WO2021080201A1 - 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 - Google Patents

열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 Download PDF

Info

Publication number
WO2021080201A1
WO2021080201A1 PCT/KR2020/012988 KR2020012988W WO2021080201A1 WO 2021080201 A1 WO2021080201 A1 WO 2021080201A1 KR 2020012988 W KR2020012988 W KR 2020012988W WO 2021080201 A1 WO2021080201 A1 WO 2021080201A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
compound
acrylate
resin composition
thermoplastic resin
Prior art date
Application number
PCT/KR2020/012988
Other languages
English (en)
French (fr)
Inventor
김규선
이대우
서재범
박정태
신성재
장지욱
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200121468A external-priority patent/KR102498745B1/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to JP2021539356A priority Critical patent/JP7176122B2/ja
Priority to CN202080007250.1A priority patent/CN113227247B/zh
Priority to US17/417,360 priority patent/US11718745B2/en
Priority to EP20878652.5A priority patent/EP3882311A4/en
Publication of WO2021080201A1 publication Critical patent/WO2021080201A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a thermoplastic resin composition, a method of manufacturing the same, and a molded article including the same, and more particularly, to a thermoplastic resin composition having excellent weather resistance and heat resistance and excellent scratch resistance and colorability, a method of manufacturing the same, and a molded article including the same.
  • a thermoplastic resin composition having excellent weather resistance and heat resistance and excellent scratch resistance and colorability, a method of manufacturing the same, and a molded article including the same.
  • ABS resin is an acrylonitrile-butadiene-styrene terpolymer and has excellent impact resistance, stiffness, chemical resistance, and processability, so it is used in various fields such as electric and electronic, construction, and automobiles.
  • the ABS resin uses a butadiene rubber polymer, there is a problem that it is not suitable as an outdoor material due to poor weather resistance.
  • ASA acrylonitrile-styrene-acrylate copolymer
  • ASA resin is implemented by painting or plating, but considering environmental aspects, a product that can be implemented without painting is required.
  • the unpainted product has a problem that the product value is deteriorated because the appearance characteristics such as scratch resistance and color are deteriorated compared to the painted product.
  • the heat resistance is improved, but due to the high refractive index of the ⁇ -methylstyrene system, the coloration is insufficient and satisfactory blackness is not implemented. there is a problem.
  • Patent Literature 1 Korean Patent Registration No. 1478394 (B1)
  • the present disclosure aims to provide a thermoplastic resin composition having excellent weather resistance and heat resistance, and excellent scratch resistance and coloring property.
  • the present description aims to provide a method for producing the above thermoplastic resin composition.
  • the present description aims to provide a molded article manufactured from the above thermoplastic resin composition.
  • the present substrate is (A) 65 to 83% by weight of an alkyl (meth)acrylate compound, 2 to 12% by weight of an N-substituted maleimide compound, 1 to 6% by weight of a vinyl cyan compound, and an aromatic vinyl compound 55 to 70% by weight of a non-grafted copolymer comprising 7 to 17% by weight; (B) 20 to 42% by weight of an acrylate-based rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer comprising an acrylate-based rubber having an average particle diameter of 50 to 200 nm; And (C) 1 to 15% by weight of an acrylate-based rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer comprising an acrylate-based rubber having an average particle diameter of 300 to 600 nm;
  • the composition is provided.
  • the base material is (A) 65 to 83% by weight of an alkyl (meth)acrylate compound, 2 to 12% by weight of an N-substituted maleimide compound, 1 to 6% by weight of a vinyl cyan compound, and 7 to 17% by weight of an aromatic vinyl compound Non-grafted copolymer consisting of 55 to 70% by weight; (B) 20 to 42% by weight of an acrylate-based rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer comprising an acrylate-based rubber having an average particle diameter of 50 to 200 nm; And (C) 1 to 15% by weight of an acrylate-based rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer comprising an acrylate-based rubber having an average particle diameter of 300 to 600 nm; 200 to 270°C and 200 to 300 It provides a method for producing a thermoplastic resin composition comprising; kneading and extruding under rpm conditions.
  • the present description provides a molded article characterized in that it is manufactured from the thermoplastic resin composition.
  • thermoplastic resin composition having excellent scratch resistance and coloring property while having excellent weather resistance and heat resistance, a manufacturing method thereof, and a molded article including the same.
  • conversion rate of the N-substituted maleimide compound including the aromatic vinyl compound in the non-grafted copolymer contained in the thermoplastic resin composition is improved, and the residual amount of the N-substituted maleimide compound in the recovery solution after polymerization is reduced, thereby volatilization process.
  • the problem in which the N-substituted maleimide compound is precipitated in the pipe transferred to the residual monomer recovery tank is solved, thereby increasing productivity.
  • thermoplastic resin composition of the present disclosure a method of manufacturing the same, and a molded article including the same will be described in detail.
  • the present inventors have prepared a non-grafted copolymer comprising a (meth)acrylate alkyl ester compound, a vinyl cyan compound, an aromatic vinyl compound and an N-substituted maleimide compound together with two types of ASA resins having different rubber particle diameters in a predetermined content range.
  • a non-grafted copolymer comprising a (meth)acrylate alkyl ester compound, a vinyl cyan compound, an aromatic vinyl compound and an N-substituted maleimide compound together with two types of ASA resins having different rubber particle diameters in a predetermined content range.
  • thermoplastic resin composition of the present disclosure includes (A) 65 to 83 wt% of an alkyl (meth)acrylate compound, 2 to 12 wt% of an N-substituted maleimide compound, 1 to 6 wt% of a vinyl cyan compound, and 7 to 17 of an aromatic vinyl compound.
  • thermoplastic resin composition of the present invention will be described in detail for each configuration.
  • the (A) non-grafted copolymer may be, for example, 55 to 70% by weight, preferably 60 to 70% by weight, more preferably 63 to 67% by weight, based on the total weight of the thermoplastic resin composition, and within this range. While excellent in weather resistance and heat resistance, in particular, there is an effect of improving scratch resistance and colorability.
  • the (A) non-grafted copolymer is, for example, 65 to 83% by weight of an alkyl (meth)acrylate compound, 2 to 12% by weight of an N-substituted maleimide compound, 1 to 6% by weight of a vinyl cyan compound, and 7 To 17% by weight, and within this range, scratch resistance and colorability are excellent, and the polymerization rate of the N-substituted maleimide compound during polymerization is improved, so that the residual amount of the N-substituted maleimide compound in the recovery solution decreases during long-term operation.
  • There is an effect of improving productivity by improving the problem of precipitation in the pipe conveying the residual monomer recovery tank in the volatilizer (Devolatilizer).
  • the (meth)acrylic acid alkyl ester compound contained in the (A) non-graft copolymer is, for example, 65 to 83% by weight, preferably 70 to 80% by weight, based on the total weight of the (A) non-graft copolymer. It may be preferably 73 to 80% by weight, even more preferably 73 to 75% by weight, and within this range, there is an effect of improving weather resistance and heat resistance, and in particular, improving scratch resistance and colorability.
  • the (A) N-substituted maleimide compound contained in the non-graft copolymer may be, for example, 2 to 12% by weight, preferably 4 to 10% by weight, more preferably 6 to 10% by weight, and Within the range, while excellent in weather resistance and heat resistance, in particular, there is an effect of improving scratch resistance and colorability.
  • the vinyl cyan compound contained in the (A) non-grafted copolymer is, for example, 1 to 6% by weight, preferably 2 to 5% by weight, more preferably 3, based on the total weight of the (A) non-grafted copolymer. It may be to 5% by weight, and excellent weather resistance and heat resistance within this range, in particular there is an effect of improving the scratch resistance and colorability.
  • the aromatic vinyl compound contained in the (A) non-grafted copolymer is, for example, 7 to 17% by weight, preferably 10 to 15% by weight, more preferably 12, based on the total weight of the (A) non-grafted copolymer. It may be from 15% by weight, and excellent weather resistance and heat resistance within this range, in particular there is an effect of improving the scratch resistance and colorability.
  • the (meth)acrylic acid alkyl ester compound contained in the non-graft copolymer is, for example, (meth)acrylic acid methyl ester, (meth)acrylic acid ethyl ester, (meth)acrylic acid propyl ester, (meth)acrylic acid 2-ethyl It may be one or more selected from the group consisting of hexyl ester, (meth)acrylic acid decyl ester and (meth)acrylic acid lauryl ester, and preferably methyl methacrylate, in which case fluidity is appropriate and excellent in weather resistance and heat resistance. It works.
  • the (A) N-substituted maleimide compound contained in the non-graft copolymer is, for example, N-phenyl maleimide, N-methyl maleimide, N-ethyl maleimide, N-butyl maleimide, and N-cyclohexyl maleimide. It may be one or more selected from the group consisting of mids, preferably N-phenyl maleimide, and in this case, heat resistance and scratch resistance are excellent.
  • the vinyl cyan compound contained in the (A) non-grafted copolymer may be, for example, acrylonitrile, methacrylonitrile, or a mixture thereof, and in this case, impact resistance and processability are excellent.
  • the aromatic vinyl compound contained in the (A) non-graft copolymer may be, for example, one or more selected from the group consisting of styrene, vinyl toluene, t-butyl styrene, and chlorostyrene, and preferably styrene.
  • the flowability is appropriate, so that the processability is excellent, and mechanical properties such as impact resistance are excellent.
  • the aromatic vinyl compound contained in the (A) non-grafted copolymer excludes ⁇ -methylstyrene as an example.
  • the (A) non-grafted copolymer may have a weight average molecular weight of 95,000 to 130,000 g/mol, preferably 96,000 to 120,000 g/mol, more preferably 99,000 to 115,000 g/mol, and within this range. In addition, it has the effect of imparting fluidity suitable for processing while having excellent mechanical properties such as impact strength.
  • the (A) non-grafted copolymer may have, for example, a polydispersity index (PDI) of 1.80 to 2.2, preferably 1.83 to 2.1, more preferably 1.90 to 2.10, and an increase in molecular weight within this range. It has the effect of solving the problem of lowering fluidity and improving physical properties and processability at the same time.
  • PDI polydispersity index
  • the polydispersity index (PDI) is calculated as a value obtained by dividing the weight average molecular weight by the number average molecular weight, and a smaller value indicates a uniform molecular weight distribution.
  • the weight average molecular weight and horizontal group molecular weight in the present description are prepared by dissolving 1 g of a copolymer in tetrahydrofuran (THF) at a temperature of 40°C, followed by gel chromatography (GPC) filled with porous silica. Can be measured using. At this time, the molecular weight is measured after calibration using polystyrene (PS) as a standard material.
  • THF tetrahydrofuran
  • GPC gel chromatography
  • the (A) non-grafted copolymer may have, for example, a glass transition temperature of 107°C or higher, preferably 107 to 130°C, more preferably 110 to 125°C, and has excellent heat resistance and scratch resistance within this range. It has excellent properties and coloring properties.
  • the glass transition temperature is measured using a DSC equipment.
  • the (A) non-grafted copolymer may have, for example, a refractive index of 1.520 or less, preferably 1.510 to 1.520, more preferably 1.513 to 1.519, and has excellent coloring properties within this range.
  • the refractive index is measured at 25°C using an Abbe refractometer according to ASTM D542.
