WO2021083270A1 - 负载型催化剂及其制备方法和应用 - Google Patents

负载型催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021083270A1
WO2021083270A1 PCT/CN2020/124801 CN2020124801W WO2021083270A1 WO 2021083270 A1 WO2021083270 A1 WO 2021083270A1 CN 2020124801 W CN2020124801 W CN 2020124801W WO 2021083270 A1 WO2021083270 A1 WO 2021083270A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
catalyst
molecular sieve
present
oxide
Prior art date
Application number
PCT/CN2020/124801
Other languages
English (en)
French (fr)
Inventor
董松涛
胡志海
赵广乐
杨平
赵阳
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911055026.5A external-priority patent/CN112742392B/zh
Priority claimed from CN201911053683.6A external-priority patent/CN112742452B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to JP2022525358A priority Critical patent/JP2022554292A/ja
Priority to CA3159650A priority patent/CA3159650A1/en
Priority to EP20881937.5A priority patent/EP4052790A4/en
Priority to US17/755,555 priority patent/US20220266224A1/en
Priority to KR1020227018597A priority patent/KR20220091584A/ko
Publication of WO2021083270A1 publication Critical patent/WO2021083270A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J35/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • B01J35/60
    • B01J35/615
    • B01J35/635
    • B01J35/638
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel

Definitions

  • the invention relates to the field of supported catalysts, in particular to a supported catalyst with axially through pores inside a carrier.
  • the supported catalyst can take into account both high strength and high catalytic activity, and a preparation method and application thereof.
  • Fischer-Tropsch process also known as FT synthesis, is a process in which synthesis gas (a mixed gas of carbon monoxide and hydrogen) is used as a raw material to synthesize liquid hydrocarbons or hydrocarbons under appropriate conditions under a catalyst. It is A key step in the indirect conversion of non-oil-based resources such as coal, natural gas and biomass into high-grade liquid fuels and chemical raw materials.
  • synthesis gas a mixed gas of carbon monoxide and hydrogen
  • Hydrocracking catalysts and Fischer-Tropsch synthesis catalysts are usually prepared by the impregnation method, that is, the carrier is impregnated with a solution containing the required active components (such as Ni, Mo, Co, W, etc.), and then dried, calcined or not calcined.
  • Active components and carriers are important components of supported catalysts.
  • the active component is supported on the surface of the carrier, and the carrier is mainly used to support the active component, so that the catalyst has specific physical properties.
  • the support itself generally does not have catalytic activity. However, the support has many effects on the performance of the supported catalyst, for example, it affects the reaction performance and product distribution of the catalyst.
  • Fischer-Tropsch synthesis catalyst when the shape of the carrier used is different, the performance of the Fischer-Tropsch synthesis catalyst will vary greatly. Because Fischer-Tropsch synthesis is a reaction with serious diffusion and mass transfer problems, it is beneficial to increase the Fischer-Tropsch synthesis reaction activity and reduce the methane selectivity that the carrier has a large macroscopic outer surface area and a short macroscopic diffusion distance.
  • CN1859975A discloses a deformed trilobal strip catalyst.
  • CN101134173A proposes a carrier and catalyst with a special shape.
  • the special shape is an ellipsoid, in which one or more grooves are opened on the ellipsoid. It is said that due to its large external surface area and good mass transfer performance, the catalyst can be widely used in, for example, heavy oil processing reactions.
  • CN103269798A proposes a shaped catalyst body.
  • the shaped catalyst body has a bottom, a cylindrical surface, a cylindrical axis, and at least one continuous open cylindrical body extending parallel to the cylindrical axis.
  • the bottom of the cylindrical body has at least 4 corners for a low-surface carrier.
  • CN105233880A discloses an inner core type clover-shaped catalyst carrier and a preparation method and application thereof.
  • the carrier is composed of two layers, wherein the outer shell is made of porous structure material, the inner core is made of dense structure material, and the specific surface area of the inner core is less than 1 m 2 /g.
  • the catalyst has high crushing strength and low diffusion effect in the catalyst used for Fischer-Tropsch synthesis.
  • catalysts with pores in the middle such as Raschig ring or Oldham ring
  • honeycomb support followed by strip shape, and secondly spherical shape.
  • the order of the strength of the catalyst is basically reversed.
  • hollow carriers or catalysts with morphologies such as Raschig rings and honeycomb supports are generally used.
  • ceramics are often used as the matrix, because the matrix itself has high strength, so even if the space is left in the middle, the overall strength is still high.
  • a spherical shape or a strip shape is considered to avoid a sharp deterioration of the overall strength caused by a void in the middle, and even a collapse of the support.
  • strip morphology it has been proposed to increase the tortuosity of the outer interface of the strip and increase the contact surface with the outside world, so as to further improve the activity efficiency of the catalyst while maintaining little change in strength.
  • CN103418441B discloses a hydrorefining catalyst whose carrier is a shaped product containing carbon, cellulose ether and hydrated alumina.
  • the disclosed hydrorefining catalyst not only has excellent hydrocarbon oil hydrorefining performance, but also has a simple preparation method and low production cost.
  • CN1115388C proposes a hydrogenation protective agent and its preparation method. It uses carbon black or organic pore expander as a pore expander. It is said to have higher catalyst activity, lower carbon deposit, better activity stability and better performance. High strength.
  • CN101890382B proposes a method for preparing a catalyst, which includes rod-shaped nano oxides in addition to alumina materials.
  • the catalyst prepared by the disclosed method has large pore volume, large pore diameter, and good pore penetration, and is especially suitable for fixed bed hydrogenation of residual oil.
  • the methods for improving diffusion disclosed in the prior art include introducing pores in the carrier, using modifiers to optimize pores and increasing the contact area through a special shape.
  • the method of introducing pores is generally suitable for situations where the strength of the matrix itself is high or the specific surface area is small, but cannot be used for situations where the strength of the matrix itself is not high and the specific surface area of the carrier is large.
  • the method of using modifiers to optimize pores is mainly based on filling space to make pores, or adding additives, or using different properties of water and alumina precursors to achieve pores by improving the connection between the basic units. optimization.
  • the characteristic of this method is that it requires a large amount of auxiliary agent, and the pores obtained are generally smaller in diameter.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art and provide a supported catalyst and its preparation method and application.
  • the supported catalyst of the present invention can be used as a hydrogenation catalyst. When used for the hydrocracking of hydrocarbon oil, it can obtain high catalytic activity and high jet fuel yield at the same time.
  • the supported catalyst of the present invention can also be used as a Fischer-Tropsch synthesis catalyst. When used for Fischer-Tropsch synthesis, the catalyst has the advantages of high strength and high activity efficiency.
  • the first aspect of the present invention provides a supported catalyst, which includes a carrier and a metal active component supported on the carrier,
  • the metal active component is selected from at least one of group VIB metal elements and group VIII metal elements;
  • the carrier contains at least one of heat-resistant inorganic oxide and molecular sieve
  • the carrier has a through pore inside, and the ratio of the cross-sectional area of the pore to the cross-sectional area of the carrier is 0.05-3:100;
  • the difference R between the water absorption rate of the carrier and the BET pore volume is not less than 0.2 mL/g.
  • the second aspect of the present invention provides a method for preparing the supported catalyst as described above, the method comprising:
  • step (III) subjecting the molded product obtained in step (II) to the first baking to obtain a carrier;
  • step (IV) The carrier obtained in step (III) is impregnated with a solution containing the precursor of the metal active component, and then dried and secondly calcined.
  • the third aspect of the present invention provides the application of the above-mentioned supported catalyst in hydrocracking.
  • a fourth aspect of the present invention provides a hydrocracking method, the method comprising: contacting a hydrocarbon oil with a hydrocracking catalyst under hydrocracking conditions, wherein the hydrocracking catalyst is the supported type provided by the present invention catalyst.
  • the fifth aspect of the present invention provides the application of the above-mentioned supported catalyst in the Fischer-Tropsch synthesis reaction.
  • the sixth aspect of the present invention provides a Fischer-Tropsch synthesis method, which comprises: contacting CO and H 2 with the supported catalyst of the present invention under the conditions of the Fischer-Tropsch synthesis reaction.
  • the present invention can be embodied as the following items:
  • a hydrogenation catalyst comprising a carrier and a group VIB metal element and a group VIII metal element supported on the carrier;
  • the carrier contains at least one of a heat-resistant inorganic oxide and a molecular sieve; the carrier has through pores inside, and the ratio of the cross-sectional area of the pores to the cross-sectional area of the carrier is 0.05-30:100; The difference R between the water absorption rate of the carrier and the BET pore volume is not less than 0.2 mL/g.
  • the heat-resistant inorganic oxide is selected from at least one of aluminum oxide, silicon oxide, titanium oxide, magnesium oxide, zirconium oxide, thorium oxide and beryllium oxide, preferably aluminum oxide, silicon oxide, titanium oxide and oxide At least one of zirconium; preferably, based on the total amount of the carrier, the content of the heat-resistant inorganic oxide is 1-99% by weight, and the content of the molecular sieve is 1-99% by weight.
  • the difference R between the water absorption rate of the carrier and the BET pore volume is 0.2-0.8 mL/g, more preferably 0.2-0.5 mL/g;
  • the ratio of the difference R between the water absorption rate of the carrier and the BET pore volume in the water absorption rate of the carrier is 10-50%, preferably 15-35%.
  • the carrier is spherical and/or strip-shaped, preferably strip-shaped, and more preferably multi-lobed strip-shaped;
  • the equivalent diameter of the carrier is not more than 5mm, preferably not more than 3mm, more preferably not more than 2mm, and even more preferably 0.8-2mm;
  • the pore channel is a channel of equal cross-section, and further preferably, the pore channel is a cylinder and/or a regular polyhedron; further preferably, the diameter of the cylinder and the circumscribed circle diameter of the regular polyhedron are independent of each other.
  • the ground is not less than 5 ⁇ m, preferably 0.01-0.5 mm, more preferably 0.05-0.3 mm.
  • the cross section of the carrier is circular, and the pores extend along the central axis of the circle and/or are arranged at equal intervals along the circumferential direction of the central axis; preferably, the cross section of the carrier is In a multi-lobed shape, the channel extends along the central axis of the circumscribed circle where the multi-lobed shape is located and/or extends along the central axis of the circumscribed circle where the multi-lobed blades are located.
  • step (I) Mix the carrier precursor, foaming agent, water, optional extrusion aid, and optional binder to obtain a mixture; (II) Mold the mixture to obtain a molding with penetrating pores inside (III) The molded product obtained in step (II) is calcined.
  • the foaming agent is an animal protein foaming agent and/or a plant foaming agent, preferably an animal protein foaming agent;
  • the animal protein foaming agent is selected from at least one of animal hoof foaming agent, animal hair foaming agent and animal blood gel foaming agent; preferably, relative to 100g of carrier on a dry basis
  • the amount of the foaming agent is 0.1-50 mL, preferably 0.5-20 mL.
  • extrusion aid is selected from at least one of sesame powder, cellulose and its derivatives, starch and its derivatives, ethylene glycol and diethylene glycol;
  • the binder is selected from at least one of hydroxymethyl cellulose, inorganic acid, starch and its derivatives, silica sol or aluminum sol; relative to 100 g of the carrier precursor on a dry basis, the auxiliary extrusion
  • the dosage of the agent is 0.1-6g; relative to 100g of the carrier precursor on a dry basis, the dosage of the binder is 0.1-10g.
  • step (I) comprises: mixing a carrier precursor and an extrusion aid, and then adding a foaming agent, a binder and water to obtain the mixture;
  • the calcination conditions in step (II) include: a temperature of 350-700°C, preferably 450-650°C; and a time of 1-10 hours, preferably 2-6 hours.
  • step (II) is carried out in an extruder, the extruder includes a main body and an orifice plate, and the main body is configured to be able to pass the mixture through the extruder.
  • the orifice plate is formed;
  • the orifice plate includes: a base (1) with a molding hole (2), a bracket (3) with at least one feed hole (6), and at least one molding rod (4); the bracket (3) And the base (1) are stacked up and down, the molding hole (2) is set to communicate with the through hole (6); the bracket (3) is also provided with at least one molding rod (4) to pass through Through the mounting hole (5), the molding rod (4) is set to penetrate the molding hole (2).
  • the equivalent diameter of the shaped hole (2) is not greater than 5mm, preferably not greater than 3mm, more preferably not greater than 2mm, and even more preferably 0.8-2mm; preferably, the width of the shaped hole (2)
  • the cross-section is round, oval or multi-leaf; preferably, the multi-leaf shape is three-leaf, four-leaf or five-leaf; preferably, the number of the shaped rods (4) is 1-10 , Preferably 1-6; preferably, the cross section of the shaped hole (2) is multi-lobed, and the shaped rod (4) extends along the central axis of the circumscribed circle where the multi-lobed shape is located and/or Extend along the central axis of the multi-leaf blade; preferably, the number of the mounting holes (5) is equal to the number of the forming rods (4); preferably, the forming rods (4) pass through the The mounting hole (5) is detachably connected with the bracket (3).
  • a plurality of through holes (6) are arranged at equal intervals along the circumferential direction of the forming rod (4); preferably, the part of the forming rod (4) that extends into the forming hole (2)
  • the part of the forming rod (4) that extends into the forming hole (2) is set as a cylinder, and preferably the diameter of the cylinder is set to be not less than 5 ⁇ m, preferably 0.01- 0.5mm, more preferably 0.05-0.3mm; preferably, the part of the forming rod (4) that extends into the forming hole (2) is set as a regular polyhedral prism, preferably the circumstance of the regular polyhedral prism
  • the diameter of the cylinder is set to be not less than 5 ⁇ m, preferably 0.01-0.5 mm, more preferably 0.05-0.3 mm; preferably, the base (1) and the support (3) have the same overall outer contour; preferably , The base (1) and the bracket (3) are arranged in a detachable connection.
  • a hydrocracking method comprising: contacting a hydrocarbon oil with a hydrocracking catalyst under hydrocracking conditions, wherein the hydrocracking catalyst is any one of items 1-14 The hydrogenation catalyst.
  • the present invention can also be embodied as the following items:
  • a Fischer-Tropsch synthesis catalyst characterized in that the catalyst contains a carrier, a metal active component supported on the carrier, and an optional first metal promoter, and the first metal promoter is selected from transition metals At least one of
  • the carrier has a through pore inside, and the ratio of the cross-sectional area of the pore to the cross-sectional area of the carrier is 0.05-25:100;
  • the carrier contains at least one of heat-resistant inorganic oxide and molecular sieve
  • the metal active component is Co.
  • the pores are channels of equal cross-section, and more preferably, the pores are cylindrical and/or regular polygonal prisms;
  • the diameter of the cylindrical shape and the circumscribed circle of the regular polygonal prism are directly and independently not less than 6 ⁇ m, preferably 0.01-0.5 mm, and more preferably 0.05-0.3 mm.
  • the equivalent diameter of the carrier is not greater than 5 mm, preferably 0.05 mm to 5 mm, further preferably 0.1 mm to 3 mm, more preferably 0.5 mm to 2 mm.
  • Fischer-Tropsch synthesis catalyst according to any one of items 1-3, wherein the number of the pores is 1-9, preferably 1-5;
  • the cross section of the carrier is circular, and the pores extend along the central axis of the circle and/or are arranged at equal intervals along the circumferential direction of the central axis;
  • the cross section of the carrier is multi-lobed, and the channel extends along the central axis of the circumscribed circle where the multi-lobed shape is located and/or extends along the central axis of the circumscribed circle where the multi-lobed blades are located.
  • the Fischer-Tropsch synthesis catalyst according to any one of items 1 to 4, wherein the heat-resistant inorganic oxide contains aluminum oxide, silicon oxide, titanium oxide, magnesium oxide, zirconium oxide, thorium oxide, and beryllium oxide. At least one of aluminum oxide, silicon oxide, titanium oxide and zirconium oxide;
  • the molecular sieve comprises at least one of ten-membered silico-alumina molecular sieve, twelve-membered silico-aluminum molecular sieve, fourteen-membered silico-aluminum molecular sieve, and eighteen-membered silico-alumina molecular sieve;
  • the molecular sieve is selected from at least one of ZRP molecular sieve, Y molecular sieve, beta molecular sieve, mordenite, ZSM-5 molecular sieve, MCM-41 molecular sieve, ⁇ molecular sieve, ZSM-12 molecular sieve, and MCM-22 molecular sieve, further Preferably, it is at least one of Y molecular sieve, beta molecular sieve, ZSM-5 and mordenite;
  • the carrier is a heat-resistant inorganic oxide.
  • the Fischer-Tropsch synthesis catalyst according to any one of items 1 to 5, wherein, based on the total amount of the catalyst, the content of the metal active component is 5-80% by weight based on the oxide. Preferably it is 20-40% by weight;
  • the first metal promoter is selected from at least one of Ni, Fe, Cu, Ru, Rh, Re, Pd and Pt;
  • the content of the first metal promoter is 0-40% by weight, more preferably 0.1-20% by weight.
  • the Fischer-Tropsch synthesis catalyst according to any one of items 1 to 6, wherein the catalyst further contains a second metal promoter supported on the carrier, and the second metal promoter is selected from the group consisting of alkali metals and alkaline earths. At least one of metals, preferably at least one of Na, K, Mg and Ca;
  • the content of the second metal promoter is 1-20% by weight, more preferably 2-10% by weight, based on the oxide.
  • step (1) The carrier obtained in step (1) is impregnated with a solution containing a precursor of a metal active component and an optional precursor of a first metal auxiliary agent, followed by drying and second baking.
  • step (1) the extrusion aid is selected from the group consisting of sesame powder, cellulose and its derivatives, starch and its derivatives, ethylene glycol and diethylene glycol At least one of
  • the peptizer is at least one selected from inorganic acids, preferably nitric acid;
  • the first firing conditions include: a temperature of 350-700°C, preferably 450-650°C; and a time of 1-10h, preferably 2-6h.
  • step (2) the drying temperature is 80-140°C, and the time is 1-10h;
  • the temperature of the second roasting is 350-750°C, and the time is 1-10h;
  • the solution of step (2) further contains a precursor of the second metal promoter.
  • a method for Fischer-Tropsch synthesis characterized in that the method comprises: under Fischer-Tropsch synthesis reaction conditions, contacting CO and H 2 with a catalyst, the catalyst being any one of items 1-7 and 11 The Fischer-Tropsch synthesis catalyst mentioned above.
  • a one-step process is realized to prepare a carrier with an internal pore structure.
  • the inside of the carrier has through pores, which is beneficial to improve the effective utilization rate of the active components of the catalyst.
  • it is preferable to add a foaming agent when the carrier is molded and the addition of the foaming agent allows the gas component to be wrapped in the molded body, thereby increasing the proportion of the macropores and superpores in the carrier in the entire pore volume, and increasing the patency of the carrier .
  • the supported catalyst provided by the present invention adopts a carrier with a structure of pores combined with pores, thereby strengthening the diffusion process of macromolecules, and is beneficial to improving the activity of the catalyst and the accessibility of the active center.
  • the supported catalyst of the present invention When it is used in the hydrocracking of hydrocarbon oil, it can not only obtain a higher jet fuel yield, but also a high catalytic activity.
  • the supported catalyst of the present invention When the supported catalyst of the present invention is used in a Fischer-Tropsch synthesis reaction, it is beneficial to further improve the Fischer-Tropsch synthesis activity and the selectivity of C5+ hydrocarbons, and the methane selectivity is lower.
  • the supported catalyst provided by the present invention adopts a carrier with optimized pore structure, thereby having a higher radial crushing strength. Therefore, the supported catalyst provided by the present invention is particularly suitable for use in fixed-bed reactors, such as microreactors, microchannel reactors, microchemical reactors or mesoreactors. These reactors require high-strength catalysts. Features of large porosity and small pressure drop.
  • Fig. 1 is a schematic structural view of a base of a specific embodiment of the orifice plate of the present invention
  • Fig. 2 is a schematic structural diagram of a bracket of a specific embodiment of the orifice plate of the present invention
  • Fig. 3 is a schematic structural view of a forming rod of a specific embodiment of the orifice plate of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the carrier SA according to the embodiment 1 of the present invention.
  • Fig. 5 is a schematic structural view of a bracket of a specific embodiment of the orifice plate of the present invention.
  • FIG. 7 is a schematic cross-sectional view of the carrier SB according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic cross-sectional view of the carrier SC according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic cross-sectional view of the carrier SD according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic cross-sectional view of the carrier ZA according to Embodiment 10 of the present invention.
  • FIG. 11 is a schematic cross-sectional view of the carrier ZB according to Embodiment 11 of the present invention.
  • Fig. 12 is a schematic cross-sectional view of the carrier ZC according to Embodiment 12 of the present invention.
  • FIG. 13 is a schematic cross-sectional view of the carrier ZD according to Embodiment 13 of the present invention.
  • Fig. 14 is a schematic cross-sectional view of the carrier ZE according to Example 14 of the present invention.
  • Fig. 15 is a schematic cross-sectional view of the carrier ZF according to Example 15 of the present invention.
  • FIG. 16 is a schematic cross-sectional view of the carrier DA-2 of Comparative Example 2.
  • Figure 17 is a graph showing the relationship between the pore parameters and the radial crushing strength of the carrier.
  • orientation words used such as “up, down, left, right” usually refer to the “up, down, left, right” shown with reference to the drawings, and the orientation used Words such as “inner and outer” refer to the inner and outer relative to the contour of each component itself.
  • the first aspect of the present invention provides a supported catalyst comprising a support and a metal active component supported on the support, wherein the metal active component is selected from at least the group VIB metal elements and the group VIII metal elements One; the carrier contains at least one of heat-resistant inorganic oxides and molecular sieves; the inside of the carrier has through pores, and the ratio of the cross-sectional area of the pores to the cross-sectional area of the carrier is 0.05-3 :100; and the difference R between the water absorption rate of the carrier and the BET pore volume is not less than 0.2mL/g.
  • the "through pores" in the present invention refers to the pores existing in the carrier so that the carrier has an unobstructed form, and the pores penetrate the carrier.
  • the pores present in the carrier extend across and connect the two ends of the carrier along the longitudinal axis of the carrier.
  • the group VIB metal element is Mo and/or W
  • the group VIII metal element is Co and/or Ni
  • the metal active component may be one or more of Mo, W, Co, and Ni.
  • the group VIB metal element and the group VIII metal element may be supported on the carrier in various forms conventional in the art, for example: the group VIB metal element and the group VIII metal element may be respectively oxides And/or the form of sulfide is supported on the carrier. That is, the supported catalyst of the present invention includes the oxidized catalyst before being sulfided, and also includes the sulfided catalyst after being sulfided.
  • the content of the VIB group metal element and the group VIII metal element in the supported catalyst can be selected in a wide range.
  • the content of the group VIB metal element is 10-35 wt%, preferably 15-30 wt%, based on the oxide;
  • the content of the group VIII metal element is 2-15% by weight, preferably 2.5-10% by weight;
  • the content of the carrier is 50-88% by weight, preferably 60-82.5% by weight.
  • the metal active component is at least one of Group VIII metal elements, preferably at least one of Ni, Fe and Co, and more preferably Co.
  • the catalyst further includes a first metal promoter supported on the carrier, and the first metal promoter is selected from at least one of transition metals.
  • the metal active component and the first metal promoter are different elements.
  • the first metal promoter is selected from at least one of Cu, Ru, Rh, Re, Pd and Pt.
  • the present invention has a wide selection range for the content of Co and the first metal promoter in the catalyst.
  • the content of Co is 5-80% by weight based on the oxide, more preferably 20-40% by weight.
  • the content of the first metal promoter is 0-40% by weight, more preferably 0.1-20% by weight.
  • the supported catalyst further contains a second metal promoter supported on the carrier, and the second metal promoter is selected from at least one of alkali metals and alkaline earth metals.
  • the alkali metals include, but are not limited to, Li, Na, and K.
  • the alkaline earth metals include but are not limited to Mg and Ca.
  • the second metal promoter is at least one of Na, K, Mg and Ca, for example, K and/or Mg.
  • the present invention has a wide selection range for the content of the second metal promoter.
  • the content of the second metal promoter is 0-20% by weight based on the oxide. 1-20% by weight, more preferably 2-10% by weight.
  • the supported catalyst includes a support and a metal active component supported on the support, a first metal promoter and a second metal promoter, wherein the metal active component is selected from the group consisting of Ni, Fe and Co.
  • the first metal promoter is selected from at least one of Cu, Ru, Rh, Re, Pd and Pt; the second metal promoter is K and/or Mg; the total catalyst
  • the content of the carrier is 30-75% by weight based on the amount, and the content of the metal active component is 20-40% by weight based on the oxide; the content of the first metal promoter is 0.1-20% by weight; The content of the second metal promoter is 2-10% by weight.
  • the water absorption rate is the wipe water absorption rate, and the two are used interchangeably herein.
  • the dry carrier mentioned in the present invention is soaked in deionized water for more than 30 minutes at room temperature (20-25°C), and then wiped dry with filter paper to obtain the carrier after water absorption. Quality.
  • the ratio of the difference between the quality and the quality of the non-absorbent carrier to the non-absorbent carrier is the wipe water absorption rate.
  • the dry water absorption rate of the carrier is 0.8-2 mL/g, preferably 0.9-1.5 mL/g.
  • the BET pore volume of the carrier is 0.62-1.3 mL/g, preferably 0.7-1.1 mL/g.
  • the BET pore volume is measured according to the method specified in RIPP 151-190.
  • the difference R between the water absorption rate of the carrier and the BET pore volume is 0.2-0.8 mL/g, more preferably 0.2-0.5 mL/g.
  • the ratio of the difference R between the water absorption rate of the carrier and the BET pore volume to the water absorption rate of the carrier is 10-50%, preferably 15-35%.
  • the larger proportion in the carrier provided by the present invention indicates that the large pores or super-large pores in the carrier provided by the present invention account for a larger proportion of the total pore volume.
  • the BET method is used to determine the pore volume of the carrier
  • the water absorption method is used to determine the water absorption of the carrier (dry water absorption), so as to use the difference between the water absorption and the BET pore volume.
  • R represents the pore volume of macropores or super-large pores
  • the water absorption rate represents the total pore volume of the carrier.
  • the ratio of the cross-sectional area of the pores to the cross-sectional area of the carrier is 0.1-3:100, preferably 0.2-3:100.
  • the catalyst provided by the present invention adopts a carrier with a structure of pores and pores inside, and on the basis of ensuring the strength, the active components of the catalyst can be effectively utilized, thereby improving the activity of the catalyst.
  • the radial crushing strength of the carrier is 14-30 N/mm, preferably 18-26 N/mm.
  • the radial crushing strength of the carrier is measured on a QCY-602 crushing strength tester (manufactured by the Soda Research Institute of the Ministry of Chemical Industry) according to the method specified in GB3635-1983.
  • the carrier adopted by the catalyst provided by the present invention has pore channels with an optimized structure, thereby having higher mechanical strength, and thus the mechanical strength of the corresponding supported catalyst is better.
  • the support used in the catalyst provided by the present invention has a structure of pores combined with pores, which can effectively improve the activity of the catalyst and the accessibility of the active center, and is very suitable for the diffusion of macromolecules.
  • the selection range of the shape of the carrier is wide, and the shape of the carrier can be various shapes conventionally used in the field.
  • the shape of the carrier may be regular or irregular, preferably a regular shape.
  • the carrier may have a spherical shape, a strip shape, a ring shape, a honeycomb shape, or a butterfly shape.
  • the strips mentioned in the present invention can be cylindrical strips, elliptical strips (equivalent to double-lobed strips), or multi-lobed strips.
  • the present invention does not make any limitation on the shape of the strips.
  • the sphere mentioned in the present invention can be a regular sphere or an irregular sphere, that is, the profile curve of the cross section of the carrier can be a circle or an imperfect circle.
  • the present invention does not make any limitation on the length and distribution of the strip carrier.
  • the carrier is spherical and/or strip-shaped, more preferably strip-shaped, and still more preferably multi-lobed strip-shaped.
  • the strip mentioned in the present invention refers to a material with a three-dimensional structure made by extruding or pressing a sheet, and having a length not less than 50% of the diameter of the circumscribed circle.
  • the present invention does not affect the strip length and distribution of the strip carrier. Make any restrictions.
  • the carrier having a multi-lobed strip shape means that the cross-sectional shape of the carrier is multi-lobed.
  • the present invention does not make any limitation on the size of each leaf of the multi-lobed shape and the ratio of the size of the other blades. That is, the multi-lobed shape can be a regular multi-lobed shape, an irregular multi-lobed shape, or a deformed shape.
  • Multi-leaf shape the present invention does not make any limitation on the number of leaves of the multi-leaf shape, the shape of the leaves, and the ratio between the leaves.
  • the multi-leaf strip shape may be at least one of a three-leaf strip shape, a four-leaf strip shape, a five-leaf strip shape, a six-leaf strip shape, and the like multi-leaf strip shape.
  • the carrier is spherical and/or bar-shaped, and the equivalent diameter of the carrier is not greater than 5mm, preferably not greater than 3mm, more preferably not greater than 2mm, and even more preferably 0.8-mm. 2mm.
  • the minimum cross-sectional dimension of the outer shape of the carrier is not more than 5 mm, preferably not more than 3 mm, and more preferably not more than 2 mm.
  • the heap ratio of the catalyst is 0.5-1 g/mL, more preferably 0.6-0.9 g/mL.
  • the catalyst provided by the present invention has a lower heap ratio.
  • the pores can be formed in various reasonable shapes, which can be regular or irregular. From the viewpoint of ease of processing, the shape of the pores is preferably regular.
  • the cross-sections of the pores are the same or different (gradually increase or gradually decrease), and in the case that the cross-section of the pores gradually increases in the flow direction, the pores include but are not limited to cones; In the case where the cross section of the pore channel gradually decreases along the flow direction, the pore channel includes but is not limited to an inverted cone.
  • the pores are channels of equal cross-section.
  • the cross-section of the channel may be regular or irregular, and is preferably a regular shape. This preferred embodiment facilitates processing, and at the same time makes the carrier with a correspondingly shaped through pore structure more conducive to the diffusion of macromolecules.
  • the pores can have various shapes that can be processed. From the viewpoint of ease of processing, preferably, the pores are cylindrical and/or regular polygonal prisms. Correspondingly, the cross section of the hole is circular and/or regular polygon.
  • This preferred embodiment not only facilitates processing, but also effectively ensures the stability of the carrier.
  • the inner surface of the catalyst is more regular, avoiding stress concentration caused by the presence of sharp pore walls in the pore structure, reducing the probability of catalyst collapse, and improving the compactness and strength of the carrier.
  • the circle and regular polygon also include imperfect circles and/or regular polygons.
  • the diameter of its circular cross section is set to be not less than 5 ⁇ m, preferably 0.01-0.5 mm, and more preferably 0.05-0.3 mm.
  • the diameter of the circumscribed circle of the regular polygonal cross-section is set to be not less than 5 ⁇ m, preferably 0.01-0.5 mm, and more preferably 0.05-0.3 mm.
  • the regular polyhedral prism can be set as a regular polyhedral prism such as a triangular prism, a quadrangular prism, a pentagonal prism, etc., and the cross-section of the channel of the corresponding carrier is correspondingly formed into an equilateral triangle, a square, a regular pentagon, etc. Polygonal structure.
  • the present invention has a wide selection range for the number of channels. Those skilled in the art can consider comprehensively according to the strength and pile ratio angle. It can be one or more than two.
  • the number of channels can be appropriately adjusted according to the actual demand for the number of channels. select.
  • the number of the pores is 1-10, preferably 1-6.
  • the ratio of the cross-sectional area of the pores to the cross-sectional area of the carrier as defined above refers to the total cross-sectional area of all pores and the cross-sectional area of the carrier.
  • the ratio of the cross-sectional area of the carrier is not limited to the number of the pores.
  • the present invention has a wide selection range for the specific location of the channel, as long as it can penetrate the carrier.
  • the number of the pores is one, it is preferable that the pores extend along the central axis of the carrier.
  • the cross section of the carrier is circular, the pores extend along the central axis of the cylindrical carrier; when the cross section of the carrier is multi-lobed, the pores extend along the circumstance where the multi-lobed shape is located.
  • the central axis of the cylinder extends.
  • the channels are evenly distributed. This preferred embodiment is more conducive to ensuring that the force distribution of the carrier is more balanced, and further optimizing the overall strength of the carrier.
  • the uniform distribution means that the distance between each channel and the center of the circumscribed circle where the cross section of the carrier is located is equal, more preferably the distance between each channel is equal, and more preferably the center of the circumscribed circle where each channel and the cross section of the carrier are located The distance is equal to the distance between each channel and the edge of the carrier.
  • the cross section of the carrier is circular, and the pores extend along the central axis of the cylindrical carrier and/or are arranged at equal intervals along the circumferential direction of the central axis.
  • This preferred embodiment makes the distribution of pores balanced, effectively avoids the sudden drop in local strength of the carrier due to the opening of the intermediate pore structure, and can ensure the mechanical strength of the carrier.
  • the cross-section of the carrier is multi-lobed, and the pores extend along the central axis of the circumscribed cylinder where the multi-lobed shape is located and/or where each leaf of the multi-lobed shape is located.
  • the central axis of the circumscribed cylinder extends.
  • the composition of the carrier may be a conventional composition in the field, and may contain at least one of a heat-resistant inorganic oxide and a molecular sieve.
  • the specific type of the heat-resistant inorganic oxide is not particularly limited, and it may be a heat-resistant inorganic oxide commonly used in the field.
  • the heat-resistant inorganic oxide may be selected from at least one of aluminum oxide, silicon oxide, titanium oxide, magnesium oxide, zirconium oxide, thorium oxide, and beryllium oxide.
  • the heat-resistant inorganic oxide is at least one of aluminum oxide, silicon oxide, titanium oxide, and zirconium oxide. More preferably, the heat-resistant inorganic oxide is alumina.
  • the alumina mentioned in the present invention refers to a compound whose composition can be represented by mAl 2 O 3 ⁇ nH 2 O, where m and n are arbitrary numbers, which can be integers or fractions.
  • the present invention also does not impose any restriction on the crystal phase of the alumina.
  • the molecular sieve described in the present invention refers to a material with a regular crystal structure and pores, that is, a molecular sieve or zeolite, which is commonly referred to as a molecular sieve or zeolite. It is composed of silicon-aluminum elements and can also contain other elements, such as: P, Ti, Ge, and Ga At least one of them.
  • the present invention does not impose any restriction on the composition of the elements constituting the molecular sieve.
  • the molecular sieve described in the present invention can be one type, two or more types, or a mixed crystal or twin crystal of two types of molecular sieve.
  • the two molecular sieves mentioned in the present invention refer to two different types of molecular sieves, which can also be one type of molecular sieve but two molecular sieves with different properties (for example, different silicon-to-aluminum ratios).
  • the two or more in the present invention refer to three or more types, and these molecular sieves can be different types of molecular sieves, or the same type of molecular sieves with different properties.
  • the amount of each molecular sieve can be between 0.1-80% by weight (proportion to the carrier).
  • the dosage ratio of the two molecular sieves in the present invention can be 10:1 to 1:10, 5:1 to 1:5, 3:1 to 1:3, 2:1 to 1:2, 1:1, etc.
  • the ratio of the molecular sieves is arbitrary.
  • the molecular sieve may be selected from at least one of ten-membered ring silica-alumina molecular sieve, twelve-member ring silica-alumina molecular sieve, fourteen-member ring silica-alumina molecular sieve, and eighteen-member ring silica-alumina molecular sieve.
  • the present invention does not limit the pore size and aperture of the molecular sieve.
  • the present invention does not limit the silicon-to-aluminum ratio of the molecular sieve.
  • the silicon-to-aluminum ratio mentioned here refers to SiO 2 /Al 2 O 3 .
  • the molecular sieve is selected from ZRP molecular sieve, Y molecular sieve, beta molecular sieve, mordenite, ZSM-5 molecular sieve, MCM-41 molecular sieve, ⁇ molecular sieve, ZSM-12 molecular sieve and MCM-22 molecular sieve At least one of Y molecular sieve, beta, ZSM-5 and mordenite.
  • the molecular sieve of the present invention can be obtained commercially, or can be prepared by any existing method.
  • the Y molecular sieve of the present invention can be a Y molecular sieve with a unit cell constant in the range of 2.452-2.475 nanometers and a silica/alumina molar ratio in the range of 3.5-7; it can be obtained by exchanging the Y molecular sieve with ammonium ions.
  • Ultra-stable Y molecular sieve prepared by one or more hydrothermal treatments.
  • the unit cell constant of this Y molecular sieve is 2.420-2.455 nanometers.
  • the molar ratio of silica/alumina in the framework can reach 100, preferably 60;
  • the phosphorus-containing ultra-stable Y molecular sieve is prepared by one or more hydrothermal treatments; it can also be processed by treating the Y molecular sieve with a rare earth compound aqueous solution and combining one or more Rare earth Y molecular sieve prepared by secondary hydrothermal treatment.
  • the content of the heat-resistant inorganic oxide is 1-99% by weight, and the content of the molecular sieve is 1-99% by weight; further preferably, based on the total amount of the carrier , The content of heat-resistant inorganic oxide is 70-97% by weight; the content of molecular sieve is 3-30% by weight.
  • the same metal element is included in the metal auxiliary agent.
  • the second aspect of the present invention provides a method for preparing the supported catalyst as described above, the method comprising:
  • step (III) subjecting the molded product obtained in step (II) to the first baking to obtain a carrier;
  • step (IV) The carrier obtained in step (III) is impregnated with a solution containing the precursor of the metal active component, followed by drying and second baking. .
  • the "optional" means that it can be added or not added.
  • a foaming agent may or may not be added; an extrusion aid may or may not be added; and a binder may or may not be added.
  • a blowing agent it is preferable to add a blowing agent.
  • the carrier precursor is any substance that can be converted into a carrier by the first calcination in step (III).
  • the carrier precursor may be selected from at least one of heat-resistant inorganic oxides, heat-resistant inorganic oxide precursors, and molecular sieves.
  • the carrier precursor is a heat-resistant inorganic oxide and/or a heat-resistant inorganic oxide precursor.
  • the heat-resistant inorganic oxide precursor is any substance that can be converted into a heat-resistant inorganic oxide by the first firing in step (III). The selection of the heat-resistant inorganic oxide is as described above, and the present invention will not be repeated here.
  • the heat-resistant inorganic oxide precursor is a precursor of alumina, and specific examples thereof may include, but are not limited to: hydrated alumina (for example: aluminum hydroxide, pseudo-boehmite), A gel containing hydrated alumina, and a sol containing hydrated alumina.
  • the precursor of the alumina may be dry rubber powder.
  • the dry rubber powder can be commercially obtained (for example, it can be purchased from Changling Branch of Catalyst), or can be prepared by any existing method, and the present invention is not particularly limited.
  • the amount of heat-resistant inorganic oxide and/or heat-resistant inorganic oxide precursor and molecular sieve can be selected in a wide range, and those skilled in the art can select an appropriate amount for specific conditions.
  • the range of the amount that can be considered is as described above, and the present invention will not be repeated here.
  • the foaming agent has the ability to encapsulate gas, and it can be an organic substance or an inorganic substance, a pure chemical substance, or a mixture of multiple components.
  • the foaming agent may be selected from at least one of physical foaming agents, chemical foaming agents, synthetic surfactant foaming agents, animal protein foaming agents and vegetable foaming agents.
  • the foaming agent is an animal protein foaming agent and/or a plant foaming agent.
  • the animal protein foaming agent is preferably at least one selected from the group consisting of animal hoof foaming agent, animal hair foaming agent and animal blood gel foaming agent.
  • the plant foaming agent is preferably at least one selected from rosin soap foaming agents, tea saponin and tea saponin.
  • the foaming agent is an animal protein foaming agent, for example, an animal hoof foaming agent and/or egg white.
  • animal protein foaming agents are more effective in the toughness and toughness of the bubbles. There are obvious advantages in stability.
  • the foaming agent can be introduced in the form of a solution, and water can be used as the solvent, or other organic substances can be used as the solvent, preferably water.
  • the animal protein foaming agent is introduced in the form of an animal protein foaming agent hydrolysate.
  • the longer peptide chain protein macromolecule becomes a short chain soluble medium and small molecule mixture.
  • the solution After being dissolved in water, it can form a colloidal solution with a certain viscosity, because the solution has a strong hydrophilic group, such as a carboxyl group.
