WO2019183840A1 - 一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用 - Google Patents

一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用 Download PDF

Info

Publication number
WO2019183840A1
WO2019183840A1 PCT/CN2018/080921 CN2018080921W WO2019183840A1 WO 2019183840 A1 WO2019183840 A1 WO 2019183840A1 CN 2018080921 W CN2018080921 W CN 2018080921W WO 2019183840 A1 WO2019183840 A1 WO 2019183840A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
doped
glass
inorganic perovskite
perovskite quantum
Prior art date
Application number
PCT/CN2018/080921
Other languages
English (en)
French (fr)
Inventor
王静
余金波
曹鲁豫
司帅晨
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to PCT/CN2018/080921 priority Critical patent/WO2019183840A1/zh
Priority to US16/607,362 priority patent/US11312655B2/en
Publication of WO2019183840A1 publication Critical patent/WO2019183840A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • C03C3/074Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • C09K11/662Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to the field of luminescent materials, in particular to a divalent manganese doped all-inorganic perovskite quantum dot glass ceramic and a preparation method and application thereof.
  • Fully inorganic perovskite quantum dots are very promising luminescent materials, in which CsPbX 3 (X is Cl, Br and I) has a higher fluorescence quantum efficiency ( ⁇ 90%) and an emission wavelength covering the entire visible spectrum (400 ⁇ 760nm), relatively narrow half-peak width (12 ⁇ 42nm) and many other advantages have attracted much attention.
  • the all-inorganic perovskite quantum dots synthesized by liquid phase have the problems of poor water resistance and low luminous efficiency of the powder, and have poor heat resistance and photoaging resistance after being fabricated into a device with a conventional organic packaging material. Limit its application in the field of optoelectronic materials.
  • the manganese doped quantum dot glass has good luminescence performance, high quantum efficiency and wide emission range.
  • the invention also provides a preparation method of the above-mentioned divalent manganese doped all-inorganic perovskite quantum dot glass.
  • the invention provides a divalent manganese-doped all-inorganic perovskite quantum dot glass
  • the composition of the divalent manganese-doped all-inorganic perovskite quantum dot glass is B 2 O 3 : 25 to 45%, SiO 2 : 25 to 45%, MCO 3 : 1 to 10%, Al 2 O 3 : 1 to 10%, ZnO: 1 to 5%, Cs 2 CO 3 : 1 to 10%, PbCl 2 : 1 to 10%, NaCl: 1 to 10%, and MnCl 2 : 1 to 10%.
  • the composition of the divalent manganese-doped all-inorganic perovskite quantum dot glass is B 2 O 3 : 30-40%, SiO 2 : 30-40%, MCO 3 : 1-10%, Al 2 O 3 : 1 to 10%, ZnO: 1 to 5%, Cs 2 CO 3 : 1 to 10%, PbCl 2 : 1 to 10%, NaCl: 1 to 10%, and MnCl 2 : 1 to 10%.
  • the ratio of MnCl 2 and PbCl 2 is not lower than 3:7 and not higher than 7:3.
  • the sum of the mole percentages of MCO 3 and ZnO does not exceed 10% of the total glass component.
  • the invention also provides a preparation method of the divalent manganese doped all-inorganic perovskite quantum dot glass, comprising the following steps:
  • the raw materials of the parent glass are uniformly mixed after being ground, placed in a sealed crucible, melted in a reducing atmosphere at a temperature of T1 for t1 time, poured into a mold, and then annealed. You can get transparent glass;
  • the transparent glass obtained in S1 is heat-treated at temperature T2 for t2 time, then cooled to room temperature, and after cutting and polishing, the divalent manganese-doped all-inorganic perovskite quantum dot glass is obtained;
  • the melting temperature T1 in the step S1 ranges from 1200 to 1400 ° C, and the melting time t1 is from 10 min to 60 min;
  • the heat treatment temperature T2 in the step S2 is 360 to 600 ° C, and the heat treatment time t2 is 4 to 20 h.
  • the invention adopts a heat treatment process of glass ceramics to precipitate a perovskite quantum dot from the glass, and prepares an all-inorganic perovskite quantum dot glass with high quantum dot efficiency and chemical stability divalent manganese doping.
  • the quantum dot glass is a light conversion material that can be used in the fields of white LEDs, plant growth, and solar cells.
  • the invention provides a divalent manganese-doped all-inorganic perovskite quantum dot glass, wherein the divalent manganese has an excitation wavelength range of 250 to 400 nm, an emission wavelength range of 525 nm to 800 nm, and a main peak of 640 nm.
  • the main emission peak of CsPbCl 3 is 403 to 408 nm.
  • the divalent manganese-doped all-inorganic perovskite quantum dot glass system provided by the invention has high chemical stability, wide luminescent coverage (525 nm to 800 nm and main peak of 640 nm), high luminescence quantum efficiency and wide half-width (100 nm). ), the product is stable, simple process, low cost, mass production, etc. It can be used in optical devices such as white LED, solar cell, plant growth lighting and other fields.
  • Example 1 is an XRD pattern of a Mn 2+ -doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 500 ° C for 10 h prepared in Example 1.
  • Example 2 is a TEM image of the Mn 2+ -doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 515 ° C for 15 h prepared in Example 2.
  • Example 3 is an absorption spectrum of the Mn 2+ -doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 520 ° C for 20 h prepared in Example 3.