  • the (B) acrylate rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer (hereinafter referred to as'small diameter graft copolymer') containing an acrylate-based rubber having an average particle diameter of 50 to 200 nm is thermoplastic It may be 20 to 42% by weight, preferably 25 to 37% by weight, more preferably 28 to 33% by weight based on the total weight of the resin composition, and within this range, while excellent mechanical properties such as impact strength and tensile strength It has excellent effects in heat resistance, weather resistance, scratch resistance, and colorability, and if it is less than the above range, a problem of lowering impact resistance may occur, and if it exceeds the above range, a problem of lowering fluidity and scratch resistance may occur.
  • the (B) small-diameter graft copolymer may be, for example, an acrylate-based rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer including an acrylate-based rubber having an average particle diameter of 50 to 200 nm, in this case It has excellent mechanical properties such as impact strength and tensile strength, and has excellent heat resistance, coloring and weather resistance.
  • the acrylate-based rubber included in the (B) small-diameter graft copolymer may have an average particle diameter of 50 to 200 nm, preferably 70 to 150 nm, more preferably 100 to 130 nm, for example, and this range Mechanical properties, heat resistance, and weather resistance are all excellent within the range, and if it is less than the above range, there may be a problem that mechanical properties such as impact strength and tensile strength are deteriorated, and if it exceeds the above range, a problem of lowering thermal stability may occur. .
  • the acrylate-based rubber contained in the (B) small-diameter graft copolymer is, for example, 20 to 60% by weight, 30 to 55% by weight, preferably 40 to 60% by weight, based on the total weight of the small-diameter graft copolymer. It may be 50% by weight, and within this range, there is an effect excellent in weather resistance, impact strength, and scratch resistance.
  • the average particle diameter is measured using an intensity gaussian distribution (Nicomp 380) by a dynamic laser light scattering method.
  • the acrylate-based rubber may be prepared by emulsion polymerization of an acrylate-based monomer as an example, and as a specific example, it may be prepared by emulsion polymerization by mixing an acrylate-based monomer, an emulsifier, an initiator, a graft agent, a crosslinking agent, an electrolyte, and water. In this case, since the grafting efficiency is excellent, physical properties such as impact resistance are excellent.
  • the acrylate-based monomer may be one or more selected from the group consisting of alkyl acrylates having 2 to 8 carbon atoms as an example, preferably an alkyl acrylate having 4 to 8 carbon atoms of the alkyl group, and more preferably butyl acrylic Rate or ethylhexyl acrylate.
  • the emulsifier may be, for example, a metal salt of a fatty acid having 12 to 20 carbon atoms, a metal salt of rosin acid having 12 to 20 carbon atoms, or a mixture thereof, and the metal salt of a fatty acid having 12 to 20 carbon atoms is, for example, sodium fatty acid, sodium laurate, oleic acid. It may be one or more selected from sodium and potassium oleate, and the metal salt of rosin acid having 12 to 20 carbon atoms may be, for example, sodium rosinate, potassium rosinate, or a mixture thereof, and in this case, impact resistance and weather resistance are improved. There is.
  • the emulsifier may be, for example, 1 to 4 parts by weight, preferably 1.5 to 3 parts by weight, based on 100 parts by weight of an acrylate-based monomer, and within this range, the constituents of the acrylate-based rubber are easily mixed so as to have impact resistance There is an effect of improving weather resistance.
  • the initiator may be an inorganic peroxide, an organic peroxide, or a mixture thereof, for example, a water-soluble initiator such as potassium persulfate, sodium persulfate, or ammonium persulfate; And a fat-soluble initiator such as cumene hydroperoxide or benzoyl peroxide; may be one or more selected from the group consisting of, in this case, there is an effect of improving impact resistance and weather resistance by facilitating the polymerization reaction.
  • a water-soluble initiator such as potassium persulfate, sodium persulfate, or ammonium persulfate
  • a fat-soluble initiator such as cumene hydroperoxide or benzoyl peroxide
  • the initiator may be, for example, 0.05 to 1 parts by weight, preferably 0.1 to 0.5 parts by weight based on 100 parts by weight of an acrylate monomer, and within this range, the effect of improving impact resistance and weather resistance is improved by facilitating the polymerization reaction. have.
  • the crosslinking agent is, for example, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, neo It may be one or more selected from the group consisting of pentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, and trimethylolmethane triacrylate, and in this case, the elasticity of the acrylate rubber is further increased, and impact strength, tensile strength, etc. There is an effect of improving the mechanical properties of.
  • the crosslinking agent may be, for example, 0.02 to 0.3 parts by weight, preferably 0.05 to 0.2 parts by weight based on 100 parts by weight of the acrylate monomer, within this range, the elasticity of the acrylate rubber is further increased, and the impact strength and tensile strength There is an effect of improving mechanical properties such as.
  • the electrolyte may be one or more selected from the group consisting of sodium hydrogen carbonate (NaHCO 3 ), disodium disulfide (Na 2 S 2 O 7 ), and potassium carbonate (K 2 CO 3 ), for example.
  • NaHCO 3 sodium hydrogen carbonate
  • Na 2 S 2 O 7 disodium disulfide
  • K 2 CO 3 potassium carbonate
  • the electrolyte may be, for example, 0.01 to 0.5 parts by weight based on 100 parts by weight of the acrylate-based monomer.
  • the acrylate-based rubber may further include a molecular weight modifier as an example, and the molecular weight modifier may be, for example, t-dodecyl mercaptan, n-octyl mercaptan, or a mixture thereof.
  • acrylate-based rubber There is an effect of improving the impact resistance and weather resistance of the composition by controlling the weight average molecular weight of the composition.
  • the molecular weight modifier may be, for example, 0.01 to 1 parts by weight, preferably 0.01 to 0.3 parts by weight based on 100 parts by weight of an acrylate-based monomer, and has an effect of improving impact resistance and weather resistance within this range.
  • the aromatic vinyl compound contained in the (B) small-diameter graft copolymer is, for example, 10 to 50% by weight, preferably 20 to 45% by weight, more preferably based on the total weight of the (B) small-diameter graft copolymer. May be 30 to 40% by weight, and within this range, mechanical properties such as tensile strength and impact strength and workability are excellent.
  • the aromatic vinyl compound contained in the (B) small-diameter graft copolymer is, for example, styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, m-methyl styrene, ethyl styrene, isobutyl styrene, t- Consisting of butyl styrene, ⁇ -brobo styrene, ⁇ -bromo styrene, m-bromo styrene, ⁇ -chloro styrene, ⁇ -chloro styrene, m-chloro styrene, vinyl toluene, vinyl xylene, fluorostyrene and vinylnaphthalene It may be one or more selected from the group, and in this case, the flowability is appropriate, so that the workability is excellent, and
  • the vinyl cyan compound contained in the (B) small-diameter graft copolymer is, for example, 5 to 30% by weight, preferably 5 to 25% by weight, more preferably, based on the total weight of the (B) small-diameter graft copolymer. May be 10 to 20% by weight, and within this range, there is an excellent effect of impact resistance, workability, and the like.
  • the vinyl cyan compound included in the (B) small-diameter graft copolymer may be, for example, acrylonitrile, methacrylonitrile, or a mixture thereof, and in this case, impact resistance and processability are excellent.
  • the (C) acrylate rubber containing an acrylate rubber having an average particle diameter of 300 to 600 nm-an aromatic vinyl compound-a vinyl cyan compound graft copolymer (hereinafter referred to as a'large diameter graft copolymer') is an example. It may be 1 to 15% by weight, preferably 1 to 10% by weight, more preferably 2 to 7% by weight based on the total weight of the thermoplastic resin composition, and within this range, mechanical properties such as impact strength and tensile strength are excellent While it has excellent heat resistance, weather resistance, scratch resistance and coloring properties. If it is less than the above range, a problem of lowering the impact resistance may occur, and if it is exceeding the above range, a problem of lowering the hardness and scratch resistance may occur due to a lower graft rate.
  • the (C) large-diameter graft copolymer may be, for example, an acrylate-based rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer including an acrylate-based rubber having an average particle diameter of 300 to 600 nm. While having excellent mechanical properties such as strength and tensile strength, it has excellent effects in heat resistance, colorability and weather resistance.
  • the (C) large-diameter graft copolymer includes, for example, 20 to 60% by weight of an acrylate-based rubber having an average particle diameter of 300 to 600 nm, 10 to 50% by weight of an aromatic vinyl compound, and 5 to 30% by weight of a vinyl cyan compound. It may be, and there is an effect of improving mechanical properties, heat resistance, and weather resistance within this range.
  • the acrylate-based rubber contained in the (C) large-diameter graft copolymer may have an average particle diameter of 300 to 600 nm, preferably 300 to 500 nm, more preferably 350 to 450 nm, for example, and within this range. It has excellent mechanical properties such as impact strength and tensile strength. If it is less than the above range, impact resistance may be lowered, and if it is exceeding the above range, there may be a problem in that fluidity, processability and glossiness are lowered.
  • the acrylate-based rubber contained in the (C) large-diameter graft copolymer is, for example, 20 to 60% by weight, preferably 30 to 55% by weight, more preferably, based on the total weight of the (C) large-diameter graft copolymer. It may be 40 to 50% by weight, and there is an effect of improving impact resistance and scratch resistance within this range.
  • the acrylate-based rubber may be prepared by emulsion polymerization of an acrylate-based monomer as an example, and a specific example may be prepared by emulsion polymerization by mixing an acrylate-based monomer, an emulsifier, an initiator, a graft agent, a crosslinking agent, an electrolyte, and a solvent.
  • the grafting efficiency is excellent, and thus physical properties such as impact resistance are excellent.
  • the acrylate monomer, emulsifier, initiator, graft agent, crosslinking agent, electrolyte, and water used in the manufacture of the acrylate rubber contained in the (C) large-diameter graft copolymer are the (B) small-diameter graft copolymer of the present disclosure. It may be selected within the same type and content range as used in the manufacture of the acrylate-based rubber contained in.
  • the (C) aromatic vinyl compound contained in the large-diameter raft copolymer is, for example, 10 to 50% by weight, preferably 20 to 45% by weight, more preferably 30, based on the total weight of the (C) large-diameter graft copolymer. It may be to 40% by weight, and within this range, there is an effect excellent in impact resistance, weather resistance, and chemical resistance.
  • the vinyl cyan compound contained in the (C) large-diameter graft copolymer is, for example, 5 to 30% by weight, preferably 5 to 25% by weight, more preferably 10, based on the total weight of the (C) large-diameter graft copolymer. It may be to 20% by weight, and within this range, there is an excellent effect of mechanical strength, discoloration resistance, and the like.
  • the type of the vinyl cyan compound and the aromatic vinyl compound included in the (C) large-diameter graft copolymer may be the same as the type of the vinyl cyan compound and the aromatic vinyl compound included in the (B) small-diameter graft copolymer of the present disclosure. .
  • the total weight of the copolymer may mean the actual total weight of the obtained copolymer, or may mean the total weight of the total monomer added by replacing it.
  • the thermoplastic resin composition may be, for example, one or more selected from the group consisting of a lubricant, an antioxidant, a UV stabilizer, a release agent, a pigment, a dye, and an ultraviolet stabilizer.
  • a lubricant for example, one or more selected from the group consisting of a lubricant, an antioxidant, a UV stabilizer, a release agent, a pigment, a dye, and an ultraviolet stabilizer.