  • hydrophilic groups such as long-chain hydrocarbons, coupled with the asymmetric properties of the molecule and other factors, reduce the surface tension and promote the formation of the interface, and because the peptide chains of these small and medium molecules stretch in the cross section and pass through the molecule The hydrogen bonds between them form a protective net, which strengthens the interface, which is more conducive to the formation and stability of foam.
  • the present invention does not specifically limit the manner in which the animal protein foaming agent is hydrolyzed to obtain the animal protein foaming agent hydrolysate.
  • those skilled in the art can prepare the animal protein foaming agent hydrolysate by any means. For example, it can be carried out according to the method disclosed in Ma Zhijun, Li Xiaoyun, Ma Xuelei, et al. Research on protein-type concrete foaming agent [J]. Building Science, 2009, 25(5): 73-76.
  • a hydrolysis accelerator can be appropriately added during the hydrolysis process, which is not particularly limited in the present invention.
  • the extrusion aid is selected from at least one of sesame powder, cellulose and its derivatives, starch and its derivatives, ethylene glycol and diethylene glycol.
  • the starch derivative may be one or more of oxidized starch, esterified starch, carboxymethyl starch, cationic starch, hydroxyalkyl starch and polystarch;
  • the cellulose derivative may be cellulose ether , One or more of cellulose ester and cellulose ether ester.
  • the squeezing aid is illustrated by taking sesame powder as an example, and the present invention is not limited to this.
  • the type of binder can be selected in a wide range, for example, it can be at least one of hydroxymethyl cellulose, inorganic acid, starch and its derivatives, silica sol or aluminum sol.
  • the specific manner of mixing the carrier precursor, foaming agent, water, optional extrusion aid, and optional binder is not particularly limited, as long as the carrier precursor, foaming agent, Just mix water, optional squeezing aid and optional binder.
  • the mixing in step (I) includes: mixing the carrier precursor and the extrusion aid, and then adding a foaming agent, a binder and water to obtain the mixture.
  • the carrier precursor and the extrusion aid are mixed first to obtain the mixed powder, and then the foaming agent, binder and water are added, which is more conducive to improving the catalytic performance of the prepared catalyst.
  • the mixing in step (I) includes: mixing the carrier precursor and the extrusion aid to obtain a mixed powder; foaming a foaming agent, a binder and water to obtain a foaming liquid; combining the mixed powder with The foaming liquid is mixed.
  • the foaming of the mixed powder can be completed in a foaming agent, and then water and binder are introduced.
  • the foaming agent is an animal protein foaming agent.
  • the amount of blowing agent can be selected in a wide range. For example, relative to 100g of carrier precursor on a dry basis, the amount of blowing agent is 0-50mL, preferably 0.1-50mL, more preferably 0.5- 20mL. Adopting this preferred embodiment is more conducive to making the obtained carrier have both higher mechanical strength and better pore structure.
  • the foaming agent is a plant foaming agent, and the amount of the foaming agent is 0-5 g, preferably 0.1-5 g.
  • the amount of the extrusion aid is 0-6g, preferably 0.1-6g, preferably 2-4g.
  • the amount of the binder is 0-10g, preferably 0.1-10g, preferably 0.5-6g.
  • the water in the mixture is used as the dispersion medium, and the amount of water is based on the ability to mix the remaining components in the mixture uniformly.
  • the mixture may optionally contain a peptizer, and preferably does not contain a peptizer.
  • a peptizer such as dilute nitric acid, needs to be added.
  • the peptizer may or may not be added.
  • the conditions for the first firing of the molded article are not particularly limited, and may be conventional conditions in the art.
  • the temperature of the first calcination may be 350-700°C, preferably 450-650°C; the time of the first calcination may be 1-10 hours, preferably 2-6 hours.
  • the first baking may be performed in an oxygen-containing atmosphere (for example, air), or may be performed in an inert atmosphere.
  • the inert atmosphere refers to a gas that is inactive under drying or calcination conditions, such as nitrogen and group zero element gas (such as argon).
  • the drying may be performed under conventional conditions in the art.
  • the drying temperature may be 100-200°C
  • the drying time may be 2-12 hours.
  • the drying may be performed under normal pressure conditions or under reduced pressure conditions, and is not particularly limited.
  • the drying may be performed in an oxygen-containing atmosphere, or may be performed in an inert atmosphere.
  • the preparation method of the carrier further includes: kneading the mixture, and then performing the shaping. Specifically, the mixture can be fed into an extruder, kneaded in the extruder, and then extruded to obtain a molded product.
  • a molded product having a through hole inside is obtained through the molding.
  • the selection range of the molding method is wide.
  • the forming in step (II) is carried out in an extruding machine, the extruding machine includes a main body and an orifice plate for extruding, the main body is configured to be able to form the mixture through the orifice plate; As shown in Figs.
  • the orifice plate includes: a base 1 with a molding hole 2, a bracket 3 with at least one feed hole 6 and at least one molding rod 4; the bracket 3 and the base 1 is stacked up and down, the forming hole 2 is set to communicate with the through hole 6; the bracket 3 is also provided with at least one mounting hole 5 for the forming rod 4 to pass through, and the forming rod 4 is set to pass through The molding hole 2.
  • the molding hole 2 of the orifice plate and the molding rod 4 passing through the molding hole 2 jointly form a molding cavity, and the material passes through the molding cavity to form a corresponding shape.
  • This preferred embodiment realizes a one-step process to prepare a carrier with an internal pore structure, which is not only easy to operate, but also the prepared carrier has both high strength and high active metal utilization rate.
  • the "for extruding strips” means that the orifice plate is used for extruding strips, and the “for extruding strips” does not limit the structure of the orifice plate according to the present invention.
  • the molding hole 2 penetrates the base 1, and the molding rod 4 is sleeved (passed through) in the molding hole 2, so as to obtain a through hole. Carrier.
  • the molding rod 4 is arranged to pass through the molding hole 2, which can be understood as the length of the molding rod 4 such that one end of the molding rod 4 is located at the end of the base 1 away from the bracket or, The end of the forming rod 4 is located outside the base 1 away from the end of the bracket.
  • the ratio of the cross-sectional area of the shaped rod 4 to the cross-sectional area of the shaped hole 2 is the same as the ratio of the cross-sectional area of the above-mentioned channel to the cross-sectional area of the carrier.
  • it is 0.05-3:100, preferably 0.1-3:100, more preferably 0.2-3:100.
  • This preferred embodiment is more conducive to making the prepared carrier have both high strength and high active metal utilization.
  • the shape of the molded hole 2 is actually the shape of the manufactured carrier.
  • the shape of the molded hole 2 can be selected according to the above description about the shape of the carrier.
  • the cross section of the shaped hole 2 is circular or multi-lobed.
  • the circular shape and the multi-leaf shape are not particularly limited, and can be selected according to the above description about the shape of the carrier.
  • the present invention has a wide selection range for the size of the shaped hole 2, and those skilled in the art can make an appropriate choice according to the requirements for the size of the carrier.
  • the carrier preparation method of the present invention is particularly suitable for the preparation of small-sized carriers, preferably
  • the equivalent diameter of the shaped hole 2 is not more than 5mm, preferably not more than 3mm, more preferably not more than 2mm, and still more preferably 0.8-2mm.
  • the present invention has a wide selection range for the number of the forming rods 4, which can be one or more than two. The appropriate selection is made according to the requirements for the number of channels inside the carrier.
  • the number of the forming rods 4 It is 1-10, more preferably 1-6. It can be understood that the number of the forming rods 4 matches the number of the holes of the above-mentioned carrier.
  • the position of the forming rod corresponds to the position of the hole in the carrier.
  • the cross section of the forming hole 2 is circular, and the forming rod 4 may extend along the central axis of the center of the circle. If the number of forming rods 4 is more than two, different forming rods 4 may They are arranged at equal intervals along the circumferential direction of the center of the circle.
  • the cross section of the shaped hole 2 is multi-lobed
  • the shaped rod 4 extends along the central axis of the circumscribed cylinder where the multi-lobed shape is located and/or along the multi-lobed shape.
  • the central axis of the circumscribed cylinder where each blade of the shape is located extends.
  • the number of the mounting holes 5 is equal to the number of the forming rods 4.
  • the molding rod 4 is detachably connected to the bracket 3 through the mounting hole 5.
  • the detachable connection makes the two connected components do not move to each other when working; and when the work is stopped, it can meet the requirements of being able to be disassembled and replaced.
  • the forming rod 4 can be arranged in various reasonable forms.
  • the head 13 of the forming rod 4 is installed in the mounting hole 5, and the rod portion 14 of the forming rod faces the direction of the outlet of the forming hole.
  • the extension is sleeved (through) in the mounting hole 5 and the molding hole 2, which is easy to install and low in cost.
  • the selection range of the number of the through holes 6 is relatively wide, for example, it can be 1-20, preferably 2-20.
  • a plurality of through holes 6 are arranged at equal intervals along the circumferential direction of the forming rod 4. Adopting this preferred embodiment is more conducive to the uniformity of the feeding around the forming rod 4, and the forming rod 4 is uniformly stressed around the forming rod 4, which can prolong the service life of the forming rod 4.
  • those skilled in the art can select the number of through holes 6 provided in the circumferential direction of each forming rod 4 according to actual conditions. It is understandable that the through holes 6 can be provided in various reasonable forms. For example, as shown in FIG. 2, the multiple through holes 6 may be connected to the mounting hole 5 or may be isolated from the mounting hole 5.
  • the bracket 3 It is preferably set to a uniform cross-sectional structure, so that the thickness of the support structure (referring to the direction of discharging of the forming hole) can be maximized, and the squeezing effect exerted by the support structure when carrying the material through the forming hole is enhanced, and the The fixed reliability of the forming rod.
  • the distribution area of the feed hole 6 at least covers the distribution area of the molding hole 2, so that the support 3 can pass through the feed hole 6 directly to the molding hole 2 of the base 1 to evenly distribute the fabric, which is beneficial for the raw materials to enter at the same time.
  • the overall outer contour of the through hole can also be set to a multi-leaf structure with the same shape as the molded hole.
  • the part of the forming rod 4 that extends into the forming hole 2 is set to have a constant cross-sectional structure.
  • This preferred embodiment effectively ensures the stability of the processed shape of the prepared carrier, and is beneficial to obtain a dense carrier with high density and high strength.
  • the forming rod 4 can be formed into various reasonable shapes to facilitate processing into a carrier with a correspondingly shaped pore structure.
  • the part of the forming rod 4 that extends into the forming hole 2 corresponds to the structure of the channel in the carrier.
  • the part of the forming rod 4 that extends into the forming hole 2 is configured as a cylinder.
  • the prepared carrier can correspondingly form a cylindrical pore structure, making the inner surface of the carrier more smooth and regular, avoiding the stress concentration phenomenon caused by the existence of sharp hole walls in the pore structure of the carrier, and reducing the carrier. The probability of collapse.
  • the diameter of the cylinder is set to be not less than 5 ⁇ m, preferably 0.01-0.5 mm, further preferably 0.05-0.3 mm.
  • the part of the forming rod 4 that extends into the forming hole 2 is set as a regular polyhedron.
  • the prepared carrier can correspondingly form a regular polyhedral prism structure pore structure, making the inner surface of the carrier more regular, which is more conducive to ensuring that the force distribution of the carrier is more balanced, and further optimizing the overall strength of the carrier .
  • the diameter of the circumscribed cylinder where the regular polyhedral prism is located is not less than 5 ⁇ m, preferably 0.01-0.5 mm, further preferably 0.05-0.3 mm.
  • the regular polyhedral prism can be set as a regular polyhedral prism such as a triangular prism, a quadrangular prism, a pentagonal prism, etc., and the corresponding cross-section of the channel of the carrier is formed into an equilateral triangle, a square, a regular pentagon, etc. Polygonal structure.
  • the base 1 and the support 3 are arranged in a detachable connection.
  • the detachable connection makes the base 1 and the bracket 3 not move with each other when they are working; and when the work is stopped, it can meet the requirements of being able to be disassembled and replaced.
  • the base 1 and the support 3 are arranged in close contact with each other to avoid material leakage.
  • a first mounting structure 7 is provided on the contact surface of the base 1 and the support 3, and the support 3 is connected to the base 1.
  • a second mounting structure 8 adapted to the first mounting structure 7 is provided on the bonding surface.
  • one of the first mounting structure 7 and the second mounting structure 8 is configured as a mounting groove, and the other is configured as a mounting protrusion adapted to the mounting groove.
  • the base 1 and the bracket 3 have the same overall outer contour. This kind of implementation is more convenient for installation and operation.
  • the height of the base 1 and the support 3 is not particularly limited.
  • the ratio of the height of the base 1 to the height of the support 3 is set to 1:(0.2-5.0) .
  • a specific molding method includes: feeding the mixture obtained in step (I) into an extruder.
  • the extruder includes a main body and an orifice plate, and the main body is configured to pass the mixture through The orifice plate is formed, and the mixture enters the forming cavity formed by the forming hole 2 and the forming rod 4 through the through hole 6 provided on the bracket 3 to obtain a formed object with a through hole inside.
  • the number of the forming rod 4 The shape and the shape correspond to the number and shape of the holes, and the shape and size of the molded hole 2 correspond to the shape and size of the molded object.
  • the main body of the extruder may be a component conventionally used in the field, and the present invention will not be repeated here.
  • step (IV) adopts an impregnation method to introduce the metal active component onto the carrier.
  • the metal active component is selected from one or more of group VIB metal elements and group VIII metal elements.
  • the co-impregnation method can be used to load the group VIB metal elements and the group VIII metal elements together on the carrier, or the stepwise impregnation can be used to separately charge the group VIB metal elements and the group VIII metal elements on the carrier.
  • the order of introduction of the elements and Group VIII metal elements is not particularly limited.
  • the metal active component precursor used in step (IV) is a compound of a group VIB metal element and a compound of a group VIII metal element.
  • the compound of the group VIB metal element and the compound of the group VIII metal element may each be selected according to the types of the group VIB metal element and the group VIII metal element.
  • the compound of the group VIB metal element may be a compound of tungsten and/or a compound of molybdenum.
  • examples of the compounds of the group VIB metal elements may include, but are not limited to: tungstic acid, molybdic acid, metatungstic acid, ethyl metatungstic acid, paramolybdic acid, ammonium molybdate, ammonium paramolybdate, One or more of ammonium metatungstate and ethyl ammonium metatungstate.
  • the compound of the group VIII metal element is preferably an oxo acid salt with nickel as a cation, an oxo acid salt with nickel as a cation, and cobalt as a cation.
  • examples of the compound of the group VIII metal element may include, but are not limited to: nickel nitrate, nickel sulfate, nickel acetate, basic nickel carbonate, cobalt nitrate, cobalt sulfate, cobalt acetate, basic cobalt carbonate, chlorine One or more of nickel and cobalt chloride.
  • the solvent may be water.
  • the catalyst contains Co as the metal active component and the first metal promoter.
  • the solution in step (IV) further contains a precursor of the first metal promoter.
  • the first metal promoter can also be introduced together with other components through co-impregnation, or it can be introduced separately through step-wise impregnation.
  • the metal active component precursor may be a substance that can be converted into cobalt oxide by the second calcination, for example, it may be cobalt hydroxide, cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt carbonate, and basic carbonic acid.
  • cobalt, cobalt formate, cobalt acetate, cobalt oxalate and cobalt naphthenate may be cobalt hydroxide, cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt carbonate, and basic carbonic acid.
  • the catalyst also contains a second metal promoter.
  • the solution in step (IV) further contains a precursor of the second metal promoter.
  • the second metal auxiliary agent can also be introduced together with other components through co-impregnation, or it can be introduced separately through step-wise impregnation.
  • the first metal promoter precursor and the second metal promoter precursor may be substances that can be converted into corresponding first metal promoter oxides and second metal promoter oxides through the second calcination, respectively.
  • the selection of the precursor of the first metal promoter and the precursor of the second metal promoter can be the precursors conventionally used in the art, such as soluble salts thereof, such as nitrate, acetate, alkali carbonate, hydrochloride and One or more of its soluble complexes.
  • the concentration of the precursor of the metal active component, the precursor of the first metal promoter, and the precursor of the second metal promoter in the solution is selected according to the water absorption of the support and the target content of each component in the catalyst, which is determined by those skilled in the art. Familiar.
  • the impregnation method may be various impregnation methods commonly used in the art, for example, it may be a pore saturation impregnation method.
  • the impregnation time and the number of impregnations are not particularly limited, as long as it can ensure that the amount of the metal active component on the finally obtained catalyst meets the specific use requirements.
  • the immersion time can be 0.5-12 hours.
  • the conditions for drying the impregnated support are not particularly limited.
  • the drying temperature may be 80-300°C, preferably 100-200°C; the drying time may be 0.5-24 hours, preferably 1-12 hours.
  • the conditions for the second calcination of the dried impregnated carrier are not particularly limited, and may be conventional conditions in the art.
  • the temperature of the second calcination may be 350-700°C, preferably 400-650°C; the time of the second calcination may be 0.2-12 hours, preferably 1-10 hours.
  • the second baking may be performed in an oxygen-containing atmosphere.
  • the supported catalyst provided by the present invention can be used for the hydrogenation reaction of various hydrocarbon feedstocks, including but not limited to hydrodesulfurization, hydrodenitrogenation, olefin saturation, aromatic saturation, hydrocracking and hydroisomerization.
  • the catalyst provided by the present invention can also be used as a Fischer-Tropsch synthesis catalyst.
  • the supported catalyst provided by the present invention can also be used as an oxidation catalyst for aromatization reactions, photocatalytic reactions, immobilized enzymes and the like.
  • the hydrocarbon raw materials can be various heavy mineral oils or synthetic oils or their mixed distillate oils, such as straight run gas oil, vacuum gas oil, and demetallized oil. oils), atmospheric residue, deasphalted vacuum residue, coker distillates, catalytic cracking distillates, shale oil ), tar sand oil, coal liquid oil, etc.
  • the inventors of the present invention found that the catalyst provided by the present invention is particularly suitable as a hydrocracking catalyst.
  • the third aspect of the present invention provides the application of the supported catalyst of the present invention in hydrocracking.
  • the supported catalyst provided by the invention is used for the hydrocracking of various hydrocarbon oils to produce hydrocarbon fractions with lower boiling points and lower molecular weights.
  • the present invention provides a hydrocracking method, the method comprising: contacting a hydrocarbon oil with a hydrocracking catalyst under hydrocracking conditions, wherein the hydrocracking catalyst is The supported catalyst provided by the invention.
  • the hydrocracking method of the present invention has no particular limitation on the remaining conditions of hydrocracking, and may be conventional conditions in the art.
  • the hydrocracking conditions include: the temperature can be 200-650°C, preferably 300-510°C; in gauge pressure, the pressure can be 3-24 MPa, preferably 4-15 MPa; hydrogen oil
  • the volume ratio can be 100-5000, preferably 200-1500; the liquid hourly volumetric space velocity can be 0.1-30 h -1 , preferably 0.2-5 h -1 .
  • the catalyst is preferably presulfided before being used in hydrocracking.
  • the pre-vulcanization conditions can be conventional conditions in the art.
  • the pre-sulfurization conditions may include: pre-sulfurization with sulfur, hydrogen sulfide, or sulfur-containing raw materials at a temperature of 140-370° C. in the presence of hydrogen.
  • the presulfurization can be performed outside the reactor, or can be sulfided in-situ in the reactor.
  • the specific conditions of the vulcanization are well known to those skilled in the art, and the present invention will not be repeated here.
  • the catalyst provided by the present invention can be used directly without pretreatment; it can also be used after reduction treatment in advance.
  • the inventors of the present invention found that the supported catalyst provided by the present invention is particularly suitable as a Fischer-Tropsch synthesis catalyst.
  • the fifth aspect of the present invention provides the application of the supported catalyst as described above in the Fischer-Tropsch synthesis reaction.
  • a sixth aspect of the present invention provides a method for Fischer-Tropsch synthesis, which comprises: contacting CO and H 2 with a Fischer-Tropsch synthesis catalyst under Fischer-Tropsch synthesis reaction conditions, and the Fischer-Tropsch synthesis catalyst is as described above Supported catalyst.
  • the catalyst can be activated before being used in the Fischer-Tropsch synthesis reaction.
  • the conditions and specific operations of the activation treatment are not particularly limited, and can be carried out according to conventional technical means in the art.
  • the activation treatment includes: performing reductive activation at a temperature of 120-500° C. in the presence of hydrogen. This reductive activation can be performed outside the device or in-situ reductive activation in the device to convert it into a metallic active material.
  • the activation treatment time may be 1-10h.
  • the conditions for the Fischer-Tropsch synthesis include: the reaction temperature is 150-300°C, preferably 170-250°C, more preferably 190-230°C; the reaction pressure is 0.2-16 MPa, preferably 1.0 -10MPa; gas space velocity is 200-400000h -1 , preferably 500-100000h -1 , more preferably 1000-50000h -1 ; the volume ratio of H 2 to CO is 0.8-3.6, preferably 1.5-2.5, more preferably It is 1.8-2.2.
  • an inert gas may optionally be introduced as a diluent gas, such as nitrogen, and the volume content of the nitrogen in the mixed gas may be 0-50% by volume.
  • the BET pore volume is measured according to the method specified in RIPP 151-190; the water absorption is the wipe-dry water absorption, and the wipe-dry water absorption is the dry carrier at room temperature (20-25°C), soaked in For 60 minutes in deionized water, filter and wipe dry with filter paper to obtain the mass of the carrier after water absorption.
  • the ratio of the difference between the mass and the mass of the non-absorbent carrier to the non-absorbent carrier is the dry water absorption rate; according to the method specified in GB3635-1983
  • the radial crushing strength of the carrier was measured on the QCY-602 crushing strength tester (manufactured by the Soda Research Institute of the Ministry of Chemical Industry); the heap ratio of the catalyst was in accordance with "Industrial Catalyst Analysis, Testing and Characterization" (Edited by Liu Xiyao, China Petrochemical Press, Beijing, April 1990) p29 method.
  • the pressure is in gauge pressure
  • the dry basis content is determined by calcining the sample at 600°C for 4 hours.
  • Part I Involving supported catalysts used as hydrogenation catalysts
  • the carrier is in the shape of a three-lobe strip, the diameter of the circumscribed circle of the cross-section is 1.6mm, and the inside of the carrier has 3 through holes (3 cylinders with a diameter of 0.1mm), and the 3 cylindrical holes are respectively along the three blades.
  • the central axis of the circumscribed circle is extended.
  • the cross-sectional schematic diagram of the carrier is shown in Fig. 4, and the strength of the carrier is listed in Table 1.
  • the orifice plate includes: the bracket 3 is provided with 12 through holes 6 and the orifice plate is provided with 3 As shown in FIG. 5, the forming rod 4 has four feeding holes 6 arranged at equal intervals along the circumferential direction of a forming rod 4; the bracket 3 is also provided with three mounting holes 5 for the forming rod 4 to pass through.
  • the three forming rods 4 respectively extend along the central axis of the circumscribed circle where the three blades are located. As shown in Figure 5.
  • the carrier is in the shape of a three-lobed bar, and the diameter of the circumscribed circle of the cross section is 1.6 mm.
  • the cross-sectional area of the carrier is shown in Figure 6.
  • the animal protein foaming agent (preparation method: cow hoof horns 20g, Ca(OH) 2 6g, NaHSO 3 2g, water 200mL, hydrolysis temperature 80°C, hydrolysis time 6h, to prepare foaming liquid, source: Ma Zhijun, Li Xiaoyun, Ma Xuelei, Cui Yanling, Jia Yonghui.Study on protein-type concrete foaming agent[J].Building Science,2009,25(05):73-76.)10mL (equivalent to 1.0g containing cow hoof horns) and hydroxymethyl cellulose 1g, add water to 175mL, after foaming in the foaming machine, mix with the mixed powder to obtain a mixture.
  • the carrier is in the shape of a four-leaf strip, the diameter of the circumscribed circle of the cross section is 1.6mm, and the inside of the carrier has 4 through holes (4 cylinders with a diameter of 0.1mm), and the 4 cylindrical holes are respectively along the four blades.
  • the central axis of the circumscribed circle is extended.
  • the cross-sectional schematic diagram of the carrier is shown in Figure 7, and the strength of the carrier is listed in Table 1.
  • the carrier was prepared according to the method of Preparation Example 1, except that the amount of egg white was 5 mL. And use Extruded strip of trilobal orifice plate with core.
  • the carrier is in the shape of a three-lobed bar, the diameter of the circumscribed circle of the cross section is 1.6mm, and the carrier has 4 through holes (1 regular trihedral prism with a circumscribed circle diameter of 0.1mm, and 3 cylinders with a diameter of 0.1mm. ), the one regular three-sided prismatic channel extends along the central axis of the circumscribed circle of the trilobal shape, and the three cylindrical channels respectively extend along the central axis of the circumscribed circle where the three blades are located.
  • the carrier SC is obtained.
  • the cross-sectional area of the carrier is shown in Figure 8.
  • the strength of the carrier is listed in Table 1.
  • the carrier was prepared according to the method of Preparation Example 2, except that the amount of animal protein foaming agent was 20 mL, and Extruded strip of trilobal orifice plate with core.
  • the carrier is in the shape of a three-leaf strip, the diameter of the circumscribed circle of the cross-section is 1.6mm, and the inside of the carrier has 3 through holes (a regular hexagonal prism with a circumscribed diameter of 0.1mm), and the 3 holes are respectively along the three blades.
  • the central axis of the circumscribed circle is extended to obtain the carrier SD.
  • the cross-sectional area of the carrier is shown in Figure 9, and the strength of the carrier is listed in Table 1.
  • the difference is that the amount of egg white is 20 mL.
  • the carrier SE was obtained, and the strength of the carrier is listed in Table 1.
  • step (2) Perform extruding according to step (2) of Preparation Example 1. After drying the obtained extruded bar at 120°C for 3 hours, it is calcined at 600°C for 3 hours under air-flow conditions to obtain carrier SF. The strength of the carrier is listed in Table 1.
  • the carrier was prepared according to the method of Preparation Example 1, except that A cored trilobal orifice plate is extruded, and the orifice plate is provided with a forming rod (a cylinder with a diameter of 0.2 mm).
  • the catalyst carrier SG is obtained.
  • the carrier is in the shape of a three-lobed strip, the diameter of the circumscribed circle of the cross section is 1.6mm, and the inside of the carrier has a through hole (a cylindrical hole with a diameter of 0.2mm), and the cylindrical hole is circumscribed along the three-lobed shape. The center axis of the circle extends.
  • the strength of the carrier is listed in Table 1.
  • the proportion refers to the ratio of the difference R to the water absorption rate of the carrier; the strength refers to the radial crushing strength of the carrier.
  • This example is used to illustrate the catalytic performance of the catalyst provided by the present invention.
  • the water absorption rate of the above-mentioned carrier was measured, and nickel nitrate (analytical grade, Beijing Yili Chemical Reagent Factory) and ammonium metatungstate (industrial product, purchased from Changling Catalyst Factory) mixed the aqueous solution, and impregnated the carrier of the preparation example and the preparation comparative example by the pore saturation method.
  • the impregnated carrier was dried at 120°C for 5 hours, and then calcined at 400°C for 3 hours to obtain catalysts CSA to CSG and CDA, respectively.
  • the measured stack ratio of each catalyst is listed in Table 2.
  • the catalyst is broken into particles with a length of 3-5 mm, and 100 g of the catalyst is loaded into a 200 ml fixed-bed reactor. The remaining space is filled with ceramic balls.
  • the catalyst Before the oil is passed, the catalyst first has a hydrogen partial pressure of 15.0 MPa. And at a temperature of 300°C, DMDS is used as a vulcanizing agent, gas-phase vulcanization for 28 hours, after which the hydrogen partial pressure is 14.7MPa, and the feed oil is passed at a temperature of 320°C, and the hydrogen-to-oil ratio is 1200 vol/vol.
  • the volumetric space velocity was 0.85h -1 , and samples were taken after 400 hours of reaction.
  • Activity refers to the cracking reaction temperature required when the conversion rate of hydrocarbon oil with a distillation temperature higher than 350°C is 60%. The lower the cracking reaction temperature, the higher the catalytic activity of the catalyst;
  • the 95% temperature of the tail oil is the distillation temperature at the 95% distillation point in the simulated distillation curve.
  • the difference is that the catalyst is prepared with a molybdenum oxide content of 16.3% by weight, a nickel oxide content of 2.8% by weight, and a phosphorus content of 1.1% by weight, respectively, and the mixture of ammonium molybdate, basic nickel carbonate and phosphoric acid The aqueous solution was then prepared to obtain the catalyst CSH.
  • the performance data of the catalyst are listed in Table 2.
  • Example 2 the difference is that the mixed aqueous solution of ammonium metatungstate and nickel nitrate was prepared according to the tungsten oxide content of 17.0% by weight and the nickel oxide content of 3.0% by weight in the catalyst, and then the catalyst CSI was prepared.
  • the performance data is listed in Table 2.
  • the catalyst provided by the present invention has the advantages of high activity, high jet fuel yield, and low bulk ratio.
  • catalyst carrier ZA The carrier is in the shape of a three-lobed bar, the diameter of the circumscribed circle of the cross section is 1.6mm, and the inside of the carrier has a through hole (cylindrical with a diameter of 0.1mm), and the hole extends along the central axis of the circumscribed circle.
  • the cross-sectional schematic diagram of the catalyst carrier ZA is shown in Fig. 10, and its radial crushing strength is listed in Table 3.
  • the specific process of the molding includes: using an orifice plate to perform the molding, and the orifice plate includes: a base 1 provided with a molding hole 2 (as shown in FIG. 1, the molding hole 2 is a trilobal shape with a circumscribed circle).
  • the diameter is 1.6mm
  • a bracket 3 with three through holes 6 and a forming rod 4 as shown in Figure 2, the three through holes 6 are arranged at equal intervals along the circumferential direction of the forming rod 4;
  • the bracket 3 and the base 1 are stacked up and down, and the bonding surface of the base 1 and the bracket 3 is provided with a first mounting structure 7, the bracket 3 and the base
  • a second mounting structure 8 adapted to the first mounting structure 7 is provided on the bonding surface of 1 so that the bracket 3 and the base 1 can be detachably connected.
  • the bracket 3 is also provided with a mounting hole 5 through which a molding rod 4 (shape shown in FIG. 3) passes, and the molding rod 4 is configured to pass through the molding hole 2.
  • the forming rod 4 extends along the central axis of the circumscribed circle where the trilobal shape is located.
  • the head 13 of the molding rod 4 is installed in the mounting hole 5, and the rod portion 14 of the molding rod extends toward the discharge port of the molding hole to be sleeved (through) in the mounting hole 5 and the molding hole 2.
  • the part of the forming rod 4 inserted into the forming hole is set as a cylinder, and the diameter of the cylinder is 0.1 mm.
  • a solution of cobalt nitrate (analytical pure, Beijing Yili Chemical Reagent Factory) was prepared according to the content of cobalt oxide in the catalyst as 30% by weight.
  • the carrier ZA was impregnated twice with a cobalt nitrate solution by the pore saturation method, dried at 120°C for 3 hours after each impregnation, and then calcined at 400°C for 3 hours to obtain the catalyst ZAC.
  • the difference is that using The cored trilobal orifice plate is extruded, and the orifice plate is provided with 3 forming rods.
  • the catalyst carrier ZB is obtained.
  • the carrier is in the shape of a three-leaf strip, the diameter of the circumscribed circle of the cross-section is 1.6mm, and there are 3 through holes (cylindrical with a diameter of 0.1mm) inside the carrier, and the 3 holes are respectively along the circumscribed circle where the three blades are located.
  • the central axis extends.
  • the cross-sectional schematic diagram of the catalyst carrier ZB is shown in FIG. 11, and the radial crushing strength of the catalyst carrier ZB is listed in Table 3.
  • the specific process of forming is carried out according to Example 10.
  • the difference is that the bracket 3 is provided with 12 through holes 6 and the orifice plate is provided with 3 forming rods 4, as shown in FIG. 6, every 4 through holes 6 are provided.
  • the material holes 6 are arranged at equal intervals along the circumferential direction of a molding rod 4; the bracket 3 is also provided with three mounting holes 5 for the molding rod 4 to pass through.
  • the three forming rods 4 respectively extend along the central axis of the circumscribed circle where the three blades are located.
  • the preparation method of the catalyst is as described in Example 10, except that the carrier is replaced with the catalyst carrier ZB.
  • the catalyst ZBC was obtained.
  • the difference is that using The cored trilobal orifice plate is extruded, and the orifice plate is provided with 3 forming rods.
  • the catalyst carrier ZC is obtained.
  • the carrier is in the shape of a three-leaf strip, the diameter of the circumscribed circle of the cross-section is 1.6mm, and the inside of the carrier has 3 through holes (a regular hexagonal prism with a circumscribed diameter of 0.1mm), and the 3 holes are respectively along the three blades.
  • the central axis of the circumscribed circle is extended.
  • the cross-sectional schematic diagram of the catalyst carrier ZC is shown in FIG. 12, and the radial crushing strength of the catalyst carrier ZC is listed in Table 3.
  • the specific process of the molding is carried out according to Example 11.
  • the difference is that the shapes of the three molding rods 4 are all regular hexagonal prisms with a circumscribed circle diameter of 0.1 mm.
  • the preparation method of the catalyst is as described in Example 10, except that the carrier is replaced with the catalyst carrier ZC.
  • the catalyst ZCC was obtained.
  • the difference is that using The cored trilobal orifice plate is extruded, and the orifice plate is provided with 4 forming rods (1 is a regular trihedral prism with a circumscribed circle diameter of 0.1mm, and 3 is a cylinder with a diameter of 0.1mm).
  • the catalyst carrier ZD is obtained.
  • the carrier is in the shape of a three-lobed bar, the diameter of the circumscribed circle of the cross section is 1.6mm, and the carrier has 4 through holes (1 regular trihedral prism with a circumscribed circle diameter of 0.1mm, and 3 cylinders with a diameter of 0.1mm.
  • the one regular three-sided prismatic channel extends along the central axis of the circumscribed circle of the trilobal shape, and the three cylindrical channels respectively extend along the central axis of the circumscribed circle where the three blades are located.
  • the cross-sectional schematic diagram of the catalyst carrier ZD catalyst carrier is shown in FIG. 13, and the radial crushing strength of the catalyst carrier ZD is listed in Table 3.
  • the catalyst ZDC was prepared according to the preparation method of the catalyst described in Example 10.
  • the difference is that using A cored quadrilobal orifice plate is extruded, and the orifice plate is provided with 4 molding rods (4 cylinders with a diameter of 0.1 mm).
  • the catalyst carrier ZE is obtained.
  • the carrier is in the shape of a four-leaf strip, the diameter of the circumscribed circle of the cross section is 1.6mm, and the inside of the carrier has 4 through holes (4 cylinders with a diameter of 0.1mm), and the 4 cylindrical holes are respectively along the four blades.
  • the central axis of the circumscribed circle is extended.
  • the cross-sectional schematic diagram of the catalyst carrier ZE catalyst carrier is shown in FIG. 14, and the radial crushing strength of the catalyst carrier ZE is listed in Table 3.
  • the catalyst ZEC was prepared according to the preparation method of the catalyst described in Example 10.
  • the difference is that using The cored quadrilobal orifice plate is extruded, and the orifice plate is provided with 5 shaped rods (5 are cylinders with a diameter of 0.1 mm).
  • the catalyst carrier ZF is obtained.
  • the carrier is in the shape of a four-leaf strip, the diameter of the circumscribed circle of the cross-section is 1.6mm, and there are 5 penetrating holes (5 cylindrical holes with a diameter of 0.1mm) inside the carrier, and one cylindrical hole is circumscribed along the four-leaf shape.
  • the center axis of the circle extends, and the four cylindrical holes extend along the center axis of the circumscribed circle where the four blades are located.
  • the cross-sectional schematic diagram of the catalyst carrier ZF catalyst carrier is shown in FIG. 15, and the radial crushing strength of the catalyst carrier ZF is listed in Table 3.
  • the catalyst ZFC was prepared according to the preparation method of the catalyst described in Example 10.
  • the difference is that using The cored trilobal orifice plate is extruded, and the orifice plate is provided with a forming rod (one is a cylinder with a diameter of 0.2mm).
  • the catalyst carrier ZG is obtained.
  • the carrier is in the shape of a three-lobed strip, the diameter of the circumscribed circle of the cross section is 1.6mm, and the inside of the carrier has a through hole (a cylindrical hole with a diameter of 0.2mm), and the cylindrical hole is circumscribed along the three-lobed shape.
  • the center axis of the circle extends.
  • the radial crushing strength of the catalyst carrier ZG is listed in Table 3.
  • the catalyst ZGC was prepared according to the preparation method of the catalyst described in Example 10.
  • the mixed solution of ruthenium chloride and cobalt nitrate is prepared according to the Ru content of 0.3% by weight and the cobalt oxide content of 35% by weight in the catalyst.
  • the pore saturation method is used to impregnate the carrier ZA twice with a mixed solution of ruthenium chloride and cobalt nitrate. After each impregnation, it is dried at 120°C for 3 hours, and then calcined at 400°C for 3 hours to obtain the catalyst ZHC.
  • a mixed solution of ruthenium chloride, cobalt nitrate and magnesium chloride is prepared according to the Ru content of 0.2% by weight, the content of cobalt oxide of 25% by weight, and the content of magnesium oxide of 5% by weight in the catalyst.
  • the pore saturation method is used to impregnate the carrier ZA twice with a mixed solution of ruthenium chloride, cobalt nitrate and magnesium chloride. After each impregnation, it is dried at 120°C for 3 hours, and then calcined at 400°C for 3 hours to obtain the catalyst ZIC.
  • This comparative example is used to illustrate the preparation method of the reference carrier and catalyst
  • the difference is that a conventional orifice plate is used in the molding process to obtain a solid (without pores) catalyst carrier DA.
  • the catalyst carrier DA-2 is in the shape of a three-lobed bar, and the circumscribed circle diameter of the cross section is 1.6 mm.
  • the cross-sectional schematic diagram of the catalyst carrier DA-2 is shown in Figure 16.
  • the radial crushing strength of the catalyst carrier DA-2 is listed in the table 3.
  • the comparative catalyst DAC-2 was prepared according to the preparation method of the catalyst described in Example 10.
  • This test example is used to illustrate the performance of the catalyst obtained above in the Fischer-Tropsch synthesis reaction
  • the micro-reverse fixed-bed reactor was charged with 5 ml of the above-prepared catalyst, and the rest was filled with quartz sand.
  • the catalyst is first reduced and activated with hydrogen, and reduced for 5 hours under the conditions of a pressure of 0.1 MPa, a space velocity of 1000 h -1 and a temperature of 400°C.
  • the activity of the catalyst is expressed by the CO conversion rate, and the selectivity of the Fischer-Tropsch synthesis catalyst is expressed by the selectivity of methane and C5+ hydrocarbons. The results are listed in Table 4.
  • Example Carrier Radial crushing strength/(N/mm) Example 10 ZA 25.9
  • Example 11 ZB 23.8
  • Example 12 ZC 24.2
  • Example 13 ZD 22.9
  • Example 14 ZE 23.2
  • Example 15 ZF 23.7
  • Example 16 ZG 24.5 Comparative example 2 DA-2 26.7
  • Example 10 ZAC 45.2 9.48 82.1
  • Example 11 ZBC 47.6 7.62 83.5
  • Example 12 ZCC 48.7 7.02 84.2
  • Example 13 ZDC 53.5 6.12 86.9
  • Example 14 ZEC 51.0 6.82 85.2
  • Example 15 ZFC 52.4 6.45 86.1
  • Example 16 ZGC 49.3 7.12 84.3
  • Example 17 ZHC 67.6 6.56 85.1
  • Example 18 ZIC 58.5 6.72 83.9 Comparative example 2 DAC-2 37.6 13.3 76.4
  • Part III Involving the influence of the diameter of the channel introduced into the carrier on the radial crushing strength of the carrier
  • the difference is that using The cored circular orifice plate is extruded, and the orifice plate is provided with a forming rod.
  • the shaped rods are set as cylinders with diameters of 0, 0.1 mm, 0.2 mm, 0.3 mm, 0.5 mm, 0.7 mm and 1 mm, respectively, to obtain a series of catalyst carriers Z0-Z6.
  • the carrier Z0-Z6 is a cylindrical strip with a cross-sectional diameter of 1.6mm.
  • There is a through hole inside the carrier in the form of a cylinder with diameters of 0, 0.1mm, 0.2mm, 0.3mm, 0.5mm, 0.7mm and 1mm, respectively. Shape), the hole extends along the central axis of the cylindrical strip.
  • the results of the foregoing examples show that by controlling the ratio of the cross-sectional area of the carrier pores to the cross-sectional area of the carrier to be less than or equal to 3:100, the corresponding supported catalyst can have both high strength and high catalytic activity.
  • the catalyst thus obtained will be suitable for use in fixed bed reactors, especially in microreactors, microchannel reactors, microchemical reactors or mesoreactors.

Abstract

本发明涉及负载型催化剂及其制备方法和应用。本发明的负载型催化剂包括载体和负载在载体上的金属活性组分,其中所述金属活性组分选自第VIB族金属元素和第VIII族金属元素中的至少一种;所述载体含有耐热无机氧化物和分子筛中的至少一种;所述载体内部具有贯通的孔道,所述孔道的横截面积与所述载体的横截面积的比值为0.05-3∶100;该载体的吸水率与BET孔容的差值R不低于0.2mL/g。本发明的负载型催化剂可以作为加氢催化剂,用于烃油的加氢裂化时,在获得较高的催化活性的同时,还能够获得高航煤收率。本发明的负载型催化剂还可以作为费托合成催化剂,在用于费托合成时,该催化剂兼具高强度和高活性效率的优点。另外,由于具有较高的径向抗破碎强度而不牺牲催化活性,本发明的负载型催化剂特别适合用于固定床反应器。

Description

负载型催化剂及其制备方法和应用 技术领域
本发明涉及负载型催化剂领域,具体涉及一种载体内部具有轴向贯通孔道的负载型催化剂,所述负载型催化剂能兼顾高强度和高催化活性,及其制备方法和应用。
背景技术
日益增强的环保意识和越来越严格的环保法规迫使炼油界更加注重清洁燃料生产技术开发。未来市场车用燃料趋向于“超低硫”,不能满足排放标准的燃料将无法进入市场。加氢技术作为一种有效的脱硫手段,在清洁车用燃料的生产中发挥着越来越重要的作用,其中高效加氢催化剂则是加氢技术的核心技术。因此,开发具有更高活性和选择性的新型加氢裂化催化剂则成为炼油工业最迫切的需求之一。
费托合成(Fischer-Tropsch process),又称FT合成,是以合成气(一氧化碳和氢气的混合气体)为原料在催化剂和适当条件下合成以液态的烃或碳氢化合物的工艺过程,其是煤、天然气和生物质等非油基资源间接转化为高品位液体燃料和化工原料的一个关键步骤。
加氢裂化催化剂和费托合成催化剂通常采用浸渍法制备,即用含有所需活性组分(如Ni、Mo、Co、W等)的溶液浸渍载体,之后进行干燥、焙烧或不焙烧的方法。活性组分、载体均是负载型催化剂的重要组成。活性组分担载在载体表面上,并且载体主要用于支持活性组分,从而使催化剂具有特定的物理性状。载体本身一般并不具有催化活性。但载体对负载型催化剂的性能有多方面影响,例如影响到催化剂的反应性能和产物分布。例如,当所用载体的形状不同时,费托合成催化剂的性能将差别很大。因为费托合成是扩散传质问题严重的反应,所以载体具有大的宏观外表面积和短的宏观扩散距离对增加费托合成反应活性和降低甲烷选择性将是有益的。
一个工业催化剂的几何外形和几何尺寸的选择,往往需要在多个方面进行平衡,同时要兼顾催化剂的多个特性。为了实现不同的目标,当前开发了很多种形态的催化剂。常见的有球形,常用于流化态的催化剂,或者对催化剂的流动性有特别要求的催化剂。还有条形,用于 固定床催化剂。在条形的基础上,还进一步发展为圆柱条,三叶形条,四叶形条,其他多叶形条及变形多叶形条。还有桶形条,即圆柱中带孔的条形,如典型的拉西环,十字环、鲍尔环及阶梯环等。还有蜂窝载体,即在堇青石或氧化铝基体上,排布规则的孔道,常用于SCR和汽车尾气的处理等。
为了改善催化剂的扩散性能,现有技术公开了一些方法。CN1859975A公开了一种变形三叶形条形催化剂。CN101134173A提出一种具有特殊形状的载体、催化剂,所述特殊形状为椭球体,其中在椭球体上开有一条或多条沟槽。据称由于具有较大的外表面积和良好的传质性能,该催化剂可广泛用于如重油加工反应中。CN103269798A提出一种成型催化剂体。该成型催化剂体具有底部、圆柱体表面、圆柱体轴及至少一个该圆柱体轴平行延伸的连续开口的圆柱体,该圆柱体的底部具有至少4个角部,用于低表面的载体。CN105233880A公开了一种内芯式三叶草形催化剂载体及其制备方法和应用。该载体由两层构成,其中外壳为多孔结构材质,内芯为密实结构的材质并且内芯比表面积小于1m 2/g。该催化剂压碎强度高,用于费托合成催化剂内扩散效应小。
从催化剂及活性金属利用率上考虑,类似于拉西环或十字环之类的中间带有孔道的催化剂的活性利用率最高,其次为蜂窝载体,其次为条形,其次为球形。但催化剂的强度的顺序基本相反。为了在催化剂利用率和强度间取得平衡,一般采用拉西环和蜂窝担体之类形貌的中空载体或催化剂。这种情况下多采用陶瓷等作为基体,因为基体本身强度高,所以即便中间留空后,整体的强度仍然较高。而对于基体本身强度不太高的载体或催化剂材料,则考虑球形或者条形,以避免中间留空导致整体的强度剧烈恶化,甚至导致载体坍塌。在条形形貌的情况下,人们提出通过增加条外界面的曲折程度,增加与外界的接触面,在保持强度变化不大的条件下,进一步提高催化剂的活性效率。
另外,为了改善催化剂扩散性能,也有通过添加成型助剂以增加大孔或超大孔的量的方法。CN103418441B公开了一种加氢精制催化剂,其载体为含炭、纤维素醚和水合氧化铝的成型物。其公开的加氢精制催化剂不仅具有优异的烃油加氢精制性能,同时制备方法简单、生产成本低。CN1115388C提出一种加氢保护剂及其制备方法,采用炭 黑或有机扩孔剂作为扩孔助剂,据称具有更高的催化剂活性、更低的积碳量更好的活性稳定性和更高的强度。CN101890382B提出一种催化剂制备方法,除了氧化铝材料外,还包含棒状纳米氧化物。其公开的该方法制备的催化剂孔容大、孔径大,孔道贯穿性好,尤其适用于渣油固定床加氢。
如上所述,现有技术公开的改善扩散的方法包括在载体中引入孔道,使用改性剂优化孔隙和通过特殊外形增加接触面积。引入孔道的方法一般适用于基体本身强度高,或者比表面积较小的情况,而无法用于基体本身强度不高,载体的比表面积大的情况。采用的改性剂优化孔隙的方法,主要还是基于填充物占位造孔,或者添加助剂,或者采用不同性质的水和氧化铝前驱体,通过改善基本单元之间的连接方式来实现孔隙的优化。这种方法的特点是需要的助剂量多,另外得到的孔隙一般孔径较小。
由上可知,现有技术中的催化剂及载体仍然存在诸多缺陷,亟需提供一种能兼顾高强度和高催化活性的催化剂。
发明内容
本发明的目的是为了克服现有技术存在的上述缺陷,提供一种负载型催化剂及其制备方法和应用。本发明的负载型催化剂可以作为加氢催化剂,在用于烃油的加氢裂化时,在获得较高的催化活性的同时,还能够获得高航煤收率。本发明的负载型催化剂还可以作为费托合成催化剂,在用于费托合成时,该催化剂兼具高强度和高活性效率的优点。
为了实现上述目的,本发明的第一方面提供一种负载型催化剂,该催化剂包括载体和负载在载体上的金属活性组分,
其中所述金属活性组分选自第VIB族金属元素和第VIII族金属元素中的至少一种;
其中所述载体含有耐热无机氧化物和分子筛中的至少一种;
其中所述载体内部具有贯通的孔道,所述孔道的横截面积与所述载体的横截面积的比值为0.05-3∶100;并且
其中该载体的吸水率与BET孔容的差值R不低于0.2mL/g。
本发明的第二方面提供如上所述的负载型催化剂的制备方法,该 方法包括:
(I)将载体前驱体、水以及可选的发泡剂、可选的助挤剂、可选的粘合剂混合得到混合物;
(II)将所述混合物进行成型,以得到内部具有贯通的孔道的成型物;
(III)将步骤(II)得到的成型物进行第一焙烧,以得到载体;
(IV)采用含有金属活性组分的前驱体的溶液浸渍步骤(III)得到的载体,然后进行干燥和第二焙烧。
本发明的第三方面提供上述负载型催化剂在加氢裂化中的应用。
本发明的第四方面提供一种加氢裂化方法,该方法包括:在加氢裂化条件下,将烃油与加氢裂化催化剂接触,其中,所述加氢裂化催化剂为本发明提供的负载型催化剂。
本发明的第五方面提供上述负载型催化剂在在费托合成反应中的应用。
本发明的第六方面提供一种费托合成的方法,该方法包括:在费托合成反应条件下,将CO和H 2与本发明的负载型催化剂接触。
本发明可以体现为以下各项:
1、一种加氢催化剂,该催化剂包括载体和负载在载体上的第VIB族金属元素和第VIII族金属元素;
所述载体含有耐热无机氧化物和分子筛中的至少一种;所述载体内部具有贯通的孔道,所述孔道的横截面积与所述载体的横截面积的比值为0.05-30∶100;该载体的吸水率与BET孔容的差值R不低于0.2mL/g。
2、第1项所述的催化剂,其中,以催化剂的总量为基准,以氧化物计,所述第VIB族金属元素的含量为10-35重量%,所述第VIII族金属元素的含量为2-15重量%,所述载体的含量为50-88重量%。
3、第1项所述的催化剂,其中,所述第VIB族金属元素为Mo和/或W,所述第VIII族金属元素为Co和/或Ni;
优选地,所述耐热无机氧化物选自氧化铝、氧化硅、氧化钛、氧化镁、氧化锆、氧化钍和氧化铍中的至少一种,优选为氧化铝、氧化硅、氧化钛和氧化锆中的至少一种;优选地,以载体的总量为基准,耐热无机氧化物的含量为1-99重量%,分子筛的含量为1-99重量%。
4、第1-3项中任意一项所述的催化剂,其中,所述孔道的横截面积与所述载体的横截面积的比值为0.1-20∶100,优选为0.2-10∶100;
优选地,所述载体的吸水率与BET孔容的差值R为0.2-0.8mL/g,进一步优选为0.2-0.5mL/g;
优选地,所述载体的吸水率与BET孔容的差值R占载体的吸水率的比例为10-50%,优选为15-35%。
5、第1-4项中任意一项所述的催化剂,其中,
所述载体为球形和/或条形,优选为条形,进一步优选为多叶条形;
优选地,所述载体的当量直径不大于5mm,优选为不大于3mm,更优选为不大于2mm,更进一步优选为0.8-2mm;
优选地,所述孔道为等截面的通道,进一步优选地,所述孔道为圆柱体和/或正多面棱体;进一步优选地,所述圆柱体的直径和正多面棱体的外接圆直径各自独立地为不小于5μm,优选为0.01-0.5mm,进一步优选为0.05-0.3mm。
6、第1-5项中任意一项所述的催化剂,其中,所述载体的径向抗破碎强度为14-30N/mm,优选为18-26N/mm;优选地,所述催化剂的堆比为0.5-1g/mL,进一步优选为0.6-0.9g/mL。
7、第1-6项中任意一项所述的催化剂,其中,所述孔道的数量为1-10条,优选为1-6条;
优选地,所述载体的横截面为圆形,所述孔道沿所述圆形的中心轴延伸和/或沿所述中心轴的周向等间隔设置;优选地,所述载体的横截面为多叶形,所述孔道沿多叶形所在的外接圆的中心轴延伸和/或沿所述多叶形的叶片所在的外接圆的中心轴延伸。
8、第1-7项中任意一项所述的催化剂,其中,所述的载体的制备方法包括:
(I)将载体前驱体、发泡剂、水以及可选的助挤剂、可选的粘合剂混合得到混合物;(II)将所述混合物进行成型,以得到内部具有贯通的孔道的成型物;(III)将步骤(II)得到的成型物进行焙烧。
9、第8项所述的催化剂,其中,所述发泡剂为动物蛋白发泡剂和/或植物发泡剂,优选为动物蛋白发泡剂;
优选地,所述动物蛋白发泡剂选自动物蹄角发泡剂、动物毛发发泡剂和动物血胶发泡剂中的至少一种;优选地,相对于100g的以干基 计的载体前驱体,所述发泡剂的用量为0.1-50mL,优选为0.5-20mL。
10、第8项所述的催化剂,其中,所述助挤剂选自田菁粉、纤维素及其衍生物、淀粉及其衍生物、乙二醇和二甘醇中的至少一种;
所述粘合剂选自羟甲基纤维素、无机酸、淀粉及其衍生物、硅溶胶或铝溶胶中的至少一种;相对于100g的以干基计的载体前驱体,所述助挤剂的用量为0.1-6g;相对于100g的以干基计的载体前驱体,所述粘合剂的用量为0.1-10g。
11、第8项所述的催化剂,其中,其中,步骤(I)所述混合包括:将载体前驱体、助挤剂混合,然后加入发泡剂、粘合剂和水,得到所述混合物;优选地,步骤(II)所述焙烧的条件包括:温度为350-700℃,优选为450-650℃;时间为1-10小时,优选为2-6小时。
12、第8项所述的催化剂,其中,步骤(II)中所述成型在挤条机中进行,所述挤条机包括主体和孔板,所述主体设置为能够将所述混合物通过所述孔板成型;
所述孔板包括:开设有成型孔(2)的基座(1)、开设有至少一个通料孔(6)的支架(3)和至少一个成型杆(4);所述支架(3)和所述基座(1)上下叠设,所述成型孔(2)设置为与所述通料孔(6)连通;所述支架(3)还设置有至少一个供成型杆(4)穿过的安装孔(5),所述成型杆(4)设置为贯穿所述成型孔(2)。
13、第8项所述的催化剂,其中,所述孔板中的成型杆(4)的横截面积与所述成型孔(2)的横截面积的比值为0.05-30∶100,优选为0.1-20∶100,更优选为0.2-10∶100;
优选地,所述成型孔(2)的当量直径不大于5mm,优选为不大于3mm,更优选为不大于2mm,更进一步优选为0.8-2mm;优选地,所述成型孔(2)的横截面为圆形、椭圆形或者多叶形;优选地,所述多叶形为三叶形、四叶形或者五叶形;优选地,所述成型杆(4)的数量为1-10个,优选为1-6个;优选地,所述成型孔(2)的横截面为多叶形,所述成型杆(4)沿所述多叶形所在的外接圆的中心轴延伸和/或沿所述多叶形的叶片的中心轴延伸;优选地,所述安装孔(5)的数量与所述成型杆(4)的数量相等;优选地,所述成型杆(4)通过所述安装孔(5)与所述支架(3)可拆卸连接。
14、第13项所述的催化剂,其中,所述通料孔(6)的数量为1-20 个,优选为2-20个;
优选地,多个通料孔(6)之间沿所述成型杆(4)周向方向等间隔设置;优选地,所述成型杆(4)的伸入所述成型孔(2)的部分设置为等截面结构;优选地,所述成型杆(4)的伸入所述成型孔(2)的部分设置为圆柱体,优选所述圆柱体的直径设置为不小于5μm,优选为0.01-0.5mm,进一步优选为0.05-0.3mm;优选地,所述成型杆(4)的伸入所述成型孔(2)的部分设置为正多面棱体,优选所述正多面棱体的所在外接圆柱的直径设置为不小于5μm,优选为0.01-0.5mm,进一步优选为0.05-0.3mm;优选地,所述基座(1)和所述支架(3)具有相同的整体外轮廓;优选地,所述基座(1)和所述支架(3)设置为可拆卸连接。
15、第1-14项中任意一项所述的加氢催化剂在加氢裂化中的应用。
16、一种加氢裂化方法,该方法包括:在加氢裂化条件下,将烃油与加氢裂化催化剂接触,其中,所述加氢裂化催化剂为第1-14项中任意一项所述的加氢催化剂。
本发明还可以体现为以下各项:
1、一种费托合成催化剂,其特征在于,该催化剂含有载体和负载在该载体上的金属活性组分和可选的第一金属助剂,所述第一金属助剂选自过渡金属中的至少一种;
所述载体内部具有贯通的孔道,所述孔道的横截面积与所述载体的横截面积的比值为0.05-25∶100;
其中,所述载体含有耐热无机氧化物和分子筛中的至少一种;
所述金属活性组分为Co。
2、第1项所述的费托合成催化剂,其中,所述孔道的横截面积与所述载体的横截面积的比值为0.1-20∶100,更优选为0.2-9∶100;
优选地,所述孔道为等截面的通道,更优选地,所述孔道为圆柱形和/或正多面棱形;
进一步优选地,所述圆柱形的直径和正多面棱形的外接圆直接各自独立地为不小于6μm,优选为0.01-0.5mm,进一步优选为0.05-0.3mm。
3、第1或2项所述的费托合成催化剂,其中,所述载体为球形和/或条形,优选为条形,进一步优选为多叶条形,更优选为三叶条形、 四叶条形或者五叶条形;
优选地,所述载体的当量直径不大于5mm,优选为0.05mm-5mm,进一步优选为0.1mm-3mm,更优选为0.5mm-2mm。
4、第1-3项中任意一项所述的费托合成催化剂,其中,所述孔道的数量为1-9条,优选为1-5条;
优选地,所述载体的横截面为圆形,所述孔道沿所述圆形的中心轴延伸和/或沿所述中心轴的周向等间隔设置;
优选地,所述载体的横截面为多叶形,所述孔道沿多叶形所在的外接圆的中心轴延伸和/或沿所述多叶形的叶片所在的外接圆的中心轴延伸。
5、第1-4项中任意一项所述的费托合成催化剂,其中,所述耐热无机氧化物包含氧化铝、氧化硅、氧化钛、氧化镁、氧化锆、氧化钍和氧化铍中的至少一种,优选为氧化铝、氧化硅、氧化钛和氧化锆中的至少一种;
优选地,所述分子筛包含十元环硅铝分子筛、十二元环硅铝分子筛、十四元环硅铝分子筛和十八元环硅铝分子筛中的至少一种;
更优选地,所述分子筛选自ZRP分子筛、Y分子筛、beta分子筛、丝光沸石,ZSM-5分子筛、MCM-41分子筛、Ω分子筛、ZSM-12分子筛和MCM-22分子筛中的至少一种,进一步优选为Y分子筛、beta分子筛、ZSM-5和丝光沸石中的至少一种;
优选地,所述载体为耐热无机氧化物。
6、第1-5项中任意一项所述的费托合成催化剂,其中,以催化剂的总量为基准,以氧化物计,所述金属活性组分的含量为5-80重量%,更优选为20-40重量%;
优选地,所述第一金属助剂选自Ni、Fe、Cu、Ru、Rh、Re、Pd和Pt中的至少一种;
优选地,以催化剂的总量为基准,以氧化物计,所述第一金属助剂的含量为0-40重量%,更优选为0.1-20重量%。
7、第1-6项中任意一项所述的费托合成催化剂,其中,催化剂还含有负载在所述载体上的第二金属助剂,所述第二金属助剂选自碱金属和碱土金属中的至少一种,优选为Na、K、Mg和Ca中的至少一种;
优选地,以催化剂的总量为基准,以氧化物计,所述第二金属助 剂的含量为1-20重量%,更优选为2-10重量%。
8、第1-7项中任意一项所述的费托合成催化剂的制备方法,该方法包括:
(1)将载体前驱体、水以及可选的助挤剂、可选的胶溶剂混合得到混合物,将所述混合物进行成型和第一焙烧,得到载体,所述成型使得载体内部具有贯通的孔道;
(2)采用含有金属活性组分前驱体和可选的第一金属助剂前驱体的溶液浸渍步骤(1)得到的载体,然后干燥、第二焙烧。
9、第8项所述的制备方法,其中,步骤(1)中,所述助挤剂选自田菁粉、纤维素及其衍生物、淀粉及其衍生物、乙二醇和二甘醇中的至少一种;
所述胶溶剂选自无机酸中的至少一种,优选为硝酸;
优选地,所述第一焙烧的条件包括:温度为350-700℃,优选为450-650℃;时间为1-10h,优选为2-6h。
10、第8项所述的制备方法,其中,步骤(2)中,所述干燥的温度为80-140℃,时间为1-10h;
优选地,所述第二焙烧的温度为350-750℃,时间为1-10h;
优选地,步骤(2)所述溶液中还含有第二金属助剂前驱体。
11、第8-10项中任意一项所述的制备方法制得的费托合成催化剂。
12、第1-7和11项中任意一项所述的费托合成催化剂在费托合成反应中的应用。
13、一种费托合成的方法,其特征在于,该方法包括:在费托合成反应条件下,将CO和H 2与催化剂接触,所述催化剂为第1-7和11项任意一项所述的费托合成催化剂。
本发明提供的催化剂的载体在成型过程中,实现了一步法加工制得具有内部孔道结构的载体。载体内部具有贯通的孔道,有利于提高催化剂活性组分的有效利用率。同时,载体成型时优选添加发泡剂,而发泡剂的添加使得气体组分可以被包裹在成型体中,从而提高载体中大孔和超大孔在整个孔容中所占比例,增加载体的通畅性。本发明提供的负载型催化剂采用具有孔道结合孔隙的结构的载体,从而强化大分子的扩散过程,有利于提高催化剂活性及活性中心的可接近性。将其用于烃油的加氢裂化时,不仅能够获得较高的航煤收率,而且能 够获得高的催化活性。将本发明的负载型催化剂用于费托合成反应时,有利于进一步提高费托合成活性和C5+烃类选择性,且甲烷选择性较低。另外,本发明提供的负载型催化剂采用孔道结构进行了优化的载体,从而具有较高的径向抗破碎强度。因此,本发明提供的负载型催化剂特别适合用于固定床反应器,如微反应器、微通道反应器、微化工反应器或介观反应器中,这些反应器需要所用的催化剂具有强度高,孔隙率大,压降小的特点。
附图说明
图1是本发明所述孔板的一种具体实施方式的基座的结构示意图;
图2是本发明所述孔板的一种具体实施方式的支架的结构示意图;
图3是本发明所述孔板的一种具体实施方式的成型杆的结构示意图;
图4是本发明实施例1所述的载体SA的横截面示意图;
图5是本发明所述孔板的一种具体实施方式的支架的结构示意图;
图6是对比例1的载体DA的横截面示意图;
图7是本发明实施例2所述的载体SB的横截面示意图;
图8是本发明实施例3所述的载体SC的横截面示意图;
图9是本发明实施例4所述的载体SD的横截面示意图。
图10是本发明实施例10所述的载体ZA的横截面示意图。
图11是本发明实施例11所述的载体ZB的横截面示意图。
图12是本发明实施例12所述的载体ZC的横截面示意图。
图13是本发明实施例13所述的载体ZD的横截面示意图。
图14是本发明实施例14所述的载体ZE的横截面示意图。
图15是本发明实施例15所述的载体ZF的横截面示意图。
图16是对比例2的载体DA-2的横截面示意图。
图17的图显示孔道参数与载体的径向抗破碎强度之间的关系。
附图标记说明
1、基座              2、成型孔            3、支架
4、成型杆            5、安装孔            6、通料孔
7、第一安装结构      8、第二安装结构      13、头部
14、杆部
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。除了在实施例外,在本文中,参数的所有数值都应理解为在所有情况下均由术语“约”修饰,无论“约”是否实际上出现在该数值之前。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、左、右”通常是指参考附图所示的“上、下、左、右”,使用的方位词如“内、外”是指相对于各部件本身的轮廓的内、外。
在本发明中,“至少一种”、“一种或多种”和“和/或”限定的项指的是存在所列项或其任何组合。
本发明第一方面提供一种负载型催化剂,该催化剂包括载体和负载在载体上的金属活性组分,其中所述金属活性组分选自第VIB族金属元素和第VIII族金属元素中的至少一种;所述载体含有耐热无机氧化物和分子筛中的至少一种;所述载体内部具有贯通的孔道,所述孔道的横截面积与所述载体的横截面积的比值为0.05-3∶100;并且该载体的吸水率与BET孔容的差值R不低于0.2mL/g。
本发明所述的“贯通的孔道”是指载体中存在的孔道使得载体具有通畅性的形态,所述孔道穿透所述载体。在一个变体中,载体中存在的孔道沿载体纵轴跨越载体的两端延伸并连接这两端。
根据本发明的一种优选实施方式,所述第VIB族金属元素为Mo和/或W,所述第VIII族金属元素为Co和/或Ni。从而,金属活性组分可以为Mo、W、Co和Ni中的一种或多种。
所述第VIB族金属元素和第VIII族金属元素可以分别以本领域常规的各种形式负载在所述载体上,例如:所述第VIB族金属元素和第VIII族金属元素可以分别以氧化物和/或硫化物的形式被负载在所述载体上。即本发明所述的负载型催化剂包括经过硫化前的氧化态催化剂,也包括经过硫化后的硫化态催化剂。
所述负载型催化剂中所述第VIB族金属元素和第VIII族金属元素的含量选择范围较宽。优选地,以催化剂的总量为基准,以氧化物计,所述第VIB族金属元素的含量为10-35重量%,优选为15-30重量%;所述第VIII族金属元素的含量为2-15重量%,优选为2.5-10重量%;所述载体的含量为50-88重量%,优选为60-82.5重量%。
根据本发明的另一种优选实施方式,所述金属活性组分为第VIII族金属元素中的至少一种,优选为Ni、Fe和Co中的至少一种,更优选为Co。在一个变体中,催化剂还包括负载在所述载体上的第一金属助剂,所述第一金属助剂选自过渡金属中的至少一种。金属活性组分和第一金属助剂为不同元素。优选,所述第一金属助剂选自Cu、Ru、Rh、Re、Pd和Pt中的至少一种。
本发明对所述催化剂中Co和第一金属助剂的含量选择范围较宽,优选地,以催化剂的总量为基准,以氧化物计,Co的含量为5-80重量%,更优选为20-40重量%。以催化剂的总量为基准,以氧化物计,所述第一金属助剂的含量为0-40重量%,更优选为0.1-20重量%。
在一个变体中,负载型催化剂还含有负载在所述载体上的第二金属助剂,所述第二金属助剂选自碱金属和碱土金属中的至少一种。所述碱金属包括但不限于Li、Na、K。所述碱土金属包括但不限于Mg、Ca。优选所述第二金属助剂为Na、K、Mg和Ca中的至少一种,例如为K和/或Mg。
本发明对所述第二金属助剂的含量选择范围较宽,优选地,以催化剂的总量为基准,以氧化物计,所述第二金属助剂的含量为0-20重量%,优选1-20重量%,更优选为2-10重量%。
在一个变体中,所述负载型催化剂包括载体和负载在载体上的金属活性组分、第一金属助剂和第二金属助剂,其中所述金属活性组分选自Ni、Fe和Co中的至少一种,所述第一金属助剂选自Cu、Ru、Rh、Re、Pd和Pt中的至少一种;所述第二金属助剂为K和/或Mg;以催化剂的总量为基准,载体的含量为30-75重量%,以氧化物计,金属活性组分的含量为20-40重量%;所述第一金属助剂的含量为0.1-20重量%;所述第二金属助剂的含量为2-10重量%。
本发明中,所述吸水率为擦干吸水率,两者在本文中互换使用。无特殊说明情况下,本发明提到的擦干吸水率为干燥的载体在室温 (20-25℃)下,浸泡在去离子水中30分钟以上,过滤后用滤纸擦干,得到吸水后载体的质量,该质量与未吸水载体的质量差与未吸水载体的比值则为擦干吸水率。
根据本发明的一种具体实施方式,所述载体的擦干吸水率为0.8-2mL/g,优选为0.9-1.5mL/g。
根据本发明的一种具体实施方式,所述载体的BET孔容为0.62-1.3mL/g,优选为0.7-1.1mL/g。
本发明中,无特殊说明情况下,BET孔容根据RIPP 151-90中规定的方法进行测定。
根据本发明,优选地,该载体的吸水率与BET孔容的差值R为0.2-0.8mL/g,进一步优选为0.2-0.5mL/g。
根据本发明,优选地,载体的吸水率与BET孔容的差值R占载体的吸水率的比例为10-50%,优选为15-35%。本发明提供的载体中该比例较大,表明本发明提供的载体中大孔或超大孔在总孔容中所占的比例较大。如上所述,无特殊说明条件下,本发明中采用BET法测定载体的孔容,并用吸水法测定载体的吸水率(擦干吸水率),从而用吸水率与BET孔容之间的差值R表示为大孔或超大孔的孔容,并用吸水率表示该载体的总孔容。
根据本发明,优选地,所述孔道的横截面积与所述载体的横截面积的比值为0.1-3∶100,优选为0.2-3∶100。本发明提供的催化剂采用的载体内部具有孔道结合孔隙的结构,在能够保证强度的基础上,能够有效利用催化剂活性组分,进而提高催化剂活性。