  • Example 4 is a physical diagram of Mn 2+ -doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 530 ° C for 10 h prepared in Example 4, a physical diagram at 365 nm irradiation, and an excitation emission spectrum. .
  • Example 5 is a graph showing the lifetime of Mn 2+ -doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 530 ° C for 20 h prepared in Example 5.
  • Figure 6 is an excitation emission spectrum of divalent manganese-doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 530 ° C for 15 h synthesized in Comparative Example 1.
  • the molar percentage of the glass chemical composition of this embodiment is: 30B 2 O 3 -40SiO 2 -5ZnO-7Al 2 O 3 -6Cs 2 CO 3 -4(Pb/Mn)Cl 2 -4NaCl-4MCO 3 , wherein M is Sr .
  • Example 1 According to the chemical composition molar percentage of Example 1, the mass of each compound corresponding to Table 1 was obtained. According to Table 1, the pure boric acid (H 3 BO 3 ), silica (SiO 2 ), alumina (Al 2 O 3 ), cesium carbonate (Cs 2 CO 3 ), lead chloride (PbCl 2 ) were analyzed by exact weighing. , manganese chloride (MnCl 2 ), sodium chloride (NaCl), strontium carbonate (SrCO 3 ) zinc oxide (ZnO).
  • H 3 BO 3 pure boric acid
  • SiO 2 silica
  • Al 2 O 3 alumina
  • Cs 2 CO 3 cesium carbonate
  • PbCl 2 lead chloride
  • MnCl 2 manganese chloride
  • NaCl sodium chloride
  • strontium carbonate SrCO 3
  • ZnO zinc oxide
  • the accurately weighed raw materials are ground in an agate mortar for 1 to 2 hours, transferred to corundum crucibles, melted at 1200 ° C for 30 min, and then the melt is poured into a preheated graphite mold and placed in an annealing furnace.
  • Annealing at 360 ° C for 4 h, after cooling with the furnace to obtain the original glass, recorded as QD-Glass-CsPbCl 3 -Mn, then placed the original glass in a heat treatment furnace, respectively heat treatment at 470 ⁇ 550 ° C for 10h ⁇ 20h, with furnace cooling
  • a divalent manganese doped all inorganic perovskite quantum dot glass sample was obtained.
  • FIG. 1 is an XRD pattern of the divalent manganese-doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 500 ° C for 10 h. It can be seen from the figure that the diffraction peak appearing in the glass obtained by the heat treatment can correspond to the standard card PDF#75-0411 of the cubic phase of CsPbCl 3 , thereby indicating that CsPbCl 3 perovskite quantum dots are precipitated in the glass.
  • the molar percentage of the glass chemical composition of this embodiment is: 35B 2 O 3 -35SiO 2 -4ZnO-7Al 2 O 3 -6Cs 2 CO 3 -4(Pb/Mn)Cl 2 -4NaCl-5MCO 3 , wherein M is Ca .
  • Example 2 According to the chemical composition molar percentage of Example 2, the mass of each compound corresponding to Table 2 was obtained. According to Table 2, the pure boric acid (H 3 BO 3 ), silica (SiO 2 ), alumina (Al 2 O 3 ), cesium carbonate (Cs 2 CO 3 ), lead chloride (PbCl 2 ) were analyzed by exact weighing. , manganese chloride (MnCl 2 ), sodium chloride (NaCl), calcium carbonate (CaCO 3 ) zinc oxide (ZnO).
  • H 3 BO 3 pure boric acid
  • SiO 2 silica
  • Al 2 O 3 alumina
  • Cs 2 CO 3 cesium carbonate
  • PbCl 2 lead chloride
  • MnCl 2 manganese chloride
  • NaCl sodium chloride
  • CaCO 3 calcium carbonate
  • ZnO zinc oxide
  • the accurately weighed raw materials are ground in an agate mortar for 1 to 2 hours, transferred to corundum crucibles, melted at 1300 ° C for 30 min, and then the melt is poured into a preheated graphite mold and placed in an annealing furnace.
  • Annealing at 360 ° C for 4 h, after cooling with the furnace to obtain the original glass, recorded as QD-Glass-CsPbCl 3 -Mn, then placed the original glass in a heat treatment furnace, respectively heat treatment at 470 ⁇ 550 ° C for 10h ⁇ 20h, with furnace cooling
  • a divalent manganese doped all inorganic perovskite quantum dot glass sample was obtained.
  • the all-inorganic perovskite quantum dot glass doped with the desired divalent manganese can be obtained.
  • 2 is a TEM image of the divalent manganese-doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 515 ° C for 15 h. It can be seen from the figure that the size of the CsPbCl 3 quantum dots precipitated in the glass is about 8 to 15 nm, and the lattice spacing of the quantum dot glass and the cubic phase of the CsPbCl 3 quantum dot (111) crystal can be seen from the high resolution TEM. The surface can correspond, further demonstrating that the synthesized quantum dots are all inorganic perovskite CsPbCl 3 quantum dot glass.
  • the molar percentage of the glass chemical composition of this example is: 34B 2 O 3 -38SiO 2 -4ZnO-5Al 2 O 3 -6Cs 2 CO 3 -4(Pb/Mn)Cl 2 -4NaCl-5MCO 3 , where M is Sr .
  • Example 3 According to the chemical composition molar percentage of Example 3, the mass of each compound corresponding to Table 3 was obtained. According to Table 3, the pure boric acid (H 3 BO 3 ), silica (SiO 2 ), alumina (Al 2 O 3 ), cesium carbonate (Cs 2 CO 3 ), lead chloride (PbCl 2 ) were analyzed. , manganese chloride (MnCl 2 ), sodium chloride (NaCl), strontium carbonate (SrCO 3 ) zinc oxide (ZnO).
  • H 3 BO 3 pure boric acid
  • SiO 2 silica
  • Al 2 O 3 alumina
  • Cs 2 CO 3 cesium carbonate
  • PbCl 2 lead chloride
  • MnCl 2 manganese chloride
  • NaCl sodium chloride
  • strontium carbonate SrCO 3
  • ZnO zinc oxide
  • the accurately weighed raw materials are ground in an agate mortar for 1 to 2 hours, transferred to corundum crucibles, melted at 1250 ° C for 30 min, and then the melt is poured into a preheated graphite mold and placed in an annealing furnace.