  • the lubricant may be, for example, one or more selected from the group consisting of ethylene bis stearamide, oxidized polyethylene wax, and magnesium stearate, and preferably ethylene bis stearamide, in which case it improves the wettability of the composition of the present substrate. At the same time, it has excellent mechanical properties.
  • the lubricant is, for example, 0.1 to 3 parts by weight, preferably 0.1 to 2 parts by weight based on a total of 100 parts by weight of (A) a non-grafted copolymer, (B) a small-diameter graft copolymer, and (C) a large-diameter graft copolymer. It may be parts by weight, more preferably 0.05 to 1.5 parts by weight, and within this range, there is an effect of improving the wettability of the composition according to the present invention and excellent mechanical properties.
  • the antioxidant may include, for example, a phenolic antioxidant, a phosphorus antioxidant, or a mixture thereof, and in this case, it prevents oxidation by heat during the extrusion process and has excellent mechanical properties of the present invention.
  • the antioxidant is, for example, (A) non-grafted copolymer, (B) small-diameter graft copolymer, and (C) large-diameter graft copolymer, based on a total of 100 parts by weight 0.01 to 3 parts by weight, preferably 0.01 to It may be 1 part by weight, more preferably 0.1 to 1 part by weight, and within this range, oxidation by heat is prevented during the extrusion process, and mechanical properties are excellent.
  • the dye may be, for example, 0.1 to 1.5 parts by weight, preferably 0.5 to 1, based on 100 parts by weight of a total of (A) non-grafted copolymer, (B) small-diameter graft copolymer, and (C) large-diameter graft copolymer. It may be parts by weight, and within this range, there is an effect of excellent color expression without deteriorating the natural properties of the thermoplastic resin composition of the present disclosure.
  • the thermoplastic resin composition may have an L value (coloring property) of 25.5 or less, preferably 20 to 25.5, more preferably 24 to 25, measured using Hunter Lab as an example, and physical properties within this range. There is a good balance effect.
  • the thermoplastic resin composition may have a pencil hardness of 2H or more, preferably 2H to 4H, measured at a 45° angle with a load of 0.5 kg according to ASTM D3363 using a pencil hardness tester (Cometech) as an example, and within this range. There is an effect of excellent physical property balance.
  • the thermoplastic resin composition may have a heat deflection temperature of 90° C. or higher, preferably 90 to 105° C., more preferably 90 to 100° C., as measured according to ASTM D648, for example, and has excellent physical property balance within this range. It works.
  • the thermoplastic resin composition has an Izod impact strength (1/4", 23°C) measured according to ASTM D256, for example, of 5.5 kgf ⁇ cm/cm or more, preferably 5.5 to 10 kgf ⁇ cm/cm, more preferably May be 5.8 to 6.5 kgf ⁇ cm/cm, and within this range, all physical property balances have an excellent effect.
  • the thermoplastic resin composition may have a tensile strength of 500 kg/cm 2 or more, preferably 500 to 550 kg/cm 2 , more preferably 503 to 530 kg/cm 2 , as measured according to ASTM D638, for example, Within this range, there is an effect of excellent physical property balance.
  • the thermoplastic resin composition may have a falling ball impact strength of 29 N or more, 29 to 35 N, and more preferably 29.3 to 31 N, as measured by a 3.2 mm thick specimen according to ASTM D3763, for example, and a physical property balance within this range. Has an excellent effect.
  • thermoplastic resin composition
  • the manufacturing method of the thermoplastic resin composition of the present disclosure is, for example, (A) 65 to 85% by weight of an alkyl (meth)acrylate compound, 1 to 10% by weight of a vinyl cyan compound, 7 to 17% by weight of an aromatic vinyl compound, and 55 to 70% by weight of the non-graft copolymer comprising 2 to 12% by weight of the mid compound; (B) 20 to 42% by weight of an acrylate-based rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer comprising an acrylate-based rubber having an average particle diameter of 50 to 200 nm; And (C) 1 to 15% by weight of an acrylate-based rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer comprising an acrylate-based rubber having an average particle diameter of 300 to 600 nm; 200 to 270°C and 200 to 300 It characterized by including; kneading and extruding under rpm conditions; in this case, while excellent in weather
  • the method for preparing the thermoplastic resin composition is, for example, 65 to 85% by weight of an alkyl (meth)acrylate compound, 1 to 10% by weight of a vinyl cyan compound, 7 to 17% by weight of an aromatic vinyl compound, and 2 to 12 of an N-substituted maleimide compound.
  • a polymerization solution in which 25 to 40 parts by weight of a reaction solvent and 0.01 to 1 part by weight of an initiator are mixed is polymerized to 100 parts by weight of a monomer mixture including 100 parts by weight of the monomer mixture, thereby preparing a non-grafted copolymer.
  • the reaction solvent in the step of preparing the (A) non-grafted copolymer may be, for example, one or more selected from the group consisting of ethylbenzene, toluene, methyl ethyl ketone, and xylene, and in this case, viscosity control is easy and polymerization There is an effect of suppressing the reduction of the conversion rate.
  • the reaction solvent may be, for example, 25 to 40 parts by weight, preferably 30 to 40 parts by weight based on 100 parts by weight of the monomer mixture, within this range, the effect of reducing excessive increase in viscosity or decrease in conversion rate and molecular weight have.
  • the initiator in the step of preparing the (A) non-graft copolymer is, for example, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t -Butyl peroxyisobutyrate (t-butylperoxyisobutyrate), 1,1-bis (t-butylperoxy) cyclohexane (1,1-bis (tbutylperoxy) cyclohexane), 2,2-bis (4,4-di- t-butylperoxycyclohexane)propane (2,2-bis(4,4-di-t-butylperoxy cyclohexane)propane, t-hexyl peroxy isopropyl monocarbonate, t-butyl T-butylperoxylaurate, t-butyl peroxy isopropylmonocarbonate, t-butyl peroxy 2-ethylhexylmonocarbon
  • the initiator may be, for example, 0.01 to 1 parts by weight, 0.01 to 0.5 parts by weight, preferably 0.01 to 0.4 parts by weight, based on 100 parts by weight of the monomer mixture, and within this range, the polymerization reaction is facilitated to facilitate mechanical properties, weather resistance, and It has the effect of maintaining excellent heat resistance and scratch resistance.
  • the polymerization in the step of preparing the (A) non-grafted copolymer may be performed by continuously adding the polymerization solution to a continuous reactor at a rate of 7 to 20 kg/hr, preferably 10 to 15 kg/hr at a temperature of 130. To 160° C., preferably 140 to 150° C., and in this case, the particle stability of the copolymer is improved and the internal structure of the particles is made uniform compared to the case of batch injection, so that mechanical properties, weather resistance, heat resistance, scratch resistance, and There is an effect of improving colorability.
  • continuous polymerization refers to a process in which a material participating in polymerization is continuously supplied into a reactor, a product produced by polymerization is continuously discharged, and unreacted monomers are recovered using a volatilization process and used again.
  • the content of the residual N-substituted maleamide compound in the recovery solution after polymerization is 0.12% by weight or less, preferably 0.05 to 0.12% by weight, more preferably May be 0.07 to 0.10% by weight, and the conversion rate of the N-substituted maleimide compound is improved within this range, so that the N-substituted maleimide compound does not precipitate in the pipe transferring to the residual monomer recovery tank in the volatilization process even during a long operation. It does not have an excellent effect of improving productivity.
  • the content of the residual N-substituted maleamide compound can be measured by gas chromatography.
  • the kneading and extrusion may be performed through, for example, a single screw extruder, a twin screw extruder, or a Benbury mixer, and in this case, the composition is uniformly dispersed and thus has excellent compatibility.
  • the kneading and extrusion may be performed within a range of, for example, a barrel temperature of 200 to 300°C, preferably 200 to 250°C, and in this case, a sufficient amount of processing per unit time may be performed and sufficient melt-kneading may be possible. There is an effect that does not cause problems such as pyrolysis.
  • the kneading and extrusion may be performed under conditions of, for example, a screw rotation speed of 200 to 300 rpm, preferably 250 to 300 rpm, and in this case, the throughput per unit time is appropriate, so that the process efficiency is excellent and the effect of suppressing excessive cutting There is.
  • the molded article of the present substrate may be manufactured from the thermoplastic resin composition of the present substrate as an example, and in this case, there is an effect of improving scratch resistance and colorability while having excellent weather resistance and heat resistance.
  • the molded article may be, for example, an automotive part, an electric/electronic part, a ship part, or a building material, and preferably may be an interior/exterior material of an automobile.
  • thermoplastic resin composition of the present disclosure its manufacturing method, and molded article, it is stated that other conditions or equipment that are not explicitly described can be appropriately selected within the range commonly practiced in the art, and are not particularly limited. do.
  • a polymerization solution in which 0.03 parts by weight of dicumyl peroxide is added as an initiator to 15 parts by weight of styrene (hereinafter referred to as'SM') and 15 parts by weight of styrene (hereinafter referred to as'SM') is continuously added to a continuous reactor at a rate of 12 kg/hr for 14 hours to polymerize at a temperature of 145°C.
  • the prepared copolymer had a refractive index of 1.5183, a glass transition temperature of 115.5°C, and a weight average molecular weight of 103,315 g. /mol and PDI 2.09 and the residual PMI in the recovery solution was 0.09% by weight.
  • thermoplastic resin composition ⁇ Production of thermoplastic resin composition>
  • Example 1 the (A) non-grafted copolymer was prepared in the same manner as in Example 1, except that the components and contents of Table 1 were used.
  • Example 1 the (A) non-grafted copolymer was prepared in the same manner as in Example 1, except that the components and contents of Tables 2 to 3 were used.
  • Refractive index Measured at 25°C using an Abbe refractometer according to ASTM D542.
  • PDI was calculated by dividing the weight average molecular weight by the number average molecular weight.
  • Heat deflection temperature (°C) Measured under a load of 18.6 kgf/cm 2 using a specimen having a thickness of 6.4 mm according to ASTM D648.
  • Pencil Hardness According to ASTM D3363 using a pencil hardness tester (Cometech), fix the pencil at a load of 0.5 kg and an angle of 45°, and then scratch the surface of the specimen by hardness (in order of 2B, B, HB, F, H). Whether it was scratched with the naked eye was measured.
  • Examples 1 to 5 prepared according to the present invention while maintaining the impact strength, tensile strength, and falling ball impact strength compared to Comparative Examples 1 to 10 outside the scope of the present invention, coloring properties, heat It was confirmed that the deformation temperature and pencil hardness (scratch resistance) were excellent.
  • the (A) non-grafted copolymers of Examples 1 to 5 prepared according to the present invention had excellent effect of improving colorability due to low refractive index, and (A) the non-grafted copolymer of N-phenyl maleimide was As the conversion rate was improved, there was an effect of increasing productivity because N-phenyl maleimide was not precipitated from the pipe transferred to the residual monomer recovery tank during the volatilization process during long operation.
  • Comparative Example 9 which included the non-grafted copolymer beyond the scope of the present invention, showed lower impact strength and falling ball impact strength, and (A) non-grafted copolymer polymerized without PMI.
  • Comparative Example 10 which exceeded the scope of the invention, the heat deflection temperature was significantly lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 기재는 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것으로, 보다 상세하게는 (A) (메트)아크릴산 알킬에스테르 화합물 65 내지 83 중량%, N-치환 말레이미드 화합물 2 내지 12 중량%, 비닐시안 화합물 1 내지 6 중량% 및 방향족 비닐 화합물 7 내지 17 중량%를 포함하여 이루어진 비 그라프트 공중합체 55 내지 70 중량%; (B) 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 20 내지 42 중량%; 및 (C) 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 1 내지 15 중량%;를 포함하여 내후성 및 내열성이 우수하면서도 내스크래치성 및 착색성이 매우 뛰어난 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 제공하는 효과가 있다.