根据本发明,优选地,所述载体的径向抗破碎强度为14-30N/mm,优选为18-26N/mm。无特殊说明情况下,本发明中,根据GB3635-1983中规定的方法在型号为QCY-602的抗破碎强度测定仪(化工部制碱研究所制造)上测定载体的径向抗破碎强度。
本发明提供的催化剂采用的载体具有优化结构的孔道,从而具有较高的机械强度,进而使得相应的负载型催化剂的机械强度较好。另外,本发明提供的催化剂采用的载体具有孔道结合孔隙的结构,可以有效的提高催化剂活性及活性中心的可接近性,非常适用于大分子的扩散。
在本发明中,对所述载体的形状选择范围较宽,所述载体的形状 可以为本领域常规使用的各种形状。所述载体的形状可以为规则的,也可以为不规则的,优选为规则形状。例如,所述载体可以为球形、条形、环形、蜂窝形或蝶形。本发明提到的条状可以是圆柱形条,也可以是椭圆形条(相当于双叶形条),还可以是多叶形条,本发明对条形的外形不做任何限定。本发明提到的球形可以为规则球形,也可以为不规则球形,即载体的横截面的外形曲线可以是圆形,也可以为非完美圆形。本发明对条形载体的条长及分布不做任何限定。
优选地,所述载体为球形和/或条形,进一步优选为条形,更进一步优选为多叶条形。
本发明提到的条形,是指采用挤条或者压片等方式制得的,长度不低于外接圆直径的50%的三维结构的材料,本发明对条形载体的条长及分布不做任何限定。
本发明中载体为多叶条形指的是载体的横截面的外形为多叶形。本发明对多叶形的每一个叶片的尺寸以及与其他叶片尺寸的比例不做任何限定,即多叶形,可以是规整的多叶形,也可以是非规整的多叶形,也可以是变形多叶形,本发明对多叶形的叶片数量,叶片形态,叶片之间的比例不做任何限定。根据本发明,所述多叶条形可以为三叶条形、四叶条形、五叶条形、六叶条形以及以此类推的多叶条形中的至少一种。
根据本发明的一种优选实施方式,所述载体为球形和/或条形,所述载体的当量直径不大于5mm,优选为不大于3mm,更优选为不大于2mm,更进一步优选为0.8-2mm。
根据本发明的一种具体实施方式,如果载体为其他形状,则载体的外形的最小横断尺寸不大于5mm,优选为不大于3mm,更优选为不大于2mm。
根据本发明的一种优选实施方式,所述催化剂的堆比为0.5-1g/mL,进一步优选为0.6-0.9g/mL。本发明提供的催化剂具有较低的堆比。
本发明中,所述催化剂的堆比采用常规方法进行测定,具体办法为:将催化剂破碎后筛取16-20目的颗粒,取500mL量筒,将筛好的颗粒倒入量筒中,称取重量G和目测体积V,催化剂的堆比=G/V。
在本发明中,所述孔道可以形成为各种合理的形状,其可以为规则形状,也可以为不规则的,从加工简便性角度考虑,优选所述孔道 的形状为规则的。沿物流方向,所述孔道的截面为相同或不同(逐渐增大或者逐渐减小),沿物流方向,所述孔道的截面逐渐增大的情况下,所述孔道包括但不限于为圆锥体;沿物流方向,所述孔道的截面逐渐减小的情况下,所述孔道包括但不限于为倒圆锥体。
优选地,所述孔道为等截面的通道。所述孔道的截面可以是规则的,也可以为不规则的,优选为规则形状。该种优选实施方式在便于加工的同时,使得具有相应形状的贯通的孔道结构的载体更有利于大分子的扩散。
所述孔道可以为各种可加工得到的形状,从加工简便性角度考虑,优选地,所述孔道为圆柱形和/或正多面棱形。相应地,所述孔道的截面为圆形和/或正多边形。该种优选实施方式不但便于加工,且有力地保证了载体的稳定性。在这种情况下,所述催化剂的内表面更为规整,避免因孔道结构存在尖锐孔壁所造成的出现应力集中现象,降低了催化剂坍塌的几率,有利于提高载体的密实度、强度。需要说明的是,本发明中,所述圆形和正多边形也包括非完美的圆形和/或正多边形。
进一步优选地,孔道为圆柱体的形貌时,其圆形截面的直径设置为不小于5μm,优选为0.01-0.5mm,进一步优选为0.05-0.3mm。
进一步优选地,孔道为正多面棱体的形貌时,其正多边形截面的外接圆的直径设置为不小于5μm,优选为0.01-0.5mm,进一步优选为0.05-0.3mm。
本发明中,正多面棱体可以设置为三棱柱、四棱柱、五棱柱等正多面棱体,则相应得到的载体的孔道的横截面相应地形成为等边三角形、正方形、正五边形等正多边形结构。
本发明对所述孔道的数量选择范围较宽,本领域技术人员可以根据强度和堆比角度综合考虑,可以为1个,也可以为两个以上,可以根据对于孔道数量的实际需求进行适当的选择。优选地,所述孔道的数量为1-10条,优选为1-6条。
需要说明的是,如果所述孔道的数量为2个以上,则上文限定的所述孔道的横截面积与所述载体的横截面积的比值是指所有孔道的总横截面积与所述载体的横截面积的比值。
本发明对孔道的设置的具体位置选择范围较宽,只要能够穿透所述载体即可。当所述孔道的数量为一条时,优选所孔道沿载体的中心 轴延伸。该种情况下,当所述载体的横截面为圆形,所述孔道沿圆柱形载体的中心轴延伸;当所述载体的横截面为多叶形,所述孔道沿多叶形所在的外接圆柱的中心轴延伸。
当所述孔道的数量为两条以上时,对孔道之间的相对设置位置没有特别的限定。优选情况下,各孔道呈均匀分布。该种优选实施方式更有利于保证载体的受力分布更为均衡,进一步优化载体的整体强度。优选情况下,所述均匀分布是指各孔道距离载体的横截面所在的外接圆圆心的距离相等,更优选各个孔道之间的距离相等,更优选各孔道与载体的横截面所在的外接圆圆心的距离和各孔道距离载体的边缘的距离相等。
根据本发明的一种优选实施方式,所述载体的横截面为圆形,所述孔道沿所述圆柱形载体的中心轴延伸和/或沿所述中心轴的周向等间隔设置。该种优选实施方式使得孔道分布均衡,有效地避免了载体因开设中间孔道结构而造成局部强度骤降,能够保证载体的机械强度。
根据本发明的另一种优选实施方式,所述载体的横截面为多叶形,所述孔道沿多叶形所在的外接圆柱的中心轴延伸和/或沿所述多叶形的各叶片所在的外接圆柱的中心轴延伸。该种优选实施方式使得孔道分布均衡,有效地避免了载体因开设中间孔道结构而造成局部强度骤降,能够保证催化剂的机械强度。
本发明中,所述载体的组成可以为本领域的常规组成,可以含有耐热无机氧化物和分子筛中的至少一种。
本发明对于所述耐热无机氧化物的具体种类没有特别限定,可以为本领域通常使用的耐热无机氧化物。例如,所述耐热无机氧化物可以选自氧化铝、氧化硅、氧化钛、氧化镁、氧化锆、氧化钍和氧化铍中的至少一种。其具体实例可以包括但不限于氧化铝、氧化硅、氧化锆、氧化钛、氧化镁、氧化钍、氧化铍、氧化铝-氧化钛、氧化铝-氧化镁、氧化硅-氧化镁、氧化硅-氧化锆、氧化硅-氧化钍、氧化硅-氧化铍、氧化硅-氧化钛、氧化钛-氧化锆、氧化硅-氧化铝-氧化锆、氧化硅-氧化铝-氧化钍、氧化硅-氧化铝-氧化钛或氧化硅-氧化铝-氧化镁。优选地,所述耐热无机氧化物为氧化铝、氧化硅、氧化钛和氧化锆中的至少一种。更优选地,所述耐热无机氧化物为氧化铝。
本发明提到的氧化铝是指可以用mAl 2O 3·nH 2O代表其组成的化合物,其中m和n是任意数值,可以是整数,也可以是分数。本发明对所述氧化铝的晶相同样不作任何限制。
本发明所述的分子筛是指具有规整的晶体结构和孔道的材料,即通常所说的分子筛或沸石,它由硅铝元素构成骨架,也可以包含其它元素,如:P、Ti、Ge和Ga中的至少一种。本发明对构成分子筛的元素组成不作任何限制。
本发明所述的分子筛可以是一种、也可以是两种或更多,也可以是两种分子筛的混晶、孪晶。本发明所述的两种分子筛指两种类型不同的分子筛,也可以是一种分子筛,但是性质有所不同的两个分子筛(比如硅铝比不同)。
本发明所述的两种以上是指3种或更多种,这些分子筛可以是不同类型的分子筛,也可以是同一类型不同性质的分子筛。每一种分子筛的用量可以在0.1-80重量%(占载体的比例)之间。
本发明所述两种分子筛的用量比例可以是10∶1到1∶10,5∶1到1∶5,3∶1到1∶3,2∶1到1∶2,1∶1等,两种分子筛的比例是任意的。
根据本发明,所述分子筛可以选自十元环硅铝分子筛、十二元环硅铝分子筛、十四元环硅铝分子筛和十八元环硅铝分子筛中的至少一种。本发明对所述分子筛的孔口大小和孔径不作限制。
本发明对所述分子筛的硅铝比没有限制,这里所说的硅铝比指SiO 2/Al 2O 3
根据本发明的一种优选实施方式,所述分子筛选自ZRP分子筛、Y分子筛、beta分子筛、丝光沸石,ZSM-5分子筛、MCM-41分子筛、Ω分子筛、ZSM-12分子筛和MCM-22分子筛中的至少一种,进一步优选为Y分子筛、beta、ZSM-5和丝光沸石中的至少一种。
本发明所述的分子筛可以通过商购得到,也可以通过现有任意方法制备得到。
本发明所述Y分子筛可以是一种晶胞常数为2.452-2.475纳米范围内及氧化硅/氧化铝摩尔比在3.5-7范围内的Y分子筛;可以是通过将Y分子筛与铵离子交换后,进行一次或多次水热处理制取的超稳Y分子筛,这种Y分子筛晶胞常数为2.420-2.455纳米,骨架中氧化硅/氧化铝摩尔比可达到100,优选为达到60;还可以是通过将Y分子筛与一 种或多种磷化物的无机铵溶液交换后,进行一次或多次水热处理制取的含磷超稳Y分子筛;还可以是通过将稀土化合物水溶液处理Y分子筛结合一次或多次水热处理制备的稀土Y分子筛。
根据本发明,优选地,以载体的总量为基准,耐热无机氧化物的含量为1-99重量%,分子筛的含量为1-99重量%;进一步优选地,以载体的总量为基准,耐热无机氧化物的含量为70-97重量%;分子筛的含量为3-30重量%。
在本发明中,当所述耐热无机氧化物与金属助剂中含有相同的金属元素时,所述相同的金属元素计入金属助剂中。
本发明第二方面提供如上所述的负载型催化剂的制备方法,该方法包括:
(I)将载体前驱体、水以及可选的发泡剂、可选的助挤剂、可选的粘合剂混合得到混合物;
(II)将所述混合物进行成型,以得到内部具有贯通的孔道的成型物;
(III)将步骤(II)得到的成型物进行第一焙烧,以得到载体;
(IV)采用含有金属活性组分前驱体的溶液浸渍步骤(III)得到的载体,然后进行干燥和第二焙烧。。
根据本发明,所述“可选的”是指可以添加,也可以不添加。本发明步骤(I)所述混合过程中,可以添加发泡剂,也可以不添加;可以添加助挤剂,也可以不添加;可以添加粘合剂,也可以不添加。在一个变体中,优选添加发泡剂。
根据本发明,所述载体前驱体为通过步骤(III)的所述第一焙烧能够转化为载体的任意物质。具体地,所述载体前驱体可以选自耐热无机氧化物、耐热无机氧化物前驱体和分子筛中的至少一种。优选地,所述载体前驱体为耐热无机氧化物和/或耐热无机氧化物前驱体。所述耐热无机氧化物前驱体为通过步骤(III)的所述第一焙烧能够转化为耐热无机氧化物的任意物质。所述耐热无机氧化物的选择如上所述,本发明在此不再赘述。
所述分子筛的选择如上所述,本发明在此不再赘述。
根据本发明的优选技术方案,所述耐热无机氧化物前驱体为氧化铝的前驱体,其具体实例可以包括但不限于:水合氧化铝(例如:氢 氧化铝、拟薄水铝石)、含有水合氧化铝的凝胶、以及含有水合氧化铝的溶胶。例如,所述氧化铝的前驱体可以为干胶粉。所述干胶粉可以通过商购得到(例如可以购自催化剂长岭分公司),也可以通过现有任意方法制备得到,本发明对此没有特别的限定。
在本发明提供的制备方法中,对于耐热无机氧化物和/或耐热无机氧化物前驱体以及分子筛的用量选择范围较宽,本领域技术人员可以具体情况选择适当的用量。可以考虑的用量范围如上所述,本发明在此不再赘述。
根据本发明,所述发泡剂具有包裹气体的能力,其可以是有机物,也可以是无机物,可以是纯化学物质,也可以是多种组分的混合体。所述发泡剂可以选自物理发泡剂、化学发泡剂、合成表面活性剂发泡剂、动物蛋白发泡剂和植物发泡剂中的至少一种。优选地,所述发泡剂为动物蛋白发泡剂和/或植物发泡剂。所述动物蛋白发泡剂优选选自动物蹄角发泡剂、动物毛发发泡剂和动物血胶发泡剂中的至少一种。所述植物发泡剂优选选自松香皂类发泡剂、茶皂素和茶皂苷中的至少一种。
根据本发明的一种优选实施方式,所述发泡剂为动物蛋白发泡剂,例如为动物蹄角发泡剂和/或蛋清。本发明的发明人在研究过程中发现,在载体制备过程中,相比于传统的物理发泡剂、化学发泡剂和合成表面活性剂发泡剂,动物蛋白发泡剂在气泡的韧性和稳定性方面有明显优势。
根据本发明提供的制备方法,所述发泡剂可以以溶液的形式引入,可以采用水作为溶剂,也可以用其他有机物作为溶剂,优选为水。
根据本发明的一种优选实施方式,所述动物蛋白发泡剂以动物蛋白发泡剂水解液的形式引入。当蛋白质水解,较长肽链的蛋白质大分子变成短链的可溶性的中小分子混合物,溶于水后,可形成一定粘度的胶体溶液,由于溶液具有很强的亲水性基团,如羧基、羟基等,亲水性基团如长链烃,加上分子的不对称性能等因素,降低了表面张力,促进了界面的形成,又因为这些中小分子的肽链在截面伸展,并通过分子间氢键,形成一个保护网,使得界面得到加强,更有利于促进泡沫的形成和稳定。
本发明对于动物蛋白发泡剂经水解得到动物蛋白发泡剂水解液的 方式没有特别的限定,本领域技术人员在上述记载的基础上,可以按照任意手段制备得到动物蛋白发泡剂水解液。例如可以按照马志珺,李小云,马学雷,et al.蛋白质型混凝土发泡剂的研究[J].建筑科学,2009,25(5):73-76.中公开的方法进行。
为了促进动物蛋白的水解,可以在水解过程中适当的加入水解促进剂,本发明对此没有特别的限定。
根据本发明提供的方法,优选地,所述助挤剂选自田菁粉、纤维素及其衍生物、淀粉及其衍生物、乙二醇和二甘醇中的至少一种。所述淀粉的衍生物可以是氧化淀粉、酯化淀粉、羧甲基淀粉、阳离子淀粉、羟烷基淀粉和多元淀粉中的一种或多种;所述纤维素的衍生物可以是纤维素醚、纤维素酯和纤维素醚酯中的一种或多种。本发明实施例中助挤剂以田菁粉为例进行示例性说明,本发明并不限于此。
根据本发明提供的方法,对所述粘合剂的种类选择范围较宽,例如可以为羟甲基纤维素、无机酸、淀粉及其衍生物、硅溶胶或铝溶胶中的至少一种。
根据本发明的方法,对将载体前驱体、发泡剂、水以及可选的助挤剂、可选的粘合剂混合的具体方式没有特别的限定,只要将载体前驱体、发泡剂、水以及可选的助挤剂、可选的粘合剂混合即可。优选地,步骤(I)所述混合包括:将载体前驱体、助挤剂混合,然后加入发泡剂、粘合剂和水,得到所述混合物。在该种优选实施方式下,先将载体前驱体、助挤剂混合,得到混合粉,然后加入发泡剂、粘合剂和水,更有利于提高制得的催化剂的催化性能。
更优选地,步骤(I)所述混合包括:将载体前驱体、助挤剂混合得到混合粉;将发泡剂、粘合剂和水发泡,得到发泡液;将所述混合粉和发泡液混合。在该种优选实施方式下,更有利于提高得到的载体制得的催化剂的催化性能。在一个变体中,可以在发泡剂中完成混合粉的发泡,然后引入水和粘合剂。
根据本发明,优选地,所述发泡剂为动物蛋白发泡剂。对所发泡剂的用量选择范围较宽,例如,相对于100g的以干基计的载体前驱体,所述发泡剂的用量为0-50mL,优选为0.1-50mL,更优选为0.5-20mL。采用该种优选实施方式,更有利于使得得到的载体兼顾较高的机械强度和较好的孔结构。
根据本发明,优选地,所述发泡剂为植物发泡剂,所述发泡剂的用量为0-5g,优选为0.1-5g。
根据本发明,优选地,相对于100g的以干基计的载体前驱体,所述助挤剂的用量为0-6g,优选为0.1-6g,优选为2-4g。
根据本发明,优选地,相对于100g的以干基计的载体前驱体,所述粘合剂的用量为0-10g,优选为0.1-10g,优选为0.5-6g。
根据本发明,所述混合物中的水作为分散介质,其用量以能够将混合物中的其余各组分混合均匀为准。
根据本发明,所述混合物中还可以可选的含有胶溶剂,优选为不含有胶溶剂。现有载体制备过程中,都需要加入胶溶剂,例如稀硝酸,而本发明提供的载体制备方法,胶溶剂可以加入,也可以不加入。
本发明对于将所述成型物进行第一焙烧的条件没有特别限定,可以为本领域的常规条件。一般地,所述第一焙烧的温度可以为350-700℃,优选为450-650℃;所述第一焙烧的时间可以为1-10小时,优选为2-6小时。所述第一焙烧可以在含氧气氛中(例如空气)进行,也可以在惰性气氛中进行。所述惰性气氛是指在干燥或焙烧条件下为非活性的气体,例如:氮气和第零族元素气体(如氩气)。
在将所述成型物进行第一焙烧之前,还可以包括将所述成型物进行干燥,所述干燥可以在本领域的常规条件下进行,例如:所述干燥的温度可以为100-200℃,所述干燥的时间可以为2-12小时。所述干燥可以在常压的条件下进行,也可以在减压的条件下进行,没有特别限定。所述干燥可以在含氧气氛中进行,也可以在惰性气氛中进行。
根据本发明提供的催化剂,所述载体的制备方法还包括:将所述混合物进行混捏,然后进行所述成型。具体地,可以将所述混合物送入挤条机中,在所述挤条机中经混捏后挤出,得到成型物。
根据本发明,通过所述成型得到内部具有贯通的孔道的成型物。只要能够得到内部具有贯通的孔道的成型物即可,对于所述成型的手段选择范围较宽。优选地,步骤(II)中所述成型在挤条机中进行,所述挤条机包括主体和挤条用孔板,所述主体设置为能够将所述混合物通过所述孔板成型;如图1-3所示,所述孔板包括:开设有成型孔2的基座1、开设有至少一个通料孔6的支架3和至少一个成型杆4;所述支架3和所述基座1上下叠设,所述成型孔2设置为与所述通料孔6 连通;所述支架3还设置有至少一个供成型杆4穿过的安装孔5,所述成型杆4设置为穿过所述成型孔2。在该种优选实施方式下,孔板的成型孔2和穿过所述成型孔2的成型杆4共同形成成型腔,物料通过所述成型腔形成相应的形状。该种优选实施方式实现了一步法加工制得具有内部孔道结构的载体,不但操作简便,且制得的载体兼具高强度和高活性金属利用率。
根据本发明,所述“挤条用”指的是所述孔板用于挤条,所述“挤条用”不对本发明所述的孔板结构起到限定作用。
根据本发明,本领域技术人员可以理解的是,所述成型孔2穿透所述基座1,并且成型杆4套设(穿过)在成型孔2内,进而能够得到具有贯通的孔道的载体。
根据本发明,所述成型杆4设置为穿过所述成型孔2,可以理解为所述成型杆4的长度满足使得所述成型杆4的一端位于基座1远离所述支架端处或者,使得所述成型杆4的一端位于基座1远离所述支架端之外。
根据本发明的一种优选实施方式,所述成型杆4的横截面积与所述成型孔2的横截面积的比值与上述的孔道的横截面积与所述载体的横截面积的比值相对应。例如为0.05-3∶100,优选为0.1-3∶100,更优选为0.2-3∶100。该种优选实施方式更有利于使得制得的载体兼具高强度和高活性金属利用率。
根据本发明,可以理解的是,成型孔2的形状实际上即为制得的载体的形状。成型孔2的形状可以根据上述关于载体的形状的描述进行选择。
根据本发明的一种优选实施方式,所述成型孔2的横截面为圆形或者多叶形。对于圆形和多叶形不做特别限定,可以根据上述关于载体的形状的描述进行选择。
本发明对所述成型孔2的尺寸选择范围较宽,本领域技术人员可以根据对于载体尺寸的要求进行适当的选择,本发明所述的载体制备方法特别适用于小尺寸载体的制备,优选地,所述成型孔2的当量直径不大于5mm,优选为不大于3mm,更优选为不大于2mm,更进一步优选为0.8-2mm。
本发明对所述成型杆4的数量选择范围较宽,其可以为1个,也 可以为两个以上,根据对于载体内部的孔道数量的要求进行适当的选择,优选地,成型杆4的数量为1-10个,更优选为1-6个。可以理解的是,所述成型杆4的数量与上述载体的孔道数量相匹配。
根据本发明,所述成型杆的设置位置与上述载体中的孔道位置相对应,在上述关于载体中的孔道位置的叙述,本领域技术人员知晓如何设置成型杆。优选地,所述成型孔2的横截面为圆形,则所述成型杆4可以沿所述圆形的圆心的中心轴延伸,如果成型杆4的数量为2个以上,不同成型杆4可以沿所述圆形的圆心的周向方向等间隔设置。根据本发明的一种优选实施方式,所述成型孔2的横截面为多叶形,所述成型杆4沿所述多叶形所在的外接圆柱的中心轴延伸和/或沿所述多叶形的各叶片所在的外接圆柱的中心轴延伸。采用该种优选实施实施,更加合理设计载体内部孔道结构的开设位置,使得孔道分布均衡,有效地避免了载体因开设中间孔道结构而造成局部强度骤降,提高了机械强度。
根据本发明的一种具体实施方式,所述安装孔5的数量与所述成型杆4的数量相等。
优选地,所述成型杆4通过所述安装孔5与所述支架3可拆卸连接。在本发明中,所述可拆卸连接使得连接的两个部件在工作时,不相互移动;而在停工时,可以满足可以拆卸、更换的要求。
所述成型杆4可以设置为各种合理形式,例如,如图3所示,成型杆4头部13安装在安装孔5中,成型杆的杆部14朝向所述成型孔的出料口方向延伸以套设(穿过)在安装孔5和成型孔2内,安装简便,成本低。
根据本发明,对于所述通料孔6的数量选择范围较宽,例如可以为1-20个,优选为2-20个。优选情况下,如图2所示,多个通料孔6之间沿所述成型杆4周向方向等间隔设置。采用该种优选实施方式,更有利于成型杆4四周进料的均匀性,成型杆4四周均匀受力,可以延长成型杆4的使用寿命。在此基础上,本领域技术人员可以根据实际情况,选择每一个成型杆4周向方向设置的通料孔6的数量。可以理解的是,通料孔6可以设置为各种合理的形式,例如,如图2所示,多个通料孔6可以跟安装孔5连通,也可以跟安装孔5隔离。
考虑到成型杆4安装在支架3的支撑结构所形成的安装孔5上, 而该支撑结构又覆盖在成型孔2的分布区域,为了能够保证原料均匀布料,为了简化支架3的加工工艺,支架3优选设置为等截面结构,使得支撑结构的厚度(指的是,沿成型孔的出料方向)能够实现最大化,增强了支撑结构承载成型孔输送物料时所施加的挤压作用,提高了成型杆的固定牢靠性。优选地,所述通料孔6的分布区域至少覆盖所述成型孔2的分布区域,使得支架3能够通过通料孔6直接向基座1的成型孔2均衡布料,有利于原料能够同时进入到成型孔2的入料口处的各个区域。此外,通料孔的整体外轮廓还可以设定为与成型孔形状相同的多叶结构。
优选地,如图3所示,所述成型杆4的伸入所述成型孔2的部分设置为等截面结构。该种优选实施方式有力地保证了制得的载体的加工形状的稳定性,有利于得到密实度高、强度高的密致型载体。
其中,成型杆4可以形成为各种合理的形状,以便于加工制成具有相应形状的孔道结构的载体。可以理解的是,所述成型杆4的伸入所述成型孔2的部分与载体中孔道的结构相对应。优选地,所述成型杆4的伸入所述成型孔2的部分设置为圆柱体。该种情况下,制得的载体能够相应地形成圆柱结构的孔道结构,使得载体的内表面更为平滑规整,避免了载体因孔道结构存在尖锐孔壁所造成的出现应力集中现象,降低了载体坍塌的几率。
进一步优选地,所述圆柱体的直径设置为不小于5μm,优选为0.01-0.5mm,进一步优选为0.05-0.3mm。
另一种优选情况下,所述成型杆4的伸入所述成型孔2的部分设置为正多面棱体。该种情况下,制得的载体能够相应地形成正多面棱体结构的孔道结构,使得载体的内表面更为规整,更有利于保证载体的受力分布更为均衡,进一步优化载体的整体强度。
进一步优选地,所述正多面棱体的所在外接圆柱的直径设置为不小于5μm,优选为0.01-0.5mm,进一步优选为0.05-0.3mm。
本发明中,正多面棱体可以设置为三棱柱、四棱柱、五棱柱等正多面棱体,则相应得到的载体的孔道的横截面相应地形成为等边三角形、正方形、正五边形等正多边形结构。
根据本发明的一种优选实施方式,所述基座1和所述支架3设置为可拆卸连接。所述可拆卸连接使得基座1和所述支架3在工作时, 不相互移动;而在停工时,可以满足可以拆卸、更换的要求。优选地,基座1与支架3之间贴合设置,以避免漏料,例如,所述基座1与支架3的贴合面上设置有第一安装结构7,支架3与基座1的贴合面上设置有与第一安装结构7适配的第二安装结构8。例如,第一安装结构7和第二安装结构8中的其中一者设置为安装槽,另一者设置为与所述安装槽适配的安装凸起。
根据本发明的一种具体实施方式,所述基座1和所述支架3具有相同的整体外轮廓。该种实施方式更便于安装操作。
根据本发明,对于所述基座1和所述支架3的高度没有特别的限定,优选地,所述基座1的高度和所述支架3的高度之比设置为1∶(0.2-5.0)。
为了便于理解,现提供一种具体的成型方式,包括:将步骤(I)得到的混合物送入挤条机中,所述挤条机包括主体和孔板,所述主体设置为能够将混合物通过所述孔板成型,所述混合物通过支架3上设置的通料孔6进入成型孔2和成型杆4形成的成型腔,以得到内部具有贯通的孔道的成型物,所述成型杆4的数量和形状与孔道的数量和形状相对应,所述成型孔2的形状和尺寸与成型物的形状和尺寸相对应。
所述挤条机的主体可以为本领域常规使用的部件,本发明在此不再赘述。
本发明中,步骤(IV)采用浸渍法向所述载体上引入金属活性组分。在一个变体中,金属活性组分选自第VIB族金属元素和第VIII族金属元素中的一种或多种。可以采用共浸渍法将第VIB族金属元素和第VIII族金属元素共同负载于载体,也可以采用分步浸渍将第VIB族金属元素和第VIII族金属元素分别负责于载体,对于第VIB族金属元素和第VIII族金属元素的引入顺序没有特别的限定。具体地,在步骤(IV)采用的金属活性组分前驱体为第VIB族金属元素的化合物和第VIII族金属元素的化合物。所述第VIB族金属元素的化合物和第VIII族金属元素的化合物可以各自根据第VIB族金属元素和第VIII族金属元素的种类进行选择。在所述第VIB族金属元素为钼和/或钨时,所述第VIB族金属元素的化合物可以为钨的化合物和/或钼的化合物。本发明中,所述第VIB族金属元素的化合物的实例可以包括但不限于:钨 酸、钼酸、偏钨酸、乙基偏钨酸、仲钼酸、钼酸铵、仲钼酸铵、偏钨酸铵和乙基偏钨酸铵中的一种或多种。在所述第VIII族金属元素为钴和/或镍时,所述第VIII族金属元素的化合物优选为以镍为阳离子的含氧酸盐、以镍为阳离子的无氧酸盐、以钴为阳离子的含氧酸盐和以钴为阳离子的无氧酸盐中的一种或多种。本发明中,所述第VIII族金属元素的化合物的实例可以包括但不限于:硝酸镍、硫酸镍、醋酸镍、碱式碳酸镍、硝酸钴、硫酸钴、醋酸钴、碱式碳酸钴、氯化镍和氯化钴中的一种或多种。
根据本发明,可以采用本领域常用的各种溶剂来配制含有金属活性组分前驱体的溶液,只要所述金属活性组分前驱体能够溶解于所述溶剂中,形成均一稳定的溶液即可。例如:所述溶剂可以为水。
