WO2021083288A1 - 一种检测装置、光驱及检测方法 - Google Patents

一种检测装置、光驱及检测方法 Download PDF

Info

Publication number
WO2021083288A1
WO2021083288A1 PCT/CN2020/124902 CN2020124902W WO2021083288A1 WO 2021083288 A1 WO2021083288 A1 WO 2021083288A1 CN 2020124902 W CN2020124902 W CN 2020124902W WO 2021083288 A1 WO2021083288 A1 WO 2021083288A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
objective lens
optical
detection device
optical disc
Prior art date
Application number
PCT/CN2020/124902
Other languages
English (en)
French (fr)
Inventor
徐佳
徐君
林芃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022525233A priority Critical patent/JP7385029B2/ja
Priority to EP20880745.3A priority patent/EP4044183A4/en
Publication of WO2021083288A1 publication Critical patent/WO2021083288A1/zh
Priority to US17/733,221 priority patent/US11887624B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0941Methods and circuits for servo gain or phase compensation during operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0917Focus-error methods other than those covered by G11B7/0909 - G11B7/0916
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0938Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following servo format, e.g. guide tracks, pilot signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1395Beam splitters or combiners

Definitions

  • This application relates to the field of optical storage technology, and in particular to a detection device, an optical drive, and a detection method.
  • the optical storage medium meets the requirements of moisture-proof, dust-proof, electromagnetic shielding, etc. It has the functions of long data storage time, low maintenance cost and data migration cost, and is the main carrier for storing cold data.
  • Optical disk is a kind of optical storage medium. In the process of writing data to the optical disc, when the focal point of the objective lens in the optical head is placed on the recording layer of the optical disc, data reading and writing can be realized. In the process of reading and writing, the optical disc usually rotates at a high speed. High-speed rotation will cause the optical disc to vibrate up and down, causing the recording layer of the optical disc to shift the focus of the objective lens, thereby affecting the reading and writing of data.
  • the existing optical drive uses the astigmatism method to detect whether the recording layer of the optical disk is at the focal point of the objective lens, and then determines whether to move the optical disk according to the detection result.
  • the incident laser light is focused on the optical disc through the objective lens, and then reflected from the optical disc back to the objective lens, and reaches the detector through the beam splitter in the optical head.
  • the detector determines whether the recording layer of the optical disc is at the focal point of the objective lens according to the received spot shape.
  • this method has extremely high requirements on the symmetry and shape of the light spot received by the detector. If the symmetry of the light spot received by the detector is poor, the detector cannot accurately determine whether the recording layer of the optical disc is at the focal point of the objective lens.
  • the present application provides a detection device, an optical drive, and a detection method, which can solve the problem that it is impossible to accurately determine whether the recording layer of the optical disc is on the focus of the objective lens.
  • a detection device in a first aspect, includes an objective lens, a beam splitter, a mirror, a detector, and a servo controller.
  • the reflector and the detector are arranged on both sides of the optical axis of the objective lens, and the normal of the reflector is perpendicular to the optical axis.
  • the beam splitter is placed between the reflector and the detector and on the optical axis.
  • the servo control The detector is connected to the detector.
  • the beam splitter is used to receive an incident pulse beam whose propagation direction is parallel to the optical axis of the objective lens, and divide the incident pulse beam into a first beam and a second beam.
  • the transmission direction of the first beam is perpendicular to the optical axis.
  • the transmission direction of the two beams is parallel to the optical axis.
  • the reflecting mirror is used for receiving the first light beam and reflecting the third light beam according to the first light beam.
  • the objective lens is used for receiving the second light beam, focusing the second light beam on the optical disc, and transmitting the fourth light beam reflected by the optical disc according to the second light beam.
  • the beam splitter is also used to receive the third light beam and the fourth light beam transmitted by the objective lens, transmit the third light beam, and reflect the fourth light beam transmitted by the objective lens.
  • the detector is used to obtain the interference beam of the third light beam transmitted by the beam splitter and the fourth light beam reflected by the beam splitter, determine the interference signal of the interference beam, and send the interference signal to the servo controller.
  • the servo controller is used to determine whether the i-th (n ⁇ i ⁇ 1, n is the number of recording layers in the optical disc) recording layer in the optical disc is located at the focal point of the objective lens according to the interference signal.
  • the incident pulse beam is divided into a first beam and a second beam by a beam splitter.
  • the first light beam After the first light beam is reflected by the reflector, it passes through the beam splitter to reach the detector.
  • the second light beam passes through the objective lens, and then is reflected by the beam splitter to the detector.
  • the optical path difference between the two beams reaching the detector is determined by the distance between the beam splitter and the mirror (taking this distance as L1 as an example) and the distance between the beam splitter and the optical disc (taking the distance as L2 as an example) )decided. These two beams will interfere in space, and the detector can obtain the interference beams of the two beams and determine the interference signal of the interference beams.
  • the servo controller After the servo controller receives the interference signal sent by the detector, it accurately determines whether the i-th recording layer is at the focal point of the objective lens according to the interference signal, and no longer depends on the symmetry and shape of the light spot. In other words, the servo controller in this application uses the interference properties of the pulsed beam to accurately determine whether the i-th recording layer is located at the focal point of the objective lens.
  • the detection device provided in the present application further includes a displacement stage for carrying an optical disc, and the displacement stage is connected to the servo controller.
  • the above-mentioned servo controller is also used to send a control signal to the platform according to the interference signal when it is determined that the i-th recording layer deviates from the focus of the objective lens, where the control signal is used to indicate the moving direction and moving distance of the platform.
  • the displacement stage is used to move the optical disc to the focal point of the objective lens according to the moving direction and moving distance indicated by the control signal.
  • the servo controller generates a control signal according to the interference signal, so that the platform moves the optical disc according to the control signal.
  • the detection device of the present application has higher control accuracy.
