WO2021082096A1 - 半导体纳米晶荧光材料的制备方法以及通过所述方法制备的半导体纳米晶荧光材料及其应用 - Google Patents

半导体纳米晶荧光材料的制备方法以及通过所述方法制备的半导体纳米晶荧光材料及其应用 Download PDF

Info

Publication number
WO2021082096A1
WO2021082096A1 PCT/CN2019/119224 CN2019119224W WO2021082096A1 WO 2021082096 A1 WO2021082096 A1 WO 2021082096A1 CN 2019119224 W CN2019119224 W CN 2019119224W WO 2021082096 A1 WO2021082096 A1 WO 2021082096A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
semiconductor
mesoporous
semiconductor nanocrystalline
fluorescent material
Prior art date
Application number
PCT/CN2019/119224
Other languages
English (en)
French (fr)
Inventor
李良
张庆刚
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2021082096A1 publication Critical patent/WO2021082096A1/zh
Priority to US17/338,306 priority Critical patent/US11898072B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention belongs to the technical field of semiconductor nanomaterials, and particularly relates to a preparation method of semiconductor nanocrystalline fluorescent materials, semiconductor nanocrystalline fluorescent materials prepared by using the method, and applications of the semiconductor nanocrystalline fluorescent materials.
  • Semiconductor nanocrystals are a new type of luminescent material, which has the advantages of high fluorescence quantum efficiency, adjustable luminescence color and high color purity. It has been widely studied and applied to optoelectronic devices.
  • the preparation method of semiconductor nanocrystals is to provide a specific environment that limits the growth space of the semiconductor nanocrystal precursor during the reaction process, and confines the growth of semiconductor nanocrystals, thereby having fluorescent properties.
  • most of the preparation methods of semiconductor nanocrystals are carried out in solution, such as high temperature thermal injection method, water-in-oil method, coordination synthesis method, etc.
  • the semiconductor nanocrystals synthesized by these technologies have poor stability and are easily exposed to light, heat, and moisture.
  • inorganic materials such as silicon dioxide, titanium dioxide, aluminum oxide, etc.
  • silicon dioxide, titanium dioxide, aluminum oxide, etc. are usually used to coat the semiconductor nanocrystals.
  • none of these coating technologies can completely prevent the corrosion of semiconductor nanocrystalline fluorescent materials by moisture and oxygen.
  • the light and thermal stability of semiconductor nanocrystalline fluorescent materials still cannot meet the needs of practical applications.
  • the present invention provides a method for preparing semiconductor nanocrystalline fluorescent materials, by which the semiconductor nanocrystals can be encapsulated in the inside of the micro/mesoporous material, thereby making the obtained semiconductor nanocrystals more stable.
  • the method (hereinafter also referred to as the method of the present invention) includes the following steps:
  • the one or more semiconductor nanocrystalline precursors and the micro/mesoporous material can be uniformly mixed through liquid phase mixing or solid phase mixing.
  • the method of the present invention uses semiconductor nanocrystal precursors with the general formulas AX and BX 2 , wherein A is selected from Cs, Rb, K, Ca, Sr, Ba and combinations thereof, preferably A is selected from Cs, Rb , K and combinations thereof, more preferably A is Cs, Rb or K; B is selected from Pb, Zn, Ca, Sr, Ba, Al, Ga, In, Ge, Sn, Cu, Mn, Sb, Bi and combinations thereof, Preferably B is selected from Pb, Zn, Ca, Sr, Ba, Sn, Cu, Mn, Sb, Bi and combinations thereof, more preferably B is Pb, Zn, Ca or Ba; X is selected from Cl, Br, I and combinations thereof , Preferably X is Cl, Br or I.
  • the one or more semiconductor nanocrystal precursors used in the method of the present invention are two nanocrystal precursors, which are 1 AX precursor and 1 BX 2 respectively.
  • the precursor, the molar ratio of the AX precursor to the BX 2 precursor is 1:1, wherein A is Cs, Rb or K, B is Pb, Zn, Ca or Ba; X is Cl, Br or I.
  • the one or more semiconductor nanocrystal precursors used in the method of the present invention are three nanocrystal precursors, which are 1 AX precursor and 1 B ⁇ X. 2 precursor and 1 BX 2 precursor, the molar ratio of the AX precursor, B ⁇ X 2 precursor and BX 2 precursor is 1:0.5:0.5, where A is Cs, Rb or K; B ⁇ and B are different, And each independently is Pb, Zn, Ca or Ba; X is Cl, Br or I.
  • the method of the present invention adopts two different nanocrystalline precursors, cationic precursors and anionic precursors, and the molar ratio of the cationic precursors and anionic precursors is 1:1, wherein the cationic precursors are used for Provide cation D n+ for the target nanocrystal, where n is an integer of 1-10, which is selected from the following metal hydrochlorides, nitrates, sulfates, bisulfates, carbonates, bicarbonates and their hydrates : Zn, Cd, Hg, Pb, Sn, Ga, In, Ca, Ba, Cu, W and Mo; the anion precursor is used to provide anion Y n- for the target nanocrystal, where n is an integer of 1-10, which Elementary substances and inorganic salts selected from S, Se, Te, N, P, Sb, As.
  • the cationic precursor is selected from the hydrochloride, nitrate and hydrates of Zn, Cd and Hg; the anionic precursor is selected from the elemental and inorganic salts of S, Se, Te.
  • the method of the present invention uses three different nanocrystal precursors, where the first precursor is a group IB metal compound, which is used to provide the target nanocrystal with a +1 valent cation, preferably a halide, such as chlorine. Compounds, bromides or iodides; the second precursor is an organic acid salt of group IIIA metals, which is used to provide +3-valent cations for the target nanocrystal, such as formate, acetate or propionate; the third The precursor is an inorganic acid salt of group VIA elements, used to provide the target nanocrystal with -2 valent anions, and the molar ratio of the first precursor, the second precursor, and the third precursor is 0.5:0.5: 1.
  • the first precursor is a group IB metal compound, which is used to provide the target nanocrystal with a +1 valent cation, preferably a halide, such as chlorine.
  • the second precursor is an organic acid salt of group IIIA metals, which is used to
  • the first precursor is selected from CuCl, CuBr, CuI, AgCl, AgBr, AgI, and combinations thereof;
  • the second precursor is selected from formate and acetic acid of the following metals Salt and propionate: In, Ga, Al, such as In(C 2 H 3 O 2 ) 3 , Ga(C 2 H 3 O 2 ) 3 or Al(C 2 H 3 O 2 ) 3, etc.;
  • the third precursor is selected from inorganic acid salts of S and inorganic acid salts of Se, such as Na 2 S, K 2 S, Na 2 Se or K 2 Se, etc., the first precursor and the second precursor
  • the molar ratio of the precursor to the third precursor is 0.5:0.5:1.
  • the micro/mesoporous materials include microporous materials and/or mesoporous materials, wherein the microporous materials include, but are not limited to, microporous molecular sieves, microporous silica, microporous titanium dioxide, microporous Porous alumina, microporous transition metal oxides, microporous sulfides, silicates, aluminates, transition metal nitrides and any combination thereof.
  • the mesoporous materials include, but are not limited to, mesoporous molecular sieves, mesoporous two Silicon oxide, mesoporous titania, mesoporous alumina, mesoporous carbon, mesoporous transition metal oxide, mesoporous sulfide, silicate, aluminate, transition metal nitride, and any combination thereof.
  • the pore diameter of the micro/mesoporous material used in the present invention is 0.5-50 nm.
  • the semiconductor nanocrystalline precursor and the micro/mesoporous material are calcined at a temperature of 300-2000°C to obtain a semiconductor nanocrystalline fluorescent material, and the calcining time is usually 10min-600min, preferably 10min ⁇ 60min.
  • the semiconductor nanocrystalline precursor and the micro/mesoporous material are calcined under a pressure of 0.1-20 MPa to prepare a semiconductor nanocrystalline fluorescent material.
  • the semiconductor nanocrystalline precursor can be loaded in the pores of the micro/mesoporous material, and the semiconductor nanocrystal can be grown by using the micro/mesoporous confinement of the material, and then calcined at high temperature
  • the high temperature can cause the pores of the micro/mesoporous material to collapse, thereby encapsulating the semiconductor nanocrystals in the pores of the micro/mesoporous material, and obtain a highly stable semiconductor nanocrystalline fluorescent material.
  • the highly stable semiconductor nanocrystalline fluorescent material can effectively block the corrosion of the semiconductor nanocrystalline fluorescent material by moisture, oxygen, and light, and improve the stability of the semiconductor nanocrystalline fluorescent material.
  • the present invention also provides a semiconductor nanocrystalline fluorescent material prepared by applying the method of the present invention.
  • the semiconductor nanocrystalline fluorescent material prepared by the preparation method of the present invention has a nanocrystalline structure of perovskite structure ABX 3 , wherein A is selected from Cs, Rb, K, Ca, Sr, Ba and combinations thereof , Preferably A is selected from Cs, Rb, K and combinations thereof, more preferably A is Cs, Rb or K; B is selected from Pb, Zn, Ca, Sr, Ba, Al, Ga, In, Ge, Sn, Cu, Mn , Sb, Bi and combinations thereof, preferably B is selected from Pb, Zn, Ca, Sr, Ba, Sn, Cu, Mn, Sb, Bi and combinations thereof, more preferably B is Pb, Zn, Ca or Ba; X is selected from Cl, Br, I and combinations thereof, preferably X is Cl, Br or I.
  • the semiconductor nanocrystalline fluorescent material prepared by the preparation method of the present invention has a nanocrystalline structure of the perovskite structure ABX 3 , wherein the molar ratio of the elements A, B and X is 1:1:3 , And A is Cs, Rb or K, B is Pb, Zn, Ca or Ba; X is Cl, Br or I.
  • the semiconductor nanocrystalline fluorescent material prepared by the preparation method of the present invention has a nanocrystalline structure of a perovskite structure ABX 3 modified with a halide B ⁇ X 2 , wherein A, B ⁇ , B and X
  • A, B ⁇ , B and X The molar ratio of is 1:0.5:0.5:3, and A is Cs, Rb or K; B'and B are different, and each independently is Pb, Zn, Ca or Ba; X is Cl, Br or I.
  • the semiconductor nanocrystalline fluorescent material prepared by the preparation method of the present invention has a nanocrystalline structure of binary structure D n+ Y n- , where n is an integer of 1-10, and the molar ratio of D to Y 1:1, where D is selected from the following metals: Zn, Cd, Hg, Pb, Sn, Ga, In, Ca, Ba, Cu, W and Mo; Y is selected from S, Se, Te, N, P, Sb And As.
  • the semiconductor nanocrystalline fluorescent material prepared by the preparation method of the present invention has a nanocrystalline structure of binary structure D n + Y n- , where n is an integer of 1-10, and the elements D and Y are The molar ratio is 1:1, and D is selected from Zn, Cd and Hg; Y is selected from S, Se and Te.
  • the semiconductor nanocrystalline fluorescent material prepared by the preparation method of the present invention has a nanocrystalline structure of the ternary compound type of group IB-IIIA-VIA, and the general formula G + M 3+ (N 2- ) can be used.
  • G + is the +1 valent cation of the IB group metal element
  • M 3+ is the +3 valent cation of the IIIA group element
  • N 2- is the -2 valent anion of the VIA group element