Description

열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
〔출원(들)과의 상호 인용〕
본 출원은 2019년 10월 23일자 한국특허출원 제 10-2019-0132326 호와 이를 기초로 하여 2020년 09월 21일자로 재출원된 한국특허출원 제 10-2020-0121468 호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것으로, 보다 상세하게는 내후성 및 내열성이 우수하면서도 내스크래치성 및 착색성이 매우 뛰어난 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것이다.
ABS 수지는 아크릴로니트릴-부타디엔-스티렌 삼원 공중합체로서 내충격성, 강성, 내약품성, 가공성이 우수하여 전기전자, 건축, 자동차 등의 다양한 분야에 다양한 용도로 사용되고 있다. 그러나 ABS 수지는 부타디엔 고무 중합체를 사용하기 때문에 내후성이 취약하여 실외용 재료로서는 적합하지 못하다는 문제가 있었다.
이러한 문제를 해결하기 위해, 물성이 우수하면서도 내후성과 내노화성이 우수한 열가소성 수지를 얻기 위해 그라프트 공중합체 내에 자외선으로 인한 노화를 일으키는 에틸렌계 불포화 중합체가 존재하지 않은 가교된 알킬 아크릴레이트 고무 중합체를 사용한 ASA(아크릴로니트릴-스티렌-아크릴레이트 공중합체) 수지가 개발되었다. 이러한 ASA 수지는 내후성 및 내노화성이 우수하여 자동차, 선박, 레저용품, 건축자재, 원예용 등 다방면에 사용되고 있다.
특히 자동차 내·외장용 ASA 수지는 경량화, 설계 및 디자인 자유도 향상, 생산비 절감 등을 실현할 수 있어 시장이 커지고 있으며 내후성 외에도 내열성과 최근 고급 자동차 시장의 트렌드인 딥 블랙 칼라(Deep black color)를 구현할 수 있는 고흑색도에 대한 요구가 증대하고 있다.
이를 위해 ASA 수지에 도장, 도금 등의 방법으로 구현하고 있으나 환경적인 측면을 고려하여 무도장으로 구현할 수 있는 제품을 요구하고 있다. 그러나 무도장 제품은 도장 제품에 비해 내스크래치성, 색상 등의 외관특성이 저하되어 제품가치가 떨어지는 문제점이 있다.
또한, 내열성을 부여하기 위해 ASA 수지에 α-메틸스티렌계 내열성 공중합체와 혼련하는 경우, 내열도는 개선되나 α-메틸스티렌계의 높은 굴절률로 인해 착색도가 미흡하여 만족스러운 흑색도가 구현되지 않은 문제가 있다.
따라서, ASA 수지에 내열성 및 내스크래치성을 부여하면서도 고흑색도를 구현할 수 있는 착색성이 뛰어난 수지의 개발이 필요한 실정이다.
〔선행기술문헌〕
〔특허문헌〕(특허문헌 1) 한국등록특허 제 1478394 호 (B1)
상기와 같은 종래기술의 문제점을 해결하고자, 본 기재는 내후성 및 내열성이 우수하면서도 내스크래치성 및 착색성이 매우 뛰어난 열가소성 수지 조성물을 제공하는 것을 목적으로 한다.
또한, 본 기재는 상기의 열가소성 수지 조성물의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 기재는 상기의 열가소성 수지 조성물로부터 제조되는 성형품을 제공하는 것을 목적으로 한다.
본 기재의 상기 목적 및 기타 목적들은 하기 설명된 본 기재에 의하여 모두 달성될 수 있다.
상기 목적을 달성하기 위하여, 본 기재는 (A) (메트)아크릴산 알킬에스테르 화합물 65 내지 83 중량%, N-치환 말레이미드 화합물 2 내지 12 중량%, 비닐시안 화합물 1 내지 6 중량% 및 방향족 비닐 화합물 7 내지 17 중량%를 포함하여 이루어진 비 그라프트 공중합체 55 내지 70 중량%; (B) 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 20 내지 42 중량%; 및 (C) 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 1 내지 15 중량%;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
또한, 본 기재는 (A) (메트)아크릴산 알킬에스테르 화합물 65 내지 83 중량%, N-치환 말레이미드 화합물 2 내지 12 중량%, 비닐시안 화합물 1 내지 6 중량% 및 방향족 비닐 화합물 7 내지 17 중량%를 포함하여 이루어진 비 그라프트 공중합체 55 내지 70 중량%; (B) 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 20 내지 42 중량%; 및 (C) 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 1 내지 15 중량%;를 200 내지 270℃ 및 200 내지 300 rpm 조건 하에서 혼련 및 압출하는 단계;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물의 제조방법을 제공한다.
또한, 본 기재는 상기 열가소성 수지 조성물로부터 제조됨을 특징으로 하는 성형품을 제공한다.
본 발명에 따르면, 내후성 및 내열성이 우수하면서도 내스크래치성 및 착색성이 매우 뛰어난 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 제공하는 효과가 있다. 또한, 상기 열가소성 수지 조성물 내에 포함되는 비 그라프트 공중합체에 방향족 비닐 화합물을 포함하여 N-치환 말레이미드 화합물의 전환율이 개선되어, 중합 후 회수액에서 N-치환 말레이미드 화합물의 잔류량이 감소됨으로써 휘발공정에서 잔류 단량체 회수 탱크로 이송되는 배관에서 N-치환 말레이미드 화합물이 석출되는 문제가 해결되고, 이에 따라 생산성이 증대되는 효과가 있다.
이하 본 기재의 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 상세하게 설명한다.
본 발명자들은 고무 입경이 상이한 2종의 ASA계 수지와 함께 (메트)아크릴산 알킬에스테르 화합물, 비닐시안 화합물, 방향족 비닐 화합물 및 N-치환 말레이미드 화합물을 포함하여 이루어진 비 그라프트 공중합체를 소정 함량 범위 내로 혼합하는 경우, 내후성, 내열성, 내스크래치성 및 착색성이 모두 개선되는 것을 확인하고, 이를 토대로 더욱 연구에 매진하여 본 발명을 완성하게 되었다.
본 기재의 열가소성 수지 조성물은 (A) (메트)아크릴산 알킬에스테르 화합물 65 내지 83 중량%, N-치환 말레이미드 화합물 2 내지 12 중량%, 비닐시안 화합물 1 내지 6 중량% 및 방향족 비닐 화합물 7 내지 17 중량%를 포함하여 이루어진 비 그라프트 공중합체 55 내지 70 중량%; (B) 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 20 내지 42 중량%; 및 (C) 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 1 내지 15 중량%;를 포함하는 것을 특징으로 하고, 이 경우 내후성 및 내열성이 우수하면서도 특히 내스크래치성 및 착색성이 향상되는 효과가 있다.
이하 본 발명의 열가소성 수지 조성물을 구성별로 상세히 설명하기로 한다.
(A) 비 그라프트 공중합체
상기 (A) 비 그라프트 공중합체는 일례로 열가소성 수지 조성물 총 중량에 대하여 55 내지 70 중량%, 바람직하게는 60 내지 70 중량%, 보다 바람직하게는 63 내지 67 중량%일 수 있고, 이 범위 내에서 내후성 및 내열성이 우수하면서도 특히 내스크래치성 및 착색성이 향상되는 효과가 있다.
상기 (A) 비 그라프트 공중합체는 일례로 (메트)아크릴산 알킬에스테르 화합물 65 내지 83 중량%, N-치환 말레이미드 화합물 2 내지 12 중량%, 비닐시안 화합물 1 내지 6 중량% 및 방향족 비닐 화합물 7 내지 17 중량%일 수 있고, 이 범위 내에서 내스크래치성 및 착색성이 우수하고 중합 시 N-치환 말레이미드 화합물의 중합율이 개선되어 장기간 운전시 회수액에서 N-치환 말레이미드 화합물의 잔류량이 감소하여 휘발공정(Devolatilizer)에서 잔류 모노머 회수 탱크로 이송하는 배관에 석출되는 문제가 개선되어 생산성이 향상되는 효과가 있다.
상기 (A) 비 그라프트 공중합체에 포함된 (메트)아크릴산 알킬에스테르 화합물은 일례로 (A) 비 그라프트 공중합체 총 중량에 대하여 65 내지 83 중량%, 바람직하게는 70 내지 80 중량%, 보다 바람직하게는 73 내지 80 중량%, 보다 더 바람직하게는 73 내지 75 중량%일 수 있으며, 이 범위 내에서 내후성 및 내열성이 우수하면서도 특히 내스크래치성 및 착색성이 향상되는 효과가 있다.
상기 (A) 비 그라프트 공중합체에 포함된 N-치환 말레이미드 화합물은 일례로 2 내지 12 중량%, 바람직하게는 4 내지 10 중량%, 보다 바람직하게는 6 내지 10 중량%일 수 있으며, 이 범위 내에서 내후성 및 내열성이 우수하면서도 특히 내스크래치성 및 착색성이 향상되는 효과가 있다.
상기 (A) 비 그라프트 공중합체에 포함된 비닐시안 화합물은 일례로 (A) 비 그라프트 공중합체 총 중량에 대하여 1 내지 6 중량%, 바람직하게는 2 내지 5 중량%, 보다 바람직하게는 3 내지 5 중량%일 수 있으며, 이 범위 내에서 내후성 및 내열성이 우수하면서도 특히 내스크래치성 및 착색성이 향상되는 효과가 있다.
상기 (A) 비 그라프트 공중합체에 포함된 방향족 비닐 화합물은 일례로 (A) 비 그라프트 공중합체 총 중량에 대하여 7 내지 17 중량%, 바람직하게는 10 내지 15 중량%, 보다 바람직하게는 12 내지 15 중량%일 수 있으며, 이 범위 내에서 내후성 및 내열성이 우수하면서도 특히 내스크래치성 및 착색성이 향상되는 효과가 있다.
상기 (A) 비 그라프트 공중합체 내에 포함된 (메트)아크릴산 알킬에스테르 화합물은 일례로 (메트)아크릴산 메틸에스테르, (메트)아크릴산 에틸에스테르, (메트)아크릴산 프로필에스테르, (메트)아크릴산 2-에틸헥실에스테르, (메트)아크릴산 데실에스테르 및 (메타)아크릴산 라우릴에스테르로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 메틸메타크릴레이트일 수 있으며, 이 경우 유동성이 적절하고 내후성 및 내열성이 우수한 효과가 있다.
상기 (A) 비 그라프트 공중합체 내에 포함된 N-치환 말레이미드 화합물은 일례로 N-페닐 말레이미드, N-메틸 말레이미드, N-에틸 말레이미드, N-부틸 말레이미드 및 N-시클로헥실 말레이미드로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 N-페닐 말레이미드일 수 있으며 이 경우 내열성 및 내스크래치성이 우수한 효과가 있다.
상기 (A) 비 그라프트 공중합체 내에 포함된 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴 또는 이들의 혼합일 수 있고, 이 경우 내충격성, 가공성 등이 우수한 효과가 있다.
상기 (A) 비 그라프트 공중합체 내에 포함된 방향족 비닐 화합물은 일례로 스티렌, 비닐톨루엔, t-부틸스티렌 및 클로로스티렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 스티렌일 수 있으며, 이 경우 유동성이 적절하여 가공성이 우수하고 내충격성 등의 기계적 물성이 우수한 효과가 있다.
상기 (A) 비 그라프트 공중합체 내에 포함된 방향족 비닐 화합물은 일례로 α-메틸스티렌을 제외한다.