  • the detection device of the present application further includes a small hole baffle, the small hole baffle is placed between the beam splitter and the detector, and the small hole baffle The normal of the small hole is perpendicular to the optical axis.
  • the small hole in the small hole baffle is used to filter the beam of preset intensity from the interference beam, so as to improve the signal-to-noise ratio of the interference signal of the interference beam.
  • the incident pulse beam in the present application includes an ultrashort pulse beam.
  • an optical drive which includes a light source emitter, and the detection device as described in the first aspect and any one of its possible implementation manners.
  • the light source transmitter is used to emit the incident pulse beam to the detection device.
  • a detection method is provided, which is applied to the detection device described in the first aspect and any one of its possible implementation manners.
  • the name of the aforementioned detection device does not constitute a limitation on the device or the functional module itself. In actual implementation, these devices or functional modules may appear under other names. As long as the function of each device or functional module is similar to that of the present application, it falls within the scope of the claims of the present application and equivalent technologies.
  • Figure 1 is a schematic diagram of the structure of an optical head in an existing optical drive
  • FIG. 2 is a first structural diagram of a detection device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the transmission flow of the light beam in the detection device in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the distribution of the light field intensity of the interference signal in the embodiment of the present invention.
  • FIG. 5 is a second structural diagram of a detection device provided by an embodiment of the present invention.
  • FIG. 6 is a third structural diagram of a detection device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a processing flow of an optical drive according to an embodiment of the present invention.
  • an optical disc is a type of optical storage medium.
  • the optical disc can specifically include non-rewritable optical discs, such as compact disc read only memory (CD-ROM), digital video disc read only memory (DVD-ROM), etc.; it can also include erasable Write optical discs, such as compact disc rewritable (CD-RW), DVD random access memory (digital versatile disc random access memory, DVD-RAM), etc.
  • an optical disc includes a substrate, a recording layer, a reflective layer, a protective layer, and a brushing layer.
  • the recording layer is mainly used to store data.
  • the incident laser light of the optical drive passes through the objective lens in the optical drive and focuses on the recording layer, data reading and writing can be completed.
  • current optical discs usually include multiple recording layers.
  • the functions of the substrate, the reflective layer, the protective layer, and the brushed layer reference may be made to the description of the prior art, which will not be described in detail here.
  • the optical disc In the process of reading and writing data, the optical disc usually rotates at a high speed. High-speed rotation will cause the optical disc to vibrate up and down, causing the recording layer of the optical disc to shift the focus of the objective lens, thereby affecting the reading and writing of data.
  • the astigmatism method can be used to detect whether the recording layer of the optical disc is at the focal point of the objective lens, and then determine whether to move the optical disc according to the detection result, so as to solve the problem that the recording layer of the optical disc deviates from the focal point of the objective lens.
  • the accuracy of the detection result determined by the astigmatism method is low.
  • an embodiment of the present invention provides a detection device, which obtains the interference beam according to the interference properties of the pulse beam, and can determine the i-th (n ⁇ i ⁇ 1, n) of the optical disc according to the interference signal of the interference beam. Is the number of recording layers in the optical disc) whether the recording layers are in the focal point of the objective lens. Compared with the prior art, it no longer depends on the symmetry and shape of the light spot, which effectively improves the accuracy of the detection result.
  • the detection results involved in the embodiments of the present invention all represent the results of detecting whether the i-th recording layer of the optical disc is at the focus of the objective lens.
  • FIG. 2 shows a schematic diagram of a detection device provided by an embodiment of the present invention.
  • the detection device includes an objective lens 20, a beam splitter 21, a mirror 22, a detector 23 and a servo controller 24.
  • the reflecting mirror 22 and the detector 23 are arranged opposite to the optical axis of the objective lens 20, and the normal line of the reflecting mirror 22 (that is, the straight line perpendicular to the mirror surface of the reflecting mirror 22) is perpendicular to the optical axis of the objective lens 20, and the beam splitter 21 It is placed between the mirror 22 and the detector 23 and on the optical axis of the objective lens 20, and the servo controller 24 is connected to the detector 23.
  • the distance between the beam splitter 21 and the reflecting mirror 22 is represented by L1
  • the distance between the beam splitter 21 and the i-th recording layer of the optical disc is represented by L2.
  • L1 is a fixed value
  • L2 changes with the up and down vibration of the disc.
  • the propagation direction of the incident pulse beam is parallel to the optical axis of the objective lens 20, and after the incident pulse beam enters the detection device, it first reaches the beam splitter 21. After the beam splitter 21 receives the incident pulse beam, it divides the incident pulse beam into a first beam and a second beam.
  • the transmission direction of the first beam is perpendicular to the optical axis of the objective lens 20, and the transmission direction of the second beam is perpendicular to that of the objective lens 20.
  • the optical axis is parallel.
  • the first light beam After the first light beam reaches the reflecting mirror 22, it is reflected by the reflecting mirror 22.
  • the mirror 22 reflects the third light beam according to the first light beam.
  • the third light beam passes through the beam splitter 21 to reach the detector 23.
  • the second light beam passes through the objective lens 20 and is focused on the optical disc. Since the optical disc has a reflective layer, after the second light beam reaches the optical disc, it will also be reflected by the optical disc.
  • the optical disc reflects the fourth light beam according to the second light beam.
  • the fourth light beam passes through the objective lens 20 and reaches the beam splitter 21. After that, the beam splitter 21 reflects the fourth light beam.
  • the fourth light beam reflected by the beam splitter 21 is transmitted to the detector.
  • the second light beam can be focused on the i-th recording layer of the optical disc, n ⁇ i ⁇ 1, and n is the number of recording layers in the optical disc.
  • the transmission direction of the third light beam transmitted by the beam splitter 21 and the fourth light beam reflected by the beam splitter 21 are the same.
