector containing nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen (g-2) Nucleic acid encoding IL-7, nucleic acid encoding CCL19, immunosuppressive inhibitory polypeptide
  • a suitable vector group can be designed in the same manner as for the vector containing the nucleic acid encoding the above.
  • the vector group may be designed so that the nucleic acid is included in the redundancy. That is, a specific one of a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide. Nucleic acid may be contained in two or more of the vectors belonging to the vector group.
  • the method for introducing a vector carrying a nucleic acid into immune-responsive cells is not particularly limited, but known methods such as a virus infection method, a transposon method, a calcium phosphate method, a lipofection method, a microinjection method, and an electroporation method can be used. Can be mentioned. A method of introducing a foreign nucleic acid by a viral infection method capable of introducing it into the genome can bring about stability of nucleic acid support.
  • GP2-293 cells manufactured by Takara Bio
  • Plat-GP cells manufactured by Cosmo Bio
  • PG13 cells ATCC CRL-10686
  • PA317 cells ATCC CRL-
  • a method of transfecting packaging cells such as 9078) to prepare a recombinant virus and infecting immune-responsive cells with the recombinant virus can be mentioned, such as Retrovirus packaging Kit Eco (manufactured by Takara Bio Co., Ltd.). It may be carried out using a commercially available kit.
  • an MSCV retrovirus expression system or the like it is possible to introduce a foreign nucleic acid into the genome.
  • a nucleic acid encoding CCL19 a nucleic acid encoding an immunosuppressive inhibitory polypeptide, and, if necessary, a cell surface molecule that specifically recognizes a cancer antigen. Integration can also be performed using known gene editing techniques.
  • Known gene editing techniques include techniques using endonucleases such as zinc finger nucleases, TALENs (transcriptional activation-like effector nucleases), and CRISPR (Crustered Regularly Interspaced Short Palindromic Repeat) -Cas systems. Integration of nucleic acids encoding other foreign proteins, which are optionally introduced, into the genome can also be performed by a similar technique.
  • nucleic acids when integrated into the genome of immunoresponsive cells, they can be actuated in a non-coding region of the genome together with an upstream promoter that controls the gene (that is, can be expressed under the control of the promoter). It may be integrated (as such), or it may be operably integrated downstream of a promoter already present in the genome, without a promoter. Examples of promoters already present in the genome include promoters of TCR ⁇ and TCR ⁇ .
  • Nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen nucleic acid encoding IL-7, nucleic acid encoding CCL19, nucleic acid encoding an immunosuppressive inhibitory polypeptide, and optionally introduced additional
  • these two or more kinds of nucleic acids can be expressed under the control of a common promoter.
  • a 2A peptide, an IRES peptide, or the like can be used to disrupt transcription and / or translation to express each polypeptide.
  • nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide.
  • the order of arrangement of the two or more types of nucleic acids in the vector is not particularly limited.
  • nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide are contained.
  • the order of arrangement of these four types of nucleic acids is not limited.
  • nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide.
  • nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide.
  • Any of the residuals (3) of the above 4 nucleic acids iii
  • Any of the residuals (2) of the above 4 nucleic acids any of the residuals (2) of the above 4 nucleic acids
  • the last remaining nucleic acid may be lined up.
  • nucleic acid encoding IL-7 a nucleic acid encoding CCL19, and a nucleic acid encoding CCL19, which may be used when immune-responsive cells endogenously express a cell surface molecule that specifically recognizes a cancer antigen
  • Vectors containing nucleic acids encoding immunosuppressive polypeptides are also available.
  • Any one of the residuals (2) of the above three nucleic acids iii) The last remaining one of the above three nucleic acids may be arranged in this order.
  • the nucleic acid encoding the cell surface molecule that specifically recognizes the cancer antigen, the nucleic acid encoding IL-7, the nucleic acid encoding CCL19, and the nucleic acid encoding the immunosuppressive inhibitory polypeptide are different promoters. It may be transcribed by one promoter using an internal ribosome entry site (IRES) or a self-cleaving 2A peptide.
  • IRS internal ribosome entry site
  • the base sequence between the respective nucleic acids may contain any base sequence as long as each nucleic acid can be expressed, but a self-cleaving peptide (2A peptide) or a self-cleaving peptide (2A peptide) or It may contain a base sequence encoding an IRES, or may contain a base sequence encoding a 2A peptide.
  • the base sequence between nucleic acids that may contain a self-cleaving peptide (2A peptide) or a base sequence encoding IRES may be, for example, a base sequence between a nucleic acid encoding IL-7 and a nucleic acid encoding CCL19. Often, it may be a base sequence between a nucleic acid encoding IL-7 and a nucleic acid encoding an immunosuppressive inhibitory polypeptide, and the nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen and IL.
  • It may be a base sequence between a nucleic acid encoding -7, or a base sequence between a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen and a nucleic acid encoding CCL19. Often, it may be a base sequence between a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen and a nucleic acid encoding an immunosuppression-inhibiting polypeptide, and the nucleic acid encoding CCL19 and immunosuppression inhibition may be used.
  • It may be a base sequence between a nucleic acid encoding a sex polypeptide, a base sequence between a nucleic acid encoding an alpha chain and a nucleic acid encoding a beta chain in an alpha beta TCR, and a gamma.
  • -It may be a base sequence between the nucleic acid encoding the gamma chain and the nucleic acid encoding the delta chain in the delta TCR. That is, each region between these nucleic acids can optionally contain a self-cleaving peptide (2A peptide) or a base sequence encoding an IRES.
  • the 2A peptide is a self-cleaving peptide derived from a virus, and the details thereof are as described above.
  • the vector used for introducing nucleic acid into immune-responsive cells may be linear or cyclic, and may be a non-viral vector such as a plasmid, a viral vector, or a transposon vector.
  • the vector used for introducing nucleic acid into immune-responsive cells may contain one or more of a control sequence such as a promoter and a terminator, and a selectable marker sequence such as a drug-resistant nucleic acid and a reporter nucleic acid. Even after the nucleic acid is introduced into the immune-responsive cell, the promoter contained in the vector may be used to express the nucleic acid.
  • a nucleic acid encoding a cell surface molecule that operably recognizes a cancer antigen downstream of a promoter sequence in a vector, a nucleic acid encoding IL-7, a nucleic acid encoding CCL19, and an immunosuppressive inhibitory poly.
  • the nucleic acids By arranging one or more of the nucleic acids encoding the peptides, the nucleic acids can be efficiently transcribed.
  • the promoter examples include a retrovirus LTR promoter, an SV40 early promoter, a cytomegalovirus promoter, a virus-derived promoter such as the thymidine kinase promoter of simple herpesvirus, a phosphoglycerate kinase (PGK) promoter, an Xist promoter, and ⁇ -actin.
  • Mammalian-derived promoters such as promoters, RNA polymerase II promoters, and polypeptide chain elongation factor gene promoters can be mentioned.
  • a tetracycline-responsive promoter induced by tetracycline, an Mx1 promoter induced by interferon, or the like may be used.
  • a gene whose transcription is regulated by the promoter for example, a gene encoding a cell surface molecule that specifically recognizes a cancer antigen, a gene encoding IL-7, CCL19
  • the viral vector examples include a retrovirus vector, a lentivirus vector, an adenovirus vector, and an adeno-associated virus vector.
  • retrovirus vector examples include a pMSGV vector (Tamada K. et al., Clin Cancer Res 18: 6436-6445 (2002)), a pMSCV vector (manufactured by Takara Bio Inc.), and the like. If a retrovirus vector is used, the introduced nucleic acid is incorporated into the genome of the host cell, so that the introduced nucleic acid can be stably expressed for a long period of time.
  • Expression of cell surface molecules, IL-7, CCL19, and immunosuppressive inhibitory polypeptides that specifically recognize cancer antigens in immune-responsive cells can be confirmed by flow cytometry, ELISA, Western blotting, or the like. ..
  • the introduction of nucleic acids encoding these can be confirmed by confirming the expression product as described above, or by PCR such as Northern blotting, Southern blotting, RT-PCR and the like.
  • the vector used for nucleic acid introduction contains a marker gene
  • the introduction of nucleic acid can be confirmed by examining the expression of the marker gene inserted in the expression vector.
  • a drug containing an immunoresponsive cell expressing a cell surface molecule that specifically recognizes a cancer antigen, interleukin 7, CCL19, and an immunosuppressive inhibitory polypeptide (hereinafter, "the present disclosure” Also referred to as “pharmaceutical C") is provided. That is, the drug C according to the present disclosure is a drug containing immune-responsive cells C according to the present disclosure.
  • the pharmaceutical C according to the present disclosure may further contain a pharmaceutically acceptable additive, and the additive includes physiological saline, buffered physiological saline, cell culture medium, dextrose, water for injection, and glycerol. , Ethanol and combinations thereof, stabilizers, solubilizers, surfactants, buffers, preservatives, isotonic agents, fillers, and lubricants.
  • the amount of immune-responsive cells C according to the present disclosure contained in the medicament C according to the present disclosure can be appropriately adjusted according to the type, location, severity of the cancer, the age, weight and condition of the subject to be treated, and the like. For example, 1 ⁇ 10 4 to 1 ⁇ 10 11 pieces, more specifically 1 ⁇ 10 5 to 1 ⁇ 10 10 pieces, more specifically 1 ⁇ 10 6 to 1 ⁇ 10 9 pieces per administration. It may be administered.
  • the amount of immune-responsive cells C according to the present disclosure is less than 1 ⁇ 10 6 cells per administration, for example, 1 ⁇ 10 5 to 5 ⁇ 10 5 cells, more specifically 1.5 ⁇ 10 5 cells. It may be as small as ⁇ 4 ⁇ 10 5 pieces.
  • Immune-responsive cells that do not express interleukin 7 and CCL19 but that express cell surface molecules and immunosuppressive inhibitors that specifically recognize cancer antigens. When used, the amount may be so small that it does not exert an anticancer effect.
  • the lower limit of the amount of immune-responsive cells C is not particularly limited as long as the amount of immune-responsive cells C can exert an anticancer effect.
  • the drug C according to the present disclosure is 4 times a day, 3 times a day, 2 times a day, once a day, every 1 day, every 2 days, every 3 days, every 4 days, every 5 days, 1 week. It may be administered once every 7 days, every 8 days, every 9 days, twice a week, once a month or twice a month.
  • the total number of administrations may be, for example, 1 to 10 times, that is, 1 time, 2 times, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times or 10 times. It may be administered more than 10 times.
  • the medicament C comprises immune-responsive cells expressing a cell surface molecule that specifically recognizes a cancer antigen, secreted IL-7, CCL19, and an immunosuppressive inhibitory peptide.
  • the synergistic effect of the combination of factors produces a surprisingly improved cancer treatment effect.
  • the medicament C according to the present disclosure can be administered to a subject in need of treatment for cancer by using a method known to those skilled in the art, for example, local injection (including catheter administration), systemic injection, intravenous injection. It can be administered by injection or parenteral administration (eg, transdermal administration, transmucosal administration, more specifically nasal drops, eye drops, sublingual administration, suppositories, patches, etc.). From the viewpoint of handling, the drug C according to the present disclosure may be formulated in an injectable form (solution, suspension, emulsion) at a unit dose.
  • an injectable form solution, suspension, emulsion
  • administration method include intravenous, intratumoral, intradermal, subcutaneous, intramuscular, intraperitoneal, intraarterial, intramedullary, intracardiac, intraarticular, intrasynovial, intracranial, and intrathecal.
  • submucosal (cerebrospinal fluid) injections can be mentioned.
  • the immune-responsive cell C according to the present disclosure is a gene necessary for obtaining an original immune-responsive cell or a precursor cell thereof from a patient to be treated and forming the immune-responsive cell C according to the present disclosure. Later, it may be administered to the same patient (self-administration) or to another patient (allogeneic administration).
  • the source immune-responsive cells or progenitor cells thereof may be prepared from pluripotent stem cells such as iPS cells and ES cells or somatic stem cells such as hematopoietic stem cells.
  • the medicament C according to the present disclosure is administered as, for example, a sterile liquid preparation which may be buffered to a predetermined pH, for example, an isotonic aqueous solution, a suspension, an emulsion, a dispersion or a viscous composition. be able to.
  • the liquid preparation may be a liquid preparation for injection. Further, in order to prolong the contact time with a specific structure, the liquid preparation may be in the form of a viscous composition having a viscosity within an appropriate viscosity range.
  • the liquid preparation comprises, for example, a solvent or dispersion medium consisting of water, saline, phosphate buffered saline, polyols (eg, glycerol, propylene glycol, liquid polyethylene glycol, etc.) and mixtures thereof. May be good.
  • a solvent or dispersion medium consisting of water, saline, phosphate buffered saline, polyols (eg, glycerol, propylene glycol, liquid polyethylene glycol, etc.) and mixtures thereof. May be good.
  • the liquid preparation can be prepared by blending the immunoresponsive cells C according to the present disclosure with various amounts of other components in an appropriate amount of a suitable solvent.
  • the liquid preparation may contain suitable carriers, diluents, or excipients.
  • the liquid preparation may also be lyophilized.
  • the liquid preparation may further contain a variety of co-auxiliaries, depending on the desired route of administration, examples of co-auxiliaries include wetting agents, dispersants or emulsifiers (eg, methylcellulose), pH buffering agents. , Gelling agents or viscosity-enhancing additives, preservatives, flavoring agents, coloring agents and the like.
  • co-auxiliaries include wetting agents, dispersants or emulsifiers (eg, methylcellulose), pH buffering agents. , Gelling agents or viscosity-enhancing additives, preservatives, flavoring agents, coloring agents and the like.
  • the liquid preparation may also further contain various additives that enhance the stability and sterility of the liquid preparation, such as antibacterial preservatives, antioxidants, chelating agents, and buffers. And so on.
  • various antibacterial and antifungal agents such as parabens, chlorobutanol, phenol, sorbic acid and the like can be used to prevent the action of microorganisms.
  • the vehicle, diluent or additive used in the liquid preparation must be compatible with the immunoresponsive cells C according to the present disclosure contained therein.
  • the liquid preparation may be isotonic with blood.
  • Isotonicity is a liquid preparation of sodium chloride, or other pharmaceutically acceptable osmoregulators (eg, dextrose, boric acid, sodium tartrate, propylene glycol, or other inorganic or organic solutes). It can be achieved by containing it in.
  • the drug C according to the present disclosure may further contain another anticancer agent in addition to the immunoresponsive cells C according to the present disclosure.
  • anticancer agents include alkylating agents such as bendamstin, iosfamide and dacarbazine, metabolic antagonists such as pentostatin, fludalabine, cladribine, methotrexate, 5-fluorouracil, 6-mercaptopurine and enocitabine, rituximab and cetuximab.
  • Molecular-targeted drugs such as trastuzumab, kinase inhibitors such as imatinib, gefetinib, errotinib, afatinib, dasatinib, snitinib, tramethinib, proteasome inhibitors such as bortezomib, calcinurine inhibitors such as cyclosporin and tachlorimus
  • anticancer antibiotics plant alkaloids such as irinotecan and etoposide, platinum preparations such as cisplatin, oxaliplatin and carboplatin, hormonal therapeutic agents such as tamoxyphene and bicardamide, and immunomodulators such as interferon.
  • Other anti-cancer agents may include, for example, at least one of an alkylating agent and an antimetabolite.
  • the treatment target may be, for example, any mammal, but may be, for example, a primate animal, and more specifically, a human.
  • the treatment target may be a pet animal or a domestic animal, and examples thereof include dogs, cats, pigs, cows, horses, sheep, and goats.
  • the cancers to be treated may be solid cancers or blood cancers, adenocarcinoma, squamous cell carcinoma, glandular squamous cell carcinoma, undifferentiated cancer, large cell cancer, small cell cancer, skin.
  • sarcoma such as chondrosarcoma, Ewing sarcoma, malignant vascular endothelial tumor, malignant Schwan tumor, osteosarcoma, soft tissue sarcoma, hepatoblastoma, myeloma, nephrblastoma, neuroblastoma, pancreas
  • blastomas such as blastoma, pleural lung blastoma, and retinal blastoma, embryonic cell tumors
  • the drug C according to the present disclosure it is possible to reduce the immunosuppressive property in the cancer microenvironment, so that the cancer to be treated is not limited to blood cell type cancer, but for solid cancer. Also has a therapeutic effect. Therefore, it can be highly effective against solid cancers that were difficult to treat by conventional methods.
  • the drug C according to the present disclosure may be prophylactically administered to a subject even before a definitive diagnosis of cancer is made, in a situation where the presence of cancer cells in the subject is suspected.
  • usage patterns are also included in the concept of use for the treatment of cancer.
  • ⁇ Treatment method for cancer in the subject> According to one aspect of the present disclosure.
  • a method for treating (hereinafter, also referred to as a cancer treatment method C according to the present disclosure) is provided.
  • the immune-responsive cells in the cancer treatment method C according to the present disclosure are the immune-responsive cells C according to the present disclosure, and the detailed configuration and examples thereof are the immune-responsive cells C according to the present disclosure.
  • the above explanation applies as it is.
  • the immune-responsive cells C according to the present disclosure can be administered in a therapeutically effective amount.
  • the cancer treatment method C according to the present disclosure is a factor consisting of a cell surface molecule that specifically recognizes a cancer antigen expressed by an immune-responsive cell, IL-7, CCL19, and an immunosuppressive inhibitory polypeptide. The synergistic effect of the combination produces a surprisingly improved cancer treatment effect.
  • immunity expressing cell surface molecules specifically recognizing cancer antigens, interleukin 7, CCL19, and immunosuppressive inhibitory polypeptides in the manufacture of pharmaceuticals for treating cancer.
  • the use of responsive cells is provided. Even in this use, the above-mentioned description of Medicine C according to the present disclosure applies as it is to the details of immune-responsive cells, cancer treatment and the like.
  • the present disclosure expresses cell surface molecules that specifically recognize cancer antigens, interleukin 7, CCL19, and immunosuppressive inhibitory polypeptides used to treat cancer in a subject. Immune-responsive cells are also provided.
  • the drug C according to the present disclosure may be contained in a container as described in the description of the combination drug A according to the present disclosure. Products containing containers containing pharmaceutical C are also provided.
  • cell surface molecules, IL-7, CCL19, and immunosuppressive inhibitory peptides that specifically recognize cancer antigens expressed by immune-responsive cells. Due to the synergistic effect of the combination, a surprisingly improved cancer therapeutic effect can be obtained.
  • IL-7 ⁇ CCL19 expression vector A mouse IL-7 (without stop codon) followed by an IL-7-F2A-CCL19 DNA fragment (SEQ ID NO: 9) encoding F2A and mouse CCL19 was artificially synthesized.
  • the synthesized IL-7-F2A-CCL19 DNA fragment was used as a pMSGV retrovirus expression vector having an F2A-eGFP sequence (Tamada k et al., Clin Cancer).
  • a pMSGV vector (eGFP-Conv. Vector) containing eGFP as a control and not containing IL-7 and CCL19 was prepared.
  • eGFP-Conv. A map of the vector is shown in FIG. 1A.
  • the 1st to 462th bases are IL-7 (the 1st to 75th bases are the signal sequence of IL-7), the 463rd to 537th bases are F2A, and the 538th to 861st bases are CCL19.
  • Bases 538 to 612 are the signal sequence of CCL19
  • bases 868 to 942 are F2A
  • bases 946 to 1662 are nucleic acids encoding eGFP
  • bases 1663 to 1665 are stop codons.
  • amino acid sequence corresponding to the nucleotide sequence of SEQ ID NO: 10 is shown in SEQ ID NO: 11.
  • the fourth base in SEQ ID NO: 10 is changed from thymine (t) to guanine (g) (the second amino acid in SEQ ID NO: 11 is changed from phenylalanine (F) to valine (V)). It has been replaced.
  • a retrovirus was prepared for transduction of mouse T cells. Using Lipofectamine 3000 (manufactured by Thermo Fisher Scientific Co., Ltd.), the above-mentioned 7 ⁇ 19 expression vector or eGFP-Conv. By transfecting the vector and the pCL-Eco plasmid (manufactured by Imgenex) into a GP2-293 packaging cell line (manufactured by Takara Bio Inc.), a 7 ⁇ 19 expression vector or eGFP-Conv. A retrovirus introduced with a vector was prepared.
  • DMEM fetal calf serum
  • 100 U / ml penicillin 100 U / ml penicillin
  • 100 ⁇ g / ml streptomycin 100 ⁇ g / ml streptomycin
  • 50 mM 2-mercaptoethanol 50 mM 2-mercaptoethanol
  • mice Male and female DBA / 2 mice (6-8 weeks old) were purchased from Nippon SLC Co., Ltd. (Shizuoka Prefecture) and used in the experiment.
  • Transgenic mice expressing TCR that specifically recognizes the H-2L d- restrictive P815 tumor antigen P1A (Sarma, S., Y. Guo, Y. Guilloux, C. Lee, X.-F. Bai, Y Liu. 1999. J. Exp. Med. 189: 811-820) was back-mated with DBA / 2 mice for at least 10 generations.
  • mice were maintained under pathogen-free conditions.
  • Spleen cells are collected from transgenic mice expressing TCR that specifically recognizes P1A after re-mating, and mouse T cells expressing P815 tumor antigen P1A-specific TCR derived from spleen cells (P1A-specific TCR-T).
  • Cells hereinafter also referred to as vector-unintroduced P1A-TCRT cells
  • mouse T cells expressing P1A-specific TCR regardless of the presence or absence of vector introduction are collectively referred to as P1A-TCRT cells.
  • vector-unintroduced P1A-TCRT cells were incubated and activated for 48 hours in the presence of an appropriate amount of P1A peptide (LPYLGWLVF; SEQ ID NO: 12) and IL-2 for cell activation. After 48 hours of incubation, cultured cells were harvested and vector-unintroduced P1A-TCRT cells were concentrated by negative magnetic sorting using a mouse Pan T cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany). The isolated vector-unintroduced P1A-TCRT cells were transferred to a plate coated with 25 ⁇ g / ml Retronectin (registered trademark: Takara Bio Inc.).
  • the supernatant containing the vector-introduced retrovirus was mixed in the presence of the above-mentioned vector-unintroduced P1A-TCRT cells (1 ⁇ 10 6 cells / ml) activated on the plate and at 1500 rpm for 2 hours. After centrifugation, the cells were cultured for 6 hours. To remove retrovirus from the culture medium, T cells were collected, washed, transferred to a new growth culture medium (RPMI-1640) containing IL-2, cultured for another 2 days, and a 7 ⁇ 19 expression vector was introduced.
  • RPMI-1640 new growth culture medium
  • a population of P1A-TCRT cells containing P1A-TCRT cells (hereinafter, also referred to as eGFP-expressing P1A-7 ⁇ 19 TCRT cells), or eGFP-Conv.
  • a population of P1A-TCRT cells containing vector-introduced P1A-TCRT cells (hereinafter, also referred to as eGFP-expressing P1A-TCRT cells) was obtained. Transduction of each expression vector was confirmed by flow cytometric analysis to detect eGFP as a surrogate marker.
  • the eGFP-expressing P1A-7 ⁇ 19 TCRT cells and the eGFP-expressing P1A-TCRT cells do not occupy the entire P1A-TCRT cell population, but in the present specification, the description is simplified. Therefore, unless otherwise specified, treatment for the cell population is described as treatment for eGFP-expressing P1A-7 ⁇ 19 TCRT cells or eGFP-expressing P1A-TCRT cells.
  • Transduction (-) represents P1A-TCRT cells without gene transfer (vector-unintroduced P1A-TCRT cells), and "Conv. P1A-T cells” represents eGFP.
  • Representing P1A-TCRT cells “7x19 P1A-T cells” represents eGFP-expressing P1A-7x19 TCRT cells.
  • the percentage value shown in FIG. 2 indicates the percentage of the number of cells present in each region. As shown in FIG.
  • mice were subcutaneously inoculated flankally with 5 ⁇ 10 5 P815 mastcytomas (mastocytomas) suspended in 0.1 ml HBSS.
  • the P815 mast cytoma is syngenic to DBA / 2 mice, and is hereinafter simply referred to as P815 cells and P815 tumor cells.
  • mice were irradiated with a sublethal dose (3-5 Gy) for preconditioning.
  • mice were divided into 6 groups, and 1 ⁇ 10 6 intravenous eGFP-expressing P1A-7 ⁇ 19 TCRT cells were intravenously administered to the 1st and 2nd groups, and the 3rd and 4th groups were divided into groups.
  • the total number of T cells in the P1A-TCRT cell population including expressed P1A-7 ⁇ 19 TCRT cells or eGFP-expressing P1A-TCRT cells).
  • mice in the 2nd, 4th, and 6th groups a total of 6 anti-PD-1 monoclonal antibodies (Clone G4 manufactured by Merck Co., Ltd .; hereinafter) once a week starting on the 10th day.
  • the analysis results of the survival rate of each mouse are shown in FIG. 4, and the results of measuring the tumor volume are shown in FIGS. 5A to 5F.
  • the data is a pool of 5 independent experiments.
  • the horizontal axis represents the number of days (day) after subcutaneous inoculation of P815 mast cytoma.
  • FIGS. 4 and 5A-5F the horizontal axis represents the number of days (day) after subcutaneous inoculation of P815 mast cytoma.
  • 5A to 5F also show the number of tumor-rejected mice (numerator) with respect to the total number of mice (denominator) in each group.
  • mice ( ⁇ ) or mice ( ⁇ ) that received anti-PD-1 monoclonal antibody in addition to eGFP-expressing P1A-TCRT cells You can see that.
  • mice ( ⁇ ) to which the eGFP-expressing P1A-TCRT cells and the anti-PD-1 monoclonal antibody were administered a high synergistic effect was not observed.
  • the obtained T cells were washed with PBS, resuspended in Buffer R (manufactured by Thermofisher Scientific Co., Ltd.), and TrueCut (registered trademark) Cas9 protein v2 (manufactured by Thermofisher Scientific Co., Ltd.) and gene-specific. It was mixed with a Cas9-RNP complex composed of a specific guide RNA. The Cas9-RNP complex was electroporated into T cells using the Neon Transfection System (manufactured by Invitrogen). As a result, the target gene was disrupted.
  • T cells were resuspended in IL-2 -containing cRPMI, and the 7 ⁇ 19 expression vector was packaged in a retrovirus and introduced into T cells in the same manner as described above.
  • the guide RNA that targets mouse PD-1 is Okada M, et al. Blockage of Core Fucosylation Reduces Cell-Surface Expression of PD-1 and Promotes Anti-tumor Immune Responses of T Cells. Cell Rep. 2017; 20 Designed with reference to (5): 1017-1028, the sequence of the guide RNA portion was 5'-UCUGGGCAUGUGGGUCCGGC-3'(SEQ ID NO: 13). In addition, the synthesis of guide RNA was outsourced to Thermo Fisher Scientific Co., Ltd.
  • the guide RNA was changed to 5'-CUCCAGUCUUUCUAGAAGAU-3'(SEQ ID NO: 14) targeting ROSA26, and mouse ROSA26 was disrupted.
  • Guide RNA targeting ROSA26 was purchased from Thermo Fisher Scientific, Inc.
  • mice were subcutaneously inoculated flankally with 5 ⁇ 10 5 P815 mastcytomas (mastocytomas) suspended in 0.1 ml HBSS.
  • mice were irradiated with a sublethal dose (3-5 Gy) for preconditioning. The mice were divided into 4 groups, and the following treatments were performed after the 7th day.
  • Group 1 No administration of T cells or antibodies.
  • Group 2 On day 7, 1 ⁇ 10 6 intravenous eGFP-expressing P1A-7 ⁇ 19 TCRT cells knocked down ROSA26 were administered.
  • Group 3 On day 7, a cell population containing eGFP-expressing P1A-7 ⁇ 19 TCRT cells in which PD-1 was knocked down was intravenously administered to 1 ⁇ 10 6.
  • Group 4 On the 7th day, a cell population containing eGFP-expressing P1A-7 ⁇ 19 TCRT cells in which PD-1 was knocked down was intravenously administered to 1 ⁇ 10 6 cells, and once a week on the 10th day as the first time.
  • the anti-PD-1 monoclonal antibody was intraperitoneally injected at a dose of 100 ⁇ g / individual 6 times in total.
  • x is an unadministered mouse (the first group)
  • is a mouse to which eGFP-expressing P1A-7 ⁇ 19 TCRT cells knocked down the ROSA26 region (the second group)
  • is PD-.
  • Mice to which eGFP-expressing P1A-7 ⁇ 19TCRT cells in which 1 was knocked down (the third group above), ⁇ were anti-PD-1 monoclonals in addition to eGFP-expressing P1A-7 ⁇ 19TCRT cells in which PD-1 was knocked down.
  • the horizontal axis represents the number of days (day) after subcutaneous inoculation of P815 mast cytoma.
  • FIGS. 6B to 6E also show the number of tumor-rejected mice (numerator) with respect to the total number of mice (denominator) in each group.
  • the cancer therapeutic effect obtained by the mice to which the anti-PD-1 monoclonal antibody was administered in addition to the eGFP-expressing P1A-7 ⁇ 19TCRT cells was obtained in the eGFP-expressing P1A-7 ⁇ 19TCRT cells. It can be seen that it is much higher than the case where PD-1 is simply knocked down. This means that administration of anti-PD-1 monoclonal antibody not only promotes the immune response of eGFP-expressing P1A-7 ⁇ 19 TCRT cells, but is also induced around cancer cells by eGFP-expressing P1A-7 ⁇ 19 TCRT cells. It is shown that it also promotes the function of the endogenous immune cells.
  • mice Male and female DBA / 2 mice were subcutaneously inoculated flankally with 5 ⁇ 10 5 P815 mastcytomas (mastocytomas) suspended in 0.1 ml HBSS. On day 6, mice were irradiated with a sublethal dose (3-5 Gy) for preconditioning. On day 7, the mice were divided into two groups, the first group was administered with 1 ⁇ 10 6 veins of eGFP-expressing P1A-7 ⁇ 19 TCRT cells, and the second group was administered with eGFP-expressing P1A. -TCRT cells were administered 1 ⁇ 10 6 veins.
  • Tumor-completely regressed mouse individuals were euthanized on day 119, spleen cells were collected, counted, analyzed by flow cytometry and evaluated for maintenance of P1A-TCRT cells in the spleen.
  • T cells were isolated from spleen cells using the magnetic sorting method and 2 ⁇ 10 6 T cells were incubated with 1 ⁇ 10 6 P815 cells treated with mitomycin C. After 3 days and 5 days, the culture supernatant was collected and the concentration of IFN- ⁇ was measured by ELISA. In addition, the number of P1A-TCRT cells (per well) during the culture period with P815 cells was measured by flow cytometry.
  • the collected spleen cells were subjected to CD8 and eGFP by the same flow cytometry as in the experiment shown in FIG. 2 (however, the gate was changed from a 4-split gate to a custom gate including a CD8-eGFP + gate and a CD8 + eGFP + gate).
  • the results of measuring the expression of the above are shown in FIG.
  • the average value of the ratio of cells expressing eGFP without expressing CD8 (CD8 - eGFP + cells) in the spleen cells is shown in white bars in FIG. 8A, and the average value of the number of cells is shown in white in FIG. 8B. Shown with a blank bar.
  • the average value of the ratio of cells expressing both CD8 and eGFP (CD8 + eGFP + cells) in the spleen cells is painted in black in FIG. 8A, and the average value of the number of cells is painted in black in FIG. 8B. Shown by the bar.
  • the data of "Conv. P1A-T cells" is almost invisible due to the small value, but the white bar is located on the left side of the black bar.
  • FIGS. 7, 8A and 8B "Conv.
  • P1A-T cells represents a group to which eGFP-expressing P1A-TCRT cells were administered, and "7 ⁇ 19 P1A-T cells” represents eGFP-expressing P1A-7 ⁇ 19 TCRT cells. Represents the group to which was administered. From the results shown in FIGS. 7, 8A and 8B, in the group administered with eGFP-expressing P1A-7 ⁇ 19 TCRT cells, P1A-TCRT cells carrying the introduced gene were maintained even in the mice on day 119. You can see that it has been done. The percentage value shown in FIG.
  • eGFP-expressing P1A-TCRT cells are administered as 0. 055%, 0.97% in the group administered with eGFP-expressing P1A-7 ⁇ 19 TCRT cells) and the ratio of the number of cells expressing both CD8 and eGFP (CD8 + eGFP + cells) (eGFP-expressing P1A-TCRT cells) 0.0068% in the group administered with eGFP, 0.47% in the group administered with eGFP-expressing P1A-7 ⁇ 19 TCRT cells).
  • FIG. 8C the result of measuring the number of P1A-TCRT cells (per well) expressing both CD8 and eGFP during the culture period with P815 cells by flow cytometry is shown in FIG. 8C.
  • the concentration of IFN- ⁇ obtained by measuring the culture supernatant by ELISA is shown in FIG. 8D.
  • FIGS. 8C and 8D the results in the group administered with eGFP-expressing P1A-TCRT cells are represented by the left bar (white bar) at each time point, and the group administered with eGFP-expressing P1A-7 ⁇ 19 TCRT cells is shown at each time point. It is represented by the bar on the right side (black-painted bar) in.
  • FIG. 8D the results in the group administered with eGFP-expressing P1A-TCRT cells are represented by the left bar (white bar) at each time point, and the group administered with eGFP-expressing P1A-7 ⁇ 19 TCRT cells is shown at each time point. It is represented by the bar on the
  • the left bar representing the results in the group administered with eGFP-expressing P1A-TCRT cells overlaps the horizontal axis (that is, the number of P1A-TCRT cells expressing both CD8 and eGFP). It is almost 0), so it is not actually visible.
  • the results are indicated by mean and standard deviation, where "*" indicates that the P value is P ⁇ 0.05 and "**" indicates that P ⁇ 0.01. .. From the results shown in FIGS. 8C and 8D, it can be seen that the function of P1A-TCRT cells carrying the introduced gene is retained even in the mouse on day 119.
  • mice On day 0, 6-8 week old male and female DBA / 2 mice were subcutaneously inoculated flankally with 5 ⁇ 10 5 P815 cells suspended in 0.1 ml HBSS. On day 6, mice were irradiated with a sublethal dose (3-5 Gy) for preconditioning. On day 7, eGFP-expressing P1A-7 ⁇ 19 TCRT cells were intravenously administered to 1 ⁇ 10 6 cells (note that, as described above, the cell numbers listed are P1A-TCRTs including eGFP-expressing P1A-7 ⁇ 19 TCRT cells. The total number of T cells in the cell population).
  • the anti-PD-1 monoclonal antibody was intraperitoneally injected at a dose of 100 ⁇ g / individual 6 times a week, starting on the 10th day for the first time.
  • 6 naive DBA / 2 mice were subcutaneously inoculated flankally with 5 ⁇ 10 5 P815 mastcytomas (mastocytomas) suspended in 0.1 ml HBSS.
  • mice The number of days elapsed until the 20th day of the measurement of the tumor volume of the mouse, with the day of re-inoculation of P815 cells in mice with completely regressed tumor or the day of inoculation of P815 cells in naive DBA / 2 mice as day 0. It is also shown in FIG. Tumor volumes in mice were measured with a digital caliper as described for FIGS. 5A-5F, but are shown by mean and standard deviation in this experiment.
  • x indicates the result of inoculation of P815 cells to naive DBA / 2 mice
  • indicates the result of reinoculation of P815 cells to mice with completely regressed tumor.
  • mice cured by administration of eGFP-expressing P1A-7 ⁇ 19 TCRT cells and anti-PD-1 monoclonal antibody retained resistance to cancer cells even on day 117. You can see that it is doing.
  • Control anti-hCD20 CAR vector and IL-7 / CCL19 expression-anti-hCD20 CAR vector were prepared by the methods described in WO 2016/5628, paragraphs 0061 to 0066, and derived from the spleen and lymph nodes of DBA / 2 mice. Introduced into 3 ⁇ 10 6 purified mouse T cells of the above to prepare anti-hCD20 CAR-IL-7 / CCL19-expressing T cells or anti-hCD20 CAR-expressing T cells.
  • the control anti-hCD20 CAR vector is a vector containing a nucleic acid encoding anti-hCD20 CAR, and the IL-7 / CCL19 expression-anti-hCD20 CAR vector is anti-hCD20 CAR-F2A-IL-7-F2A-CCL19 in this order.
  • a vector containing the encoding nucleic acid is a vector containing the encoding nucleic acid.
  • the anti-PD-1 monoclonal antibody was intraperitoneally administered 5 times every 4 to 5 days starting from the 17th day.
  • 0.25 ⁇ 10 6 anti-hCD20 CAR-expressing T cells were intravenously administered on the 14th day, and the anti-PD-1 monoclonal antibody was administered 5 times every 4 to 5 days starting from the 17th day.
  • 0.25 ⁇ 10 6 anti-hCD20 CAR-IL-7 / CCL19-expressing T cells were intravenously administered on the 14th day, and a total of 5 times every 4 to 5 days starting from the 17th day.
  • a hamster control IgG antibody that does not recognize PD-1 was intraperitoneally administered at an amount of 100 ⁇ g / individual.
  • 0.25 ⁇ 10 6 anti-hCD20 CAR-IL-7 / CCL19-expressing T cells were intravenously administered on the 14th day, and the 17th day was the first day, and a total of 5 times every 4 to 5 days.
  • Anti-PD-1 monoclonal antibody was intraperitoneally administered in an amount of 100 ⁇ g / individual.
  • the survival rate of each mouse was analyzed, and the tumor volume of the mouse was measured twice a week by the method using the above digital caliper.
  • the analysis result of the survival rate of each mouse is shown in FIG. 10A, and the result of measuring the tumor volume up to the 70th day is shown in FIGS. 10B to 10F.
  • the data show pooled data from the results of two independent experiments.
  • Represents a mouse (sample size 10 animals; the fifth group above) to which the antibody was also administered.
  • N 5 in each group.
  • the horizontal axis represents the number of days (day) after subcutaneous inoculation of P815-hCD20 tumor cells.
  • FIGS. 10A-10F the horizontal axis represents the number of days (day) after subcutaneous inoculation of P815-hCD20 tumor cells.
  • FIGS. 10A-10F the horizontal axis represents the number of days (day) after subcutaneous inoculation of P815-hCD20 tumor cells.
  • 10B to 10F also show the number of tumor-rejecting mice (numerator) with respect to the total number of mice (denominator) in each group.
  • mice ( ⁇ ) to which the anti-PD-1 monoclonal antibody was administered in addition to the anti-hCD20 CAR-IL-7 / CCL19-expressing T cells were sufficiently administered alone. It was possible to achieve a remarkably high survival rate and suppression of tumor volume increase in solid tumors even when a dose that did not produce a favorable anticancer effect was administered.
  • the dose of anti-hCD20 CAR expressing T cells 0.25 ⁇ 10 6 cells and small as described above, is co
  • FIG. 11A shows a typical dot plot.
  • Percentage of c-kit negative cells identified as non-tumor cells (upper left panel), percentage of CD-3 negative / CD11c positive dendritic cells in the c-kit negative cell population (upper right panel), and CD
  • the percentage of endogenous T cells that are -3 positive / eGFP negative and the percentage of injected P1A-TCRT cells that are CD3-positive / eGFP positive are shown (center panel).
  • "Conv. P1A-T cells” represents a group administered with eGFP-expressing P1A-TCRT cells
  • “7 ⁇ 19 P1A-T cells” represents a group administered with eGFP-expressing P1A-7 ⁇ 19 TCRT cells. ..
  • DC represents dendritic cells
  • Endogenous T represents endogenous T cells
  • P1A-T represents P1A-TCRT cells.
  • White bars show a subset of tumor-infiltrating lymphocytes in mice treated with eGFP-expressing P1A-TCRT cells, and black bars show tumor-infiltrating lymphocytes in mice treated with eGFP-expressing P1A-7 ⁇ 19 TCRT cells. Shows a sphere subset. * Represents P ⁇ 0.05, ** represents P ⁇ 0.01, and *** represents P ⁇ 0.001.
  • c-kit staining which is known to be highly positive for P815 mast cytomas and low for dendritic cells and T cells. There was. From the results of FIGS. 11A and 11B, first, the proportion of c-kit negative tumor-infiltrating lymphocytes in the mice injected with eGFP-expressing P1A-7 ⁇ 19TCRT cells was determined by the mice injected with eGFP-expressing P1A-TCRT cells. It can be seen that it is higher than the rate of c-kit negative tumor-infiltrating lymphocytes in.
  • FIG. 11A The proportion of CD3-negative / CD11c-positive dendritic cells in a subset of c-kit-negative tumor-infiltrating lymphocytes is also shown in FIG. 11A.
  • FIG. 11A further shows the expression ratio of CD4 and CD8 in a subset of endogenous T cells that are CD3 positive / eGFP negative and a subset of CD3 positive / eGFP positive injected P1A-TCRT cells or P1A-7 ⁇ 19 TCRT cells. Also shown.
  • FIG. 11B black bars (in mice treated with eGFP-expressing P1A-7 ⁇ 19 TCRT cells) compared to white bars (a subset of tumor-infiltrating lymphocytes in mice treated with eGFP-expressing P1A-TCRT cells).
  • the 1st to 57th nucleotides counting from the 5'end correspond to the nucleic acid sequence encoding the leader sequence
  • the 58th to 375th nucleotides are the nucleic acids encoding the anti-hCD20scFv light chain.
  • the 376th to 420th nucleotides correspond to the sequence
  • the 421st to 783rd nucleotides correspond to the nucleic acid sequence encoding the anti-hCD20scFv heavy chain
  • the 793th to 1635th nucleotides correspond to the nucleic acid sequence encoding the linker.
  • Nucleotides correspond to nucleic acid sequences encoding transmembrane and cytoplasmic domains
  • nucleotides 1642 to 1716 correspond to nucleic acid sequences encoding 2A peptides
  • nucleotides 1717 to 1773 encode leader sequences.
  • the 1774th to 2106th nucleotides correspond to the nucleic acid sequence encoding the anti-mPD-1scFv light chain
  • the 2107th to 2151st nucleotides correspond to the nucleic acid sequence encoding the linker sequence, 2152.
  • the second to 2505 nucleotides correspond to the nucleic acid sequence encoding the anti-mPD-1scFv heavy chain
  • the 2506th to 2529th nucleotides correspond to the nucleic acid sequence encoding the FLAG tag
  • the 2539th to 2556th nucleotides are His.
  • the 2A peptide is also referred to as a foot-and-mouth disease virus 2A peptide (also referred to as F2A peptide). ) was used.
  • the anti-hCD20 CAR-anti-PD-1 antibody expression vector and the anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody expression vector described later are the FLAG tag and the His tag (His ⁇ 6). Contains an array.
  • the amino acid sequence encoded by the nucleic acid sequence of SEQ ID NO: 15 is shown in SEQ ID NO: 16.
  • the amino acid sequence at positions 1 to 545 counting from the N-terminal is the amino acid sequence of anti-hCD20 CAR
  • the amino acid sequence at positions 548 to 572 is the amino acid sequence of the 2A peptide
  • the sequence is the amino acid sequence of anti-mPD-1 VL
  • the amino acid sequence of positions 703 to 717 is the amino acid sequence of the linker
  • the amino acid sequence of positions 718 to 835 is the amino acid sequence of anti-mPD-1 VH, 836 to.
  • the amino acid sequence at position 843 is the amino acid sequence of the FLAG tag
  • the amino acid sequence at positions 847 to 852 is the amino acid sequence of the His tag.
  • the 1st to 57th nucleotides correspond to the nucleic acid sequence encoding the leader sequence
  • the 58th to 375th nucleotides are the nucleic acids encoding the anti-hCD20scFv light chain.
  • the 376th to 420th nucleotides correspond to the nucleic acid sequence encoding the linker
  • the 421st to 783rd nucleotides correspond to the nucleic acid sequence encoding the anti-hCD20scFv heavy chain
  • the 792th to 1038th nucleotides correspond to the nucleic acid sequence of SEQ ID NO: 17
  • the nucleotides correspond to the nucleic acid sequence encoding mouse CD8, the 1039th to 1161st nucleotides correspond to the nucleic acid sequence encoding mouse CD28, and the 1162nd to 1296th nucleotides correspond to the nucleic acid sequence encoding mouse 4-1BB.
  • the 1297th to 1635th nucleotides correspond to the nucleic acid sequence encoding mouse CD3 ⁇ , the 1642nd to 1716th nucleotides correspond to the nucleic acid sequence encoding the 2A peptide, and the 1720th to 1794th nucleotides correspond to mIL.
  • the 1720th to 2181st nucleotides correspond to the nucleic acid sequence encoding mIL-7, and the 2182nd to 2256th nucleotides correspond to the nucleic acid sequence encoding the 2A peptide.
  • the 2257th to 2331th amino acid sequences correspond to the amino acid sequences encoding the leader sequence of mCCL19, the 2257th to 2580th nucleotides correspond to the nucleic acid sequences encoding mCCL19, and the 2584th to 2658th nucleotides.
  • nucleotides 2659 to 2715 correspond to the nucleic acid sequence encoding the leader sequence
  • nucleotides 2716 to 3048 correspond to the nucleic acid sequence encoding the anti-mPD-1scFv light chain.
  • the 3049th to 3093th nucleotides correspond to the nucleic acid sequence encoding the linker sequence
  • the 3094th to 3447th nucleotides correspond to the nucleic acid sequence encoding the anti-mPD-1scFv heavy chain
  • the 3448th to 3471th nucleotides correspond to each other.
  • the second nucleotide corresponds to the nucleic acid sequence encoding the FLAG tag
  • the 3480th to 3497th nucleotides correspond to the nucleic acid sequence encoding the His tag.
  • the amino acid sequence encoded by the nucleic acid sequence of SEQ ID NO: 17 is shown in SEQ ID NO: 18.
  • the amino acid sequence at positions 1 to 261 is the amino acid sequence of anti-hCD20 scFv
  • the sequence at positions 265 to 346 is the amino acid sequence of mCD8
  • the amino acid sequence at positions 347 to 387 is the amino acid sequence at positions 347 to 387.
  • the amino acid sequence of mCD28, the amino acid sequence of positions 388 to 432 is the amino acid sequence of m4-1BB
  • the amino acid sequence of positions 433 to 545 is the amino acid sequence of mCD3
  • the amino acid sequence of positions 548 to 572 is that of the 2A peptide.
  • amino acid sequence at positions 574 to 727 is the amino acid sequence of mIL-7
  • amino acid sequence at positions 728 to 752 is the amino acid sequence of 2A peptide
  • amino acid sequence at positions 753 to 860 is the amino acid sequence of mCCL19.
  • the amino acid sequence at positions 862 to 886 is the amino acid sequence of the 2A peptide
  • the amino acid sequence at positions 906 to 1016 is the amino acid sequence of anti-mPD-1 VL
  • amino acid sequence at positions 1017 to 1031 is the amino acid of the linker.
  • the amino acid sequence at positions 1032 to 1149 is the amino acid sequence of anti-mPD-1 VH
  • the amino acid sequence at positions 1150 to 1157 is the amino acid sequence of the FLAG tag
  • the amino acid sequence at positions 1161 to 1166 is the amino acid sequence of the His tag. It is an amino acid sequence.
  • Retroviral vectors were generated for transduction of mouse T cells.
  • the above-mentioned anti-hCD20 CAR-anti-PD-1 antibody expression vector or anti-hCD20 CAR-IL was used for GP2-293 packaging cells (manufactured by Takara Bio Co., Ltd.) using Lipofectamine (registered trademark) 2000 or 3000 (manufactured by Life Technology Co., Ltd.).
  • DMEM containing 10% FCS, 100 U / ml penicillin, and 100 mg / ml streptomycin was used.
  • the T cell culture medium used in the examples described below is RPMI-1640 containing 10% FCS, 100 U / ml penicillin, 100 mg / ml streptomycin, 50 mM 2-mercaptoethanol, and 2 mM L-glutamine. Was used.
  • an expression vector similar to the anti-hCD20 CAR-anti-PD-1 antibody expression vector (hereinafter, also referred to as an anti-hCD20 CAR expression vector) except that the nucleic acid sequence encoding the anti-PD-1 scFv is not contained.
  • An expression vector similar to the anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody expression vector except that it does not contain a nucleic acid sequence encoding anti-PD-1 scFv hereinafter, anti-hCD20 CAR-IL-7). (Also referred to as / CCL19 expression vector) was also prepared, and a retroviral vector was similarly prepared using it.
  • mice T cells Transduction of mouse T cells
  • purified mouse T cells derived from spleen and lymph nodes were stratified with anti-CD3 monoclonal antibody (3 ⁇ g / ml), anti-CD28 monoclonal antibody (1 ⁇ g / ml), IL-2 ( It was activated at 100 IU / ml) for 48 hours.
  • the anti-hCD20 CAR-anti-PD-1 antibody expression vector prepared above, the anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody expression vector, the anti-hCD20 CAR expression vector, or the anti-hCD20 CAR-IL- The above-mentioned mouse T cells (1 ⁇ 10 6 ) in which a supernatant containing a retrovirus into which a 7 / CCL19 expression vector was introduced was activated on a plate coated with 25 ⁇ g / ml retronectin (registered trademark: Takara Bio Co., Ltd.).
  • mouse T cells are harvested, transferred to a new growth culture (RPMI) containing IL-2 (100 IU / ml), cultured for an additional 42 hours, anti-hCD20 CAR-anti-PD.
  • RPMI new growth culture
  • anti-hCD20 CAR-anti-PD-1 antibody-expressing T cells anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody expression vector were introduced.
  • Mouse T cells (hereinafter, also referred to as anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells), mouse T cells into which an anti-hCD20 CAR expression vector has been introduced (hereinafter, also referred to as anti-hCD20 CAR-expressing T cells). ) Or anti-hCD20 CAR-IL-7 / CCL19 expression vector-introduced mouse T cells (hereinafter, also referred to as anti-hCD20 CAR-IL-7 / CCL19 expression T cells) were obtained.
  • Recombinant protein in which transduced T cells (denoted as uninf. In FIG. 13) or T cells transduced with various retroviral vectors encoding the above CARs are transduced to detect CAR expression It was stained with L (also referred to as protein L-bio) and subsequently with streptavidin (also referred to as sav-apc) to which allophycocyanin was bound. The expression level of CAR was analyzed by flow cytometry. The results are shown in FIG.
  • conv. / PD-1 is anti-hCD20 CAR-anti-PD-1 antibody-expressing T cells
  • 7 ⁇ 19 is anti-hCD20 CAR-IL-7 / CCL19-expressing T cells
  • 7 ⁇ 19 / PD-1 is anti-hCD20 CAR-IL.
  • the left side is an FSC-SSC plot
  • the right side is a graph showing the positive degree (horizontal axis) and cell count (vertical axis) of allophycocyanin staining.
  • the histogram shown in the graph on the right shows the percentage of cells that were positive for staining.
  • FIG. 13 it can be seen that the T cells transduced with the retroviral vector encoding CAR, other than the untransduced T cells, express CAR as expected.
  • the concentration of IL-7 and the concentration of CCL19 were measured by an ELISA kit.
  • -IL-7 / CCL19-Anti-PD-1 antibody-expressing T cells were cultured for 2 days, and the culture supernatant was collected, and the concentrations of IL-7 and CCL19 in the culture supernatant were measured with a commercially available ELISA kit (manufactured by R & D systems). Was measured using.
  • the standard deviation as well as the average value of the three wells is shown in the graph.
  • the data shows untransformed T cells (uninf.), Anti-hCD20 CAR-expressing T cells (conv.), And anti-hCD20 CAR-IL-7 / CCL19-expressing T cells (7). ⁇ 19), anti-hCD20 CAR-anti-PD-1 antibody-expressing T cells (conv./PD-1), anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells (7 ⁇ 19 / PD-) 1) and only the medium (data obtained by performing the same treatment when the culture solution does not contain T cells) are arranged in this order. As shown in FIG.
  • the concentration of anti-mPD-1scFv was measured by two kinds of ELISA kits. Specifically, untransformed T cells, anti-hCD20 CAR-expressing T cells, anti-hCD20 CAR-IL-7 / CCL19-expressing T cells, anti-hCD20 CAR-anti-PD-1 antibody-expressing T cells, or anti-hCD20 CAR.
  • the culture supernatant obtained by culturing -IL-7 / CCL19-anti-PD-1 antibody-expressing T cells for 2 days was collected, and the concentrations of IL-7 and CCL19 in the culture supernatant were measured by ELISA.
  • a recombinant fusion protein consisting of mouse PD-1 and immunoglobulin Fc moiety was immobilized in a well to capture PD-1scFv, and an anti-FLAG tag or an anti-6 ⁇ His tag was used for detection.
  • the results are shown in FIG. In FIG. 15, the standard deviation as well as the mean value of the three wells is shown in the graph. In each graph, from the left side, the data shows untransformed T cells (uninf.), Anti-hCD20 CAR-expressing T cells (conv.), And anti-hCD20 CAR-IL-7 / CCL19-expressing T cells (7).
  • anti-hCD20 CAR-anti-PD-1 antibody-expressing T cells conv./PD-1
  • anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells 7 ⁇ 19 / PD-) 1
  • only the medium data obtained by performing the same treatment when the culture solution does not contain T cells
  • anti-hCD20 CAR-anti-PD-1 antibody-expressing T cells conv./PD-1
  • anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells 7 ⁇
  • cpa only represents the first group (cyclophosphamide was administered, but CAR-expressing T cells were not administered).
  • N 10 in each group.
  • the horizontal axis represents the number of days (day) after subcutaneous inoculation of P815-hCD20 tumor cells. The results of the log rank test between each group for the survival time of mice are shown in the lower table of FIG. 16 in terms of P value.
  • mice having P815-hCD20 by using anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells corresponding to the immune-responsive cells C according to the present disclosure From the results shown in FIG. 16, mice having P815-hCD20 by using anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells corresponding to the immune-responsive cells C according to the present disclosure. It can be seen that the survival time of the mouse is significantly increased. In particular, even when anti-hCD20 CAR-anti-PD-1 antibody-expressing T cells were used or when anti-hCD20 CAR-IL-7 / CCL19-expressing T cells were used, most of the mice died during the test period. On the other hand, it is noteworthy that 50% of the anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells survived even after 98 days.
  • anti-PD-1scFv by anti-hCD20 CAR-anti-PD-1 antibody-expressing T cells and anti-PD- by anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells shown in FIG.
  • anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells have a large number of transgenes and a long nucleotide length, which is disadvantageous in transfection and expression. It is understood that the above-mentioned therapeutic effect by anti-hCD20 CAR-IL-7 / CCL19-anti-PD-1 antibody-expressing T cells is surprising in consideration of suffering from.
  • Illustrative embodiments of the present disclosure also include the following embodiments: ⁇ 1> A combination for treating cancer in a subject, including (a) cell surface molecules that specifically recognize cancer antigens, immune-responsive cells expressing interleukin 7 and CCL19, and (b) immunosuppressive inhibitors. Medicine.
  • ⁇ 3> The nucleic acid encoding interleukin 7 and the nucleic acid encoding CCL19 are integrated into the genome of the immune-responsive cell, or together with one or more vectors present in the immune-responsive cell.
  • the combination drug according to ⁇ 1> or ⁇ 2> which is incorporated in or separately.
  • the immune-responsive cells include lymphocytes such as T cells, natural killer cells (NK cells), and B cells, antigen-presenting cells such as monospheres, macrophages, and dendritic cells, and neutrophils.
  • ⁇ 6> In a subject comprising (a) one or more cells or nucleic acid delivery media or combinations thereof that jointly contain a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19, and (b) an immunosuppressive inhibitor.
  • At least one of the above-mentioned one or more kinds of cells or nucleic acid delivery medium or a combination thereof is selected from immune-responsive cells, viruses, anaerobic bacteria, liposomes, mesenchymal stem cells (MSCs), and nanoparticles.
  • the combination drug according to ⁇ 6> which comprises one type.
  • the one or more types of cells or nucleic acid delivery medium or a combination thereof further contains a nucleic acid encoding a cell surface molecule that specifically recognizes a cancer antigen, and specifically recognizes the cancer antigen.
  • the combination drug according to ⁇ 6> or ⁇ 7>, wherein the cell surface molecule to be used is a chimeric antigen receptor (CAR) or a T cell receptor (TCR).
  • the immunosuppressive inhibitor is a polypeptide, and the cell or nucleic acid delivery medium or a combination thereof further cooperatively contains a nucleic acid encoding an immunosuppressive inhibitor polypeptide ⁇ 6> to ⁇ 9>.
  • the combination drug described in any one of them. ⁇ 11> The combination drug according to any one of ⁇ 6> to ⁇ 9>, wherein the cell or nucleic acid delivery medium or a combination thereof and the immunosuppressive inhibitor are separately administered at different time points. .. ⁇ 12>
  • the cell surface molecule that specifically recognizes the cancer antigen is one of ⁇ 1> to ⁇ 5>, which is a chimeric antigen receptor (CAR) or a T cell receptor (TCR). The combination drug described.
  • the immunosuppressive inhibitor is a PD-1 inhibitor, PD-L1 inhibitor, PD-L2 inhibitor, CTLA-4 inhibitor, BTLA (B- and T-lymphocyte attenuator) inhibitor, TIM-3.
  • the combination drug according to any one of ⁇ 1> to ⁇ 12> which comprises one or more selected from.
  • ⁇ 14> The combination drug according to any one of ⁇ 1> to ⁇ 13>, wherein the immunosuppressive inhibitor is an antibody.
  • ⁇ 15> The combination drug according to ⁇ 14>, wherein the antibody is an IgG monoclonal antibody or an antibody fragment.
  • ⁇ 16> The combination drug according to any one of ⁇ 1> to ⁇ 15>, wherein the cancer is a solid cancer.
  • Immune responsiveness that expresses (i) cell surface molecules that specifically recognize cancer antigens, interleukin 7 and CCL19, which are used in combination with immunosuppressive inhibitors to treat cancer in a subject.
  • ⁇ 18> Immune-responsive cells expressing cell surface molecules that specifically recognize cancer antigens, interleukin 7 and CCL19, or (ii) nucleic acids encoding interleukin 7 and nucleic acids encoding CCL19.
  • a drug comprising an immunosuppressive inhibitor used in combination with one or more cell or nucleic acid delivery media or a combination thereof to treat cancer in a subject.
  • a nucleic acid delivery medium, or a combination thereof are separately administered at different times, ⁇ 17. > Or ⁇ 18>.
  • Immune responsiveness that is contained in a container indicated to be used in combination with an immunosuppressive inhibitor and (i) expresses interleukin 7 and CCL19, cell surface molecules that specifically recognize cancer antigens.
  • a cell, or (ii) a medicament comprising one or more types of cells or nucleic acid delivery media or a combination thereof, which jointly contains a nucleic acid encoding interleukin 7 and a nucleic acid encoding CCL19.
  • ⁇ 21> A package insert stating that it will be used in combination with immunosuppressive inhibitors, (I) Immune-responsive cells expressing cell surface molecules that specifically recognize cancer antigens, interleukin 7 and CCL19, or (ii) nucleic acids encoding interleukin 7 and nucleic acids encoding CCL19.
  • Products including. ⁇ 22> (A) (i) Cell surface molecules that specifically recognize cancer antigens, immune-responsive cells expressing interleukin 7 and CCL19, or (ii) nucleic acids encoding interleukin 7 and nucleic acids encoding CCL19.
  • a pharmaceutical composition for treating cancer in a subject comprising one or more cell or nucleic acid delivery media or combinations thereof, which are jointly included, and (b) an immunosuppressive inhibitor.
  • the cell surface molecule that specifically recognizes the cancer antigen is a chimeric antigen receptor (CAR) or a T cell receptor (TCR).
  • CAR chimeric antigen receptor
  • TCR T cell receptor
  • Nucleic acid encoding interleukin 7 and nucleic acid encoding CCL19 are integrated into the genome of the immune-responsive cell or together in one or more vectors present in the immune-responsive cell.
  • the immunoreactive cell according to ⁇ 24> which is integrated into or separately from the nucleic acid.
  • ⁇ 26> Either one or a plurality of the above-mentioned vectors in which the nucleic acid encoding the immunosuppressive inhibitory polypeptide is integrated into the genome of the immune-responsive cell or is present in the immune-responsive cell.
  • the immune-responsive cell according to ⁇ 25> which is incorporated into a vector that may be the same as or different from that of the cell.
  • the cell surface molecule that specifically recognizes the cancer antigen is one of ⁇ 24> to ⁇ 26>, which is a chimeric antigen receptor (CAR) or a T cell receptor (TCR).
  • CAR chimeric antigen receptor
  • TCR T cell receptor
  • the immunosuppressive inhibitory polypeptide is PD-1 inhibitory polypeptide, PD-L1 inhibitory polypeptide, PD-L2 inhibitory polypeptide, CTLA-4 inhibitory polypeptide, BTLA (B- and T).
  • the immune-responsive cell according to any one of ⁇ 24> to ⁇ 27>, which comprises one or more selected from the group consisting of an inhibitory polypeptide and a Signal-15 inhibitory polypeptide. .. ⁇ 29>
  • ⁇ 30> The immune-responsive cell according to ⁇ 29>, wherein the antibody is an IgG monoclonal antibody or an antibody fragment.
  • Lymphocyte lineage cells such as T cells, natural killer cells (NK cells), and B cells, antigen-presenting cells such as monospheres, macrophages, and dendritic cells, neutrophils, neutrophils, and neutrophils.
  • the immune-responsive cell according to any one of ⁇ 24> to ⁇ 30> which is selected from the group consisting of mast cells.
  • ⁇ 33> The medicament according to ⁇ 32>, which is used for treating cancer in a subject.
  • ⁇ 34> The medicament according to ⁇ 33>, wherein the cancer is a solid cancer.
  • the immunoresponsive cell is an immunoresponsive cell derived from the subject itself.
  • One or more types of nucleic acid delivery media jointly comprising a nucleic acid encoding interleukin 7, a nucleic acid encoding CCL19, and a nucleic acid encoding an immunosuppressive inhibitory polypeptide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Endocrinology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