상기 (A) 비 그라프트 공중합체는 일례로 중량평균분자량이 95,000 내지 130,000 g/mol, 바람직하게는 96,000 내지 120,000 g/mol, 보다 바람직하게는 99,000 내지 115,000 g/mol일 수 있고, 이 범위 내에서 충격강도 등의 기계적 물성이 우수하면서 가공에 적합한 유동성을 부여하는 효과가 있다.
상기 (A) 비 그라프트 공중합체는 일례로 다분산 지수(polydispersity index; PDI)가 1.80 내지 2.2, 바람직하게는 1.83 내지 2.1, 보다 바람직하게는 1.90 내지 2.10일 수 있고, 이 범위 내에서 분자량 증가로 유동성이 저하되는 문제를 해결하고 물성과 가공성 개선을 동시에 제공하는 효과가 있다.
본 기재에서 다분산 지수(PDI)는 중량평균분자량을 수평균분자량으로 나눈 값으로 계산되며, 이 값이 작을수록 분자량 분포가 균일한 것을 나타낸다.
본 기재에서 중량평균분자량 및 수평군분자량은 달리 정의되지 않는 이상 공중합체 1 g을 온도 40℃에서 테트라하이드로퓨란(THF)에 녹여 제조한 뒤, 다공성 실리카로 충진된 겔크로파토그래피(GPC)를 사용하여 측정될 수 있다. 이 때, 폴리스티렌(PS)를 표준물질로 사용하여 캘리브레이션(Calibration)한 후 분자량을 측정한다.
상기 (A) 비 그라프트 공중합체는 일례로 유리전이온도가 107℃ 이상, 바람직하게는 107 내지 130℃, 보다 바람직하게는 110 내지 125℃일 수 있고, 이 범위 내에서 내열성이 우수하면서 내스크래치성 및 착색성이 우수한 효과가 있다.
본 기재에서 유리전이온도는 DSC 장비를 이용하여 측정한다.
상기 (A) 비 그라프트 공중합체는 일례로 굴절률이 1.520 이하, 바람직하게는 1.510 내지 1.520, 보다 바람직하게는 1.513 내지 1.519일 수 있고, 이 범위 내에서 착색성이 우수한 효과가 있다.
본 기재에서 굴절률은 ASTM D542에 의거하여 Abbe 굴절계를 이용하여 25℃에서 측정한다.
(B) 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체
상기 (B) 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(이하 '소구경 그라프트 공중합체'라 함)는 열가소성 수지 조성물 총 중량에 대하여 20 내지 42 중량%, 바람직하게는 25 내지 37 중량%, 보다 바람직하게는 28 내지 33 중량%일 수 있고, 이 범위 내에서 충격강도, 인장강도 등의 기계적 물성이 우수하면서도 내열성, 내후성, 내스크래치성 및 착색성이 우수한 효과가 있고, 상기 범위 미만일 경우 내충격성이 저하되는 문제가 발생할 수 있으며, 상기 범위 초과일 경우 유동성 및 내스크래치성이 저하되는 문제가 발생할 수 있다.
상기 (B) 소구경 그라프트 공중합체는 일례로 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체일 수 있고, 이 경우 충격강도, 인장강도 등의 기계적 물성이 우수하면서도 내열성, 착색성 및 내후성이 우수한 효과가 있다.
상기 (B) 소구경 그라프트 공중합체에 포함된 아크릴레이트계 고무는 일례로 평균입경이 50 내지 200 nm, 바람직하게는 70 내지 150 nm, 보다 바람직하게는 100 내지 130 nm일 수 있으며, 이 범위 내에서 기계적 물성, 내열성 및 내후성이 모두 우수하고, 상기 범위 미만일 경우 충격강도, 인장강도 등의 기계적 물성이 저하되는 문제가 발생할 수 있으며, 상기 범위 초과일 경우 열안정성이 저하되는 문제가 발생할 수 있다.
상기 (B) 소구경 그라프트 공중합체에 포함된 아크릴레이트계 고무는 일례로 (B) 소구경 그라프트 공중합체 총 중량에 대하여 20 내지 60 중량%, 30 내지 55 중량%, 바람직하게는 40 내지 50 중량%일 수 있고, 이 범위 내에서 내후성, 충격강도 및 내스크래치성이 우수한 효과가 있다.
본 기재에서 평균입경은 다이나믹 레이져 라이트 스케터링(Dynamic laser light scattering)법으로 인텐시티 가우시안 분포(Intensity gaussian distribution, Nicomp 380)를 이용하여 측정한다.
상기 아크릴레이트계 고무는 일례로 아크릴레이트계 단량체를 유화중합하여 제조할 수 있고, 구체적인 일례로 아크릴레이트계 단량체, 유화제, 개시제, 그라프트제, 가교제, 전해질 및 물을 혼합하여 유화중합하여 제조할 수 있으며, 이 경우 그라프팅 효율이 우수하여 내충격성 등의 물성이 우수한 효과가 있다.
상기 아크릴레이트계 단량체는 일례로 탄소수가 2 내지 8 개인 알킬 아크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 알킬기의 탄소수가 4 내지 8개인 알킬 아크릴레이트이며, 더욱 바람직하게는 부틸 아크릴레이트 또는 에틸헥실 아크릴레이트일 수 있다.
상기 유화제는 일례로 탄소수 12 내지 20의 지방산 금속염, 탄소수 12 내지 20의 로진산 금속염, 또는 이들의 혼합일 수 있고, 상기 탄소수 12 내지 20의 지방산 금속염은 일례로 지방산 나트륨, 라우릴산 나트륨, 올레인산 나트륨 및 올레인산 칼륨으로부터 선택된 1종 이상일 수 있으며, 상기 탄소수 12 내지 20의 로진산 금속염은 일례로 로진산 나트륨, 로진산 칼륨, 또는 이들의 혼합일 수 있고, 이 경우 내충격성 및 내후성이 향상되는 효과가 있다.
상기 유화제는 일례로 아크릴레이트계 단량체 100 중량부에 대하여 1 내지 4 중량부, 바람직하게는 1.5 내지 3 중량부일 수 있고, 이 범위 내에서 아크릴레이트계 고무의 구성 성분들을 용이하게 섞이게 하여 내충격성 및 내후성이 향상되는 효과가 있다.
상기 개시제는 일례로 무기과산화물, 유기과산화물, 또는 이들의 혼합일 수 있고, 구체적인 예로 포타슘퍼술페이트, 소듐퍼술페이트, 또는 암모늄퍼술페이트와 같은 수용성 개시제; 및 큐멘하이드로퍼옥사이드 또는 벤조일퍼옥사이드 등과 같은 지용성 개시제;로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 경우 중합 반응을 용이하게 하여 내충격성 및 내후성이 향상되는 효과가 있다.
상기 개시제는 일례로 아크릴레이트계 단량체 100 중량부에 대하여 0.05 내지 1 중량부, 바람직하게는 0.1 내지 0.5 중량부일 수 있고, 이 범위 내에서 중합 반응을 용이하게 하여 내충격성 및 내후성이 향상되는 효과가 있다.
상기 가교제는 일례로 에틸렌글리콜디메타크릴레이트, 디에틸렌글리콜디메타크릴레이트, 트리에틸렌글리콜디메타크릴레이트, 1,3-부탄디올디메타크릴레이트, 1,6-헥산디올디메타크릴레이트, 네오펜틸글리콜디메타크릴레이트, 트리메틸올프로판트리메타크릴레이트 및 트리메틸올메탄트리아크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 아크릴레이트계 고무의 탄성이 더욱 증가하고 충격강도, 인장강도 등의 기계적 물성이 개선되는 효과가 있다.
상기 가교제는 일례로 아크릴레이트계 단량체 100 중량부에 대하여 0.02 내지 0.3 중량부, 바람직하게는 0.05 내지 0.2 중량부일 수 있고, 이 범위 내에서 아크릴레이트계 고무의 탄성이 더욱 증가하고 충격강도, 인장강도 등의 기계적 물성이 개선되는 효과가 있다.
상기 전해질은 일례로 탄산수소나트륨(NaHCO3), 이황화이나트륨(Na2S2O7) 및 탄산칼륨(K2CO3)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 전해질은 일례로 아크릴레이트계 단량체 100 중량부에 대하여 0.01 내지 0.5 중량부일 수 있다.
상기 아크릴레이트계 고무는 일례로 분자량 조절제를 더 포함할 수 있고, 상기 분자량 조절제는 일례로 t-도데실메르캅탄, n-옥틸메르캅탄, 또는 이들의 혼합일 수 있으며, 이 경우 아크릴레이트계 고무의 중량평균분자량을 조절하여 조성물의 내충격성 및 내후성을 향상시키는 효과가 있다.
상기 분자량 조절제는 일례로 아크릴레이트계 단량체 100 중량부에 대하여 0.01 내지 1 중량부, 바람직하게는 0.01 내지 0.3 중량부일 수 있고, 이 범위 내에서 내충격성 및 내후성을 향상시키는 효과가 있다.
상기 (B) 소구경 그라프트 공중합체에 포함되는 방향족 비닐 화합물은 일례로 (B) 소구경 그라프트 공중합체 총 중량에 대하여 10 내지 50 중량%, 바람직하게는 20 내지 45 중량%, 보다 바람직하게는 30 내지 40 중량%일 수 있고, 이 범위 내에서 인장강도, 충격강도 등의 기계적 물성 및 가공성이 우수한 효과가 있다.
상기 (B) 소구경 그라프트 공중합체에 포함된 방향족 비닐 화합물은 일례로 스티렌, α-메틸 스티렌, ο-메틸 스티렌, ρ-메틸 스티렌, m-메틸 스티렌, 에틸 스티렌, 이소부틸 스티렌, t-부틸 스티렌, ο-브로보 스티렌, ρ-브로모 스티렌, m-브로모 스티렌, ο-클로로 스티렌, ρ-클로로 스티렌, m-클로로 스티렌, 비닐톨루엔, 비닐크실렌, 플루오로스티렌 및 비닐나프탈렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 유동성이 적절하여 가공성이 우수하고 인장강도, 충격강도 등의 기계적 물성 또한 우수한 효과가 있다.
상기 (B) 소구경 그라프트 공중합체에 포함된 비닐시안 화합물은 일례로 (B) 소구경 그라프트 공중합체 총 중량에 대하여 5 내지 30 중량%, 바람직하게는 5 내지 25 중량%, 보다 바람직하게는 10 내지 20 중량%일 수 있고, 이 범위 내에서 내충격성, 가공성 등이 우수한 효과가 있다.
상기 (B) 소구경 그라프트 공중합체에 포함되는 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴 또는 이들의 혼합일 수 있고, 이 경우 내충격성, 가공성 등이 우수한 효과가 있다.
(C) 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체
상기 (C) 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(이하 '대구경 그라프트 공중합체'라 함)는 일례로 열가소성 수지 조성물 총 중량에 대하여 1 내지 15 중량%, 바람직하게는 1 내지 10 중량%, 보다 바람직하게는 2 내지 7 중량%일 수 있고, 이 범위 내에서 충격강도, 인장강도 등의 기계적 물성이 우수하면서도 내열성, 내후성, 내스크래치성 및 착색성이 우수한 효과가 있다. 상기 범위 미만일 경우 내충격성이 저하되는 문제가 발생할 수 있고, 상기 범위 초과일 경우 그라프트율이 낮아져 경도 및 내스크래치성이 저하되는 문제가 발생할 수 있다.
상기 (C) 대구경 그라프트 공중합체는 일례로 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체일 수 있고, 이 경우 충격강도, 인장강도 등의 기계적 물성이 우수하면서도 내열성, 착색성 및 내후성이 우수한 효과가 있다.
상기 (C) 대구경 그라프트 공중합체는 일례로 평균입경이 300 내지 600 nm인 아크릴레이트계 고무 20 내지 60 중량%, 방향족 비닐 화합물 10 내지 50 중량% 및 비닐시안 화합물 5 내지 30 중량%를 포함하는 것일 수 있고, 이 범위 내에서 기계적 물성, 내열성 및 내후성이 향상되는 효과가 있다.
상기 (C) 대구경 그라프트 공중합체에 포함된 아크릴레이트계 고무는 일례로 평균입경이 300 내지 600 nm, 바람직하게는 300 내지 500 nm, 보다 바람직하게는 350 내지 450 nm일 수 있으며, 이 범위 내에서 충격강도, 인장강도 등의 기계적 물성이 우수한 효과가 있다. 상기 범위 미만일 경우 내충격성은 저하될 수 있고, 상기 범위 초과일 경우 유동성, 가공성 및 광택성이 저하되는 문제가 발생할 수 있다.