  • the third light beam transmitted by the beam splitter 21 and the fourth light beam reflected by the beam splitter 21 will meet in space. Since the third light beam transmitted by the beam splitter 21 and the fourth light beam reflected by the beam splitter 21 both originate from the incident pulse beam, the frequency of the third light beam transmitted by the beam splitter 21 and the fourth light beam reflected by the beam splitter 21 Same, the direction of vibration is the same. In this way, the third light beam transmitted by the beam splitter 21 and the fourth light beam reflected by the beam splitter 21 will overlap each other when they meet in space to generate an interference beam.
  • the detector 23 can obtain the aforementioned interference beam.
  • the detector 23 in the embodiment of the present invention may be any photodetector, which has the function of converting optical signals into electrical signals. Therefore, after obtaining the interference beam, the detector 23 can determine the interference signal of the interference beam.
  • the electrical signal of the incident pulse beam can be expressed as: Among them, a(t) represents the envelope of the electrical signal, Represents carriers, and ⁇ 0 is the center frequency of the incident pulsed beam.
  • the interference signal determined by the detector 23 in practical applications, usually, the response speed of the detector 23 is much lower than the electric field frequency of the incident pulse beam. Therefore, the detector 23 determines the electric field intensity of the incident pulse beam.
  • the integral satisfies the following formula (1):
  • I represents the optical field intensity of the interference signal obtained by the detector
  • represents the optical delay
  • 2(L2-L1)/c
  • c represents the speed of light
  • P out (t) represents the power of the interference signal
  • cc represents ⁇ conjugate.
  • the detector 23 determines the interference signal, it also sends the interference signal to the servo controller 24.
  • the servo controller 24 After receiving the interference signal sent by the detector 23, the servo controller 24 determines whether the i-th recording layer is located at the focal point of the objective lens according to the relationship between the interference signal and ⁇ (as in the above formula (1)).
  • the detection device uses the interference properties of the pulsed beam to obtain the interference beam, and according to the interference signal of the interference beam, it can be determined whether the i-th recording layer of the optical disc is at the focus of the objective lens. Compared with the prior art, it no longer depends on the symmetry and shape of the light spot, which effectively improves the accuracy of the detection result.
  • the detection results involved in the embodiments of the present invention all represent the results of detecting whether the i-th recording layer of the optical disc is at the focus of the objective lens.
  • the incident pulse beam in the embodiment of the present invention may include a short pulse beam or an ultrashort pulse beam, which is not limited in the embodiment of the present invention. In practical applications, when the incident pulse beam is an ultrashort pulse beam, the detection result of the detection device is the best.
  • the detection device provided by the embodiment of the present invention may further include a displacement stage 25 for carrying an optical disc, and the displacement stage 25 is connected to the servo controller 24.
  • the stage 25 is a piezoelectric ceramic stage. It should be noted that the optical disc does not belong to the detection device. Therefore, the dotted line in FIG. 5 represents the optical disc.
  • the servo controller 24 is also used to send a control signal to the translation stage 25 according to the interference signal, which is used to instruct the movement direction and distance of the translation stage 25.
  • the displacement stage 25 moves the optical disc to the focal point of the objective lens 20 according to the moving direction and the moving distance indicated by the control signal.
  • the servo controller 24 performs digital/analog operations on the interference signal to obtain an error signal, and then amplifies the error signal to obtain a control signal.
  • the servo controller 24 may also send a control signal to the displacement stage 25.
  • the moving direction and moving distance indicated by the control signal are null values or information for keeping unchanged.
  • the detection device provided by the embodiment of the present invention may further include a small hole baffle 26, and the small hole baffle 26 is placed on the beam splitter 21 And the detector 23, and the normal line of the small hole in the small hole baffle 26 (that is, the straight line perpendicular to the plane of the small hole) is perpendicular to the optical axis.
  • the pinholes in the pinhole baffle 26 are used to filter the light beams of preset intensity from the interference light beams. In this way, the interference beam acquired by the detector 23 has less noise, which effectively improves the speed and accuracy of the detector 23 in determining the interference signal.
  • the detection device provided by the embodiment of the present invention may be a high-density optical storage read and write optical head, or may be a part of the module in a high-density optical storage read and write optical head, and may also be other read and write optical heads used in optical storage scenarios.
  • Equipment, this embodiment of the present invention does not limit this.
  • Another embodiment of the present invention also provides an optical drive, which includes a detection device as shown in FIG. 2, FIG. 5, or FIG. 6, so that the optical drive can accurately detect whether the optical disc is located on the focal point of the objective lens 20, and can also be positioned on the optical disc.
  • an optical drive which includes a detection device as shown in FIG. 2, FIG. 5, or FIG. 6, so that the optical drive can accurately detect whether the optical disc is located on the focal point of the objective lens 20, and can also be positioned on the optical disc.
  • optical drive provided in the embodiment of the present invention may also include other components, such as related components used to complete data reading and writing, which will not be described here.
  • the processing flow of the optical drive in the process of reading and writing data in the optical disc will be described below.
  • the optical drive performs the following operations:
  • Pi is used to represent the static position of the i-th recording layer.
  • the optical drive can determine the static position of each recording layer according to the intensity of the obtained interference signal.
  • the displacement stage moves the i-th recording layer to the position Pi.
  • the optical disc is in a rotating state. Because the incident pulse beam always exists, the optical drive can detect the interference signal in real time, determine the control signal according to the detected interference signal, and move the platform according to the control signal, so that the i-th recording layer is at the focal point of the objective lens. Effective reading and writing of data.
  • the optical drive After the data reading and writing of the i-th recording layer is completed, the optical drive detects whether there is still an i+1-th recording layer.
  • the optical drive adopts the above-mentioned methods of S701 to S702 to read and write data of the i+1th recording layer.
  • the optical drive detects the interference signal in real time, determines the control signal according to the detected interference signal, and moves the displacement stage according to the control signal, so that the i-th recording layer is located at the focal point of the objective lens. Therefore, the optical drive of the embodiment of the present invention The data can be read and written efficiently, accurately and quickly.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read only memory (read only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