例示的な組み合わせ医薬は、(a1)がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19を発現する免疫応答性細胞又は(a2)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ、並びに(b)免疫抑制阻害剤を含み、対象におけるがんを治療するために用いられる。例示的な免疫応答性細胞は、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する。

Description

がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品
 本開示は、がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品に関する。
 がんは悪性新生物とも呼ばれ、その治療は医学における大きな目標の1つとなっている。従来、放射線、化学的抗がん剤を用いた治療などが行われてきたが、その効果はがんの種類によっても大きく異なり、全てのがんに対して高い効果が得られるわけではない。
 遺伝子医療の技術を用いてCAR(キメラ抗原受容体)と呼ばれる特殊なタンパク質を作り出すことができるようT細胞を改変して得られたCAR-T細胞を用いたCAR-T細胞療法が近年開発されている。例えば、再発又は難治性のCD19陽性のB細胞性急性リンパ芽球性白血病(B-ALL)、及び再発又は難治性のCD19陽性のびまん性大細胞型B細胞リンパ腫(DLBCL)に対してCAR-T細胞療法が有効であることが示されてきた。国際公開第2017/159736号は、CAR-T細胞などのがん抗原を特異的に認識する細胞表面分子を発現する免疫担当細胞において、インターロイキン7(IL-7)及びケモカイン(C-Cモチーフ)リガンド19(CCL19)を発現させて抗腫瘍活性を向上させることを記載している。国際公開第2019/073973号は、核酸送達媒体、IL-7をコードする核酸、及びCCL19をコードする核酸を含む、投与対象におけるメモリー機能を有するT細胞又はB細胞の増強体や投与対象におけるT細胞又はB細胞にメモリー機能を誘導する誘導剤を記載している。
 がんの治療においては、抗がん効果の増強や、投与量を減少させることによる副作用の軽減などを目的として、複数の抗がん剤が併用されることが多い。
 例えば、特表2018-538339号公報は、CAR-T細胞を用いた治療の有効性を高める観点から、PD-L1に対する抗体と組み合わせてメソテリンに特異的なCARを発現する細胞を投与することを含む、メソテリンの発現と関連する疾患の処置のための組成物及び方法を提供することを記載している。
 抗がん剤の併用は、相乗的な効果をもたらすことがある一方、組み合わせによっては相互に効果を阻害することもあり、有用な併用の組み合わせが探索されている。
 以上の状況に鑑みて、本開示は、高い抗がん効果が得られる、がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品を提供することを課題とする。
 本開示は、以下の態様を含む。
 (a)がん抗原を特異的に認識する細胞表面分子、インターロイキン7(IL-7)及びケモカイン(C-Cモチーフ)リガンド19(CCL19)を発現する免疫応答性細胞、並びに
 (b)免疫抑制阻害剤
 を含む、対象におけるがんを治療するための組み合わせ医薬。
 本開示は以下の態様も含む。
 (a)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ、並びに
 (b)免疫抑制阻害剤
 を含む、対象におけるがんを治療するための組み合わせ医薬。
 本開示は、さらに以下の態様も含む。
 がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する免疫応答性細胞。
 本開示によれば、高い抗がん効果が得られる、がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品が提供される。
実施例に記載の、eGFPを含みIL-7及びCCL19を含まないpMSGVベクター(以下、eGFP-Conv.ベクターとも称する。IL-7-F2A-CCL19-F2A-eGFP DNA断片(配列番号10)を含むpMSGVベクターからIL-7及びCCL19をコードする領域を抜いたベクター)のマップを示す図である。 実施例に記載の、IL-7-F2A-CCL19-F2A-eGFP DNA断片(配列番号10)を含むpMSGVベクター(以下、7×19発現ベクターとも称する)のマップを示す図である。 ベクターを導入していないTCR-T細胞(具体的には、ベクターを導入していない、脾臓細胞由来のP815腫瘍抗原P1A特異的なTCRを発現するマウスT細胞。以下、ベクター未導入P1A-TCRT細胞とも称する。また、ベクターの導入の有無に関わらず、P1A特異的なTCRを発現するマウスT細胞をP1A-TCRT細胞と総称する)、eGFP-Conv.ベクターを導入したP1A-TCRT細胞(以下、eGFP発現P1A-TCRT細胞とも称する)、及び7×19発現ベクターを導入したP1A-TCRT細胞(以下、eGFP発現P1A-7×19TCRT細胞とも称する)それぞれにおけるeGFPとCD8の発現量をフローサイトメトリーで計測した結果を示す散布図である。 ベクター未導入P1A-TCRT細胞、eGFP発現P1A-TCRT細胞、及びeGFP発現P1A-7×19TCRT細胞それぞれにおけるIL-7の発現量をELISAにより測定した結果を示すグラフである。 ベクター未導入P1A-TCRT細胞、eGFP発現P1A-TCRT細胞、及びeGFP発現P1A-7×19TCRT細胞それぞれにおけるCCL19の発現量をELISAにより測定した結果を示すグラフである。 実施例において、DBA/2マウスに肥満細胞腫の細胞(P815)を皮下注入し、該DBA/2マウスを放射線照射した後に、ベクター未導入P1A-TCRT細胞若しくはeGFP発現P1A-TCRT細胞及び/又は抗PD-1モノクローナル抗体を前記DBA/2マウスに投与したときの経過日数と生存率との関係を示すグラフである。 実施例において、DBA/2マウスに肥満細胞腫の細胞(P815)を皮下注入し、該DBA/2マウスを放射線照射した後に、処置を行わなかったときの経過日数と腫瘍体積との関係を示すグラフである。 実施例において、DBA/2マウスに肥満細胞腫の細胞(P815)を皮下注入し、該DBA/2マウスを放射線照射した後に、抗PD-1モノクローナル抗体を前記DBA/2マウスに投与したときの経過日数と腫瘍体積との関係を示すグラフである。 実施例において、DBA/2マウスに肥満細胞腫の細胞(P815)を皮下注入し、該DBA/2マウスを放射線照射した後に、eGFP発現P1A-TCRT細胞を前記DBA/2マウスに投与したときの経過日数と腫瘍体積との関係を示すグラフである。 実施例において、DBA/2マウスに肥満細胞腫の細胞(P815)を皮下注入し、該DBA/2マウスを放射線照射した後に、eGFP発現P1A-TCRT細胞及び抗PD-1モノクローナル抗体を前記DBA/2マウスに投与したときの経過日数と腫瘍体積との関係を示すグラフである。 実施例において、DBA/2マウスに肥満細胞腫の細胞(P815)を皮下注入し、該DBA/2マウスを放射線照射した後に、eGFP発現P1A-7×19TCRT細胞を前記DBA/2マウスに投与したときの経過日数と腫瘍体積との関係を示すグラフである。 実施例において、DBA/2マウスに肥満細胞腫の細胞(P815)を皮下注入し、該DBA/2マウスを放射線照射した後に、eGFP発現P1A-7×19TCRT細胞及び抗PD-1モノクローナル抗体を前記DBA/2マウスに投与したときの経過日数と腫瘍体積との関係を示すグラフである。 実施例において、DBA/2マウスに肥満細胞腫の細胞(P815)を皮下注入し、該DBA/2マウスを放射線照射した後に、PD-1遺伝子又はROSA26遺伝子がノックダウン(破壊)されたeGFP発現P1A-7×19TCRT細胞を前記DBA/2マウスに投与し又は投与せず、抗PD-1モノクローナル抗体を前記DBA/2マウスに投与した又はしないときの経過日数と生存率との関係を示すグラフである。 図6Aの実験において、P1A-TCRT細胞も抗PD-1モノクローナル抗体も投与しなかったときの、経過日数と腫瘍体積との関係を示すグラフである。 図6Aの実験において、ROSA26遺伝子がノックダウンされたeGFP発現P1A-7×19TCRT細胞を投与したときの、経過日数と腫瘍体積との関係を示すグラフである。 図6Aの実験において、PD-1遺伝子がノックダウンされたeGFP発現P1A-7×19TCRT細胞を投与したときの、経過日数と腫瘍体積との関係を示すグラフである。 図6Aの実験において、PD-1遺伝子がノックダウンされたeGFP発現P1A-7×19TCRT細胞、及び抗PD-1モノクローナル抗体を投与したときの、経過日数と腫瘍体積との関係を示すグラフである。 実施例において、がん細胞を接種されたDBA/2マウスに、eGFP発現P1A-TCRT細胞又はeGFP発現P1A-7×19TCRT細胞を投与し、完全な腫瘍退縮後にeGFPとCD8の両方を発現しているeGFP発現P1A-TCRT細胞又はeGFP発現P1A-7×19TCRT細胞が脾臓細胞中に存在するかどうかをCD8及びeGFP発現量をフローサイトメトリーで測定することにより評価したグラフである。 図7の実験で得られた脾臓細胞中におけるCD8を発現せずeGFPを発現しているT細胞の割合並びにCD8及びeGFPの両方を発現しているT細胞の割合を示すグラフである。 図7の実験で得られた脾臓細胞中におけるCD8を発現せずeGFPを発現しているT細胞の数並びにCD8及びeGFPの両方を発現しているT細胞の数を示すグラフである。 図7の実験で得られた脾臓細胞をさらにP815腫瘍細胞と共培養したときの、経過日数とCD8及びeGFPの両方を発現しているT細胞の数との関係を示すグラフである。 図7の実験で得られた脾臓細胞をさらにP815腫瘍細胞と共培養したときの、経過日数と培養上清中におけるIFN-γ濃度との関係を示すグラフである。 図5Fの実験で完全な腫瘍退縮後にP815腫瘍細胞を再度接種したとき、及びナイーブDBA/2マウスにP815腫瘍細胞を接種したときそれぞれの、経過日数と腫瘍体積との関係を示すグラフである。 DBA/2マウスにヒトCD20(hCD20)を発現するP815腫瘍細胞(P815-hCD20腫瘍細胞)を接種し、その後にシクロホスファミドを腹腔内投与し、さらにその後に抗hCD20 CAR発現T細胞又は抗hCD20 CAR-IL7/CCL19発現T細胞を静注し又はせず、さらにその後にコントロールIgG又は抗PD-1モノクローナル抗体を投与し又はしなかったときの、時間経過と生存率との関係を示すグラフである。 図10Aの実験において、CAR-Tの投与も抗体の投与も行わなかったときの時間経過と腫瘍体積との関係を示すグラフである。 図10Aの実験において、CAR-Tの投与は行わず、抗PD-1モノクローナル抗体を投与したときの時間経過と腫瘍体積との関係を示すグラフである。 図10Aの実験において、抗hCD20 CAR発現T細胞を投与し、抗PD-1抗体を投与したときの時間経過と腫瘍体積との関係を示すグラフである。 図10Aの実験において、抗hCD20 CAR-IL7/CCL19発現T細胞を投与し、コントロールIgGを投与したときの時間経過と腫瘍体積との関係を示すグラフである。 図10Aの実験において、抗hCD20 CAR-IL7/CCL19発現T細胞を投与し、抗PD-1モノクローナル抗体を投与したときの時間経過と腫瘍体積との関係を示すグラフである。 DBA/2マウスにP815腫瘍細胞を接種し、eGFP発現P1A-TCRT細胞又はeGFP発現P1A-7×19TCRT細胞を7日目に静脈注射した場合における、腫瘍浸潤リンパ球(TIL)の内訳について、c-kit、CD11c、CD3、eGFP、CD4、及びCD8の発現を基に調べた結果を示す散布図である。 図11Aの実験で得られた免疫細胞の種類毎の細胞数を示すグラフである。 実施例で用いた、CAR及び抗マウスPD-1scFvをコードするベクター、並びにCAR、IL-7、CCL19、及び抗マウスPD-1scFvをコードするベクターを表した概念図である。 実施例で用いた形質導入していないT細胞及び種々のCAR含有構築物を形質導入したT細胞のフローサイトメトリーで得られた前方散乱-側方散乱を表すグラフ、並びにproteinL-bio及びsav-apcを用いて測定されたCAR発現細胞の割合を示すグラフである。 実施例で用いた形質導入していないT細胞及び種々のCAR含有構築物を形質導入したT細胞の培養上清中におけるIL-7及びCCL19の濃度をELISAで測定した結果を示すグラフである。 実施例で用いた形質導入していないT細胞及び種々のCAR含有構築物を形質導入したT細胞の培養上清中における抗PD-1抗体の濃度をELISAで測定した結果を示すグラフである。 実施例において、DBA/2マウスにヒトCD20を発現するP815細胞を皮下注入し、シクロホスファミドを腹腔内投与した後に、形質導入していないT細胞又は種々のCAR含有構築物を形質導入したT細胞を投与したときの経過日数と生存率との関係を示すグラフ、並びに実験群間のログランク検定によるP値を示す表である。 図16の実験において、各実験群における経過日数と腫瘍体積との関係を示すグラフである。
 以下において、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 本開示中に段階的に記載されている数値範囲において、1つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 更に、本開示に記載されている組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する該当する複数の物質の合計量を意味する。
 また、本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 更に、本開示において、2以上の態様は、矛盾が生じない限り互いに組み合わせてもよい。
 本開示に係る一態様によれば、(a)がん抗原を特異的に認識する細胞表面分子、インターロイキン7(IL-7)、及びCCL19を発現する免疫応答性細胞、並びに(b)免疫抑制阻害剤を含む、対象におけるがんを治療するための組み合わせ医薬(以下、「本開示に係る組み合わせ医薬A」とも称する)が提供される。
 本発明者らは、がん治療方法における有用な抗がん剤の組み合わせを探求した結果、本開示に係る組み合わせ医薬Aによって、極めて高いがん治療効果を得られることを見出した。具体的には、本開示に係る組み合わせ医薬Aにおいては、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞(以下、「本開示に係る免疫応答性細胞A」とも称する)が用いられる。本開示に係る免疫応答性細胞Aと、免疫抑制阻害剤との共投与によって著しく高い相乗効果が得られることは、本発明者らにより初めて見出された事項である。
 本開示に係る免疫応答性細胞Aの細胞表面上に存在する、がん抗原を特異的に認識する細胞表面分子は、がん細胞に発現しているがん抗原に特異的に結合する。この結合により、前記免疫応答性細胞ががん細胞につなぎとめられる。細胞内シグナル伝達が引き起こされる等の事象のうち1つ以上が生じ、がんに罹患している者(以下、「がん罹患者」とも称する)のがん細胞への攻撃が開始される。なお、本開示において「認識」と「結合」とは互換的に用いられる。
 また、がん細胞は免疫応答性細胞ががん細胞を攻撃したり、がん細胞を攻撃する指示を発したりすることを抑制する免疫抑制機構を有しているため、がん罹患者自身の免疫によるがん細胞への攻撃が抑制されている。本開示に係る組み合わせ医薬Aの構成要素の1つである免疫抑制阻害剤は、がん細胞による免疫抑制機構を阻害することで、がん罹患者の免疫系ががん細胞を攻撃することをより容易にすると考えられる。
 これらに加えて、本開示に係る免疫応答性細胞AがIL-7及びCCL19も発現していることにより、本開示に係る免疫応答性細胞Aだけではなく、がん罹患者の内因性の免疫応答性細胞もがん細胞の周囲に集積するため、がん細胞をより効果的に攻撃することが可能になると考えられる。
 本開示に係る組み合わせ医薬Aは、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞と、免疫抑制阻害剤とを含むことによって、がん抗原を特異的に認識する細胞表面分子を発現する免疫応答性細胞、分泌されたIL-7及びCCL19、並びに免疫抑制阻害剤からなる因子の組み合わせによる相乗的な効果を発揮し、このために大きく改善したがん治療効果を奏すると考えられる。この相乗的な効果は、それぞれの因子の個別の効果からは予測することができないほど優れた効果である。
 例えば、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19を発現する免疫応答性細胞を単独で用いた場合、及び免疫抑制阻害剤を単独で用いた場合には治療困難ながん治療の場合でも、本開示に係る組み合わせ医薬Aを用いれば治療可能となりうる。このことは、後述の本開示に係る免疫応答性細胞Cに関する実験結果から示唆される。また、このような高い治療効果により、細胞の投与量を減らした場合でも治療効果を得ることが可能となり、自家細胞を使用する場合において従来必要とされていた数の免疫応答性細胞を採取できない場合でも、治療効果を得ることが可能になる。このような効果は、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19を発現する免疫応答性細胞の単独投与、あるいは、免疫抑制阻害剤の単独投与からは予測できない効果である。
<がん抗原を特異的に認識する細胞表面分子>
 本開示におけるがん抗原を特異的に認識する細胞表面分子とは、がん抗原に特異的に結合する分子であり、がん抗原に特異的に結合する限りはポリペプチドであっても、アプタマー等の核酸であっても、これら以外の分子であってもよい。ここでがん抗原とは、がん細胞において正常細胞よりも高く発現する、あるいはがん細胞に特異的に発現するタンパク質、糖脂質等の物質を意味し、かかるがん抗原としては、腫瘍関連抗原や癌精巣抗原、血管新生関連抗原、遺伝子変異によるがん新生抗原(ネオアンチゲン)のエピトープペプチドを挙げることができる。
 細胞表面分子により特異的に認識されるがん抗原の例としては、具体的には、WT1、MART-1、NY-ESO-1、MAGE-A1、MAGE-A3、MAGE-A4、MAGE-A10、Glypican-3、KIF20A、Survivin、AFP、gp100、MUC1、DLL3、PRSS21、Nectin4、FAP、インテグリンβ7、CT-83(KK-LC-1)、KRAS(変異型、つまりmKRASも含む)、Epha2、PRAME、HA-1、PAP-10、PAP-5、TRP2-1、SART-1、VEGFR1、VEGFR2、NEIL3、MPHOSPH1、DEPDC1、FOXM1、CDH3、TTK、TOMM34、URLC10、KOC1、UBE2T、TOPK、ECT2、メソテリン(MESOTHELIN)、NKG2D、P1A等のタンパク質や、GD2、GM2等の糖脂質を挙げることができる。さらなる例としては、CD20、EGFR(EGFRvIII等)、EGFRvariant、FITC、CD19、CD22、CD33、PSMA、ROR1、c-Met、HER2、CEA、CD7、CD10、CD30、CD34、CD38、CD41、CD44、CD74、CD123、CD133、CD171、CD180、MUC16、CS1(CD319)、IL-13Ra2、BCMA、LewisY、IgG κ鎖、葉酸受容体α、PSCA、EpCAM、CAIX、CDS、CD49f、CD56、CD138、IGF1R、サイトメガロウイルス(CMV)感染細胞抗原、EGP-2、EGP-40、ERB-B2、ERB-B3、ERB-B4、FBP、胎児性アセチルコリン受容体、GD3、HER-2、hTERT、K-軽鎖、LeY、L1細胞接着分子、NKG2Dリガンド、5T4、及びTAG-72も挙げることができるが、これらに限定されない。細胞表面分子として、これら等の細胞表面分子を1種以上含んでいてもよい。これらの抗原の由来生物は、本開示に係る組み合わせ医薬Aによって治療される対象となる生物種とすることができ、例えばヒトである。
 がん抗原を特異的に認識する細胞表面分子としては、がん抗原を特異的に認識する、細胞表面受容体、人工受容体、接着因子を挙げることができる。がん抗原を特異的に認識する細胞表面分子は、がん抗原に結合して本開示に係る免疫応答性細胞Aをがん細胞の近傍に配置させる機能のみを果たすものでもよいが、がん治療効果をより上昇させるために、免疫応答性細胞の免疫応答を活性化させるシグナル伝達を細胞内で引き起こす機能も有しているものであってもよい。がん抗原を特異的に認識する細胞表面分子は、例えば、がん抗原を特異的に認識する抗体又は抗体断片であってもよい。抗体又は抗体断片はIgM、IgD、IgG、IgA、IgE等に限定されるものではなく、Fab、scFv等の低分子抗体であってもよい。
 がん抗原を特異的に認識する細胞表面分子としては、がん抗原を特異的に認識するT細胞受容体(TCR)、がん抗原を特異的に認識するキメラ抗原受容体(CAR)等の、細胞表面に発現することによってがんに対する特異的な識別能を細胞に付与する分子を挙げることができる。TCRは上記細胞表面受容体の一例であり、CARは上記人工受容体の一例であり、抗体(Fab、Fab’、F(ab’)、scFv等の低分子抗体も含む)は上記接着因子の一例であるともいえる。もちろん、がん抗原を特異的に認識する限りは、接着因子は糖鎖、アプタマー等の、抗体以外の分子であってもよい。これらの細胞表面分子は、がん抗原を特異的に認識し、それによって、本開示に係る免疫応答性細胞Aは、がん細胞周辺に局在することが可能になる。
 TCRはT細胞の細胞膜上に発現している抗原受容体分子である。TCRはアルファ鎖とベータ鎖、又はガンマ鎖とデルタ鎖からなるヘテロ二量体として存在しており、主要組織適合遺伝子複合体(MHC)分子に結合した抗原分子を認識することでT細胞を活性化することが知られている。TCRは、がん抗原を特異的に認識するかぎりアルファ鎖及びベータ鎖からなるヘテロ二量体(アルファ・ベータTCR)であっても、ガンマ鎖及びデルタ鎖からなるヘテロ二量体(ガンマ・デルタTCR)であってもよい。
 TCRは内因性のものであっても、外来性のTCR(組換えTCR)であってもよい。内因性のTCRを発現するT細胞及び外来性のTCRを遺伝子導入するT細胞のソースとしては、腫瘍浸潤リンパ球(TIL)、腫瘍所属リンパ節、末梢血リンパ球、胸水中リンパ球、腹水中リンパ球が挙げられるが、これらに限定されない。
 所定の抗原結合性を有するTCRを発現するT細胞の分離のための手法としては、密度勾配遠心分離;リセッティング;細胞密度を変える粒子へのカップリング;抗体被覆された磁石ビーズによる磁気分離;アフィニティークロマトグラフィー(例えば、ネガティブセレクションを用いたアフィニティークロマトグラフィー);モノクローナル抗体に連結されるか、又は、モノクローナル抗体との併用で使用される細胞毒性剤(これには、補体及び細胞毒素が含まれるが、これらに限定されない);プレート、チップ等の固体マトリックスに結合された抗体によるパンニング;エルトリエーション;抗原刺激による選択的増殖;MHCと抗原の複合体を利用した分離が挙げられるが、これらに限定されない。
 また、特定のTCRを発現するように改変されたトランスジェニックマウス等のトランスジェニック動物も開発されている。
 CARは、がん細胞の細胞表面抗原を認識する一本鎖抗体と、T細胞の活性化を誘導するシグナル伝達領域を融合させた人工的なキメラタンパク質である。CARは、例えば、がん細胞の細胞表面抗原を認識する一本鎖抗体領域、細胞膜貫通領域、及びT細胞の活性化を誘導するシグナル伝達領域を含むものであってもよい。本開示に係る組み合わせ医薬Aにおいてがん抗原を特異的に認識する細胞表面分子がCARである場合、該組み合わせ医薬Aの構成要素として投与される本開示に係る免疫応答性細胞Aの数が、CAR-T細胞を単独で用いる従来の方法において投与されるCAR-T細胞数(通常、1×10個以上)に比べて少なくても、同等以上の効果を奏することが可能である。
 CARにおける一本鎖抗体(scFv)としては、モノクローナル抗体の抗原結合部位に由来する軽鎖可変領域及び重鎖可変領域を含み、軽鎖可変領域及び重鎖可変領域の間にリンカーペプチドが位置するオリゴ又はポリペプチドを挙げることができる。
 目的のがん抗原を認識する一本鎖抗体は、公知の手法により作製することができる。例えば、マウス等に抗原を接種してからリンパ組織を採取して、抗体遺伝子のライブラリーを作製し、抗体ダイレクトクローニングによりがん抗原を認識する抗体をコードする塩基配列を得て、それを基に一本鎖抗体を設計してもよい。あるいは、採取したリンパ組織を用いてハイブリドーマを作製し、がん抗原を認識する抗体をコードするハイブリドーマを同定してモノクローナル抗体を得て、その配列情報を基に一本鎖抗体を設計してもよい。あるいは、健常人のB細胞から作製したナイーブ抗体ライブラリー、がん抗原に対して高い中和活性を示す抗血清をもつがん罹患者由来のB細胞から作製した抗体ライブラリー等を基にして一本鎖抗体のライブラリーを作製し、これをファージディスプレイにより提示させてがん抗原を認識する一本鎖抗体を選抜してもよい。
 免疫応答性細胞活性化シグナル伝達領域は、前記一本鎖抗体ががん細胞の細胞表面抗原を認識した際に、細胞内にシグナル伝達することが可能な領域であり、CD28、4-1BB(CD137)、GITR、CD27、OX40、HVEM、CD3ζ、及びFc Receptor-associated γchainのうちいずれかの細胞内領域のポリペプチドから選択される少なくとも1種又は2種以上を含んでいてもよく、CD28、4-1BB、及びCD3ζの3種の細胞内領域のポリペプチドを含んでいてもよい。
 それぞれの細胞内領域のポリペプチドは、2~10アミノ酸からなるオリゴペプチドリンカー又はポリペプチドリンカーを介して連結されていてもよく、かかるリンカー配列として、グリシン-セリン連続配列を挙げることができる。
 免疫応答性細胞の活性化とは、細胞内でのシグナル伝達又はタンパク質発現の変化の誘導により、免疫応答を開始させることを意味する。例えば、CD3鎖がリガンド結合及び免疫受容体チロシンベースの阻害モチーフ(ITAMs)に応答して集まると、シグナル伝達カスケードが作られる。また、内因性のTCR又は外因性のCARが抗原に結合すると、結合された受容体(例えば、CD4又はCD8、CD3γ/δ/ε/ζ等)の近くで、多くの分子の集合を含む、免疫シナプスの形成が起こり得る。この膜結合シグナル伝達分子の集合によって、CD3鎖内に含有されたITAMモチーフがリン酸化する。このリン酸化は、ひいては免疫応答性細胞活性化経路を開始させ、最終的には、NF-κB及びAP-1などの転写因子を活性化しうる。これら転写因子は、例えばT細胞の全体的な遺伝子発現を惹起し、T細胞が媒介する免疫応答を開始させるために、主な制御性T細胞タンパク質の増殖及び発現のためのIL-2の産生を増加させる。
 CARにおける細胞膜貫通領域としては、CD8、T細胞受容体のα鎖、β鎖、CD28、CD3ε、CD45、CD4、CD5、CD8、CD9、CD16、CD22、CD33、CD37、CD64、CD80、CD86、CD134、CD137、CD154、GITRのいずれか由来の細胞膜貫通領域のポリペプチドを挙げることができる。前記細胞膜貫通領域は、例えば、ヒトCD8細胞膜貫通領域のポリペプチドでもよい。かかる細胞膜貫通領域によって、CARがT細胞の細胞膜に固定される。
 前記細胞膜貫通領域には、任意のオリゴペプチド又はポリペプチドからなり、長さが1~100アミノ酸、より具体的には10~70アミノ酸のヒンジ領域を含んでもよい。ヒンジ領域としては、ヒトCD8のヒンジ領域を挙げることができる。
 また、がん細胞の細胞表面抗原を認識する一本鎖抗体と細胞膜貫通領域、細胞膜貫通領域と免疫応答性細胞活性化シグナル伝達領域との間には、任意のオリゴペプチド又はポリペプチドからなるスペーサー領域を設けてもよい。スペーサー領域の長さとしては、1~100アミノ酸、より具体的には10~50アミノ酸を挙げることができ、かかるスペーサー領域として、グリシン-セリン連続配列を挙げることができる。
 がん抗原を特異的に認識する細胞表面分子のアミノ酸配列は、例えば哺乳動物由来のアミノ酸配列であり、ヒトに投与した場合の拒絶反応を抑える観点からヒト由来のアミノ酸配列としてもよい。アミノ酸配列は、公知の文献やNCBI(http://www.ncbi.nlm.nih.gov/guide/)等のデータベースを検索して適宜入手することができる。がん抗原を特異的に認識する細胞表面分子は、ヒトのTCR、あるいは一本鎖抗体領域がヒト化されているCARであってもよい。
 なお、がん抗原を特異的に認識する細胞表面分子は、がん抗原の認識が特異的であれば、間接的に認識するものであってもよい。例えば、がん抗原を特異的に認識する抗体等の分子を本開示に係る免疫応答性細胞Aと同時又は連続して対象に投与し、当該抗体等の分子を認識するか、又は抗体等の分子に標識されたタグを認識することで、本開示に係る免疫応答性細胞Aは間接的にがん抗原を特異的に認識し得る。これらの場合、抗体を認識する場合の例としては、細胞表面分子としてCD16等が挙げられ、抗体等の分子に標識するタグの例としては、FITC等が挙げられる。
<IL-7>
 IL-7は、構造的に骨髄及び胸腺由来のストロマ細胞から生産される約25kDaのサイトカインである。IL-7は、IL-7レセプターを通して造血幹細胞からリンパ前駆細胞への分化を促進するためのシグナルを出し、T細胞、B細胞、及びNK細胞を生じさせる。IL-7のアミノ酸配列は、例えば哺乳動物由来のアミノ酸配列であり、拒絶反応を抑える観点からヒト由来のアミノ酸配列としてもよい。アミノ酸配列は、公知の文献やNCBI(http://www.ncbi.nlm.nih.gov/guide/)等のデータベースを検索して適宜入手することができる。
<CCL19>
 ケモカイン(C-Cモチーフ)リガンド19(CCL19)はCCケモカインファミリーに属するサイトカインであり、胸腺及びリンパ節での発現量が多い。CCL19のアミノ酸配列は、例えば哺乳動物由来のアミノ酸配列であり、拒絶反応を抑える観点からヒト由来のアミノ酸配列としてもよい。アミノ酸配列は、公知の文献やNCBI(http://www.ncbi.nlm.nih.gov/guide/)等のデータベースを検索して適宜入手することができる。
<本開示に係る免疫応答性細胞A>
 免疫応答性細胞とは、免疫応答に関与する細胞を指す。免疫応答性細胞の例としては、T細胞、ナチュラルキラー細胞(NK細胞)、B細胞等のリンパ球系細胞、単球、マクロファージ、樹状細胞等の抗原提示細胞、好中球、好酸球、好塩基球、肥満細胞等の顆粒球が挙げられる。T細胞の例としては、アルファ・ベータT細胞、ガンマ・デルタT細胞、CD8T細胞、CD4T細胞、腫瘍浸潤T細胞、メモリーT細胞、ナイーブT細胞、ナチュラルキラーT(NKT)細胞等が挙げられる。
 免疫応答性細胞は、血液、骨髄液等の体液や、脾臓、胸腺、リンパ節等の組織、若しくは原発腫瘍、転移性腫瘍、がん性腹水等のがん組織に浸潤する免疫細胞から単離、精製して得ることができ、またiPS細胞、ES細胞等の多能性幹細胞又は造血幹細胞などの体性幹細胞から作製された免疫応答性細胞を用いてもよい。
 免疫応答性細胞は、ヒ卜、イヌ、ネコ、ブタ、マウス等の哺乳動物由来のT細胞であってもよく、ヒ卜由来のT細胞であってもよい。
 本開示に係る免疫応答性細胞Aは、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する。ここで、「がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する」とは、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19が免疫応答性細胞により産生され、がん抗原を特異的に認識する細胞表面分子の少なくとも一部が細胞表面(細胞外側の細胞表面)に位置し、IL-7及びCCL19が細胞外に分泌されることを指す。
 本開示に係る免疫応答性細胞Aは、例えば、生体から採取した免疫応答性細胞、又はiPS細胞、ES細胞等の多能性幹細胞若しくは造血幹細胞などの体性幹細胞から誘導した免疫応答性細胞等に、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子、及びCCL19をコードする遺伝子を導入することで得ることができる。あるいは、がん抗原を特異的に認識する細胞表面分子(例えばがん抗原を特異的に認識するTCR)を内在的に発現している免疫応答性細胞を生体から採取して、IL-7をコードする遺伝子及びCCL19をコードする遺伝子を導入することでも得ることができる。なお、本開示においては、XXをコードする遺伝子なる表現と、XXをコードする核酸なる表現は互換的に用いられる。この場合、核酸は一本鎖でも二本鎖でも、DNAであってもRNAであってもよいが、二本鎖DNAであることが好ましい。
 生体から採取した免疫応答性細胞に遺伝子導入する場合、本開示に係る組み合わせ医薬Aにより治療されるがん罹患者自身の(つまり自家の)免疫応答性細胞を採取すれば、拒絶反応を最小化できる。ただし、他家の免疫応答性細胞を使用することを排除するものではない。つまり、本開示に係る免疫応答性細胞Aは、対象自身に由来する免疫応答性細胞であっても、なくてもよい。
 がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子、及びCCL19をコードする遺伝子は、それぞれ、本開示に係る免疫応答性細胞Aのゲノム中に存在していても、ゲノム外のベクターに担持されていてもよく、例えば、遺伝子担持の安定性の観点からゲノム中に存在させてもよい。また、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子、及びCCL19をコードする遺伝子は、ゲノム中にまとまって存在していてもよく、ばらばらに(分離して)存在していてもよい。がん抗原を特異的に認識する細胞表面分子が、例えばαβの二量体又はγδの二量体からなるTCRである場合のようにヘテロ二量体又はヘテロ多量体である場合、ヘテロ二量体又はヘテロ多量体を構成するそれぞれの分子をコードする遺伝子はゲノム中にまとまって存在していてもよく、ばらばらに(分離して)存在していてもよい。
 一実施形態においては、IL-7をコードする遺伝子及びCCL19をコードする遺伝子は外来性であり、双方が本開示に係る免疫応答性細胞Aのゲノムに組み込まれているか、又は前記免疫応答性細胞A中に存在する1個又は複数個のベクターに一緒に若しくは別個にコードされている。なお、細胞中に各遺伝子が存在しているかどうかは、PCR等公知の手法を用いて容易に確認することができる。本開示において、「外来性」(exogenous)とは、当該遺伝子又は核酸が細胞内に元々存在していた遺伝子又は核酸ではなく、外部から導入された遺伝子又は核酸であることを表す。
 TCRとしては、すでに、MART1特異的TCR(Cancer Res.54,5265-5268(1994))、MAGE-A3特異的TCR(Anticancer Res.,20,1793-1799(2000))、gp100特異的TCR(J.Immunol.170,2186-2194(2003))、NY-ESO-1特異的TCR(J.Immunol.,174、4415-4423(2005))、WT1特異的TCR(Blood,106,470-476(2005))、MAGE-A1特異的TCR(Int.Immunol.,8,1463-1466(1996))、P1A特異的TCR(Sarma, S., Y. Guo, Y. Guilloux, C. Lee, X.-F. Bai, Y. Liu. 1999. Cytotoxic T lymphocytes to an unmutated tumor antigen P1A: normal development but restrained effector function. J. Exp. Med. 189:811.)、MAGE-A10特異的TCR、AFP特異的TCR、CT-83特異的TCR、KRAS(変異型、つまりmKRASも含む)特異的TCR、MAGE-A4特異的TCR、Epha2特異的TCR、BCMA特異的TCR、5T4特異的TCR、PRAME特異的TCR、HA-1特異的TCR等のTCRが報告されており、それらをコードする核酸配列についても上記各文献に報告されている。がん抗原を特異的に認識する細胞表面分子がTCRである場合、TCRをコードする遺伝子の塩基配列は、目的の抗原分子を認識し、かつT細胞を活性化することができるかぎり、上記文献に記載のTCRをコードする塩基配列と例えば80%以上、より具体的には85%以上、より具体的には90%以上、より具体的には95%以上、より具体的には98%以上の配列同一性を有する塩基配列であってもよい。本開示において、アミノ酸配列の配列同一性及び塩基配列の配列同一性は、例えばBLAST(登録商標、National Library of Medicine)プログラムを用いてデフォールトパラメータで評価することができる。
 あるいは、TCRをコードする遺伝子の塩基配列は、上記文献に記載されたTCRをコードする塩基配列中におけるCDRをコードする塩基配列を維持し、かつCDRをコードする塩基配列以外の領域の塩基配列において、上記文献に記載のTCRをコードする塩基配列における当該領域の塩基配列と60%以上、より具体的には70%以上、より具体的には80%以上、より具体的には90%以上、より具体的には95%以上の配列同一性を有する塩基配列でもよい。
 もちろんTCRの塩基配列は、TCRの抗原特異性により変動するものであり、所望の抗原に結合するTCRを発現するT細胞を単離して、当該TCRの塩基配列を解析してもよい。例えば、特定の抗原を特異的に認識するTCRをコードする遺伝子の塩基配列は、当技術分野における公知の方法を用いることにより、特定の抗原を用いて誘導された細胞傷害性T細胞(CTL)のTCRサブユニットとしてのアルファ鎖及びベータ鎖をコードする塩基配列を解析することで得ることができる(国際公開第2007/032255号、及びMorgan et al., J Immunol, 171, 3288 (2003))。TCRの塩基配列を解析する際には、PCR法により各鎖をコードする塩基配列を増幅して解析してもよい。PCRプライマーは、例えば、5'側プライマーとしての5'-Rプライマー(5'-gtctaccaggcattcgcttcat-3':配列番号1)、及び3'側プライマーとしての、TCRアルファ鎖C領域に特異的な3-TRa-Cプライマー(5'-tcagctggaccacagccgcagcgt-3':配列番号2)、TCRベータ鎖C1領域に特異的な3-TRb-C1プライマー(5'-tcagaaatcctttctcttgac-3':配列番号3)、又はTCRベータ鎖C2領域に特異的な3-TRbeta-C2プライマー(5'-ctagcctctggaatcctttctctt-3':配列番号4)であってもよいが、これらに限定されない。抗原特異的なTCRは、抗原(例えばペプチド)を提示する標的細胞と高い結合力で結合することができる。また、免疫応答性細胞の種類を適切に選択することにより、抗原ペプチドを提示する標的細胞の効率的な殺傷を媒介することができる。
 CARをコードする塩基配列としては、CARを構成するポリペプチドをコードする塩基配列であれば特に制限されず、がん細胞の細胞表面抗原を認識する一本鎖抗体、細胞膜貫通領域、及びT細胞の活性化を誘導するシグナル伝達領域のポリペプチドをコードする塩基配列が含まれる。
 CARにおけるがん細胞の細胞表面抗原に対する一本鎖抗体、細胞膜貫通領域、及び免疫応答性細胞活性化シグナル伝達領域のポリペプチドをコードする塩基配列の情報は、公知の文献やNCBI(http://www.ncbi.nlm.nih.gov/guide/)などのデータベースを検索して適宜入手することができる。
 たとえば、免疫応答性細胞活性化シグナル伝達領域におけるCD28、4-1BB、及びCD3ζの細胞膜貫通領域のポリペプチドをコードする塩基配列の情報は、NCBIなどのデータベースを検索して適宜入手することができ、ヒトCD28については、Genbank番号:NM_006139.2(更新日:2014年5月10日)、ヒト4-1BBについては、Genbank番号:NM_001561.5(更新日:2014年3月16日)、ヒトCD3ζについては、Genbank番号:NM_000734.3(更新日:2014年8月12日)として登録されたものを例示することができる。
 また、ヒトCD8の細胞膜貫通領域のポリペプチドをコードする塩基配列の情報は、NCBI等のデータベースを検索し適宜入手することができ、Genbank番号:NM_001768.6(更新日:2014年5月10日)として登録されたものを例示することができる。
 さらに、一本鎖抗体のポリペプチドをコードする塩基配列の情報については、標的とする細胞表面抗原を認識するモノクローナル抗体を作製し、かかるモノクローナル抗体のアミノ酸配列をエドマン法などの公知の方法で決定し、かかるアミノ酸配列に基づいて入手することもできる。モノクローナル抗体の作製方法としては、ハイブリドーマを用いて作製する方法や、遺伝子工学的手法により抗体遺伝子を含む発現ベクターで宿主を形質転換して作製する方法や、トランスジェニック動物を所望の抗原で免疫することで作製する方法を挙げることができる。
 IL-7をコードする塩基配列及びCCL19をコードする塩基配列の情報は、公知の文献やNCBI(http://www.ncbi.nlm.nih.gov/guide/)などのデータベースを検索して適宜入手することができる。
 IL-7をコードする塩基配列は、本開示に係る免疫応答性細胞Aの種類に応じて適宜選択でき、例えば、ヒトIL-7のアミノ酸配列(配列番号5)をコードする塩基配列であってもよく、また、IL-7としての細胞増殖率の亢進作用を有する限り、配列番号5に示す塩基配列と例えば80%以上、より具体的には85%以上、より具体的には90%以上、より具体的には95%以上、より具体的には98%以上の配列同一性を有する塩基配列であってもよい。
 CCL19をコードする塩基配列は、本開示に係る免疫応答性細胞Aの種類に応じて適宜選択でき、例えば、ヒトCCL19のアミノ酸配列(配列番号6)をコードする塩基配列であってもよく、また、CCL19としてのT細胞遊走作用を有する限り、配列番号6に示す塩基配列と例えば80%以上、より具体的には85%以上、より具体的には90%以上、より具体的には95%以上、より具体的には98%以上の配列同一性を有する塩基配列であってもよい。
 本開示に係る免疫応答性細胞Aにおいては、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子、及びCCL19をコードする遺伝子は、適切なプロモーターの制御下にあるようにする。
 本開示に係る免疫応答性細胞Aは、がん抗原を特異的に認識する細胞表面分子、IL-7、及びCCL19に加えて、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-8、IL-9、IL-10、IL-11、IL-12、IL-13、IL-14、IL-15、IL-16、IL-17、IL-18、IL-23、IL-27、IP-10、CCL1、CCL2、CCL3、CCL4、CCL5、CCL7、CCL8、CCL11、CCL13、CCL14、CCL15、CCL16、CCL17、CCL18、CCL20、CCL21、CCL22、CCL23、CCL24、CCL25、CCL26、CCL27、CCL28、CXCL1、CXCL2、CXCL3、CXCL4、CXCL4L1、CXCL5、CXCL6、CXCL7、CXCL8、CXCL9、CXCL10、CXCL11、CXCL12、CXCL13、CXCL14、CXCL16、CXCL17、CX3CL1、XCL1、XCL2、CCL3L1、CCL3L3、CCL4L1、CCL4L2、Flt3L、Interferon-gamma、MIP-1alpha、GM-CSF、M-CSF、TGF-beta、TNF-alpha等の他の免疫機能制御因子を1種以上さらに発現していてもよい。
 本開示に係る免疫応答性細胞Aの分離のための手法としては、密度勾配遠心分離;リセッティング;細胞密度を変える粒子へのカップリング;抗体被覆された磁石ビーズによる磁気分離;アフィニティークロマトグラフィー(例えば、ネガティブセレクションを用いたアフィニティークロマトグラフィー);モノクローナル抗体に連結されるか、又は、モノクローナル抗体との併用で使用される細胞毒性剤(これには、補体及び細胞毒素が含まれるが、これらに限定されない);プレート、チップ等の固体マトリックスに結合された抗体によるパンニング;エルトリエーション;抗原刺激による選択的増殖;MHCと抗原の複合体を利用した分離が挙げられるが、これらに限定されない。
 免疫応答性細胞ががん抗原を特異的に認識する細胞表面分子を内在的に発現している場合、例えば所定のがん抗原を特異的に認識するTCRを発現しているT細胞を単離する場合には、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子を外部から導入する必要は無いが、一般的には、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子、及びCCL19をコードする遺伝子のうちの1種以上を外部から導入する。
 免疫応答性細胞に導入するためのがん抗原を特異的に認識する細胞表面分子をコードする遺伝子を含む核酸、IL-7をコードする遺伝子を含む核酸及びCCL19をコードする遺伝子を含む核酸は、それぞれ、当該分子をコードする塩基配列の情報に基づき、化学合成する方法や、PCRによって増幅する方法等の公知の技術によって作製することができる。なお、コーディング領域におけるコドンは、遺伝子を含む核酸が導入される対象となる免疫応答性細胞における当該遺伝子の発現を最適化するために改変されてもよい。
 導入の対象となる遺伝子は、それぞれ別々のベクターに担持された状態で導入されても、2種以上の遺伝子を同じベクターに担持した状態で導入してもよい。例えば、IL-7をコードする遺伝子及びCCL19をコードする遺伝子を免疫応答性細胞に導入する場合、IL-7をコードする遺伝子とCCL19をコードする遺伝子とは別々のベクターで導入してもよいし、同じベクターに両遺伝子を担持させて導入してもよい。
 また、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子及びCCL19をコードする遺伝子を免疫応答性細胞に導入する場合、
 (i)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子及びCCL19をコードする遺伝子を、それぞれ別個のベクターに担持させて導入してもよいし、
 (ii)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びIL-7をコードする遺伝子を同じベクターに担持させ、CCL19をコードする遺伝子を別個のベクターに担持させて導入してもよいし、
 (iii)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びCCL19をコードする遺伝子を同じベクターに担持させ、IL-7をコードする遺伝子を別個のベクターに担持させて導入してもよいし、
 (iv)IL-7をコードする遺伝子及びCCL19をコードする遺伝子を同じベクターに担持させ、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子を別個のベクターに担持させて導入してもよいし、