在另一个变体中,所述催化剂中含有Co作为金属活性组分和第一金属助剂。相应地,根据本发明的一种优选所述方式,步骤(IV)所述溶液中还含有第一金属助剂前驱体。如上所述,第一金属助剂同样可以通过共浸渍与其他组分共同引入,也可以为采用分步浸渍,单独引入。在该变体中,金属活性组分前驱体可以为通过第二焙烧能够转化为氧化钴的物质,例如,可以为氢氧化钴、氯化钴、硫酸钴、硝酸钴、碳酸钴、碱式碳酸钴、甲酸钴、乙酸钴、草酸钴和环烷酸钴中的一种或几种。
在另一个变体中,所述催化剂中还含有第二金属助剂。相应地,根据本发明的一种优选所述方式,步骤(IV)所述溶液中还含有第二金属助剂前驱体。如上所述,第二金属助剂同样可以通过共浸渍与其他组分共同引入,也可以为采用分步浸渍,单独引入。
所述第一金属助剂前驱体和第二金属助剂前驱体可以分别为通过第二焙烧能够转化为相应第一金属助剂氧化物、第二金属助剂氧化物的物质。第一金属助剂前驱体和第二金属助剂前驱体的选择可以是本领域常规使用的前驱体,比如其可溶性盐,如硝酸盐、醋酸盐、碱式碳酸盐、盐酸盐和其可溶性络合物中的一种或几种。
所述溶液中金属活性组分前驱体、第一金属助剂前驱体和第二金属助剂前驱体的浓度根据载体吸水率以及催化剂中各组分的目标含量进行选择,为本领域技术人员所熟知。
所述浸渍的方法可以为本领域常用的各种浸渍方法,例如可以为 孔饱和浸渍法。本发明对于所述浸渍的时间和浸渍的次数没有特别限定,只要能够确保最终得到的催化剂上的金属活性组分的量满足具体的使用要求即可。一般地,所述浸渍的时间可以为0.5-12小时。
根据本发明,对于将浸渍的载体进行干燥的条件没有特别限定。一般地,所述干燥的温度可以为80-300℃,优选为100-200℃;所述干燥的时间可以为0.5-24小时,优选为1-12小时。
本发明对于将经干燥的浸渍载体进行第二焙烧的条件没有特别限定,可以为本领域的常规条件。一般地,所述第二焙烧的温度可以为350-700℃,优选为400-650℃;所述第二焙烧的时间可以为0.2-12小时,优选为1-10小时。所述第二焙烧可以在含氧气氛中进行。
本发明提供的负载型催化剂可以用于多种烃类原料的加氢反应,包括但不限于加氢脱硫、加氢脱氮、烯烃饱和、芳烃饱和、加氢裂化和加氢异构。本发明提供的催化剂也可以用作费托合成催化剂。本发明提供的负载型催化剂还可以用作氧化催化剂,用于芳构化反应、光催化反应、固载酶等。
所述烃类原料可以是各种重质矿物油或合成油或它们的混合馏分油,如直馏瓦斯油(straight run gas oil)、减压瓦斯油(vacuum gas oil)、脱金属油(demetallized oils)、常压渣油(atmospheric residue)、脱沥青减压渣油(deasphalted vacuum residue)、焦化馏出油(coker distillates)、催化裂化馏出油(cat craker distillates)、页岩油(shale oil)、沥青砂油(tar sand oil)和煤液化油(coal liquid)等。
本发明的发明人发现本发明提供的催化剂特别适用于作为加氢裂化催化剂。由此,本发明的第三方面提供本发明的负载型催化剂在加氢裂化中的应用。将本发明提供的负载型催化剂用于各种烃油进行加氢裂化,以生产具有较低沸点和较低分子量的烃类馏分。
根据本发明的第四方面,本发明提供了一种加氢裂化方法,该方法包括:在加氢裂化条件下,将烃油与加氢裂化催化剂接触,其中,所述加氢裂化催化剂为本发明提供的负载型催化剂。
所述负载型催化剂及其制备方法以及烃油的种类在前文已经进行了详细的描述,此处不再详述。
本发明的加氢裂化方法对于加氢裂化的其余条件没有特别限定,可以为本领域的常规条件。一般地,所述加氢裂化条件包括:温度可 以为200-650℃,优选为300-510℃;以表压计,压力可以为3-24兆帕,优选为4-15兆帕;氢油体积比可以为100-5000,优选200-1500;液时体积空速可以为0.1-30小时 -1,优选为0.2-5小时 -1
根据本发明,所述催化剂在用于加氢裂化前优选进行预硫化。所述预硫化的条件可以为本领域的常规条件。例如,所述预硫化的条件可以包括:在氢气存在下,于140-370℃的温度下,用硫、硫化氢或含硫原料进行预硫化。根据本发明的加氢裂化方法,所述预硫化可在反应器外进行,也可在反应器内原位硫化。所述硫化的具体条件为本领域技术人员所熟知,本发明在此不再赘述。本发明所提供的催化剂,可以直接使用,不经过预处理;也可以预先经过还原处理再使用。
本发明的发明人发现本发明提供的负载型催化剂特别适用于作为费托合成催化剂。由此,本发明的第五方面提供如上所述的负载型催化剂在费托合成反应中的应用。
本发明的第六方面提供一种费托合成的方法,该方法包括:在费托合成反应条件下,将CO和H 2与费托合成催化剂接触,所述费托合成催化剂为如上所述的负载型催化剂。
在本发明中,所述催化剂在用于费托合成反应之前,可对其进行活化处理。对所述活化处理的条件和具体操作没有特别的限定,可以按照本领域常规技术手段进行。优选地,所述活化处理包括:在氢气存在下,在120-500℃的温度下进行还原活化。这种还原活化可在器外进行也可在器内原位还原活化,将其转化为金属态的活性物质。所述活化处理的时间可以为1-10h。
在本发明中,优选地,所述费托合成的条件包括:反应温度为150-300℃,优选为170-250℃,再优选为190-230℃;反应压力为0.2-16MPa,优选为1.0-10MPa;气体空速为200-400000h -1,优选为500-100000h -1,更优选为1000-50000h -1;H 2与CO的体积比为0.8-3.6,优选为1.5-2.5,再优选为1.8-2.2。所述接触过程中还可以任选地引入惰性气体作为稀释气,例如氮气,混合气中氮气的体积含量可以为0-50体积%。
实施例
以下将通过实施例对本发明进行详细描述。
以下实施例中,BET孔容根据RIPP 151-90中规定的方法进行测定;所述吸水率为擦干吸水率,擦干吸水率为干燥的载体在室温(20-25℃)下,浸泡在去离子水中60分钟,过滤后用滤纸擦干,得到吸水后载体的质量,该质量与未吸水载体的质量差与未吸水载体的比值则为擦干吸水率;根据GB3635-1983中规定的方法在型号为QCY-602的抗破碎强度测定仪(化工部制碱研究所制造)上测定载体的径向抗破碎强度;所述催化剂的堆比按照《工业催化剂分析测试表征》(刘希尧编著,中国石化出版社,北京,1990年4月)p29页的方法测定。具体地说,本发明中,所述催化剂的堆比测试方法为:将催化剂破碎后筛取16~20目的颗粒,取500mL量筒,将筛好的颗粒倒入量筒中,称取重量G和目测体积V,催化剂的堆比=G/V。
以下制备例、实施例和对比例中,压力均以表压计,干基含量是通过将样品在600℃焙烧4小时而测定的。
部分I:涉及负载型催化剂用作加氢催化剂的情况
制备例1
(1)将干胶粉(取自催化剂长岭分公司,干基68重量%,主要物相为拟薄水铝石,下同)200.0g、HY分子筛(取自催化剂长岭分公司,干基79重量%,FAU型分子筛,下同)19.2g、田菁粉8g混合均匀,得到混合粉。将蛋清(取自新鲜鸡蛋)10mL和羟甲基纤维素1g,加水至175mL,在发泡机中发泡完成后,与混合粉混合得到混合物。
(2)将上述混合物送入挤条机中反复混捏3遍(15分钟)后采用
Figure PCTCN2020124801-appb-000001
带芯三叶形孔板挤条,孔板设置有3个成型杆(3个直径为0.1mm的圆柱体),得到的挤出条于120℃下烘干3小时后,于600℃、通空气的条件焙烧3小时得到催化剂载体SA。
该载体为三叶条形,横截面的外接圆直径为1.6mm,载体内部具有3条贯通的孔道(3条直径为0.1mm的圆柱体),所述3条圆柱形孔道分别沿三个叶片所在的外接圆的中心轴延伸。载体的横截面示意图如图4所示,载体的强度列于表1。
所述成型的具体过程如以上具体实施方式中所述,其中采用孔板进行所述成型,所述孔板包括:支架3开设有12个通料孔6,且所述孔板设置有3个成型杆4,如图5所示,每4个通料孔6沿一个成型杆 4周向方向等间隔设置;所述支架3还设置有3个供成型杆4穿过的安装孔5。所述3个成型杆4分别沿三个叶片所在的外接圆的中心轴延伸。如图5所示。
制备对比例1
(1)将干胶粉200.0g、HY分子筛19.2g、田菁粉8g混合均匀,得到混合粉。2.5mL的重量浓度为68%的硝酸加水至155mL混合均匀后加至混合粉中,混合得到混合物。将混合物送入挤条机中反复混捏3遍(15分钟)后采用
Figure PCTCN2020124801-appb-000002
三叶条形孔板挤条,得到的挤出条于120℃下烘干3小时后,于600℃、通空气的条件焙烧3小时得到实心(不具有孔道)的载体DA。
该载体为三叶条形,横截面的外接圆直径为1.6mm。载体的横截面积如图6所示。
制备例2
(1)将干胶粉200.0g、HY分子筛19.2g、田菁粉8g混合均匀,得到混合粉。将动物蛋白发泡剂(制备方法:牛蹄角20g,Ca(OH) 26g,NaHSO 32g,水200mL,水解温度80℃,水解时间6h,制得发泡液,来源:马志珺,李小云,马学雷,崔艳玲,贾永辉.蛋白质型混凝土发泡剂的研究[J].建筑科学,2009,25(05):73-76.)10mL(相等于含有牛蹄角1.0g)和羟甲基纤维素1g,加水至175mL,在发泡机中发泡完成后,与混合粉混合得到混合物。
(2)将上述混合物送入挤条机中反复混捏3遍(15分钟)后采用
Figure PCTCN2020124801-appb-000003
带芯四叶形孔板挤条,孔板设置有4个成型杆(4个直径为0.1mm的圆柱体),得到的挤出条于120℃下烘干3小时后,于600℃、通空气的条件焙烧3小时得到载体SB。
该载体为四叶条形,横截面的外接圆直径为1.6mm,载体内部具有4条贯通的孔道(4条直径为0.1mm的圆柱体),所述4条圆柱形孔道分别沿四个叶片所在的外接圆的中心轴延伸。载体的横截面示意图如图7所示,载体的强度列于表1。
制备例3
按照制备例1的方法制备载体,不同的是,蛋清的用量为5mL。且用
Figure PCTCN2020124801-appb-000004
带芯三叶形孔板挤条。该载体为三叶条形,横截面的外接圆直径为1.6mm,载体内部具有4条贯通的孔道(1条外接圆直径为 0.1mm的正三面棱体,3条直径为0.1mm的圆柱体),所述1条正三面棱形孔道沿三叶形的外接圆的中心轴延伸,所述3条圆柱形孔道分别沿三个叶片所在的外接圆的中心轴延伸。得到载体SC。载体的横截面积如图8所示。载体的强度列于表1。
制备例4
按照制备例2的方法制备载体,不同的是,动物蛋白发泡剂的用量为20mL,且采用
Figure PCTCN2020124801-appb-000005
带芯三叶形孔板挤条。该载体为三叶条形,横截面的外接圆直径为1.6mm,载体内部具有3条贯通的孔道(外接圆直径为0.1mm的正六面棱体),所述3条孔道分别沿三个叶片所在的外接圆的中心轴延伸,得到载体SD。载体的横截面积如图9所示,载体的强度列于表1。
制备例5
按照制备例1的方法,不同的是,蛋清的用量为20mL。得到载体SE,载体的强度列于表1。
制备例6
按照制备例1的方法,不同的是,使用植物发泡剂代替蛋清,具体地:
(1)将干胶粉200.0g、HY分子筛19.2g、田菁粉8g混合均匀,得到混合粉。将1.5g茶皂素(取自新沂市飞皇化工有限公司)、0.5mL重量浓度为68%的硝酸混合,加水至175mL,在发泡机中完成发泡,然后与混合粉混合得到混合物。
(2)按照制备例1的步骤(2)进行挤条,得到的挤出条于120℃下烘干3小时后,于600℃、通空气的条件焙烧3小时得到载体SF。载体的强度列于表1。
制备例7
按照制备例1的方法制备载体,不同的是,用
Figure PCTCN2020124801-appb-000006
带芯三叶形孔板挤条,孔板设置有1个成型杆(1个直径为0.2mm的圆柱体)。得到催化剂载体SG。该载体为三叶条形,横截面的外接圆直径为1.6mm,载体内部具有1条贯通的孔道(1条直径为0.2mm的圆柱形孔道),所述圆柱形孔道沿三叶形的外接圆的中心轴延伸。载体的强度列于表1。
对上述制得的载体的物化性能进行表征,结果列于下表1中。
表1
Figure PCTCN2020124801-appb-000007
注:所述占比是指差值R占载体的吸水率的比例;所述强度指的是载体的径向抗破碎强度。
实施例1-7和对比例1
本实施例用于说明采用本发明提供的催化剂的催化性能。
测定上述载体的吸水率,按照催化剂中氧化钨含量为21.5重量%、氧化镍含量为2.5重量%配制硝酸镍(分析纯,北京益利化学试剂厂)和偏钨酸铵(工业品,购自长岭催化剂厂)混合水溶液,采用孔饱和法浸渍上述制备例和制备对比例的载体。将浸渍得到的载体于120℃干燥5小时,接着于400℃焙烧3小时,分别得到催化剂CSA至CSG以及CDA。测得各催化剂的堆比列于表2。
采用一次通过流程,原料油采用茂名VGO(2011年)性质:密度(20℃)为0.9122g/cm 3,T IBP=272℃;T 50%=422℃;T FBP=536℃。
将催化剂破碎成长度范围在3-5毫米的颗粒,在200毫升固定床反应器中装入该催化剂100g,剩余空间用瓷球填满,通油前,催化剂首先在氢分压为15.0MPa,且温度为300℃的条件下采用DMDS作为硫化剂,气相硫化28小时,之后在氢分压为14.7MPa,在温度为320℃时通入原料油,氢油比为1200体积/体积,液时体积空速为0.85h -1,并在反应400小时后取样。
计算催化剂的催化活性、航煤(馏程160-250℃)收率和尾油95%温度,结果在表2中列出,其中:
活性是指馏出温度高于350℃的烃油的转化率为60%时需要的裂 化反应温度,裂化反应温度越低说明催化剂的催化活性越高;
尾油95%温度是采用模拟蒸馏曲线中,95%馏出点的馏出温度。
实施例8
按照实施例1的方法,不同的是,分别按照催化剂中氧化钼含量为16.3重量%、氧化镍含量为2.8重量%,磷含量1.1重量%配制,钼酸铵、碱式碳酸镍和磷酸的混合水溶液,然后制备得到催化剂CSH,将催化剂的性能数据列于表2。
实施例9
按照实施例1的方法,不同的是,分别按照催化剂中氧化钨含量为17.0重量%、氧化镍含量为3.0重量%配制偏钨酸铵和硝酸镍的混合水溶液,然后制备得到催化剂CSI,将催化剂的性能数据列于表2。
表2
Figure PCTCN2020124801-appb-000008
由表2数据可知,本发明提供的催化剂,具有活性高、航煤收率高,堆比低的优势。
部分II:涉及负载型催化剂用作费托合成催化剂的情况
实施例10
本实施例用于说明本发明所述的载体和催化剂的制备方法
(1)载体的制备方法
S1、将干胶粉(取自催化剂长岭分公司,干基68重量%)200.0g、田菁粉6g混合均匀,得到混合粉,将2.5mL硝酸加水至155mL混合均匀后加至上述混合粉中,得到混合物;
S2、在上述混合物在挤条机上反复捏合3遍,采用
Figure PCTCN2020124801-appb-000009
带芯三叶形孔板挤条,挤出条于120℃下烘干3小时后,于600℃、通空气的条件焙烧3小时得到催化剂载体ZA。该载体为三叶条形,横截面的外接圆直径为1.6mm,载体内部具有贯通的孔道(直径为0.1mm的圆柱形),所述孔道沿外接圆的中心轴延伸。催化剂载体ZA的横截面示意图如图10所示,其径向抗破碎强度列于表3。
所述成型的具体过程包括:采用孔板进行所述成型,所述孔板包括:开设有成型孔2的基座1(如图1所示,所述成型孔2为三叶形,外接圆直径为1.6mm)、开设有三个通料孔6的支架3和一个成型杆4,如图2所示,3个通料孔6之间沿所述成型杆4周向方向等间隔设置;如图1、图2所示,所述支架3和所述基座1上下贴合叠设,所述基座1与支架3的贴合面上设置有第一安装结构7,支架3与基座1的贴合面上设置有与第一安装结构7适配的第二安装结构8,使得所述支架3和所述基座1可拆卸连接。
所述支架3还设置有一个供成型杆4(形状如图3所示)穿过的安装孔5,所述成型杆4设置为穿过所述成型孔2。所述成型杆4沿所述三叶形所在的外接圆的中心轴延伸。成型杆4的头部13安装在安装孔5中,成型杆的杆部14朝向所述成型孔的出料口方向延伸以套设(穿过)在安装孔5和成型孔2内。成型杆4插入成型孔中的部分设置为圆柱体,且圆柱体的直径为0.1mm。
(2)催化剂的制备方法
按照催化剂中氧化钴含量为30重量%配置硝酸钴(分析纯,北京益利化学试剂厂)溶液。采用孔饱和法使用硝酸钴溶液两次浸渍载体ZA,每次浸渍后在120℃下烘干3小时,再在400℃下焙烧3小时;得到催化剂ZAC。
实施例11
本实施例用于说明本发明所述的载体和催化剂的制备方法
(1)载体的制备方法
按照实施例10的方法,不同的是,用
Figure PCTCN2020124801-appb-000010
带芯三叶形孔板挤 条,孔板设置有3个成型杆。得到催化剂载体ZB。该载体为三叶条形,横截面的外接圆直径为1.6mm,载体内部具有3条贯通的孔道(直径为0.1mm的圆柱形),所述3条孔道分别沿三个叶片所在的外接圆的中心轴延伸。催化剂载体ZB的横截面示意图如图11所示,催化剂载体ZB的径向抗破碎强度列于表3。
所述成型的具体过程按照实施例10进行,不同的是,支架3开设有12个通料孔6,且所述孔板设置有3个成型杆4,如图6所示,每4个通料孔6沿一个成型杆4周向方向等间隔设置;所述支架3还设置有3个供成型杆4穿过的安装孔5。所述3个成型杆4分别沿三个叶片所在的外接圆的中心轴延伸。
(2)催化剂的制备方法
所述催化剂的制备方法如实施例10所述,不同的是,将载体替换为催化剂载体ZB。得到催化剂ZBC。
实施例12
本实施例用于说明本发明所述的载体和催化剂的制备方法
(1)载体的制备方法
按照实施例11的方法,不同的是,用
Figure PCTCN2020124801-appb-000011
带芯三叶形孔板挤条,孔板设置有3个成型杆。得到催化剂载体ZC。该载体为三叶条形,横截面的外接圆直径为1.6mm,载体内部具有3条贯通的孔道(外接圆直径为0.1mm的正六面棱体),所述3条孔道分别沿三个叶片所在的外接圆的中心轴延伸。催化剂载体ZC的横截面示意图如图12所示,催化剂载体ZC的径向抗破碎强度列于表3。
所述成型的具体过程按照实施例11进行,不同的是,3个成型杆4的形状均为外接圆直径为0.1mm的正六面棱体。
(2)催化剂的制备方法
所述催化剂的制备方法如实施例10所述,不同的是,将载体替换为催化剂载体ZC。得到催化剂ZCC。
实施例13
本实施例用于说明本发明所述的载体和催化剂的制备方法
(1)载体的制备方法
按照实施例11的方法,不同的是,用
Figure PCTCN2020124801-appb-000012
带芯三叶形孔板挤条,孔板设置有4个成型杆(1个为外接圆直径为0.1mm的正三面棱 体,3个为直径为0.1mm的圆柱体)。得到催化剂载体ZD。该载体为三叶条形,横截面的外接圆直径为1.6mm,载体内部具有4条贯通的孔道(1条外接圆直径为0.1mm的正三面棱体,3条直径为0.1mm的圆柱体),所述1条正三面棱形孔道沿三叶形的外接圆的中心轴延伸,所述3条圆柱形孔道分别沿三个叶片所在的外接圆的中心轴延伸。催化剂载体ZD催化剂载体的横截面示意图如图13所示,催化剂载体ZD的径向抗破碎强度列于表3。
(2)催化剂的制备方法
按照实施例10所述的催化剂的制备方法制备得到催化剂ZDC。
实施例14
本实施例用于说明本发明所述的载体和催化剂的制备方法
(1)载体的制备方法
按照实施例11的方法,不同的是,用
Figure PCTCN2020124801-appb-000013
带芯四叶形孔板挤条,孔板设置有4个成型杆(4个直径为0.1mm的圆柱体)。得到催化剂载体ZE。该载体为四叶条形,横截面的外接圆直径为1.6mm,载体内部具有4条贯通的孔道(4条直径为0.1mm的圆柱体),所述4条圆柱形孔道分别沿四个叶片所在的外接圆的中心轴延伸。催化剂载体ZE催化剂载体的横截面示意图如图14所示,催化剂载体ZE的径向抗破碎强度列于表3。
(2)催化剂的制备方法
按照实施例10所述的催化剂的制备方法制备得到催化剂ZEC。
实施例15
本实施例用于说明本发明所述的载体和催化剂的制备方法
(1)载体的制备方法
按照实施例11的方法,不同的是,用
Figure PCTCN2020124801-appb-000014
带芯四叶形孔板挤条,孔板设置有5个成型杆(5个为直径为0.1mm的圆柱体)。得到催化剂载体ZF。该载体为四叶条形,横截面的外接圆直径为1.6mm,载体内部具有5条贯通的孔道(5条直径为0.1mm的圆柱形孔道),1条圆柱形孔道沿四叶形的外接圆的中心轴延伸,4条圆柱形孔道分别沿四个叶片所在的外接圆的中心轴延伸。催化剂载体ZF催化剂载体的横截面示意图如图15所示,催化剂载体ZF的径向抗破碎强度列于表3。
(2)催化剂的制备方法
按照实施例10所述的催化剂的制备方法制备得到催化剂ZFC。
实施例16
按照实施例10的方法,不同的是,用
Figure PCTCN2020124801-appb-000015
带芯三叶形孔板挤条,孔板设置有1个成型杆(1个为直径为0.2mm的圆柱体)。得到催化剂载体ZG。该载体为三叶条形,横截面的外接圆直径为1.6mm,载体内部具有1条贯通的孔道(1条直径为0.2mm的圆柱形孔道),所述圆柱形孔道沿三叶形的外接圆的中心轴延伸。催化剂载体ZG的径向抗破碎强度列于表3。
(2)催化剂的制备方法
按照实施例10所述的催化剂的制备方法制备得到催化剂ZGC。
实施例17
(1)按照实施例10步骤(1)制备载体。
(2)催化剂的制备
按照催化剂中Ru含量为0.3重量%、氧化钴含量为35重量%配置氯化钌和硝酸钴的混合溶液。采用孔饱和法使用氯化钌和硝酸钴的混合溶液两次浸渍载体ZA,每次浸渍后在120℃下烘干3小时,再在400℃下焙烧3小时,得到催化剂ZHC。
实施例18
(1)按照实施例10步骤(1)制备载体。
(2)催化剂的制备
按照催化剂中Ru含量为0.2重量%、氧化钴含量为25重量%、氧化镁含量为5重量%配置氯化钌、硝酸钴和氯化镁的混合溶液。采用孔饱和法使用氯化钌、硝酸钴和氯化镁的混合溶液两次浸渍载体ZA,每次浸渍后在120℃下烘干3小时,再在400℃下焙烧3小时,得到催化剂ZIC。
对比例2
本对比例用于说明参比的载体和催化剂的制备方法
(1)载体的制备方法
按照实施例10的方法,不同的是,成型过程中采用常规孔板,得到实心(不具有孔道)的催化剂载体DA。催化剂载体DA-2为三叶条形,横截面的外接圆直径为1.6mm,催化剂载体DA-2的横截面示意图如图16所示,催化剂载体DA-2的径向抗破碎强度列于表3。
(2)对比催化剂的制备方法
按照实施例10所述的催化剂的制备方法制备得到对比催化剂DAC-2。
测试例
本测试例用于说明如上获得的催化剂在费托合成反应中的性能
(1)催化剂的活化
在微反固定床反应器中分别装入如上制得的催化剂5ml,其余部分用石英砂填充。催化剂首先采用氢气进行还原活化,在压力为0.1MPa,空速为1000h -1,温度为400℃的条件下还原5小时。
(2)催化剂的费托合成活性评价
费托合成反应采用一次通过流程,反应温度为210℃,反应压力2.5MPa,合成气气体空速2000h -1,合成气气体体积组成H 2/CO/N 2=60/30/10,反应8小时后在线气体取样,进行计算。
以CO转化率的大小来表示催化剂的活性,以甲烷选择性和C5+烃类的选择性来表示费托合成催化剂的选择性,结果在表4中列出。
表3
实施例 载体 径向抗破碎强度/(N/mm)
实施例10 ZA 25.9
实施例11 ZB 23.8
实施例12 ZC 24.2
实施例13 ZD 22.9
实施例14 ZE 23.2
实施例15 ZF 23.7
实施例16 ZG 24.5
对比例2 DA-2 26.7
表4
编号 催化剂 CO转化率/% 甲烷选择性/% C5+烃类选择性/%
实施例10 ZAC 45.2 9.48 82.1
实施例11 ZBC 47.6 7.62 83.5
实施例12 ZCC 48.7 7.02 84.2
实施例13 ZDC 53.5 6.12 86.9
实施例14 ZEC 51.0 6.82 85.2
实施例15 ZFC 52.4 6.45 86.1
实施例16 ZGC 49.3 7.12 84.3
实施例17 ZHC 67.6 6.56 85.1
实施例18 ZIC 58.5 6.72 83.9
对比例2 DAC-2 37.6 13.3 76.4
通过表4的结果可以看出,与对比例2相比,本发明提供的催化剂具有明显更高的费托合成活性和C5+烃类选择性,且具有更低的甲烷选择性。
部分III:涉及在载体中引入孔道的直径对载体径向抗破碎强度的影响
按照实施例10的方法,不同的是,用
Figure PCTCN2020124801-appb-000016
带芯圆形孔板挤条,孔板设置有1个成型杆。成型杆设置为直径分别0,0.1mm,0.2mm,0.3mm,0.5mm,0.7mm和1mm的圆柱体,得到一系列催化剂载体Z0-Z6。载体Z0-Z6为圆柱条形,横截面的直径为1.6mm,载体内部具有1条贯通的孔道(呈直径分别为0,0.1mm,0.2mm,0.3mm,0.5mm,0.7mm和1mm的圆柱形),所述孔道沿圆柱条的中心轴延伸。测试催化剂载体Z0-Z6的径向抗破碎强度,并记录径向发生约0.17mm形变(时施加在催化剂载体上的压力。观察到,当所测试的载体催化剂的形变超过约0.17mm时发生破碎,因此将此时施加在催化剂载体上的压力记为破碎压力。将具有贯通的孔道的载体的数据与无贯通的孔道的载体的数据之比,即对Z1-Z6中的每一个测得的破碎压力相对于对Z1测得的破碎压力的比,作为压碎强度保留率。相关测试结果列于表5。
表5
Figure PCTCN2020124801-appb-000017
根据上述数据作图,结果如图17显示。上述结果表明,当孔道横截面积与载体横截面积的比小于等于3:100时,载体的强度降低小于约10%。
上述实施例的结果显示,通过控制载体孔道横截面积与载体横截面积的比小于等于3∶100,使得相应的负载型催化剂能兼顾高强度和高催化活性。由此获得的催化剂将适合用于固定床反应器,特别用于微反应器、微通道反应器、微化工反应器或介观反应器中。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (18)

  1. 一种负载型催化剂,该催化剂包括载体和负载在载体上的金属活性组分,
    其中所述金属活性组分选自第VIB族金属元素和第VIII族金属元素中的至少一种;
    其中所述载体含有耐热无机氧化物和分子筛中的至少一种;
    其中所述载体内部具有贯通的孔道,所述孔道的横截面积与所述载体的横截面积的比值为0.05-3∶100;并且
    其中该载体的吸水率与BET孔容的差值R不低于0.2mL/g。
  2. 根据权利要求1所述的催化剂,其中,所述第VIB族金属元素为Mo和/或W,所述第VIII族金属元素为Co和/或Ni;并且
    其中,以催化剂的总量为基准,以氧化物计,所述第VIB族金属元素的含量为10-35重量%,所述第VIII族金属元素的含量为2-15重量%,所述载体的含量为50-88重量%。
  3. 根据权利要求1所述的催化剂,其中,所述耐热无机氧化物选自氧化铝、氧化硅、氧化钛、氧化镁、氧化锆、氧化钍和氧化铍中的至少一种,优选为氧化铝、氧化硅、氧化钛和氧化锆中的至少一种;
    所述分子筛包含十元环硅铝分子筛、十二元环硅铝分子筛、十四元环硅铝分子筛和十八元环硅铝分子筛中的至少一种,优选选自ZRP分子筛、Y分子筛、beta分子筛、丝光沸石,ZSM-5分子筛、MCM-41分子筛、Ω分子筛、ZSM-12分子筛和MCM-22分子筛中的至少一种,更优选为Y分子筛、beta分子筛、ZSM-5和丝光沸石中的至少一种;并且
    以载体的总量为基准,耐热无机氧化物的含量为1-99重量%,并且分子筛的含量为1-99重量%。
  4. 根据权利要求1所述的催化剂,其中,所述金属活性组分为第VIII族金属元素中的至少一种,优选为Ni、Fe和Co中的至少一种,更优选为Co。
  5. 根据权利要求4所述的催化剂,其中,催化剂还含有负载在所述载体上的第一金属助剂,其中所述第一金属助剂选自过渡金属中的至少一种,优选选自Cu、Ru、Rh、Re、Pd和Pt中的至少一种。
  6. 根据权利要求4或5所述的催化剂,其中金属活性组分为Co,并且
    其中以催化剂的总量为基准,以氧化物计,Co的含量为5-80重量%,优选为20-40重量%;并且
    以催化剂的总量为基准,以氧化物计,所述第一金属助剂的含量为0-40重量%,更优选为0.1-20重量%。
  7. 根据权利要求4或5所述的催化剂,其中,催化剂还含有负载在所述载体上的第二金属助剂,其中所述第二金属助剂选自碱金属和碱土金属中的至少一种,优选为Na、K、Mg和Ca中的至少一种;
    优选地,以催化剂的总量为基准,以氧化物计,所述第二金属助剂的含量为0-20重量%,优选为1-20重量%,更优选为2-10重量%。
  8. 根据权利要求1-7中任意一项所述的催化剂,其中,
    所述载体为球形和/或条形,优选为条形,进一步优选为多叶条形;
    优选地,所述载体的当量直径不大于5mm,优选为不大于3mm,更优选为不大于2mm,更进一步优选为0.8-2mm;
    优选地,所述孔道为等截面的通道,进一步优选地,所述孔道为圆柱体和/或正多面棱体;进一步优选地,所述圆柱体的直径和正多面棱体的外接圆直径各自独立地为0.01-0.5mm,进一步优选为0.05-0.3mm。
  9. 根据权利要求1-7中任意一项所述的催化剂,其中,所述载体的径向抗破碎强度为14-30N/mm,优选为18-26N/mm;优选地,所述催化剂的堆比为0.5-1g/mL,进一步优选为0.6-0.9g/mL。
  10. 根据权利要求1-7中任意一项所述的催化剂,其中,所述孔道的数量为1-10条,优选为1-6条;
    优选地,所述载体的横截面为圆形,所述孔道沿圆柱形载体的中心轴延伸和/或沿所述中心轴的周向等间隔设置;优选地,所述载体的横截面为多叶形,所述孔道沿多叶形所在的外接圆柱的中心轴延伸和/或沿所述多叶形的各叶片所在的外接圆柱的中心轴延伸。
  11. 权利要求1-10中任意一项所述的催化剂的制备方法,所述方法包括:
    (I)将载体前驱体、水以及可选的发泡剂、可选的助挤剂、可选的粘合剂混合得到混合物;
    (II)将所述混合物进行成型,以得到内部具有贯通的孔道的成型物;
    (III)将步骤(II)得到的成型物进行第一焙烧,以得到载体;
    (IV)采用含有金属活性组分的前驱体的溶液浸渍步骤(III)得到的载体,然后进行干燥和第二焙烧。
  12. 根据权利要求11所述的方法,其中,所述发泡剂为动物蛋白发泡剂和/或植物发泡剂,优选为动物蛋白发泡剂;优选地,所述动物蛋白发泡剂选自动物蹄角发泡剂、动物毛发发泡剂和动物血胶发泡剂中的至少一种;
    所述助挤剂选自田菁粉、纤维素及其衍生物、淀粉及其衍生物、乙二醇和二甘醇中的至少一种;
    所述粘合剂选自羟甲基纤维素、无机酸、淀粉及其衍生物、硅溶胶或铝溶胶中的至少一种;并且
    相对于100g的以干基计的载体前驱体,所述发泡剂的用量为0-50mL,优选0.1-50mL,更优选为0.5-20mL;相对于100g的以干基计的载体前驱体,所述助挤剂的用量为0.1-6g;并且相对于100g的以干基计的载体前驱体,所述粘合剂的用量为0.1-10g。
  13. 根据权利要求11所述的方法,其中,所述第一焙烧的条件包括:温度为350-700℃,优选为450-650℃;时间为1-10小时,优选为2-6小时;
    所述干燥的温度为80-300℃,优选为100-200℃;所述干燥的时间为0.5-24小时,优选为1-12小时;并且
    所述第二焙烧的温度为350-700℃,优选为400-650℃;所述第二焙烧的时间为0.2-12小时,优选为1-10小时。
  14. 根据权利要求11所述的制备方法,其中,所述金属活性组分的前驱体选自氢氧化钴、氯化钴、硫酸钴、硝酸钴、碳酸钴、碱式碳酸钴、甲酸钴、乙酸钴、草酸钴和环烷酸钴中的一种或几种;
    优选,步骤(IV)中的所述溶液还含有第一金属助剂前驱体;
    更优选,步骤(IV)中的所述溶液还含有第二金属助剂前驱体。
  15. 权利要求1-10中任意一项所述的负载型催化剂在加氢裂化中的应用。
  16. 一种加氢裂化方法,该方法包括:在加氢裂化条件下,将烃 油与加氢裂化催化剂接触,其中,所述加氢裂化催化剂为权利要求1-10中任意一项所述的负载型催化剂。
  17. 权利要求4-10中任意一项所述的负载型催化剂在费托合成反应中的应用。
  18. 一种费托合成的方法,其特征在于,该方法包括:在费托合成反应条件下,将CO和H 2与催化剂接触,其中所述催化剂为权利要求4-10中任意一项所述的负载型催化剂。
PCT/CN2020/124801 2019-10-31 2020-10-29 负载型催化剂及其制备方法和应用 WO2021083270A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022525358A JP2022554292A (ja) 2019-10-31 2020-10-29 担持触媒、その調製方法およびその適用
CA3159650A CA3159650A1 (en) 2019-10-31 2020-10-29 Supported catalyst, preparation method therefor and application thereof
EP20881937.5A EP4052790A4 (en) 2019-10-31 2020-10-29 SUPPORTED CATALYST, PRODUCTION PROCESS THEREOF AND APPLICATION THEREOF
US17/755,555 US20220266224A1 (en) 2019-10-31 2020-10-29 Supported catalyst, preparation method therefor and application thereof
KR1020227018597A KR20220091584A (ko) 2019-10-31 2020-10-29 담지 촉매, 그 제조 방법 및 그 용도

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911055026.5A CN112742392B (zh) 2019-10-31 2019-10-31 费托合成催化剂及其制备方法和应用及费托合成的方法
CN201911053683.6A CN112742452B (zh) 2019-10-31 2019-10-31 加氢催化剂及其应用以及加氢裂化方法
CN201911055026.5 2019-10-31
CN201911053683.6 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083270A1 true WO2021083270A1 (zh) 2021-05-06

Family

ID=75715859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124801 WO2021083270A1 (zh) 2019-10-31 2020-10-29 负载型催化剂及其制备方法和应用

Country Status (6)

Country Link
US (1) US20220266224A1 (zh)
EP (1) EP4052790A4 (zh)
JP (1) JP2022554292A (zh)
KR (1) KR20220091584A (zh)
CA (1) CA3159650A1 (zh)
WO (1) WO2021083270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085337A1 (ja) * 2021-11-09 2023-05-19 国立大学法人東京農工大学 バイオジェット燃料製造方法及び該方法に用いるバイオジェット燃料製造用触媒

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1115388C (zh) 2000-09-25 2003-07-23 中国石油化工股份有限公司 一种加氢保护催化剂及其制备方法
CN1859975A (zh) 2002-06-07 2006-11-08 国际壳牌研究有限公司 用于烃合成的成型催化剂颗粒
CN101134173A (zh) 2006-08-31 2008-03-05 中国石油化工股份有限公司 一种具有特殊形状的载体、催化剂及其制备
CN101890382A (zh) 2009-05-19 2010-11-24 中国石油化工股份有限公司 一种加氢脱金属催化剂及其应用
CN101967064A (zh) * 2010-09-21 2011-02-09 哈尔滨工业大学 用蛋白质发泡法制备多孔陶瓷复合材料的方法
CN103269798A (zh) 2010-11-22 2013-08-28 南方化学知识产权有限公司 用于流通固定床反应器的成形催化剂体
CN103418441A (zh) 2012-05-17 2013-12-04 中国石油化工股份有限公司 一种加氢精制催化剂及其制备和应用
CN105233880A (zh) 2015-11-11 2016-01-13 武汉凯迪工程技术研究总院有限公司 内芯式三叶草形催化剂载体及其制备方法和应用
CN205587001U (zh) * 2016-02-29 2016-09-21 武汉凯迪工程技术研究总院有限公司 双孔心形柱状催化剂载体
CN108786928A (zh) * 2017-07-05 2018-11-13 中国石油天然气股份有限公司 一种柴油加氢催化剂载体及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0816703D0 (en) * 2008-09-12 2008-10-22 Johnson Matthey Plc Shaped heterogeneous catalysts
CA2823026C (en) * 2010-12-29 2016-05-24 Saint-Gobain Ceramics & Plastics, Inc. A multi-lobed porous ceramic body and process for making the same
US20150306581A1 (en) * 2014-04-24 2015-10-29 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst with a base extrudate having a high total nanopore volume
EP3762145A1 (en) * 2018-03-07 2021-01-13 Basf Se Shaped catalytic body in the form of a tetralobe with central passage

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1115388C (zh) 2000-09-25 2003-07-23 中国石油化工股份有限公司 一种加氢保护催化剂及其制备方法
CN1859975A (zh) 2002-06-07 2006-11-08 国际壳牌研究有限公司 用于烃合成的成型催化剂颗粒
CN101134173A (zh) 2006-08-31 2008-03-05 中国石油化工股份有限公司 一种具有特殊形状的载体、催化剂及其制备
CN101890382A (zh) 2009-05-19 2010-11-24 中国石油化工股份有限公司 一种加氢脱金属催化剂及其应用
CN101967064A (zh) * 2010-09-21 2011-02-09 哈尔滨工业大学 用蛋白质发泡法制备多孔陶瓷复合材料的方法
CN103269798A (zh) 2010-11-22 2013-08-28 南方化学知识产权有限公司 用于流通固定床反应器的成形催化剂体
CN103418441A (zh) 2012-05-17 2013-12-04 中国石油化工股份有限公司 一种加氢精制催化剂及其制备和应用
CN105233880A (zh) 2015-11-11 2016-01-13 武汉凯迪工程技术研究总院有限公司 内芯式三叶草形催化剂载体及其制备方法和应用
CN205587001U (zh) * 2016-02-29 2016-09-21 武汉凯迪工程技术研究总院有限公司 双孔心形柱状催化剂载体
CN108786928A (zh) * 2017-07-05 2018-11-13 中国石油天然气股份有限公司 一种柴油加氢催化剂载体及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU XIYAO: "Industrial Catalyst Analysis", 29 April 1990, CHINA PETROCHEMICAL PRESS, article "Testing and Characterization"
MA ZHIJUNLI XIAOYUNMA XUELEICUI YANLINGJIA YONGHUI, BUILDING SCIENCE, vol. 25, no. 05, 2009, pages 73 - 76
See also references of EP4052790A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085337A1 (ja) * 2021-11-09 2023-05-19 国立大学法人東京農工大学 バイオジェット燃料製造方法及び該方法に用いるバイオジェット燃料製造用触媒

Also Published As

Publication number Publication date
KR20220091584A (ko) 2022-06-30
EP4052790A1 (en) 2022-09-07
EP4052790A4 (en) 2023-12-27
US20220266224A1 (en) 2022-08-25
CA3159650A1 (en) 2021-05-06
JP2022554292A (ja) 2022-12-28

Similar Documents

Publication Publication Date Title
US3966644A (en) Shaped catalyst particles
CN106459783B (zh) 用于含烯烃的烃类原料的选择性加氢脱硫的催化剂及其用途
WO2021083270A1 (zh) 负载型催化剂及其制备方法和应用
EP3311917A1 (en) Support for selective synthesis of high-quality kerosene fraction from synthesis gas, catalyst thereof, and preparation method therefor
CN102553634A (zh) 一种费托合成催化剂及其应用
US6551500B1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
RU2607908C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
CN109070071A (zh) 纳米级沸石负载型催化剂和其制备方法
CN103028448B (zh) 一种催化剂及其制备方法和应用以及加氢裂化方法
CN104549345B (zh) 一种加氢裂化活性支撑剂及其制备方法
RU2623432C1 (ru) Способ приготовления носителя для катализатора гидроочистки нефтяных фракций
CN112742447B (zh) 催化剂载体及其制备方法和加氢催化剂以及加氢裂化方法
RU2815645C1 (ru) Катализатор на носителе, способ его получения и его применение
CN112742452B (zh) 加氢催化剂及其应用以及加氢裂化方法
CN109794299A (zh) 一种加氢催化剂及其制备方法、馏分油加氢精制方法
CN112742448B (zh) 催化剂载体及其制备方法
RU2708643C1 (ru) Катализатор гидроочистки бензина каталитического крекинга и способ его получения
CN112237947B (zh) 载体及其制备方法和催化剂及其制备方法以及脱蜡方法
CN103028443A (zh) 多孔载体及其制备方法和应用以及催化剂和加氢裂化方法
CN102836725A (zh) 一种加氢精制催化剂的制备方法
CN111185223B (zh) 一种重油加氢转化催化剂及其制备方法
CN103028444B (zh) 一种多孔载体及制备方法和应用以及催化剂和加氢裂化方法
CN103934019B (zh) 一种生产超清洁低凝柴油催化剂的制备及应用方法
CN104043472B (zh) 一种加氢裂化催化剂及其制备方法和应用
CN112742461A (zh) 催化剂载体及其制备方法和加氢催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525358

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3159650

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227018597

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020881937

Country of ref document: EP

Effective date: 20220531

WWE Wipo information: entry into national phase

Ref document number: 522432510

Country of ref document: SA