一种检测装置、光驱及检测方法,涉及光存储技术领域,能准确地确定光盘的记录层是否在物镜的焦点上。该检测装置包括物镜、分束镜、反射镜、检测器和伺服控制器。分束镜接收入射脉冲光束,并将入射脉冲光束分为第一光束和第二光束。反射镜接收第一光束,并根据第一光束反射出第三光束。物镜接收第二光束,并将第二光束聚焦在光盘上,以及透射光盘根据第二光束反射的第四光束。分束镜透射第三光束,以及反射物镜透射的第四光束。检测器获取分束镜透射的第三光束和分束镜反射的第四光束的干涉波束,确定干涉波束的干涉信号,并向伺服控制器发送干涉信号。伺服控制器根据干涉信号,确定第i个记录层是否位于物镜的焦点。

Description

一种检测装置、光驱及检测方法 技术领域
本申请涉及光存储技术领域,尤其涉及一种检测装置、光驱及检测方法。
背景技术
光存储介质满足防潮、防尘、电磁屏蔽等要求,具备数据存储时间长,维护成本和数据迁移成本低的功能,是存储冷数据的主要载体。光盘为光存储介质的一种。在向光盘写数据的过程中,当光头中物镜的焦点置于光盘的记录层时,可以实现数据的读写。在读写过程中,光盘通常会高速旋转。而高速旋转会引发光盘的上下振动,导致光盘的记录层偏移物镜的焦点,从而影响数据的读写。
现有的光驱采用像散法检测光盘的记录层是否位于物镜的焦点,进而根据检测结果确定是否移动光盘。如图1所示,入射激光通过物镜聚焦在光盘上,再由光盘反射回到物镜,经光头中的分束镜到达检测器。检测器根据接收到的光斑形状,确定光盘的记录层是否在物镜的焦点上。但是,该方法对检测器接收到的光斑的对称性和形状的要求极高。如果检测器接收到的光斑的对称性较差,则检测器无法准确地确定出光盘的记录层是否在物镜的焦点上。
发明内容
本申请提供一种检测装置、光驱及检测方法,能够解决无法准确地确定光盘的记录层是否在物镜的焦点上的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种检测装置,该检测装置包括物镜、分束镜、反射镜、检测器以及伺服控制器。其中,反射镜和检测器相对设置在物镜的光轴的两侧,且反射镜的法线与光轴垂直,分束镜置于反射镜与检测器之间,且位于光轴上,伺服控制器与检测器连接。
具体的,分束镜,用于接收传播方向与物镜的光轴平行的入射脉冲光束,并将入射脉冲光束分为第一光束和第二光束,第一光束的传输方向与光轴垂直,第二光束的传输方向与光轴平行。反射镜,用于接收第一光束,并根据第一光束反射出第三光束。物镜,用于接收第二光束,并将第二光束聚焦在光盘上,以及透射光盘根据第二光束反射的第四光束。分束镜,还用于接收第三光束和物镜透射的第四光束,并透射第三光束,以及反射物镜透射的第四光束。检测器,用于获取分束镜透射的第三光束和分束镜反射的第四光束的干涉波束,并确定干涉波束的干涉信号,以及向伺服控制器发送干涉信号。伺服控制器,用于根据干涉信号,确定光盘中第i(n≥i≥1,n为光盘中记录层的数量)个记录层是否位于物镜的焦点。
入射脉冲光束由分束镜分为第一光束和第二光束。第一光束由反射镜反射后,透过分束镜到达检测器。第二光束由光盘反射后,透过物镜,再由分束镜反射到检测器。这两个光束到达检测器的光程差是由分束镜与反射镜之间的距离(以该距离为L1为例)以及分束镜与光盘之间的距离(以该距离为L2为例)决定的。这两个光束在空间会产生干涉,检测器能够获取到这两个光束的干涉光束,并确定出干涉光束的干涉信号。伺服控制器在接收到检测器发送的干涉信号后,根据干涉信号精确地确定出第i个记录层是否位于物镜的焦点,不再依赖于光斑的对称性和形状。也就是说,本申请中的伺服控制器利用脉冲光束的干涉性质,精确地确定出第i个记录层是否位于物镜的焦点。
可选的,在本申请的一种可能的实现方式中,本申请提供的检测装置还包括用于承载光盘的位移台,该位移台与伺服控制器连接。相应的,上述伺服控制器,还用于当确定第i个 记录层偏离物镜的焦点时,根据干涉信号向位移台发送控制信号,其中,控制信号用于指示位移台的移动方向以及移动距离。位移台,用于根据控制信号指示的移动方向和移动距离将光盘移动到物镜的焦点。
伺服控制器根据干涉信号生成控制信号,进而使得位移台根据该控制信号移动光盘。干涉信号与光学延迟τ(τ=2(L2-L1)/c,c表示光速)相关,τ的精度为波长(具体为微米)级别。因此,本申请中的伺服控制器发出的控制信号的精度也为波长(具体为微米)级别,相应的,位移台移动的精度也为波长(具体为微米)级别。与现有技术相比,本申请的检测装置的控制精度更高。
可选的,在本申请的另一种可能的实现方式中,本申请的检测装置还包括小孔挡板,该小孔挡板置于分束镜和检测器之间,且小孔挡板中小孔的法线与光轴垂直。小孔挡板中的小孔用于从干涉光束中筛选预设强度的光束,以提高干涉光束的干涉信号的信噪比。
可选的,在本申请的另一种可能的实现方式中,本申请中的入射脉冲光束包括超短脉冲光束。
第二方面,提供一种光驱,该光驱包括光源发射器,以及如上述第一方面及其任意一种可能的实现方式所述的检测装置。光源发射器用于向检测装置发射入射脉冲光束。
第三方面,提供一种检测方法,该检测方法应用于如上述第一方面及其任意一种可能的实现方式所述的检测装置。
在本申请中,上述检测装置的名字对设备或功能模块本身不构成限定。在实际实现中,这些设备或功能模块可以以其他名称出现。只要各个设备或功能模块的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
本申请中第二方面到第三方面及其各种实现方式的具体描述,可以参考第一方面及其各种实现方式中的详细描述;并且,第二方面到第三方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
