WO2021082262A1 - 一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法 - Google Patents

一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法 Download PDF

Info

Publication number
WO2021082262A1
WO2021082262A1 PCT/CN2019/129540 CN2019129540W WO2021082262A1 WO 2021082262 A1 WO2021082262 A1 WO 2021082262A1 CN 2019129540 W CN2019129540 W CN 2019129540W WO 2021082262 A1 WO2021082262 A1 WO 2021082262A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
stainless steel
nano structure
laser ablation
super
Prior art date
Application number
PCT/CN2019/129540
Other languages
English (en)
French (fr)
Inventor
蔡玉奎
刘战强
罗煕淳
万熠
宋清华
王兵
唐一平
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/254,325 priority Critical patent/US20210370443A1/en
Publication of WO2021082262A1 publication Critical patent/WO2021082262A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/102Pretreatment of metallic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • B05D2202/15Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/30Change of the surface
    • B05D2350/33Roughening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/02Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a matt or rough surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the invention belongs to the technical field of material surface modification, is a technology for improving the super-hydrophobic surface of stainless steel materials, and specifically relates to a composite method of nanosecond laser ablation and chemical thermal decomposition.
  • Stainless steel materials have a wide range of applications in the fields of medical equipment (such as surgical instruments, medical trays, etc.), ships (propellers, cargo holds, etc.), and aerospace (aircraft structural parts, chemical fuel pressure vessels, etc.).
  • Stainless steel itself is a hydrophilic material, and its static contact angle is less than 90°.
  • the surface of super-hydrophobic stainless steel is self-cleaning, Anti-fouling, anti-icing, rent reduction, resistance to sea water and salt spray corrosion, anti-biofilm adhesion and antibacterial fields have great application prospects.
  • Laser ablation has the characteristics of high efficiency, stability, reliability, and low cost. It is a technology for preparing superhydrophobic micro-nano structures on metal surfaces suitable for industrial application.
  • the current methods for preparing super-hydrophobic surfaces by laser include the following three: First, the method of laser processing and then standing in the air for a period of time. The principle is that the laser processing forms a micro-nano structure, and then it is placed in an air environment to gradually adsorb organic matter in the air. , Reduce the surface energy, so as to achieve super-hydrophobic surface; second, laser processing and then high-temperature treatment, the principle is to speed up the adsorption of organic matter on the surface through high temperature, and quickly reduce the surface energy to obtain a super-hydrophobic surface; methods one and two require a longer cycle Long, and the obtained super-hydrophobic properties of the surface are unstable. The third method is laser processing and then modification with fluorosilane.
  • the environmental pollution caused by fluorine and its compounds has been recognized internationally. Due to its long-lasting environmental stability and high bioaccumulation, some fluorosurfactants have been listed by the United Nations. Included in the list of persistent organic pollutants (POPs) and banned
  • the present invention provides a composite preparation method of nanosecond laser ablation and chemical thermal decomposition of superhydrophobic micro-nano structure on the surface of stainless steel.
  • a high-power laser ablation process is used to form a micro-nano structure on the surface of the stainless steel, and then use Ultrasonic vibration produces micro-droplets of stearic acid ethanol solution sprayed onto the surface of the micro-nano structure, and finally a low-power laser is used to perform secondary ablation on the surface, so that stearic acid particles are decomposed at high temperature to form carbides and solidify on the surface of the micro-nano structure.
  • the surface carbon content reduces the surface energy to realize the single-process manufacturing of super-hydrophobic micro-nano structure.
  • the invention solves the defects of long preparation period and high cost of the stainless steel super-hydrophobic micro-nano structure and the use of fluorine-containing chemical reagents to reduce surface energy.
  • a composite preparation method of nanosecond laser ablation and chemical thermal decomposition of super-hydrophobic micro-nano structure on stainless steel surface comprising:
  • the second laser ablation decomposes stearic acid
  • the invention uses nanosecond laser heat energy to decompose stearic acid into carbides. The carbides and the molten matrix are doped together under the action of the laser to increase the carbon content of the surface layer of the workpiece. The residual stearic acid is removed after ultrasonic cleaning with acetone and alcohol. The acid can still maintain the superhydrophobicity of the sample.
  • the pretreatment method in this application is not particularly limited.
  • the pretreatment includes cleaning, impurity removal, and air drying to remove oil stains, impurities, etc. on the surface of the stainless steel to ensure the subsequent laser ablation effect.
  • the laser ablation uses infrared nanosecond laser pulses. Compared with picosecond lasers, nanosecond lasers have the characteristics of high processing efficiency and low cost.
  • the parameters of the laser ablation are that the average nanosecond laser power is 5-20 W, the pulse frequency is 20-200 kHz, the scanning speed is 100-2000 mm/min, and the scanning interval is 20-100 ⁇ m.
  • the method of the present invention prepares the super-hydrophobic micro-nano structure with higher quality and efficiency, and can be completed in one procedure on a laser processing platform, shortens the process chain and reduces the preparation period.
  • the superhydrophobic surface of the micro-nano structure modified directly with stearic acid will be washed with acetone or alcohol, which will cause the stearic acid on the surface to dissolve, and the sample loses its hydrophobic properties.
  • the invention uses the thermal effect of the nanosecond laser to realize the decomposition of stearic acid, so that the carbide is firmly connected to the surface of the sample, and the stability of the hydrophobic property is increased.
  • the mass ratio of stearic acid to ethanol is 2%-4%.
  • the method for depositing stearic acid micro-nano particles is ultrasonically atomizing an ethanol solution of stearic acid, and uniformly spraying a layer of stearic acid on the surface of the workpiece.
  • the fatty acid ethanol solution has micro droplets, the ethanol evaporates, and the stearic acid micro-nano particles are deposited on the surface of the micro-nano structure.
  • the moving speed of the ultrasonic atomization device is 1000-2000mm/min, the distance from the surface of the workpiece is 25-35mm, and the distance between two sprays is 4-6mm.
  • the parameters of the secondary laser ablation are that the average laser power is 0.1 to 1 W, the pulse frequency is 20 to 200 kHz, the scanning speed is 1000 to 2000 mm/min, and the scanning interval is 20 to 100 ⁇ m.
  • a low-power laser is used to perform secondary ablation on the surface, so that the stearic acid particles are decomposed at high temperature, and the carbon element is solidified on the surface of the micro-nano structure, which increases the surface carbon content and reduces the surface energy to realize a single-process manufacturing of super-hydrophobic micro-nano structure.
  • the present invention also provides a stainless steel with a superhydrophobic micro-nano structure on the surface prepared by any of the above methods.
  • the infrared nanosecond laser used in the present invention has the characteristics of low cost and high efficiency, and is suitable for preparing large-area stainless steel super-hydrophobic surfaces.
  • the present invention utilizes the thermal effect of infrared laser ablation to realize the thermal decomposition of stearic acid particles and increase the close combination of carbon element and micro-nano structure. Even after ultrasonic cleaning with acetone and absolute ethanol for 10 minutes, its The superhydrophobic performance is still good, and the contact angle of 4 microliters of water droplets is any greater than 162°.
  • FIG. 1 is a schematic diagram of the composite preparation method of nanosecond laser ablation and chemical thermal decomposition of the superhydrophobic micro-nano structure on the surface of stainless steel in Example 1 of the present invention
  • Example 2 is a three-dimensional morphology diagram of a 316L stainless steel sample processed by the preparation method of Example 1 of the present invention
  • Figure 3 is the static contact angle of the surface of the unprocessed 316L stainless steel sample in Comparative Example 1;
  • Figure 4 shows the static contact angles of the 316L stainless steel samples processed by laser in step 1 of Comparative Example 2;
  • Figure 5 shows the static contact angle of the surface of 316L stainless steel prepared in Example 1 of the present invention.
  • the present invention proposes a composite preparation method of nanosecond laser ablation and chemical thermal decomposition of the superhydrophobic micro-nano structure on the surface of stainless steel, which includes the following steps:
  • Step (1) pretreatment, the stainless steel sample is ultrasonically cleaned with absolute ethanol to remove surface oil and impurities, and air-dried at room temperature.
  • Step (2) Place the cleaned and air-dried workpiece in step 1 on the infrared nanosecond laser processing platform; adjust the laser focus to the upper surface of the workpiece, and perform equal spacing linearity according to the laser power, frequency, scanning speed and spacing required by the experiment scanning.
  • Step (3) Configure the ethanol solution of stearic acid, pour the solution into the ultrasonic atomizer, start the ultrasonic atomizer, and evenly coat a layer of stearic acid ethanol solution microdroplets on the surface of the workpiece, and the ethanol will quickly evaporate , So that the stearic acid micro-nano particles are deposited on the surface of the micro-nano structure.
  • Step (4) Reduce the laser power, again use the program code in step 2 for laser processing, use the heat of laser ablation to decompose stearic acid, increase the surface carbon content, and reduce the surface energy.
  • Step (5) Post-processing, the samples obtained in step 4 are cleaned ultrasonically with acetone, absolute ethanol, and deionized water to remove the undecomposed stearic acid and the slag produced by laser ablation on the surface.
  • the ultrasonic cleaning time with absolute ethanol in step (1) is 5 minutes.
  • the average laser power is 20 W
  • the pulse frequency is 100 kHz
  • the scanning speed is 2000 mm/min
  • the scanning distance is 25-50 ⁇ m.
  • the mass ratio of stearic acid in absolute ethanol solution in step (3) is 2%-4%, and the mixed solution is placed in 70-90°C constant temperature water to accelerate the dissolution of stearic acid.
  • the average laser power is 0.2 W
  • the pulse frequency is 100 kHz
  • the scanning speed is 2000 mm/min
  • the scanning distance is the same as in step (2).
  • the ultrasonic cleaning time of acetone, absolute ethanol, and deionized water in step (5) is 10 minutes each.
  • Example 1 The difference between this comparative example and Example 1 is that only step (1) is adopted.
  • the contact angle of the smooth stainless steel sample of Comparative Example 1 refer to Figure 3, and the contact angle is 78°.
  • the stainless steel material used in this embodiment and the comparative example is 316L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种不锈钢超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,属于材料表面改性技术领域,解决了不锈钢超疏水表面制备周期长,工艺流程复杂的缺陷,不使用含氟化学试剂进行修饰,制备的超疏水微纳结构质量与稳定性好。其包括以下步骤:(1)不锈钢样件在无水乙醇中超声清洗,室温下风干;(2)对样件进行第一次红外纳秒激光烧蚀获得微纳结构;(3)利用超声雾化器(6),在工件表面均匀涂覆硬脂酸乙醇溶液微液滴(5);(4)对样件进行第二次红外纳秒激光烧蚀;(5)将样件分别用丙酮、无水乙醇、去离子水超声清洗10分钟,以去除表面粘附的未分解的硬脂酸和激光烧蚀产生的熔渣,得到具有稳定超疏水性质的不锈钢超疏水表面。

Description

一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法 技术领域
本发明属于材料表面改性技术领域,是不锈钢材料超疏水表面的改良技术,具体涉及一种通过纳秒激光烧蚀与化学热分解复合的方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
不锈钢材料在医疗器械(例如手术器具、医用托盘等)、船舶(螺旋桨、货舱等)、航空航天(飞机结构件、化学燃料压力容器等)等领域具有广泛的应用。不锈钢本身属于亲水材料,其静态接触角小于90°,通过在不锈钢表面制造微纳结构和采用含氟低表面能化学试剂修饰可以得到具有超疏水性质的表面,超疏水不锈钢表面在自清洁、抗污、防结冰、减租、抗海水及盐雾腐蚀、抗生物膜粘附及抗菌领域具有极大的应用前景。激光烧蚀具有高效、稳定、可靠、成本低的特点,是一种适于工业推广应用的金属表面制备超疏水微纳结构的技术。
目前激光制备超疏水表面的方法包括以下三种:一是先激光加工再空气中静置一段时间的方法,其原理在于激光加工形成微纳结构,然后放置在空气环境下逐渐吸附空气中的有机物,降低表面能,从而实现表面超疏水;二是先激光加工再进行高温处理,其原理是通过高温加快表面吸附有机物速度,快速降低表面能获得超疏水表面;方法一和二所需要的周期较长,且获得的表面超疏水性能不稳定。方法三是先激光加工再用氟硅烷修饰,而氟及其化合物引起的环境污染已经 得到国际公认,由于具有持久的环境稳定性和高的生物累积性,部分含氟表面活性剂已被联合国列入持久性有机污染物(POPs)清单,予以禁用。
发明内容
为了克服上述问题,本发明提供了一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,首先利用大功率激光烧蚀工艺在不锈钢表面形成微纳结构,然后利用超声振动产生硬脂酸乙醇溶液的微液滴喷射到微纳结构表面,最后利用小功率激光对表面进行二次烧蚀,使得硬脂酸颗粒高温分解形成碳化物固化在微纳结构表面,增加表面含碳量,降低表面能实现超疏水微纳结构的单工序制造。本发明解决了不锈钢超疏水微纳结构制备周期长、成本高和采用含氟化学试剂降低表面能的缺陷。
为实现上述技术目的,本发明采用的技术方案如下:
一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,包括:
不锈钢预处理;
对预处理后的不锈钢进行激光烧蚀,形成微纳结构;
在所述微纳结构上沉积硬脂酸微纳颗粒;
二次激光烧蚀,使硬脂酸分解;
后处理,即得。
现有的先激光加工再吸收空气中的有机物实现超疏水的方法,得到的超疏水表面可靠性较低,利用丙酮或酒精清洗会去除表面吸附的有机物,进而导致样件失去疏水性。本发明利用纳秒激光热能,使硬脂酸分解为碳化物,碳化物与熔化的基体在激光作用下掺杂在一起,增加工件表层碳含量,经丙酮、酒精超声清洗 后去除残余的硬脂酸仍然能保持样件的超疏水性。
本申请中对预处理的方法并不作特殊的限定,在一些实施例中,所述预处理包括:清洗、除杂、风干,以去除不锈钢表面的油污、杂质等,保证后续激光烧蚀效果。
在一些实施例中,所述激光烧蚀采用红外纳秒激光脉冲。相比皮秒激光器,纳秒激光器具有加工效率高、成本低的特点。
在一些实施例中,所述激光烧蚀的参数为纳秒激光平均功率为5~20W,脉冲频率为20~200kHz,扫描速度为100~2000mm/min,扫描间距为20-100μm。本发明的方法制备超疏水微纳结构更高质高效,可在激光加工平台上通过一个工序完成,缩短了工艺链,降低了制备周期。
目前直接用硬脂酸修饰微纳结构的超疏水表面经过丙酮或酒精清洗会导致表面的硬脂酸溶解,样件失去疏水性质。本发明利用纳秒激光的热效应实现硬脂酸的分解,使碳化物牢固连接在样件表面,增加了疏水性质的稳定性。
随着硬脂酸浓度的提高,硬脂酸颗粒的沉积量增大,但当硬脂酸含量达到一定浓度时,继续增大硬脂酸含量对不锈钢表面含碳量提升不大。因此,在一些实施例中,所述硬脂酸的乙醇溶液中,硬脂酸与乙醇的质量比为2%-4%。
为保证硬脂酸均匀沉积在微纳结构表面,在一些实施例中,所述沉积硬脂酸微纳颗粒的方法为将硬脂酸的乙醇溶液超声雾化,在工件表面均匀喷涂一层硬脂酸乙醇溶液微液滴,乙醇蒸发,硬脂酸微纳颗粒沉积在微纳结构表面。超声雾化装置移动速度为1000~2000mm/min,距离工件表面25~35mm,两次喷射的间距为4~6mm。
在一些实施例中,所述二次激光烧蚀的参数为激光平均功率为0.1~1W,脉 冲频率为20~200kHz,扫描速度为1000~2000mm/min,扫描间距为20-100μm。利用小功率激光对表面进行二次烧蚀,使得硬脂酸颗粒高温分解,碳元素固化在微纳结构表面,增加表面含碳量,降低表面能实现超疏水微纳结构的单工序制造。
本发明还提供了任一上述的方法制备的表面具有超疏水微纳结构的不锈钢。
本发明的有益效果在于:
(1)不锈钢样件在激光加工平台上一次装夹,就可以实现超疏水微纳结构的短工艺流程制造,无需含氟化学试剂后处理,缩短了制备周期。
(2)采用超声喷雾法将硬脂酸乙醇溶液均匀分散成微型液滴,保证了硬脂酸颗粒在微纳结构表面均匀分布。
(3)本发明采用的红外纳秒激光具有成本低廉,效率高的特点,适用于制备大面积的不锈钢超疏水表面。
(4)本发明利用红外激光烧蚀时的热效应,实现硬脂酸颗粒的热分解,增加了碳元素与微纳结构的紧密结合,即使分别用丙酮和无水乙醇超声清洗10分钟后,其超疏水性能任然较好,4微升水滴的接触角任大于162°。
(5)本申请的操作方法简单、成本低、实用性强,易于推广。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明实施例1的不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法示意图;
图2为经过本发明实施例1制备方法加工后的316L不锈钢样件的三维形貌图;
图3为对比例1未加工的316L不锈钢样件表面的静态接触角;
图4为对比例2只经过步骤1激光加工的316L不锈钢样件的静态接触角;
图5为使用本发明实施例1制备的316L不锈钢表面的静态接触角。
其中,1、红外纳秒激光脉冲,2、激光器聚焦镜,3、316L不锈钢样件,4、硬脂酸颗粒,5、硬脂酸乙醇溶液微液滴,6、超声雾化器,7、硬脂酸乙醇溶液,8、碳化物。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,针对目前表面超疏水微纳结构制备方法存在周期较长或环境污染的问题。因此,本发明提出一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,包括以下步骤:
步骤(1):预处理,将不锈钢样件使用无水乙醇在超声清洗,去除表面油污和杂质,室温下风干。
步骤(2):将步骤一中清洗风干后的工件置于红外纳秒激光加工平台上;调整激光焦点至工件上表面,按照实验所需的激光功率、频率、扫描速度和间距进 行等间距线性扫描。
步骤(3):配置硬脂酸的乙醇溶液,并将溶液倒入超声雾化器中,启动超声雾化器,在工件表面均匀涂覆一层硬脂酸乙醇溶液微液滴,乙醇迅速蒸发,从而使得硬脂酸微纳颗粒沉积在微纳结构表面。
步骤(4):减小激光功率,再次利用步骤二中的程序代码进行激光加工,利用激光烧蚀的热量实现硬脂酸的分解,增加表面碳含量,降低表面能。
步骤(5):后处理,将步骤四所得样件分别用丙酮、无水乙醇、去离子水超声清洗,以去除表面粘附的未分解的硬脂酸和激光烧蚀产生的熔渣,得到具有稳定超疏水性质的不锈钢表面。
优选的,步骤(1)中无水乙醇超声清洗时间为5分钟。
优选的,步骤(2)中激光平均功率为20W,脉冲频率为100kHz,扫描速度为2000mm/min,扫描间距为25-50μm。
优选的,步骤(3)中硬脂酸的无水乙醇溶液质量比为2%-4%,混合后的溶液置于70-90℃的恒温水中,以加速硬脂酸的溶解。
优选的,步骤(4)中激光平均功率为0.2W,脉冲频率为100kHz,扫描速度为2000mm/min,扫描间距与步骤(2)相同。
优化的,步骤(5)中丙酮、无水乙醇、去离子水超声清洗时间各10分钟。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
实施例1·
(1)预处理,将10mm×10mm×2mm不锈钢试样在无水乙醇中超声清洗5分钟,去除表面油污和杂质,室温下风干。
(2)红外纳秒激光第一次烧蚀:参见附图1,将预处理后的工件置于红外纳秒激光加工平台上;调整激光焦点至工件上表面,设定激光平均功率为20W,脉冲频率为100kHz,扫描速度为2000mm/min,激光扫描间距为25μm。
(3)硬脂酸颗粒沉积:参见附图1,利用超声雾化装置将质量比为3%的硬脂酸的无水乙醇溶液雾化,对准样件表面均匀的喷射一层硬脂酸乙醇溶液微液滴,超声雾化装置移动速度为2000mm/min,距离工件表面30mm,两次喷射的间距为5mm。
(4)红外纳秒激光第二次烧蚀:参见附图1,激光平均功率为0.2W,脉冲频率为100kHz,扫描速度为2000mm/min,激光扫描间距为25μm。
(5)样件清洗:将所得样件分别用丙酮、无水乙醇、去离子水超声清洗10分钟,以去除表面粘附的未分解的硬脂酸和激光烧蚀产生的熔渣。实施例1制备的316L不锈钢超疏水微纳结构参见附图2,样件的接触角参见附图5,为162°。
对比例1
该对比例与实施例1的区别在于,只采用步骤(1),对比例1光滑不锈钢样件的接触角参见附图3,接触角为78°。
对比例2
该对比例与实施例1的区别在于,只采用步骤(1)、(2)、(5),缺少步骤(3)、(4)。对比例1制备的样件的接触角参见附图4,接触角为32°。
本实施例与对比例采用的不锈钢材料牌号为316L。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分 进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,其特征在于,包括:
    不锈钢预处理;
    对预处理后的不锈钢进行激光烧蚀,形成微纳结构;
    在所述微纳结构上沉积硬脂酸微纳颗粒;
    二次激光烧蚀,使硬脂酸分解;
    后处理,即得。
  2. 如权利要求1所述的不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,其特征在于,所述预处理包括:清洗、除杂、风干。
  3. 如权利要求1所述的不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,其特征在于,所述激光烧蚀采用红外纳秒激光脉冲。
  4. 如权利要求1所述的不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,其特征在于,所述激光烧蚀的参数为纳秒激光平均功率为5~20W,脉冲频率为20~200kHz,扫描速度为100~2000mm/min,扫描间距为20-100μm。
  5. 如权利要求1所述的不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,其特征在于,所述沉积硬脂酸微纳颗粒的方法为将硬脂酸的乙醇溶液超声雾化,在工件表面均匀涂覆一层硬脂酸乙醇溶液微液滴,乙醇蒸发,硬脂酸微纳颗粒沉积在微纳结构表面。
  6. 如权利要求1所述的不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,其特征在于,所述硬脂酸的乙醇溶液中,硬脂酸与乙醇的质量比为2%~4%。
  7. 如权利要求1所述的不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,其特征在于,超声雾化装置移动速度为1000~2000mm/min,距离工件表面25~35mm,两次喷射的间距为4~6mm。
  8. 如权利要求1所述的不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法,其特征在于,所述二次激光烧蚀的参数为激光平均功率为0.1~1W,脉冲频率为20~200kHz,扫描速度为1000~2000mm/min,扫描间距为20-100μm。
  9. 权利要求1-8任一项所述的方法制备的表面具有超疏水微纳结构的不锈钢。
  10. 权利要求9所述的表面超疏水微纳结构的不锈钢在医疗器械、船舶、航空航天领域中的应用。
PCT/CN2019/129540 2019-10-31 2019-12-28 一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法 WO2021082262A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/254,325 US20210370443A1 (en) 2019-10-31 2019-12-28 Nanosecond laser ablation and chemical thermal decomposition combined method for preparing super-hydrophobic micro-nano structure on stainless steel surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911063359.2 2019-10-31
CN201911063359.2A CN110653493B (zh) 2019-10-31 2019-10-31 一种不锈钢表面超疏水微纳结构的制备方法

Publications (1)

Publication Number Publication Date
WO2021082262A1 true WO2021082262A1 (zh) 2021-05-06

Family

ID=69042877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129540 WO2021082262A1 (zh) 2019-10-31 2019-12-28 一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法

Country Status (3)

Country Link
US (1) US20210370443A1 (zh)
CN (1) CN110653493B (zh)
WO (1) WO2021082262A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308657A (zh) * 2021-05-26 2021-08-27 吉林大学 一种纳秒激光辐照制备超亲水非晶合金表面的方法
CN114473227A (zh) * 2022-03-28 2022-05-13 武汉华工激光工程有限责任公司 一种不锈钢耐腐蚀黑雕的激光加工方法
CN114799528A (zh) * 2022-04-04 2022-07-29 吉林大学 一种在不规则金属表面远程快速大面积制备抗腐蚀结构的方法
CN115044903A (zh) * 2022-07-12 2022-09-13 贵州大学 耐磨蚀超疏水形状记忆合金涂层及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254433A (zh) * 2020-03-09 2020-06-09 山东大学 一种不锈钢表面的微结构-纳米氧化铜协同抗菌表面及其激光-化学复合制备方法、应用
CN111321395B (zh) * 2020-03-09 2021-07-02 山东大学 一种不锈钢表面的纳秒激光烧蚀与醋酸锌热分解复合制备抗菌表面的方法及抗菌材料与应用
CN111979557B (zh) * 2020-08-05 2022-09-13 中国人民解放军陆军装甲兵学院 一种利用脉冲激光清洗不锈钢表面形成微纳米结构层的方法
CN111993517A (zh) * 2020-08-18 2020-11-27 深圳市铭镭激光设备有限公司 木材炭化加工工艺
CN112719491B (zh) * 2021-01-20 2022-03-15 河南理工大学 一种微生物掩膜电解加工微织构的方法
CN113275223B (zh) * 2021-04-26 2022-07-15 东南大学 基于激光化学复合工艺的高粘附性超疏水表面的制备方法
CN114178795B (zh) * 2021-12-16 2023-05-23 常州大学 一种金属材料各向异性超疏水表面的制备方法
CN115008018B (zh) * 2022-04-28 2023-08-01 西安交通大学 飞秒激光复合稀土纳米修饰制备耐用超疏水表面的方法
CN115198258A (zh) * 2022-09-14 2022-10-18 吉林大学 一种低表面能修饰方式实现金属表面超疏水的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907702A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用短脉冲激光制备不锈钢超疏水自清洁表面的方法
CN104907701A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超快激光制备不锈钢超疏水自清洁表面的方法
SE1600237A1 (sv) * 2016-08-16 2016-08-17 Abb Schweiz Ag A method for creating a superhydrobic metallic surface on an industrial robot, and an industrial robot with such a superhydrophobic metallic surface
CN108515269A (zh) * 2018-04-03 2018-09-11 北京航空航天大学 一种利用皮秒激光直接制备不锈钢超疏水自清洁表面的方法
CN109954965A (zh) * 2019-03-28 2019-07-02 大族激光科技产业集团股份有限公司 通过纳秒激光进行金属表面处理的方法
CN110340532A (zh) * 2019-07-05 2019-10-18 南京理工大学 一种利用一步激光烧蚀制备金属铜超疏水表面的方法
CN110340789A (zh) * 2019-06-19 2019-10-18 哈尔滨朗昇电气股份有限公司 一种不锈钢配电柜自清洁表面的制备工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107262916B (zh) * 2017-06-20 2019-08-16 长春理工大学 铝合金表面超疏水微结构的纳秒激光二次扫描制备方法
CN109249134A (zh) * 2018-11-08 2019-01-22 江苏理工学院 一种具有耐腐蚀性能的超疏水铝表面的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907702A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用短脉冲激光制备不锈钢超疏水自清洁表面的方法
CN104907701A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超快激光制备不锈钢超疏水自清洁表面的方法
SE1600237A1 (sv) * 2016-08-16 2016-08-17 Abb Schweiz Ag A method for creating a superhydrobic metallic surface on an industrial robot, and an industrial robot with such a superhydrophobic metallic surface
CN108515269A (zh) * 2018-04-03 2018-09-11 北京航空航天大学 一种利用皮秒激光直接制备不锈钢超疏水自清洁表面的方法
CN109954965A (zh) * 2019-03-28 2019-07-02 大族激光科技产业集团股份有限公司 通过纳秒激光进行金属表面处理的方法
CN110340789A (zh) * 2019-06-19 2019-10-18 哈尔滨朗昇电气股份有限公司 一种不锈钢配电柜自清洁表面的制备工艺
CN110340532A (zh) * 2019-07-05 2019-10-18 南京理工大学 一种利用一步激光烧蚀制备金属铜超疏水表面的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAN QIAOFEI , YU YANLING , XUE WEI , CAO MENGHUI , SUN KE , CAO YU: "Technology and Mechanism Analysis on Ultrasonic Super-hydrophobic Surface by Ultraviolet Nanosecond Laser Etching", JOURNAL WENZHOU UNIVERSITY, vol. 40, no. 1, 25 February 2019 (2019-02-25), pages 55 - 62, XP055809927, ISSN: 1674-3563, DOI: 10.3875/j.issn.1674-3563.2019.01.008 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308657A (zh) * 2021-05-26 2021-08-27 吉林大学 一种纳秒激光辐照制备超亲水非晶合金表面的方法
CN114473227A (zh) * 2022-03-28 2022-05-13 武汉华工激光工程有限责任公司 一种不锈钢耐腐蚀黑雕的激光加工方法
CN114799528A (zh) * 2022-04-04 2022-07-29 吉林大学 一种在不规则金属表面远程快速大面积制备抗腐蚀结构的方法
CN115044903A (zh) * 2022-07-12 2022-09-13 贵州大学 耐磨蚀超疏水形状记忆合金涂层及其制备方法
CN115044903B (zh) * 2022-07-12 2023-05-30 贵州大学 耐磨蚀超疏水形状记忆合金涂层及其制备方法

Also Published As

Publication number Publication date
CN110653493B (zh) 2020-08-14
CN110653493A (zh) 2020-01-07
US20210370443A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2021082262A1 (zh) 一种不锈钢表面超疏水微纳结构的纳秒激光烧蚀与化学热分解复合制备方法
CN106702411B (zh) 一种利用脉冲激光清洁金属表面积碳的方法
Tong et al. Direct laser texturing technique for metal surfaces to achieve superhydrophobicity
CN110340532B (zh) 一种利用一步激光烧蚀制备金属铜超疏水表面的方法
CN103276377B (zh) 一种具有纳米孔结构的超黑涂层制备方法
CN111545750A (zh) 一种高能束3d打印散热冷板的流道粉末清除方法及产品
CN104858118A (zh) 一种光触媒家具及其涂层施工工艺
CN114535813A (zh) 一种表面润湿性可逆调控方法
WO2023134124A1 (zh) 一种轻质合金与纤维增强复合材料异质接头及制备方法
CN106862032A (zh) 一种无氟超疏水表面的制备方法
CN108635967A (zh) 一种飞秒激光表面处理的口罩滤材及防雾霾口罩
CN108191254B (zh) 一种玻璃表面多孔结构的制备方法
CN106271203B (zh) 一种药皮钎料及其制备方法
CN105986300A (zh) 自行车车架涂装方法
CN114558764A (zh) 一种高效超疏水表面制备方法
CN111254433A (zh) 一种不锈钢表面的微结构-纳米氧化铜协同抗菌表面及其激光-化学复合制备方法、应用
CN111500095A (zh) 一种新型超疏水涂层材料的制作方法及其应用
CN116140938A (zh) 一种宏微复合阵列耐磨超疏水表面的加工方法和金属件
CN100348335C (zh) 一种纳米TiO2膜的超声波雾化制备装置及工艺
CN114670430A (zh) 一种对聚芳醚复合材料进行浸润性改性的方法
CN110773871B (zh) 一种在空速管的非平表面上制备防结冰表面的制备方法
JP2001080939A (ja) 光触媒ガラスの製造装置及び製造方法
CN112221910A (zh) 一种汽车配件喷漆工艺
CN209378613U (zh) 一种防雾霾口罩
CN111074277A (zh) 一种金属调节液、复合膜液以及金属锅表面处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950346

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19950346

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19950346

Country of ref document: EP

Kind code of ref document: A1