  • G + , M 3+ The molar ratio with N 2- is 0.5:0.5:1.
  • the semiconductor nanocrystalline fluorescent material prepared by the preparation method of the present invention has a nanocrystalline structure of the ternary compound type of group IB-IIIA-VIA, and the general formula G + M 3+ (N 2- ) 2 means, where G + is Cu + or Ag + ; M 3+ is In 3+ , Ga 3+ or Al 3+ ; N 2- is S 2- or Se 2- , and G + , M 3+ and The molar ratio of N 2- is 0.5:0.5:1.
  • the present invention provides an LED device including the semiconductor nanocrystalline fluorescent material of the present invention.
  • the present invention provides a color conversion panel or display device, which includes the semiconductor nanocrystalline fluorescent material of the present invention.
  • the present invention provides a fluorescent scintillator, which is the semiconductor nanocrystalline fluorescent material of the present invention.
  • the present invention provides a biological detection or imaging device, which includes the semiconductor nanocrystalline fluorescent material of the present invention.
  • the fluorescent material of the present invention has the advantages of narrow half-value width, high color purity, adjustable luminous range, water resistance, heat resistance, light stability, no rare earth materials, low cost and the like.
  • FIG. 1a is a TEM image of a CsPbBr 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 1.
  • FIG. 1a is a TEM image of a CsPbBr 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 1.
  • Figure 1b is a mapping diagram of the CsPbBr 3 nanocrystals prepared in Example 1.
  • Figure 2 is an optical photograph (yellow powder) of the CsPbBr 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 1.
  • Example 3 is the XRD pattern of the CsPbBr 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 1.
  • FIG. 4 is a photoluminescence comparison diagram of the CsPbBr 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 1 and a commercial green phosphor.
  • FIG. 5 is a comparison diagram of the stability of the CsPbBr 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 1 and other phosphors and semiconductor nanocrystalline under a 20mA current light aging test.
  • Figure 6 shows the stability of the CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor and other phosphors and semiconductor nanocrystals prepared in Example 1 under the light aging test at 85°C, 85% relative humidity and 20mA current Sexual comparison chart.
  • Figure 7 shows the fluorescence changes of the CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 1 soaked in 1 mol/L hydrochloric acid solution for 0 days and 50 days (left image) and optical photo comparison diagram (Picture on the right).
  • Example 8 is an optical photograph of the ZnBr 2 modified CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 7.
  • Example 9 is an optical photo of the CaBr 2 modified CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 8.
  • Example 10 is an optical photograph of the BaBr 2 modified CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 9.
  • FIG. 11a is an optical photograph of the CdSe/mesoporous molecular sieve nanocrystalline phosphor prepared in Example 11.
  • FIG. 11a is an optical photograph of the CdSe/mesoporous molecular sieve nanocrystalline phosphor prepared in Example 11.
  • FIG. 11b is an XRD pattern of the CdSe/mesoporous molecular sieve nanocrystalline phosphor prepared in Example 11.
  • FIG. 12a is an optical photograph of CuInS 2 /mesoporous molecular sieve nanocrystalline phosphor prepared in Example 14.
  • FIG. 12a is an optical photograph of CuInS 2 /mesoporous molecular sieve nanocrystalline phosphor prepared in Example 14.
  • Example 12b is an XRD pattern of CuInS 2 /mesoporous molecular sieve nanocrystalline phosphor prepared in Example 14.
  • Example 13 is an optical photograph of a CsPbCl 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 18.
  • Example 14 is an optical photograph of the CsPbI 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor prepared in Example 19.
  • Example 15 is an image of the CsPbBr 3 /mesoporous molecular sieve perovskite structure semiconductor nanocrystalline fluorescent film prepared in Example 20 under ultraviolet light irradiation.
  • the semiconductor nanocrystalline fluorescent material refers to a specific structure at the microscopic level, and at the same time, it can have a variety of morphological material states at the macroscopic level, such as powder state (semiconductor nanocrystalline phosphor), or film state (semiconductor nanocrystalline phosphor). Nanocrystalline fluorescent film).
  • nanocrystalline precursor refers to an existing form before the target nanocrystalline is obtained.
  • the semiconductor nanocrystalline fluorescent material is prepared by uniformly mixing the semiconductor nanocrystalline precursor and the micro/mesoporous material, and calcining under the condition of not lower than the collapse temperature of the micro/mesoporous material.
  • the semiconductor nanocrystal precursor is used as the semiconductor nanocrystal raw material, and its selection depends on the structure of the semiconductor nanocrystal to be prepared. If the semiconductor nanocrystalline structure to be prepared is the perovskite structure ABX 3 , the semiconductor nanocrystalline precursor can be selected from halide of group I element or group II element, and halide of subgroup element or group III element.
  • the semiconductor nanocrystal precursors can be AX and BX 2 , where A can be selected from Cs, Rb, K, Ca, Sr, Ba and combinations thereof, preferably A is selected from Cs, Rb, K and combinations thereof, more Preferably A is Cs, Rb or K; B can be selected from Pb, Zn, Ca, Sr, Ba, Al, Ga, In, Ge, Sn, Cu, Mn, Sb, Bi and combinations thereof, preferably B is selected from Pb, Zn, Ca, Sr, Ba, Sn, Cu, Mn, Sb, Bi and combinations thereof, more preferably B is Pb, Zn, Ca or Ba; X can be selected from Cl, Br, I and combinations thereof, preferably X is Cl , Br or I.
  • the semiconductor nanocrystalline precursor can also be a mixture of AX and BX 2.
  • the nanocrystalline precursor can be selected to provide cations D n+ for the target nanocrystal.
  • the anion precursor is selected from elemental and inorganic salts of S, Se, Te, N, P, Sb, and As.
  • the nanocrystal precursor can be selected from: IB used to provide the target nanocrystal with +1 valent cations Group metal compound, preferably halide, such as chloride, bromide or iodide; organic acid salt of group IIIA metal used to provide +3 valent cations for the target nanocrystal, such as formate, acetate or propionate ; And the inorganic acid salt of VIA group element used to provide -2 valent anions for the target nanocrystal.
  • the molar ratio of the IB group metal compound, the organic acid salt of group IIIA metal and the inorganic acid salt of group VIA element is 0.5:0.5:1.
  • the micro/mesoporous material includes microporous material and/or mesoporous material.
  • the selection of the micro/mesoporous material depends on the size of the required pores.
  • the pore size of the micro/mesoporous material is preferably in the range of 0.5-50 nm.
  • the pore size range of the microporous material is less than 2nm, and the pore size range of the mesoporous material is generally 2nm-50nm.
  • microporous materials when only microporous materials are used, it is preferable to use microporous materials with a pore diameter in the range of 0.5-2 nm, and when only mesoporous materials are used, it is preferable to use mesoporous materials with a pore diameter in the range of 2 nm to 50 nm.
  • microporous materials and mesoporous materials are not necessarily limited to a single material.
  • the micro/mesoporous materials can be both microporous and mesoporous materials, or only microporous materials can be used.
  • mesoporous materials may include, but are not limited to, microporous molecular sieves, microporous silica, microporous titania, microporous alumina, microporous transition metal oxides, microporous sulfides, Silicates, aluminates and transition metal nitrides.
  • Mesoporous materials can include but are not limited to mesoporous molecular sieves, mesoporous silica, mesoporous titania, mesoporous alumina, mesoporous carbon, and mesoporous transition metal oxide Compounds, mesoporous sulfides, silicates, aluminates and transition metal nitrides.
  • the micro/mesoporous material has the property of collapsing under high temperature or high temperature and high pressure, so that it can firmly coat or wrap the precursor placed in the micropore or mesopore when it collapses.
  • the ratio of the total mass of all semiconductor nanocrystalline precursors to the mass of the micro/mesoporous material is preferably 1:0.05 to 1:20, preferably 1:0.5 to 1:10, more preferably It is 1:1 to 1:5, most preferably 1:3.
  • the semiconductor nanocrystalline phosphors prepared in this interval ratio can all realize the long-term stable luminescence performance of the semiconductor nanocrystalline phosphors.
  • the mixing method of the semiconductor nanocrystalline precursor and the micro/mesoporous material can be common liquid phase mixing or solid phase mixing.
  • the required semiconductor nanocrystalline precursor is uniformly dispersed in a solvent such as water to make a precursor solution or suspension, and then the micro/mesoporous material is added to the resulting precursor solution or mixture.
  • a solvent such as water
  • the micro/mesoporous material is added to the resulting precursor solution or mixture.
  • the suspension fully stir and mix uniformly, and then dry the resulting mixture by evaporating the solvent, such as drying in a constant temperature drying oven for a period of time to obtain solid powder.
  • the drying temperature is usually not higher than that of the solvent used.
  • the boiling point for example, when ultrapure water or pure water is used as the solvent, the drying temperature is generally 50°C to 100°C, and the drying time is generally 10 to 40 hours.
  • the obtained solid powder will be used for high-temperature calcination to prepare semiconductor nanocrystalline fluorescent materials.
  • the choice of solvent is based on not changing the properties of the semiconductor nanocrystalline precursor and the micro/mesoporous material.
  • pure water and common organic solvents can be used.
  • the solution or suspension can be stirred and/or appropriately heated.
  • the required dry semiconductor nanocrystalline precursor is directly mixed with the micro/mesoporous material, and ground is carried out, so that the semiconductor nanocrystalline precursor is embedded in the micro/mesoporous material to obtain a mixed powder.
  • the mixed powder will be used for high-temperature calcination to prepare semiconductor nanocrystalline fluorescent materials.
  • an appropriate amount of organic solvent and/or surfactant can be added when the semiconductor nanocrystalline precursor is mixed and ground with the micro/mesoporous material.
  • the lowest calcination temperature used in the present invention is suitable to ensure that the pores of the micro/mesoporous material collapse.
  • the collapse temperature of different micro/mesoporous materials is different, and the collapse temperature of the same material with different structures is also different, but it is certain that in order to achieve better results, the calcination temperature must not be lower than the material The lowest collapse temperature.