本申请的这些方面或其他方面在以下的描述中会更加简明易懂。
附图说明
图1为现有光驱中光头的结构示意图;
图2为本发明实施例提供的检测装置的结构示意图一;
图3为本发明实施例中检测装置中光束的传输流程示意图;
图4为本发明实施例中干涉信号的光场强度的分布示意图;
图5为本发明实施例提供的检测装置的结构示意图二;
图6为本发明实施例提供的检测装置的结构示意图三;
图7为本发明实施例提供的光驱的处理流程示意图。
具体实施方式
如前所述,光盘为光存储介质的一种。光盘具体可以包括不可擦写光盘,如只读光盘(compact disc read only memory,CD-ROM)、只读数字多功能存储器(digital video disc read only memory,DVD-ROM)等;也可以包括可擦写光盘,如可擦写光盘(compact disc rewritable,CD-RW)、DVD随机存储器(digital versatile disc random access memory,DVD-RAM)等。
通常,光盘包括基板、记录层、反射层、保护层以及应刷层等。其中,记录层主要用于存储数据。当光驱的入射激光透过光驱中的物镜聚焦在记录层上时,可完成数据的读写。为了提高单张光盘的存储容量,现在的光盘通常包括多个记录层。关于基板、反射层、保护层和应刷层的功能可以参考现有技术的描述,这里不再详细描述。
在读写数据的过程中,光盘通常会高速旋转。而高速旋转会引发光盘的上下振动,导致光盘的记录层偏移物镜的焦点,从而影响数据的读写。目前,可以采用像散法检测光盘的记录层是否位于物镜的焦点,进而根据检测结果确定是否移动光盘,以解决光盘的记录层偏移物镜的焦点的问题。但是,采用像散法确定的检测结果的准确性较低。
为此,本发明实施例提供一种检测装置,该检测装置根据脉冲光束的干涉性质,获取干涉光束,并根据该干涉光束的干涉信号即可确定光盘的第i(n≥i≥1,n为光盘中记录层的数量)个记录层是否在物镜的焦点上。与现有技术相比,不再依赖于光斑的对称性和形状,有效地提高了检测结果的准确性。本发明实施例涉及的检测结果均表示检测光盘的第i个记录层是否在物镜的焦点上的结果。
请参考图2,其示出本发明实施例提供的检测装置的示意图。如图2所示,检测装置包括物镜20、分束镜21、反射镜22、检测器23以及伺服控制器24。
反射镜22和检测器23相对设置在物镜20的光轴的两侧,且反射镜22的法线(即垂直于反射镜22的镜面的直线)与物镜20的光轴垂直,分束镜21置于反射镜22与检测器23之间,且位于物镜20的光轴上,伺服控制器24与检测器23连接。本发明实施例将分束镜21与反射镜22之间的距离采用L1表示,将分束镜21到光盘的第i个记录层之间的距离采用L2表示。L1为固定值,L2随着光盘的上下振动发生变化。
结合图2,如图3所示,入射脉冲光束的传播方向与物镜20的光轴平行,入射脉冲光束进入检测装置后,首先到达分束镜21。分束镜21在接收到入射脉冲光束后,将入射脉冲光束分为第一光束和第二光束,第一光束的传输方向与物镜20的光轴垂直,第二光束的传输方向与物镜20的光轴平行。
第一光束在到达反射镜22后,经由反射镜22反射。反射镜22根据第一光束反射出第三光束。第三光束经过分束镜21的透射到达检测器23。
第二光束透过物镜20聚焦在光盘上。由于光盘存在反射层,因此,第二光束到达光盘后,还会经由光盘反射。光盘根据第二光束反射出第四光束。第四光束经过物镜20的透射到达分束镜21。之后,分束镜21反射该第四光束。分束镜21反射的第四光束向检测器传输。
实际应用中,在光盘未出现上下振动或者光盘保持静止的场景中,第二光束可以在光盘的第i个记录层上聚焦,n≥i≥1,n为光盘中记录层的数量。
结合图3可以看出,分束镜21透射的第三光束和分束镜21反射的第四光束的传输方向相同。这样,分束镜21透射的第三光束和分束镜21反射的第四光束在空间中会相遇。由于分束镜21透射的第三光束和分束镜21反射的第四光束均来源于入射脉冲光束,因此,分束镜21透射的第三光束和分束镜21反射的第四光束的频率相同,振动方向一致。这样,分束镜21透射的第三光束和分束镜21反射的第四光束在空间中相遇时会相互叠加,生成干涉波束。
相应的,检测器23可获取上述干涉波束。本发明实施例中的检测器23可以为任一光电探测器,具备将光信号转换为电信号的功能。因此,在获取到干涉波束后,检测器23可确定出该干涉波束的干涉信号。
示例性的,入射脉冲光束的电信号可以表示为:
Figure PCTCN2020124902-appb-000001
其中,a(t)表示该电信号的包络,
Figure PCTCN2020124902-appb-000002
表示载流子,ω 0为入射脉冲光束的中心频率。针对该入射脉冲光束,检测器23确定出的干涉信号(实际应用中,通常检测器23的响应速度远小于入射脉冲光束的电场频率,因此,探测器23确定出的是入射脉冲光束的电场强度的积分)满足下述公式(1):
Figure PCTCN2020124902-appb-000003
其中,I表示探测器获得的干涉信号的光场强度,τ表示光学延迟,τ=2(L2-L1)/c,c表示光速,P out(t)表示干涉信号的功率,c.c.表示
Figure PCTCN2020124902-appb-000004
的共轭。
图4示出了干涉信号的光场强度I的分布。从图4可以看出,干涉信号的光场强度I随着τ的变化而变化。在τ=0时,干涉信号的光场强度I为当前的极大值。也就是说,当L1=L2时,干涉信号存在极大值。干涉信号为极大值时,说明光盘的第i个记录层位于物镜的焦点。