  • Annealing at 360 ° C for 4 h, after cooling with the furnace to obtain the original glass, recorded as QD-Glass-CsPbCl 3 -Mn, then placed the original glass in a heat treatment furnace, respectively heat treatment at 470 ° C ⁇ 550 ° C for 10h ⁇ 20h, with the furnace Cooling to room temperature gave a divalent manganese doped all inorganic perovskite quantum dot glass sample.
  • FIG. 3 is an absorption spectrum diagram of the divalent manganese-doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 520 ° C for 10 h. It can be seen from the figure that the absorption peak of the glass obtained by the heat treatment is similar to the CsPbCl 3 quantum dot absorption peak synthesized by the liquid phase method in the literature, and it is also proved that the quantum dots precipitated in the glass are CsPbCl 3 quantum dots.
  • the molar percentage of the glass chemical composition of this example is: 32B 2 O 3 -38SiO 2 -3ZnO-7Al 2 O 3 -8Cs 2 CO 3 -3(Pb/Mn)Cl 2 -3NaCl-6MCO 3 , where M is Ba .
  • Example 4 According to the chemical composition molar percentage of Example 4, the mass of each compound corresponding to Table 4 was obtained. According to Table 4, the pure boric acid (H 3 BO 3 ), silica (SiO 2 ), alumina (Al 2 O 3 ), cesium carbonate (Cs 2 CO 3 ), lead chloride (PbCl 2 ) were analyzed by exact weighing. , manganese chloride (MnCl 2 ), sodium chloride (NaCl), barium carbonate (BaCO 3 ) zinc oxide (ZnO).
  • H 3 BO 3 pure boric acid
  • SiO 2 silica
  • Al 2 O 3 alumina
  • Cs 2 CO 3 cesium carbonate
  • PbCl 2 lead chloride
  • MnCl 2 manganese chloride
  • NaCl sodium chloride
  • BaCO 3 barium carbonate
  • the accurately weighed raw materials are ground in an agate mortar for 1 to 2 hours, transferred to corundum crucibles, melted at 1350 ° C for 30 min, and then the melt is poured into a preheated graphite mold and placed in an annealing furnace. Annealed at 360 ° C for 4 h, after cooling with the furnace to obtain the original glass, recorded as QD-Glass-CsPbCl 3 -Mn, then placed in the heat treatment furnace, heat treatment at 470 ° C ⁇ 550 ° C for 10 ⁇ 20h, with the furnace Cooling to room temperature gave a divalent manganese doped all inorganic perovskite quantum dot glass sample.
  • FIG. 4 is an excitation emission spectrum of the divalent manganese-doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 530 ° C for 10 h. It can be seen from the figure that the excitation emission spectrum of the glass obtained by heat treatment is similar to the excitation emission spectrum of the Mn 2+ -doped CsPbCl 3 quantum dots synthesized by the liquid phase method in the literature, and it is also proved that the quantum dots precipitated in the glass may be Mn 2+ doped.
  • Hybrid CsPbCl 3 quantum dot glass The quantum dots in the synthesized Mn 2+ -doped CsPbCl 3 quantum dot glass of the invention are present in the glass and thus have good chemical stability; the main emission peak of the sample is 640 nm, the emission spectrum ranges from 525 nm to 800 nm, and the half width is half. At 100 nm, the luminescence quantum efficiency was 23.6%.
  • the molar percentage of the glass chemical composition of this example is: 34B 2 O 3 -38SiO 2 -6ZnO-5Al 2 O 3 -8Cs 2 CO 3 -3(Pb/Mn)Cl 2 -3NaCl-3MCO 3 , wherein M is Ba .
  • Example 5 According to the chemical composition molar percentage of Example 5, the mass of each compound corresponding to Table 6 was obtained. According to Table 6, the pure boric acid (H 3 BO 3 ), silica (SiO 2 ), alumina (Al 2 O 3 ), cesium carbonate (Cs 2 CO 3 ), lead chloride (PbCl 2 ) were analyzed. , manganese chloride (MnCl 2 ), sodium chloride (NaCl), barium carbonate (BaCO 3 ) zinc oxide (ZnO).
  • H 3 BO 3 pure boric acid
  • SiO 2 silica
  • Al 2 O 3 alumina
  • Cs 2 CO 3 cesium carbonate
  • PbCl 2 lead chloride
  • MnCl 2 manganese chloride
  • NaCl sodium chloride
  • BaCO 3 barium carbonate
  • the accurately weighed raw materials are ground in an agate mortar for 1 to 2 hours, transferred to corundum crucibles, melted at 1400 ° C for 30 min, and then the melt is poured into a preheated graphite mold and placed in an annealing furnace.
  • Annealing at 360 ° C for 4 h, after cooling with the furnace to obtain the original glass, recorded as QD-Glass-CsPbCl 3 -Mn, then placed the original glass in a heat treatment furnace, respectively heat treatment at 470 ⁇ 550 ° C for 10h ⁇ 20h, with furnace cooling
  • a divalent manganese doped all inorganic perovskite quantum dot glass sample was obtained.
  • FIG. 5 is a life diagram of the divalent manganese-doped all-inorganic perovskite quantum dot glass obtained after heat treatment at 530 ° C for 20 h. It can be seen from the figure that the lifetime of the glass obtained by heat treatment is similar to the lifetime of the Mn 2+ -doped CsPbCl 3 quantum dots synthesized by the liquid phase method in the literature, which further proves that the quantum dots precipitated in the glass may be Mn 2+ doped CsPbCl 3 quantum. Point the glass.
  • the molar percentage of the glass chemical composition of this comparative example was: 33B 2 O 3 -38SiO 2 -10ZnO-5Al 2 O 3 -8Cs 2 CO 3 -3(Pb/Mn)Cl 2 -3NaCl.
  • FIG. 6 is an absorption spectrum diagram of the manganese-doped glass sample obtained after the heat treatment at 520 ° C for 15 h.
  • the glass obtained by heat treatment of Comparative Example 1 showed no absorption between 300 nm and 400 nm, which indicates that the composition of Comparative Example 1 could not synthesize divalent manganese-doped all-inorganic perovskite quantum dot glass.