  • the minimum collapse temperature is 300°C. In practice, generally speaking, 300 ⁇ 2000°C can ensure that most of the commonly used micro/mesoporous materials will collapse. For example, mesoporous silica collapses at 600°C, and mesoporous titania begins to collapse at 800°C ,and many more.
  • the heating rate is generally 1°C/min to 20°C/min, preferably 5°C/min to 10°C/min.
  • a holding time of 10min to 600min (also called calcination time) is usually required. The holding time of 10 to 100 minutes, more preferably the holding time of 10 to 60 minutes.
  • the method of the present invention may also include a washing step for washing the unstable semiconductor nanocrystals from the surface of the micro/mesoporous material. For example, by dispersing the milled nanocrystalline fluorescent material in a solvent such as water, the unstable semiconductor nanocrystals on the surface of the micro/mesoporous material can be washed away. Then, after the dispersion is subjected to post-processing such as centrifugation and drying, the desired nanocrystalline fluorescent material can be obtained.
  • the semiconductor nanocrystalline fluorescent material of the present invention has many applications.
  • the light-emitting surface of the LED chip is coated with semiconductor nanocrystalline phosphor or fluorescent film made of the semiconductor nanocrystalline fluorescent material of the present invention, which can enhance the light-emitting stability of the LED light-emitting device.
  • the color conversion layer made of the fluorescent material of the present invention by using the color conversion layer made of the fluorescent material of the present invention, at least two different semiconductor nanocrystals can be present on the color conversion panel to display different colors.
  • the color conversion panel can also be applied in the field of display technology, which is based on the display of several color conversion layers on the display panel of the display to present corresponding colors on the display panel.
  • the semiconductor nanocrystalline fluorescent material of the present invention can be used as a scintillator to absorb radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays, and X-rays, and emit fluorescence.
  • a scintillator and a photodiode that detects fluorescence it can be used to detect irradiated radiation.
  • it is used in various application fields such as medical field such as tomography, industrial field such as non-destructive inspection, security field such as baggage inspection, and academic field such as high-energy physics.
  • the fluorescent material of the present invention is used as a fluorescent substance for detection in the biological field, or the fluorescent material of the present invention is used as a fluorescent marker for fluorescent imaging in vitro and in vivo.
  • FIG. 1a shows the TEM image of the prepared CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor. From the TEM image, it can be seen that the size distribution of the perovskite semiconductor nanocrystalline is uniform, with an average particle size of 9.5 About nm;
  • Figure 1b is the mapping diagram of CsPbBr 3 nanocrystals. It can be seen that the Cs, Pb, and Br elements are mainly concentrated on the CsPbBr 3 nanocrystal particles.
  • Figure 2 is an optical photo of the prepared CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor, which is in the form of a yellow powder ( Figure 2 is not yellow due to the grayscale photo).
  • Figure 3 shows the XRD pattern of the prepared CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor. From the XRD pattern, it can be known that the obtained semiconductor nanocrystal exhibits a cubic perovskite structure (PDF The card corresponds to #54-0752), which fully proves that CsPbBr 3 nanocrystals are formed under a high-temperature calcination environment.
  • Figure 4 shows the photoluminescence comparison between the prepared CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor and commercial green phosphor.
  • the source of the commercial green phosphor is Intermtix.co of Silicon Valley, California, USA.
  • the green phosphor has been widely used in commercial applications due to its good stability, low cost, and high fluorescence efficiency. It can be seen from Figure 4 that the half-value width of the perovskite semiconductor nanocrystalline phosphor obtained in this embodiment is narrow, only 20nm, which is much lower than the commercial silicate green phosphor (the half-value width is 62nm), therefore, it has Huge application potential.
  • Example 5 is CsPbBr 3 / mesoporous light at 20mA current, CsPbBr 3 / Mesoporous perovskite semiconductor nanocrystals
  • Figure 6 shows the comparison of the light attenuation of CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor with other phosphors and semiconductor nanocrystalline under the light aging test at 85°C, 85% relative humidity and 20mA current, from the figure It can be seen that under the aging conditions of high temperature and high humidity, the perovskite semiconductor nanocrystalline phosphor has no fluorescence decay phenomenon after 168 hours of aging, and exhibits excellent water resistance and heat resistance. This further illustrates the embodiment 1
  • the prepared CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor has excellent stability.
  • the CsPbBr 3 / mesoporous molecular sieve semiconductor nanocrystalline phosphor was immersed in a chemical reagent (1 mol/L hydrochloric acid solution) for 50 days, and there was no fluorescence decay phenomenon. This further confirms that the CsPbBr 3 / mesoporous molecular sieve semiconductor nanocrystalline phosphor prepared in this embodiment exhibits excellent light and thermal stability.
  • Embodiments 2 and 3 are specific examples of preparing semiconductor nanocrystalline phosphors based on the difference between the total mass of the semiconductor nanocrystalline precursor and the mass ratio of the micro/mesoporous material.
  • Figure 8 is an optical photo of the prepared ZnBr 2 -CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor. It can be seen from the figure that it is orange-yellow powder (Figure 8 is not visible due to the grayscale photo) yellow).
  • Fig. 9 is an optical photograph of the prepared CaBr 2 -CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor, and it can be seen that it is in the form of off-white powder.
  • Figure 10 is an optical photo of the prepared BaBr 2 -CsPbBr 3 / mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor. It can be seen from the figure that it is in the form of light yellow powder (Figure 10 is not visible due to the grayscale photo). yellow).
  • Figure 11a is an optical photo of the prepared CdSe/mesoporous molecular sieve nanocrystalline phosphor. It can be seen from the figure that it is orange-yellow powder (Figure 11a is not visible due to the gray-scale photo); Figure 11b shows the result The XRD pattern of the prepared CdSe/mesoporous molecular sieve nanocrystalline phosphor. From the XRD pattern, it can be known that the obtained semiconductor nanocrystal exhibits a cubic CdSe structure (PDF card corresponds to #19-0191), which fully proves Under the high-temperature calcination environment, CdSe semiconductor nanocrystals are formed.
  • PDF card corresponds to #19-0191
  • Figure 12a is an optical photo of the prepared CuInS 2 / mesoporous molecular sieve nanocrystalline phosphor, which shows a pink powder form (Figure 12a is not visible due to the grayscale photo);
  • Figure 12b shows the prepared CuInS 2 / mesoporous molecular sieve nanocrystalline phosphor.
  • the XRD pattern of CuInS 2 / mesoporous molecular sieve nanocrystalline phosphor From the XRD pattern, it can be known that CuInS 2 semiconductor nanocrystals are formed in a high-temperature calcination environment.
  • the corresponding PDF card is #47-1372.
  • Comparative example 1 Liquid phase synthesis of CsPbBr 3 :
  • the temperature was raised to 180 degrees Celsius under the protection of nitrogen, and 1 mL of the cesium oleate precursor solution was immediately injected and reacted for 10 seconds. Then the flask was placed in an ice water bath to cool, and the semiconductor nanocrystals were extracted and washed with toluene and methyl acetate. Subsequently, the CsPbBr 3 nanocrystal solution was dissolved in 20 mL of toluene for use.
  • Examples 15 to 19 are specific examples for preparing semiconductor nanocrystalline phosphors under partial high pressure conditions.
  • Fig. 13 is an optical photograph of the prepared CsPbCl 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor, which can be seen as a white powder.
  • Fig. 14 is an optical photograph of the prepared CsPbI 3 /mesoporous molecular sieve perovskite semiconductor nanocrystalline phosphor, which shows a gray powdery form from the photograph.
  • Embodiment 20 is given as an example of preparing semiconductor nanocrystalline fluorescent films.
  • Fig. 15 is an image of the prepared CsPbBr 3 / mesoporous molecular sieve perovskite structure semiconductor nanocrystalline fluorescent film under ultraviolet light irradiation, and it can be seen from the image that it exhibits uniform green fluorescence.
  • Embodiment 21 is a specific application embodiment of the above-mentioned fluorescent material on LED devices.
  • Example 19 Mix the 5mg CsPbBr 3 / mesoporous molecular sieve nanocrystalline phosphor prepared in Example 1 and the 8 mg CsPbI 3 / mesoporous molecular sieve nanocrystalline phosphor prepared in Example 19 with 200 mg of UV curing glue, grind thoroughly, and then apply to the blue LED On the chip, and cured under an ultraviolet lamp for 30 seconds to obtain a white light LED device.
  • the semiconductor nanocrystalline fluorescent materials prepared in the foregoing Examples 2-20 all exhibit properties similar to those of the semiconductor nanocrystalline fluorescent powder prepared in Example 1, with a narrow half-value width, excellent stability, and moisture resistance. , High temperature resistance, strong corrosion resistance, and slow or even no attenuation of the fluorescence intensity over time. This suffices to show that the present invention adopts high temperature conditions and uses micro/mesoporous materials to coat semiconductor nanocrystals, which greatly improves The stability of semiconductor nanocrystalline phosphors.
  • Embodiment 22 is a specific application embodiment of the above-mentioned fluorescent material in the field of color conversion panels.
  • a color conversion panel is prepared according to a method commonly used in the art, which includes a substrate, at least two sets of color filters, and two sets of different color conversion layers on the two sets of color filters, wherein the first color conversion layer includes For the CsPbBr 3 nanocrystal (green fluorescence) prepared in Example 20, the second color conversion layer includes the CsPbI 3 nanocrystal (red fluorescence) prepared in Example 19.
  • the preparation process of this embodiment is basically the same as that of embodiment 22, the difference is that the color conversion panel further includes a third color conversion layer, and the third color conversion layer includes the CsPbCl 3 nanocrystal (blue Fluorescence).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种半导体纳米晶荧光材料的制备方法,所述方法包括以下步骤:1)将一种或多于一种半导体纳米晶前驱体与微/介孔材料均匀混合;2)在不低于所述微/介孔材料的坍塌温度条件下煅烧制得半导体纳米晶荧光材料。通过本发明的半导体纳米晶荧光材料的制备方法,可以将半导体纳米晶前驱体负载在微/介孔材料中,在常压或高压氛围下,进行高温煅烧,利用材料的微/介孔限域生长半导体纳米晶,同时高温导致孔道坍塌,从而将半导体纳米晶封装在微/介孔材料的孔道中,得到高度稳定的半导体纳米晶荧光材料。该高度稳定的半导体纳米晶荧光材料,能够有效阻挡水分、氧气、光照对半导体纳米晶荧光材料的腐蚀,提高半导体纳米晶荧光材料的操作稳定性,将该半导体纳米晶荧光材料封装在LED芯片上,可做成各种背光源器件。本发明还公开了几种应用该制备方法制得的半导体纳米晶荧光材料,以及所述半导体纳米晶荧光材料的应用。

Description

半导体纳米晶荧光材料的制备方法以及通过所述方法制备的半导体纳米晶荧光材料及其应用 技术领域
本发明属于半导体纳米材料技术领域,尤其是涉及半导体纳米晶荧光材料的制备方法及应用该方法制得的半导体纳米晶荧光材料,及所述半导体纳米晶荧光材料的应用。
背景技术
半导体纳米晶是一种新型的发光材料,具有荧光量子效率高、发光颜色可调以及高色纯度等优点,被广泛研究应用于光电器件。通常半导体纳米晶的制备方法是通过提供一种特定环境,该环境限制半导体纳米晶前驱体在反应过程中的生长空间,限域生长半导体纳米晶,从而具有荧光的性质。目前半导体纳米晶的制备方法多数是在溶液中进行,例如高温热注射法、油包水法、配位合成法等,然而采用这些技术合成的半导体纳米晶稳定性差,容易被光、热、水分、氧气等腐蚀、分解,而且目前的溶液合成技术需要使用有机配体和大量有机溶剂或水,合成过程以及纯化过程会产生大量的废液,造成环境污染问题,直接影响了半导体纳米晶的应用前景。
为了提高半导体纳米晶的稳定性,通常会使用无机材料(例如二氧化硅,二氧化钛,氧化铝等)对半导体纳米晶进行包覆。但是这些包覆技术,都不能完全阻挡水分和氧气对半导体纳米晶荧光材料的腐蚀。半导体纳米晶荧光材料的光和热稳定性仍然不能满足实际应用的需求。
因此,寻找一种合适的、环境友好的、高度稳定的半导体纳米晶荧光材 料的制备方法具有深远的意义。
发明内容
为解决以上技术问题,本发明提供了一种半导体纳米晶荧光材料的制备方法,通过该方法能够使得半导体纳米晶封装于微/介孔材料的内部,从而使得所得半导体纳米晶更为稳定,所述方法(下文中也称为本发明方法)包括以下步骤:
1)将一种或多于一种半导体纳米晶前驱体与微/介孔材料均匀混合;
2)在不低于所述微/介孔材料的坍塌温度条件下煅烧制得半导体纳米晶荧光材料。
所述一种或多于一种半导体纳米晶前驱体与所述微/介孔材料可以通过液相混合或固相混合的方式来实现均匀混合。
在一个实施方案中,本发明方法采用通式为AX与BX 2的半导体纳米晶前驱体,其中A选自Cs、Rb、K、Ca、Sr、Ba及其组合,优选A选自Cs、Rb、K及其组合,更优选A为Cs、Rb或K;B选自Pb、Zn、Ca、Sr、Ba、Al、Ga、In、Ge、Sn、Cu、Mn、Sb、Bi及其组合,优选B选自Pb、Zn、Ca、Sr、Ba、Sn、Cu、Mn、Sb、Bi及其组合,更优选B为Pb、Zn、Ca或Ba;X选自Cl、Br、I及其组合,优选X为Cl、Br或I。
在一个优选的实施方案中,本发明方法中所采用的所述一种或多于一种半导体纳米晶前驱体为两种纳米晶前驱体,其分别为1种AX前驱体与1种BX 2前驱体,所述AX前驱体与BX 2前驱体的摩尔比为1:1,其中A为Cs、Rb或K,B为Pb、Zn、Ca或Ba;X为Cl、Br或I。
在另一个优选的实施方案中,本发明方法中所采用的所述一种或多于一种半导体纳米晶前驱体为三种纳米晶前驱体,它们分别为1种AX前驱体、1 种BˊX 2前驱体和1种BX 2前驱体,所述AX前驱体、BˊX 2前驱体和BX 2前驱体的摩尔比为1:0.5:0.5,其中A为Cs、Rb或K;Bˊ和B不同,且各自独立为Pb、Zn、Ca或Ba;X为Cl、Br或I。
在另一个实施方案中,本发明方法采用阳离子前驱体和阴离子前驱体两种不同的纳米晶前驱体,所述阳离子前驱体和阴离子前驱体的摩尔比为1:1,其中阳离子前驱体用于为目标纳米晶提供阳离子D n+,其中n为1-10的整数,其选自以下金属的盐酸盐、硝酸盐、硫酸盐、硫酸氢盐、碳酸盐、碳酸氢盐以及它们的水合物:Zn、Cd、Hg、Pb、Sn、Ga、In、Ca、Ba、Cu、W和Mo;阴离子前驱体用于为目标纳米晶提供阴离子Y n-,其中n为1-10的整数,其选自S、Se、Te、N、P、Sb、As的单质和无机盐。
在一个优选的实施方案中,所述阳离子前驱体选自Zn、Cd和Hg的盐酸盐、硝酸盐及其水合物;所述阴离子前驱体选自S、Se、Te的单质和无机盐。
在另一个实施方案中,本发明方法采用三种不同的纳米晶前驱体,其中第1种前驱体是IB族金属化合物,用于为目标纳米晶提供+1价阳离子,优选卤化物,如氯化物、溴化物或碘化物;第2种前驱体是ⅢA族金属的有机酸盐,用于为目标纳米晶提供+3价阳离子,如甲酸盐、乙酸盐或丙酸盐;第3种前驱体是ⅥA族元素的无机酸盐,用于为目标纳米晶提供-2价阴离子,所述第1种前驱体、第2种前驱体和第3种前驱体的摩尔比为0.5:0.5:1。
在一个优选的实施方案中,所述第1种前驱体选自CuCl、CuBr、CuI、AgCl、AgBr、AgI及其组合;所述第2种前驱体选自以下金属的甲酸盐、乙酸盐和丙酸盐:In、Ga、Al,如In(C 2H 3O 2) 3、Ga(C 2H 3O 2) 3或Al(C 2H 3O 2) 3等等;所述第3种前驱体选自S的无机酸盐和Se的无机酸盐,如Na 2S、K 2S、Na 2Se或K 2Se等等,所述第1种前驱体、第2种前驱体和第3种前驱体的摩尔比为0.5:0.5:1。
在本发明中,所述微/介孔材料包括微孔材料和/或介孔材料,其中,所述 微孔材料包括但不局限于微孔分子筛、微孔二氧化硅、微孔二氧化钛、微孔氧化铝、微孔过渡金属氧化物、微孔硫化物、硅酸盐、铝酸盐、过渡金属氮化物及其任意组合,所述介孔材料包括但不局限于介孔分子筛、介孔二氧化硅、介孔二氧化钛、介孔氧化铝、介孔碳、介孔过渡金属氧化物、介孔硫化物、硅酸盐、铝酸盐、过渡金属氮化物及其任意组合。
优选,本发明所采用的微/介孔材料的孔径为0.5~50nm。
在本发明方法中,所述半导体纳米晶前驱体与所述微/介孔材料在300~2000℃的温度条件下煅烧制得半导体纳米晶荧光材料,煅烧时间通常为10min~600min,优选为10min~60min。在一个优选的实施方案中,所述半导体纳米晶前驱体与所述微/介孔材料在0.1-20MPa的压力下,煅烧制备半导体纳米晶荧光材料。
通过本发明的半导体纳米晶荧光材料的制备方法,能够将半导体纳米晶前驱体负载在微/介孔材料的孔道中,利用材料的微/介孔限域生长半导体纳米晶,然后在高温下煅烧,高温能够导致微/介孔材料的孔道坍塌,从而将半导体纳米晶封装在微/介孔材料的孔道中,得到高度稳定的半导体纳米晶荧光材料。该高度稳定的半导体纳米晶荧光材料,能够有效阻挡水分、氧气、光照对半导体纳米晶荧光材料的腐蚀,提高半导体纳米晶荧光材料的稳定性。
另一方面,本发明还提供了应用本发明的方法制得的半导体纳米晶荧光材料。
在一个实施方案中,用本发明的制备方法制得的半导体纳米晶荧光材料具有钙钛矿结构ABX 3的纳米晶结构,其中A选自Cs、Rb、K、Ca、Sr、Ba及其组合,优选A选自Cs、Rb、K及其组合,更优选A为Cs、Rb或K;B选自Pb、Zn、Ca、Sr、Ba、Al、Ga、In、Ge、Sn、Cu、Mn、Sb、Bi及其组合,优选B选自Pb、Zn、Ca、Sr、Ba、Sn、Cu、Mn、Sb、Bi及其组合,更优选B为Pb、Zn、Ca或Ba;X选自Cl、Br、I及其组合,优选X为Cl、Br 或I。
在一个优选的实施方案中,用本发明的制备方法制得的半导体纳米晶荧光材料具有钙钛矿结构ABX 3的纳米晶结构,其中元素A、B和X的摩尔比为1:1:3,且A为Cs、Rb或K,B为Pb、Zn、Ca或Ba;X为Cl、Br或I。
在另一个优选的实施方案中,用本发明的制备方法制得的半导体纳米晶荧光材料具有经卤化物BˊX 2修饰的钙钛矿结构ABX 3的纳米晶结构,其中A、Bˊ、B和X的摩尔比为1:0.5:0.5:3,且A为Cs、Rb或K;Bˊ和B不同,且各自独立为Pb、Zn、Ca或Ba;X为Cl、Br或I。
在另一个实施方案中,用本发明的制备方法制得的半导体纳米晶荧光材料具有二元结构D n+Y n-的纳米晶结构,其中n为1-10的整数,D与Y的摩尔比为1:1,其中D选自以下金属:Zn、Cd、Hg、Pb、Sn、Ga、In、Ca、Ba、Cu、W和Mo;Y选自S、Se、Te、N、P、Sb和As。
在一个优选的实施方案中,用本发明的制备方法制得的半导体纳米晶荧光材料具有二元结构D n+Y n-的纳米晶结构,其中n为1-10的整数,元素D与Y的摩尔比为1:1,且D选自Zn、Cd和Hg;Y选自S、Se和Te。
在另一个实施方案中,用本发明的制备方法制得的半导体纳米晶荧光材料具有IB-ⅢA-ⅥA族三元化合物型的纳米晶结构,可用通式G +M 3+(N 2-) 2表示,其中G +为IB族金属元素的+1价阳离子;M 3+为ⅢA族元素的+3价阳离子;N 2-为ⅥA族元素的-2价阴离子;且G +、M 3+和N 2-的摩尔比为0.5:0.5:1。
在一个优选的实施方案中,用本发明的制备方法制得的半导体纳米晶荧光材料具有IB-ⅢA-ⅥA族三元化合物型的纳米晶结构,可用通式G +M 3+(N 2-) 2表示,其中G +为Cu +或Ag +;M 3+为In 3+、Ga 3+或Al 3+;N 2-为S 2-或Se 2-,且G +、M 3+和N 2-的摩尔比为0.5:0.5:1。
还另一方面,本发明提供了一种LED器件,所述LED器件包括本发明的半导体纳米晶荧光材料。
还另一方面,本发明提供了一种颜色转换面板或显示装置,所述颜色转换面板或显示装置包括本发明的半导体纳米晶荧光材料。
还另一方面,本发明提供了一种荧光闪烁体,所述荧光闪烁体为本发明的半导体纳米晶荧光材料。
还另一方面,本发明提供了一种生物检测或成像装置,所述生物检测或成像装置包括本发明的半导体纳米晶荧光材料。
与现有的商用荧光粉相比,本发明的荧光材料具有半峰宽窄、色纯度高、发光范围可调、耐水、耐热、耐光稳定性、不含稀土材料、成本低等优点。
附图说明
图1a为实施例1制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的TEM图。
图1b是实施例1制备的CsPbBr 3纳米晶的mapping图。
图2为实施例1制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片(黄色粉末状)。
图3为实施例1制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的XRD图。
图4为实施例1制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉与商业的绿色荧光粉的光致发光对比图。
图5为20mA电流光照老化试验下,实施例1制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉与其他荧光粉及半导体纳米晶的稳定性对比图。
图6为在85℃,85%相对湿度,以及20mA电流光照老化试验下,实施例1制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉与其他荧光粉 及半导体纳米晶的稳定性对比图。
图7为实施例1制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉在1mol/L的盐酸溶液中浸泡0天和50天的荧光变化图(左图)和光学照片对比图(右图)。
图8为实施例7制备的ZnBr 2修饰CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片。
图9为实施例8制备的CaBr 2修饰CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片。
图10为实施例9制备的BaBr 2修饰CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片。
图11a为实施例11制备的CdSe/介孔分子筛纳米晶荧光粉的光学照片。
图11b为实施例11制备的CdSe/介孔分子筛纳米晶荧光粉的XRD图。
图12a为实施例14制备的CuInS 2/介孔分子筛纳米晶荧光粉的光学照片。
图12b为实施例14制备的CuInS 2/介孔分子筛纳米晶荧光粉的XRD图。
图13为实施例18制备的CsPbCl 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片。
图14为实施例19制备的CsPbI 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片。
图15为实施例20制备的CsPbBr 3/介孔分子筛钙钛矿结构半导体纳米晶荧光膜在紫外灯照射下的图像。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本文中,所述半导体纳米晶荧光材料是指在微观上具有特定的结构,同时在宏观上可具有多种形态的材料状态,如粉末状态(半导体纳米晶荧光粉),或膜状态(半导体纳米晶荧光膜)。
本文中的术语“纳米晶前驱体”是指获得目标纳米晶前的一种存在形式。
在本发明中,通过将半导体纳米晶前驱体与微/介孔材料均匀混合后,在不低于微/介孔材料的坍塌温度条件下煅烧制得半导体纳米晶荧光材料。
在本发明中,半导体纳米晶前驱体作为半导体纳米晶原材料,其选择取决于需要制得的半导体纳米晶的结构。如需要制得的半导体纳米晶结构为钙钛矿结构ABX 3,其半导体纳米晶前驱体可选自I族元素或Ⅱ族元素的卤化物,以及副族元素或Ⅲ族元素的卤化物。具体的,其半导体纳米晶前驱体可为AX和BX 2,其中A可选自Cs、Rb、K、Ca、Sr、Ba及其组合,优选A选自Cs、Rb、K及其组合,更优选A为Cs、Rb或K;B可选自Pb、Zn、Ca、Sr、Ba、Al、Ga、In、Ge、Sn、Cu、Mn、Sb、Bi及其组合,优选B选自Pb、Zn、Ca、Sr、Ba、Sn、Cu、Mn、Sb、Bi及其组合,更优选B为Pb、Zn、Ca或Ba;X可选自Cl、Br、I及其组合,优选X为Cl、Br或I。当然,其半导体纳米晶前驱体也可以为AX和BX 2的混合物。
在其他情形下,如需制得半导体纳米晶结构为二元结构D n+Y n-,其中n为1-10的整数,其纳米晶前驱体可选自用于为目标纳米晶提供阳离子D n+的阳离子前驱体和用于为目标纳米晶提供阴离子Y n-的阴离子前驱体,所述阳离子前驱体和阴离子前驱体的摩尔比为1:1,其中所述阳离子前驱体选自以下金属的盐酸盐、硝酸盐、硫酸盐、硫酸氢盐、碳酸盐、碳酸氢盐以及它们的水合物:Zn、Cd、Hg、Pb、Sn、Ga、In、Ca、Ba、Cu、W和Mo;所述阴离子前驱体选自S、Se、Te、N、P、Sb、As的单质和无机盐。
在另一情形下,如需制得的半导体纳米晶结构为IB-ⅢA-ⅥA族三元化合物型结构,其纳米晶前驱体可选自:用于为目标纳米晶提供+1价阳离子的IB 族金属化合物,优选卤化物,如氯化物、溴化物或碘化物;用于为目标纳米晶提供+3价阳离子的ⅢA族金属的有机酸盐,如甲酸盐、乙酸盐或丙酸盐;和用于为目标纳米晶提供-2价阴离子的ⅥA族元素的无机酸盐。所述IB族金属化合物、ⅢA族金属的有机酸盐和ⅥA族元素的无机酸盐的摩尔比为0.5:0.5:1。
在本发明中,所述微/介孔材料包括微孔材料和/或介孔材料。在实践中,微/介孔材料的选择取决于需要孔道的大小,为了方便和微/介孔材料更为易得,微/介孔材料的孔径范围优选为0.5~50nm。通常情况下,微孔材料的孔径范围小于2nm,介孔材料的孔径范围一般为2nm~50nm。因此,在仅使用微孔材料时,优选使用孔径范围为0.5~2nm的微孔材料,在仅使用介孔材料时,优选使用孔径范围为2nm~50nm的介孔材料。
此外,在本发明中,微孔材料和介孔材料的使用不必强求局限于单一材料,在实践中,微/介孔材料可以同时采用微孔材料和介孔材料,也可以仅使用微孔材料,或仅使用介孔材料,并且,微孔材料可以包括但不局限于微孔分子筛、微孔二氧化硅、微孔二氧化钛、微孔氧化铝、微孔过渡金属氧化物、微孔硫化物、硅酸盐、铝酸盐和过渡金属氮化物,介孔材料可以包括但不局限于介孔分子筛、介孔二氧化硅、介孔二氧化钛、介孔氧化铝、介孔碳、介孔过渡金属氧化物、介孔硫化物、硅酸盐、铝酸盐和过渡金属氮化物。
微/介孔材料具有在高温或者高温、高压条件下坍塌的性质,从而起到能够将置于微孔或介孔中的前驱体在坍塌时牢牢的包覆或包裹的作用。
在本发明中,按照质量计,所有半导体纳米晶前驱体的总质量与微/介孔材料的质量比为1:0.05~1:20为宜,优选为1:0.5~1:10,更优选为1:1~1:5,最优选为1:3。该区间比例制得的半导体纳米晶荧光粉均能够实现半导体纳米晶荧光粉长期稳定的发光性能。
半导体纳米晶前驱体与微/介孔材料的混合方式,可以采用常见的液相混 合或固相混合。
在采用液相混合时,通常将所需的半导体纳米晶前驱体均匀的分散于溶剂如水中,制成前驱体溶液或混悬液,然后将微/介孔材料加入到所得前驱体溶液或混悬液中,充分搅拌,混合均匀,然后将得到的混合液通过蒸发溶剂的方式进行干燥,例如在恒温干燥箱中烘干一段时间,以得到固体粉末,烘干温度通常不高于所用溶剂的沸点,例如采用超纯水或纯水为溶剂时,烘干温度一般为50℃~100℃,烘干时间一般为10~40小时。得到的固体粉末则将用于高温煅烧以制得半导体纳米晶荧光材料。在液相混合方法中,溶剂的选择以不改变半导体纳米晶前驱体和微/介孔材料的性质为准,如纯水、常见有机溶剂均可以使用。并且,在半导体纳米晶前驱体和/或微/介孔材料分散于溶剂的过程中,为分散均匀,可以对溶液或混悬液进行搅拌和/或适当升温。
在采用固相混合时,通常将所需的干燥半导体纳米晶前驱体与微/介孔材料直接混合,并进行研磨,使得半导体纳米晶前驱体嵌入微/介孔材料中,得到混合粉末,该混合粉末则将用于高温煅烧以制得半导体纳米晶荧光材料。在一些实践中,在半导体纳米晶前驱体与微/介孔材料混合研磨时,可以加入适量有机溶剂和/或表面活性剂。
在制备半导体纳米晶荧光材料的过程中,本发明所采用的最低煅烧温度,以能够保证微/介孔材料的孔坍塌为宜。然而,不同的微/介孔材料的坍塌温度是不同的,不同结构的相同材料的坍塌温度也有所不同,但能够确定的是,为达到较佳的效果,其煅烧温度必定不低于该材料的最低坍塌温度。如在上述举例的微/介孔材料中,其坍塌温度最低为300℃。在实践中,一般而言,300~2000℃能够保证通常所采用的大部分微/介孔材料形成坍塌,例如,介孔二氧化硅在600℃时坍塌,介孔二氧化钛在800℃时开始坍塌,等等。
在进行煅烧时,优选以一定的升温速率,逐渐升温至所需的坍塌温度,升温速率一般为1℃/min~20℃/min,优选为5℃/min~10℃/min。到达所需的 坍塌温度时,为确保微/介孔材料全部坍塌,以便对半导体纳米晶形成较好的包裹或包覆,通常需要10min~600min的保温时间(也可以称为煅烧时间),优选10~100min的保温时间,更优选10~60min的保温时间。
在高温炉中煅烧结束后,降至室温,然后将所得物质充分研磨,即可得到半导体纳米晶荧光材料。然而,微/介孔材料的表面上可能存在有不稳定的半导体纳米晶,因此,本发明方法还可以包括用于从微/介孔材料的表面上洗去不稳定的半导体纳米晶的洗涤步骤,例如通过将研磨后的纳米晶荧光材料分散在溶剂如水中,来洗去微/介孔材料的表面上不稳定的半导体纳米晶。然后,分散液通过后处理如离心处理、干燥后,即可得到所需要的纳米晶荧光材料。
本发明的半导体纳米晶荧光材料有多种应用。例如,在LED发光器件领域,在LED芯片的发光面上涂覆有本发明的半导体纳米晶荧光材料制成的半导体纳米晶荧光粉或荧光膜,可以增强LED发光器件的发光稳定性。在颜色转换面板技术领域,通过采用本发明的荧光材料制成的颜色转换层的搭配,能够在颜色转换面板上存在至少两个不同的半导体纳米晶,从而显示不同的颜色。进一步,该颜色转换面板还可以应用在显示器技术领域,其基于若干层颜色转换层在显示器的显示面板上的展示,以在显示面板上呈现相应的颜色。在作为闪烁体应用于放射线检测领域,可以将本发明的半导体纳米晶荧光材料作为闪烁体吸收α线、β线、γ线、X射线等放射线,发出荧光。通过组合闪烁体和检测荧光的光电二极管,能够用于检测所照射的放射线。例如,被利用于断层撮影等的医疗领域、非破坏检查等的工业领域、随身行李检查等的安全领域、高能物理学等的学术领域等多种多样的应用领域。在生物检测和成像领域,将本发明的荧光材料作为荧光物质,用于生物领域的检测,或者将本发明的荧光材料作为荧光标记物进行体外、体内进行荧光成像。
为了进一步描述本发明,提供以下实施例:
实施例1
介孔分子筛高温封装CsPbBr 3(钙钛矿结构ABX 3型)半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于前驱体(CsBr和PbBr 2)总质量的介孔分子筛(质量=1047.3mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿半导体纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/介孔分子筛半导体纳米晶荧光粉。
对实施例1制得的CsPbBr 3进行TEM、XRD、光致发光光衰减的测试。图1a所示为所制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的TEM图,从TEM图中可以看到钙钛矿半导体纳米晶的尺寸分布均匀,平均粒径在9.5nm左右;图1b是CsPbBr 3纳米晶的mapping图,可以看出Cs、Pb、Br元素主要集中在CsPbBr 3纳米晶颗粒上。图2为所制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片,呈现黄色粉末状(图2由于灰度照片的原因看不出黄色)。图3所示为所制备的CsPbBr 3/介孔分子筛的 钙钛矿半导体纳米晶荧光粉的XRD图,从XRD图可以知道,所得到的半导体纳米晶呈现出立方相的钙钛矿结构(PDF卡片对应的是#54-0752),充分证明了高温煅烧的环境下,形成了CsPbBr 3纳米晶。图4所示为所制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉与商业的绿色荧光粉的光致发光对比图。所述商业的绿色荧光粉来源为美国加州硅谷的英特美(Intermtix.co)公司,该绿色荧光粉以其较好的稳定性,成本低,荧光效率高获得了巨大的商业应用。从图4中可以看出本实施例得到的钙钛矿半导体纳米晶荧光粉半峰宽较窄,只有20nm,远低于商业硅酸盐绿色荧光粉(半峰宽是62nm),因此,具有巨大的应用潜力。图5为20mA电流光照下,CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉与其他类型荧光粉及半导体纳米晶的光衰减对比图,本实施例制备的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉在光照1000小时,没有出现荧光衰减现象,而商业绿色荧光粉的荧光强度已经减少至82%,同时采用液相合成(见对比例1)的CsPbBr 3的荧光强度衰减极快,这也说明了本发明的半导体纳米晶荧光粉的稳定性非常优异。图6为在85℃、85%相对湿度以及20mA电流光照老化试验下,CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉与其他荧光粉及半导体纳米晶的光衰减对比图,从图中可以看出,在高温高湿的老化条件下,所述钙钛矿半导体纳米晶荧光粉在老化168小时后,没有出现荧光衰减现象,表现出优异的耐水耐热性能,这进一步说明实施例1制得的CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的稳定性优异。
如图7所示,经进一步的测试,将CsPbBr 3/介孔分子筛半导体纳米晶荧光粉浸渍在化学试剂(1mol/L盐酸溶液)中50天,没有出现荧光衰减现象。这进一步证实,本实施例制备的CsPbBr 3/介孔分子筛半导体纳米晶荧光粉表现出优异的光、热稳定性。
在实践中,我们还发现,在制备半导体纳米晶荧光材料的过程中,当半导体纳米晶前驱体的总质量与微/介孔材料的质量比为1:0.05~1:20时,均可以制得半导体纳米晶荧光材料,且均具有高度稳定性这一基本特征。实施例2和实施例3是针对半导体纳米晶前驱体的总质量与微/介孔材料的质量比的不同,制得半导体纳米晶荧光粉的具体实施例。
实施例2
介孔分子筛高温封装CsPbBr 3(钙钛矿结构ABX 3型)半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取10倍于前驱体(CsBr和PbBr 2)总质量的介孔分子筛(质量=3491.0mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿半导体纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/介孔分子筛半导体纳米晶荧光粉。
实施例3
介孔分子筛高温封装CsPbBr 3(钙钛矿结构ABX 3型)半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取0.1倍于前驱体(CsBr和PbBr 2)总质量的介孔分子筛(质量=34.9mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿半导体纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/介孔分子筛半导体纳米晶荧光粉。
实施例4
微孔分子筛高温封装CsPbBr 3半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr和PbBr 2总质量的微孔分子筛(质量=1047.3mg,孔径为1.0nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿半导体纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/微孔分子筛半导体纳米晶荧光粉。
实施例5
介孔二氧化硅高温封装CsPbBr 3半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr和PbBr 2总质量的介孔二氧化硅(质量=1047.3mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去二氧化硅表面不稳定的钙钛矿半导体纳米晶,10000rpm离心处理1min,重复三 次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/介孔二氧化硅半导体纳米晶荧光粉。
实施例6
微孔二氧化硅高温封装CsPbBr 3半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr和PbBr 2总质量的微孔二氧化硅(质量=1047.3mg,孔径为1.0nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去二氧化硅表面不稳定的钙钛矿半导体纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/微孔二氧化硅半导体纳米晶荧光粉。
实施例7
介孔分子筛高温封装ZnBr 2修饰CsPbBr 3纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)、0.3mmol的前驱体PbBr 2(110.7mg)和0.3mmol的前驱体ZnBr 2(67.6mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr、PbBr 2和ZnBr 2总质量的介孔分子筛(质量=917.9mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到ZnBr 2-CsPbBr 3/介孔分子筛纳米晶荧光粉。
附图8为所制备的ZnBr 2-CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片,由图可见呈现橙黄色粉末状(图8由于灰度照片的原因看不出橙黄色)。
实施例8
介孔分子筛高温封装CaBr 2修饰CsPbBr 3纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)、0.3mmol的前驱体PbBr 2(110.7mg)和0.3mmol的前驱体CaBr 2(60.0mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr、PbBr 2和CaBr 2总质量的介孔分子筛(质量=895.1mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃, 干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CaBr 2-CsPbBr 3/介孔分子筛纳米晶荧光粉。
附图9为所制备的CaBr 2-CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片,从图可见呈现灰白色粉末状。
实施例9
介孔分子筛高温封装BaBr 2修饰CsPbBr 3纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)、0.3mmol的前驱体PbBr 2(110.7mg)和0.3mmol的前驱体BaBr 2(89.1mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr、PbBr 2和BaBr 2总质量的介孔分子筛(质量=982.6mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到BaBr 2-CsPbBr 3/介孔分子筛纳米晶荧光粉。
附图10为所制备的BaBr 2-CsPbBr 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片,由图可见呈现浅黄色粉末状(图10由于灰度照片的原因看不出浅黄色)。
实施例10
介孔分子筛高温封装CsPbBr 3(钙钛矿结构ABX 3型)纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),称取3倍于CsBr和PbBr 2前驱体总质量的介孔分子筛(质量=1047.3mg,孔径为3.6nm),在常温空气环境下进行研磨1h得到前驱体与介孔分子筛的混合粉末,将上述混合粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(2)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(3)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/介孔分子筛纳米晶荧光粉。
实施例11
介孔分子筛高温封装CdSe(二元结构)纳米晶荧光粉的制备
(1)称取1.0mmol的前驱体CdCl 2(183.3mg)和1.0mmol的前驱体Se粉(78.9mg),分散在50mL超纯水中,不断搅拌,形成混合液;
(2)称取3倍于CdCl 2和Se粉总质量的介孔分子筛(质量=786.6mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CdSe/介孔分子筛纳米晶荧光粉。
附图11a为所制备的CdSe/介孔分子筛纳米晶荧光粉的光学照片,由图可见呈现橙黄色粉末状(图11a由于灰度照片的原因看不出橙黄色);图11b所示为所制备的CdSe/介孔分子筛纳米晶荧光粉的XRD图,从XRD图可以知道,所得到的半导体纳米晶呈现出立方相的CdSe结构(PDF卡片对应的是#19-0191),这充分证明了高温煅烧的环境下,形成了CdSe半导体纳米晶。
实施例12
介孔分子筛高温封装ZnS(二元结构)半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体Zn(NO 3) 2·6H 2O(178.5mg)和0.6mmol的前驱体Na 2S(46.8mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于Zn(NO 3) 2·6H 2O和Na 2S前驱体总质量的介孔分子筛(质量=675.9mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min, 形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的ZnS半导体纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到ZnS/介孔分子筛半导体纳米晶荧光粉。
实施例13
介孔分子筛高温封装CdTe(二元结构)半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体Cd(NO 3) 2(141.6mg)和0.6mmol的前驱体Te粉(75.6mg),分散在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于Cd(NO 3) 2和Te粉前驱体总质量的介孔分子筛(质量=645.5mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的CdTe半导体纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CdTe/介孔分子筛半导体纳米晶荧光粉。
实施例14
介孔分子筛高温封装CuInS 2(IB-ⅢA-ⅥA族三元化合物型)纳米晶荧光粉的制备
(1)称取1.2mmol的前驱体Na 2S(93.6mg),0.6mmol的前驱体In(C 2H 3O 2) 3(175.2mg)和0.6mmol的前驱体CuI(114.3mg),分散在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于Na 2S、In(C 2H 3O 2) 3和CuI总质量的介孔分子筛(质量=1149.3mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CuInS 2/介孔分子筛纳米晶荧光粉。
附图12a为所制备的CuInS 2/介孔分子筛纳米晶荧光粉的光学照片,由图 可见呈现粉色粉末状(图12a由于灰度照片的原因看不出粉色);图12b所示为所制备的CuInS 2/介孔分子筛纳米晶荧光粉的XRD图,从XRD图可以知道,在高温煅烧的环境下,形成了CuInS 2半导体纳米晶,对应的PDF卡片为#47-1372。
对比例1:液相合成CsPbBr 3
称取10mmol Cs 2CO 3加入到100mL三口烧瓶中,然后依次加入20mL油酸和20mL油胺,在120摄氏度下抽真空30分钟,期间置换氮气若干次。然后在氮气保护下升温至150摄氏度,形成透明溶液,维持加热1小时,随后冷却降温,得到油酸铯前驱体;将2mmol PbBr 2、20mL十八烯、5mL油酸、5mL油胺置于100mL三口烧瓶中,在120摄氏度下抽真空30分钟,期间置换氮气若干次。然后在氮气保护下升温至180摄氏度,立即将1mL油酸铯前驱体溶液快速注入,反应10秒,然后将烧瓶置于冰水浴中冷却,使用甲苯和乙酸甲酯对半导体纳米晶进行萃取洗涤,随后将CsPbBr 3纳米晶溶液溶于20mL甲苯中备用。
在实践中,我们还发现,在制备半导体纳米晶荧光材料的过程中,不管是常压(0.1MPa)、或高压(大于0.1MPa,小于20MPa)条件,制得的半导体纳米晶荧光材料的结构均具有高度稳定性这一基本特征。
实施例15至实施例19是针对部分高压条件下制得半导体纳米晶荧光粉的具体实施例。
实施例15
介孔分子筛高温高压封装CsPbBr 3(钙钛矿结构ABX 3型)半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2 (221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr和PbBr 2前驱体总质量的介孔分子筛(质量=1047.3mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,同时保持高温炉的压力为2.0Mpa,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/介孔分子筛纳米晶荧光粉。
实施例16
介孔氧化铝分子筛高温高压封装CsPbBr 3(钙钛矿结构ABX 3型)纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr和PbBr 2前驱体总质量的介孔氧化铝分子筛(质量=1047.3mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到1000℃,同时保持高温炉的压力为10.0Mpa,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/介孔氧化铝分子筛纳米晶荧光粉。
实施例17
介孔二氧化硅高温高压封装CsPbBr 3(钙钛矿结构ABX 3型)纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr和PbBr 2前驱体总质量的介孔二氧化硅(质量=1047.3mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,同时保持高温炉的压力为20Mpa,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿纳米晶,10000rpm离心处理1min,重复三次,将离 心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbBr 3/介孔二氧化硅纳米晶荧光粉。
实施例18
介孔分子筛高温高压封装CsPbCl 3(钙钛矿结构ABX 3型)半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsCl(101.0mg)和0.6mmol的前驱体PbCl 2(166.9mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsCl和PbCl 2前驱体总质量的介孔分子筛(质量=803.7mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,同时保持高温炉的压力为2.0Mpa,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbCl 3/介孔分子筛纳米晶荧光粉。
附图13为所制备的CsPbCl 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片,由照片可见呈现白色粉末状。
实施例19
介孔分子筛高温高压封装CsPbI 3(钙钛矿结构ABX 3型)半导体纳米晶荧光粉的制备
(1)称取0.6mmol的前驱体CsI(155.9mg)和0.6mmol的前驱体PbI 2(276.6mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsI和PbI 2前驱体总质量的介孔分子筛(质量=1297.5mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到固体粉末;
(4)将上述固体粉末均匀的铺到刚玉坩埚中,然后将刚玉坩埚放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,同时保持高温炉的压力为2.0Mpa,维持保温30min,然后自然降温到室温,取出刚玉坩埚;
(6)将上述反应后的反应物充分研磨,然后分散在50mL水中,洗去分子筛表面不稳定的钙钛矿纳米晶,10000rpm离心处理1min,重复三次,将离心后的沉淀物放入60℃恒温干燥箱中干燥6h,得到CsPbI 3/介孔分子筛纳米晶荧光粉。
附图14为所制备的CsPbI 3/介孔分子筛的钙钛矿半导体纳米晶荧光粉的光学照片,由照片可见呈现灰色粉末状。
除上述能够制得半导体纳米晶荧光粉的实践外,在一些应用领域,需采用到半导体纳米晶荧光膜,实施例20作为制备半导体纳米晶荧光膜的实例给出。
实施例20
介孔分子筛高温封装CsPbBr 3(钙钛矿结构ABX 3型)半导体纳米晶荧光膜的制备
(1)称取0.6mmol的前驱体CsBr(127.7mg)和0.6mmol的前驱体PbBr 2(221.4mg),溶解在50mL超纯水中,不断搅拌,形成澄清溶液;
(2)称取3倍于CsBr和PbBr 2前驱体总质量的介孔分子筛(质量=1047.3mg,孔径为3.6nm)加入到上述溶液中,并在60℃下搅拌30min,形成混合液;
(3)将上述混合液平铺在玻璃片(尺寸:15mm*15mm)上,然后放置在恒温干燥箱中,设置恒温干燥箱的温度为100℃,干燥12h,得到膜状前驱体;
(4)将上述膜状前驱体放置在高温炉中;
(5)设置高温炉的升温速率为5℃/min,升温到700℃,维持保温30min,然后自然降温到室温,得到半导体纳米晶荧光膜。
如图15为所制备的CsPbBr 3/介孔分子筛钙钛矿结构半导体纳米晶荧光膜在紫外灯照射下的图像,由图像可知表现出均匀的绿色荧光。
实施例21是上述荧光材料在LED器件上的一个具体应用实施例。
实施例21
制备发光LED器件
将实施例1制备的5mg CsPbBr 3/介孔分子筛纳米晶荧光粉和实施例19制备的8mg CsPbI 3/介孔分子筛纳米晶荧光粉与200mg紫外固化胶混合,并充分研磨,然后涂在蓝光LED芯片上,并在紫外灯下固化30秒,得到白光LED器件。
经检测,上述实施例2~20中所制得的半导体纳米晶荧光材料均表现出与实施例1制得的半导体纳米晶荧光粉相近的性质,其半峰宽较窄、稳定性优异、耐湿、耐温、耐蚀性强,荧光强度随时间的变化衰减缓慢甚至无衰减,这足以说明,本发明采用高温条件、通过微/介孔材料对半导体纳米晶的包覆, 极大的提高了半导体纳米晶荧光粉的稳定性。
实施例22是上述荧光材料在颜色转换面板领域的一个具体应用实施例。
实施例22
按照本领域常用的方法制备一种颜色转换面板,其包括有基底、至少两组滤色器以及分别位于两组滤色器上的两组不同的颜色转换层,其中,第一颜色转换层包括实施例20制备的CsPbBr 3纳米晶(绿色荧光),第二颜色转换层包括实施例19制备的CsPbI 3纳米晶(红色荧光)。
实施例23
该实施例的制备过程与实施例22基本相同,不同之处在于所述颜色转换面板还包括有第三颜色转换层,该第三颜色转换层包括实施例18制备的CsPbCl 3纳米晶(蓝色荧光)。
以上所述仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到许多变化或替换,它们都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (19)

  1. 一种半导体纳米晶荧光材料的制备方法,其特征在于,所述方法包括以下步骤:
    1)将一种或多于一种半导体纳米晶前驱体与微/介孔材料均匀混合;
    2)在不低于所述微/介孔材料的坍塌温度条件下煅烧制得半导体纳米晶荧光材料。
  2. 根据权利要求1所述的制备方法,其特征在于按照质量计,所述一种或多于一种半导体纳米晶前驱体的总质量与微/介孔材料的质量比为1:0.05~1:20,且通过液相混合或固相混合的方式实现均匀混合。
  3. 根据权利要求1所述的制备方法,其特征在于,所述微/介孔材料的孔径为0.5~50nm。
  4. 根据权利要求1所述的制备方法,其特征在于,所述一种或多于一种半导体纳米晶前驱体与微/介孔材料的煅烧温度为300~2000℃,煅烧时间为10min~600min。
  5. 根据权利要求1所述的制备方法,其特征在于,所述一种或多于一种半导体纳米晶前驱体与微/介孔材料在0.1-20MPa的压力下,煅烧制备半导体纳米晶荧光材料。
  6. 根据权利要求1-5中任一项所述的制备方法,其特征在于,所述一种或多于一种半导体纳米晶前驱体为两种纳米晶前驱体,其分别为1种AX前驱体与1种BX 2前驱体,所述AX前驱体与BX 2前驱体的摩尔比为1:1,其中A为Cs、Rb或K,B为Pb、Zn、Ca或Ba;X为Cl、Br或I。
  7. 根据权利要求1-5中任一项所述的制备方法,其特征在于,所述一种或一种以上半导体纳米晶前驱体为三种纳米晶前驱体,它们分别为1种AX前驱体、1种BˊX 2前驱体和1种BX 2前驱体,所述AX前驱体、BˊX 2前驱体和BX 2前驱体的摩尔比为1:0.5:0.5,其中A为Cs、Rb或K;Bˊ和B不同,且各自独立为Pb、Zn、Ca或Ba;X为Cl、Br或I。
  8. 根据权利要求1-5中任一项所述的制备方法,其特征在于,所述一种或一种以上半导体纳米晶前驱体为阳离子前驱体和阴离子前驱体两种不同的纳米晶前驱体,所述阳离子前驱体和阴离子前驱体的摩尔比为1:1,其中所述阳离子前驱体用于为目标纳米晶提供阳离子D n+,其中n为1-10的整数,所述阳离子前驱体选自Zn、Cd和Hg的盐酸盐、硝酸盐及其水合物;所述阴离子前驱体用于为目标纳米晶提供阴离子Y n-,其中n为1-10的整数,所述阴离子前驱体选自S、Se、Te的单质和无机盐。
  9. 根据权利要求1-5中任一项所述的制备方法,其特征在于,所述一种或多于一种半导体纳米晶前驱体为以下三种不同的纳米晶前驱体:
    用于为目标纳米晶提供+1价阳离子的第1种前驱体,其为IB族金属化合物,且选自CuCl、CuBr、CuI、AgCl、AgBr、AgI及其组合;
    用于为目标纳米晶提供+3价阳离子的第2种前驱体,其为ⅢA族金属的有机酸盐,且选自以下金属的甲酸盐、乙酸盐和丙酸盐:In、Ga和Al;
    用于为目标纳米晶提供-2价阴离子的第3种前驱体,其为ⅥA族元素的无机酸盐,且选自S的无机酸盐和Se的无机酸盐;
    其中所述第1种前驱体、第2种前驱体和第3种前驱体的摩尔比为0.5:0.5:1。
  10. 根据权利要求1-5中任一项所述的制备方法,其特征在于,所述微/介孔材料包括微孔材料和/或介孔材料,其中所述微孔材料包括但不局限于微孔分子筛、微孔二氧化硅、微孔二氧化钛、微孔氧化铝、微孔过渡金属氧化物、微孔硫化物、硅酸盐、铝酸盐和过渡金属氮化物,所述介孔材料包括但不局限于介孔分子筛、介孔二氧化硅、介孔二氧化钛、介孔氧化铝、介孔碳、介孔过渡金属氧化物、介孔硫化物、硅酸盐、铝酸盐和过渡金属氮化物。
  11. 根据权利要求1-5中任一项所述的制备方法,其特征在于,所述半导体纳米晶材料为半导体纳米晶粉末或半导体纳米晶荧光膜。
  12. 通过权利要求6所述的制备方法制备的半导体纳米晶荧光材料,其特征在于所述半导体纳米晶荧光材料具有钙钛矿结构ABX 3的纳米晶结构,其中元 素A、B和X的摩尔比为1:1:3,且A为Cs、Rb或K,B为Pb、Zn、Ca或Ba;X为Cl、Br或I。
  13. 通过权利要求7所述的制备方法制备的半导体纳米晶荧光材料,其特征在于所述半导体纳米晶荧光材料具有经卤化物BˊX 2修饰的钙钛矿结构ABX 3的纳米晶结构,其中A、Bˊ、B和X的摩尔比为1:0.5:0.5:3,且A为Cs、Rb或K;Bˊ和B不同,且各自独立为Pb、Zn、Ca或Ba;X为Cl、Br或I。
  14. 通过权利要求8所述的制备方法制备的半导体纳米晶荧光材料,其特征在于所述半导体纳米晶荧光材料具有二元结构D n+Y n-的纳米晶结构,其中n为1-10的整数,元素D与Y的摩尔比为1:1,且D选自Zn、Cd和Hg;Y选自S、Se和Te。
  15. 通过权利要求9所述的制备方法制备的半导体纳米晶荧光材料,其特征在于所述半导体纳米晶荧光材料具有IB-ⅢA-ⅥA族三元化合物型的纳米晶结构,可用通式G +M 3+(N 2-) 2表示,其中G +为Cu +或Ag +;M 3+为In 3+、Ga 3+或Al 3+;N 2-为S 2-或Se 2-,且G +、M 3+和N 2-的摩尔比为0.5:0.5:1。
  16. 一种LED器件,其特征在于所述LED器件包括权利要求12~15中任一项所述的半导体纳米晶荧光材料。
  17. 一种颜色转换面板或显示装置,其特征在于,所述颜色转换面板或显示装置包括权利要求12~15中任一项所述的半导体纳米晶荧光材料。
  18. 一种荧光闪烁体,其特征在于,所述荧光闪烁体为权利要求12~15中任一项所述的半导体纳米晶荧光材料。
  19. 一种生物检测或成像装置,其特征在于,所述生物检测或成像装置包括权利要求12~15中任一项所述的半导体纳米晶荧光材料。
PCT/CN2019/119224 2019-10-31 2019-11-18 半导体纳米晶荧光材料的制备方法以及通过所述方法制备的半导体纳米晶荧光材料及其应用 WO2021082096A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/338,306 US11898072B2 (en) 2019-10-31 2021-06-03 Fluorescent semiconductor nanocrystal material, preparation and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911055146.5 2019-10-31
CN201911055146.5A CN110734758B (zh) 2019-10-31 2019-10-31 半导体纳米晶荧光材料的制备方法以及通过所述方法制备的半导体纳米晶荧光材料及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/338,306 Continuation US11898072B2 (en) 2019-10-31 2021-06-03 Fluorescent semiconductor nanocrystal material, preparation and application thereof

Publications (1)

Publication Number Publication Date
WO2021082096A1 true WO2021082096A1 (zh) 2021-05-06

Family

ID=69270480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119224 WO2021082096A1 (zh) 2019-10-31 2019-11-18 半导体纳米晶荧光材料的制备方法以及通过所述方法制备的半导体纳米晶荧光材料及其应用

Country Status (3)

Country Link
US (1) US11898072B2 (zh)
CN (1) CN110734758B (zh)
WO (1) WO2021082096A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213766A (zh) * 2021-06-02 2021-08-06 哈尔滨工程大学 一种钙钛矿量子点闪烁微晶玻璃及制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019183840A1 (zh) * 2018-03-28 2019-10-03 中山大学 一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用
CN111454713A (zh) * 2020-04-10 2020-07-28 南通创亿达新材料股份有限公司 钙钛矿量子点粉体、其制备方法及钙钛矿量子点功能材料
CN111621297A (zh) * 2020-06-17 2020-09-04 南通创亿达新材料股份有限公司 一种硒化镉量子点及其固相制备方法
CN112980430A (zh) * 2021-02-23 2021-06-18 无锡极电光能科技有限公司 水氧稳定钙钛矿量子点及其制备方法和应用
CN113265239A (zh) * 2021-05-25 2021-08-17 无锡极电光能科技有限公司 钙钛矿量子点及其制备方法和应用
CN113621368B (zh) * 2021-07-20 2023-07-18 上海大学 卤化铅铯钙钛矿量子点与金属有机框架复合的塑形超快闪烁体及其制备方法
CN113698931B (zh) * 2021-08-30 2023-03-14 河北工业大学 一种纳米晶/氧化铝核壳结构发光材料及其制备方法
CN115818582A (zh) * 2021-09-16 2023-03-21 浙江大学 前驱体组合物及其制备方法、无机纳米晶的制备方法
CN115367800B (zh) * 2021-12-15 2023-11-14 上海旦芯悦灵脑智能科技有限公司 一种钙钛矿半导体纳米材料的制备方法和应用
CN114196393B (zh) * 2021-12-16 2023-09-15 无锡极电光能科技有限公司 一种增强核壳锚定的钙钛矿量子点、制备方法和用途
CN114196394A (zh) * 2021-12-16 2022-03-18 无锡极电光能科技有限公司 一种具有核壳填充层的钙钛矿量子点、制备方法和用途
CN114276798A (zh) * 2021-12-22 2022-04-05 华东师范大学 全无机铅卤钙钛矿量子点@沸石复合发光材料及其制备方法
CN114262454B (zh) * 2021-12-29 2023-09-26 苏州大学 一种具有超强热稳定性的荧光复合薄膜及其制备方法和应用
CN116554869A (zh) * 2022-01-27 2023-08-08 虹亮材料有限公司 量子点发光材料及包括其的扩散板
CN114836194B (zh) * 2022-03-02 2023-10-03 湖北文理学院 一种二氧化硅包覆的双钙钛矿荧光粉及其制备方法与应用
CN115029135B (zh) * 2022-06-28 2024-05-14 无锡极电光能科技有限公司 一种钙钛矿纳米复合发光材料及其制备方法和应用
CN114989811B (zh) * 2022-06-29 2023-11-28 无锡极电光能科技有限公司 一种钙钛矿量子点及其制备方法与用途
CN115093442B (zh) * 2022-07-14 2024-06-07 陕西师范大学 一种高荧光量子产率的钙钛矿纳米晶及其制备方法
CN115261979A (zh) * 2022-08-01 2022-11-01 浙江锌芯钛晶科技有限公司 一种通过原位化学气相沉积来生长卤化物钙钛矿纳米晶的方法
CN115627168B (zh) * 2022-10-13 2023-10-24 上海交通大学 半导体荧光复合颗粒及其制备方法
KR102604256B1 (ko) * 2022-10-17 2023-11-20 한국전기연구원 하이브리드 섬광체 기반 엑스선 디텍터

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104370302A (zh) * 2014-10-23 2015-02-25 上海交通大学 一种铜锌锡硫纳米晶的纳米浇注合成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090200561A1 (en) * 2008-01-30 2009-08-13 Burrell Anthony K Composite phosphors based on coating porous substrates
CN105086993A (zh) * 2015-09-11 2015-11-25 天津市中环量子科技有限公司 一种荧光量子点微纳米级封装的复合材料结构
CN105733556B (zh) * 2016-03-21 2018-06-29 天津市中环量子科技有限公司 一种量子点复合荧光颗粒、led模块
CN110205110B (zh) * 2019-05-05 2020-07-10 厦门大学 孔道限域-壳层隔绝双重保护钙钛矿纳米粒子的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104370302A (zh) * 2014-10-23 2015-02-25 上海交通大学 一种铜锌锡硫纳米晶的纳米浇注合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU, MENGCHEN: "Synthesis of SnO 2 and ZnS:Mn Quantum Dots Embedded in Silica Glass via SPS and its Optical Properties Research", CHINESE MASTER’S THESES FULL-TEXT DATABASE, 1 December 2016 (2016-12-01), pages 1 - 79, XP055808710, [retrieved on 20210528] *
YANG, FENGJIU: "Synthesis of Pb(Cd)S Quantum Dots Embedded in Silica Glass via SPS and its Performance Study", CHINESE MASTER’S THESES FULL-TEXT DATABASE, 15 July 2015 (2015-07-15), pages 1 - 90, XP055808717, [retrieved on 20210528] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213766A (zh) * 2021-06-02 2021-08-06 哈尔滨工程大学 一种钙钛矿量子点闪烁微晶玻璃及制备方法
CN113213766B (zh) * 2021-06-02 2022-09-16 哈尔滨工程大学 一种钙钛矿量子点闪烁微晶玻璃及制备方法

Also Published As

Publication number Publication date
US11898072B2 (en) 2024-02-13
US20210292642A1 (en) 2021-09-23
CN110734758B (zh) 2020-12-25
CN110734758A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2021082096A1 (zh) 半导体纳米晶荧光材料的制备方法以及通过所述方法制备的半导体纳米晶荧光材料及其应用
Ren et al. Dual-emitting CsPbX3@ ZJU-28 (X= Cl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications
Ren et al. Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications
Wei et al. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs
Zhang et al. Confined synthesis of stable and uniform CsPbBr3 nanocrystals with high quantum yield up to 90% by high temperature solid‐state reaction
Cuan et al. Confining CsPbX3 perovskites in a hierarchically porous MOF as efficient and stable phosphors for white LED
Ren et al. Water triggered interfacial synthesis of highly luminescent CsPbX 3: Mn 2+ quantum dots from nonluminescent quantum dots
TW201930554A (zh) 光轉換材料
Xie et al. In situ confined growth of ultrasmall perovskite quantum dots in metal–organic frameworks and their quantum confinement effect
Zhu et al. Stable Dy-doped CsPbBr3 quantum dot glass with enhanced optical performance
Zhao et al. Ligand‐Free CsPbBr3 Perovskite Quantum Dots in Silica‐Aerogel Composites with Enhanced Stability for w‐LED and Display by Substituting Pb2+ with Pr3+ or Gd3+ Ions
Ma et al. Enhanced stability of CsPbBr3 Quantum Dots by anchoring on the hierarchical three-dimensional layered double hydroxide
Wang et al. Stability improvements of metal halide perovskite nanocrystals and their optoelectrical applications
Li et al. Novel and stable CsPbX3-TS-1 (X= Br, I) nanocomposites for light-emitting diodes
WO2024078624A1 (zh) 荧光复合颗粒及其制备方法
He et al. CsPbX 3 nanocrystals embedded in hollow AlO (OH) nanosheet assemblies towards highly bright flexible multicolor emitting films
Hu et al. Corrosion resistant solid-state carbon dots@ silicalite-1 composite for latent fingerprints detection
Yang et al. Magic sol–gel silica films encapsulating hydrophobic and hydrophilic quantum dots for white-light-emission
WO2023039716A1 (zh) 一种钙钛矿与分子筛的复合材料及其制备方法和应用
CN117304918A (zh) 一种钙钛矿荧光材料、制备方法及可逆发光变色方法
US20210261860A1 (en) µLED Chip Architecture Based on Nanostructured Perovskite Converter Materials
WO2023123881A1 (zh) 一种具有超强热稳定性的荧光复合薄膜及其制备方法和应用
JP2005041942A (ja) 発光物質及びそれを用いた発光装置、並びに発光装置を用いた照明装置、画像表示装置
Zhao et al. Low-temperature synthesis of zirconium silicate stabilized perovskite quantum dot composite material
Yu et al. Compression packing of CsPbBr3 perovskite quantum dots with boron nitride nanosheets for enhanced stability: A nano-encapsulation strategy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950697

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19950697

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19950697

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/05/2023)