图4中,干涉信号的光场强度I的包络为a(t)的自相关函数,干涉信号的光场强度I的载流子振荡频率为入射脉冲光束的中心频率ω 0
进一步地,检测器23在确定出干涉信号后,还向伺服控制器24发送该干涉信号。
伺服控制器24在接收到检测器23发送的干涉信号后,根据干涉信号与τ的关系(如上述公式(1))确定第i个记录层是否位于物镜的焦点。
可以看出,检测装置利用了脉冲光束的干涉性质,获取干涉光束,并根据该干涉光束的干涉信号即可确定光盘的第i个记录层是否在物镜的焦点上。与现有技术相比,不再依赖于光斑的对称性和形状,有效地提高了检测结果的准确性。本发明实施例涉及的检测结果均表示检测光盘的第i个记录层是否在物镜的焦点上的结果。
本发明实施例中的入射脉冲光束可以包括短脉冲光束,也可以包括超短脉冲光束,本发明实施例对此不作限定。在实际应用中,当入射脉冲光束为超短脉冲光束时,检测装置的检测结果最佳。
此外,结合图2,如图5所示,除了上述组件外,本发明实施例提供的检测装置还可以包括用于承载光盘的位移台25,该位移台25与伺服控制器24连接。示例性的,位移台25为压电陶瓷位移台。需要说明的是,光盘不属于检测装置,因此,图5中采用虚线表示光盘。
当确定光盘的第i个记录层偏离物镜20的焦点时,伺服控制器24还用于根据干涉信号向位移台25发送控制信号,用于指示位移台25的移动方向以及移动距离。相应的,位移台25根据控制信号指示的移动方向和移动距离将光盘移动到物镜20的焦点。这样,本发明实施例提供的检测装置即可解决光盘的第i个记录层偏离物镜20的焦点,无法有效读写数据的问题。
具体的,伺服控制器24将干涉信号通过数字/模拟运算,得到误差信号,再将误差信号进行放大,得到控制信号。
可选的,当确定光盘的第i个记录层位于物镜20的焦点时,伺服控制器24也可以向位移台25发送控制信号。该控制信号所指示的移动方向和移动距离为空值或者为用于保持不变的信息。
由于τ=2(L2-L1)/c,因此,τ的精度为波长(具体为微米)级别。干涉信号与τ相关,且伺服控制器24根据干涉信号确定控制信号,因此,控制信号的精度也为波长(具体为微米)级别。这样,位移台移动的精度也为波长(具体为微米)级别。这样,本发明实施例提供的检测装置的控制精度较高。
进一步可选的,结合图5(也可以结合图2),如图6所示,本发明实施例提供的检测装置还可以包括小孔挡板26,小孔挡板26置于分束镜21和检测器23之间,且小孔挡板26中小孔的法线(即垂直于小孔平面的直线)与光轴垂直。小孔挡板26中的小孔(pinhole)用于从干涉光束中筛选预设强度的光束。这样,检测器23获取到的干涉光束的噪声较小,有效地提高了检测器23确定干涉信号的速率和准确性。
本发明实施例提供的检测装置具体可以为高密度光存储的读、写光头,也可以为高密度光存储的读、写光头中的部分模块,还可以为其他用于光存储场景的读写设备,本发明实施例对此不作限定。
本发明另一实施例还提供一种光驱,该光驱包括如图2、图5或图6示出的检测装置,使得光驱能够准确地检测出光盘是否位于物镜20的焦点上,也能在光盘的第i个记录层偏离物镜20的焦点时,解决无法有效读写数据的问题。
需要说明的是,本发明实施例提供的光驱还可以包括其他组件,如用于完成数据读写的相关组件,这里不再一一描述。
下面以光驱为例,对读写光盘(包括n个记录层)中数据的过程中,光驱的处理流程进行说明。
如图7所示,在读写n个记录层的光盘中数据的过程中,光驱执行下述操作:
S700、光驱完成初始化操作。
具体的,开启光驱中的入射光源,发出入射脉冲光束。结合上述描述可知,在发出入射脉冲光束后,光驱能够获取到干涉光束和干涉信号。让光盘处于未旋转的状态,光驱中的位移台由近至远移动。在移动位移台的过程中,干涉信号的强度会发生变化,光驱能够检测到多个极大值。光驱根据检测到的极大值,可以确定出每个记录层的静态位置。其中,记录层的位置可以采用分束镜到该记录层之间的距离表示。
本发明实施例采用Pi表示第i个记录层的静态位置。
从上面描述可知,当L1=L2时,干涉信号的强度为极大值。基于此,光驱可以根据获取到的干涉信号的强度,确定出每个记录层的静态位置。
在初始化结束后,开始读写光盘中的数据,并保持入射光源的开启状态(即入射脉冲光束一直存在)。通常,光盘中的数据是按照记录层的先后顺序依次完成的。对于每一个记录层而言,光驱的处理过程均相同。下面以第i个记录层为例进行说明。
S701、待读写第i个记录层中的数据时,位移台将第i个记录层移动到Pi位置。
S702、在读写数据的过程中,光盘处于旋转状态。由于入射脉冲光束一直存在,因此,光驱能够实时检测到干涉信号,并根据检测到的干涉信号确定控制信号,以及根据该控制信号移动位移台,使得第i个记录层位于物镜的焦点,从而实现数据的有效读写。
S702具体可以由光驱中的位移台和伺服控制器完成。这一步骤具体可以参考上述对位移台25和伺服控制器24的描述,这里不再详细赘述。
S703、在第i个记录层的数据读写完成后,光驱检测是否还存在第i+1个记录层。
若存在第i+1个记录层,则光驱采用上述S701~S702的方法读写第i+1个记录层的数据。
若不存在第i+1个记录层,则光驱的处理流程终止。
可以看出,由于光驱实时检测干涉信号,并根据检测到的干涉信号确定控制信号,以及根据该控制信号移动位移台,使得第i个记录层位于物镜的焦点,因此,本发明实施例的光驱可以有效、准确、快速地完成数据的读写。
通过以上实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分, 仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (6)

  1. 一种检测装置,其特征在于,所述检测装置包括物镜、分束镜、反射镜、检测器以及伺服控制器;其中,所述反射镜和所述检测器相对设置在所述物镜的光轴的两侧,且所述反射镜的法线与所述光轴垂直,所述分束镜置于所述反射镜与所述检测器之间,且位于所述光轴上;
    所述分束镜,用于接收入射脉冲光束,并将所述入射脉冲光束分为第一光束和第二光束,所述入射脉冲光束的传播方向与所述物镜的光轴平行,所述第一光束的传输方向与所述光轴垂直,所述第二光束的传输方向与所述光轴平行;
    所述反射镜,用于接收所述第一光束,并根据所述第一光束反射出第三光束;
    所述物镜,用于接收所述第二光束,并将所述第二光束聚焦在光盘上,以及透射所述光盘根据所述第二光束反射的第四光束;
    所述分束镜,还用于接收所述第三光束和所述物镜透射的第四光束,并透射所述第三光束,以及反射所述物镜透射的第四光束;
    所述检测器,用于获取所述分束镜透射的第三光束和所述分束镜反射的第四光束的干涉波束,并确定所述干涉波束的干涉信号;
    所述伺服控制器,连接所述检测器并用于根据所述干涉信号,确定所述光盘的第i个记录层是否位于所述物镜的焦点,n≥i≥1,n为所述光盘中记录层的数量。
  2. 根据权利要求1所述的检测装置,其特征在于,所述检测装置还包括位移台,所述位移台与所述伺服控制器连接,所述位移台用于承载所述光盘;
    所述伺服控制器,还用于当确定所述第i个记录层偏离所述物镜的焦点时,根据所述干涉信号向所述位移台发送控制信号,其中,所述控制信号用于指示所述位移台的移动方向以及移动距离;
    所述位移台,用于根据所述控制信号指示的移动方向和移动距离将所述光盘移动到所述物镜的焦点。
  3. 根据权利要求1或2所述的检测装置,其特征在于,所述检测装置还包括小孔挡板,所述小孔挡板置于所述分束镜和所述检测器之间,且所述小孔挡板中小孔的法线与所述光轴垂直;
    所述小孔挡板中的小孔,用于从所述干涉光束中筛选预设强度的光束。
  4. 根据权利要求1-3任意一项所述的检测装置,其特征在于:所述入射脉冲光束包括超短脉冲光束。
  5. 一种光驱,其特征在于,所述光驱包括光源发射器,以及如权利要求1-4中任意一项所述的检测装置;
    所述光源发射器,用于向所述检测装置发射所述入射脉冲光束。
  6. 一种检测方法,其特征在于,应用于如权利要求1-4中任意一项所述的检测装置。
PCT/CN2020/124902 2019-10-30 2020-10-29 一种检测装置、光驱及检测方法 WO2021083288A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022525233A JP7385029B2 (ja) 2019-10-30 2020-10-29 検出装置、光学ドライブ及び検出方法
EP20880745.3A EP4044183A4 (en) 2019-10-30 2020-10-29 DETECTION DEVICE, OPTICAL DRIVE AND DETECTION METHOD
US17/733,221 US11887624B2 (en) 2019-10-30 2022-04-29 Detection apparatus, optical drive, and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911048113.8A CN112750470B (zh) 2019-10-30 2019-10-30 一种检测装置、光驱及检测方法
CN201911048113.8 2019-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/733,221 Continuation US11887624B2 (en) 2019-10-30 2022-04-29 Detection apparatus, optical drive, and detection method

Publications (1)

Publication Number Publication Date
WO2021083288A1 true WO2021083288A1 (zh) 2021-05-06

Family

ID=75640945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124902 WO2021083288A1 (zh) 2019-10-30 2020-10-29 一种检测装置、光驱及检测方法

Country Status (5)

Country Link
US (1) US11887624B2 (zh)
EP (1) EP4044183A4 (zh)
JP (1) JP7385029B2 (zh)
CN (1) CN112750470B (zh)
WO (1) WO2021083288A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118293787A (zh) * 2024-06-05 2024-07-05 杭州晶耐科光电技术有限公司 基于四波共路干涉的球面动态干涉仪及其检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117437941B (zh) * 2023-12-18 2024-03-15 中国华录集团有限公司 一种在新型介质中读写数据的光盘结构及引导层预制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499501A (zh) * 2002-10-25 2004-05-26 三星电子株式会社 光拾取器及使用它的光记录和/或再现装置
CN101145358A (zh) * 2006-09-11 2008-03-19 株式会社日立制作所 光学信息检测方法、光学头以及光盘装置
CN101325067A (zh) * 2007-06-12 2008-12-17 索尼株式会社 光盘装置和会聚位置校正方法
CN101939786A (zh) * 2008-03-14 2011-01-05 联发科技股份有限公司 光驱控制换层方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032927A (en) * 1972-05-19 1977-06-28 Canon Kabushiki Kaisha High density optical recording apparatus
JPS4915443A (zh) * 1972-05-19 1974-02-09
JPS5515685B2 (zh) * 1972-06-30 1980-04-25
US4003059A (en) * 1974-02-07 1977-01-11 Canon Kabushiki Kaisha Optical recorder having focus controlling means
JPS5760689B2 (zh) * 1974-02-07 1982-12-21 Canon Kk
US5115420A (en) * 1990-01-16 1992-05-19 International Business Machines Corporation Utilizing wasted laser light in optical systems
US5400306A (en) 1993-06-02 1995-03-21 Hewlett-Packard Company Differential detection assembly for data retrieval from a data storage disk
JPH07106219A (ja) * 1993-09-29 1995-04-21 Sony Corp 露光装置、光ディスク原盤露光装置及び半導体露光装置
KR100803992B1 (ko) * 2005-03-02 2008-02-18 가부시키가이샤 리코 광학계, 광 픽업 장치 및 광 디스크 장치
JP4695688B2 (ja) * 2006-03-31 2011-06-08 パイオニア株式会社 光ピックアップ及び情報機器
JP4620631B2 (ja) * 2006-05-16 2011-01-26 株式会社日立メディアエレクトロニクス 光ディスクドライブ装置
WO2008081859A1 (ja) * 2006-12-29 2008-07-10 Panasonic Corporation 光ピックアップ、光ディスク装置、複合カップリングレンズ、複合プリズム、及び光情報機器
JP2009020945A (ja) * 2007-07-11 2009-01-29 Hitachi Media Electoronics Co Ltd 光ピックアップ装置
JP2009080906A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 光情報記録再生装置、回折格子作製装置、光情報記録媒体および位置決め制御方法
KR20090076605A (ko) * 2008-01-09 2009-07-13 삼성전자주식회사 홀로그래픽 정보 기록/재생장치
JP5286233B2 (ja) * 2009-11-27 2013-09-11 株式会社日立メディアエレクトロニクス 光ピックアップ装置
US8483031B2 (en) * 2010-06-21 2013-07-09 Panasonic Corporation Optical head device, optical information device and information processing device
JP5487085B2 (ja) * 2010-11-25 2014-05-07 日立コンシューマエレクトロニクス株式会社 情報記録方法、情報再生方法及び光ディスク装置
JP2013069386A (ja) * 2011-09-26 2013-04-18 Hitachi Consumer Electronics Co Ltd 光ディスク装置
US20140204437A1 (en) * 2013-01-23 2014-07-24 Akonia Holographics Llc Dynamic aperture holographic multiplexing
WO2017187688A1 (ja) * 2016-04-28 2017-11-02 ソニー株式会社 再生装置および再生方法
JP6930791B2 (ja) 2016-09-30 2021-09-01 ソニーセミコンダクタソリューションズ株式会社 再生装置及び再生方法
CN107764189B (zh) 2017-09-30 2019-08-27 中国航空工业集团公司北京长城计量测试技术研究所 一种大范围重频调制的飞秒激光绝对测距装置及方法
CN108007585A (zh) 2017-12-01 2018-05-08 北京无线电计量测试研究所 一种飞秒激光脉宽测量装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499501A (zh) * 2002-10-25 2004-05-26 三星电子株式会社 光拾取器及使用它的光记录和/或再现装置
CN101145358A (zh) * 2006-09-11 2008-03-19 株式会社日立制作所 光学信息检测方法、光学头以及光盘装置
CN101325067A (zh) * 2007-06-12 2008-12-17 索尼株式会社 光盘装置和会聚位置校正方法
CN101939786A (zh) * 2008-03-14 2011-01-05 联发科技股份有限公司 光驱控制换层方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4044183A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118293787A (zh) * 2024-06-05 2024-07-05 杭州晶耐科光电技术有限公司 基于四波共路干涉的球面动态干涉仪及其检测方法

Also Published As

Publication number Publication date
US20220262398A1 (en) 2022-08-18
CN112750470A (zh) 2021-05-04
JP2023500275A (ja) 2023-01-05
JP7385029B2 (ja) 2023-11-21
EP4044183A1 (en) 2022-08-17
CN112750470B (zh) 2022-05-31
US11887624B2 (en) 2024-01-30
EP4044183A4 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
US6498330B1 (en) Spherical aberration detector and optical pickup device
WO2021083288A1 (zh) 一种检测装置、光驱及检测方法
KR100243716B1 (ko) 레이저 소오스와 검출기의 결합시스템
JP2002288873A (ja) 光情報記録再生装置
JPS60131648A (ja) 光学ヘツド
CN1160713C (zh) 与多种光记录媒体兼容的光学头
TWI364034B (en) Method of controlling focus of optical information storage media recording and/or reproduction apparatus and apparatus therefor
KR100200828B1 (ko) 포커스에러 검출장치
JPH10241204A (ja) 高速のアクセスタイムを達成するdvd/cd−r用光ヘッドアセンブリー
JPS59215033A (ja) 光デイスク記録再生装置
JPH0676349A (ja) 多重ビーム光学系
US20030080273A1 (en) Optical disk apparatus and method of recording/reproducing thereof
KR100416555B1 (ko) 빔스플리터 및 이를 채용한 광픽업 장치
JP2002055024A (ja) 収差検出方法及び光ピックアップ装置
RU2425429C2 (ru) Способ и устройство для извлечения информации с оптического носителя записи при различных скоростях считывания
JPS61243950A (ja) 光学ヘツド
JP2764752B2 (ja) 情報蓄積装置
JPS61243951A (ja) 光学ヘツド
JPS61243949A (ja) 光学ヘツド
JPH0547028A (ja) 光ヘツド
JPS6020329A (ja) 光学ヘツド
JP2001110070A (ja) 光記録媒体走査方法、光記録媒体走査装置及び光記録媒体
JPH056562A (ja) チルト検出装置
JPS61269244A (ja) 光学ヘツド
JPS61243953A (ja) 光学ヘツド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525233

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020880745

Country of ref document: EP

Effective date: 20220429

NENP Non-entry into the national phase

Ref country code: DE