 (v)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子及びCCL19をコードする遺伝子を、同じベクターに担持させて導入してもよい。
 導入効率を考慮して、2種以上の遺伝子を同じベクターに担持した状態で導入させてもよい。この場合は、当該2種以上の遺伝子は、免疫応答性細胞中でまとまって存在することになる。
 例えば、以下のベクター又はベクター群を使用することができる。
 (a)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子、及びCCL19をコードする遺伝子を含有するベクター
 (b)以下のベクター(b-1)及びベクター(b-2)からなるベクター群:
(b-1)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子を含有するベクター;
(b-2)IL-7をコードする遺伝子及びCCL19をコードする遺伝子を含有するベクター;
 (c)以下のベクター(c-1)及びベクター(c-2)からなるベクター群:
(c-1)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びIL-7をコードする遺伝子を含有するベクター;
(c-2)CCL19をコードする遺伝子を含有するベクター;
 (d)以下のベクター(d-1)及びベクター(d-2)からなるベクター群:
(d-1)IL-7をコードする遺伝子を含有するベクター;
(d-2)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びCCL19をコードする遺伝子を含有するベクター;
 (e)以下のベクター(e-1)、ベクター(e-2)及びベクター(e-3)からなるベクター群:
(e-1)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子を含有するベクター;
(e-2)IL-7をコードする遺伝子を含有するベクター;
(e-3)CCL19をコードする遺伝子を含有するベクター。
 ベクター群は、遺伝子が冗長(redundant)に含まれるように設計してもよく、例えば上記(c-1)及び(d-2)からなるベクター群を設計してもよい。この場合は、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子は両方のベクターに含まれるが、両ベクターに含まれるがん抗原を特異的に認識する細胞表面分子をコードする遺伝子は互いに同じであっても異なっていてもよい。
 上記のベクターのうち任意のベクターに、又は上記のベクターとは別個のベクターに、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-8、IL-9、IL-10、IL-11、IL-12、IL-13、IL-14、IL-15、IL-16、IL-17、IL-18、IL-23、IL-27、IP-10、CCL1、CCL2、CCL3、CCL4、CCL5、CCL7、CCL8、CCL11、CCL13、CCL14、CCL15、CCL16、CCL17、CCL18、CCL20、CCL21、CCL22、CCL23、CCL24、CCL25、CCL26、CCL27、CCL28、CXCL1、CXCL2、CXCL3、CXCL4、CXCL4L1、CXCL5、CXCL6、CXCL7、CXCL8、CXCL9、CXCL10、CXCL11、CXCL12、CXCL13、CXCL14、CXCL16、CXCL17、CX3CL1、XCL1、XCL2、CCL3L1、CCL3L3、CCL4L1、CCL4L2、Flt3L、Interferon-gamma、MIP-1alpha、GM-CSF、M-CSF、TGF-beta、TNF-alpha等の1種以上の他の免疫機能制御因子をコードする遺伝子をさらに含有させて、免疫応答性細胞に導入してもよい。
 遺伝子を担持するベクターを免疫応答性細胞に導入する方法としては特に制限されないが、ウイルス感染法、トランスポゾン法、カルシウムリン酸法、リポフェクション法、マイクロインジェクション法、エレクトロポレーション法等の公知の方法が挙げられる。外来遺伝子のゲノムへの導入が可能なウイルス感染法により導入する方法は遺伝子担持の安定性をもたらしうる。
 ウイルス感染法としては、ベクターとパッケージングプラスミドをGP2-293細胞(タカラバイオ社製)、Plat-GP細胞(コスモ・バイオ社製)、PG13細胞(ATCC CRL-10686)、PA317細胞(ATCC CRL-9078)等のパッケージング細胞にトランスフェクションして組換えウイルスを作製し、かかる組換えウイルスを免疫応答性細胞に感染させる方法を挙げることができ、Retrovirus packaging Kit Eco(タカラバイオ社製)等の市販のキットを用いて行ってもよい。MSCVレトロウイルス発現システム等を用いれば、外来遺伝子のゲノムへの導入が可能である。
 また、IL-7をコードする遺伝子、CCL19をコードする遺伝子、及び必要ならがん抗原を特異的に認識する細胞表面分子をコードする遺伝子のゲノムへの組込みは、公知の遺伝子編集技術を用いて行うこともできる。公知の遺伝子編集技術としては、ジンクフィンガーヌクレアーゼ、TALEN(転写活性化様エフェクターヌクレアーゼ)、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)-Casシステム等のエンドヌクレアーゼを用いる技術が挙げられる。所望により導入される他の外来タンパク質をコードする遺伝子のゲノムへの組込みも、同様の手法により行うことができる。
 また、これらの遺伝子を免疫応答性細胞のゲノムに組み込む場合には、当該遺伝子を制御する上流プロモーターと共にゲノムの非コード領域等に作動可能に(即ち、当該プロモーターの制御下で発現可能なように)組み込んでもよいし、プロモーター無しに、ゲノム中に既に存在しているプロモーターの下流に作動可能に組み込んでもよい。ゲノム中に既に存在しているプロモーターとしては、TCRα、TCRβのプロモーター等が挙げられる。
 がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子、CCL19をコードする遺伝子、及び所望により導入された追加の外来タンパク質をコードする遺伝子のうち2種以上の遺伝子が近接して存在する場合には、それら2種以上の遺伝子を共通のプロモーターの制御下で発現させることもできる。共通のプロモーターの制御下で発現させる場合には、2Aペプチド、IRESペプチド等を使用して、転写及び/又は翻訳を分断してそれぞれのポリペプチドを発現させるようにできる。
 がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子及びCCL19をコードする遺伝子のうちの2種以上を担持するベクターを免疫応答性細胞に導入する場合には、該ベクター中における前記2種以上の遺伝子の並び順は特に限定されない。例えば、前記(a)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子及びCCL19をコードする遺伝子を含有するベクターにおいては、これら3種の遺伝子の並び順は限定されない。具体的には、上流(5’末端側)から下流(3’末端側)への順に、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子及びCCL19をコードする遺伝子が並ぶ順番であっても、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、CCL19をコードする遺伝子及びIL-7をコードする遺伝子が並ぶ順番であっても、IL-7をコードする遺伝子、CCL19をコードする遺伝子及びがん抗原を特異的に認識する細胞表面分子をコードする遺伝子が並ぶ順番であっても、IL-7をコードする遺伝子、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びCCL19をコードする遺伝子が並ぶ順番であっても、CCL19をコードする遺伝子、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びIL-7をコードする遺伝子が並ぶ順番であっても、CCL19をコードする遺伝子、IL-7をコードする遺伝子及びがん抗原を特異的に認識する細胞表面分子をコードする遺伝子が並ぶ順番であってもよい。
 また、上記(b-2)IL-7をコードする遺伝子及びCCL19をコードする遺伝子を含有するベクターにおいて、IL-7をコードする遺伝子及びCCL19をコードする遺伝子の並び順は特に制限されず、IL-7をコードする遺伝子に対してCCL19をコードする遺伝子が上流に配置されても下流に配置されてもよい。
 上記(c-1)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びIL-7をコードする遺伝子を含有するベクターにおいて、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びIL-7をコードする遺伝子の並び順は特に制限されず、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子に対してIL-7をコードする遺伝子が上流に配置されても下流に配置されてもよい。
 上記(d-2)がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びCCL19をコードする遺伝子を含有するベクターにおいて、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子及びCCL19をコードする遺伝子の並び順は特に制限されず、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子に対してCCL19をコードする遺伝子が上流に配置されても下流に配置されてもよい。
 なお、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子及びCCL19をコードする遺伝子はそれぞれ別のプロモーターにより転写されてもよく、内部リボソームエントリー部位(IRES:internal ribozyme entry site)又は自己切断型2Aペプチドを使用して一つのプロモーターで転写されてもよい。
 一つのプロモーターで複数の遺伝子を転写させる場合、それぞれの遺伝子の間の塩基配列は、それぞれの遺伝子を発現し得る限り、任意の塩基配列を含んでもよいが、自己切断型ペプチド(2Aペプチド)又はIRESをコードする塩基配列を含んでもよく、2Aペプチドをコードする塩基配列を含んでもよい。このような塩基配列を用いて複数の遺伝子を連結することにより、それぞれの遺伝子を効率よく発現させることが可能となる。自己切断型ペプチド(2Aペプチド)又はIRESをコードする塩基配列を含みうる遺伝子間の塩基配列は、例えば、IL-7をコードする遺伝子とCCL19をコードする遺伝子との間の塩基配列であってもよく、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子とIL-7をコードする遺伝子との間の塩基配列であってもよく、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子とCCL19をコードする遺伝子との間の塩基配列であってもよく、アルファ・ベータTCRにおけるアルファ鎖をコードする遺伝子とベータ鎖をコードする遺伝子との間の塩基配列であってもよく、ガンマ・デルタTCRにおけるガンマ鎖をコードする遺伝子とデルタ鎖をコードする遺伝子の間の塩基配列であってもよい。つまり、これらの遺伝子間の領域それぞれについて、所望により、自己切断型ペプチド(2Aペプチド)又はIRESをコードする塩基配列を含ませることができる。
 2Aペプチドとは、ウイルス由来の自己切断型ペプチドであり、例として配列番号7で示されるアミノ酸配列の場合、該アミノ酸配列中のG-P間(C末端から1残基の位置)が小胞体で切断される特徴を有する(Szymczak et al., Expert Opin. Biol. Ther.5(5):627-638(2005))。そのため、2Aペプチドを介してその前後に組み込まれた核酸は、細胞内で互いに独立して発現することとなる。
 前記2Aペプチドとしては、ピコルナウイルス、ロタウイルス、昆虫ウイルス、アフトウイルス又はトリパノソーマウイルス由来の2Aペプチドであってもよく、配列番号8に示すピコルナウイルス由来の2Aペプチド(F2A)であってもよい。
 免疫応答性細胞への遺伝子導入に用いられるベクターは直鎖状でも環状でもよく、プラスミド等の非ウイルスベクターでも、ウイルスベクターでも、トランスポゾンによるベクターでもよい。免疫応答性細胞への遺伝子導入に用いられるベクターは、プロモーター、ターミネーター等の制御配列、薬剤耐性遺伝子、レポーター遺伝子等の選択マーカー配列のうち1つ以上を含有していてもよい。免疫応答性細胞への遺伝子導入後も、ベクターに含まれるプロモーターを利用して遺伝子の発現を行わせるようにしてもよい。例えば、ベクター中のプロモーター配列の下流に作動可能にがん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子及びCCL19をコードする遺伝子のうち1つ以上を配置することで、当該遺伝子を効率よく転写させることができる。
 前記プロモーターの例としては、レトロウイルスのLTRプロモーター、SV40初期プロモーター、サイトメガロウイルスプロモーター、単純ヘルペスウイルスのチミジンキナーゼプロモーター等のウイルス由来プロモーター、ホスホグリセリン酸キナーゼ(PGK)プロモーター、Xistプロモーター、β-アクチンプロモーター、RNAポリメラーゼIIプロモーター、ポリペプチド鎖伸長因子遺伝子プロモーター等の哺乳類由来プロモーターを挙げることができる。また、テトラサイクリンによって誘導されるテトラサイクリン応答型プロモーター、インターフェロンによって誘導されるMx1プロモーター等を用いてもよい。特定の物質によって誘導されるプロモーターを用いることによって、プロモーターに転写制御される遺伝子(例えば、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子及びCCL19をコードする遺伝子のうち1つ以上)の発現をがんの治療経過に応じて制御することが可能となる。
 前記ウイルスベクターの例としては、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクターを挙げることができる。レトロウイルスベクターとしては、pMSGVベクター(Tamada K. et al., Clin Cancer Res 18:6436-6445(2002))、pMSCVベクター(タカラバイオ社製)等を挙げることができる。レトロウイルスベクターを用いれば、導入遺伝子はホスト細胞のゲノムへ取り込まれるため、導入遺伝子を長期間安定に発現することが可能となる。
 免疫応答性細胞におけるがん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19の発現は、フローサイトメトリー、ELISA、ウェスタンブロッティング等により確認することができる。また、これらをコードする遺伝子の導入は、上記のように発現産物を確認するか、あるいはノザンブロッティング、サザンブロッティング、RT-PCR等のPCR等により確認することができる。遺伝子導入に用いるベクターがマーカー遺伝子を含有する場合には、当該発現ベクターに挿入されたマーカー遺伝子の発現を調べることによって遺伝子の導入を確認することができる。
 また、本開示に係る免疫応答性細胞Aは、アポトーシス誘導を可能とするために、単純ヘルペスウイルスのチミジンキナーゼ(HSV-TK)、誘導性カスパーゼ9(inducible caspase 9)等の自殺遺伝子をさらに発現してもよい。これらの酵素の遺伝子も、上記と同様の手法により免疫応答性細胞内に(例えば、免疫応答性細胞のゲノムに)導入できる。例えば、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子、及びCCL19をコードする遺伝子のうちの1種以上を担持するベクターに、若しくは該ベクターとは別個のベクターに、自殺遺伝子をコードする核酸を含ませて、免疫応答性細胞に導入してもよい。
 自殺遺伝子とは、発現することによって直接的に、あるいは二次的に細胞毒性を有する物質を誘導し、自殺遺伝子を発現した細胞を死に至らしめる機能を有する遺伝子を意味する。自殺遺伝子をコードする核酸を免疫応答性細胞に含ませることによって、がんの治療経過に応じて、たとえば腫瘍が消失した場合に自殺遺伝子の機能を活性化する薬剤を投与し、生体内に存在する本開示に係る免疫応答性細胞Aを減少又は除去することができる。
 自殺遺伝子としては、以下の文献に記載された単純ヘルペスウイルスのチミジンキナーゼ(HSV-TK)や誘導性カスパーゼ9(inducible caspase 9)をコードする遺伝子等を挙げることができ、かかる遺伝子の機能を活性化する薬剤としては、前者に対してはガンシクロビル、後者に対しては二量体誘導化合物(chemical induction of dimerization:CID)であるAP1903を挙げることができる(Cooper LJ.,et. al. Cytotherapy. 2006;8(2):105-17.,Jensen M. C. et. al. Biol Blood Marrow Transplant. 2010 Sep;16(9):1245-56., Jones BS. Front Pharmacol.2014 Nov 27;5:254., Minagawa K., Pharmaceuticals (Basel). 2015 May 8;8(2):230-49., Bole-Richard E., Front Pharmacol. 2015 Aug 25;6:174)。
<免疫抑制阻害剤>
 免疫抑制阻害剤は、免疫応答性細胞活性化の抑制を解除又は低減する物質を指す。免疫応答性細胞活性化の抑制は、例えば、制御性T細胞(Treg)が樹状細胞と結合することによる細胞傷害性T細胞又はヘルパーT細胞と樹状細胞との結合の阻害;TregがTGF-β、IL-10などの抑制性サイトカインやパーフォリン、グランザイムなどの細胞傷害性物質等を分泌することによる細胞傷害性T細胞、ヘルパーT細胞等の活性化阻害;PD-1とPD-L1との相互作用、CTLA-4とCD80/CD86との相互作用等による免疫チェックポイントによる細胞傷害性T細胞の活性化抑制などにより生じる。免疫抑制阻害剤は、免疫応答性細胞活性化に対する上記等の抑制を解除し、免疫応答性細胞が活性化することを可能にする物質である。
 免疫抑制阻害剤の例としては、免疫チェックポイント阻害剤、Treg、骨髄由来免疫抑制細胞(MDSC)等の免疫抑制性細胞の浸潤、生存、又は機能を阻害する分子標的薬、CCR4阻害剤、インドールアミン2,3-ジオキシゲナーゼ(IDO)阻害剤、プロスタグランジンE2[PGE2]抑制剤、細胞傷害性抗がん剤が挙げられる。免疫抑制阻害剤は、これらの機能を有する限り、抗体であってもよく、例えばIgGモノクローナル抗体又は抗体断片であってもよい。
 免疫チェックポイント阻害剤は、典型的にはT細胞の表面に発現する免疫チェックポイント分子を介した免疫抑制機構を解除又は軽減させる物質である。免疫チェックポイント阻害剤は、例えば、免疫チェックポイント分子(例えばPD-1、CTLA-4、BTLA、TIM-3、TIGIT、LAG-3等)又は免疫チェックポイント分子のリガンド(例えばPD-L1、PD-L2、CD80/CD86、Siglec-15等)に結合して、リガンドにより免疫チェックポイント分子からのシグナル伝達が開始されることを阻害することで、免疫応答に対する抑制反応を減少させることができる。
 Treg、MDSC等の免疫抑制性細胞の浸潤、生存、又は機能を阻害する分子標的薬は、例えば、チロシンキナーゼを阻害することによって、がん組織内に浸潤してくるTregを減少させ、がん微小環境における免疫抑制を軽減させることができる。
 CCR4阻害剤は、ケモカインレセプターCCR4がTregを呼び集める働きを阻害することによって、がん微小環境における免疫抑制を軽減させることができる。
 IDO阻害剤は、IDOの酵素活性を阻害する、又はIDOの発現自体を抑制することによりキヌレニンの産生を抑制し、キヌレニンによるTreg活性化を減少させることができる。
 PGE2抑制剤は、PGE2がTreg表面にあるプロスタグランジンEP4受容体と結合してTregの免疫抑制作用を上昇させることを抑制することで、がん微小環境における免疫抑制を軽減させることができる。
 細胞傷害性抗がん剤は、Treg等の免疫抑制細胞の数を減少させることによって免疫応答に対する抑制を減少させることができる。
 免疫チェックポイント阻害剤の例としては、PD-1阻害剤、PD-L1阻害剤、CTLA-4阻害剤、CD47阻害剤、SIRPα阻害剤、BTLA阻害剤、TIM-3阻害剤、TIGIT阻害剤、LAG-3阻害剤、Siglec-15阻害剤、ガレクチン-9阻害剤等が挙げられる。Treg、MDSC等の免疫抑制性細胞の浸潤、生存、又は機能を阻害する分子標的薬の例としては、ソラフェニブ、スニチニブ等が挙げられる。CCR4阻害剤の例としては、抗CCR4抗体(例えばモガムリズマブ)等が挙げられる。IDO阻害剤の例としては、エパカドスタット等が挙げられる。プロスタグランジンE2[PGE2]抑制剤の例としてはアスピリン等が挙げられる。細胞傷害性抗がん剤の例としては、シクロホスファミド、ゲムシタビン等が挙げられる。
 免疫抑制阻害剤は、PD-1阻害剤、PD-L1阻害剤、PD-L2阻害剤、CTLA-4阻害剤、BTLA(B- and T-lymphocyte attenuator)阻害剤、TIM-3(T-cell immunoglobulin and mucin domain 3)阻害剤、TIGIT(T-cell immunoreceptor with Ig and ITIM domains)阻害剤、LAG-3(Lymphocyte Activation Gene-3)阻害剤、及びSiglec-15阻害剤からなる群から選択される1種以上を含んでいてもよい。
 本開示に係る組み合わせ医薬Aにおける免疫抑制阻害剤は、免疫チェックポイント阻害剤であってもよく、より具体的にはPD-1阻害剤又はPD-L1阻害剤であってもよく、さらに具体的にはPD-1に対する抗体又はPD-L1に対する抗体であってもよい。PD-1に対する抗体の例としては、Nivolumab(ニボルマブ)、Pembrolizumab(ペムブロリズマブ)、Toripalimab(トリパリマブ)、Cemiplimab-rwlc(セミプリマブ)、Sintilimab(シンチリマブ)等が挙げられる。PD-L1に対する抗体の例としては、Atezolizumab(アテゾリズマブ)、Durvalumab(デュルバルマブ)、Avelumab (アベルマブ)等が挙げられる。CTLA-4に対する抗体の例としては、Ipilimumab(イピリムマブ)等が挙げられる。他にCD47、SIRPαに対する抗体等も挙げられる。
 本開示に係る組み合わせ医薬Aにおいては、本開示に係る免疫応答性細胞Aによりがん抗原を特異的に認識する細胞表面分子に加えて、IL-7及びCCL19も発現させ、さらに免疫抑制阻害剤を含むことによって、がん抗原を特異的に認識する細胞表面分子によるがん抑制効果を発揮するだけでなく、IL-7、CCL19及び免疫抑制阻害剤の組み合わせによりがん微小環境における免疫抑制性を低減させ、さらに内因性の細胞傷害性T細胞等もがん細胞周辺に誘導し活性化する効果が得られると考えられる。このため、本開示に係る組み合わせ医薬Aによれば、単に本開示に係る免疫応答性細胞Aを投与し免疫抑制阻害剤は投与しない場合、あるいはがん抗原を特異的に認識する細胞表面分子を発現するがIL-7及びCCL19は発現しない免疫応答性細胞と免疫抑制阻害剤とを共投与した場合では達成できないような向上したがん治療効果をもたらすことができる。
 がん治療効果は、例えば哺乳動物、例えばヒトである対象における腫瘍細胞の数の減少、腫瘍のサイズの減少、腫瘍の消滅、腫瘍負荷の減少等により評価することができる。
 免疫抑制阻害剤は、がん周囲の免疫抑制性の微小環境における免疫応答性細胞一般の働きを活性化するものであるため、本開示に係る免疫応答性細胞Aだけでなく、内因性の免疫応答性細胞のがん細胞攻撃活性を向上させるものである。このため、免疫抑制阻害剤が例えば特定の分子を標的とする免疫チェックポイント阻害剤であったとしても、本開示に係る免疫応答性細胞Aが当該標的の分子を細胞表面に発現している必要は必ずしも無く、標的の分子を発現していても発現していなくてもよい。
 本開示において、用語「抗体」は、完全な抗体分子のみならず、抗原への結合能を保持する抗体分子の断片をも指しうる。そのような抗体断片も当技術分野において公知であり、インビトロ及びインビボの両方で一般的に用いられている。したがって、本明細書中で用いる場合、用語「抗体」は、完全な免疫グロブリン分子のみならず、公知の抗体機能断片であるF(ab’)及びFabをも包含する概念を指す。本開示において抗体は、完全な天然抗体、二重特異性抗体、キメラ抗体、Fab、Fab’、一本鎖抗体(scFv)、融合ポリペプチド、及び非従来型の抗体をも包含する。
 本開示において、一本鎖抗体(scFv)は、VH::VLヘテロダイマーを形成するよう共有結合している免疫グロブリンの重鎖(VH)及び軽鎖(VL)の可変領域の融合タンパク質である。重鎖(VH)及び軽鎖(VL)は、直接結合しているか、又は、VHのN末端とVLのC末端とが、若しくはVHのC末端とVLのN末端とがペプチドリンカーによって結合している。ペプチドリンカーの長さは、例えば、10アミノ酸、15アミノ酸、20アミノ酸、又は25アミノ酸である。ペプチドリンカーは、通常、柔軟性に寄与するグリシン、及び、可溶性に寄与するセリン若しくはスレオニンに富んでいる。定常領域を除去し、かつペプチドリンカーを導入しているにもかかわらず、scFvタンパク質は、元となる免疫グロブリンが有している抗原への結合特異性を維持している。Hustonら(Proc.Nat.Acad.Sci.USA,85:5879-5883, 1988)により記載されているように、scFvは、VHコード配列及びVLコード配列を含む核酸から発現され得る。scFvについては、米国特許第5,091,513号、第5,132,405号、及び第4,956,778号;並びに米国特許公開第20050196754号及び20050196754号も参照することができる。
 免疫チェックポイント阻害剤としての抗体は、所定の抗原結合性を有していればIgGモノクローナルであっても、Fab断片であっても、scFvであっても、それ以外の抗体又は抗体断片であってもよい。scFvは、例えば、マウスハイブリドーマクローンを作製し、次に完全IgG(又はIgM)をscFvに変換する方法、免疫されたファージディスプレイscFvを作製し、次いでその抗原を用いてライブラリーをスクリーニングする方法、抗原を使用して既製のscFvファージディスプレイライブラリーをスクリーニングしてscFvを直接得る方法等により得ることができる。
 ヒト以外の動物(例えばマウス)で得た抗体は、ヒトに投与した場合に免疫応答を引き起こす可能性があるため、抗体の不変部の遺伝子をヒト抗体遺伝子に組み換えて作製したキメラ抗体、相補性決定領域(CDR)以外の部分をヒト抗体遺伝子に組み換えて作製したヒト化抗体に改変して用いてもよい。また、マウス等に抗体を産生させるのではなく、ファージディスプレイ、又はヒト抗体を産生する遺伝子改変マウスを用いて、完全ヒト化抗体を得てもよい。
<投与用組成物>
 本開示に係る組み合わせ医薬Aにおいて、本開示に係る免疫応答性細胞Aを含む投与用組成物(以下、第1の投与用組成物とも称する)は、さらに薬学的に許容される添加剤を含有していてもよく、前記添加剤としては、生理食塩水、緩衝生理食塩水、細胞培養培地、デキストロース、注射用水、グリセロール、エタノール及びこれらの組合せ、安定剤、可溶化剤、界面活性剤、緩衝剤、防腐剤、等張化剤、充填剤、並びに潤滑剤を挙げることができる。
 本開示に係る組み合わせ医薬Aにおいて、免疫抑制阻害剤を含む投与用組成物(以下、第2の投与用組成物とも称する)は、さらに薬学的に許容される添加剤を含有していてもよく、前記添加剤としては、生理食塩水、緩衝生理食塩水、細胞培養培地、デキストロース、注射用水、グリセロール、エタノール及びこれらの組合せ、安定剤、可溶化剤、界面活性剤、緩衝剤、防腐剤、等張化剤、充填剤、並びに潤滑剤を挙げることができる。
 なお、第2の投与用組成物は、第1の投与用組成物と同一の組成物であってもよく、この場合は1つの投与用組成物が本開示に係る免疫応答性細胞Aと免疫抑制阻害剤の両方を含むことになる。
 第2の投与用組成物が第1の投与用組成物と別個の組成物である場合は、後述のとおり、第1の投与用組成物と第2の投与用組成物は一緒に投与してもよいし、別々のタイミング(時点)で投与してもよい。つまり、本開示に係る免疫応答性細胞Aと、免疫抑制阻害剤とは、一緒に投与されても、異なる時点で別々に投与されてもよい。
 第1の投与用組成物に含まれる本開示に係る免疫応答性細胞Aの量は、がんの種類、位置、重症度、治療を受ける対象の年齢、体重及び状態等に応じて適宜調整できるが、一回の投与当たり例えば1×10~1×1011個、より具体的には1×10~1×1010個、より具体的には1×10~1×10個を投与してもよい。また、本開示に係る免疫応答性細胞Aの量は、一回の投与当たり1×10個未満、例えば1×10~5×10個、より具体的には1.5×10~4×10個と少量であってもよい。
 上述のとおり、本開示に係る免疫応答性細胞Aを単独で用いた場合、及び免疫抑制阻害剤を単独で用いた場合には治療困難ながん治療の場合でも、本開示に係る組み合わせ医薬Aを用いれば治療可能となりうる。このため、第1の投与用組成物に含まれる本開示に係る免疫応答性細胞Aの量は、本開示に係る免疫応答性細胞Aを単独で同じ量(同じ細胞数)用いた場合には抗がん効果を奏さないほど少量であってもよい。免疫抑制阻害剤との相乗効果により、抗がん効果を奏すことができる量であれば、免疫応答性細胞Aの量の下限値は特に制限されない。
 第1の投与用組成物は、1日4回、1日3回、1日2回、1日1回、1日おき、2日おき、3日おき、4日おき、5日おき、週1回、7日おき、8日おき、9日おき、週2回、月1回又は月2回の頻度で投与してもよい。また、投与回数は総計で例えば1回~10回、すなわち、1回、2回、3回、4回、5回、6回、7回、8回、9回又は10回としてもよいが、10回を超える回数投与しても構わない。
 第2の投与用組成物に含まれる免疫抑制阻害剤の量は、がんの種類、位置、重症度、治療を受ける対象の年齢、体重及び状態等に応じて適宜調整できるが、一回の投与当たりの免疫抑制阻害剤の用量は、例えば、0.1~500mg/kg、より具体的には0.5~250mg/kg、より具体的には1~100mg/kgとすることができる。
第2の投与用組成物は、1日4回、1日3回、1日2回、1日1回、1日おき、2日おき、3日おき、4日おき、5日おき、週1回、7日おき、8日おき、9日おき、週2回、月1回又は月2回の頻度で投与してもよい。また、投与回数は総計で例えば1回~30回、すなわち、1回、2回、3回、4回、5回、6回、7回、8回、9回、10回、又は11回~30回としてもよいが、30回を超える回数投与しても構わない。
 第1の投与用組成物を投与するタイミングと、第2の投与用組成物を投与するタイミングとの関係は特に限定されず、第1の投与用組成物の投与を先に開始してもよいし、第2の投与用組成物の投与を先に開始してもよいし、あるいは第1の投与用組成物と第2の投与用組成物とは同時に投与を開始してもよい。それぞれの投与用組成物の投与回数、投与頻度の間の関係についても特に限定はされない。
 第1の投与用組成物と第2の投与用組成物とは同一の組成物であってもよく、この場合は、本開示に係る免疫応答性細胞Aと免疫抑制阻害剤の両方を含む医薬組成物(合剤)が提供される。本開示に係る組み合わせ医薬Aにおける第1の投与用組成物と第2の投与用組成物とが異なる組成物である場合、第1の投与用組成物と第2の投与用組成物とは同時に投与されてもよく、別々のタイミングで(つまり間隔を空けて)投与されてもよい。ただし、本開示に係る免疫応答性細胞Aと免疫抑制阻害剤とによる相乗効果を効果的に得る観点からは、第1の投与用組成物を投与するタイミングと第2の投与用組成物を投与するタイミングとの間の間隔(一方の投与用組成物を投与するタイミングと、それと最も時間的に近接しているもう一方の投与用組成物を投与するタイミングとの間の間隔)は、3ヶ月以内であってもよく、2ヶ月以内であってもよく、1ヶ月以内であってもよく、2週間以内であってもよい。前記間隔は、1週間以内であってもよく、3日以内であってもよいが、後述の実施例で示すように本開示に係る免疫応答性細胞Aは生体内で長期間維持されているため、前記間隔を極端に短くする必要は無い。
 このように本開示に係る組み合わせ医薬Aにおいては、本開示に係る免疫応答性細胞Aと免疫抑制阻害剤とは独立したタイミング(例えば異なるタイミング)で投与することができるものである。また、本開示において「共投与」及び「併用」の用語は、複数の剤が同一の組成物に含有されて投与される場合、複数の剤が別々の組成物に含有されるが同時に投与される場合、複数の剤が別々の組成物に含有され別々の時点で投与される場合のいずれをも包含する意味で用いられる。
 上記のとおり、本開示に係る組み合わせ医薬Aは、がん抗原を特異的に認識する細胞表面分子を発現する免疫応答性細胞、分泌されたIL-7及びCCL19、並びに免疫抑制阻害剤からなる因子の組み合わせによる相乗的な効果により、驚くべきほどに向上したがん治療効果を奏する。
 第1の投与用組成物は、当業者に既知の方法を用いて、がんの治療を必要とする対象に投与することができ、例えば、局所注入(カテーテル投与を含む)、全身注入、静脈内注入又は非経口投与(例えば経皮投与、経粘膜投与、より具体的には点鼻、点眼、舌下、坐薬、パッチ等)によって投与することができる。第1の投与用組成物は、取り扱いの観点から、単位投与量の注入可能な形態(溶液、懸濁液、乳濁液)に製剤化されていてもよい。投与方法のより具体的な例としては、静脈内、腫瘍内、皮内、皮下、筋肉内、腹腔内、動脈内、髄内、心臓内、関節内、滑液嚢内、頭蓋内、髄腔内、及びくも膜下(髄液)への注射を挙げることができる。
 第2の投与用組成物は、当業者に既知の方法を用いて、がんの治療を必要とする対象に投与することができ、例えば、経口投与、局所注入(カテーテル投与を含む)、全身注入、静脈内注入又は非経口投与(例えば経皮投与、経粘膜投与、より具体的には点鼻、点眼、舌下、坐薬、パッチ等)によって投与することができる。第2の投与用組成物は、取り扱いの観点から、単位投与量の注入可能な形態(溶液、懸濁液、乳濁液)に製剤化されていてもよい。投与方法のより具体的な例としては、静脈内、腫瘍内、皮内、皮下、筋肉内、腹腔内、動脈内、髄内、心臓内、関節内、滑液嚢内、頭蓋内、髄腔内、及びくも膜下(髄液)への注射を挙げることができる。
 本開示に係る免疫応答性細胞Aは、元となる免疫応答性細胞又はその前駆体細胞を治療対象の患者から得て、本開示に係る免疫応答性細胞Aとするために必要な遺伝子の導入後に、同じ患者に投与してもよく(自家投与)、又は別の患者に投与してもよい(他家投与)。あるいは、元となる免疫応答性細胞又はその前駆体細胞は、iPS細胞、ES細胞等の多能性幹細胞又は造血幹細胞などの体性幹細胞から作製してもよい。
 第1の投与用組成物及び第2の投与用組成物は、例えば、所定のpHに緩衝化されていてもよい無菌の液体調製物、例えば、等張水溶液、懸濁液、乳濁液、分散物又は粘性組成物として投与することができる。前記液体調製物は、注射用の液体調製物であってもよい。また、特定の組織との接触時間を長くするために、前記液体調製物を適切な粘度範囲内の粘度を有する粘性組成物の形態としてもよい。液体調製物は、例えば、水、生理食塩水、リン酸塩緩衝化生理食塩水、ポリオール(例えば、グリセロール、プロピレングリコール、液状ポリエチレングリコールなど)及びそれらの混合物からなる溶媒又は分散媒を含んでいてもよい。
 前記液体調製物は、本開示に係る免疫応答性細胞A及び/又は免疫抑制阻害剤を、その他の成分の様々な量とともに、適当量の適切な溶媒に配合することによって調製することができる。前記液体調製物は、好適な担体、希釈剤、又は賦形剤を含んでいてもよい。前記液体調製物はまた、凍結乾燥されていてもよい。液体調製物は、所望の投与経路に依存して、様々な補助物質をさらに含んでいてもよく、補助物質の例としては、湿潤剤、分散剤又は乳化剤(例えば、メチルセルロース)、pH緩衝化剤、ゲル化剤又は粘度増強添加剤、保存剤、矯味矯臭剤、着色剤などが挙げられる。液体調製物中が含みうる成分については、“REMINGTON’S PHARMACEUTICAL SCIENCE”,17版、1985の記載を参照することもできる。
 また、液体調製物は、液体調製物の安定性及び無菌性を高める様々な添加剤をさらに含んでいてもよく、その例としては、抗菌性保存剤、酸化防止剤、キレート剤、及び緩衝剤などが挙げられる。微生物の作用を防止するために、様々な抗菌剤及び抗真菌剤、例えば、パラベン類、クロロブタノール、フェノール、ソルビン酸などを使用することができる。液体調製物に使用するビヒクル、希釈剤又は添加剤は、そこに含まれる本開示に係る免疫応答性細胞A及び/又は免疫抑制阻害剤との適合性を有していなければならない。
 液体調製物は血液と等張性であってもよい。等張性は、塩化ナトリウム、又は他の薬学的に許容され得る浸透圧調節物質(例えば、デキストロース、ホウ酸、酒石酸ナトリウム、プロピレングリコール、あるいは、他の無機溶質又は有機溶質など)を液体調製物に含有させることで達成することができる。
 本開示に係る組み合わせ医薬Aは、本開示に係る免疫応答性細胞A及び免疫抑制阻害剤に加えて、さらに他の抗がん剤を含んでいてもよい。他の抗がん剤の例としては、ベンダムスチン、イオスファミド、ダカルバジン等のアルキル化薬、ペントスタチン、フルダラビン、クラドリビン、メソトレキセート、5-フルオロウラシル、6-メルカプトプリン、エノシタビン等の代謝拮抗薬、リツキシマブ、セツキシマブ、トラスツズマブ等の分子標的薬、イマチニブ、ゲフェチニブ、エルロチニブ、アファチニブ、ダサチニブ、スニチニブ、トラメチニブ等のキナーゼ阻害剤、ボルテゾミブ等のプロテアソーム阻害剤、シクロスポリン、タクロリムス等のカルシニューリン阻害薬、イダルビジン、ドキソルビシンマイトマイシンC等の抗がん性抗生物質、イリノテカン、エトポシド等の植物アルカロイド、シスプラチン、オキサリプラチン、カルボプラチン等のプラチナ製剤、タモキシフェン、ビカルダミド等のホルモン療法薬、インターフェロン等の免疫制御薬を挙げることができる。他の抗がん剤は、例えば、アルキル化薬及び代謝拮抗薬のうちの少なくとも1種を含んでいてもよい。
<本開示に係る組み合わせ医薬Aを用いたがんの治療>
 本開示に係る組み合わせ医薬Aをがんの治療に用いる場合、治療の対象は例えば任意の哺乳動物でよいが、例えば霊長類の動物であり、より具体的にはヒトであってもよい。治療対象は、愛玩動物又は家畜であってもよく、その例としては、イヌ、ネコ、ブタ、ウシ、ウマ、ヒツジ、ヤギなどが挙げられる。
 治療の対象となるがんは、固形がんでも血液がんでもよく、腺がん、扁平上皮がん、腺扁平上皮がん、未分化がん、大細胞がん、小細胞がん、皮膚がん、乳がん、前立腺がん、膀胱がん、膣がん、子宮頸部がん、子宮がん、肝臓がん、腎臓がん、膵臓がん、脾臓がん、肺がん、気管がん、気管支がん、結腸がん、小腸がん、胃がん、食道がん、胆嚢がん、精巣がん、卵巣がん等のがんや、骨組織、軟骨組織、脂肪組織、筋組織、血管組織及び造血組織のがんのほか、軟骨肉腫、ユーイング肉腫、悪性血管内皮腫、悪性シュワン腫、骨肉腫、軟部組織肉腫等の肉腫や、肝芽腫、髄芽腫、腎芽腫、神経芽腫、膵芽腫、胸膜肺芽腫、網膜芽腫等の芽腫や、胚細胞腫瘍や、リンパ腫や、白血病を挙げることができる。
 本開示に係る組み合わせ医薬Aによればがん微小環境における免疫抑制性を軽減することが可能であるため、治療対象となるがんは血球系のがんに限定されず、固形がんに対しても治療効果を奏する。このため、従来の方法では治療が難しかった固形がんに対しても高い有効性を発揮できる。
 本開示に係る組み合わせ医薬Aは、がんの確定診断がされる前であっても、対象内におけるがん細胞の存在が疑われる状況においては、対象に予防的に投与してもよい。本開示においては、このような使用形態も、がんの治療のための使用の概念に包含される。
<対象におけるがんの治療方法>
 本開示に係る一態様によれば、
 (a)がん抗原を特異的に認識する細胞表面分子、IL-7、及びCCL19を発現する免疫応答性細胞、並びに
 (b)免疫抑制阻害剤
 を組み合わせて対象に投与することを含む、対象におけるがんを治療する方法(以下、本開示に係るがんの治療方法Aとも称する)が提供される。
 ここで、本開示に係るがんの治療方法Aにおける免疫応答性細胞は本開示に係る免疫応答性細胞Aであり、その詳しい構成及び例などについては本開示に係る免疫応答性細胞Aについての上記説明がそのまま当てはまる。また、本開示に係るがんの治療方法Aにおける免疫抑制阻害剤の詳しい構成及び例についても、本開示に係る組み合わせ医薬Aにおける免疫抑制阻害剤についての上記説明がそのまま当てはまる。
 これに加え、本開示に係るがんの治療方法Aにおける対象、がんの種類、用量、投与スケジュール等の、治療方法の詳細については、前述の本開示に係る組み合わせ医薬Aの説明がそのまま当てはまる。例えば、(a)の免疫応答性細胞と、(b)の免疫抑制阻害剤とは同時に投与されてもよいし、別々の時点で投与されてもよい。また、(a)の免疫応答性細胞と、(b)の免疫抑制阻害剤とは、どちらも治療有効量で投与することができる。
 本開示に係るがんの治療方法Aは、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞、並びに免疫抑制阻害剤からなる因子の組み合わせによる相乗的な効果により、驚くべきほどに向上したがん治療効果を奏する。
 さらに、本開示によれば、がんを治療するための医薬の製造における、(a)がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞、並びに(b)免疫抑制阻害剤の使用が提供される。この使用においても、免疫応答性細胞、免疫抑制阻害剤、投与用組成物、がんの治療等の詳細については、前述の本開示に係る組み合わせ医薬Aの説明がそのまま当てはまる。
 加えて、本開示によれば、免疫抑制阻害剤と併用されて対象におけるがんを治療するために用いられる、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞を含む医薬も提供される。本開示に係る免疫応答性細胞Aを含む医薬は、免疫抑制阻害剤と併用されることで、相乗的な効果を生じ、驚くべきほどに向上したがん治療効果を奏する。免疫応答性細胞、免疫抑制阻害剤、投与用組成物、がんの治療等の詳細については、前述の本開示に係る組み合わせ医薬Aの説明がそのまま当てはまる。さらに、免疫抑制阻害剤と併用されて対象におけるがんを治療するために用いられる、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞も提供される。
 さらに、本開示によれば、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞と併用されて対象におけるがんを治療するために用いられる、免疫抑制阻害剤を含む医薬も提供される。免疫抑制阻害剤を含む医薬は、本開示に係る免疫応答性細胞Aと併用されることで、相乗的な効果を生じ、驚くべきほどに向上したがん治療効果を奏する。免疫応答性細胞、免疫抑制阻害剤、投与用組成物、がんの治療等の詳細については、前述の本開示に係る組み合わせ医薬Aの説明がそのまま当てはまる。さらに、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞と併用されて対象におけるがんを治療するために用いられる、免疫抑制阻害剤も提供される。
 本開示によれば、免疫抑制阻害剤と併用されることが表示された容器に収容され、かつ、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞を含む医薬も提供される。免疫応答性細胞、免疫抑制阻害剤等の詳細については、前述の本開示に係る組み合わせ医薬Aの説明がそのまま当てはまる。また、医薬の構成の詳細については、前述の第1の投与用組成物の説明がそのまま当てはまる。免疫抑制阻害剤と併用されることが表示された容器は、使用方法の表示が付されたバイアル、静注バッグ、細胞保存用バッグ、点滴用バッグ等の容器であってもよいし、エッペンドルフチューブのような容器であってもよい。このような容器中に、本開示に係る免疫応答性細胞Aを含む医薬は、例えば前述の第1の投与用組成物の説明に記載した状態で収容される。免疫抑制阻害剤と併用されることの表示は、容器のどの面に付されていてもよいが、視認性を考慮して容器の外面に付されていてもよい。また、表示は容器そのものにではなく、1つ又は複数の容器をさらに収納する箱等のケースに付されていてもよい。また、免疫抑制阻害剤と併用されることの表示は、免疫抑制阻害剤と併用されることを明示的に指示している表示に限られず、免疫抑制阻害剤との併用の可能性について言及している任意の表示であってもよい。
 本開示によれば、免疫抑制阻害剤と併用されることが記載された添付文書と、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞を含む医薬を収容した容器と、を含む製品も提供される。免疫応答性細胞、免疫抑制阻害剤等の詳細については、前述の本開示に係る組み合わせ医薬Aの説明がそのまま当てはまる。また、医薬の構成の詳細については、前述の第1の投与用組成物の説明がそのまま当てはまる。本開示に係る免疫応答性細胞Aを収容した容器は、使用方法の表示が付されたバイアル、静注バッグ、細胞保存用バッグ、点滴用バッグ等の容器であってもよいし、エッペンドルフチューブのような容器であってもよい。このような容器中に、本開示に係る免疫応答性細胞Aを含む医薬は、例えば前述の第1の投与用組成物の説明に記載した状態で収容される。また、添付文書中における免疫抑制阻害剤と併用されることの記載は、免疫抑制阻害剤と併用されることを明示的に指示している記載に限られず、免疫抑制阻害剤との併用の可能性について言及している任意の記載であってもよい。
 以上説明したとおり、本開示に係る一態様によれば、がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞、並びに免疫抑制阻害剤の組み合わせによる相乗的な効果により、驚くべきほどに向上したがん治療効果を得ることができる。
 本開示に係る実施形態には以下のものが含まれる。
<1> (a)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、並びに
 (b)免疫抑制阻害剤
 を含む、対象におけるがんを治療するための組み合わせ医薬。
<2> 前記免疫応答性細胞と、前記免疫抑制阻害剤とが、異なる時点で別々に投与される、<1>に記載の組み合わせ医薬。
<3> インターロイキン7をコードする遺伝子及びCCL19をコードする遺伝子が外来性であり、双方が前記免疫応答性細胞のゲノムに組み込まれているか、又は前記免疫応答性細胞中に存在する1個又は複数個のベクターに一緒に若しくは別個にコードされている、<1>又は<2>に記載の組み合わせ医薬。
<4> 前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、<1>~<3>のうちいずれか1つに記載の組み合わせ医薬。