상기 (C) 대구경 그라프트 공중합체에 포함된 아크릴레이트계 고무는 일례로 (C) 대구경 그라프트 공중합체 총 중량에 대하여 20 내지 60 중량%, 바람직하게는 30 내지 55 중량%, 보다 바람직하게는 40 내지 50 중량%일 수 있고, 이 범위 내에서 내충격성 및 내스크래치성이 향상되는 효과가 있다.
상기 아크릴레이트계 고무는 일례로 아크릴레이트계 단량체를 유화중합하여 제조할 수 있고, 구체적인 예로 아크릴레이트계 단량체, 유화제, 개시제, 그라프트제, 가교제, 전해질 및 용매를 혼합하여 유화중합하여 제조할 수 있으며, 이 경우 그라프팅 효율이 우수하여 내충격성 등의 물성이 우수한 효과가 있다.
상기 (C) 대구경 그라프트 공중합체에 포함된 아크릴레이트계 고무 제조에 사용되는 아크릴레이트계 단량체, 유화제, 개시제, 그라프트제, 가교제, 전해질 및 물은 본 기재의 (B) 소구경 그라프트 공중합체에 포함되는 아크릴레이트계 고무 제조 시 사용되는 것과 동일한 종류, 동일한 함량 범위 내에서 선택될 수 있다.
상기 (C) 그 대구경 라프트 공중합체에 포함된 방향족 비닐 화합물은 일례로 (C) 대구경 그라프트 공중합체 총 중량에 대하여 10 내지 50 중량%, 바람직하게는 20 내지 45 중량%, 보다 바람직하게는 30 내지 40 중량%일 수 있고, 이 범위 내에서 내충격성, 내후성 및 내화학성이 우수한 효과가 있다.
상기 (C) 대구경 그라프트 공중합체에 포함된 비닐시안 화합물은 일례로 (C) 대구경 그라프트 공중합체 총 중량에 대하여 5 내지 30 중량%, 바람직하게는 5 내지 25 중량%, 보다 바람직하게는 10 내지 20 중량%일 수 있고, 이 범위 내에서 기계적 강도, 내변색성 등이 우수한 효과가 있다.
상기 (C) 대구경 그라프트 공중합체 포함되는 비닐시안 화합물 및 방향족 비닐 화합물의 종류는 본 기재의 (B) 소구경 그라프트 공중합체에 포함되는 비닐시안 화합물 및 방향족 비닐 화합물의 종류와 동일한 것일 수 있다.
본 기재에서 공중합체 총 중량이라 함은 얻어지는 공중합체의 실제 총 중량을 의미하거나 또는 이를 대체하여 투입된 총 단량체의 총 중량을 의미할 수 있다.
열가소성 수지 조성물
상기 열가소성 수지 조성물은 일례로 활제, 산화방지제, UV 안정제, 이형제, 안료, 염료 및 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 기계적 물성이 저하되지 않으면서도 내후성, 내열성 및 내스크래치성이 우수하게 유지되는 효과가 있다.
상기 활제는 일례로 에틸렌 비스 스테아르아미드, 산화 폴리에틸렌 왁스 및 마그네슘스테아레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 에틸렌 비스 스테아르아미드일 수 있으며, 이 경우 본 기재의 조성물의 젖음성을 향상시킴과 동시에 기계적 물성이 우수한 효과가 있다.
상기 활제는 일례로 (A) 비 그라프트 공중합체, (B) 소구경 그라프트 공중합체 및 (C) 대구경 그라프트 공중합체 총 100 중량부에 대하여 0.1 내지 3 중량부, 바람직하게는 0.1 내지 2 중량부, 보다 바람직하게는 0.05 내지 1.5 중량부일 수 있으며, 이 범위 내에서 본 기재의 조성물의 젖음성을 향상시킴과 동시에 기계적 물성이 우수한 효과가 있다.
상기 산화방지제는 일례로 페놀계 산화방지제, 인계 산화방지제, 또는 이들의 혼합물을 포함할 수 있고, 이 경우 압출 공정 시 열에 의한 산화를 방지하며 본 발명의 기계적 물성이 우수한 효과가 있다.
상기 산화방지제는 일례로 (A) 비 그라프트 공중합체, (B) 소구경 그라프트 공중합체 및 (C) 대구경 그라프트 공중합체 총 100 중량부에 대하여 0.01 내지 3 중량부, 바람직하게는 0.01 내지 1 중량부, 보다 바람직하게는 0.1 내지 1 중량부일 수 있으며, 이 범위 내에서 압출 공정 시 열에 의한 산화를 방지하고 기계적 물성이 우수한 효과가 있다.
상기 염료는 일례로 (A) 비 그라프트 공중합체, (B) 소구경 그라프트 공중합체 및 (C) 대구경 그라프트 공중합체 총 100 중량부에 대하여 0.1 내지 1.5 중량부, 바람직하게는 0.5 내지 1 중량부일 수 있고, 이 범위 내에서 본 기재의 열가소성 수지 조성물 본연의 물성을 저하시키지 않으면서도 색상 발현이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 헌터 랩(Hunter Lab)을 이용하여 측정한 L값(착색성)이 25.5 이하, 바람직하게는 20 내지 25.5, 보다 바람직하게는 24 내지 25일 수 있고, 이 범위 내에서 물성 밸런스가 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 연필 경도계(Cometech)를 이용하여 ASTM D3363에 의거하여 0.5 kg의 하중으로 45°각도에서 측정한 연필경도가 2H 이상, 바람직하게는 2H 내지 4H일 수 있고, 이 범위 내에서 물성 밸런스가 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 ASTM D648에 의거하여 측정한 열변형 온도가 90℃ 이상, 바람직하게는 90 내지 105℃, 보다 바람직하게는 90 내지 100℃일 수 있고, 이 범위 내에서 물성 밸런스가 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 ASTM D256에 의거하여 측정한 아이조드 충격강도(1/4", 23℃)가 5.5 kgf·cm/cm 이상, 바람직하게는 5.5 내지 10 kgf·cm/cm, 보다 바람직하게는 5.8 내지 6.5 kgf·cm/cm일 수 있고, 이 범위 내에서 모든 물성 밸런스가 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 ASTM D638에 의거하여 측정한 인장강도가 500 kg/cm2 이상, 바람직하게는 500 내지 550 kg/cm2, 보다 바람직하게는 503 내지 530 kg/cm2일 수 있고, 이 범위 내에서 물성 밸런스가 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 ASTM D3763에 의거하여 두께 3.2mm 시편으로 측정한 낙구 충격강도가 29 N 이상, 29 내지 35 N, 보다 바람직하게는 29.3 내지 31 N일 수 있고, 이 범위 내에서 물성 밸런스가 우수한 효과가 있다.
열가소성 수지 조성물의 제조방법
본 기재의 열가소성 수지 조성물의 제조방법은 일례로 (A) (메트)아크릴산 알킬에스테르 화합물 65 내지 85 중량%, 비닐시안 화합물 1 내지 10 중량%, 방향족 비닐 화합물 7 내지 17 중량% 및 N-치환 말레이미드 화합물 2 내지 12 중량%를 포함하여 이루어진 비 그라프트 공중합체 55 내지 70 중량%; (B) 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 20 내지 42 중량%; 및 (C) 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 1 내지 15 중량%;를 200 내지 270℃ 및 200 내지 300 rpm 조건 하에서 혼련 및 압출하는 단계;를 포함하는 것을 특징으로 하고, 이 경우에 내후성 및 내열성이 우수하면서도 내스크래치성 및 착색성이 매우 뛰어난 효과가 있다.
상기 열가소성 수지 조성물의 제조방법은 일례로 (메트)아크릴산 알킬에스테르 화합물 65 내지 85 중량%, 비닐시안 화합물 1 내지 10 중량%, 방향족 비닐 화합물 7 내지 17 중량% 및 N-치환 말레이미드 화합물 2 내지 12 중량%를 포함하는 단량체 혼합물 100 중량부에 반응 용매 25 내지 40 중량부 및 개시제 0.01 내지 1 중량부를 혼합한 중합 용액을 중합하여 (A) 비 그라프트 공중합체를 제조하는 단계를 포함할 수 있다.
상기 (A) 비 그라프트 공중합체를 제조하는 단계에서의 반응 용매는 일례로 에틸벤젠, 톨루엔, 메틸에틸케톤 및 자일렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 점도 조절이 용이하고 중합전환율이 감소되는 것을 억제하는 효과가 있다.
상기 반응 용매는 일례로 단량체 혼합물 100 중량부에 대하여 25 내지 40 중량부, 바람직하게는 30 내지 40 중량부일 수 있고, 이 범위 내에서 점도가 과도하게 상승되거나 전환율 및 분자량이 감소되는 것을 줄이는 효과가 있다.
상기 (A) 비 그라프트 공중합체를 제조하는 단계에서의 개시제는 일례로 t-부틸퍼옥시-2-에틸헥사노에이트(tert-Butylperoxy-2-ethylhexanoate), 벤조일 퍼옥사이드(benzoyl peroxide), t-부틸 퍼옥시이소부티레이트(t-butylperoxyisobutyrate), 1,1-비스(t-부틸퍼옥시)사이클로헥산(1,1-bis(tbutylperoxy)cyclohexane), 2,2-비스(4,4-디-t-부틸퍼옥시사이클로헥산)프로판(2,2-bis(4,4-di-t-butylperoxy cyclohexane)propane, t-헥실퍼옥시이소프로필 모노카보네이트(t-hexyl peroxy isopropyl monocarbonate), t-부틸 퍼옥시라우레이트(t-butylperoxylaurate), t-부틸퍼옥시 이소프로필 모노카보네이트(t-butyl peroxy isopropylmonocarbonate), t-부틸퍼옥시 2-에틸헥실 모노카보네이트(t-butyl peroxy 2-ethylhexylmonocarbonate), t-헥실 퍼옥시벤조에이트(thexylperoxybenzoate), t-부틸 퍼옥시아세테이트(t-butyl peroxyacetate), 2,2-비스(t-부틸퍼 옥시)부탄(2,2-bis(t-butyl peroxy)butane), t-부틸 퍼옥시벤조에이트(tbutyl peroxybenzoate), 디큐밀 퍼옥사이드(dicumylperoxide), 2,5-디메틸-2,5-비스(t-부틸 퍼옥시)헥산(2,5-dimethyl-2,5-bis(t-butyl peroxy)hexane), t-부틸큐밀 퍼옥사이드(t-butyl cumyl peroxide), 디-t-부틸 퍼옥사이드(di-t-butyl peroxide) 및 디-t-아밀 퍼옥사이드(di-t-amyl peroxide)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 t-부틸퍼옥시-2-에틸헥사노에이트(tert-Butylperoxy-2-ethylhexanoate)일 수 있으며, 이 경우 중합 반응을 용이하게 하여 내충격성 및 내후성이 향상되는 효과가 있다.
상기 개시제는 일례로 단량체 혼합물 100 중량부에 대하여 0.01 내지 1 중량부, 0.01 내지 0.5 중량부, 바람직하게는 0.01 내지 0.4 중량부일 수 있고, 이 범위 내에서 중합 반응을 용이하게 하여 기계적 물성, 내후성, 내열성 및 내스크래치성을 우수하게 유지하는 효과가 있다.
상기 (A) 비 그라프트 공중합체를 제조하는 단계에서의 중합은, 일례로 상기 중합 용액을 속도 7 내지 20 kg/hr, 바람직하게는 10 내지 15 kg/hr로 연속반응기에 연속 투입하여 온도 130 내지 160℃, 바람직하게는 140 내지 150℃ 하에서 수행될 수 있고, 이 경우 일괄 투입하는 경우보다 공중합체의 입자 안정성을 향상시켜 입자 내부구조를 균일하게 하여 기계적 물성, 내후성, 내열성, 내스크래치성 및 착색성을 우수하게 하는 효과가 있다.