Abstract

一种二价锰掺杂的全无机钙钛矿量子点玻璃,其组成为B2O3:25~45%, SiO2:25~45%, MCO3:1~10%, Al2O3:1~10%, ZnO:1~5%, Cs2CO3:1~10%, PbCl2:1~10%, NaCl:1~10%, MnCl2:1~10%,其中M为Ca、Sr或Ba。该量子点玻璃的制备为将各玻璃原料组分研磨,混匀后进行熔融,然后将熔体压制成型后进行退火和热处理,通过不同温度的热处理,即可得到二价锰掺杂的量子点玻璃。所制备的量子点掺杂玻璃具有良好的化学稳定性,较高的荧光量子效率,是一种极具应用前景的发光材料。

Description

一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用 技术领域
本发明涉及发光材料领域,尤其涉及一种二价锰掺杂的全无机钙钛矿量子点玻璃陶瓷及其制备方法和应用。
背景技术
全无机钙钛矿量子点是非常具有发展潜力的发光材料,其中CsPbX 3(X为Cl、Br和I)因其具有较高荧光量子效率(~90%)、发光波长覆盖整个可见光谱(400~760nm)、半峰宽相对较窄(12~42nm)等诸多优点而备受关注。然而通过液相合成的全无机钙钛矿量子点存在耐水性较差,粉体发光效率低的问题,与传统的有机封装材料制成器件后存在耐热和耐光老化性能较差等问题,大大限制了其在光电材料领域的应用。
为了克服以上难题,合成一种兼具优异发光性能、化学稳定性、耐热性能、耐光性能的量子点复合材料显得尤为迫切。玻璃与传统的有机封装材料相比,具有良好的透明性、机械稳定性、化学稳定性、耐热和耐水性,制备工艺简单廉价,能够获得大块光学器件以及超高的光学匀质性等性能优点,因而是基体材料的合适选择。
发明内容
本发明的目的在于提供了一种二价锰掺杂的全无机钙钛矿量子点玻璃。该锰掺杂的量子点玻璃的发光性能好,量子效率较高,发射范围宽。
本发明同时提供上述二价锰掺杂的全无机钙钛矿量子点玻璃的制备方法。
本发明的目的通过以下技术方案实现:
本发明提供了一种二价锰掺杂的全无机钙钛矿量子点玻璃,按摩尔百分比计,所述二价锰掺杂的全无机钙钛矿量子点玻璃的组成为B 2O 3:25~45%,SiO 2:25~45%,MCO 3:1~10%,Al 2O 3:1~10%,ZnO:1~5%,Cs 2CO 3:1~10%,PbCl 2:1~10%,NaCl:1~10%,MnCl 2:1~10%。
优选地,所述二价锰掺杂的全无机钙钛矿量子点玻璃的组成为B 2O 3:30~40%,SiO 2:30~40%,MCO 3:1~10%,Al 2O 3:1~10%,ZnO:1~5%,Cs 2CO 3:1~10%,PbCl 2: 1~10%,NaCl:1~10%,MnCl 2:1~10%。
优选地,MnCl 2和PbCl 2的比例不低于3:7且不高于7:3。
优选地,MCO 3和ZnO的摩尔百分比总和不超过玻璃总组分的10%。
在以上优选条件下,能够获得发光性能更好的二价锰掺杂的全无机钙钛矿量子点玻璃。
本发明同时提供所述的二价锰掺杂的全无机钙钛矿量子点玻璃的制备方法,包括如下步骤:
S1.将母体玻璃的各组成原料经过研磨后混合均匀,置于密封的坩埚中,在还原气氛中,T1温度下熔融处理t1时间,将玻璃熔体倒入模具中成型,然后于退火处理,即可得到透明的玻璃;
S2.将S1中得到的透明玻璃,在温度T2下,热处理t2时间,然后冷却至室温,经过切割、抛光,即可得到所述二价锰掺杂的全无机钙钛矿量子点玻璃;
步骤S1中所述的熔融温度T1范围为1200~1400℃,熔融时间t1为10min~60min;
步骤S2中的热处理温度T2为360~600℃,热处理时间t2为4~20h。
本发明通过微晶玻璃的热处理工艺,使得钙钛矿量子点从玻璃中析出,制备出了具有较高的量子点效率和化学稳定性二价锰掺杂的全无机钙钛矿量子点玻璃。该量子点玻璃是一种可以被用于白光LED、植物生长和太阳能电池等领域的光转换材料。
本发明所提供的二价锰掺杂的全无机钙钛矿量子点玻璃,其中二价锰的激发波长范围为250~400nm,发射波长范围为525nm~800nm且主峰为640nm。其中CsPbCl 3的发射主峰为403~408nm。
与现有技术相比,本发明的有益效果是:
本发明提供的二价锰掺杂的全无机钙钛矿量子点玻璃体系化学稳定性高,发光覆盖范围广(525nm~800nm且主峰为640nm),发光量子效率高、半峰宽很宽(100nm)、产物均一稳定、工艺简单、成本低廉、可批量生产等优点,可用于白光LED、太阳能电池、植物生长照明等光学器件及其他领域。
附图说明
图1为实施例1所制备的500℃-10h热处理后得到的Mn 2+掺杂的全无机钙 钛矿量子点玻璃的XRD图。
图2为实施例2所制备的515℃-15h热处理后得到的Mn 2+掺杂的全无机钙钛矿量子点玻璃的TEM图。
图3为实施例3所制备的520℃-20h热处理后得到的Mn 2+掺杂的全无机钙钛矿量子点玻璃的吸收光谱。
图4为实施例4所制备出的530℃-10h热处理后得到的Mn 2+掺杂的全无机钙钛矿量子点玻璃的日光下的实物图、365nm照射下的实物图及激发发射光谱图。
图5为实施例5所制备出的530℃-20h热处理后得到的Mn 2+掺杂的全无机钙钛矿量子点玻璃的寿命图。
图6即为对比例1所合成的530℃-15h热处理后得到的二价锰掺杂的全无机钙钛矿量子点玻璃的激发发射光谱图
具体实施方式
以下结合具体实施例和附图来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,本发明所用试剂和材料均为市购。
实施例1:
本实施例的玻璃化学组成的摩尔百分比为:30B 2O 3-40SiO 2-5ZnO-7Al 2O 3-6Cs 2CO 3-4(Pb/Mn)Cl 2-4NaCl-4MCO 3,其中M为Sr。
表1 实施例1二价锰掺杂的全无机钙钛矿量子点玻璃的原料组成
原料 H 3BO 3 SiO 2 Al 2O 3 Cs 2CO 3 PbCl 2 MnCl 2 NaCl SrCO 3 ZnO
质量 12.9849 8.4118 2.4981 6.8422 1.9468 0.8809 0.8182 2.066 1.1397
按照实施例1的化学组成摩尔百分比计算即可得到如表1所示对应各化合物的质量。根据表1精确称量分析纯的硼酸(H 3BO 3)、二氧化硅(SiO 2)、氧化铝(Al 2O 3)、碳酸铯(Cs 2CO 3)、氯化铅(PbCl 2)、氯化锰(MnCl 2)、氯化钠(NaCl)、碳酸锶(SrCO 3)氧化锌(ZnO)。将精确称量的原料在玛瑙研钵中研磨1~2h后,转移至刚玉坩埚中,在1200℃下熔融30min,然后将熔体倾倒在已经预热的石墨模具中成型,放入退火炉中在360℃退火4h,随炉冷却后得到原始玻璃,记为QD-Glass-CsPbCl 3-Mn,接着将原始玻璃置于热处理炉中,分别在470~550℃下热 处理10h~20h,随炉冷却至室温,得到二价锰掺杂的全无机钙钛矿量子点玻璃样品。再用金刚石线性切割机切制适当的厚度后,抛光至双面达到镜面,即可用得到符合要求的二价锰掺杂的全无机钙钛矿量子点玻璃。其中图1即为所合成的500℃-10h热处理后得到的二价锰掺杂的全无机钙钛矿量子点玻璃的XRD图。从图中可知,经过热处理得到的玻璃中出现的衍射峰与立方相的CsPbCl 3的标准卡片PDF#75-0411可以一一对应,从而说明玻璃中析出了CsPbCl 3钙钛矿量子点。
实施例2:
本实施例的玻璃化学组成的摩尔百分比为:35B 2O 3-35SiO 2-4ZnO-7Al 2O 3-6Cs 2CO 3-4(Pb/Mn)Cl 2-4NaCl-5MCO 3,其中M为Ca。
表2 实施例2二价锰掺杂的全无机钙钛矿量子点玻璃的原料组成
原料 H 3BO 3 SiO 2 Al 2O 3 Cs 2CO 3 PbCl 2 MnCl 2 NaCl CaCO 3 ZnO
质量 15.1491 7.3603 2.4981 6.8422 1.9468 0.8809 0.8182 1.7515 1.1397
按照实施例2的化学组成摩尔百分比计算,即可得到如表2所示对应各化合物的质量。根据表2精确称量分析纯的硼酸(H 3BO 3)、二氧化硅(SiO 2)、氧化铝(Al 2O 3)、碳酸铯(Cs 2CO 3)、氯化铅(PbCl 2)、氯化锰(MnCl 2)、氯化钠(NaCl)、碳酸钙(CaCO 3)氧化锌(ZnO)。将精确称量的原料在玛瑙研钵中研磨1~2h后,转移至刚玉坩埚中,在1300℃下熔融30min,然后将熔体倾倒在已经预热的石墨模具中成型,放入退火炉中在360℃退火4h,随炉冷却后得到原始玻璃,记为QD-Glass-CsPbCl 3-Mn,接着将原始玻璃置于热处理炉中,分别在470~550℃下热处理10h~20h,随炉冷却至室温,得到二价锰掺杂的全无机钙钛矿量子点玻璃样品。再用金刚石线性切割机切制适当的厚度后,抛光至双面达到镜面,即可用得到符合要求的二价锰掺杂的全无机钙钛矿量子点玻璃。其中图2即为所合成的515℃-15h热处理后得到的二价锰掺杂的全无机钙钛矿量子点玻璃的TEM图。从图中可知,玻璃中析出的CsPbCl 3量子点的尺寸约为8~15nm的晶体,且从高分辨TEM可以看出量子点玻璃的晶格间距和立方相的CsPbCl 3量子点(111)晶面可以对应,进一步证明合成的量子点为全无机钙钛矿CsPbCl 3量子点玻璃。
实施例3:
本实施例的玻璃化学组成的摩尔百分比为:34B 2O 3-38SiO 2-4ZnO-5Al 2O 3-6Cs 2CO 3-4(Pb/Mn)Cl 2-4NaCl-5MCO 3,其中M为Sr。
表3 实施例3二价锰掺杂的全无机钙钛矿量子点玻璃的原料组成
原料 H 3BO 3 SiO 2 Al 2O 3 Cs 2CO 3 PbCl 2 MnCl 2 NaCl SrCO 3 ZnO
质量 14.7163 7.9912 1.7843 6.8422 1.7522 0.5285 0.8182 2.5835 1.1397
按照实施例3的化学组成摩尔百分比计算即可得到如表3所示对应各化合物的质量。根据表3精确称量分析纯的硼酸(H 3BO 3)、二氧化硅(SiO 2)、氧化铝(Al 2O 3)、碳酸铯(Cs 2CO 3)、氯化铅(PbCl 2)、氯化锰(MnCl 2)、氯化钠(NaCl)、碳酸锶(SrCO 3)氧化锌(ZnO)。将精确称量的原料在玛瑙研钵中研磨1~2h后,转移至刚玉坩埚中,在1250℃下熔融30min,然后将熔体倾倒在已经预热的石墨模具中成型,放入退火炉中在360℃退火4h,随炉冷却后得到原始玻璃,记为QD-Glass-CsPbCl 3-Mn,接着将原始玻璃置于热处理炉中,分别在470℃~550℃下热处理10h~20h,随炉冷却至室温,得到二价锰掺杂的全无机钙钛矿量子点玻璃样品。再用金刚石线性切割机切制适当的厚度后,抛光至双面达到镜面,即可用得到符合要求的二价锰掺杂的全无机钙钛矿量子点玻璃。其中图3即为所合成的520℃-10h热处理后得到的二价锰掺杂的全无机钙钛矿量子点玻璃的吸收光谱图。从图中可知,热处理得到的玻璃的吸收峰与文献中液相法合成的CsPbCl 3量子点吸收峰相似,也证明玻璃中析出的量子点为CsPbCl 3量子点。
实施例4:
本实施例的玻璃化学组成的摩尔百分比为:32B 2O 3-38SiO 2-3ZnO-7Al 2O 3-8Cs 2CO 3-3(Pb/Mn)Cl 2-3NaCl-6MCO 3,其中M为Ba。