<5> 前記免疫抑制阻害剤が、PD-1阻害剤、PD-L1阻害剤、PD-L2阻害剤、CTLA-4阻害剤、BTLA(B- and T-lymphocyte attenuator)阻害剤、TIM-3(T-cell immunoglobulin and mucin domain 3)阻害剤、TIGIT(T-cell immunoreceptor with Ig and ITIM domains)阻害剤、LAG-3(Lymphocyte Activation Gene-3)阻害剤、及びSiglec-15阻害剤からなる群から選択される1種以上を含む、<1>~<4>のうちいずれか1つに記載の組み合わせ医薬。
<6> 前記免疫抑制阻害剤が抗体である、<1>~<5>のうちいずれか1つに記載の組み合わせ医薬。
<7> 前記抗体が、IgGモノクローナル抗体又は抗体断片である、<6>に記載の組み合わせ医薬。
<8> 前記がんが固形がんである、<1>~<7>のうちいずれか1つに記載の組み合わせ医薬。
<9> 前記免疫応答性細胞が、前記対象自身に由来する免疫応答性細胞である、<1>~<8>のうちいずれか1つに記載の組み合わせ医薬。
<10> 前記免疫応答性細胞が、T細胞、ナチュラルキラー細胞(NK細胞)、及びB細胞等のリンパ球系細胞、単球、マクロファージ、及び樹状細胞等の抗原提示細胞、好中球、好酸球、好塩基球、並びに肥満細胞からなる群から選択される、<1>~<9>のうちいずれか1つに記載の組み合わせ医薬。
<11> 免疫抑制阻害剤と併用されて対象におけるがんを治療するために用いられる、がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞を含む医薬。
<12> がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19を発現する免疫応答性細胞と併用されて対象におけるがんを治療するために用いられる、免疫抑制阻害剤を含む医薬。
<13> 前記免疫抑制阻害剤と前記免疫応答性細胞とが異なる時点で別々に投与される形態にて用いるための、<11>又は<12>に記載の医薬。
<14> 免疫抑制阻害剤と併用されることが表示された容器に収容され、かつ、がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞を含む医薬。
<15> 免疫抑制阻害剤と併用されることが記載された添付文書と、
 がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞を含む医薬を収容した容器と、
 を含む製品。
<16> (a)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、並びに
 (b)免疫抑制阻害剤
 を含む、対象におけるがんを治療するための医薬組成物。
<17> 前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、<16>に記載の医薬組成物。
<18> (a)がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞、並びに
 (b)免疫抑制阻害剤
 を組み合わせて対象に投与することを含む、対象におけるがんを治療する方法。
<19> がんを治療するための医薬の製造における、(a)がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞、並びに(b)免疫抑制阻害剤の使用が提供される。
 以下、本開示に係るさらなる態様について説明する。
 本開示の一態様によれば、
 (a)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ、並びに
 (b)免疫抑制阻害剤 
 を含む、対象におけるがんを治療するための組み合わせ医薬(以下、「本開示に係る組み合わせ医薬B」とも称する)が提供される。
 ここで、組み合わせ医薬Bにおけるインターロイキン7、CCL19、インターロイキン7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害剤の定義、例、アミノ酸配列、塩基配列、好ましい実施形態等の詳細は、本開示に係る免疫応答性細胞A及び本開示に係る組み合わせ医薬Aにおける、インターロイキン7、CCL19、インターロイキン7をコードする遺伝子、CCL19をコードする遺伝子、及び免疫抑制阻害剤の定義、例、アミノ酸配列、塩基配列、好ましい実施形態等の詳細と、それぞれ同様である。
 また、本開示において「協同して含む」とは、複数の要素(例えば、複数の細胞、複数の核酸送達媒体、又は1つ以上の細胞及び1つ以上の核酸送達媒体)が存在する場合に、含まれる対象として示された物質(例えば特定のポリペプチドをコードする核酸)が、前記複数の要素のうち少なくとも1つには含まれていることを意味し、前記複数の要素の全てが当該物質を含んでいることは必要無い。つまり、「協同して含む」とは、「全体として含む」と表現することもできる。また、「協同して含む」の意味する範囲には、含まれる対象として示された複数の物質の全てが単一の細胞又は核酸送達媒体に含まれる場合も包含され、このような構成も好ましい構成の一つである。
 このため、本開示に係る組み合わせ医薬Bが、細胞I及び細胞IIを含む場合、細胞Iがインターロイキン7をコードする核酸を含んでCCL19をコードする核酸を含まず、細胞IIがCCL19をコードする核酸を含んでインターロイキン7をコードする核酸を含まない構成であってもよい。同様に、本開示に係る組み合わせ医薬Bが、核酸送達媒体I及び核酸送達媒体IIを含む場合、核酸送達媒体Iがインターロイキン7をコードする核酸を含んでCCL19をコードする核酸を含まず、核酸送達媒体IIがCCL19をコードする核酸を含んでインターロイキン7をコードする核酸を含まない構成であってもよい。
 あるいは、本開示に係る組み合わせ医薬Bは、インターロイキン7をコードする核酸及びCCL19をコードする核酸の両方を含む単一の細胞又は核酸送達媒体を含んでいてもよい。
 さらに、「インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ」における「それらの組み合わせ」とは、1種類又は複数種類の細胞と、1種類又は複数種類の核酸送達媒体との組み合わせであって、インターロイキン7をコードする核酸がそれら1種類又は複数種類の細胞及び1種類又は複数種類の核酸送達媒体のうち少なくとも1つに含まれ、CCL19をコードする核酸がそれら1種類又は複数種類の細胞及び1種類又は複数種類の核酸送達媒体のうち少なくとも1つに含まれている組み合わせを表す。
 さらに、本開示においてポリペプチドとは、アミノ酸残基がペプチド結合で連結したポリマー一般を示し、いわゆるタンパク質もその例に含まれる。ポリペプチドのアミノ酸残基数は10以上であってもよく、20以上であってもよく、30以上であってもよく、40以上であってもよく、50以上であってもよく、70以上であってもよく、100以上であってもよい。アミノ酸残基数の上限値は特に制限されないが、アミノ酸残基数は10000以下であってもよく、5000以下であってもよく、2000以下であってもよく、1000以下であってもよく、500以下であってもよく、200以下であってもよく、100以下であってもよく、70以下であってもよく、50以下であってもよく、40以下であってもよく、30以下であってもよく、20以下であってもよい。上記の下限値と上限値とは、矛盾の生じない限りにおいて自由に組み合わせて範囲を形成することができる。
 本開示に係る組み合わせ医薬Bにおいて、細胞とは、含有対象として言及された核酸(例えば、インターロイキン7をコードする核酸及び/又はCCL19をコードする核酸)を発現することが可能な細胞である限りは特に限定されない。細胞は、体内に導入された場合に、がん細胞周辺に集積あるいは浸潤する細胞であることが好ましい。含有対象として言及された核酸が一つの細胞内に2つ以上存在する場合、該細胞内において、それらの核酸は、それぞれ独立に、ゲノムに組み込まれた状態又はプラスミドに担持された状態で含まれていてもよく、あるいは互いに連結されてゲノムに組み込まれた状態又はプラスミドに担持された状態で含まれていてもよい。前記細胞の例としては、免疫応答性細胞、嫌気性菌の細胞、及び間葉系幹細胞(MSC)が挙げられる。
 本開示に係る組み合わせ医薬Bにおいて、核酸送達媒体とは、含有対象として言及された核酸(例えば、インターロイキン7をコードする核酸及び/又はCCL19をコードする核酸)を細胞に送達して発現させることが可能な核酸送達媒体である限りは特に限定されない。該細胞は、ヒトの細胞であることが好ましく、ヒトの体内の細胞であることがより好ましく、ヒト体内のがん細胞又は免疫応答性細胞であることがさらに好ましい。つまり、核酸送達媒体は、体内に導入された場合に、がん細胞内又は免疫応答性細胞内に核酸を送達する核酸送達媒体であることが好ましい。
 前記核酸送達媒体の例としては、ウイルス、リポソーム及びナノ粒子が挙げられる。核酸送達媒体として当業界で知られているものを、常法に従って用いればよい。核酸送達媒体として、ウイルスベクターを用いることも可能である。
 含有対象として言及された核酸が2つ以上、一つの核酸送達媒体内に存在する場合、該核酸送達媒体内において、それらの核酸は、それぞれ独立した状態で含まれていてもよく、あるいは互いに連結された状態で含まれていてもよい。
 がん細胞は免疫応答性細胞ががん細胞を攻撃したり、がん細胞を攻撃する指示を発したりすることを抑制する免疫抑制機構を有しているため、がん罹患者自身の免疫によるがん細胞への攻撃が抑制されている。本開示に係る組み合わせ医薬Bの構成要素の1つである免疫抑制阻害剤は、がん細胞による免疫抑制機構を阻害することで、がん罹患者の免疫系ががん細胞を攻撃することをより容易にすると考えられる。
 これらに加えて、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが、がん組織の近傍でIL-7を発現し、又は細胞(典型的には体内の細胞)に核酸送達してIL-7を発現させ、さらにCCL19を発現し、又は細胞(典型的には体内の細胞)に核酸送達してCCL19を発現させることにより、がん罹患者の内因性の免疫応答性細胞ががん細胞の周囲に集積するため、がん細胞をより効果的に攻撃することが可能になると考えられる。この点から、核酸送達の対象となる細胞は、体内のがん細胞であることが好ましい。
 本開示に係る組み合わせ医薬Bは、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせと、免疫抑制阻害剤とを含むことによって、発現したIL-7及びCCL19、並びに免疫抑制阻害剤からなる因子の組み合わせによる相乗的な効果を発揮し、このために大きく改善したがん治療効果を奏すると考えられる。この相乗的な効果は、それぞれの因子の個別の効果からは予測することができないほど優れた効果である。
 ある実施形態では、組み合わせ医薬Bにおける前記1種類又は複数種類の細胞又は核酸送達媒体は、免役応答性細胞等、がん細胞以外の細胞に核酸を送達する。かかる実施形態では、本開示に係る組み合わせ医薬Bにおける前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせは、がん抗原を特異的に認識する細胞表面分子をコードする核酸をさらに含んでいてもよい。この場合、がん抗原を特異的に認識する細胞表面分子をコードする核酸を含む細胞又は核酸送達媒体は、インターロイキン7をコードする核酸を含んでいてもいなくてもよく、CCL19をコードする核酸を含んでいてもいなくてもよい。つまり、本開示に係る組み合わせ医薬Bにおける前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが、がん抗原を特異的に認識する細胞表面分子をコードする核酸をさらに含む場合は、前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせは、インターロイキン7をコードする核酸、CCL19をコードする核酸、及びがん抗原を特異的に認識する細胞表面分子をコードする核酸を協同して(言い換えれば全体として)含んでいればよい。
 本開示に係る組み合わせ医薬Bにおける前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが、核酸を送達した細胞において、がん抗原を特異的に認識する細胞表面分子をさらに発現させることにより、がん治療効果をいっそう増強しうる。例えば、がん抗原を特異的に認識する細胞表面分子をコードする核酸を核酸送達媒体に含ませた場合、当該核酸送達媒体を対象に投与して対象の体内のT細胞に前記核酸を導入することによって、当該T細胞において細胞表面分子が発現する。
 ある実施形態では、組み合わせ医薬Bにおける前記1種類又は複数種類の細胞又は核酸送達媒体は、がん細胞に核酸を送達するために、がん細胞を特異的に認識する分子をその表面に有する。がん細胞を特異的に認識する分子の例及び好ましい実施形態等の詳細については、がん細胞を特異的に認識する細胞表面分子の例及び好ましい実施形態等の詳細と同様である。
 組み合わせ医薬Bにおける前記1種類又は複数種類の細胞又は核酸送達媒体が「細胞」の場合、例えば、がん抗原を特異的に認識する細胞表面分子をコードする核酸を当該細胞に導入し、組み合わせ医薬Bの投与前に培養することによって、その表面にがん抗原を特異的に認識するscFv等を発現させることができる。
 組み合わせ医薬Bにおける前記1種類又は複数種類の細胞又は核酸送達媒体が「ウイルス」の場合、例えば、がん抗原を特異的に認識する細胞表面分子をコードする核酸をウイルスゲノムに組み込み、適当な細胞にトランスフェクションしてウイルスを産生・増殖させることにより、その表面にがん抗原を特異的に認識するscFv等を発現させることができる。scFv等の抗体はウイルスのエンベロープ又はカプシドに含ませてもよく、例えば、ヘルペスウイルスを用いる場合、ヘルペスウイルスへの侵入を担うエンベロープ糖タンパク質gDを本来の受容体に結合不能とした上で、該エンベロープ糖タンパク質gDにがん抗原を特異的に認識するscFv等の抗体を挿入してもよい。
 また、組み合わせ医薬Bにおける前記1種類又は複数種類の細胞又は核酸送達媒体がリポソームやナノ粒子などの場合は、予め、表面にがん細胞を特異的に認識する分子を、公知の方法又はそれに準ずる方法で結合させておくことができる。
 ここで、がん抗原を特異的に認識する細胞表面分子、及びがん抗原を特異的に認識する細胞表面分子をコードする核酸の定義、例、アミノ酸配列、塩基配列、好ましい実施形態等の詳細は、本開示に係る免疫応答性細胞A及び本開示に係る組み合わせ医薬Aにおけるがん抗原を特異的に認識する細胞表面分子、及びがん抗原を特異的に認識する細胞表面分子をコードする遺伝子の定義、例、アミノ酸配列、塩基配列、好ましい実施形態等の詳細と、それぞれ同様である。
 がん抗原を特異的に認識する細胞表面分子をコードする核酸は、免疫応答性細胞に含まれることが好ましい。言い換えれば、本開示に係る組み合わせ医薬Bにおける前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせは、がん抗原を特異的に認識する細胞表面分子をコードする核酸を含む免疫応答性細胞を含むことが好ましい。該免疫応答性細胞は、インターロイキン7をコードする核酸を含んでいてもいなくてもよく、CCL19をコードする核酸を含んでいてもいなくてもよい。がん抗原を特異的に認識する細胞表面分子は、がん抗原を特異的に認識するT細胞受容体(TCR)、がん抗原を特異的に認識するキメラ抗原受容体(CAR)等の、細胞表面に発現することによってがんに対する特異的な識別能を細胞に付与する分子であることが好ましい。
 このため、ある実施形態では、本開示に係る組み合わせ医薬Bは、CAR-T又はTCR-Tを用いた処置と併用することができるともいえる。
 一つの実施形態においては、前記インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせは、がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞を含んでいてもよい。また、免疫抑制阻害剤は、細胞が発現した免疫抑制阻害性ポリペプチドであってもよく、本開示に係る組み合わせ医薬Bは、免疫抑制阻害性ポリペプチドを発現する細胞を含んでいてもよい。該細胞の例としては、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせにおける細胞の例として後述された細胞が挙げられる。あるいは、本開示に係る組み合わせ医薬Bにおける免疫抑制阻害剤の代わりに、免疫抑制阻害性ポリペプチドをコードする核酸を含む核酸送達媒体を含ませることも、本開示に係る実施形態の範疇に含まれる。該核酸送達媒体は、他の核酸を含む核酸送達媒体と同じ核酸送達媒体であっても、別個の核酸送達媒体であってもよい。
 このため、本開示のある実施形態によれば、前記免疫抑制阻害剤がポリペプチドであって、前記細胞若しくは核酸送達媒体又はそれらの組み合わせが、免疫抑制阻害剤ポリペプチドをコードずる核酸をさらに協同して含む。
 また、本開示に係る組み合わせ医薬Bが、がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞と、免疫抑制阻害性ポリペプチドを発現する細胞とを含む場合、これらは同じ細胞であってもよく、別の細胞であってもよい。がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞と、免疫抑制阻害性ポリペプチドを発現する細胞とが同じ免疫応答性細胞である場合、本開示に係る組み合わせ医薬Bは、該免疫応答性細胞を含むことにより、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ、並びに免疫抑制阻害剤を含むといえる。もちろん、免疫抑制阻害剤は、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせとは独立した成分として、本開示に係る組み合わせ医薬Bに含まれていてもよい。言い換えれば、前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせにより発現される物質ではなく、別個に加えられた物質として、本開示に係る組み合わせ医薬Bに含まれていてもよい。
 上記のとおり、本開示に係る組み合わせ医薬Bにおける細胞若しくは核酸送達媒体又はその組み合わせは、免疫応答性細胞、ウイルス、嫌気性菌、リポソーム、間葉系幹細胞(MSC)、及びナノ粒子からなる群から選択される少なくとも1つであってもよく、これらから選ばれる複数を混合して用いてもよい。 
 ここで、免疫応答性細胞は、免疫応答に関与し、含有の対象となる核酸(例えば、インターロイキン7をコードする核酸及び/又はCCL19をコードする核酸)を含んで発現できる細胞であれば特に制限されない。送達対象となる核酸は、免疫応答細胞のゲノムに含まれていても、ゲノム外のベクターに担持されていてもよいが、例えば、遺伝子担持の安定性の観点からゲノム中に含まれていてもよい。前記免疫応答性細胞は、生体から採取された免疫応答性細胞であることが好ましく、例えば、T細胞、ナチュラルキラー細胞(NK細胞)、B細胞等のリンパ球系細胞、単球、マクロファージ、樹状細胞等の抗原提示細胞、並びに好中球、好酸球、好塩基球、肥満細胞等の顆粒球が挙げられる。好ましい例としては、ヒト、イヌ、ネコ、ブタ、マウス等の哺乳動物から採取されたT細胞、さらに好ましくはヒトから採取されたT細胞が挙げられる。なお、生体から採取されたT細胞を含む細胞集団を用いる場合、該細胞集団はT細胞以外に他の細胞も含んでいてもよいが、細胞数基準で全細胞数のうちの50%以上、又は60%以上、又は70%以上、又は80%以上、又は90%以上の割合でT細胞を含んでいてもよい。T細胞等の免疫応答性細胞は、例えば、血液、骨髄液等の体液、脾臓、胸腺、リンパ節等の組織、若しくは原発腫瘍、転移性腫瘍、がん性腹水等のがん組織に浸潤する免疫細胞から、免疫応答性細胞を含む細胞集団を採取して得ることができる。細胞集団に含まれるT細胞等の免疫応答性細胞の割合を高めるため、分離した細胞集団を、必要に応じて、定法による単離工程又は精製工程に供してもよい。また、免疫応答性細胞は、ES細胞又はiPS細胞から作製された免疫応答性細胞であってもよい。免疫応答性細胞の例としてのT細胞の例としては、アルファ・ベータT細胞、ガンマ・デルタT細胞、CD8T細胞、CD4T細胞、腫瘍浸潤T細胞、メモリーT細胞、ナイーブT細胞、及びNKT細胞が挙げられる。なお、免疫応答性細胞の由来と、組み合わせ医薬の投与対象とは同じ個体であっても異なる個体であってもよいが、同じ個体であることが好ましい。例えば、投与対象がヒトの場合、免疫応答性細胞は、投与対象としての患者本人から採取した自家細胞であっても、他人から採取した他家細胞であってもよい。すなわち、ドナーとレシピエントは一致しても不一致でもよいが、一致することが好ましい。
 核酸送達媒体としてのウイルスは、送達対象となる核酸(例えば、インターロイキン7をコードする核酸及び/又はCCL19をコードする核酸)を封入でき、がん細胞に感染しうるウイルスであることが好ましく、腫瘍溶解性ウイルスであることがより好ましい。上記腫瘍溶解性ウイルス(oncolytic virus)とは、正常細胞に感染してもほとんど増殖しないが、がん細胞に感染すると増殖し、がん細胞を死滅(がん細胞傷害)させる能力を有するウイルスを意味し、例えばMolecular Therapy、第18巻、第2号、2010年2月、233~234ページに総説されている。腫瘍溶解性ウイルスは、がん細胞に感染してがん細胞を死滅させる能力を有する限り特に限定されないが、その例としては、腫瘍溶解性ワクシニアウイルス、腫瘍溶解性アデノウイルス、腫瘍溶解性単純ヘルペスウイルス、腫瘍溶解性レオウイルス、腫瘍溶解性麻疹ウイルス、腫瘍溶解性ニューカッスル病ウイルス、腫瘍溶解性牛痘ウイルス、腫瘍溶解性ムンプスウイルス、及び腫瘍溶解性コクサッキーウイルスが挙げられる。
 腫瘍溶解性ワクシニアウイルスは、例えば、Kim MK et al. Science Translational Medicine. 2013 May 15;5(185):185ra63、Heo J, et al. Nature Medicine, 2013 (3):329-36. doi: 10.1038/nm.3089. Epub 2013 Feb 10.、国際公開第2012/094386号に記載のワクシニアウイルスであるが、これに限定されない。腫瘍溶解性アデノウイルスの例としては、Tedcastle A et al. Mol Ther. 2016;24:796-804, Marino N, Illingworth S, Kodialbail P, Patel A, Calderon H, Lear R, Fisher KD, Champion BR, Brown ACN. PLoS One 2017;12(5):e0177810、Freedman JD, et al. EMBO Mol Med 9:1067-1087 (2017)、Lang FF et al., Journal of Clinical Oncology (2018)、James M. et al. The Journal of Oncology, 188(6):2391-7, 2012、特許第3867968号公報及び特許第5574284号公報に記載のアデノウイルスが挙げられるが、これらに限定されない。また、腫瘍溶解性単純ヘルペスウイルスの例としては、Mazzacurati et al., Mol Ther, 2015 Jan;23(1):99-107、Hirooka Y, et al. BMC Cancer 2018, 18, 596、Nakatake R, et al. Cancer Sci. 2018 Mar, 109(3);600-610.及びAndtbacka RHI, et al. J Clin Oncol. 2015;33:2780-2788に記載の単純ヘルペスウイルスが挙げられるが、これらに限定されない。腫瘍溶解性レオウイルスの例としては、Mahalingam, et al, Cancers 2018, 10, 160に記載のレオウイルスが挙げられるが、これに限定されない。腫瘍溶解性ニューカッスル病ウイルスの例としては、Journal of Virology. 2016 Jun; 90(11):5343-5352.に記載のニューカッスル病ウイルスが挙げられるが、これに限定されない。腫瘍溶解性水泡口内炎ウイルス病ウイルスの例としては、Muik A. et al. Cancer Res; 74(13); 3567-78. に記載の水泡口内炎ウイルス病ウイルスが挙げられるが、これに限定されない。腫瘍溶解性ウイルスは、遺伝子改変により付加されたタンパク質発現機能を有しているものもある。当該付加されたタンパク質発現機能により発現されるタンパク質として、送達対象となる核酸にコードされるポリペプチド(例えば、インターロイキン7及び/又はCCL19)を発現させてもよい。 
 「インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ」における細胞としての嫌気性菌は、含有の対象となる核酸(例えば、インターロイキン7をコードする核酸及び/又はCCL19をコードする核酸)を含んで発現できる嫌気性菌の細胞であれば特に制限されない。嫌気性菌は、がん細胞に集積する能力を有する嫌気性グラム陽性菌であることが好ましく、その例としては、ビフィズス菌等のビフィドバクテリウム属菌、ラクトバシラス属菌、及びリステリア属菌が挙げられる。なお、嫌気性菌は酸素が少ない環境下で生育しやすいことから、がん細胞に集積しやすいことが知られている。嫌気性菌は、本開示に係る組み合わせ医薬Bの投与の対象の体内の細胞に取り込まれることも可能である。
 核酸送達媒体としてのリポソームは、送達対象となる核酸(例えば、インターロイキン7をコードする核酸及び/又はCCL19をコードする核酸)を封入でき、リン脂質二重膜から構成される脂質ナノカプセルであれば特に制限されない。かかるリポソームは、市販品であってもよく、常法によって合成されたリポソームであってもよい。リポソームは、がん細胞への集積を向上するために、PEG修飾を受ける、あるいはレクチン若しくはタンパク質(例えば抗体)等の標的化プローブ分子を表面に有していてもよい。
 「インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ」における細胞としての間葉系幹細胞(MSC)は、含有の対象となる核酸(例えば、インターロイキン7をコードする核酸及び/又はCCL19をコードする核酸)を含んで発現できるMSCであれば特に制限されない。MSCは、がん細胞に集積するMSCであることが好ましい。 
 核酸送達媒体としてのナノ粒子は、送達対象となる核酸(例えば、インターロイキン7をコードする核酸及び/又はCCL19をコードする核酸)をがん細胞に送達できる能力を有し、ナノメートルオーダー、好ましくは直径5~800nmの粒子体であれば特に制限されない。ナノ粒子の例としては、金ナノ粒子等の金属ナノ粒子、及びシリカナノ粒子が挙げられる。かかるナノ粒子は市販品であってもよく、常法によって合成されたナノ粒子であってもよい。ナノ粒子は、例えばEnhanced Permeability and Retention Effect(EPR効果)により、がん細胞に到達しうる。ナノ粒子の材質に応じて、核酸はナノ粒子の表面に結合させる、ナノ粒子内に封入する等の形でナノ粒子に含ませることができる。
 本開示に係る組み合わせ医薬Bにおいて、それぞれ細胞又は核酸送達媒体に含まれるインターロイキン7をコードする核酸、CCL19をコードする核酸、及び任意に含まれるがん抗原を特異的に認識する細胞表面分子をコードする核酸は、それぞれプロモーターの下流に作動可能に連結されていることが好ましい。これらの核酸を細胞又は核酸送達媒体に含ませる操作は、常法に従って行えばよい。細胞に核酸を導入する場合には、例えば、エレクトロポレーション法(例えばCytotechnology,3,133(1990)参照)、リン酸カルシウム法(例えば特開平2-227075号公報参照)、リポフェクション法(例えばProc.Natl.Acad.Sci.U.S.A.,84,7413(1987)参照)、及びウイルス感染法から選択される方法を用いて導入を行うことができる。ウイルス感染法は、導入する核酸を含むベクターと、パッケージングプラスミドとを、GP2-293細胞(タカラバイオ社製)、Plat-GP細胞(コスモ・バイオ社製)、PG13細胞(ATCC CRL-10686)、又はPA317細胞(ATCC CRL-9078)といったパッケージング細胞にトランスフェクションして組換えウイルスを作製し、かかる組換えウイルスをT細胞に感染させる方法(例えば国際公開第2017/159736号参照)であってもよい。
 あるいは、導入対象となる核酸は、公知の遺伝子編集技術を用いて、適切なプロモーターの制御下で発現可能なように、細胞のゲノムに組み込まれてもよい。公知の遺伝子編集術の例としては、ジンクフィンガーヌクレアーゼ、TALEN(転写活性化様エフェクターヌクレアーゼ)、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)-Casシステム等のエンドヌクレアーゼを用いる技術が挙げられる。
 含有対象となる核酸が細胞に含まれる場合、当該核酸は細胞のゲノムに組み込まれていても、細胞内のベクターに担持されていてもよい。含有対象となる核酸が2つ以上、同じ細胞に含まれている場合には、それらは隣接して細胞のゲノムに組み込まれていてもよいし、別個に細胞のゲノムに組み込まれていてもよいし、同じベクター中に含まれていてもよいし、別個のベクター中に別々に含まれていてもよい。また、含有対象となる核酸のうちいくつかがゲノムに含まれ、残りがベクターに含まれていてもよい。
 含有対象となる核酸が核酸送達媒体に含まれる場合、当該核酸は単独で含まれていても、ベクターに担持されていてもよい。含有対象となる核酸が2つ以上、同じ核酸送達媒体に含まれている場合には、それらは同じベクター中に含まれていてもよいし、別個のベクター中に別々に含まれていてもよいし、同じウイルス中に含まれていてもよいし、別個のウイルス中に含まれていてもよい。また、別々の核酸は、同じ核酸送達媒体に含まれていても、別々の核酸送達媒体に含まれていてもよい。
 ベクターは直鎖状でも環状でもよく、プラスミド等の非ウイルスベクターでも、ウイルスベクターでも、トランスポゾンによるベクターでもよい。ベクターは、プロモーター、ターミネーター等の制御配列、薬剤耐性遺伝子、レポーター遺伝子等の選択マーカー配列のうち1つ以上を含有していてもよい。ベクターに含まれるプロモーターを利用して、ベクターに含まれる遺伝子の発現を行わせるようにしてもよい。
 本開示に係る組み合わせ医薬Bは、IL-7及びCCL19、並びに免疫抑制阻害剤からなる因子の組み合わせによる相乗的な効果により、驚くべきほどに向上したがん治療効果を奏する。該効果は、本開示に係る組み合わせ医薬Bが、がん抗原を特異的に認識する細胞表面分子をコードする核酸を含む細胞又は核酸送達媒体を含む場合により顕著であり、がん抗原を特異的に認識する細胞表面分子をコードする核酸を含む免疫応答性細胞を含む場合にさらに顕著である。
 本開示に係る組み合わせ医薬Bにおいて、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせを含む投与用組成物(以下、第3の投与用組成物とも称する)は、さらに薬学的に許容される添加剤を含有していてもよく、前記添加剤としては、生理食塩水、緩衝生理食塩水、細胞培養培地、デキストロース、注射用水、グリセロール、エタノール及びこれらの組合せ、安定剤、可溶化剤及び界面活性剤、緩衝剤及び防腐剤、等張化剤、充填剤、並びに潤滑剤を挙げることができる。
 本開示に係る組み合わせ医薬Aにおける投与組成物についての説明は、第1の投与用組成物を第3の投与用組成物に読み替えて、本開示に係る組み合わせ医薬Bの投与のための投与組成物に適用することができる。例えば、第2の投与用組成物は、第3の投与用組成物と同一の組成物であってもよく、この場合は1つの投与用組成物が前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせと、免疫抑制阻害剤の両方を含むことになる。この場合は、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせと、免疫抑制阻害剤の両方を含む医薬組成物(合剤)が提供される。
 第2の投与用組成物が第3の投与用組成物と別個の組成物である場合は、第3の投与用組成物と第2の投与用組成物は一緒に投与してもよいし、別々のタイミング(時点)で投与してもよい。
 このため、前記細胞若しくは核酸送達媒体又はそれらの組み合わせと、前記免疫抑制阻害剤とは、異なる時点で別々に投与されてもよい。
 ただし、本開示に係る組み合わせ医薬Aにおける投与組成物についての説明における本開示に係る免疫応答性細胞Aの量の記載は、前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが細胞を含む場合における第3の投与用組成物中における細胞量の記載に読み替えて、本開示に係る組み合わせ医薬Bにおける投与組成物の説明に適用するものとする。
 その他、本開示に係る組み合わせ医薬Aについての説明は、本開示に係る組み合わせ医薬Aを本開示に係る組み合わせ医薬Bと読み替え、本開示に係る免疫応答性細胞A及び「がん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞」を、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせに読み替えて、特に矛盾の無い限り、本開示に係る組み合わせ医薬Bに適用できる。これには、治療対象の生物種、個体、疾患の種類、用量、投与スケジュール等、組み合わせ医薬の使用形態についての説明も含まれる。
 前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが核酸送達媒体を含む場合における第3の投与用組成物中における核酸送達媒体の量は、がんの種類、位置、重症度、治療を受ける対象の年齢、体重及び状態等に応じて適宜調整できるが、送達すべき核酸を治療有効量送達するのに適切な量とすればよい。
 本開示に係る組み合わせ医薬Aを用いたがんの治療についての説明は、本開示に係る組み合わせ医薬Aを本開示に係る組み合わせ医薬Bと読み替え、本開示に係る免疫応答性細胞A及びがん抗原を特異的に認識する細胞表面分子、IL-7及びCCL19を発現する免疫応答性細胞を、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせに読み替えて、本開示に係る組み合わせ医薬Bを用いたがんの治療に適用できる。例えば、本開示に係る一態様によれば、
 (a)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ、並びに
 (b)免疫抑制阻害剤
 を組み合わせて対象に投与することを含む、対象におけるがんを治療する方法(以下、本開示に係るがんの治療方法Bとも称する)が提供される。
 同様に、本開示によれば、がんを治療するための医薬の製造における、(a)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ、並びに(b)免疫抑制阻害剤の使用が提供される。また、免疫抑制阻害剤と併用されて対象におけるがんを治療するために用いられる、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせを含む医薬も提供される。さらに、免疫抑制阻害剤と併用されて対象におけるがんを治療するために用いられる、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせも提供される。インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせと、免疫抑制阻害剤とは、一緒に投与されても、異なる時点で別々に投与されてもよい。
 さらに、本開示によれば、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせと併用されて対象におけるがんを治療するために用いられる、免疫抑制阻害剤を含む医薬も提供される。さらに、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせと併用されて対象におけるがんを治療するために用いられる、免疫抑制阻害剤も提供される。
 本開示によれば、免疫抑制阻害剤と併用されることが表示された容器に収容され、かつ、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせを含む医薬も提供される。容器、表示等の詳細は、上述のとおりである。加えて、免疫抑制阻害剤と併用されることが記載された添付文書と、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせを含む医薬を収容した容器と、を含む製品も提供される。容器、添付文書等の詳細は、上述のとおりである。
 以上説明したとおり、本開示に係る一態様によれば、インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ、並びに免疫抑制阻害剤の組み合わせによる相乗的な効果により、驚くべきほどに向上したがん治療効果を得ることができる。
 本開示に係るさらなる態様によれば、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する免疫応答性細胞(以下、本開示に係る免疫応答性細胞Cとも称する)が提供される。
 ここで、本開示に係る免疫応答性細胞Cにおける、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、がん抗原を特異的に認識する細胞表面分子をコードする核酸、インターロイキン7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害剤の定義、例、アミノ酸配列、塩基配列、好ましい実施形態等の詳細は、本開示に係る免疫応答性細胞A及び本開示に係る組み合わせ医薬Aにおける、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、がん抗原を特異的に認識する細胞表面分子をコードする核酸、インターロイキン7をコードする遺伝子、CCL19をコードする遺伝子、及び免疫抑制阻害剤の定義、例、アミノ酸配列、塩基配列、好ましい実施形態等の詳細と、それぞれ同様である。
 本開示に係る免疫応答性細胞Cは、本開示に係る免疫応答性細胞Aがさらに免疫抑制阻害性ポリペプチドを発現している細胞であると考えることができる。したがって、免疫応答性細胞Aの説明において既に説明済みの事項(がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19についての説明等)については、免疫応答性細胞Aの説明におけるそれらの記載と同様であるので、説明を省略する。
 免疫抑制阻害性ポリペプチドとは、本開示に係る組み合わせ医薬Aにおける免疫抑制阻害剤の範疇に入る物質のうち、ポリペプチドに該当するものを指す。免疫抑制阻害性ポリペプチドは、免疫応答性細胞活性化の抑制を解除又は低減する。
 免疫抑制阻害性ポリペプチドの例としては、免疫チェックポイント阻害性ポリペプチド、Treg、骨髄由来免疫抑制細胞(MDSC)等の免疫抑制性細胞の浸潤、生存、又は機能を阻害するポリペプチド、CCR4阻害性ポリペプチド、インドールアミン2,3-ジオキシゲナーゼ(IDO)阻害性ポリペプチド、プロスタグランジンE2[PGE2]抑制性ポリペプチド、細胞傷害性抗がん性ポリペプチドが挙げられる。免疫抑制阻害性ポリペプチドは、これらの機能を有する限り、抗体であってもよく、例えばIgGモノクローナル抗体又は抗体断片であってもよい。
 免疫チェックポイント阻害性ポリペプチドは、典型的にはT細胞の表面に発現する免疫チェックポイント分子を介した免疫抑制機構を解除又は軽減させるポリペプチドである。免疫チェックポイント阻害性ポリペプチドは、例えば、免疫チェックポイント分子(例えばPD-1、CTLA-4、BTLA、TIM-3、TIGIT、LAG-3等)又は免疫チェックポイント分子のリガンド(例えばPD-L1、PD-L2、CD80/CD86、Siglec-15等)に結合して、リガンドにより免疫チェックポイント分子からのシグナル伝達が開始されることを阻害することで、免疫応答に対する抑制反応を減少させることができる。
 免疫チェックポイント阻害性ポリペプチドの例としては、PD-1阻害性ポリペプチド、PD-L1阻害性ポリペプチド、CTLA-4阻害性ポリペプチド、CD47阻害性ポリペプチド、SIRPα阻害性ポリペプチド、BTLA阻害性ポリペプチド、TIM-3阻害性ポリペプチド、TIGIT阻害性ポリペプチド、LAG-3阻害性ポリペプチド、Siglec-15阻害性ポリペプチド、ガレクチン-9阻害性ポリペプチド等が挙げられる。CCR4阻害性ポリペプチドの例としては、抗CCR4抗体(例えばモガムリズマブ)等が挙げられる。
 免疫抑制阻害性ポリペプチドは、PD-1阻害性ポリペプチド、PD-L1阻害性ポリペプチド、PD-L2阻害性ポリペプチド、CTLA-4阻害性ポリペプチド、BTLA(B- and T-lymphocyte attenuator)阻害性ポリペプチド、TIM-3(T-cell immunoglobulin and mucin domain 3)阻害性ポリペプチド、TIGIT(T-cell immunoreceptor with Ig and ITIM domains)阻害性ポリペプチド、LAG-3(Lymphocyte Activation Gene-3)阻害性ポリペプチド、及びSiglec-15阻害性ポリペプチドからなる群から選択される1種以上を含んでいてもよい。
 免疫抑制阻害性ポリペプチドは、免疫チェックポイント阻害性ポリペプチドであってもよく、より具体的にはPD-1阻害性ポリペプチド又はPD-L1阻害性ポリペプチドであってもよく、さらに具体的にはPD-1に対する抗体又はPD-L1に対する抗体であってもよい。PD-1に対する抗体の例としては、Nivolumab(ニボルマブ)、Pembrolizumab(ペムブロリズマブ)、Toripalimab(トリパリマブ)、Cemiplimab-rwlc(セミプリマブ)、Sintilimab(シンチリマブ)等が挙げられる。PD-L1に対する抗体の例としては、Atezolizumab(アテゾリズマブ)、Durvalumab(デュルバルマブ)、Avelumab (アベルマブ)等が挙げられる。CTLA-4に対する抗体の例としては、Ipilimumab(イピリムマブ)等が挙げられる。他にCD47、SIRPαに対する抗体等も挙げられる。
 抗体は、所定の抗原結合性を有していればIgGモノクローナルであっても、Fab断片であっても、scFvであっても、それ以外の抗体又は抗体断片であってもよい。免疫抑制阻害性ポリペプチドとしての抗PD-1scFvの例としては、配列番号16におけるN末端から数えて592~835位のアミノ酸配列が挙げられ、それをコードする核酸配列の例としては、配列番号15における5’末端から数えて1717番目の残基~2505番目の残基の核酸配列が挙げられる。
 目的の標的に対する一本鎖抗体(scFv)は、公知の手法により作製することもできる。例えば、マウス等に抗原を接種してからリンパ組織を採取して、抗体遺伝子のライブラリーを作製し、抗体ダイレクトクローニングによりがん抗原を認識する抗体をコードする塩基配列を得て、それを基に一本鎖抗体を設計してもよい。あるいは、採取したリンパ組織を用いてハイブリドーマを作製し、がん抗原を認識する抗体をコードするハイブリドーマを同定してモノクローナル抗体を得て、その配列情報を基に一本鎖抗体を設計してもよい。あるいは、健常人のB細胞から作製したナイーブ抗体ライブラリー、がん抗原に対して高い中和活性を示す抗血清をもつがん罹患者由来のB細胞から作製した抗体ライブラリー等を基にして一本鎖抗体のライブラリーを作製し、これをファージディスプレイにより提示させてがん抗原を認識する一本鎖抗体を選抜してもよい。
 本開示に係る免疫応答性細胞Cは、がん抗原を特異的に認識する細胞表面分子、IL-7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する。ここで、「がん抗原を特異的に認識する細胞表面分子、IL-7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する」とは、がん抗原を特異的に認識する細胞表面分子、IL-7、CCL19、及び免疫抑制阻害性ポリペプチドが免疫応答性細胞により産生され、がん抗原を特異的に認識する細胞表面分子の少なくとも一部が細胞表面(細胞外側の細胞表面)に位置し、IL-7、CCL19、及び免疫抑制阻害性ポリペプチドが細胞外に分泌されることを指す。
 がん細胞は免疫応答性細胞ががん細胞を攻撃したり、がん細胞を攻撃する指示を発したりすることを抑制する免疫抑制機構を有しているため、がん罹患者自身の免疫によるがん細胞への攻撃が抑制されている。本開示に係る免疫応答性細胞Cが発現する免疫抑制阻害性ポリペプチドは、がん細胞による免疫抑制機構を阻害することで、がん罹患者の免疫系ががん細胞を攻撃することをより容易にすると考えられる。
 これらに加えて、本開示に係る免疫応答性細胞CがIL-7及びCCL19も発現していることにより、本開示に係る免疫応答性細胞Cだけではなく、がん罹患者の内因性の免疫応答性細胞もがん細胞の周囲に集積するため、がん細胞をより効果的に攻撃することが可能になると考えられる。
 本開示に係る免疫応答性細胞Cは、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現することによって、がん抗原を特異的に認識する細胞表面分子を発現する免疫応答性細胞、分泌されたIL-7、CCL19、及び免疫抑制阻害性ポリペプチドからなる因子の組み合わせによる相乗的な効果を発揮し、このために大きく改善したがん治療効果を奏すると考えられる。この相乗的な効果は、それぞれの因子の個別の効果からは予測することができないほど優れた効果である。
 例えば、後述の実施例に示されるとおり、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19を発現するが免疫抑制阻害性ポリペプチドを発現しない免疫応答性細胞を用いた場合、及びがん抗原を特異的に認識する細胞表面分子及び免疫抑制阻害性ポリペプチドを発現するが、インターロイキン7及びCCL19を発現しない免疫応答性細胞を用いた場合には治療困難ながん治療の場合でも、本開示に係る免疫応答性細胞Cを用いれば治療可能となりうる。また、このような高い治療効果により、細胞の投与量を減らした場合でも治療効果を得ることが可能となり、自家細胞を使用する場合において十分な数の免疫応答性細胞を採取できない場合でも、治療効果を得ることが可能になる。このような効果は、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19の共発現、あるいは、がん抗原を特異的に認識する細胞表面分子及び免疫抑制阻害性ポリペプチドの共発現からは予測できない効果である。
 本開示に係る免疫応答性細胞Cは、例えば、生体から採取した免疫応答性細胞、又はiPS細胞、ES細胞等の多能性幹細胞若しくは造血幹細胞などの体性幹細胞から誘導した免疫応答性細胞等に、がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を導入することで得ることができる。あるいは、がん抗原を特異的に認識する細胞表面分子(例えばがん抗原を特異的に認識するTCR)を内在的に発現している免疫応答性細胞を生体から採取して、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を導入することでも得ることができる。
 生体から採取した免疫応答性細胞に核酸導入する場合、本開示に係る免疫応答性細胞Cを含む医薬により治療されるがん罹患者自身の(つまり自家の)免疫応答性細胞を採取すれば、拒絶反応を最小化できる。ただし、他家の免疫応答性細胞を使用することを排除するものではない。つまり、本開示に係る免疫応答性細胞Cは、対象自身に由来する免疫応答性細胞であっても、なくてもよい。
 がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸は、それぞれ、本開示に係る免疫応答性細胞Cのゲノム中に存在していても、ゲノム外のベクターに担持されていてもよく、例えば、核酸担持の安定性の観点からゲノム中に存在させてもよい。また、がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸は、ゲノム中にまとまって(例えば連結して)存在していてもよく、ばらばらに(分離して)存在していてもよく、あるいはこれらのうち一部のもののみがまとまって(例えば連結して)存在し、他のものはばらばらに(分離して)存在していてもよい。がん抗原を特異的に認識する細胞表面分子が、例えばαβの二量体又はγδの二量体からなるTCRである場合のようにヘテロ二量体又はヘテロ多量体である場合、ヘテロ二量体又はヘテロ多量体を構成するそれぞれの分子をコードする核酸はゲノム中にまとまって存在していてもよく、ばらばらに(分離して)存在していてもよい。
 一実施形態においては、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸のうち少なくとも1つは外来性であり、全てが外来性であってもよい。また、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸は、それぞれ独立に、ゲノムに組み込まれていても、ベクターに組み込まれていてもよい。ある実施形態では、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸の全てが、本開示に係る免疫応答性細胞Cのゲノムに組み込まれているか、又は前記免疫応答性細胞C中に存在する1個又は複数個のベクターに一緒に若しくは別個に組み込まれている。別の実施形態では、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸のうち一部は本開示に係る免疫応答性細胞Cのゲノムに組み込まれているが、残りは前記免疫応答性細胞C中に存在する1個又は複数個のベクターに組み込まれている。
 ある実施形態においては、免疫抑制阻害性ポリペプチドをコードする核酸は前記免疫応答性細胞のゲノムに組み込まれているか、又は、免疫応答性細胞中に存在する、IL-7をコードする核酸及びCCL19をコードする核酸を協同して含む1個又は複数個のベクターのうちいずれかと同じであっても異なっていてもよいベクターに組み込まれている。
 なお、細胞中に各核酸が存在しているかどうかは、PCR等公知の手法を用いて容易に確認することができる。
 免疫抑制阻害性ポリペプチドのアミノ酸配列及び免疫抑制阻害性ポリペプチドをコードする塩基配列の情報は、公知の文献やNCBI(http://www.ncbi.nlm.nih.gov/guide/)などのデータベースを検索して適宜入手することができる。
 免疫応答性細胞ががん抗原を特異的に認識する細胞表面分子を内在的に発現している場合、例えば所定のがん抗原を特異的に認識するTCRを発現しているT細胞を単離する場合には、がん抗原を特異的に認識する細胞表面分子をコードする核酸を外部から導入する必要は無いが、これ以外の場合は、がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドのうちの1種以上を外部から導入する。
 免疫応答性細胞に導入するためのがん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸は、それぞれ、当該分子をコードする塩基配列の情報に基づき、化学合成する方法や、PCRによって増幅する方法等の公知の技術によって作製することができる。なお、コーディング領域におけるコドンは、遺伝子を含む核酸が導入される対象となる免疫応答性細胞における当該遺伝子の発現を最適化するために改変されてもよい。
 導入の対象となる核酸群の導入は、1つ又は複数の核酸送達媒体に核酸群を含ませて行うことができる。この場合の核酸送達媒体の例としては、前述のウイルス、リポソーム及びナノ粒子が挙げられる。リポソーム及びナノ粒子は、核酸をベクターに含ませた状態で含んでいてもよい。このように、本開示によれば、インターロイキン7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を協同して含む1種類又は複数種類の核酸送達媒体も提供される。免疫応答性細胞ががん抗原を特異的に認識する細胞表面分子を内在的に発現していない場合などは、前記核酸送達媒体は、がん抗原を特異的に認識する細胞表面分子をコードする核酸をさらに含んでいてもよい。
 以下の説明では核酸群を含むベクターについて説明するが、核酸送達媒体の場合についても、矛盾が無い限り、同様の説明が当てはまる。あるいは、核酸送達媒体は以下に説明するようなベクターを含んでいてもよい。
 導入の対象となる核酸は、それぞれ別々のベクターに担持された状態で導入されても、2種以上の核酸を同じベクターに担持した状態で導入してもよい。例えば、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を免疫応答性細胞に導入する場合、IL-7をコードする核酸とCCL19をコードする核酸とは別々のベクターで導入してもよいし、同じベクターに両核酸を担持させて導入してもよい。CCL19をコードする核酸と免疫抑制阻害性ポリペプチドをコードする核酸とは別々のベクターで導入してもよいし、同じベクターに両核酸を担持させて導入してもよい。IL-7をコードする核酸と免疫抑制阻害性ポリペプチドをコードする核酸とは別々のベクターで導入してもよいし、同じベクターに両核酸を担持させて導入してもよい。がん抗原を特異的に認識する細胞表面分子をコードする核酸も導入する場合についての以下に記載の説明も、「がん抗原を特異的に認識する細胞表面分子をコードする核酸」を除くこと以外は同様に、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を導入する場合(言い換えれば、がん抗原を特異的に認識する細胞表面分子をコードする核酸の導入が必要無い場合)に適用できる。
 がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を免疫応答性細胞に導入する場合、
 (i)がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を、それぞれ別個のベクターに担持させて導入してもよいし、
 (ii)がん抗原を特異的に認識する細胞表面分子をコードする核酸及びIL-7をコードする核酸を同じベクターに担持させ、CCL19をコードする核酸を別個のベクターに担持させ、免疫抑制阻害性ポリペプチドをコードする核酸を別個のさらなるベクターに担持させて導入してもよいし、
 (iii)がん抗原を特異的に認識する細胞表面分子をコードする核酸及びCCL19をコードする核酸を同じベクターに担持させ、IL-7をコードする核酸を別個のベクターに担持させ、免疫抑制阻害性ポリペプチドをコードする核酸を別個のさらなるベクターに担持させて導入してもよいし、
 (iv)がん抗原を特異的に認識する細胞表面分子をコードする核酸及び免疫抑制阻害性ポリペプチドをコードする核酸を同じベクターに担持させ、IL-7をコードする核酸を別個のベクターに担持させ、CCL19をコードする核酸を別個のさらなるベクターに担持させて導入してもよいし、
 (v)IL-7をコードする核酸及びCCL19をコードする核酸を同じベクターに担持させ、がん抗原を特異的に認識する細胞表面分子をコードする核酸を別個のベクターに担持させ、免疫抑制阻害性ポリペプチドをコードする核酸を別個のさらなるベクターに担持させて導入してもよいし、
 (vi)IL-7をコードする核酸及び免疫抑制阻害性ポリペプチドをコードする核酸を同じベクターに担持させ、がん抗原を特異的に認識する細胞表面分子をコードする核酸を別個のベクターに担持させ、CCL19をコードする核酸を別個のさらなるベクターに担持させて導入してもよいし、
 (vii)CCL19をコードする核酸及び免疫抑制阻害性ポリペプチドをコードする核酸を同じベクターに担持させ、がん抗原を特異的に認識する細胞表面分子をコードする核酸を別個のベクターに担持させ、IL-7をコードする核酸を別個のさらなるベクターに担持させて導入してもよいし、
 (viii)がん抗原を特異的に認識する細胞表面分子をコードする核酸及びIL-7をコードする核酸を同じベクターに担持させ、CCL19をコードする核酸及び免疫抑制阻害性ポリペプチドをコードする核酸を別個のベクターに一緒に担持させて導入してもよいし、
 (ix)がん抗原を特異的に認識する細胞表面分子をコードする核酸及びCCL19をコードする核酸を同じベクターに担持させ、IL-7をコードする核酸及び免疫抑制阻害性ポリペプチドをコードする核酸を別個のベクターに一緒に担持させて導入してもよいし、
 (x)がん抗原を特異的に認識する細胞表面分子をコードする核酸及び免疫抑制阻害性ポリペプチドをコードする核酸を同じベクターに担持させ、IL-7をコードする核酸及びCCL19をコードする核酸を別個のベクターに一緒に担持させて導入してもよいし、
 (xi)がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、及びCCL19をコードする核酸を同じベクターに担持させ、免疫抑制阻害性ポリペプチドをコードする核酸を別個のベクターに担持させて導入してもよいし、
 (xii)がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を同じベクターに担持させ、CCL19をコードする核酸を別個のベクターに担持させて導入してもよいし、
 (xiii)がん抗原を特異的に認識する細胞表面分子をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を同じベクターに担持させ、IL-7をコードする核酸を別個のベクターに担持させて導入してもよいし、
 (xiv)IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を同じベクターに担持させ、がん抗原を特異的に認識する細胞表面分子をコードする核酸を別個のベクターに担持させて導入してもよいし、
 (xv)がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を、同じベクターに担持させて導入してもよい。
 導入効率を考慮して、2種以上の核酸を同じベクターに担持した状態で導入させてもよい。この場合は、当該2種以上の核酸は、免疫応答性細胞中でまとまって存在することになる。
 例えば、以下のベクター又はベクター群を使用することができる。
 (f)がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を含有するベクター(上記(xv)の場合に相当)
 (g)以下のベクター(g-1)及びベクター(g-2)からなるベクター群(上記xivの場合に相当)。
  (g-1)がん抗原を特異的に認識する細胞表面分子をコードする核酸を含有するベクター
  (g-2)IL-7をコードする核酸、CCL19をコードする核酸、免疫抑制阻害性ポリペプチドをコードする核酸を含有するベクター
 その他の場合についても、同様に適切なベクター群を設計することができる。
 ベクター群は、核酸が冗長(redundant)に含まれるように設計してもよい。つまり、がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、免疫抑制阻害性ポリペプチドをコードする核酸のうちの特定の一つの核酸が、ベクター群に属するベクターのうちの2つ以上に含まれていてもよい。
 上記のベクターのうち任意のベクターに、又は上記のベクターとは別個のベクターに、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-8、IL-9、IL-10、IL-11、IL-12、IL-13、IL-14、IL-15、IL-16、IL-17、IL-18、IL-23、IL-27、IP-10、CCL1、CCL2、CCL3、CCL4、CCL5、CCL7、CCL8、CCL11、CCL13、CCL14、CCL15、CCL16、CCL17、CCL18、CCL20、CCL21、CCL22、CCL23、CCL24、CCL25、CCL26、CCL27、CCL28、CXCL1、CXCL2、CXCL3、CXCL4、CXCL4L1、CXCL5、CXCL6、CXCL7、CXCL8、CXCL9、CXCL10、CXCL11、CXCL12、CXCL13、CXCL14、CXCL16、CXCL17、CX3CL1、XCL1、XCL2、CCL3L1、CCL3L3、CCL4L1、CCL4L2、Flt3L、Interferon-gamma、MIP-1alpha、GM-CSF、M-CSF、TGF-beta、TNF-alpha等の1種以上の他の免疫機能制御因子をコードする核酸をさらに含有させて、免疫応答性細胞に導入してもよい。
 核酸を担持するベクターを免疫応答性細胞に導入する方法としては特に制限されないが、ウイルス感染法、トランスポゾン法、カルシウムリン酸法、リポフェクション法、マイクロインジェクション法、エレクトロポレーション法等の公知の方法が挙げられる。外来核酸のゲノムへの導入が可能なウイルス感染法により導入する方法は核酸担持の安定性をもたらしうる。
 ウイルス感染法としては、ベクターとパッケージングプラスミドをGP2-293細胞(タカラバイオ社製)、Plat-GP細胞(コスモ・バイオ社製)、PG13細胞(ATCC CRL-10686)、PA317細胞(ATCC CRL-9078)等のパッケージング細胞にトランスフェクションして組換えウイルスを作製し、かかる組換えウイルスを免疫応答性細胞に感染させる方法を挙げることができ、Retrovirus packaging Kit Eco(タカラバイオ社製)等の市販のキットを用いて行ってもよい。MSCVレトロウイルス発現システム等を用いれば、外来核酸のゲノムへの導入が可能である。
 また、IL-7をコードする核酸、CCL19をコードする核酸、免疫抑制阻害性ポリペプチドをコードする核酸、及び必要ならがん抗原を特異的に認識する細胞表面分子をコードする核酸のゲノムへの組込みは、公知の遺伝子編集技術を用いて行うこともできる。公知の遺伝子編集技術としては、ジンクフィンガーヌクレアーゼ、TALEN(転写活性化様エフェクターヌクレアーゼ)、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)-Casシステム等のエンドヌクレアーゼを用いる技術が挙げられる。所望により導入される他の外来タンパク質をコードする核酸のゲノムへの組込みも、同様の手法により行うことができる。
 また、これらの核酸(遺伝子)を免疫応答性細胞のゲノムに組み込む場合には、当該遺伝子を制御する上流プロモーターと共にゲノムの非コード領域等に作動可能に(即ち、当該プロモーターの制御下で発現可能なように)組み込んでもよいし、プロモーター無しに、ゲノム中に既に存在しているプロモーターの下流に作動可能に組み込んでもよい。ゲノム中に既に存在しているプロモーターとしては、TCRα、TCRβのプロモーター等が挙げられる。
 がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、免疫抑制阻害性ポリペプチドをコードする核酸、及び所望により導入された追加の外来タンパク質をコードする核酸のうち2種以上の核酸が近接して存在する場合には、それら2種以上の核酸を共通のプロモーターの制御下で発現させることもできる。共通のプロモーターの制御下で発現させる場合には、2Aペプチド、IRESペプチド等を使用して、転写及び/又は翻訳を分断してそれぞれのポリペプチドを発現させるようにできる。
 がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸のうちの2種以上を担持するベクターを免疫応答性細胞に導入する場合には、該ベクター中における前記2種以上の核酸の並び順は特に限定されない。例えば、前記(f)がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を含有するベクターにおいては、これら4種の核酸の並び順は限定されない。具体的には、上流(5’末端側)から下流(3’末端側)への順に、
 (i)がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸のうちのいずれか、
 (ii)上記4つの核酸のうちの残余(3つ)のうちのいずれか
 (iii)上記4つの核酸のうちの残余(2つ)のうちのいずれか、
 (iv)上記4つの核酸のうちの最後に残ったもの
 で並んでいてもよい。
 同様に、免疫応答性細胞ががん抗原を特異的に認識する細胞表面分子を内在的に発現している場合に用いることが考えられるIL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を含有するベクターについても、
 (i)IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸のうちのいずれか、
 (ii)上記3つの核酸のうちの残余(2つ)のうちのいずれか
 (iii)上記3つの核酸のうちの最後に残ったもの
 の順に並んでいてもよい。
 なお、がん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸は、それぞれ別のプロモーターにより転写されてもよく、内部リボソームエントリー部位(IRES:internal ribozyme entry site)又は自己切断型2Aペプチドを使用して一つのプロモーターで転写されてもよい。
 一つのプロモーターで複数の核酸を転写させる場合、それぞれの核酸の間の塩基配列は、それぞれの核酸を発現し得る限り、任意の塩基配列を含んでもよいが、自己切断型ペプチド(2Aペプチド)又はIRESをコードする塩基配列を含んでもよく、2Aペプチドをコードする塩基配列を含んでもよい。このような塩基配列を用いて複数の核酸を連結することにより、それぞれの核酸を効率よく発現させることが可能となる。自己切断型ペプチド(2Aペプチド)又はIRESをコードする塩基配列を含みうる核酸間の塩基配列は、例えば、IL-7をコードする核酸とCCL19をコードする核酸との間の塩基配列であってもよく、IL-7をコードする核酸と免疫抑制阻害性ポリペプチドをコードする核酸との間の塩基配列であってもよく、がん抗原を特異的に認識する細胞表面分子をコードする核酸とIL-7をコードする核酸との間の塩基配列であってもよく、がん抗原を特異的に認識する細胞表面分子をコードする核酸とCCL19をコードする核酸との間の塩基配列であってもよく、がん抗原を特異的に認識する細胞表面分子をコードする核酸と免疫抑制阻害性ポリペプチドをコードする核酸との間の塩基配列であってもよく、CCL19をコードする核酸と免疫抑制阻害性ポリペプチドをコードする核酸との間の塩基配列であってもよく、アルファ・ベータTCRにおけるアルファ鎖をコードする核酸とベータ鎖をコードする核酸との間の塩基配列であってもよく、ガンマ・デルタTCRにおけるガンマ鎖をコードする核酸とデルタ鎖をコードする核酸の間の塩基配列であってもよい。つまり、これらの核酸間の領域それぞれについて、所望により、自己切断型ペプチド(2Aペプチド)又はIRESをコードする塩基配列を含ませることができる。
 2Aペプチドとは、ウイルス由来の自己切断型ペプチドであり、その詳細は前述のとおりである。
 免疫応答性細胞への核酸導入に用いられるベクターは直鎖状でも環状でもよく、プラスミド等の非ウイルスベクターでも、ウイルスベクターでも、トランスポゾンによるベクターでもよい。免疫応答性細胞への核酸導入に用いられるベクターは、プロモーター、ターミネーター等の制御配列、薬剤耐性核酸、レポーター核酸等の選択マーカー配列のうち1つ以上を含有していてもよい。免疫応答性細胞への核酸導入後も、ベクターに含まれるプロモーターを利用して核酸の発現を行わせるようにしてもよい。例えば、ベクター中のプロモーター配列の下流に作動可能にがん抗原を特異的に認識する細胞表面分子をコードする核酸、IL-7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸のうち1つ以上を配置することで、当該核酸を効率よく転写させることができる。
 前記プロモーターの例としては、レトロウイルスのLTRプロモーター、SV40初期プロモーター、サイトメガロウイルスプロモーター、単純ヘルペスウイルスのチミジンキナーゼプロモーター等のウイルス由来プロモーター、ホスホグリセリン酸キナーゼ(PGK)プロモーター、Xistプロモーター、β-アクチンプロモーター、RNAポリメラーゼIIプロモーター、ポリペプチド鎖伸長因子遺伝子プロモーター等の哺乳類由来プロモーターを挙げることができる。また、テトラサイクリンによって誘導されるテトラサイクリン応答型プロモーター、インターフェロンによって誘導されるMx1プロモーター等を用いてもよい。特定の物質によって誘導されるプロモーターを用いることによって、プロモーターに転写制御される遺伝子(例えば、がん抗原を特異的に認識する細胞表面分子をコードする遺伝子、IL-7をコードする遺伝子、CCL19をコードする遺伝子、及び免疫抑制阻害性ポリペプチドをコードする遺伝子のうち1つ以上)の発現をがんの治療経過に応じて制御することが可能となる。
 前記ウイルスベクターの例としては、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクターを挙げることができる。レトロウイルスベクターとしては、pMSGVベクター(Tamada K. et al., Clin Cancer Res 18:6436-6445(2002))、pMSCVベクター(タカラバイオ社製)等を挙げることができる。レトロウイルスベクターを用いれば、導入核酸はホスト細胞のゲノムへ取り込まれるため、導入核酸を長期間安定に発現することが可能となる。
 免疫応答性細胞におけるがん抗原を特異的に認識する細胞表面分子、IL-7、CCL19、及び免疫抑制阻害性ポリペプチドの発現は、フローサイトメトリー、ELISA、ウェスタンブロッティング等により確認することができる。また、これらをコードする核酸の導入は、上記のように発現産物を確認するか、あるいはノザンブロッティング、サザンブロッティング、RT-PCR等のPCR等により確認することができる。核酸導入に用いるベクターがマーカー遺伝子を含有する場合には、当該発現ベクターに挿入されたマーカー遺伝子の発現を調べることによって核酸の導入を確認することができる。
<本開示に係る免疫応答性細胞Cを含む医薬>
 本開示によれば、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する免疫応答性細胞を含む医薬(以下、「本開示に係る医薬C」とも称する)が提供される。つまり、本開示に係る医薬Cは、本開示に係る免疫応答性細胞Cを含む医薬である。
 本開示に係る医薬Cは、さらに薬学的に許容される添加剤を含有していてもよく、前記添加剤としては、生理食塩水、緩衝生理食塩水、細胞培養培地、デキストロース、注射用水、グリセロール、エタノール及びこれらの組合せ、安定剤、可溶化剤、界面活性剤、緩衝剤、防腐剤、等張化剤、充填剤、並びに潤滑剤を挙げることができる。
 本開示に係る医薬Cに含まれる本開示に係る免疫応答性細胞Cの量は、がんの種類、位置、重症度、治療を受ける対象の年齢、体重及び状態等に応じて適宜調整できるが、一回の投与当たり例えば1×10~1×1011個、より具体的には1×10~1×1010個、より具体的には1×10~1×10個を投与してもよい。また、本開示に係る免疫応答性細胞Cの量は、一回の投与当たり1×10個未満、例えば1×10~5×10個、より具体的には1.5×10~4×10個と少量であってもよい。
 上述のとおり、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19を発現するが免疫抑制阻害性ポリペプチドを発現しない免疫応答性細胞を用いた場合、及びがん抗原を特異的に認識する細胞表面分子及び免疫抑制阻害性ポリペプチドを発現するが、インターロイキン7及びCCL19を発現しない免疫応答性細胞を用いた場合には治療困難ながん治療の場合でも、本開示に係る免疫応答性細胞Cを用いれば治療可能となりうる。このため、医薬Cに含まれる本開示に係る免疫応答性細胞Cの量は、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19を発現するが免疫抑制阻害性ポリペプチドを発現しない免疫応答性細胞を用いた場合、及びがん抗原を特異的に認識する細胞表面分子及び免疫抑制阻害性ポリペプチドを発現するが、インターロイキン7及びCCL19を発現しない免疫応答性細胞を用いた場合には抗がん効果を奏さないほど少量であってもよい。免疫応答性細胞Cが抗がん効果を奏すことができる量であれば、免疫応答性細胞Cの量の下限値は特に制限されない。
 本開示に係る医薬Cは、1日4回、1日3回、1日2回、1日1回、1日おき、2日おき、3日おき、4日おき、5日おき、週1回、7日おき、8日おき、9日おき、週2回、月1回又は月2回の頻度で投与してもよい。また、投与回数は総計で例えば1回~10回、すなわち、1回、2回、3回、4回、5回、6回、7回、8回、9回又は10回としてもよいが、10回を超える回数投与しても構わない。
 上記のとおり、本開示に係る医薬Cは、がん抗原を特異的に認識する細胞表面分子を発現する免疫応答性細胞、並びに分泌されたIL-7、CCL19、及び免疫抑制阻害性ペプチドからなる因子の組み合わせによる相乗的な効果により、驚くべきほどに向上したがん治療効果を奏する。
 本開示に係る医薬Cは、当業者に既知の方法を用いて、がんの治療を必要とする対象に投与することができ、例えば、局所注入(カテーテル投与を含む)、全身注入、静脈内注入又は非経口投与(例えば経皮投与、経粘膜投与、より具体的には点鼻、点眼、舌下、坐薬、パッチ等)によって投与することができる。本開示に係る医薬Cは、取り扱いの観点から、単位投与量の注入可能な形態(溶液、懸濁液、乳濁液)に製剤化されていてもよい。投与方法のより具体的な例としては、静脈内、腫瘍内、皮内、皮下、筋肉内、腹腔内、動脈内、髄内、心臓内、関節内、滑液嚢内、頭蓋内、髄腔内、及びくも膜下(髄液)への注射を挙げることができる。
 本開示に係る免疫応答性細胞Cは、元となる免疫応答性細胞又はその前駆体細胞を治療対象の患者から得て、本開示に係る免疫応答性細胞Cとするために必要な遺伝子の導入後に、同じ患者に投与してもよく(自家投与)、又は別の患者に投与してもよい(他家投与)。あるいは、元となる免疫応答性細胞又はその前駆体細胞は、iPS細胞、ES細胞等の多能性幹細胞又は造血幹細胞などの体性幹細胞から作製してもよい。
 本開示に係る医薬Cは、例えば、所定のpHに緩衝化されていてもよい無菌の液体調製物、例えば、等張水溶液、懸濁液、乳濁液、分散物又は粘性組成物として投与することができる。前記液体調製物は、注射用の液体調製物であってもよい。また、特定の組織との接触時間を長くするために、前記液体調製物を適切な粘度範囲内の粘度を有する粘性組成物の形態としてもよい。液体調製物は、例えば、水、生理食塩水、リン酸塩緩衝化生理食塩水、ポリオール(例えば、グリセロール、プロピレングリコール、液状ポリエチレングリコールなど)及びそれらの混合物からなる溶媒又は分散媒を含んでいてもよい。
 前記液体調製物は、本開示に係る免疫応答性細胞Cを、その他の成分の様々な量とともに、適当量の適切な溶媒に配合することによって調製することができる。前記液体調製物は、好適な担体、希釈剤、又は賦形剤を含んでいてもよい。前記液体調製物はまた、凍結乾燥されていてもよい。液体調製物は、所望の投与経路に依存して、様々な補助物質をさらに含んでいてもよく、補助物質の例としては、湿潤剤、分散剤又は乳化剤(例えば、メチルセルロース)、pH緩衝化剤、ゲル化剤又は粘度増強添加剤、保存剤、矯味矯臭剤、着色剤などが挙げられる。液体調製物中が含みうる成分については、“REMINGTON’S PHARMACEUTICAL SCIENCE”,17版、1985の記載を参照することもできる。
 また、液体調製物は、液体調製物の安定性及び無菌性を高める様々な添加剤をさらに含んでいてもよく、その例としては、抗菌性保存剤、酸化防止剤、キレート剤、及び緩衝剤などが挙げられる。微生物の作用を防止するために、様々な抗菌剤及び抗真菌剤、例えば、パラベン類、クロロブタノール、フェノール、ソルビン酸などを使用することができる。液体調製物に使用するビヒクル、希釈剤又は添加剤は、そこに含まれる本開示に係る免疫応答性細胞Cとの適合性を有していなければならない。
 液体調製物は血液と等張性であってもよい。等張性は、塩化ナトリウム、又は他の薬学的に許容され得る浸透圧調節物質(例えば、デキストロース、ホウ酸、酒石酸ナトリウム、プロピレングリコール、あるいは、他の無機溶質又は有機溶質など)を液体調製物に含有させることで達成することができる。
 本開示に係る医薬Cは、本開示に係る免疫応答性細胞Cに加えて、さらに他の抗がん剤を含んでいてもよい。他の抗がん剤の例としては、ベンダムスチン、イオスファミド、ダカルバジン等のアルキル化薬、ペントスタチン、フルダラビン、クラドリビン、メソトレキセート、5-フルオロウラシル、6-メルカプトプリン、エノシタビン等の代謝拮抗薬、リツキシマブ、セツキシマブ、トラスツズマブ等の分子標的薬、イマチニブ、ゲフェチニブ、エルロチニブ、アファチニブ、ダサチニブ、スニチニブ、トラメチニブ等のキナーゼ阻害剤、ボルテゾミブ等のプロテアソーム阻害剤、シクロスポリン、タクロリムス等のカルシニューリン阻害薬、イダルビジン、ドキソルビシンマイトマイシンC等の抗がん性抗生物質、イリノテカン、エトポシド等の植物アルカロイド、シスプラチン、オキサリプラチン、カルボプラチン等のプラチナ製剤、タモキシフェン、ビカルダミド等のホルモン療法薬、インターフェロン等の免疫制御薬を挙げることができる。他の抗がん剤は、例えば、アルキル化薬及び代謝拮抗薬のうちの少なくとも1種を含んでいてもよい。
<本開示に係る医薬Cを用いたがんの治療>
 本開示に係る医薬Cをがんの治療に用いる場合、治療の対象は例えば任意の哺乳動物でよいが、例えば霊長類の動物であり、より具体的にはヒトであってもよい。治療対象は、愛玩動物又は家畜であってもよく、その例としては、イヌ、ネコ、ブタ、ウシ、ウマ、ヒツジ、ヤギなどが挙げられる。
 治療の対象となるがんは、固形がんでも血液がんでもよく、腺がん、扁平上皮がん、腺扁平上皮がん、未分化がん、大細胞がん、小細胞がん、皮膚がん、乳がん、前立腺がん、膀胱がん、膣がん、子宮頸部がん、子宮がん、肝臓がん、腎臓がん、膵臓がん、脾臓がん、肺がん、気管がん、気管支がん、結腸がん、小腸がん、胃がん、食道がん、胆嚢がん、精巣がん、卵巣がん等のがんや、骨組織、軟骨組織、脂肪組織、筋組織、血管組織及び造血組織のがんのほか、軟骨肉腫、ユーイング肉腫、悪性血管内皮腫、悪性シュワン腫、骨肉腫、軟部組織肉腫等の肉腫や、肝芽腫、髄芽腫、腎芽腫、神経芽腫、膵芽腫、胸膜肺芽腫、網膜芽腫等の芽腫や、胚細胞腫瘍や、リンパ腫や、白血病を挙げることができる。
 本開示に係る医薬Cによればがん微小環境における免疫抑制性を軽減することが可能であるため、治療対象となるがんは血球系のがんに限定されず、固形がんに対しても治療効果を奏する。このため、従来の方法では治療が難しかった固形がんに対しても高い有効性を発揮できる。
 本開示に係る医薬Cは、がんの確定診断がされる前であっても、対象内におけるがん細胞の存在が疑われる状況においては、対象に予防的に投与してもよい。本開示においては、このような使用形態も、がんの治療のための使用の概念に包含される。
<対象におけるがんの治療方法>
 本開示に係る一態様によれば、
 (a)がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する免疫応答性細胞を対象に投与することを含む、対象におけるがんを治療する方法(以下、本開示に係るがんの治療方法Cとも称する)が提供される。
 ここで、本開示に係るがんの治療方法Cにおける免疫応答性細胞は本開示に係る免疫応答性細胞Cであり、その詳しい構成及び例などについては本開示に係る免疫応答性細胞Cについての上記説明がそのまま当てはまる。
 これに加え、本開示に係るがんの治療方法Cにおける対象、がんの種類、用量、投与スケジュール等の、治療方法の詳細については、前述の本開示に係る医薬Cの説明がそのまま当てはまる。本開示に係る免疫応答性細胞Cは、治療有効量で投与することができる。
 本開示に係るがんの治療方法Cは、免疫応答性細胞により発現されるがん抗原を特異的に認識する細胞表面分子、IL-7、CCL19、及び免疫抑制阻害性ポリペプチドからなる因子の組み合わせによる相乗的な効果により、驚くべきほどに向上したがん治療効果を奏する。
 さらに、本開示によれば、がんを治療するための医薬の製造における、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する免疫応答性細胞の使用が提供される。この使用においても、免疫応答性細胞、がんの治療等の詳細については、前述の本開示に係る医薬Cの説明がそのまま当てはまる。
 加えて、本開示によれば、対象におけるがんを治療するために用いられる、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する免疫応答性細胞も提供される。
 本開示に係る医薬Cは、本開示に係る組み合わせ医薬Aの説明において記載したような容器に収容されていてもよい。医薬Cを収容した容器を含む製品も提供される。
 以上説明したとおり、本開示に係る一態様によれば、る免疫応答性細胞により発現されるがん抗原を特異的に認識する細胞表面分子、IL-7、CCL19、及び免疫抑制阻害性ペプチドの組み合わせによる相乗的な効果により、驚くべきほどに向上したがん治療効果を得ることができる。
 以下、実施例に基づいて実施形態をさらに具体的に説明するが、本開示はこれにより何ら限定されるものではない。以下、特に断りのない限り、%及びppmはいずれも質量基準である。
[IL-7×CCL19発現ベクターの作製]
 マウスIL-7(ストップコドン無し)と、それに続くF2AとマウスCCL19をコードするIL-7-F2A-CCL19 DNA断片(配列番号9)を人工合成した。IL-7、CCL19及びeGFPを発現するベクターを作製するために、合成したIL-7-F2A-CCL19 DNA断片を、F2A-eGFP配列を有するpMSGVレトロウイルス発現ベクター(Tamada k et al., Clin Cancer Res 18:6436-6445(2002))のMCSに、制限酵素(NcoI及びEcoRI)処理及びライゲーションにより挿入し、IL-7-F2A-CCL19-F2A-eGFP DNA断片(配列番号10)を含むpMSGVベクター(7×19発現ベクター)を得た。得られたベクターのマップを図1Bに示す。また、コントロールとしてeGFPを含み、IL-7及びCCL19を含まないpMSGVベクター(eGFP-Conv.ベクター)を作製した。eGFP-Conv.ベクターのマップを図1Aに示す。なお、配列番号10において、1~462番目の塩基がIL-7(1~75番目の塩基はIL-7のシグナル配列)、463~537番目の塩基がF2A、538~861番目の塩基がCCL19(538~612番目の塩基はCCL19のシグナル配列)、868~942がF2A、946~1662番目の塩基がeGFPをコードする核酸、1663~1665番目の塩基がストップコドンである。また、上記配列番号10の塩基配列に対応するアミノ酸配列を配列番号11に示す。なお、制限酵素NcoIを使用するため、配列番号10における4番目の塩基はチミン(t)からグアニン(g)に(配列番号11における2番目のアミノ酸はフェニルアラニン(F)からバリン(V)に)置換されている。
 マウスT細胞の形質導入のために、レトロウイルスを作製した。リポフェクタミン3000(サーモフィッシャーサイエンティフィック株式会社製)を用い、上述の7×19発現ベクター又はeGFP-Conv.ベクターと、pCL-Ecoプラスミド(Imgenex社製)をGP2-293パッケージング細胞株(タカラバイオ社製)にトランスフェクションすることで、7×19発現ベクター又はeGFP-Conv.ベクターを導入したレトロウイルスを作製した。
 前記GP2-293細胞の培養液としては、10%FCS、100U/mlのペニシリン、100μg/mlのストレプトマイシンを加えたDMEMを用いた。また、後述の実施例で用いるT細胞の培養液としては、10%FCS、100U/mlのペニシリン、100μg/mlのストレプトマイシン、50mMの2-メルカプトエタノールを加えたRPMI-1640を用いた。
[P815腫瘍抗原P1Aを特異的に認識するTCR、IL-7、CCL19、及びeGFPを発現するT細胞の作製]
 雌雄のDBA/2マウス(6~8週齢)を日本エスエルシー株式会社(静岡県)から購入して実験に用いた。H-2L拘束性のP815腫瘍抗原P1Aを特異的に認識するTCRを発現するトランスジェニックマウス(Sarma, S., Y. Guo, Y. Guilloux, C. Lee, X.-F. Bai, Y. Liu. 1999. J. Exp. Med. 189:811-820)をDBA/2マウスと少なくとも10世代戻し交配した。全てのマウスは、病原体フリーな条件で維持した。
 戻し交配後のP1Aを特異的に認識するTCRを発現するトランスジェニックマウスから脾臓細胞を採取し、脾臓細胞由来のP815腫瘍抗原P1A特異的なTCRを発現するマウスT細胞(P1A特異的TCR-T細胞;以下、ベクター未導入P1A-TCRT細胞とも称する)を得た。なお、ベクターの導入の有無に関わらず、P1A特異的なTCRを発現するマウスT細胞をP1A-TCRT細胞と総称する。形質導入のため、ベクター未導入P1A-TCRT細胞を、細胞活性化に適切な量のP1Aペプチド(LPYLGWLVF;配列番号12)及びIL-2の存在下で48時間インキュベートして活性化した。48時間のインキュベート後に、培養細胞を回収し、mouse Pan T cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany製)を用いてネガティブマグネティックソーティングによりベクター未導入P1A-TCRT細胞を濃縮した。単離したベクター未導入P1A-TCRT細胞を、25μg/mlのレトロネクチン(登録商標:タカラバイオ社製)でコートしたプレートに移した。上述で作製した7×19発現ベクター又はeGFP-Conv.ベクターを導入したレトロウイルスを含有する上清を、前記プレート上で活性化された上述のベクター未導入P1A-TCRT細胞(1×10cells/ml)の存在下で混合し、1500rpmで2時間遠心後、6時間培養した。培養液からレトロウイルスを除去するため、T細胞を回収し、洗浄し、IL-2を含有する新しい増殖培養液(RPMI-1640)に移し、さらに2日間培養し、7×19発現ベクターを導入したP1A-TCRT細胞(以下、eGFP発現P1A-7×19TCRT細胞とも称する)を含むP1A-TCRT細胞の集団、又はeGFP-Conv.ベクターを導入したP1A-TCRT細胞(以下、eGFP発現P1A-TCRT細胞とも称する)を含むP1A-TCRT細胞の集団を得た。各発現ベクターの形質導入はサロゲートマーカーとしてeGFPを検出するフローサイトメトリー解析によって確認した。上記のとおり、eGFP発現P1A-7×19TCRT細胞及びeGFP発現P1A-TCRT細胞は、それぞれのP1A-TCRT細胞集団の全体を占めているわけではないが、本明細書中では、記載の簡略化のため、特に明記が無い限りは、当該細胞集団に対する処理を、eGFP発現P1A-7×19TCRT細胞又はeGFP発現P1A-TCRT細胞に対する処理として記載する。
[遺伝子導入の確認]
(フローサイトメトリー解析)
 eGFP及びCD8の発現レベルは2色フローサイトメトリー解析によって行った。レトロウイルスによる遺伝子の導入を行っていないベクター未導入P1A-TCRT細胞、eGFP発現P1A-7×19TCRT細胞、及びeGFP発現P1A-TCRT細胞をアロフィコシアニン(APC)結合抗CD8モノクローナル抗体(53-6.7、Affymetrix社製)の存在下で培養した。フローサイトメトリーはEC800(ソニー株式会社製)又はBD LSRForetessa X-20(BDバイオサイエンス社製)を用い、データ解析はFlowJo software(Tree Star社製)を用いた。
 結果を図2に散布図として示す。図2、図3A及び図3B中、「Transduction(-)」は遺伝子導入を行わなかったP1A-TCRT細胞(ベクター未導入P1A-TCRT細胞)を表し、「Conv. P1A-T cells」はeGFP発現P1A-TCRT細胞を表し、「7×19 P1A-T cells」はeGFP発現P1A-7×19TCRT細胞を表す。また、図2中に記載されたパーセントの値は、各領域に存在する細胞数の割合を示している。
 図2に示すように、eGFP発現P1A-7×19TCRT細胞及びeGFP発現P1A-TCRT細胞においては、eGFPを発現しているT細胞が70%~80%程度観察され、7×19発現ベクター又はeGFP-Conv.ベクターが成功裏に導入できたことが分かる。
(ELISAによる解析)
 上記でeGFP発現P1A-7×19TCRT細胞又はeGFP発現P1A-TCRT細胞を2日間培養した培養上清を回収し、培養上清中のIL-7及びCCL19の濃度を市販のELISAキット(R&D systems社製)を用いて測定した。結果を図3A及び図3Bに示す。3連のウエルの平均値と共に標準偏差もグラフには示した。グラフ中の「N.D.」は検出されなかったことを示し、「***」はP値がP<0.001であることを示す。図3A及び図3Bに示されるように、eGFP発現P1A-7×19TCRT細胞では、IL-7及びCCL19の発現が確認された。
(担がんマウスへの投与による抗がん効果の解析)
 0日目に、6~8週齢の雌雄のDBA/2マウスに0.1mlのHBSSで懸濁した5×10個のP815マストサイトーマ(肥満細胞腫)を側腹に皮下接種した。なお、P815マストサイトーマは、DBA/2マウスにシンジェニックであり、以降、単にP815細胞、P815腫瘍細胞とも称する。6日目に、マウスをプレコンディショニングのために亜致死量(3-5Gy)の照射を行った。7日目に、マウスを6つの群に分けて、第1群及び第2群にはeGFP発現P1A-7×19TCRT細胞を1×10個静脈に投与し、第3群及び第4群にはeGFP発現P1A-TCRT細胞を1×10個静脈に投与し、第5群及び第6群にはT細胞の投与を行わなかった(なお、上記のとおり、記載された細胞数は、eGFP発現P1A-7×19TCRT細胞又はeGFP発現P1A-TCRT細胞を含むP1A-TCRT細胞集団中のT細胞の全数である)。また、第2群、第4群及び第6群のマウスについては、さらに、10日目を初回として週1回の頻度で計6回抗PD-1モノクローナル抗体(メルク社製、クローンG4;以下に記載の抗PD-1モノクローナル抗体についても同様)を100μg/個体の量で腹腔内注入した。それぞれのマウスの生存率を解析すると共にマウスの腫瘍体積を週2回測定した。腫瘍体積はデジタルカリパーで測定し、
腫瘍体積=1/2×(腫瘍の長軸長)×(腫瘍の短軸長)
 として求めた。それぞれのマウスの生存率の解析結果を図4に、腫瘍体積を測定した結果を図5A~5Fに示す。データは独立した5回の実験をプールしたものである。
 図4及び図5A~5Fにおいて、□は未投与マウス(サンプルサイズ=15匹;上記第5群)、■は抗PD-1モノクローナル抗体のみを投与したマウス(サンプルサイズ=11匹;上記第6群)、△はeGFP発現P1A-TCRT細胞を投与したマウス(サンプルサイズ=17匹;上記第3群)、▲はeGFP発現P1A-TCRT細胞に加えて抗PD-1モノクローナル抗体も投与したマウス(サンプルサイズ=14匹;上記第4群)、○はeGFP発現P1A-7×19TCRT細胞を投与したマウス(サンプルサイズ=24匹;上記第1群)、●はeGFP発現P1A-7×19TCRT細胞に加えて抗PD-1モノクローナル抗体も投与したマウス(サンプルサイズ=19匹;上記第2群)を表す。図4及び図5A~5Fにおいて、横軸は、P815マストサイトーマを皮下接種してからの日数(day)を表す。また、図5A~5Fには、各群におけるマウスの全個体数(分母)に対する腫瘍拒絶マウスの個体数(分子)も記載した。ログランク検定におけるP値は、△群と○群の間でP=0.0005、▲群と●群の間でP=0.0002、△群と▲群との間でP=0.7284、○群と●群との間でP=0.0253であった。
 図4及び図5A~5Fに示された結果から、eGFP発現P1A-7×19TCRT細胞に加えて抗PD-1モノクローナル抗体も投与したマウス(●)では、eGFP発現P1A-7×19TCRT細胞を投与したマウス(○)又はeGFP発現P1A-TCRT細胞に加えて抗PD-1モノクローナル抗体も投与したマウス(▲)では達成できないレベルの生存率の上昇及び固形がんの腫瘍体積増加の抑制を達成できたことが分かる。一方、eGFP発現P1A-TCRT細胞と抗PD-1モノクローナル抗体を投与したマウス(▲)では、高い相乗効果は見られなかった。
(PD-1又はROSA26を破壊したP1A-TCRTの作製)
 遺伝子編集のため、上記と同様に細胞活性化に適切な量のベクター未導入P1A-TCRT細胞をP1Aペプチド(LPYLGWLVF;配列番号12)及びIL-2の存在下で48時間インキュベートして活性化した。48時間のインキュベート後に、培養細胞を回収し、mouse Pan T cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany)を用いてネガティブマグネティックソーティングによりベクター未導入P1A-TCRT細胞を濃縮した。得られたT細胞をPBSで洗浄し、Buffer R(サーモフィッシャーサイエンティフィック株式会社製)に再懸濁して、TrueCut(登録商標)Cas9タンパク質v2(サーモフィッシャーサイエンティフィック株式会社製)及び遺伝子特異的ガイドRNAから構成されるCas9-RNP複合体と混合した。Cas9-RNP複合体をNeon Transfection System(Invitrogen社製)を用いてT細胞にエレクトロポレーションにより導入した。これにより目的の遺伝子の破壊を行った。さらに、エレクトロポレーション直後に、T細胞をIL-2含有cRPMIに再懸濁し、上記と同様に7×19発現ベクターをレトロウイルスにパッケージングしてT細胞に導入した。なお、マウスPD-1を標的とするガイドRNAは、Okada M, et al. Blockage of Core Fucosylation Reduces Cell-Surface Expression of PD-1 and Promotes Anti-tumor Immune Responses of T Cells. Cell Rep. 2017;20(5):1017-1028を参照して設計し、ガイドRNA部分の配列は5’-UCUGGGCAUGUGGGUCCGGC-3’(配列番号13)であった。また、ガイドRNAの合成はサーモフィッシャーサイエンティフィック株式会社に委託して行った。コントロールとしてガイドRNAをROSA26を標的とする5’-CUCCAGUCUUUCUAGAAGAU-3’(配列番号14)に変えてマウスROSA26の破壊を行った。ROSA26を標的とするガイドRNAはサーモフィッシャーサイエンティフィック株式会社から購入した。
(PD-1又はROSA26を破壊したP1A-TCRTの投与実験) 
 0日目に、6~8週齢の雌雄のDBA/2マウスに0.1mlのHBSSで懸濁した5×10個のP815マストサイトーマ(肥満細胞腫)を側腹に皮下接種した。6日目に、マウスをプレコンディショニングのために亜致死量(3-5Gy)の照射を行った。マウスを4つの群に分けて、7日目以降にそれぞれ以下の処置を行った。
 第1群:T細胞の投与も抗体の投与も行わなかった。
 第2群:7日目に、ROSA26をノックダウンしたeGFP発現P1A-7×19TCRT細胞を1×10個静脈に投与した。
 第3群:7日目に、PD-1をノックダウンしたeGFP発現P1A-7×19TCRT細胞を含む細胞集団を1×10個静脈に投与した。
 第4群:7日目に、PD-1をノックダウンしたeGFP発現P1A-7×19TCRT細胞を含む細胞集団を1×10個静脈に投与し、さらに、10日目を初回として週1回の頻度で計6回抗PD-1モノクローナル抗体を100μg/個体の量で腹腔内注入した。
 なお、上記のとおり、記載された細胞数は、eGFP発現P1A-7×19TCRT細胞を含むP1A-TCRT細胞集団中のT細胞の全数である。
 その後、それぞれのマウスの生存率を解析すると共にマウスの腫瘍体積を上記のデジタルカリパーを用いた手法により週2回測定した。それぞれのマウスの生存率の解析結果を図6Aに、腫瘍体積を測定した結果を図6B~6Eに示す。なお、サンプルサイズはどの群もN=6である。
 図6A~6Eにおいて、×は未投与マウス(上記第1群)、□はROSA26領域をノックダウンしたeGFP発現P1A-7×19TCRT細胞を投与したマウス(上記第2群)、◇は、PD-1をノックダウンしたeGFP発現P1A-7×19TCRT細胞を投与したマウス(上記第3群)、◆は、PD-1をノックダウンしたeGFP発現P1A-7×19TCRT細胞に加えて抗PD-1モノクローナル抗体も投与したマウス(上記第4群)を表す。
 図6A~6Eにおいて、横軸は、P815マストサイトーマを皮下接種してからの日数(day)を表す。また、図6B~6Eには、各群におけるマウスの全個体数(分母)に対する腫瘍拒絶マウスの個体数(分子)も記載した。ログランク検定におけるP値は、×群と○群との間でP=0.0454、□群と◇群の間でP=0.0431、◇群と◆群の間でP=0.0402であった。
 図6A~6Eに示された結果から、eGFP発現P1A-7×19TCRT細胞に加えて抗PD-1モノクローナル抗体も投与したマウスにより得られるがん治療効果は、eGFP発現P1A-7×19TCRT細胞において単にPD-1をノックダウンした場合に比べてはるかに高いものであることが分かる。このことは、抗PD-1モノクローナル抗体の投与が、単にeGFP発現P1A-7×19TCRT細胞の免疫応答を促進しているだけでなく、eGFP発現P1A-7×19TCRT細胞によってがん細胞周辺に誘導された内因性の免疫細胞の働きも促進していることを示している。
(マウス脾臓におけるP1A-TCRT細胞の維持) 
 0日目に、6~8週齢の雌雄のDBA/2マウスに0.1mlのHBSSで懸濁した5×10個のP815マストサイトーマ(肥満細胞腫)を側腹に皮下接種した。6日目に、マウスをプレコンディショニングのために亜致死量(3-5Gy)の照射を行った。7日目に、マウスを2つの群に分けて、1つ目の群にはeGFP発現P1A-7×19TCRT細胞を1×10個静脈に投与し、2つ目の群にはeGFP発現P1A-TCRT細胞を1×10個静脈に投与した。腫瘍が完全に退縮したマウス個体を119日目に安楽死させ、脾臓細胞を収集し、計数し、フローサイトメトリーで解析し、脾臓におけるP1A-TCRT細胞の維持について評価した。さらに、脾臓細胞からマグネティックソーティング法を用いてT細胞を単離し、2×10個のT細胞をマイトマイシンCで処理した1×10個のP815細胞と共にインキュベートした。3日後及び5日後に、培養上清を回収しELISAによりIFN-γの濃度を測定した。また、P815細胞との培養期間中におけるP1A-TCRT細胞の数(1ウエル当たり)をフローサイトメトリーで測定した。これらの試験により、脾臓におけるP1A-TCRT細胞の機能について評価した。
 サンプルサイズは、eGFP発現P1A-7×19TCRT細胞を投与した群については5匹、eGFP発現P1A-TCRT細胞を投与した群については2匹である。
 収集された脾臓細胞について図2に示した実験と同様のフローサイトメトリー(ただし、ゲートは4分割ゲートからCD8eGFPゲートとCD8eGFPゲートを含むカスタムゲートに変更)により、CD8とeGFPの発現について測定した結果を図7に示す。また、脾臓細胞中におけるCD8を発現せずeGFPを発現している細胞(CD8eGFP細胞)の割合の平均値を図8Aに白抜きのバーで、細胞数の平均値を図8Bに白抜きのバーで示す。また、脾臓細胞中におけるCD8とeGFPのどちらも発現している細胞(CD8eGFP細胞)の割合の平均値を図8Aに黒塗りのバーで、細胞数の平均値を図8Bに黒塗りのバーで示す。図8A及び図8Bにおいて、「Conv. P1A-T cells」のデータは値が小さいためにほとんど見えないが、白抜きのバーが黒塗りのバーの左側に位置している。図7、図8A及び図8Bにおいて、「Conv. P1A-T cells」はeGFP発現P1A-TCRT細胞を投与した群を表し、「7×19 P1A-T cells」はeGFP発現P1A-7×19TCRT細胞を投与した群を表す。図7、図8A及び図8Bに示された結果から、eGFP発現P1A-7×19TCRT細胞を投与した群では、119日目のマウスにおいても、導入された遺伝子を保持するP1A-TCRT細胞が維持されていることが分かる。なお、図7中に記載されたパーセントの値は、CD8を発現せずeGFPを発現している細胞(CD8eGFP細胞)数の割合(eGFP発現P1A-TCRT細胞を投与した群において0.055%、eGFP発現P1A-7×19TCRT細胞を投与した群において0.97%)及びCD8とeGFPのどちらも発現している細胞(CD8eGFP細胞)数の割合(eGFP発現P1A-TCRT細胞を投与した群において0.0068%、eGFP発現P1A-7×19TCRT細胞を投与した群において0.47%)を示している。
 さらに、P815細胞との培養期間中におけるCD8とeGFPのどちらも発現しているP1A-TCRT細胞の数(1ウエル当たり)をフローサイトメトリーで測定した結果を図8Cに示す。また、培養上清をELISAで測定して得たIFN-γの濃度を図8Dに示す。図8C及び図8Dにおいて、eGFP発現P1A-TCRT細胞を投与した群における結果を各時点における左側のバー(白抜きのバー)で表し、eGFP発現P1A-7×19TCRT細胞を投与した群を各時点における右側のバー(黒塗りのバー)で表す。ただし、図8Cにおいて、eGFP発現P1A-TCRT細胞を投与した群における結果を表す左側のバーは横軸と重なっている(つまり、CD8とeGFPのどちらも発現しているP1A-TCRT細胞の数がほぼ0である)ため、実際には見えない。図8C及び図8Dにおいて、結果は、平均値及び標準偏差により示し、「*」はP値がP<0.05であることを、「**」はP<0.01であることを表す。
 図8C及び図8Dに示された結果から、119日目のマウスにおいても、導入された遺伝子を保持するP1A-TCRT細胞の機能が保持されていることが分かる。
(がん細胞によるリチャレンジ実験)
 0日目に、6~8週齢の雌雄のDBA/2マウスに0.1mlのHBSSで懸濁した5×10個のP815細胞を側腹に皮下接種した。6日目に、マウスをプレコンディショニングのために亜致死量(3-5Gy)の照射を行った。7日目に、eGFP発現P1A-7×19TCRT細胞を1×10個静脈に投与した(なお、上記のとおり、記載された細胞数は、eGFP発現P1A-7×19TCRT細胞を含むP1A-TCRT細胞集団におけるT細胞の全数である)。さらに、10日目を初回として週1回の頻度で計6回抗PD-1モノクローナル抗体を100μg/個体の量で腹腔内注入した。腫瘍が完全に退縮した4匹のマウスに対し、117日目に、0.1mlのHBSSで懸濁した5×10個のP815マストサイトーマ(肥満細胞腫)を側腹に再度皮下接種した。さらに、コントロールとして、6匹のナイーブDBA/2マウスに0.1mlのHBSSで懸濁した5×10個のP815マストサイトーマ(肥満細胞腫)を側腹に皮下接種した。腫瘍が完全に退縮したマウスに対するP815細胞の再接種の日、又はナイーブDBA/2マウスへのP815細胞の接種の日を0日として、マウスの腫瘍体積を測定した結果を20日目まで経過日数と共に図9に示す。マウスの腫瘍体積は、図5A~5Fについて記載したとおりデジタルカリパーで測定したが、本実験では平均値及び標準偏差により示す。
 図9において、×はナイーブDBA/2マウスへのP815細胞の接種の結果を示し、●は腫瘍が完全に退縮したマウスに対するP815細胞の再接種の結果を示す。
 図9に示された結果から分かるように、eGFP発現P1A-7×19TCRT細胞と抗PD-1モノクローナル抗体との投与により治癒したマウスは、117日目においても、がん細胞に対する抵抗力を保持していることが分かる。
[IL-7及びCCL19を発現するCAR-T細胞の作製]
 国際公開第2016/56228号の段落0061~段落0066に記載の方法により、コントロール抗hCD20 CARベクター及びIL-7/CCL19発現-抗hCD20 CARベクターを作製し、DBA/2マウスの脾臓及びリンパ節由来の3×10個の精製したマウスT細胞に導入して抗hCD20 CAR-IL-7/CCL19発現T細胞又は抗hCD20 CAR発現T細胞を作製した。コントロール抗hCD20 CARベクターは、抗hCD20 CARをコードする核酸を含むベクターであり、IL-7/CCL19発現-抗hCD20 CARベクターは、抗hCD20 CAR-F2A-IL-7-F2A-CCL19をこの順でコードする核酸を含むベクターである。
(担がんマウスへの投与による抗がん効果の解析)
 0日目に、6~12週齢の雄DBA/2マウスに0.1mlのHBSSで懸濁した5×10個のP815-hCD20腫瘍細胞(Nat Biotechnol. 2018;36(4):346-351参照)を側腹に皮下接種した。11日目に、抗がん剤であるシクロホスファミド(CPA、100mg/kg)をマウスの腹腔内に投与した。マウスを5つの群に分けて、以降の処理を以下のとおり行った。
 第1群には、CAR発現T細胞も抗体も投与しなかった。
 第2群には、抗PD-1モノクローナル抗体を、17日目を初日として4~5日毎に計5回腹腔内投与した。
 第3群には、0.25×10個の抗hCD20 CAR発現T細胞を14日目に静脈に投与し、17日目を初日として4~5日毎に計5回抗PD-1モノクローナル抗体を100μg/個体の量で腹腔内投与した。
 第4群には、0.25×10個の抗hCD20 CAR-IL-7/CCL19発現T細胞を14日目に静脈に投与し、17日目を初日として4~5日毎に計5回PD-1を認識しないハムスターコントロールIgG抗体を100μg/個体の量で腹腔内投与した。
 第5群には、0.25×10個の抗hCD20 CAR-IL-7/CCL19発現T細胞を14日目に静脈に投与し、17日目を初日として4~5日毎に計5回抗PD-1モノクローナル抗体を100μg/個体の量で腹腔内投与した。
 それぞれのマウスの生存率を解析すると共にマウスの腫瘍体積を上記のデジタルカリパーを用いた手法により週2回測定した。それぞれのマウスの生存率の解析結果を図10Aに、70日目までの腫瘍体積を測定した結果を図10B~10Fに示す。データは独立した2回の実験の結果をプールしたデータを示したものである。
 図10A~10Fにおいて、×は未投与マウス(サンプルサイズ=10匹;上記第1群)、□は抗PD-1モノクローナル抗体のみを投与したマウス(サンプルサイズ=10匹;上記第2群)、◆は抗hCD20 CAR発現T細胞に加えて抗PD-1モノクローナル抗体も投与したマウス(サンプルサイズ=5匹;上記第3群)、○は抗hCD20 CAR-IL-7/CCL19発現T細胞に加えてPD-1を認識しないハムスターコントロールIgG抗体も投与したマウス(サンプルサイズ=10匹;上記第4群)、●は抗hCD20 CAR-IL-7/CCL19発現T細胞に加えて抗PD-1モノクローナル抗体も投与したマウス(サンプルサイズ=10匹;上記第5群)を表す。ただし、図10B~10Fにおいてはいずれの群もN=5である。図10A~10Fにおいて、横軸は、P815-hCD20腫瘍細胞を皮下接種してからの日数(day)を表す。また、図10B~10Fには、各群におけるマウスの全個体数(分母)に対する腫瘍拒絶マウスの個体数(分子)も記載した。ログランク検定におけるP値は、□群と◆群の間でP=0.7293、□群と●群の間でP<0.0001、◆群と●群との間でP<0.0001、○群と●群との間でP<0.0001であった。
 図10A~10Fに示された結果から、抗hCD20 CAR-IL-7/CCL19発現T細胞に加えて抗PD-1モノクローナル抗体も投与したマウス(●)では、それぞれ単独で投与した場合には十分な抗がん効果が得られない用量を投与した場合であっても、著しく高い生存率及び固形がんの腫瘍体積増加の抑制を達成することができた。一方、抗hCD20 CAR発現T細胞に加えて抗PD-1モノクローナル抗体も投与したマウス(▲)又は抗hCD20 CAR-IL-7/CCL19発現T細胞に加えてコントロールIgG抗体も投与したマウス(○)ではこのような効果は得られなかった。
 また、抗hCD20 CAR発現T細胞の投与量は、上記のとおり0.25×10個と少なく、抗PD-1モノクローナル抗体との共投与の場合には少ない細胞数であっても高い効果が得られたことが分かった。
(リンパ球の腫瘍組織への浸潤の解析)
 0日目に、DBA/2マウスにP815腫瘍細胞を接種し、eGFP発現P1A-TCRT細胞又はeGFP発現P1A-7×19TCRT細胞を7日目に静脈注射した。なお、これらの細胞は、注射前に、eGFP陽性細胞の割合が95%超となるまで純度を上げておいた。腫瘍細胞を採取し、シングル細胞懸濁液へと調製し、12日目に、細胞数を計測すると共に、c-kit、eGFP、CD11c、CD3、CD4及びCD8の発現についてフローサイトメトリー解析により調べた。図11Aには、代表的なドットプロットを示す。非腫瘍細胞と同定されたc-kit陰性細胞の割合(左上のパネル)、c-kit陰性細胞集団における、CD-3陰性/CD11c陽性である樹状細胞の割合(右上のパネル)、並びにCD-3陽性/eGFP陰性である内在性T細胞の割合及びCD3-陽性/eGFP陽性である注射されたP1A-TCRT細胞の割合を示す(中央のパネル)。図11Aにおいて、「Conv. P1A-T cells」はeGFP発現P1A-TCRT細胞を投与した群を表し、「7×19 P1A-T cells」はeGFP発現P1A-7×19TCRT細胞を投与した群を表す。内在性T細胞集団におけるCD-4陽性細胞又はCD8陽性細胞の割合(左下のパネル)及び注射されたP1A-TCRT細胞の割合を示す(右下のパネル)。図11Bには、P815腫瘍細胞1×10個あたりの各種腫瘍浸潤リンパ球の細胞数を、平均値及び標準偏差(SD)により示す(n=5)。DCは樹状細胞を表し、Endogenous Tは内在性T細胞を表し、P1A-TはP1A-TCRT細胞を表す。白抜きのバーは、eGFP発現P1A-TCRT細胞で処理されたマウス中における腫瘍浸潤リンパ球サブセットを示し、黒塗りのバーはeGFP発現P1A-7×19TCRT細胞で処理されたマウス中における腫瘍浸潤リンパ球サブセットを示す。はP<0.05を表し、**はP<0.01を表し、***はP<0.001を表す。
 なお、P815腫瘍細胞から腫瘍浸潤リンパ球を分離するために、P815マストサイトーマで高度に陽性であり、樹状細胞及びT細胞では陽性度の低いことが知られているc-kit染色を用いた。図11A及び図11Bの結果からは、まず、eGFP発現P1A-7×19TCRT細胞を注射されたマウスにおけるc-kit陰性の腫瘍浸潤リンパ球の割合は、eGFP発現P1A-TCRT細胞を注射されたマウスにおけるc-kit陰性の腫瘍浸潤リンパ球の割合よりも高いことが分かる。c-kit陰性腫瘍浸潤リンパ球のサブセットにおいて、CD3陰性/CD11c陽性である樹状細胞の割合も図11Aに示す。図11Aにはさらに、CD3陽性/eGFP陰性である内在性T細胞のサブセット、及びCD3陽性/eGFP陽性の注射されたP1A-TCRT細胞若しくはP1A-7×19TCRT細胞のサブセットにおけるCD4及びCD8の発現割合も示す。CD4/CD8染色についてのさらなる解析により、eGFP発現P1A-7×19TCRT細胞で処理されたマウス中における腫瘍浸潤樹状細胞、CD-4陽性及びCD8陽性内在性T細胞、並びにCD8陽性P1A-T細胞の数は、eGFP発現P1A-TCRT細胞で処理されたマウス中におけるそれらの数よりも顕著に多かった。このことは図11Bに示される。図11Bにおいて白抜きのバー(eGFP発現P1A-TCRT細胞で処理されたマウス中における腫瘍浸潤リンパ球サブセット)と比べて黒塗りのバー(eGFP発現P1A-7×19TCRT細胞で処理されたマウス中における腫瘍浸潤リンパ球サブセット)において、DC(樹状細胞)、EngogenousT(内在性T細胞)、及び注射されたP1A-TCRT細胞若しくはP1A-7×19TCRT細胞のいずれについても細胞数が多いことが示されている。これらの結果は、eGFP発現P1A-7×19TCRT細胞による処理における内在性T細胞の役割が重要であることを裏付けるものである。このことは、抗PD-1モノクローナル抗体とeGFP発現P1A-TCRT細胞ではなく、抗PD-1モノクローナル抗体とeGFP発現P1A-7×19TCRT細胞との組み合わせにより相乗的な効果が得られたことと合致している。
(抗hCD20 CAR-抗PD-1抗体発現ベクターの作製) 
 配列番号15の核酸配列を有する構築物を、NcoIサイト及びSalIサイトを用いてpMSGVレトロウイルス発現ベクター(Tamada k et al., Clin Cancer Res 18:6436-6445(2002))に導入して抗hCD20scFv CAR及び抗mPD-1scFvを含むpMSGVベクター(以降、抗hCD20 CAR-抗PD-1抗体発現ベクターとも称する)を作製した。得られたベクターの配置図をconventional CAR-PD-1 scFvとして図12に示す。配列番号15の核酸配列において、5’末端から数えて、1番目~57番目のヌクレオチドはリーダー配列をコードする核酸配列に相当し、58番目~375番目のヌクレオチドは抗hCD20scFv軽鎖をコードする核酸配列に相当し、376番目~420番目のヌクレオチドはリンカーをコードする核酸配列に相当し、421番目~783番目のヌクレオチドは抗hCD20scFv重鎖をコードする核酸配列に相当し、793番目~1635番目のヌクレオチドは膜通過ドメイン及び細胞質ドメインをコードする核酸配列に相当し、1642番目のヌクレオチド~1716番目のヌクレオチドは2Aペプチドをコードする核酸配列に相当し、1717番目~1773番目のヌクレオチドはリーダー配列をコードする核酸配列に相当し、1774番目~2106番目のヌクレオチドは抗mPD-1scFv軽鎖をコードする核酸配列に相当し、2107番目~2151番目のヌクレオチドはリンカー配列をコードする核酸配列に相当し、2152番目~2505番目のヌクレオチドは抗mPD-1scFv重鎖をコードする核酸配列に相当し、2506番目~2529番目のヌクレオチドはFLAGタグをコードする核酸配列に相当し、2539番目~2556番目のヌクレオチドはHisタグをコードする核酸配列に相当する。なお、抗hCD20 CAR-抗PD-1抗体発現ベクター及び後述の抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクターにおいて、2Aペプチドとしては、口蹄疫ウイルスの2Aペプチド(F2Aペプチドとも称する)を用いた。2Aペプチドを遺伝子間に挿入することで、複数のポリペプチドを同時に発現することを可能にしている。また、上記のとおり、抗hCD20 CAR-抗PD-1抗体発現ベクター及び後述の抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクターは、FLAGタグ及びHisタグ(His×6)の配列を含んでいる。
 配列番号15の核酸配列がコードするアミノ酸配列を配列番号16に示す。配列番号16において、N末端から数えて、1~545位のアミノ酸配列は抗hCD20 CARのアミノ酸配列であり、548~572位のアミノ酸配列は2Aペプチドのアミノ酸配列であり、592~702位のアミノ酸配列は、抗mPD-1 VLのアミノ酸配列であり、703~717位のアミノ酸配列はリンカーのアミノ酸配列であり、718~835位のアミノ酸配列は抗mPD-1 VHのアミノ酸配列であり、836~843位のアミノ酸配列はFLAGタグのアミノ酸配列であり、847~852位のアミノ酸配列はHisタグのアミノ酸配列である。
(抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクターの作製) 
 配列番号17の核酸配列を有する構築物を、NcoIサイト及びSalIサイトを用いてpMSGVレトロウイルス発現ベクター(Tamada k et al., Clin Cancer Res 18:6436-6445(2002))に導入して抗hCD20scFv CAR、mIL-7、mCCL19、及び抗mPD-1scFvを含むpMSGVベクターを作製した(以降、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクターとも称する)。得られたベクターの配置図を図12に7×19CAR-PD-1 scFvとして示す。配列番号17の核酸配列において、5’末端から数えて、1番目~57番目のヌクレオチドはリーダー配列をコードする核酸配列に相当し、58番目~375番目のヌクレオチドは抗hCD20scFv軽鎖をコードする核酸配列に相当し、376番目~420番目のヌクレオチドはリンカーをコードする核酸配列に相当し、421番目~783番目のヌクレオチドは抗hCD20scFv重鎖をコードする核酸配列に相当し、792番目~1038番目のヌクレオチドはマウスCD8をコードする核酸配列に相当し、1039番目~1161番目のヌクレオチドはマウスCD28をコードする核酸配列に相当し、1162番目~1296番目のヌクレオチドはマウス4-1BBをコードする核酸配列に相当し、1297番目~1635番目のヌクレオチドはマウスCD3ζをコードする核酸配列に相当し、1642番目~1716番目のヌクレオチドは2Aペプチドをコードする核酸配列に相当し、1720番目~1794番目のヌクレオチドはmIL-7のリーダー配列をコードする核酸配列に相当し、1720番目~2181番目のヌクレオチドはmIL-7をコードする核酸配列に相当し、2182番目~2256番目のヌクレオチドは2Aペプチドをコードする核酸配列に相当し、2257番目~2331番目のアミノ酸配列はmCCL19のリーダー配列をコードするアミノ酸配列に相当し、2257番目~2580番目のヌクレオチドはmCCL19をコードする核酸配列に相当し、2584番目~2658番目のヌクレオチドは2Aペプチドをコードする核酸配列に相当し、2659番目~2715番目のヌクレオチドはリーダー配列をコードする核酸配列に相当し、2716番目~3048番目のヌクレオチドは抗mPD-1scFv軽鎖をコードする核酸配列に相当し、3049番目~3093番目のヌクレオチドはリンカー配列をコードする核酸配列に相当し、3094番目~3447番目のヌクレオチドは抗mPD-1scFv重鎖をコードする核酸配列に相当し、3448番目~3471番目のヌクレオチドはFLAGタグをコードする核酸配列に相当し、3480番目~3497番目のヌクレオチドはHisタグをコードする核酸配列に相当する。
 配列番号17の核酸配列がコードするアミノ酸配列を配列番号18に示す。配列番号18において、N末端から数えて、1~261位のアミノ酸配列は抗hCD20 scFvのアミノ酸配列であり、265~346位の配列はmCD8のアミノ酸配列であり、347~387位のアミノ酸配列はmCD28のアミノ酸配列であり、388~432位のアミノ酸配列はm4-1BBのアミノ酸配列であり、433~545位のアミノ酸配列はmCD3のアミノ酸配列であり、548~572位のアミノ酸配列は2Aペプチドのアミノ酸配列であり、574~727位のアミノ酸配列はmIL-7のアミノ酸配列であり、728~752位のアミノ酸配列は2Aペプチドのアミノ酸配列であり、753~860位のアミノ酸配列はmCCL19のアミノ酸配列であり、862~886位のアミノ酸配列は2Aペプチドのアミノ酸配列であり、906~1016位のアミノ酸配列は、抗mPD-1 VLのアミノ酸配列であり、1017~1031位のアミノ酸配列はリンカーのアミノ酸配列であり、1032~1149位のアミノ酸配列は抗mPD-1 VHのアミノ酸配列であり、1150~1157位のアミノ酸配列はFLAGタグのアミノ酸配列であり、1161~1166位のアミノ酸配列はHisタグのアミノ酸配列である。
(抗hCD20 CAR-抗PD-1抗体発現ベクター、又は抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクターを導入したレトロウイルスの作製) 
 マウスT細胞の形質導入のために、レトロウイルスベクターを作製した。GP2-293パッケージング細胞(タカラバイオ社製)に、リポフェクタミン(登録商標)2000又は3000(ライフテクノロジー社製)を用い、上述の抗hCD20 CAR-抗PD-1抗体発現ベクター又は抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクターと、pCL-Ecoレトロウイルスパッケージングプラスミド(Imgenex社製)をトランスフェクションし、抗hCD20 CAR-抗PD-1抗体発現ベクター又は抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクターを導入したレトロウイルスを作製した。トランスフェクションから48時間後に前記レトロウイルスを含有する上清を回収した。 
 前記GP2-293細胞の培養液としては、10%FCS、100U/mlのペニシリン、100mg/mlのストレプトマイシンを加えたDMEMを用いた。また、後述の実施例で用いるT細胞の培養液としては、10%FCS、100U/mlのペニシリン、100mg/mlのストレプトマイシン、50mMの2-メルカプトエタノール、2mMのL-グルタミンを加えたRPMI-1640を用いた。 
 また、同様にして、抗PD-1 scFvをコードする核酸配列を含まないこと以外は抗hCD20 CAR-抗PD-1抗体発現ベクターと同様の発現ベクター(以下、抗hCD20 CAR発現ベクターとも称する)、及び、抗PD-1 scFvをコードする核酸配列を含まないこと以外は抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクターと同様の発現ベクター(以下、抗hCD20 CAR-IL-7/CCL19発現ベクターとも称する)も作製し、それを用いてレトロウイルスベクターを同様に作製した。
(マウスT細胞の形質導入)
 マウスT細胞の形質導入のため、脾臓及びリンパ節由来の精製したマウスT細胞を、固層化した抗CD3モノクローナル抗体(3μg/ml)、抗CD28モノクローナル抗体(1μg/ml)、IL-2(100IU/ml)で48時間活性化した。次に、上述で作製した抗hCD20 CAR-抗PD-1抗体発現ベクター、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクター、抗hCD20 CAR発現ベクター、又は抗hCD20 CAR-IL-7/CCL19発現ベクターを導入したレトロウイルスを含有する上清を、25μg/mlのレトロネクチン(登録商標:タカラバイオ社製)でコートしたプレートで活性化させた上述のマウスT細胞(1×10cells/ml)と混合し、1500rpmで2時間遠心後、IL-2(100IU/ml)の存在下で6時間培養した。培養液からレトロウイルスを除去するため、マウスT細胞を回収し、IL-2(100IU/ml)を含有する新しい増殖培養液(RPMI)に移し、さらに42時間培養し、抗hCD20 CAR-抗PD-1抗体発現ベクターを導入したマウスT細胞(以下、抗hCD20 CAR-抗PD-1抗体発現T細胞とも称する)、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現ベクターを導入したマウスT細胞(以下、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞とも称する)、抗hCD20 CAR発現ベクターを導入したマウスT細胞(以下、抗hCD20 CAR発現T細胞とも称する)、又は抗hCD20 CAR-IL-7/CCL19発現ベクターを導入したマウスT細胞(以下、抗hCD20 CAR-IL-7/CCL19発現T細胞とも称する)を得た。 
 CAR発現を検出するために、形質導入していないT細胞(図13中ではuninf.と表記)又は種々の上記CARをコードするレトロウイルスベクターを形質導入したT細胞を、ビオチン化した組換えprotein L(proteinL-bioとも表記する)で染色し、続いてアロフィコシアニンを結合させたストレプトアビジン(sav-apcとも表記する)で染色した。CARの発現レベルをフローサイトメトリーで解析した。結果を図13に示す。
 図13以降の図面において、uninf.は形質導入していないT細胞を、conv.は抗hCD20 CAR発現T細胞を、conv./PD-1は抗hCD20 CAR-抗PD-1抗体発現T細胞を、7×19は抗hCD20 CAR-IL-7/CCL19発現T細胞を、7×19/PD-1は抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞を表す。図13中の各T細胞のデータにおいて、左側はFSC-SSCプロットであり、右側はアロフィコシアニン染色の陽性度(横軸)と細胞カウント(縦軸)を示すグラフである。また、右側のグラフ中に示されたヒストグラムは、染色で陽性だった細胞の割合(%)を表す。図13に示されるように、形質導入していないT細胞以外の、CARをコードするレトロウイルスベクターで形質導入されたT細胞は、CARを期待通りに発現していることが分かる。
 各種CAR-T細胞を実験に使用する前に、IL-7の濃度及びCCL19の濃度をELISAキットにより測定した。具体的には、形質転換していないT細胞、抗hCD20 CAR発現T細胞、抗hCD20 CAR-IL-7/CCL19発現T細胞、抗hCD20 CAR-抗PD-1抗体発現T細胞、又は抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞を2日間培養した培養上清を回収し、培養上清中のIL-7及びCCL19の濃度を市販のELISAキット(R&D systems社製)を用いて測定した。結果を図14に示す。図14には、3連のウエルの平均値と共に標準偏差もグラフには示した。なお、各グラフ中で、データは、左側から、形質転換していないT細胞(uninf.)、抗hCD20 CAR発現T細胞(conv.)、抗hCD20 CAR-IL-7/CCL19発現T細胞(7×19)、抗hCD20 CAR-抗PD-1抗体発現T細胞(conv./PD-1)、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞(7×19/PD-1)、及び培地のみ(培養液にT細胞を含ませなかった場合に同様の処理をして得られたデータ)の順で並んでいる。図14に示されるように、抗hCD20 CAR-IL-7/CCL19発現T細胞(7×19)及び抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞(7×19/PD-1)の場合に、IL-7及びCCL19の発現が見られた。
 各種CAR-T細胞を実験に使用する前に、抗mPD-1scFv(PD-1scFvとも称する)の濃度を2種類のELISAキットにより測定した。具体的には、形質転換していないT細胞、抗hCD20 CAR発現T細胞、抗hCD20 CAR-IL-7/CCL19発現T細胞、抗hCD20 CAR-抗PD-1抗体発現T細胞、又は抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞を2日間培養した培養上清を回収し、培養上清中のIL-7及びCCL19の濃度をELISAにより測定した。ELISAでは、マウスPD-1とイムノグロブリンFc部分からなる組換え融合タンパク質をウエル中に固定してPD-1scFvを捕捉し、抗FLAGタグ又は抗6×Hisタグを検出に用いた。結果を図15に示す。図15には、3連のウエルの平均値と共に標準偏差もグラフには示した。なお、各グラフ中で、データは、左側から、形質転換していないT細胞(uninf.)、抗hCD20 CAR発現T細胞(conv.)、抗hCD20 CAR-IL-7/CCL19発現T細胞(7×19)、抗hCD20 CAR-抗PD-1抗体発現T細胞(conv./PD-1)、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞(7×19/PD-1)、及び培地のみ(培養液にT細胞を含ませなかった場合に同様の処理をして得られたデータ)の順で並んでいる。図15に示されるように、抗hCD20 CAR-抗PD-1抗体発現T細胞(conv./PD-1)及び抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞(7×19/PD-1)の場合に、抗PD-1scFvの発現が見られた。
(担がんマウスへの投与による抗がん効果の解析)
 0日目に、6~12週齢の雄DBA/2マウスに0.1mlのHBSSで懸濁した5×10個のP815-hCD20腫瘍細胞(Nat Biotechnol. 2018;36(4):346-351参照)を側腹に皮下接種した。11日目に、抗がん剤であるシクロホスファミド(CPA、100mg/kg)をマウスの腹腔内に投与した。マウスを5つの群に分けて、以降の処理を以下のとおり行った。
 第1群には、いかなるCAR発現T細胞も投与しなかった。
 第2群には、0.25×10個の抗hCD20 CAR発現T細胞を14日目に静脈に投与した。
 第3群には、0.25×10個の抗hCD20 CAR-IL-7/CCL19発現T細胞を14日目に静脈に投与した。 
 第4群には、0.25×10個の抗hCD20 CAR-抗PD-1抗体発現T細胞を14日目に静脈に投与した。 
 第5群には、0.25×10個の抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞を14日目に静脈に投与した。 
 それぞれのマウスの生存率を解析すると共にマウスの腫瘍体積を上記のデジタルカリパーを用いた手法により週2回測定した。それぞれのマウスの生存率の解析結果を図16に、70日目までの腫瘍体積を測定した結果を図17に示す。図17において、最初の14日間の腫瘍体積は各グラフの右側に拡大して示した。
 図17において、cpa onlyは、第1群(シクロホスファミド投与は行ったものの、CAR発現T細胞の投与は行わなかった)を表す。図17においてはいずれの群もN=10である。図17において、横軸は、P815-hCD20腫瘍細胞を皮下接種してからの日数(day)を表す。マウスの生存時間について、各群の間のログランク検定の結果を、P値の値で、図16の下側の表に示す。
 図16に示された結果から、本開示に係る免疫応答性細胞Cに該当する抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞を用いることで、P815-hCD20を有するマウスの生存時間が顕著に増加していることが分かる。特に、抗hCD20 CAR-抗PD-1抗体発現T細胞を用いた場合や抗hCD20 CAR-IL-7/CCL19発現T細胞を用いた場合でも試験期間中にほとんどのマウスが死亡しているのに対して、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞では98日経過後でも50%のマウスが生存していることは特筆すべきことである。このことから、がん抗原を特異的に認識する細胞表面分子、インターロイキン7、及びCCL19を発現するが免疫抑制阻害性ポリペプチドを発現しない免疫応答性細胞を用いた場合、及びがん抗原を特異的に認識する細胞表面分子及び免疫抑制阻害性ポリペプチドを発現するが、インターロイキン7及びCCL19を発現しない免疫応答性細胞を用いた場合には治療困難ながん治療の場合でも、本開示に係る免疫応答性細胞Cを用いれば治療可能となりうることが分かる。また、P値から、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞による治療効果は、他の各群で得られた結果とは統計的に明らかに差異がある、高い治療効果であることが分かる。
 図15に記載の、抗hCD20 CAR-抗PD-1抗体発現T細胞による抗PD-1scFvの発現量と、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞による抗PD-1scFvの発現量との比較から分かるように、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞は、導入遺伝子の数が多くヌクレオチド長が長いために、導入及び発現における不利を被ることを考慮すると、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞による上記の治療効果は驚くべきものであることが理解される。
 また、図17に示された結果から、抗hCD20 CAR-IL-7/CCL19-抗PD-1抗体発現T細胞が投与されたマウスでは、腫瘍体積の増加自体が抑えられていることが理解できる。この腫瘍体積増加の抑制は、CAR発現T細胞を投与しなかった場合(cpa only)及び抗hCD20 CAR発現T細胞を投与した場合(conv.)と比較して顕著なだけではなく、抗hCD20 CAR-IL-7/CCL19発現T細胞を投与した場合及び抗hCD20 CAR-抗PD-1抗体発現T細胞を投与した場合と比較しても顕著なものである。
 また、抗hCD20 CAR発現T細胞の投与量は、上記のとおり0.25×10個と少なく、少ない細胞数であっても高い効果が得られたことが分かった。
 以上のとおり、実施例により、本開示の種々の態様に係る組み合わせ医薬及び免疫応答性細胞により、がん細胞に対する高い治療効果が得られることが示された。
 本開示の例示的な実施形態は、以下の実施形態も含む。
<1>
 (a)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、並びに
 (b)免疫抑制阻害剤
 を含む、対象におけるがんを治療するための組み合わせ医薬。
<2> 前記免疫応答性細胞と、前記免疫抑制阻害剤とが、異なる時点で別々に投与される、<1>に記載の組み合わせ医薬。
<3> インターロイキン7をコードする核酸及びCCL19をコードする核酸が、前記免疫応答性細胞のゲノムに組み込まれているか、又は前記免疫応答性細胞中に存在する1個又は複数個のベクターに一緒に若しくは別個に組み込まれている、<1>又は<2>に記載の組み合わせ医薬。
<4> 前記免疫応答性細胞が、前記対象自身に由来する免疫応答性細胞である、<1>~<3>のうちいずれか1つに記載の組み合わせ医薬。
<5> 前記免疫応答性細胞が、T細胞、ナチュラルキラー細胞(NK細胞)、及びB細胞等のリンパ球系細胞、単球、マクロファージ、及び樹状細胞等の抗原提示細胞、好中球、好酸球、好塩基球、並びに肥満細胞からなる群から選択される、<1>~<4>のうちいずれか1つに記載の組み合わせ医薬。
<6>
 (a)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ、並びに
 (b)免疫抑制阻害剤
 を含む、対象におけるがんを治療するための組み合わせ医薬。
<7> 前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが、免疫応答性細胞、ウイルス、嫌気性菌、リポソーム、間葉系幹細胞(MSC)、及びナノ粒子から選択される少なくとも1種を含む、<6>に記載の組み合わせ医薬。
<8> 前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが、がん抗原を特異的に認識する分子を表面に有する、<6>又は<7>に記載の組み合わせ医薬。
<9> 前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが、がん抗原を特異的に認識する細胞表面分子をコードする核酸をさらに含み、前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、<6>又は<7>に記載の組み合わせ医薬。
<10> 前記免疫抑制阻害剤がポリペプチドであって、前記細胞若しくは核酸送達媒体又はそれらの組み合わせは、免疫抑制阻害剤ポリペプチドをコードずる核酸をさらに協同して含む<6>~<9>のうちいずれか1つに記載の組み合わせ医薬。
<11> 前記細胞若しくは核酸送達媒体又はそれらの組み合わせと、前記免疫抑制阻害剤とが、異なる時点で別々に投与される、<6>~<9>のうちいずれか1つに記載の組み合わせ医薬。
<12> 前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、<1>~<5>のうちいずれか1つに記載の組み合わせ医薬。
<13> 前記免疫抑制阻害剤が、PD-1阻害剤、PD-L1阻害剤、PD-L2阻害剤、CTLA-4阻害剤、BTLA(B- and T-lymphocyte attenuator)阻害剤、TIM-3(T-cell immunoglobulin and mucin domain 3)阻害剤、TIGIT(T-cell immunoreceptor with Ig and ITIM domains)阻害剤、LAG-3(Lymphocyte Activation Gene-3)阻害剤、及びSiglec-15阻害剤からなる群から選択される1種以上を含む、<1>~<12>のうちいずれか1つに記載の組み合わせ医薬。
<14> 前記免疫抑制阻害剤が抗体である、<1>~<13>のうちいずれか1つに記載の組み合わせ医薬。
<15> 前記抗体が、IgGモノクローナル抗体又は抗体断片である、<14>に記載の組み合わせ医薬。
<16> 前記がんが固形がんである、<1>~<15>のうちいずれか1つに記載の組み合わせ医薬。
<17> 免疫抑制阻害剤と併用されて対象におけるがんを治療するために用いられる、(i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、を含む医薬。
<18>
 (i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、と併用されて対象におけるがんを治療するために用いられる、免疫抑制阻害剤を含む医薬。
<19> 前記免疫抑制阻害剤と前記免疫応答性細胞又は前記1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせとが異なる時点で別々に投与される形態にて用いるための、<17>又は<18>に記載の医薬。
<20> 免疫抑制阻害剤と併用されることが表示された容器に収容され、かつ、(i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、を含む医薬。
<21>
 免疫抑制阻害剤と併用されることが記載された添付文書と、
 (i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、を含む医薬を収容した容器と、
 を含む製品。
<22>
 (a)(i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、並びに
 (b)免疫抑制阻害剤
 を含む、対象におけるがんを治療するための医薬組成物。
<23> 前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、<22>に記載の医薬組成物。
<24> がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する免疫応答性細胞。
<25> インターロイキン7をコードする核酸及びCCL19をコードする核酸が、前記免疫応答性細胞のゲノムに組み込まれているか、又は前記免疫応答性細胞中に存在する1個又は複数個のベクターに一緒に若しくは別個に組み込まれている、<24>に記載の免疫応答性細胞。
<26> 免疫抑制阻害性ポリペプチドをコードする核酸が、前記免疫応答性細胞のゲノムに組み込まれているか、又は前記免疫応答性細胞中に存在する、前記1個又は複数個のベクターのうちいずれかと同じであっても異なっていてもよいベクターに組み込まれている、<25>に記載の免疫応答性細胞。
<27> 前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、<24>~<26>のうちいずれか1つに記載の免疫応答性細胞。
<28> 前記免疫抑制阻害性ポリペプチドが、PD-1阻害性ポリペプチド、PD-L1阻害性ポリペプチド、PD-L2阻害性ポリペプチド、CTLA-4阻害性ポリペプチド、BTLA(B- and T-lymphocyte attenuator)阻害性ポリペプチド、TIM-3(T-cell immunoglobulin and mucin domain 3)阻害性ポリペプチド、TIGIT(T-cell immunoreceptor with Ig and ITIM domains)阻害性ポリペプチド、LAG-3(Lymphocyte Activation Gene-3)阻害性ポリペプチド、及びSiglec-15阻害性ポリペプチドからなる群から選択される1種以上を含む、<24>~<27>のうちいずれか1つに記載の免疫応答性細胞。
<29> 前記免疫抑制阻害性ポリペプチドが抗体である、<24>~<28>のうちいずれか1つに記載の免疫応答性細胞。
<30> 前記抗体が、IgGモノクローナル抗体又は抗体断片である、<29>に記載の免疫応答性細胞。
<31> T細胞、ナチュラルキラー細胞(NK細胞)、及びB細胞等のリンパ球系細胞、単球、マクロファージ、及び樹状細胞等の抗原提示細胞、好中球、好酸球、好塩基球、並びに肥満細胞からなる群から選択される、<24>~<30>のうちいずれか1つに記載の免疫応答性細胞。
<32> <24>~<31>のうちいずれか1つに記載の免疫応答性細胞を含む医薬。
<33> 対象におけるがんを治療するために用いられる、<32>に記載の医薬。
<34> 前記がんが固形がんである、<33>に記載の医薬。
<35> 前記免疫応答性細胞が前記対象自身に由来する免疫応答性細胞である、<33>又は<34>に記載の医薬。
<36> インターロイキン7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を協同して含む1種類又は複数種類の核酸送達媒体。
<37> がん抗原を特異的に認識する細胞表面分子をコードする核酸をさらに含む、<36>に記載の核酸送達媒体。
 本願は2019年10月28日出願の日本国特許出願2019-195407からの優先権を主張し、日本国特許出願2019-195407の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (37)

  1.  (a)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、並びに
     (b)免疫抑制阻害剤
     を含む、対象におけるがんを治療するための組み合わせ医薬。
  2.  前記免疫応答性細胞と、前記免疫抑制阻害剤とが、異なる時点で別々に投与される、請求項1に記載の組み合わせ医薬。
  3.  インターロイキン7をコードする核酸及びCCL19をコードする核酸が、前記免疫応答性細胞のゲノムに組み込まれているか、又は前記免疫応答性細胞中に存在する1個又は複数個のベクターに一緒に若しくは別個に組み込まれている、請求項1又は請求項2に記載の組み合わせ医薬。
  4.  前記免疫応答性細胞が、前記対象自身に由来する免疫応答性細胞である、請求項1~3のうちいずれか一項に記載の組み合わせ医薬。
  5.  前記免疫応答性細胞が、T細胞、ナチュラルキラー細胞(NK細胞)、及びB細胞等のリンパ球系細胞、単球、マクロファージ、及び樹状細胞等の抗原提示細胞、好中球、好酸球、好塩基球、並びに肥満細胞からなる群から選択される、請求項1~4のうちいずれか一項に記載の組み合わせ医薬。
  6.  (a)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせ、並びに
     (b)免疫抑制阻害剤
     を含む、対象におけるがんを治療するための組み合わせ医薬。
  7.  前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが、免疫応答性細胞、ウイルス、嫌気性菌、リポソーム、間葉系幹細胞(MSC)、及びナノ粒子から選択される少なくとも1種を含む、請求項6に記載の組み合わせ医薬。
  8.  前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが、がん抗原を特異的に認識する分子を表面に有する、請求項6又は請求項7に記載の組み合わせ医薬。
  9.  前記1種類又は複数種類の細胞若しくは核酸送達媒体又はそれらの組み合わせが、がん抗原を特異的に認識する細胞表面分子をコードする核酸をさらに含み、前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、請求項6又は請求項7に記載の組み合わせ医薬。
  10.  前記免疫抑制阻害剤がポリペプチドであって、前記細胞若しくは核酸送達媒体又はそれらの組み合わせは、免疫抑制阻害剤ポリペプチドをコードずる核酸をさらに協同して含む請求項6~9のうちいずれか一項に記載の組み合わせ医薬。
  11.  前記細胞若しくは核酸送達媒体又はそれらの組み合わせと、前記免疫抑制阻害剤とが、異なる時点で別々に投与される、請求項6~9のうちいずれか一項に記載の組み合わせ医薬。
  12.  前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、請求項1~5のうちいずれか一項に記載の組み合わせ医薬。
  13.  前記免疫抑制阻害剤が、PD-1阻害剤、PD-L1阻害剤、PD-L2阻害剤、CTLA-4阻害剤、BTLA(B- and T-lymphocyte attenuator)阻害剤、TIM-3(T-cell immunoglobulin and mucin domain 3)阻害剤、TIGIT(T-cell immunoreceptor with Ig and ITIM domains)阻害剤、LAG-3(Lymphocyte Activation Gene-3)阻害剤、及びSiglec-15阻害剤からなる群から選択される1種以上を含む、請求項1~12のうちいずれか一項に記載の組み合わせ医薬。
  14.  前記免疫抑制阻害剤が抗体である、請求項1~13のうちいずれか一項に記載の組み合わせ医薬。
  15.  前記抗体が、IgGモノクローナル抗体又は抗体断片である、請求項14に記載の組み合わせ医薬。
  16.  前記がんが固形がんである、請求項1~15のうちいずれか一項に記載の組み合わせ医薬。
  17.  免疫抑制阻害剤と併用されて対象におけるがんを治療するために用いられる、(i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、を含む医薬。
  18.  (i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、と併用されて対象におけるがんを治療するために用いられる、免疫抑制阻害剤を含む医薬。
  19.  前記免疫抑制阻害剤と前記免疫応答性細胞又は前記1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせとが異なる時点で別々に投与される形態にて用いるための、請求項17又は請求項18に記載の医薬。
  20.  免疫抑制阻害剤と併用されることが表示された容器に収容され、かつ、(i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、を含む医薬。
  21.  免疫抑制阻害剤と併用されることが記載された添付文書と、
     (i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、を含む医薬を収容した容器と、
     を含む製品。
  22.  (a)(i)がん抗原を特異的に認識する細胞表面分子、インターロイキン7及びCCL19を発現する免疫応答性細胞、又は(ii)インターロイキン7をコードする核酸及びCCL19をコードする核酸を協同して含む1種類又は複数種類の細胞若しくは核酸送達媒体若しくはそれらの組み合わせ、並びに
     (b)免疫抑制阻害剤
     を含む、対象におけるがんを治療するための医薬組成物。
  23.  前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、請求項22に記載の医薬組成物。
  24.  がん抗原を特異的に認識する細胞表面分子、インターロイキン7、CCL19、及び免疫抑制阻害性ポリペプチドを発現する免疫応答性細胞。
  25.  インターロイキン7をコードする核酸及びCCL19をコードする核酸が、前記免疫応答性細胞のゲノムに組み込まれているか、又は前記免疫応答性細胞中に存在する1個又は複数個のベクターに一緒に若しくは別個に組み込まれている、請求項24に記載の免疫応答性細胞。
  26.  免疫抑制阻害性ポリペプチドをコードする核酸が、前記免疫応答性細胞のゲノムに組み込まれているか、又は前記免疫応答性細胞中に存在する、前記1個又は複数個のベクターのうちいずれかと同じであっても異なっていてもよいベクターに組み込まれている、請求項25に記載の免疫応答性細胞。
  27.  前記がん抗原を特異的に認識する細胞表面分子が、キメラ抗原受容体(CAR)又はT細胞受容体(TCR)である、請求項24~26のうちいずれか一項に記載の免疫応答性細胞。
  28.  前記免疫抑制阻害性ポリペプチドが、PD-1阻害性ポリペプチド、PD-L1阻害性ポリペプチド、PD-L2阻害性ポリペプチド、CTLA-4阻害性ポリペプチド、BTLA(B- and T-lymphocyte attenuator)阻害性ポリペプチド、TIM-3(T-cell immunoglobulin and mucin domain 3)阻害性ポリペプチド、TIGIT(T-cell immunoreceptor with Ig and ITIM domains)阻害性ポリペプチド、LAG-3(Lymphocyte Activation Gene-3)阻害性ポリペプチド、及びSiglec-15阻害性ポリペプチドからなる群から選択される1種以上を含む、請求項24~27のうちいずれか一項に記載の免疫応答性細胞。
  29.  前記免疫抑制阻害性ポリペプチドが抗体である、請求項24~28のうちいずれか一項に記載の免疫応答性細胞。
  30.  前記抗体が、IgGモノクローナル抗体又は抗体断片である、請求項29に記載の免疫応答性細胞。
  31.  T細胞、ナチュラルキラー細胞(NK細胞)、及びB細胞等のリンパ球系細胞、単球、マクロファージ、及び樹状細胞等の抗原提示細胞、好中球、好酸球、好塩基球、並びに肥満細胞からなる群から選択される、請求項24~30のうちいずれか一項に記載の免疫応答性細胞。
  32.  請求項24~31のうちいずれか一項に記載の免疫応答性細胞を含む医薬。
  33.  対象におけるがんを治療するために用いられる、請求項32に記載の医薬。
  34.  前記がんが固形がんである、請求項33に記載の医薬。
  35.  前記免疫応答性細胞が前記対象自身に由来する免疫応答性細胞である、請求項33又は請求項34に記載の医薬。
  36.  インターロイキン7をコードする核酸、CCL19をコードする核酸、及び免疫抑制阻害性ポリペプチドをコードする核酸を協同して含む1種類又は複数種類の核酸送達媒体。
  37.  がん抗原を特異的に認識する細胞表面分子をコードする核酸をさらに含む、請求項36に記載の核酸送達媒体。
PCT/JP2020/040503 2019-10-28 2020-10-28 がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品 WO2021085497A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112022007952A BR112022007952A2 (pt) 2019-10-28 2020-10-28 Medicamento para tratar câncer, medicamento de combinação, composição de medicamento, célula imunorresponsiva, veículo de entrega de ácido nucleico e produto
AU2020373899A AU2020373899A1 (en) 2019-10-28 2020-10-28 Drug for treating cancer, combination drug, drug composition, immune responsive cell, nucleic acid delivery vehicle, and product
CA3156231A CA3156231A1 (en) 2019-10-28 2020-10-28 Drug for treating cancer, combination drug, drug composition, immune responsive cell, nucleic acid delivery vehicle, and product
IL292542A IL292542A (en) 2019-10-28 2020-10-28 A drug for the treatment of cancer, a mixture of drugs, a medicinal preparation, a cell that responds to an immune campaign, a carrier for the transfer of nucleic acids and a product
CN202080074877.9A CN114599400A (zh) 2019-10-28 2020-10-28 用于治疗癌症的医药、组合医药、医药组合物、免疫应答细胞、核酸递送介质和制品
US17/771,991 US20220401480A1 (en) 2019-10-28 2020-10-28 Drug for Treating Cancer, Combination Drug, Drug Composition, Immune Responsive Cell, Nucleic Acid Delivery Vehicle, and Product
JP2021553665A JP7436056B2 (ja) 2019-10-28 2020-10-28 がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品
EP20880671.1A EP4062920A4 (en) 2019-10-28 2020-10-28 MEDICINE FOR THE TREATMENT OF CANCER, COMBINATION MEDICINE, MEDICINAL COMPOSITION, IMMUNOREACTIVE CELL, NUCLEIC ACID DELIVERY VEHICLE AND PRODUCT
KR1020227017777A KR20220092543A (ko) 2019-10-28 2020-10-28 암의 치료를 위한 의약, 조합 의약, 의약 조성물, 면역 응답성 세포, 핵산 전달 비히클 및 제품
MX2022004962A MX2022004962A (es) 2019-10-28 2020-10-28 Fármaco para el tratamiento del cáncer, combinación de fármacos, composición de fármacos, célula de respuesta inmune, vehículo de administración de ácidos nucleicos y producto.
JP2024014353A JP2024038512A (ja) 2019-10-28 2024-02-01 がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019195407 2019-10-28
JP2019-195407 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021085497A1 true WO2021085497A1 (ja) 2021-05-06

Family

ID=75716026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040503 WO2021085497A1 (ja) 2019-10-28 2020-10-28 がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品

Country Status (12)

Country Link
US (1) US20220401480A1 (ja)
EP (1) EP4062920A4 (ja)
JP (2) JP7436056B2 (ja)
KR (1) KR20220092543A (ja)
CN (1) CN114599400A (ja)
AU (1) AU2020373899A1 (ja)
BR (1) BR112022007952A2 (ja)
CA (1) CA3156231A1 (ja)
IL (1) IL292542A (ja)
MX (1) MX2022004962A (ja)
TW (1) TW202130656A (ja)
WO (1) WO2021085497A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106198A (zh) * 2021-11-11 2022-03-01 武汉大学 一种pd1抗体与ccl7融合蛋白及其制备方法与应用
WO2023035947A1 (zh) * 2021-09-10 2023-03-16 南京北恒生物科技有限公司 工程化免疫细胞及其用途

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227075A (ja) 1988-09-29 1990-09-10 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
US4956778A (en) 1987-07-02 1990-09-11 Mitsubishi Denki Kabushiki Kaisha Constant speed holding device
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5132405A (en) 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US20050196754A1 (en) 2000-03-31 2005-09-08 Drmanac Radoje T. Novel nucleic acids and polypeptides
JP3867968B2 (ja) 2002-07-08 2007-01-17 関西ティー・エル・オー株式会社 腫瘍細胞において選択的に増殖する腫瘍融解ウイルス
WO2007032255A1 (ja) 2005-09-13 2007-03-22 Mie University T細胞レセプター及び該レセプターをコードする核酸
WO2012094386A1 (en) 2011-01-04 2012-07-12 Jennerex Inc. Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus
JP5574284B2 (ja) 2004-05-25 2014-08-20 小財 健一郎 サービビン(Survivin)プロモーターを含む増殖型アデノウイルスベクターを有効成分とする癌治療薬
WO2016056228A1 (ja) 2014-10-09 2016-04-14 国立大学法人山口大学 Car発現ベクター及びcar発現t細胞
WO2017159736A1 (ja) 2016-03-17 2017-09-21 国立大学法人山口大学 免疫機能制御因子を発現する免疫担当細胞及び発現ベクター
JP2018538339A (ja) 2015-12-22 2018-12-27 ノバルティス アーゲー 抗癌治療における組み合わせ使用のためのメソテリンキメラ抗原受容体(car)およびpd−l1阻害剤に対する抗体
WO2019073973A1 (ja) 2017-10-10 2019-04-18 国立大学法人山口大学 メモリー機能を有するt細胞又はb細胞の増強剤、悪性腫瘍再発抑制剤、及びt細胞又はb細胞にメモリー機能を誘導する誘導剤
JP2019195407A (ja) 2018-05-08 2019-11-14 田中 佳子 宝飾箱

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5132405A (en) 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US4956778A (en) 1987-07-02 1990-09-11 Mitsubishi Denki Kabushiki Kaisha Constant speed holding device
JPH02227075A (ja) 1988-09-29 1990-09-10 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
US20050196754A1 (en) 2000-03-31 2005-09-08 Drmanac Radoje T. Novel nucleic acids and polypeptides
JP3867968B2 (ja) 2002-07-08 2007-01-17 関西ティー・エル・オー株式会社 腫瘍細胞において選択的に増殖する腫瘍融解ウイルス
JP5574284B2 (ja) 2004-05-25 2014-08-20 小財 健一郎 サービビン(Survivin)プロモーターを含む増殖型アデノウイルスベクターを有効成分とする癌治療薬
WO2007032255A1 (ja) 2005-09-13 2007-03-22 Mie University T細胞レセプター及び該レセプターをコードする核酸
WO2012094386A1 (en) 2011-01-04 2012-07-12 Jennerex Inc. Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus
WO2016056228A1 (ja) 2014-10-09 2016-04-14 国立大学法人山口大学 Car発現ベクター及びcar発現t細胞
JP2018538339A (ja) 2015-12-22 2018-12-27 ノバルティス アーゲー 抗癌治療における組み合わせ使用のためのメソテリンキメラ抗原受容体(car)およびpd−l1阻害剤に対する抗体
WO2017159736A1 (ja) 2016-03-17 2017-09-21 国立大学法人山口大学 免疫機能制御因子を発現する免疫担当細胞及び発現ベクター
WO2019073973A1 (ja) 2017-10-10 2019-04-18 国立大学法人山口大学 メモリー機能を有するt細胞又はb細胞の増強剤、悪性腫瘍再発抑制剤、及びt細胞又はb細胞にメモリー機能を誘導する誘導剤
JP2019195407A (ja) 2018-05-08 2019-11-14 田中 佳子 宝飾箱

Non-Patent Citations (45)

* Cited by examiner, † Cited by third party
Title
"Genbank", Database accession no. NM-001768.6
ADACHI, K. ET AL.: "IL -7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor", NATURE BIOTECHNOLOGY, vol. 36, no. 4, 2018, pages 346 - 351, XP055474269, DOI: 10.1038/nbt.4086 *
ANDTBACKA RHI ET AL., J. CLIN. ONCOL., vol. 33, 2015, pages 2780 - 2788
ANTICANCER RES., vol. 20, 2000, pages 1793 - 1799
BLOOD, vol. 106, 2005, pages 470 - 476
BOLE-RICHARD E., FRONT PHARMACOL, vol. 6, 25 August 2015 (2015-08-25), pages 174
CANCER RES., vol. 54, 1994, pages 5265 - 5268
CHERKASSKY, L. ET AL.: "Human CAR T cells with cell -intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition", J CLIN INVEST, vol. 126, no. 8, 2016, pages 3130 - 3144, XP055323500, DOI: 10.1172/JCI83092 *
COOPER L. J, CYTOTHERAPY, vol. 8, no. 2, 2006, pages 105 - 17
CYTOTECHNOLOGY, vol. 3, 1990, pages 133
FREEDMAN JD ET AL., EMBO MOL. MED., vol. 9, 2017, pages 1067 - 1087
HEO J ET AL.: "3", NATURE MEDICINE, 2013, pages 329 - 36
HIROOKA Y ET AL., BMC CANCER, vol. 18, 2018, pages 596
HUSTON ET AL., PROC. NAT. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883
INT. IMMUNOL., vol. 8, 1996, pages 1463 - 1466
J. IMMUNOL., vol. 170, 2003, pages 2186 - 2194
J. IMMUNOL., vol. 174, 2005, pages 4415 - 4423
JAMES M. ET AL., THE JOURNAL OF ONCOLOGY, vol. 188, no. 6, 2012, pages 2391 - 7
JENSEN M. C., BIOL BLOODMARROW TRANSPLANT, vol. 16, no. 9, September 2010 (2010-09-01), pages 1245 - 56
JONES B. S., FRONT PHARMACOL, vol. 5, 27 November 2014 (2014-11-27), pages 254
JOURNAL OF VIROLOGY, vol. 90, no. 11, June 2016 (2016-06-01), pages 5343 - 5352
KIM MK ET AL., SCIENCE TRANSLATIONAL MEDICINE, vol. 5, no. 185, 15 May 2013 (2013-05-15), pages 185ra63
LANG FF ET AL., JOURNAL OF CLINICAL ONCOLOGY, 2018
MAHALINGAM ET AL., CANCERS, vol. 10, 2018, pages 160
MARINO NILLINGWORTH SKODIALBAIL PPATEL ACALDERON HLEAR RFISHER KDCHAMPION BRBROWN ACN, PLOS ONE, vol. 12, no. 5, 2017, pages e0177810
MAZZACURATI ET AL., MOL. THER., vol. 23, no. 1, January 2015 (2015-01-01), pages 99 - 107
MINAGAWA K., PHARMACEUTICALS (BASEL, vol. 8, no. 2, 8 May 2015 (2015-05-08), pages 230 - 49
MOLECULAR THERAPY, vol. 18, no. 2, February 2010 (2010-02-01), pages 233 - 234
MORGAN ET AL., J. IMMUNOL, vol. 171, 2003, pages 3288
MUIK A. ET AL., CANCER RES, vol. 74, no. 13, pages 3567 - 78
NAKATAKE R ET AL., CANCER SCI, vol. 9, no. 3, 10 March 2018 (2018-03-10), pages 600 - 610
NAT BIOTECHNOL., vol. 36, no. 4, 2018, pages 346 - 351
NATBIOTECHNOL, vol. 36, no. 4, 2018, pages 346 - 351
OKADA M ET AL.: "Blockage of Core Fucosylation Reduces Cell-Surface Expression of PD-1 and Promotes Anti-tumor Immune Responses of T Cells", CELL REP, vol. 20, no. 5, 2017, pages 1017 - 1028, XP055496620, DOI: 10.1016/j.celrep.2017.07.027
PROC. NATL. ACAD. SCI. U.S.A., vol. 84, 1987, pages 7413
RAFIQ, S. ET AL.: "Targeted delivery of a PD-1- blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo", NATURE BIOTECHNOLOGY, vol. 36, no. 9, September 2018 (2018-09-01), pages 847 - 856, XP055688782, DOI: 10.1038/nbt.4195 *
REMINGTON'S PHARMACEUTICAL SCIENCE, 1985
SARMA, S.Y GUOY GUILLOUXC. LEEX.-F. BAIY LIU., J. EXP. MED., vol. 189, 1999, pages 811 - 820
SARMA, S.Y. GUOY. GUILLOUXC. LEEX.-F. BAIY. LIU: "Cytotoxic T lymphocytes to an unmutated tumor antigen PI A: normal development but restrained effector function", J. EXP. MED., vol. 189, 1999, pages 811, XP002475669, DOI: 10.1084/jem.189.5.811
See also references of EP4062920A4
SZYMCZAK ET AL., EXPERT OPIN. BIOL. THER., vol. 5, no. 5, 2005, pages 627 - 638
TAMADA K. ET AL., CLIN CANCER RES, vol. 18, 2002, pages 6436 - 6445
TAMADA K. ET AL., CLIN. CANCER RES., vol. 18, 2002, pages 6436 - 6445
TEDCASTLE A ET AL., MOL. THER., vol. 24, 2016, pages 796 - 804
YAQING CAO, LU WENYI, SUN RUI, JIN XIN, CHENG LIN, HE XIAOYUAN, WANG LUQIAO, YUAN TING, LYU CUICUI, ZHAO MINGFENG: "Anti-CD19 Chimeric Antigen Receptor T Cells in Combination With Nivolumab Are Safe and Effective Against Relapsed/Refractory B-Cell Non-hodgkin Lymphoma", FRONTIERS IN ONCOLOGY, FRONTIERS RESEARCH FOUNDATION, CH, vol. 9, 18 August 2019 (2019-08-18), CH , XP055688619, ISSN: 2234-943X, DOI: 10.3389/fonc.2019.00767 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023035947A1 (zh) * 2021-09-10 2023-03-16 南京北恒生物科技有限公司 工程化免疫细胞及其用途
CN114106198A (zh) * 2021-11-11 2022-03-01 武汉大学 一种pd1抗体与ccl7融合蛋白及其制备方法与应用

Also Published As

Publication number Publication date
MX2022004962A (es) 2022-08-16
JPWO2021085497A1 (ja) 2021-05-06
KR20220092543A (ko) 2022-07-01
US20220401480A1 (en) 2022-12-22
AU2020373899A1 (en) 2022-06-09
EP4062920A1 (en) 2022-09-28
JP7436056B2 (ja) 2024-02-21
TW202130656A (zh) 2021-08-16
JP2024038512A (ja) 2024-03-19
EP4062920A4 (en) 2024-03-20
CN114599400A (zh) 2022-06-07
IL292542A (en) 2022-06-01
BR112022007952A2 (pt) 2022-10-04
CA3156231A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US20230340113A1 (en) CHIMERIC ANTIGEN RECEPTORS (CARs), COMPOSITIONS AND METHODS THEREOF
US11648269B2 (en) T cell receptor-deficient chimeric antigen receptor T-cells and methods of use thereof
JP6858128B2 (ja) 癌治療のための免疫療法とサイトカイン制御療法との組み合わせ
US11905528B2 (en) Compound chimeric antigen receptor (cCAR) targeting multiple antigens, compositions and methods of use thereof
US20200223918A1 (en) CHIMERIC ANTIGEN RECEPTORS (CARs), COMPOSITIONS AND METHODS THEREOF
JP2023107931A (ja) 免疫療法のための組成物および方法
WO2016056228A1 (ja) Car発現ベクター及びcar発現t細胞
KR20210038637A (ko) 면역 요법의 안정한 유전적 변형을 위한 귀소 수용체 또는 사이토카인, 및 키메라 항원 수용체를 포함하는 4 시스트론 시스템 (a quadricistronic system comprising a homing receptor or a cytokine, and chimeric antigen receptor for genetic modification of immunotherapies)
JP7475088B2 (ja) ヒトメソセリンを特異的に認識する細胞表面分子、il-7、及びccl19を発現する免疫担当細胞
JP2024038512A (ja) がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品
US20230312671A1 (en) Grp78 targeted adoptive cell therapy
WO2021148019A1 (zh) 病毒载体转导细胞的方法
US20230277622A1 (en) CHIMERIC ANTIGEN RECEPTORS (CARs) COMPOSITIONS AND METHODS THEREOF
US20240182920A1 (en) Method for transducing cells with viral vector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3156231

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021553665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007952

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 788453

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 20227017777

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020880671

Country of ref document: EP

Effective date: 20220530

ENP Entry into the national phase

Ref document number: 2020373899

Country of ref document: AU

Date of ref document: 20201028

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022007952

Country of ref document: BR

Free format text: COM BASE NA PORTARIA 405 DE 21/12/2020, SOLICITA-SE QUE SEJA APRESENTADO, EM ATE 60 (SESSENTA) DIAS, NOVO CONTEUDO DE LISTAGEM DE SEQUENCIA POIS O CONTEUDO APRESENTADO NA PETICAO NO 870220035523 DE 26/04/2022 POSSUI INFORMACOES DIVERGENTES AO PEDIDO EM QUESTAO DEVERA SER INCLUIDO O CAMPO 140 / 141 UMA VEZ QUE O DEPOSITANTE JA POSSUI O NUMERO DO PEDIDO NO BRASIL.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022007952

Country of ref document: BR

Free format text: FAVOR EFETUAR, EM ATE 60 (SESSENTA) DIAS, O PAGAMENTO DA GRU CODIGO DE SERVICO 207 PARA A REGULARIZACAO DO PEDIDO E CONTINUIDADE DA ANALISE DA RESPOSTA AO DESPACHO 1.5 PUBLICADO NA RPI 2688 DE 12/07/2022 ENVIADA ATRAVES DA PETICAO 206 NO 870220069389 DE 04/08/2022. A RESPOSTA A ESTE ADITAMENTO, CONTENDO GRU ORIGINAL E O COMPROVANTE DE PAGAMENTO REFERENTE AO DESPACHO 1.5 DA RPI 2688, TAMBEM DEVERA SER FEITA ATRAVES DE UMA PETICAO SOB O GRU CODIGO DE SERVICO 207, COM PAGAMENTO DA RESPECTIVA TAXA, TOTALIZANDO 2 TAXAS DE GRU CODIGO DE SERVICO 207 A SEREM PAGAS.

ENP Entry into the national phase

Ref document number: 112022007952

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220426

WWE Wipo information: entry into national phase

Ref document number: 522432372

Country of ref document: SA