본 기재에서 "연속식 중합"은 반응기 내에 중합에 참여하는 물질을 연속적으로 공급하면서, 중합되어 생성된 생성물을 연속적으로 배출하고 미반응 단량체는 휘발공정을 이용하여 회수하여 다시 사용하는 공정을 지칭한다.
상기 (A) 비 그라프트 공중합체를 제조하는 단계에서의 중합은, 일례로 중합 후 회수액에서 잔류 N-치환 말레아미드 화합물 함량이 0.12 중량% 이하, 바람직하게는 0.05 내지 0.12 중량%, 보다 바람직하게는 0.07 내지 0.10 중량%일 수 있고, 이 범위 내에서 N-치환 말레이미드 화합물의 전환율이 개선되어 장시간 운전시에도 N-치환 말레이미드 화합물이 휘발공정에서 잔류 단량체 회수 탱크로 이송하는 배관에 석출되지 않아 생산성이 향상되는 효과가 우수하다.
본 기재에서 잔류 N-치환 말레아미드 화합물 함량은 가스 크로마토그래피로 측정할 수 있다.
상기 혼련 및 압출은 일례로 일축 압출기, 이축 압출기, 또는 벤버리 믹서를 통해 수행될 수 있고, 이 경우 조성물이 균일하게 분산되어 상용성이 우수한 효과가 있다.
상기 혼련 및 압출은 일례로 배럴 온도가 200 내지 300℃, 바람직하게는 200 내지 250℃인 범위 내에서 수행될 수 있고, 이 경우 단위 시간당 처리량이 적절하면서도 충분한 용융 혼련이 가능할 수 있으며, 수지 성분의 열분해 등의 문제점을 야기하지 않는 효과가 있다.
상기 혼련 및 압출은 일례로 스크류 회전수가 200 내지 300 rpm, 바람직하게는 250 내지 300 rpm인 조건 하에서 수행될 수 있고, 이 경우 단위 시간당 처리량이 적절하여 공정 효율이 우수하면서도, 과도한 절단을 억제하는 효과가 있다.
본 기재의 성형품은 일례로 본 기재의 열가소성 수지 조성물로부터 제조된 것일 수 있고, 이 경우 내후성 및 내열성이 우수하면서도 내스크래치성 및 착색성이 향상되는 효과가 있다.
상기 성형품은 일례로 자동자 부품, 전기·전자 부품, 선박 부품 또는 건축용 자재일 수 있으며, 바람직하게는 자동차 내·외장재일 수 있다.
본 기재의 열가소성 수지 조성물, 이의 제조방법 및 성형품을 설명함에 있어서, 명시적으로 기재하지 않은 다른 조건이나 장비 등은 당업계에서 통상적으로 실시되는 범위 내에서 적절히 선택할 수 있고, 특별히 제한되지 않음을 명시한다.
이하, 본 기재의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
하기 실시예 및 비교예에서 사용된 물질은 다음과 같다.
* (B) 소구경 그라프트 공중합체: 고무 평균입경이 120nm인 그라프트 공중합체(LG화학사의 SA130)
* (C) 대구경 그라프트 공중합체: 고무 평균입경이 400nm인 그라프트 공중합체(LG화학사의 SA927)
* 활제: 에틸렌 비스 스테아르아미드(EBA)
* 산화방지제: 송원산업 사의 SONGNOX 1076
* 염료: 예담케미컬사 Papilion Back S-KL2
실시예 1
< (A) 비 그라프트 공중합체 제조 >
톨루엔 25 중량부, 메틸메타크릴레이트(이하 'MMA'라 함) 75 중량부, N-페닐말레이미드(이하 'PMI'이라 함) 7 중량부, 아크릴로니트릴(이하 'AN'이라 함) 3 중량부 및 스티렌(이하 'SM'이라 함) 15 중량부에 개시제로 다이큐밀퍼옥사이드 0.03 중량부를 첨가한 중합용액을 속도 12 kg/hr으로 14시간 동안 연속 반응기에 연속 투입하여 온도 145℃ 하에서 중합 후 250℃ 휘발조를 거쳐 미반응 단량체와 반응 용매를 제거하고 펠렛 형태의 (A) 비 그라프트 공중합체를 제조하였으며, 제조된 공중합체는 굴절률 1.5183, 유리전이온도 115.5℃, 중량평균분자량 103,315 g/mol 및 PDI 2.09이고 회수액 내 잔류 PMI는 0.09 중량%이었다.
< 열가소성 수지 조성물 제조 >
상기에서 제조된 (A) 비 그라프트 공중합체 65 중량부, (B) 소구경 그라프트 공중합체 30 중량부 및 (C) 대구경 그라프트 공중합체 5 중량부에 활제 1 중량부, 산화방지제 0.5 중량부 및 염료 0.6 중량부를 첨가하여 230℃ 압출기(28Ψ)에 투입하여 펠렛(Pellet) 상태의 수지를 제조한 후 사출하여 시편을 제조하였다.
실시예 2 내지 5
실시예 1에서 상기 (A) 비 그라프트 공중합체 제조 시 하기 표 1의 성분과 함량을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
비교예 1 내지 10
실시예 1에서 상기 (A) 비 그라프트 공중합체 제조 시 하기 표 2 내지 3의 성분과 함량을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
[시험예]
상기 실시예 1 내지 5 및 비교예 1 내지 10에서 제조된 시편의 특성을 하기와 같은 방법으로 측정하고, 그 결과를 하기의 표 1 내지 3에 나타내었다.
측정방법
* 굴절률: ASTM D542에 의거하여 Abbe 굴절계를 이용하여 25℃에서 측정하였다.
* 유리전이온도(℃): 시차열량분석기(제조사: Ta Instruments, 제품명: DSC Q20)을 이용하여 측정하였다.
* 중량평균분자량(g/mol), 수평균분자량(g/mol): 컬럼 충진 물질로 다공성 실리카로 충진된 겔 크로마토그래피(GPC)를 통해 온도 40℃에서 용매로 테트라하이드로퓨란(THF)을 사용하여 표준 PS(Standard polystyrene) 시료에 대한 상대 값을 측정하였다.
* PDI: 중량평균분자량을 수평균분자량으로 나누어서 PDI를 계산하였다.
* 회수액 내 잔류 PMI 함량(중량%): 가스 크로마토그래피로 측정하였다.
* 착색성(흑색도; Color L): CIE1976 L*a*b* 표색계에 의거, color meter(모델명 Color Eye 7000A)를 이용하여 color L값을 측정하였다. 이때 L=100이면 순백색, L=0이면 순흑색을 의미하는 것으로 L값이 낮을수록 블랙감이 우수함을 나타낸다.
* 열변형온도(℃): ASTM D648에 의거하여 두께 6.4 mm인 시편을 사용하여 18.6 kgf/cm2 하중 하에서 측정하였다.
* 연필경도: 연필경도계(Cometech)를 이용하여 ASTM D3363에 의거하여 하중 0.5 kg, 각도 45°로 연필을 고정시킨 후 시편의 표면을 경도별(2B, B, HB, F, H순)로 긁어 육안으로 긁히는지 여부를 측정하였다.
* 아이조드 충격강도(kgf·cm/cm): 시편 두께 1/4"을 이용하여 ASTM D256에 의거하여 측정하였다.
* 인장강도(kg/cm2): ASTM D638에 의거하여 측정하였다.
* 낙구 충격강도(N): 시편 두께 3.2mm을 이용하여 ASTM D3763에 의거하여 측정하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
(A)
비그라프트
공중합체
조성
MMA 75 76 75 73 80
PMI 7 4 10 7 4
AN 3 5 5 5 3
SM 15 15 10 15 13
(A)
비그라프트
공중합체
물성
굴절률 1.5183 1.5153 1.5176 1.5185 1.5131
Tg 115.5 110.8 120.4 116.7 112.2
Mw 103,315 113,991 99,875 104,247 96,279
PDI 2.09 1.96 2.00 2.06 1.83
회수액 내
잔류 PMI 함량
0.09 0.07 0.10 0.09 0.08
열가소성 수지
조성물
조성
(A) 비 그라프트
공중합체
65 65 65 65 65
(B) 소구경
그라프트 공중합체
30 30 30 30 30
(C) 대구경
그라프트 공중합체
5 5 5 5 5
열가소성
수지
조성물
물성
착색성 25.0 24.8 24.9 25.0 24.7
열변형온도 93 90 97 94.2 90.9
연필경도 2H 2H 2H 2H 2H
충격강도 6.0 6.4 5.9 6.1 5.8
인장강도 519 528 503 520 507
낙구 충격 30.1 30.5 29.3 30.2 29.3
구분 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
(A) 비그라프트
공중합체
조성
MMA 50.7 60 60 86 86
PMI 0 0 10 4 4
AN 15.5 7 30 5 0
SM 0 33 0 5 10
α-메틸스티렌 33.8 0 0 0 0
(A)
비그라프트
공중합체
물성
굴절률 1.5293 1.5295 1.5060 1.5053 1.5103
Tg 120.0 102.3 105.6 113.2 119.6
Mw 88,410 79,768 90,628 84,657 75,580
PDI 2.01 1.98 2.22 2.09 1.92
회수액 내 잔류 PMI 함량 (중량%) 0 0 1.67 0.42 0.25
열가소성
수지
조성물
조성
(A) 비 그라프트 공중합체 65 65 65 65 65
(B) 소구경
그라프트 공중합체
30 30 30 30 30
(C) 대구경
그라프트 공중합체
5 5 5 5 5
열가소성
수지
조성물
물성
착색성 26.0 26.0 23.7 23.6 24.5
열변형온도 96 84 85 88 95
연필경도 H 2H 2H 2H 2H
충격강도 5.7 5.2 5.8 5.3 4.9
인장강도 509 461 480 478 455
낙구 충격 28.9 26.4 29.1 28.3 26.1
구분 비교예 6 비교예 7 비교예 8 비교예 9 비교예10
(A) 비그라프트
공중합체
조성
MMA 73 74 73 76 71
PMI 4 4 14 4 -
AN 3 7 3 5 7
SM 20 15 10 15 22
α-메틸스티렌 0 0 0 0 0
(A) 비그라프트
공중합체
물성
굴절률 1.5217 1.5159 1.5204 1.5159 1.5144
Tg 110.5 106.4 121.2 108.6 105.6
Mw 120,746 101,874 83,247 64,770 96,929
PDI 2.04 1.95 1.99 1.96 1.77
회수액 내 잔류 PMI
함량 (중량%)
0.27 0.17 2.13 0.09 0
열가소성
수지
조성물
조성
(A) 비 그라프트 공중합체 65 65 65 75 75
(B) 소구경
그라프트 공중합체
30 30 30 20 20
(C) 대구경
그라프트 공중합체
5 5 5 5 5
열가소성
수지
조성물
물성
착색성 25.3 24.8 25.2 24.61 24.58
열변형온도 89 86 96 92.8 86
연필경도 2H 2H H 2H 2H
충격강도 6.4 5.8 5.3 3 6.2
인장강도 476 467 472 528 552
낙구 충격 31.0 29.5 27.3 26.9 28.5
상기 표 1 내지 3에 나타낸 바와 같이, 본 발명에 따라 제조된 실시예 1 내지 5은, 본 발명의 범위를 벗어난 비교예 1 내지 10 대비 충격강도, 인장강도 및 낙구 충격강도가 유지되면서 착색성, 열변형 온도 및 연필경도(내스크래치성)가 우수한 효과를 확인할 수 있었다.
또한, 본 발명에 따라 제조된 실시예 1 내지 5의 (A) 비 그라프트 공중합체는 굴절률이 낮아져 착색성 개선 효과가 우수하였고, (A) 비 그라프트 공중합체를 중합 시 N-페닐 말레이미드의 전환율이 개선되어 장시간 운전시 휘발공정에서 잔류 단량체 회수 탱크로 이송되는 배관에서 N-페닐 말레이미드가 석출되지 않아 생산성이 증대되는 효과가 있었다.
또한, (A) 비 그라프트 공중합체를 본 발명의 범위를 초과하여 포함한 비교예 9는 충격강도 및 낙구 충격강도가 낮아졌고, PMI를 포함하지 않고 중합된 (A) 비 그라프트 공중합체를 본 발명의 범위를 초과하여 포함한 비교예 10은 열변형온도가 크게 낮아졌다.