表4 实施例4二价锰掺杂的全无机钙钛矿量子点玻璃的原料组成
原料 H 3BO 3 SiO 2 Al 2O 3 Cs 2CO 3 PbCl 2 MnCl 2 NaCl BaCO 3 ZnO
质量 13.8504 7.9912 2.4981 9.1230 2.0442 0.8809 0.3964 4.1441 0.8548
按照实施例4的化学组成摩尔百分比计算即可得到如表4所示对应各化合物的质量。根据表4精确称量分析纯的硼酸(H 3BO 3)、二氧化硅(SiO 2)、氧化铝(Al 2O 3)、碳酸铯(Cs 2CO 3)、氯化铅(PbCl 2)、氯化锰(MnCl 2)、氯化钠(NaCl)、 碳酸钡(BaCO 3)氧化锌(ZnO)。将精确称量的原料在玛瑙研钵中研磨1~2h后,转移至刚玉坩埚中,在1350℃下熔融30min,然后将熔体倾倒在已经预热的石墨模具中成型,放入退火炉中在360℃退火4h,随炉冷却后得到原始玻璃,记为QD-Glass-CsPbCl 3-Mn,接着将原始玻璃置于热处理炉中,分别在470℃~550℃下热处理10~20h,随炉冷却至室温,得到二价锰掺杂的全无机钙钛矿量子点玻璃样品。再用金刚石线性切割机切制适当的厚度后,抛光至双面达到镜面,即可用得到符合要求的二价锰掺杂的全无机钙钛矿量子点玻璃。其中图4即为所合成的530℃-10h热处理后得到的二价锰掺杂的全无机钙钛矿量子点玻璃的激发发射光谱图。从图中可知,热处理得到的玻璃的激发发射光谱与文献中液相法合成的Mn 2+掺杂CsPbCl 3量子点的激发发射光谱相似,也证明玻璃中析出的量子点可能为Mn 2+掺杂CsPbCl 3量子点玻璃。本发明合成的Mn 2+掺杂CsPbCl 3量子点玻璃中的量子点存在于玻璃中因而具有较好的化学稳定性;样品的发射主峰为640nm,发射光谱的范围是525nm~800nm,半峰宽为100nm,发光量子效率为23.6%。
表5 实施例4所合成样品的内量子效率、吸收率及外量子效率
样品 IQY Abs EQY
QD-Glass-CsPbCl 3-Mn 0.236 0.894 0.211
实施例5:
本实施例的玻璃化学组成的摩尔百分比为:34B 2O 3-38SiO 2-6ZnO-5Al 2O 3-8Cs 2CO 3-3(Pb/Mn)Cl 2-3NaCl-3MCO 3,其中M为Ba。
表6 实施例5二价锰掺杂的全无机钙钛矿量子点玻璃的原料组成
原料 H 3BO 3 SiO 2 Al 2O 3 Cs 2CO 3 PbCl 2 MnCl 2 NaCl BaCO 3 ZnO
质量 14.7163 7.9912 1.7843 6.8422 1.4601 0.6607 0.6136 2.0720 1.7096
按照实施例5的化学组成摩尔百分比计算即可得到如表6所示对应各化合物的质量。根据表6精确称量分析纯的硼酸(H 3BO 3)、二氧化硅(SiO 2)、氧化铝(Al 2O 3)、碳酸铯(Cs 2CO 3)、氯化铅(PbCl 2)、氯化锰(MnCl 2)、氯化钠(NaCl)、碳酸钡(BaCO 3)氧化锌(ZnO)。将精确称量的原料在玛瑙研钵中研磨1~2h后,转移至刚玉坩埚中,在1400℃下熔融30min,然后将熔体倾倒在已经预热的石墨 模具中成型,放入退火炉中在360℃退火4h,随炉冷却后得到原始玻璃,记为QD-Glass-CsPbCl 3-Mn,接着将原始玻璃置于热处理炉中,分别在470~550℃下热处理10h~20h,随炉冷却至室温,得到二价锰掺杂的全无机钙钛矿量子点玻璃样品。再用金刚石线性切割机切制适当的厚度后,抛光至双面达到镜面,即可用得到符合要求的二价锰掺杂的全无机钙钛矿量子点玻璃。其中图5即为所合成的530℃-20h热处理后得到的二价锰掺杂的全无机钙钛矿量子点玻璃的寿命图。从图中可知,热处理得到的玻璃的寿命与文献中液相法合成的Mn 2+掺杂CsPbCl 3量子点的寿命相似,进一步证明玻璃中析出的量子点可能为Mn 2+掺杂CsPbCl 3量子点玻璃。
对比例1:
本对比例的玻璃化学组成的摩尔百分比为:33B 2O 3-38SiO 2-10ZnO-5Al 2O 3-8Cs 2CO 3-3(Pb/Mn)Cl 2-3NaCl。
表7 对比例1二价锰掺杂的玻璃的原料组成
原料 H 3BO 3 SiO 2 Al 2O 3 Cs 2CO 3 PbCl 2 MnCl 2 NaCl ZnO
质量 14.7163 7.9912 1.7843 6.8422 2.3362 0.2643 0.6136 2.8493
按照对比例1的化学组成摩尔百分比计算即可得到如表7所示对应各化合物的质量。根据表7精确称量分析纯的硼酸(H 3BO 3)、二氧化硅(SiO 2)、氧化铝(Al 2O 3)、碳酸铯(Cs 2CO 3)、氯化铅(PbCl 2)、氯化锰(MnCl 2)、氯化钠(NaCl)、氧化锌(ZnO)。将精确称量的原料在玛瑙研钵中研磨1~2h后,转移至刚玉坩埚中,在1250℃下熔融30min,然后将熔体倾倒在已经预热的石墨模具中成型,放入退火炉中在360℃退火4h,随炉冷却后得到原始玻璃,记为Glass-Mn,接着将原始玻璃置于热处理炉中,分别在470~550℃下热处理10h~20h,随炉冷却至室温,得到锰掺杂的玻璃。再用金刚石线性切割机切制适当的厚度后,抛光至双面达到镜面,得到锰掺杂的玻璃样品。其中图6即为所合成的520℃-15h热处理后得到的锰掺杂的玻璃样品的吸收光谱图。从图中可知,对比例1热处理得到的玻璃的在300nm~400nm之间未出现吸收,这表明对比例1的组分无法合成二价锰掺杂的全无机钙钛矿量子点玻璃。

Claims (7)

  1. 一种二价锰掺杂的全无机钙钛矿量子点玻璃,其特征在于,按摩尔百分比计,所述二价锰掺杂的全无机钙钛矿量子点玻璃的组成为B 2O 3:25~45%,SiO 2:25~45%,MCO 3:1~10%,Al 2O 3:1~10%,ZnO:1~5%,Cs 2CO 3:1~10%,PbCl 2:1~10%,NaCl:1~10%,MnCl 2:1~10%。
  2. 根据权利要求1所述的二价锰掺杂的全无机钙钛矿量子点玻璃,其特征在于,按摩尔百分比计,所述二价锰掺杂的全无机钙钛矿量子点玻璃的组成为B 2O 3:30~40%,SiO 2:30~40%,MCO 3:1~10%,Al 2O 3:1~10%,ZnO:1~5%,Cs 2CO 3:1~10%,PbCl 2:1~10%,NaCl:1~10%,MnCl 2:1~10%。
  3. 根据权利要求1或2所述的二价锰掺杂的全无机钙钛矿量子点玻璃,其特征在于,MnCl 2和PbCl 2的摩尔比不低于3:7且不高于7:3。
  4. 根据权利要求1所述的二价锰掺杂的全无机钙钛矿量子点玻璃,其特征在于,MCO 3和ZnO的摩尔百分比总和不超过玻璃总组分的10%。
  5. 一种权利要求1所述的二价锰掺杂的全无机钙钛矿量子点玻璃的制备方法,其特征在于,包括如下步骤:
    S1.将母体玻璃的各组成原料经过研磨后混合均匀,置于密封的容器中,在还原气氛中,T1温度下熔融处理t1时间,成型后进行退火,即可得到透明的玻璃;
    S2.将S1中得到的透明玻璃,在温度T2下,热处理t2时间,然后冷却至室温,即可得到所述二价锰掺杂的全无机钙钛矿量子点玻璃;
    步骤S1中所述的熔融温度T1范围为1200~1400℃,熔融时间t1为10min~60min;
    步骤S2中的热处理温度T2为360~600℃,热处理时间t2为4~20h。
  6. 权利要求1至4任一所述的二价锰掺杂的全无机钙钛矿量子点玻璃在制备发光材料中的应用。
  7. 根据权利要求6所述的应用,其特征在于,二价锰掺杂的全无机钙钛矿量子点玻璃作为光转换材料应用于白光LED、植物生长和太阳能电池领域。
PCT/CN2018/080921 2018-03-28 2018-03-28 一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用 WO2019183840A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/080921 WO2019183840A1 (zh) 2018-03-28 2018-03-28 一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用
US16/607,362 US11312655B2 (en) 2018-03-28 2018-03-28 Divalent manganese-doped all-inorganic perovskite quantum dot glass and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080921 WO2019183840A1 (zh) 2018-03-28 2018-03-28 一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019183840A1 true WO2019183840A1 (zh) 2019-10-03

Family

ID=68062520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080921 WO2019183840A1 (zh) 2018-03-28 2018-03-28 一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用

Country Status (2)

Country Link
US (1) US11312655B2 (zh)
WO (1) WO2019183840A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963711A (zh) * 2019-12-13 2020-04-07 深圳第三代半导体研究院 一种复合量子点玻璃及其制备方法
CN111739995A (zh) * 2020-07-03 2020-10-02 青岛科技大学 一种基于双波段白光钙钛矿量子点的白光led及制备方法
CN113336436A (zh) * 2021-05-18 2021-09-03 杭州电子科技大学 Led用贵金属敏化碳量子点玻璃材料及制备方法和应用
CN115124247A (zh) * 2022-06-21 2022-09-30 福建江夏学院 一种全无机钙钛矿量子点微晶玻璃材料及制备方法
CN116177994A (zh) * 2022-05-18 2023-05-30 石家庄铁道大学 一种新型高温钙钛矿发光陶瓷及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925115A (zh) * 2020-08-23 2020-11-13 昆明理工大学 一种高发光强度的自结晶全无机钙钛矿量子点玻璃及其制备方法
CN114213004B (zh) * 2021-12-31 2022-08-02 云南大学 一种白光量子点发光玻璃及其制备方法和应用
CN115583799A (zh) * 2022-08-30 2023-01-10 昆明理工大学 基于光致变色的防伪玻璃粉末及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927683A (zh) * 2017-03-22 2017-07-07 温州大学 湿化学法构建可控纳米晶玻璃陶瓷的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020081696A1 (en) * 2018-10-16 2020-04-23 Wake Forest University Perovskite lighting systems
CN109679656A (zh) * 2019-01-07 2019-04-26 京东方科技集团股份有限公司 量子点杂化纳米材料及其制备方法和光致发光器件
CN110734758B (zh) * 2019-10-31 2020-12-25 上海交通大学 半导体纳米晶荧光材料的制备方法以及通过所述方法制备的半导体纳米晶荧光材料及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927683A (zh) * 2017-03-22 2017-07-07 温州大学 湿化学法构建可控纳米晶玻璃陶瓷的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HE, MEILING ET AL.: "Mn-Doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED", DYES AND PIGMENTS, vol. 152, 31 January 2018 (2018-01-31), pages 146 - 154, XP055639168, ISSN: 0143-7208 *
LI, PENGZHI ET AL.: "Novel Synthesis and Optical Characterization of CsPb2Br5 Quantum Dots in Borosilicate Glasses", MATERIALS LETTERS, vol. 209, 20 August 2017 (2017-08-20), XP085204906, ISSN: 0167-577X *
LIU, SIJIN ET AL.: "Novel CsPbI3 QDs Glass with Chemical Stability and Optical Properties", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 38, April 2018 (2018-04-01), pages 1998 - 2004, XP055639156, ISSN: 0955-2219 *
LIU,SIJIN ET AL.: "Precipitation and Tunable Emission of Cesium Lead Halide Perovskites (CsPbX3, X=Br, I) QDs in Borosilicate Glass", CERAMICS INTERNATIONAL, vol. 44, March 2018 (2018-03-01), pages 4496 - 4499, XP055639178, ISSN: 0272-8842 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963711A (zh) * 2019-12-13 2020-04-07 深圳第三代半导体研究院 一种复合量子点玻璃及其制备方法
CN110963711B (zh) * 2019-12-13 2022-03-08 深圳第三代半导体研究院 一种复合量子点玻璃及其制备方法
CN111739995A (zh) * 2020-07-03 2020-10-02 青岛科技大学 一种基于双波段白光钙钛矿量子点的白光led及制备方法
CN113336436A (zh) * 2021-05-18 2021-09-03 杭州电子科技大学 Led用贵金属敏化碳量子点玻璃材料及制备方法和应用
CN113336436B (zh) * 2021-05-18 2022-08-26 杭州电子科技大学 Led用贵金属敏化碳量子点玻璃材料及制备方法和应用
CN116177994A (zh) * 2022-05-18 2023-05-30 石家庄铁道大学 一种新型高温钙钛矿发光陶瓷及其制备方法
CN115124247A (zh) * 2022-06-21 2022-09-30 福建江夏学院 一种全无机钙钛矿量子点微晶玻璃材料及制备方法

Also Published As

Publication number Publication date
US11312655B2 (en) 2022-04-26
US20200131081A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
WO2019183840A1 (zh) 一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用
CN108423984B (zh) 一种二价锰掺杂的全无机钙钛矿量子点玻璃及其制备方法和应用
Allix et al. Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass
CN108467208B (zh) 一种CsPbX3纳米晶掺杂硼锗酸盐玻璃及其制备方法与应用
Raju et al. The influence of sintering temperature on the photoluminescence properties of oxyapatite Eu3+: Ca2Gd8Si6O26 nanophosphors
US20070091950A1 (en) Inorganic compound, composition and molded body containing the same, light emitting device, and solid laser device
CN108285272A (zh) 一种CsPb2Br5量子点微晶玻璃材料及其制备方法
EP2770038A1 (en) Led red fluorescent material and lighting device having same
Park et al. Synthesis and luminescent characteristics of yellow emitting GdSr2AlO5: Ce3+ phosphor for blue light based white LED
Kumar et al. Efficient red-luminescence of CaLa2ZnO5 phosphors co-doped by Ce3+ and Eu3+ ions
Babu et al. Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol-gel powder phosphors
Wang et al. Nanocrystallization of lanthanide-doped KLu 2 F 7–KYb 2 F 7 solid-solutions in aluminosilicate glass for upconverted solid-state-lighting and photothermal anti-counterfeiting
Lei et al. Preparation and broadband white emission of Ce3+-doped transparent glass-ceramics containing ZnO nanocrystals for WLEDs applications
CN110002762B (zh) 一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃、其制备方法和应用
Omar et al. Development and characterization studies of Eu3+-doped Zn2SiO4 phosphors with waste silicate sources
Han et al. Crystalline-phase depuration in Ce3+ activated Lu3Al5O12-tellurite green-emitting phosphor-in-glass
Tang et al. Synthesis, structure and upconversion luminescence of Yb 3+, Ho 3+ co-doped Gd 3 Al 5 O 12 garnet phosphor prepared by the Pechini sol–gel method
Wang et al. ZnO induced self-crystallization of CsPb (Br/I) 3 nanocrystal glasses with improved stability for backlight display application
CN113861979B (zh) 一种Mn4+激活的锑酸盐红色荧光粉及其制备方法与应用
Ma et al. Structural features and photoluminescence behaviors of color-temperature tunable (Gd, Y) 3Al5O12: Ce3+/Cr3+ phosphors with varying compositions
Ţucureanu et al. Structural and luminescence properties of yellow phosphors prepared by a modified sol-gel method
Zhao et al. Continuous synthesis of all-inorganic low-dimensional bismuth-based metal halides Cs 4 MnBi 2 Cl 12 from reversible precursors Cs 3 BiCl 6 and Cs 3 Bi 2 Cl 9 under phase engineering
CN111099826A (zh) 一种蓝光激发的黄绿色全光谱荧光玻璃及其制备方法
WO2018170974A1 (zh) 一种高功率半导体光源激发用玻璃陶瓷及其制备方法和应用
CN113549458B (zh) 一种基于磷灰石结构的高显色性三价Eu离子掺杂的红色荧光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912120

Country of ref document: EP

Kind code of ref document: A1