Claims (13)

  1. (A) (메트)아크릴산 알킬에스테르 화합물 65 내지 83 중량%, N-치환 말레이미드 화합물 2 내지 12 중량%, 비닐시안 화합물 1 내지 6 중량% 및 방향족 비닐 화합물 7 내지 17 중량%를 포함하여 이루어진 비 그라프트 공중합체 55 내지 70 중량%;
    (B) 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 20 내지 42 중량%; 및
    (C) 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 1 내지 15 중량%;를 포함하는 것을 특징으로 하는
    열가소성 수지 조성물.
  2. 제 1항에 있어서,
    상기 (A) 비 그라프트 공중합체는 중량평균분자량이 95,000 내지 130,000 g/mol인 것을 특징으로 하는
    열가소성 수지 조성물.
  3. 제 1항에 있어서,
    상기 (A) 비 그라프트 공중합체는 유리전이온도가 107℃ 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  4. 제 1항에 있어서,
    상기 (A) 비 그라프트 공중합체는 굴절률이 1.520 이하인 것을 특징으로 하는
    열가소성 수지 조성물.
  5. 제 1항에 있어서,
    상기 (B) 그라프트 공중합체는 평균입경이 50 내지 200 nm인 아크릴레이트계 고무 20 내지 60 중량%, 방향족 비닐 화합물 10 내지 50 중량% 및 비닐시안 화합물 5 내지 30 중량%를 포함하여 이루어지는 것을 특징으로 하는
    열가소성 수지 조성물.
  6. 제 1항에 있어서,
    상기 (C) 그라프트 공중합체는 평균입경이 300 내지 600 nm인 아크릴레이트계 고무 20 내지 60 중량%, 방향족 비닐 화합물 10 내지 50 중량% 및 비닐시안 화합물 5 내지 30 중량%를 포함하여 이루어지는 것을 특징으로 하는
    열가소성 수지 조성물.
  7. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 헌터 랩(Hunter Lab)을 이용하여 측정한 L값(착색성)이 25.5 이하인 것을 특징으로 하는
    열가소성 수지 조성물.
  8. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 연필 경도계(Cometech)를 이용하여 ASTM D3363에 의거하여 0.5 kg의 하중으로 45°각도에서 측정한 연필경도가 2H 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  9. (A) (메트)아크릴산 알킬에스테르 화합물 65 내지 83 중량%, N-치환 말레이미드 화합물 2 내지 12 중량%, 비닐시안 화합물 1 내지 6 중량% 및 방향족 비닐 화합물 7 내지 17 중량%를 포함하여 이루어진 비 그라프트 공중합체 55 내지 70 중량%; (B) 평균입경이 50 내지 200 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 20 내지 42 중량%; 및 (C) 평균입경이 300 내지 600 nm인 아크릴레이트계 고무를 포함하는 아크릴레이트계 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 1 내지 15 중량%;를 200 내지 270℃ 및 200 내지 300 rpm 조건 하에서 혼련 및 압출하는 단계;를 포함하는 것을 특징으로 하는
    열가소성 수지 조성물의 제조방법.
  10. 제9항에 있어서,
    상기 열가소성 수지 조성물의 제조방법은 (메트)아크릴산 알킬에스테르 화합물 65 내지 83 중량%, N-치환 말레이미드 화합물 2 내지 12 중량%, 비닐시안 화합물 1 내지 6 중량% 및 방향족 비닐 화합물 7 내지 17 중량%를 포함하는 단량체 혼합물 100 중량부에 반응 용매 15 내지 40 중량부 및 개시제 0.01 내지 1 중량부를 혼합한 중합 용액을 중합하여 (A) 비 그라프트 공중합체를 제조하는 단계를 포함하는 것을 특징으로 하는
    열가소성 수지 조성물의 제조방법.
  11. 제10항에 있어서,
    상기 (A) 비 그라프트 공중합체를 제조하는 단계에서의 중합은 상기 중합 용액을 속도 7 내지 20 kg/hr로 연속반응기에 연속 투입하여 온도 130 내지 160℃ 하에서 수행되는 것을 특징으로 하는
    열가소성 수지 조성물의 제조방법.
  12. 제10항에 있어서,
    상기 (A) 비 그라프트 공중합체를 제조하는 단계에서 중합 후 회수액에서 잔류 N-치환 아미드 화합물 함량이 0.12 중량% 이하인 것을 특징으로 하는
    열가소성 수지 조성물의 제조방법.
  13. 제1항 내지 제8항 중 어느 한 항에 따른 열가소성 수지 조성물로 제조됨을 특징으로 하는
    성형품.
PCT/KR2020/012988 2019-10-23 2020-09-24 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 WO2021080201A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021539356A JP7176122B2 (ja) 2019-10-23 2020-09-24 熱可塑性樹脂組成物、その製造方法及びそれを含む成形品
CN202080007250.1A CN113227247B (zh) 2019-10-23 2020-09-24 热塑性树脂组合物、其制备方法以及包含该热塑性树脂组合物的模制品
US17/417,360 US11718745B2 (en) 2019-10-23 2020-09-24 Thermoplastic resin composition, method of preparing the same, and molded article including the same
EP20878652.5A EP3882311A4 (en) 2019-10-23 2020-09-24 THERMOPLASTIC RESIN COMPOSITION, METHOD FOR PREPARING IT AND MOLDED PRODUCT COMPRISING THEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0132326 2019-10-23
KR20190132326 2019-10-23
KR1020200121468A KR102498745B1 (ko) 2019-10-23 2020-09-21 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR10-2020-0121468 2020-09-21

Publications (1)

Publication Number Publication Date
WO2021080201A1 true WO2021080201A1 (ko) 2021-04-29

Family

ID=75619443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012988 WO2021080201A1 (ko) 2019-10-23 2020-09-24 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Country Status (1)

Country Link
WO (1) WO2021080201A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204237A (ja) * 1997-01-17 1998-08-04 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2012251015A (ja) * 2011-05-31 2012-12-20 Techno Polymer Co Ltd 熱可塑性樹脂組成物およびそれを用いてなる成形品
KR20130075793A (ko) * 2011-12-28 2013-07-08 제일모직주식회사 외관 및 착색성이 우수한 열가소성 수지 조성물
KR20140099609A (ko) * 2013-02-04 2014-08-13 제일모직주식회사 외관품질과 대전방지성이 우수한 열가소성 수지 조성물
KR101478394B1 (ko) 2011-03-04 2014-12-31 주식회사 엘지화학 열가소성 수지 조성물 및 그 제조방법
KR20180073062A (ko) * 2016-12-22 2018-07-02 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 사출 성형품
KR20190132326A (ko) 2019-11-20 2019-11-27 한국화학연구원 Ir계 deNOx 촉매 및 그 제조방법
KR20200121468A (ko) 2019-04-16 2020-10-26 서울대학교병원 안과 검사용 개검장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204237A (ja) * 1997-01-17 1998-08-04 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
KR101478394B1 (ko) 2011-03-04 2014-12-31 주식회사 엘지화학 열가소성 수지 조성물 및 그 제조방법
JP2012251015A (ja) * 2011-05-31 2012-12-20 Techno Polymer Co Ltd 熱可塑性樹脂組成物およびそれを用いてなる成形品
KR20130075793A (ko) * 2011-12-28 2013-07-08 제일모직주식회사 외관 및 착색성이 우수한 열가소성 수지 조성물
KR20140099609A (ko) * 2013-02-04 2014-08-13 제일모직주식회사 외관품질과 대전방지성이 우수한 열가소성 수지 조성물
KR20180073062A (ko) * 2016-12-22 2018-07-02 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 사출 성형품
KR20200121468A (ko) 2019-04-16 2020-10-26 서울대학교병원 안과 검사용 개검장치
KR20190132326A (ko) 2019-11-20 2019-11-27 한국화학연구원 Ir계 deNOx 촉매 및 그 제조방법

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR100799605B1 (ko) 내스크래치성이 우수한 수지 조성물
KR101926740B1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
KR102498745B1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
CN102108167B (zh) 具有良好的耐擦伤性的热塑性树脂组合物和由其制成的模制品
WO2018038573A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR102489251B1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017099409A1 (ko) 열가소성 그라프트 공중합체 수지, 이를 제조하는 방법, 및 이를 포함하는 열가소성 수지 조성물
WO2022097867A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2020130400A1 (ko) 열가소성 수지 조성물
KR20210033419A (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2017105007A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2021080201A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
US4395516A (en) Thermoplastic resin compositions comprising copolymer of unsaturated dicarboxylic acid anhydride and vinyl aromatic monomer, ABS, and methylmethacrylate polymer
WO2021080199A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
EP0370264A1 (en) Heat resistant and impact resistant resin composition
KR100491031B1 (ko) 고온 신율이 우수한 열가소성 수지 조성물 및 그의제조방법
KR102702690B1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
TWI857151B (zh) 熱塑性樹脂組成物、其製備方法、及含彼之模製物件
WO2024122978A1 (ko) 재생 수지 조성물
WO2021086001A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2024085617A1 (ko) 수지 조성물
WO2015034209A1 (ko) 내후성 보강 아크릴레이트계 수지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020878652

Country of ref document: EP

Effective date: 20210615

ENP Entry into the national phase

Ref document number: 2021539356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE