WO2021080085A1 - 박막형 커패시터 제조용 니켈박 및 그의 제조방법 - Google Patents

박막형 커패시터 제조용 니켈박 및 그의 제조방법 Download PDF

Info

Publication number
WO2021080085A1
WO2021080085A1 PCT/KR2019/017919 KR2019017919W WO2021080085A1 WO 2021080085 A1 WO2021080085 A1 WO 2021080085A1 KR 2019017919 W KR2019017919 W KR 2019017919W WO 2021080085 A1 WO2021080085 A1 WO 2021080085A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel foil
electrolytic
electrolytic nickel
nickel
less
Prior art date
Application number
PCT/KR2019/017919
Other languages
English (en)
French (fr)
Inventor
송기덕
양창열
윤상화
Original Assignee
일진머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진머티리얼즈 주식회사 filed Critical 일진머티리얼즈 주식회사
Priority to CN201980101536.3A priority Critical patent/CN114586121A/zh
Priority to US17/753,873 priority patent/US20220367114A1/en
Priority to EP19950163.6A priority patent/EP4050628A4/en
Priority to JP2022521004A priority patent/JP2022551136A/ja
Publication of WO2021080085A1 publication Critical patent/WO2021080085A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • H01G4/302Stacked capacitors obtained by injection of metal in cavities formed in a ceramic body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/085Vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1272Semiconductive ceramic capacitors

Definitions

  • the present invention relates to an electrolytic nickel foil, in particular, to an electrolytic nickel foil having low roughness and high gloss that can manufacture a thin film capacitor without going through a CMP polishing process, a method of manufacturing the same, and a thin film capacitor manufactured therefrom.
  • a semiconductor device including an integrated circuit is required to operate at a low voltage while capable of transmitting high-frequency and high-speed signals.
  • a low impedance of the system is primarily required. Therefore, a thin-film ceramic thin-film capacitor having a high static capacitance density is used in a printed circuit board package.
  • the thin-film ceramic thin-film capacitor is manufactured by depositing a dielectric on a metal foil such as nickel, firing it, and then depositing a metal on the dielectric again.
  • a capacitor having such a structure has a problem that the flatness of the metal foil must be high in order to prevent shorts from occurring, so that the flatness of the surface is low to use the conventionally used metal foil as it is.
  • CMP Chemical-Mechanical Polishing
  • Korean Patent Publication No. 10-2017-0174849 discloses a method of manufacturing an iron-nickel alloy foil having excellent surface roughness.
  • the average surface roughness (Ra) is only lowered to about 0.1 ⁇ m, and is still not sufficient to manufacture a thin-film ceramic thin-film capacitor.
  • An object of the present invention is to provide an electrolytic nickel foil capable of manufacturing a thin-film capacitor without going through a separate CMP polishing process because of low roughness, uniformity, and high gloss.
  • Another object of the present invention is to provide a thin film capacitor manufactured from the electrolytic nickel foil.
  • Another object of the present invention is to provide a method of manufacturing the electrolytic nickel foil without requiring a separate CMP polishing process due to low roughness and high gloss.
  • the electrolytic nickel foil has an arithmetic average roughness Ra of the surface of about 0.05 ⁇ m or less, a 10-point average roughness Rz of about 0.20 ⁇ m or less, a maximum height Rt of about 0.50 ⁇ m or less, and a 60° specular gloss of about 200 GU or more. This is achieved by an electrolytic nickel foil having a flat surface on at least one surface.
  • the electrolytic nickel foil may have a surface Ra of about 0.03 ⁇ m or less, an Rz of about 0.15 ⁇ m or less, an Rt of about 0.30 ⁇ m or less, and a 60° mirror gloss of about 400 GU or more.
  • the total thickness of the electrolytic nickel foil may be about 1 to 100 ⁇ m.
  • Another aspect of the present invention relates to a method of manufacturing the electrolytic nickel foil.
  • the manufacturing method includes about 400 to 600 g/L of a nickel ion precursor, about 10 to 30 g/L of a pH buffer, about 0.5 to 2.0 g/L of an illuminance control agent, and electrolysis using an electrolytic solution having a pH of about 1 to 5 It may be to include the step of plating.
  • the nickel ion precursor may be selected from the group consisting of nickel sulfate, nickel sulfamate, nickel chloride, and nickel nitrate.
  • the pH buffering agent may be selected from boric acid or sodium citrate.
  • the roughness modifier is saccharin, carboxyethyl isothiuronium chloride, sodium allyl sulfonate, butynediol propoxylate, butine Diol ethoxylate (butynediol ethoxylate), propargyl alcohol propoxylate (propargyl alcohol propoxylate), pyridinium propyl sulfobetaine (pyridinium propyl sulfobetaine), propanesulfonic acid sodium salt (propanesulfonic acid sodium salt) 2 from the group consisting of More than one species can be selected.
  • the electroplating may be to apply a current having a current density of about 10 to 100 A/dm 2 at a temperature of about 40 to 60° C. of the plating solution.
  • Another aspect of the present invention relates to a thin film capacitor comprising an electrolytic nickel foil, a dielectric formed on the electrolytic nickel foil, and a conductive metal layer formed on the dielectric.
  • the surface arithmetic mean roughness Ra, 10-point average roughness Rz and the maximum height Rt of the protrusion are small even in the unpolished state, and the 60° mirror surface gloss is high, so even if the dielectric is thinly coated, it is formed on the electrolytic nickel foil.
  • An electrolytic nickel foil having a low risk of causing a short due to a protrusion passing through the dielectric layer and contacting the conductive metal layer, a method of manufacturing the electrolytic nickel foil, and a capacitor including the electrolytic nickel foil can be provided.
  • the present invention can also provide an electrolytic nickel foil that can be used for manufacturing a thin film capacitor without a separate polishing process such as a CMP process due to its low illuminance and high gloss, and a method of manufacturing the electrolytic nickel foil having excellent process efficiency. .
  • Example 1A is a SEM photograph of an electrolytic nickel foil of Example 1 at 1,000 times magnification.
  • 2A is a photograph of a 3D profile of an electrolytic nickel foil of Example 1 using a white light scanning interferometer method.
  • 2B is a photograph of one surface of an electrolytic nickel foil of Example 1 measured by a white light scanning interferometer method.
  • 2C is a graph showing the roughness distribution of one side of the electrolytic nickel foil of Example 1.
  • 2D is a graph showing the lateral roughness distribution of the electrolytic nickel foil of Example 1.
  • 2E is a graph showing the distribution of roughness in the longitudinal direction of the electrolytic nickel foil of Example 1.
  • 3A is a photograph obtained by 3D profiling one surface of an electrolytic nickel foil of Comparative Example 1 using a white light scanning interferometer method.
  • 3B is a photograph of a 3D measurement of one surface of an electrolytic nickel foil of Comparative Example 1 using a white light scanning interferometer method.
  • 3C is a graph showing the roughness distribution of one side of the electrolytic nickel foil of Comparative Example 1.
  • 3D is a graph showing the lateral roughness distribution of the electrolytic nickel foil of Comparative Example 1.
  • 3E is a graph showing the distribution of roughness in the longitudinal direction of the electrolytic nickel foil of Comparative Example 1.
  • FIG. 4 is a conceptual diagram showing a cross-sectional structure of a thin film capacitor.
  • Ra, Rz, and Rt used in the present specification are parameters representing the roughness of the electrolytic nickel foil, respectively, and are measured according to ISO 25178 standards.
  • Ra means arithmetic mean roughness
  • Rz means 10-point mean roughness
  • Rt means maximum protrusion height
  • the glossiness of the electrolytic nickel foil refers to the 60° mirror glossiness, and is a value measured according to the JIS Z 8741 standard.
  • the unit is GU (Gloss Unit).
  • the electrolytic nickel foil may be prepared by electroplating using an electrolytic solution containing a nickel ion precursor, a pH buffering agent, and an illuminance control agent, and having a pH concentration of 1 to 5.
  • the electrolytic solution contains a nickel ion precursor in an amount of about 400 to 600 g/L with respect to the total capacity of the electrolytic solution, and the electrolytic nickel foil has excellent surface roughness and gloss within the above range.
  • the nickel ion precursor may be used without limitation as long as it is a precursor used for nickel ion plating, but is preferably selected from the group consisting of nickel sulfate, nickel sulfamate, nickel chloride, and nickel nitrate, and particularly preferably nickel sulfate or Nickel sulfamate can be used.
  • the roughness modifier is saccharin, carboxyethylisothiuronium chloride, sodium allyl sulfonate, butynediol propoxylate, butynediol ethoxylate, proppar Propargyl alcohol propoxylate (Propargyl alcohol propoxylate), pyridinium propyl sulfobetaine (Pyridinium propyl sulfobetaine), propane sulfonic acid sodium salt (Propanesulfonic acid sodium salt) of at least one selected compound may be included.
  • saccharin and sodium allyl sulfonate may be used in combination.
  • the illuminance control agent may be used in a concentration of about 0.01 g/L to 2 g/L, preferably about 0.85 to 1.8 g/L in the electrolyte.
  • saccharin and sodium allyl sulfonate when saccharin and sodium allyl sulfonate are applied, they may be used at a concentration of about 0.05 g/L to 1.0 g/L, respectively.
  • the concentration ratio of saccharin and sodium allyl sulfonate may be about 1:0.01 to 100, preferably about 1:0.05 to 1:20.
  • the electrolyte may contain a pH buffering agent to adjust the pH concentration.
  • the pH buffering agent may be used without particular limitation as long as it is sufficient to control the pH concentration of the electrolyte to an appropriate level, but may be included in an amount of about 10 to 30 g/L with respect to the total volume of the electrolyte, and the efficiency of the process within the above range This is excellent.
  • the type of the pH buffering agent any one may be used as long as it does not cause an unnecessary chemical reaction according to the purpose of the present invention, but for example, boric acid or sodium citrate may be used. When these pH buffering agents are applied, the stability of the process is improved and an electrolytic nickel foil having excellent roughness can be manufactured.
  • the pH buffering agent is contained in an amount of about 15 to 50 g/L in the electrolyte. In this range, it is easy to control the pH concentration and process.
  • the pH concentration of the electrolyte solution is in the range of about 1 to 5, preferably about 2 to 4. In the above range, the surface roughness of the electrolytic nickel foil is excellent.
  • Electrolytic plating may be performed by a conventional method, for example, by putting a substrate or a mandrel in an electrolyte solution, electroplating, and then removing the substrate or mandrel.
  • Electrolytic the In embodiments plating can be prepared in a way that electrolysis is a plating current of about 10A / dm 2 to 100A / dm 2 in the electrolyte, for example, a current of about 15 A / dm 2 to 80A / dm 2 . In the above range, it is possible to manufacture an electrolytic nickel foil having excellent surface roughness through an efficient process.
  • the electrolytic plating may be performed at a temperature of about 40°C to 60°C. Preferably it may be about 55 °C or more to less than 60 °C. Under the above conditions, an electrolytic nickel foil having excellent roughness and physical properties is formed.
  • the current application time may be appropriately adjusted according to the amount of the electrolytic nickel foil. In an embodiment, it may be applied for a time of about 300 to 500 seconds, preferably about 350 to 450 seconds. Within the above range, it is possible to manufacture a thin electrolytic nickel foil having excellent roughness and gloss while the process of the electrolytic nickel foil is efficient.
  • the prepared electrolytic nickel foil may have a thickness of about 1 ⁇ m to 100 ⁇ m, and preferably in the range of about 3 ⁇ m to 75 ⁇ m. While having excellent durability and versatility within the above range, it is suitable for use in products such as thin film capacitors.
  • At least one surface of the electrolytic nickel foil of the present invention is provided with a flat surface having excellent roughness.
  • WSI white-light scanning interferometry
  • PSI phase-shift interferometry
  • Ra about 1.2 ⁇ m or less
  • Rz about 1.0 ⁇ m.
  • Rt about 1.5 ⁇ m or less.
  • the flat surface has an advantage of reducing surface defects by having excellent roughness without a separate polishing process. If the illuminance coefficient exceeds the above range, the performance of the dielectric layer in the capacitor may be adversely affected, resulting in insulation resistance and leakage current.
  • the surface roughness it is possible to provide an excellent electrolytic nickel foil that is not only flat as a whole, but also does not have a special protruding part.
  • the 60° mirror glossiness of the flat surface may be about 50 GU to 800 GU, for example, about 200 GU to 700 GU.
  • the optical properties of the flat surface are within the above range, the surface is even and the flatness is excellent.
  • the thin-film ceramic thin-film capacitor 100 including the electrolytic nickel foil of the present invention has a structure in which a nickel thin film layer 110, a dielectric layer 120, and a conductive metal layer 130 are sequentially stacked as shown in FIG. 4.
  • dielectric crystal grains are formed on the surface of the electrolytic nickel foil to coat the entire electrolytic nickel foil.
  • sputtering, laser grinding, chemical vapor deposition, and chemical solution deposition may be used as a method of forming the thin film dielectric, but sputtering may be preferable in order to improve the density of the dielectric.
  • a person of ordinary skill in the art will be able to easily fabricate a capacitor from the electrolytic nickel foil seen through a sputtering method or the like, but, for example, an electrolytic nickel foil is placed on a deposition plate, and the deposition plate is heated to about 500 to 800°C, and then, By sputtering the dielectric, a dielectric can be formed on the electrolytic nickel foil.
  • the dielectric After depositing the dielectric to a certain thickness, the dielectric may be fired to improve crystallization and densification of the dielectric layer.
  • a thin film capacitor may be completed by cooling an electrolytic nickel foil having a dielectric formed thereon, and then depositing the electrode on the surface through a sputtering method.
  • the electrode is typically a gold or copper electrode, but any material that enables electrical connection may be used without limitation.
  • a nickel foil having a thickness of about 27 ⁇ m was prepared by applying a current for about 400 seconds at an electrolyte temperature of about 55° C. with a current density of about 20 A/dm 2.
  • the prepared electrolytic nickel foil had an arithmetic average roughness Ra of about 0.05 ⁇ m, a 10-point average roughness Rz of about 0.19 ⁇ m, a maximum height Rt of about 0.37 ⁇ m, and a 60° mirror glossiness of about 445 GU in the unpolished state.
  • An electrolytic nickel foil was prepared in the same manner as in Example 1, except for applying the electrolyte solution and electrolytic conditions shown in Table 1 below.
  • Nickel precursor type, g/L) pH buffer (type, g/L) Plating time(s) pH (C1)(g/L) (C2)(g/L)
  • pH (C1)(g/L) (C2)(g/L) One 55 20 (A1), 450 (B1), 25 400 3 0.1 0.8 2 (A2), 450 (B1), 25 0.1 0.8 3 (A1), 450 (B1), 25 0.3 0.8 4 (A2), 450 (B1), 25 0.3 0.8 5 (A1), 450 (B1), 25 0.8 0.8 6 (A2), 450 (B1), 25 0.8 0.8 7 (A1), 450 (B1), 25 One 0.6 8 (A2), 450 (B1), 25 One 0.6 9 (A1), 450 (B1), 25 One 0.4 10 (A2), 450 (B1), 25 One 0.4 A1: nickel sulfate A2: nickel sulfamate B1: boric acid B2: sodium citrate C
  • Comparative Examples 1 to 4 An electrolytic nickel foil was prepared in the same conditions and methods as in Example 1, except for applying the electrolyte solutions and electrolytic conditions shown in Table 2 below.
  • a roughness meter (Nano System, model name NV-2700) was used to measure the roughness distribution across the entire surface of the specimen according to the ISO 25178 standard, and Rz, Rt, and Ra in the longitudinal and transverse directions were measured based on the center point of the specimen. .
  • the glossiness meter (IG-410 Ultra High Gloss Meter, Horiba company) was used to measure the angle of incidence 60° specular gloss according to the JIS Z 8741 standard.
  • the unit of measurement of glossiness is GU (Gloss Unit).
  • FIGS. 1A and 1B SEM photographs were taken by magnifying the flat surfaces of the electrolytic nickel foils of Example 1 and Comparative Example 1 at a rate of 1,000 times, and the results are shown in FIGS. 1A and 1B, respectively. Comparing FIGS. 1A and 1B, it can be seen that the height of the surface protrusions in Example 1 is lower than that of Comparative Example 1, and the height distribution is also uniform.
  • Example 1 has a surface having a regular and lower height surface protrusion than that of Comparative Example 1.
  • Example 1 has superior morphology.
  • 2C and 3C are graphs showing the roughness distribution of the surface of the electrolytic nickel foil of Example 1 and Comparative Example 1, respectively, and the maximum value Rt of the protrusion height is low while the distribution of the protrusion height Rz in FIG. 2C is narrow. The fact is confirmed, which means that the surface of Example 1 is even.
  • FIG. 2D and 3D are graphs showing the lateral roughness distribution of the electrolytic nickel foils of Example 1 and Comparative Example 1, respectively, and it can be seen that FIG. 2D of Example 1 is significantly flatter and has a higher smoothness than that of FIG. 3D of Comparative Example 1. I can.
  • FIG. 2E and 3E are graphs showing the longitudinal roughness distribution of the electrolytic nickel foils of Example 1 and Comparative Example 1, respectively, and it can be seen that FIG. 2E of Example 1 is significantly flatter and higher smoothness than FIG. 3E of Comparative Example 1. I can.
  • the electrolytic nickel foil of Example 1 was placed on a sputtering chamber deposition plate, and an atmospheric pressure of about 3 torr was maintained in a chamber atmosphere consisting of 95% argon and 5% oxygen. After heating the deposition plate to about 650° C., barium titanate was sputtered on the electrolytic nickel foil using a barium titanate (BaTiO 3 ) target having a diameter of about 3 inches using an RF power of about 150W. Evaporation was performed for about 150 minutes to form a dielectric having a thickness of about 0.7 ⁇ m.
  • the electrolytic nickel foil coated with barium titanate was fired in a chamber at a temperature of about 900° C. for about 2 hours at an oxygen partial pressure of about 2 ⁇ 10 ⁇ 7 atm, and then cooled.
  • a capacitor was fabricated by depositing a copper electrode of about 0.2 ⁇ m through a sputtering method on the surface of the electrolytic nickel foil coated with barium titanate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

표면조도가 Ra 0.05 ㎛ 이하, Rz 0.2 ㎛ 이하 및 Rt 0.5 ㎛ 이하이고, 60°경면 반사각 측정에 의해 측정한 광택도가 200GU 이상인 평탄면을 적어도 한쪽에 구비한 전해니켈박을 포함한다.

Description

박막형 커패시터 제조용 니켈박 및 그의 제조방법
본 발명은 전해 니켈박, 특히 CMP 연마공정을 거치지 않고 박막형 커패시터를 제조할 수 있는 조도가 낮고 광택도가 높은 전해 니켈박 및 이의 제조방법 및 그로부터 제조되는 박막형 커패시터에 관한 것이다.
집적회로를 포함한 반도체 장치는 고주파 및 고속신호전송이 가능하면서도 낮은 전압에서 작동될 것이 요구되고 있다. 안정적인 전력공급과 동시에 노이즈 발생을 최소하기 위해서는 일차적으로 시스템의 낮은 임피던스가 필요하다. 따라서 인쇄회로기판 패키지에는 정적용량 밀도가 높은 박막형 세라믹 박막 커패시터가 사용된다.
박막형 세라믹 박막 커패시터는 니켈 등의 금속박에 유전체를 증착하고, 이를 소성한 후, 유전체 위에 다시 금속을 증착하는 단계를 거쳐 제조된다. 이러한 구조의 커패시터는 방전(short)이 일어나지 않게 하기 위해서는 금속박의 평탄도가 높아야 종래 사용되는 금속박은 그대로 사용하기에는 표면의 평탄도가 낮아 부적합하다는 문제점이 있다.
박막형 커패시터의 제조용 금속박의 조도를 낮추기 위해 가장 널리 채택되는 방법으로는 화학적 기계적 연마(Chemical-Mechanical Polishing, CMP)가 있다. 그러나 CMP연마는 한국특허공보 제10-2012-0007064호에 개시된 바와 같이 조도를 감소시키는 데에는 효과가 있지만 공정비용이 높을 뿐만 아니라 공정에 시간이 많이 소요된다는 단점이 있다.
공정의 효율성 및 제조되는 커패시터의 안정성을 제고하기 위해서 표면 조도가 낮은 금속 박막을 얻기 위한 다양한 연구가 진행되고 있다. 예를 들어, 한국특허공보 제10-2017-0174849호에는 표면 조도가 우수한 철-니켈 합금 포일의 제조방법에 대하여 개시되어 있다. 그러나, 이 발명에 의하면 평균 표면조도(Ra)는 약 0.1㎛정도로 낮추는 데 불과하여 아직도 박막형 세라믹 박막 커패시터를 제조하기에는 충분하지 않다.
본 발명의 목적은 조도가 낮고 고르며, 광택도가 높아서 별도의 CMP 연마공정을 거치지 않고도 박막형 커패시터를 제조할 수 있는 전해 니켈박을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 전해 니켈박으로부터 제조되는 박막형 커패시터를 제공하는 것이다.
본 발명의 또 다른 목적은 낮은 조도와 높은 광택도로 인하여 별도의 CMP 연마공정을 수반하지 않고도 상기 전해니켈박을 제조하는 방법을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 전해 니켈박에 관한 것이다. 상기 전해 니켈박은 표면의 산술평균 거칠기 Ra가 약 0.05㎛ 이하이고, 10점 평균 거칠기 Rz가 약 0.20㎛ 이하이며, 돌기의 최대높이 Rt가 약 0.50㎛ 이하이고, 60° 경면 광택도가 약 200GU 이상인 평탄면을 적어도 일면에 구비한 전해니켈박에 의하여 달성된다.
2. 상기 1구체예에서, 상기 전해 니켈박은 표면의 Ra가 약 0.03㎛ 이하, Rz가 약 0.15㎛ 이하, Rt가 약 0.30㎛ 이하이고, 60°경면 광택도가 약 400GU 이상일 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 전해니켈박의 전체 두께는 약 1 내지 100㎛일 수 있다.
4. 본 발명의 또 다른 관점은 상기 전해니켈박의 제조 방법에 관한 것이다. 상기 제조 방법은 니켈 이온 전구체 약 400 내지 600 g/L, pH 완충제 약 10 내지 30 g/L, 조도 조절제 약 0.5 내지 2.0 g/L를 포함하고, pH가 약 1 내지 5인 전해액을 사용하여 전해 도금하는 단계를 포함하는 것일 수 있다.
5. 상기 4 구체예에서, 상기 니켈 이온 전구체는 황산 니켈, 설파민산 니켈, 염화 니켈 및 질산 니켈로 이루어진 군으로부터 1종 이상 선택될 수 있다.
6. 상기 4 또는 5 구체예에서, 상기 pH 완충제는 붕산 또는 구연산 나트륨 중에서 선택될 수 있다.
7. 상기 4 내지 6 구체예에서, 상기 조도 조절제는 사카린, 염화 카복시에틸 이소티오로늄 (carboxyethyl isothiuronium chloride), 소듐알릴 술폰산염 (sodium allyl sulfonate), 부틴디올 프로폭실레이트 (butynediol propoxylate), 부틴디올 에톡실레이트 (butynediol ethoxylate), 프로파르길 알코올 프로폭실레이트 (propargyl alcohol propoxylate), 피리디늄 프로필 설포베타인 (pyridinium propyl sulfobetaine), 프로판설폰산 소듐염 (propanesulfonic acid sodium salt)으로 이루어진 군으로부터 2종 이상 선택될 수 있다.
8. 상기 4 내지 7 구체예에서, 상기 전해 도금은 도금액 온도 약 40 내지 60℃에서 전류밀도 약 10 내지 100A/dm 2의 전류를 인가하는 것일 수 있다.
9. 본 발명의 또 다른 관점은 전해니켈박, 상기 전해니켈박 상부에 형성된 유전체 및 상기 유전체 위에 형성된 전도성 금속층을 포함하는 박막형 커패시터에 관한 것이다.
본 발명은 연마되지 않은 상태에서도 표면의 산술평균 거칠기 Ra, 10점 평균 거칠기 Rz와 돌기의 최대높이 Rt가 작고, 60° 경면 광택도가 높아 평활도가 높기 때문에 유전체를 얇게 코팅하더라도 전해니켈박에 형성된 돌기(nodule)이 유전체층을 뚫고 전도성 금속층이 맞닿아 방전(short)이 일어날 위험성이 낮은 전해니켈박, 상기 전해니켈박을 제조하는 방법 및 상기 전해니켈박을 구비한 커패시터를 제공할 수 있다.
본 발명은 또한 조도가 낮고, 광택도가 높아 CMP 공정과 같은 별도의 연마 공정 없이도 박막형 커패시터 제조에 사용될 수 있는 전해니켈박 및 공정의 효율성이 우수한 상기 전해니켈박을 제조하는 방법이 제공할 수 있다.
도 1a는 실시예 1의 전해니켈박을 1,000배 확대한 SEM 사진이다.
도 1b는 비교예 1의 전해니켈박을 1,000배 확대한 SEM 사진이다.
도 2a는 실시예 1의 전해니켈박 일면을 백색광 주사 간섭계 방식으로 3D 프로파일링한 사진이다.
도 2b는 실시예 1의 전해니켈박 일면을 백색광 주사 간섭계 방식으로 측정한 사진이다.
도 2c는 실시예 1의 전해니켈박 일면의 조도 분포도를 나타낸 그래프다.
도 2d는 실시예 1의 전해니켈박의 횡방향 조도 분포도를 나타낸 그래프이다.
도 2e는 실시예 1의 전해니켈박의 종방향 조도 분포도를 나타낸 그래프이다.
도 3a는 비교예 1의 전해니켈박 일면을 백색광 주사 간섭계 방식으로 3D 프로파일링한 사진이다.
도 3b는 비교예 1의 전해니켈박 일면을 백색광 주사 간섭계 방식으로 3D 측정한 사진이다.
도 3c는 비교예 1의 전해니켈박 일면의 조도 분포도를 나타낸 그래프다.
도 3d는 비교예 1의 전해니켈박의 횡방향 조도 분포도를 나타낸 그래프이다.
도 3e는 비교예 1의 전해니켈박의 종방향 조도 분포도를 나타낸 그래프이다.
도 4는 박막형 커패시터의 단면 구조를 나타낸 개념도이다.
이하에서, 본 발명의 실시예들은 첨부 도면을 참조하여 상세히 설명된다. 다만, 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략될 것이다.
후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 사용자나 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로, 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 명세서에서 사용된 Ra, Rz 및 Rt는 각각 전해니켈박의 조도를 나타내는 파라미터로서, ISO 25178 규격에 따라 측정한 것이다.
Ra는 산술평균거칠기를 의미하고, Rz는 10점 평균거칠기를 의미하며, Rt는 돌기 최대 높이를 의미한다.
전해니켈박의 광택도는 60°경면 광택도를 의미하며, JIS Z 8741 규격에 따라 측정한 값이다. 단위는 GU(Gloss Unit)이다.
이하의 실시예는 본 발명의 실현 수단의 예시에 불과하여 본 발명이 이하의 실시예에 한정되는 것은 아니며, 이하의 실시예는 본 발명이 적용되는 구성 및 본 발명이 적용되는 조건에 따라 수정 또는 변경되어야 할 것이다.
전해니켈박의 제조
전해니켈박은 니켈 이온 전구체, pH 완충제, 조도 조절제를 포함하고, pH 농도가 1 내지 5인 전해액을 사용하여 전해도금 함으로써 제조될 수 있다.
상기 전해액은 전해액 전체 용량부에 대하여 니켈 이온 전구체를 약 400 내지 600g/L로 포함하며, 상기 범위에서 전해니켈박의 표면조도 및 광택도가 우수하다. 상기 니켈 이온 전구체는 니켈 이온 도금에 사용되는 전구체라면 제한 없이 사용될 수 있으나, 바람직하게는 황산니켈, 설파민산니켈, 염화니켈, 질산니켈로 이루어진 군으로부터 선택될 수 있고, 특히 바람직하게는 황산 니켈 또는 설파민산 니켈이 사용될 수 있다.
상기 조도 조절제는 사카린, 염화 카복시에틸 이소티오로늄(Carboxyethylisothiuronium chloride), 소듐 알릴 술폰산염(Sodium allyl sulfonate), 부틴디올 프로폭실레이트(Butynediol propoxylate), 부틴디올 에톡실레이트(Butynediol ethoxylate), 프로파르길 알코올 프로폭실레이트 (Propargyl alcohol propoxylate), 피리디늄 프로필 설포베타인 (Pyridinium propyl sulfobetaine), 프로판설폰산 소듐염(Propanesulfonic acid sodium salt) 중에서 1종 이상 선택된 화합물을 포함할 수 있다. 바람직하게는 사카린과 소듐 알릴 술폰산염을 조합하여 사용할 수 있다.
상기 조도 조절제는 전해액중 약 0.01 g/L 내지 2 g/L, 바람직하게는 약 0.85 내지 1.8 g/L의 농도로 사용할 수 있다. 구체예에서는 사카린과 소듐 알릴 술폰산염을 적용할 경우 각각 약 0.05 g/L 내지 1.0 g/L의 농도로 사용할 수 있다.
구체예에서는 사카린과 소듐 알릴 술폰산염 의 농도비는 약 1:0.01 내지 100, 바람직하게는 약 1 : 0.05 내지 1 : 20 일 수 있다.
상기 전해액은 pH 농도를 조절하기 위해 pH 버퍼제를 포함할 수 있다. 상기 pH 완충제는 상기 전해액의 pH 농도를 적정한 수준으로 제어하기 위한 정도라면 특별한 제한 없이 사용될 수 있으나, 전해액 전체 용량부에 대하여 약 10 내지 30 g/L로 포함될 수 있고, 상기 범위 내에서 공정의 효율성이 우수하다. 한편, 상기 pH 완충제의 종류로는 본 발명의 목적에 따라 불필요한 화학적 반응을 일으키는 것이 아니라면 어느 것이나 사용될 수 있으나, 예를 들어 붕산 또는 구연산나트륨이 사용될 수 있다. 이들 pH 버퍼제를 적용할 경우 공정의 안정성이 향상되고 조도가 우수한 전해니켈박이 제조될 수 있다.
상기 pH 버퍼제로는 전해액 중 약 15 내지 50g/L으로 포함된다. 상기 범위에서 pH 농도 및 공정 제어가 용이하다.
상기 전해액의 pH 농도는 약 1 내지 5, 바람직하게는 약 2 내지 4의 범위이다. 상기 범위에서 전해니켈박의 표면조도가 우수하다.
전해 도금은 통상의 방법으로 실시될 수 있으며, 예를 들어 전해액에 기재 또는 맨드럴을 넣고, 전해도금을 실시한 다음 상기 기재나 맨드럴을 제거하는 방식으로 실시될 수 있다.
구체예에서 상기 전해 도금은 전해도금 상기 전해액에 약 10A/dm 2 내지 100A/dm 2의 전류, 예를 들어 약 15 A/dm 2 내지 80A/dm 2의 전류를 인가하는 방법으로 제조될 수 있다. 상기 범위에서 효율적인 공정으로 표면조도가 우수한 전해니켈박의 제작이 가능하다.
구체예에서 상기 전해 도금은 약 40℃ 내지 60℃의 온도에서 수행될 수 있다. 바람직하게는 약 55℃이상 내지 60℃ 미만일 수 있다. 상기 조건에서 조도 및 물리적 성질이 우수한 전해니켈박이 형성된다.
상기 전류 인가 시간은 전해니켈박의 양에 따라 적절하게 조절될 수 있다. 구체예에서는 약 300 내지 500초, 바람직하게는 약 350 내지 450초의 시간동안 인가될 수 있다. 상기 범위 내에서 전해니켈박의 공정이 효율적이면서도 조도 및 광택도가 우수한 박형의 전해니켈박을 제조할 수 있다.
상기 제조된 전해니켈박은 두께가 약 1㎛ 내지 100㎛일 수 있고, 바람직하게는 약 3㎛ 내지 75㎛의 범위 일 수 있다. 상기 범위 내에서 내구성 및 범용성이 우수하면서도, 박막형 박막 커패시터 등의 제품에 사용되기에 적합하다.
본 발명의 전해니켈박의 적어도 일면에는 우수한 조도를 가지는 평탄면이 구비된다.
상기 전해니켈박의 평탄면은 백색광 주사 간섭계(White-light Scanning Interferometry, WSI) 및 위상차 간섭계(Phase-Shift Interferometry, PSI) 방법으로 측정한 조도 계수는 Ra= 약 1.2㎛ 이하, Rz= 약 1.0㎛ 이하, Rt= 약 1.5㎛이하 이다.
한 구체예에서는 표면조도가 산술평균 거칠기 Ra= 약 0.5 이하, 10점 평균 거칠기 Rz= 약 0.2㎛ 이하, 돌기 최대 높이 Rt= 약 0.5㎛ 이하이다.
다른 구체예에서는 표면조도가 Ra= 약 0.03㎛ 이하, Rz= 약 0.15㎛ 이하, Rt= 약 0.3㎛ 이하이다.
또 다른 구체예에서는 표면조도가 Ra= 약 0.01㎛ 내지 0.03㎛, Rz= 약 0.05㎛ 내지 0.15㎛, Rt= 약 0.1㎛ 내지 0.2㎛이다.
상기 조도 범위에서 평탄면은 별도의 연마 공정 없이도 우수한 조도를 가지게되어 표면 결함이 줄어든다는 장점을 가진다. 만일 조도 계수가 상기 범위를 초과할 경우 커패시터 내 유전체층의 성능에 악영향을 미쳐 절연 저항 및 누설 전류를 초래할 수 있다. 상기 표면조도의 범위 내에서 전체적으로 평탄할 뿐만 아니라 특별히 돌출된 부분 없는 우수한 전해니켈박의 제공이 가능하다.
또한, 상기 평탄면의 60°경면 광택도는 약 50GU 내지 800GU 일 수 있으며, 예를 들어 약 200GU 내지 700GU일 수 있다. 평탄면의 광학적 특성이 상기 범위 내에 있는 경우 표면이 고르고 평탄성이 우수하다.
박막형 세라믹 박막 커패시터
본 발명의 전해니켈박을 포함하는 박막형 세라믹 박막 커패시터(100)는 도 4에 도시된 바와 같이 니켈박막층(110), 유전체층(120) 및 전도성 금속층(130)이 순차적으로 적층된 구조를 갖는다.
상기 전해니켈박을 형성한 후 별도의 연마 공정을 거치지 아니하고, 전해니켈박 표면에 유전체 결정립을 형성하여 전해니켈박 전체를 코팅한다. 이때 박막 유전체의 형성 방법으로는 스퍼터링, 레이저 연삭, 화학적 증착 및 화학적 용액 침착 방식이 사용될 수 있으나, 유전체의 치밀성을 향상시키기 위해서는 스퍼터링 방식이 바람직할 수 있다.
통상의 기술자라면 스퍼터링 방법 등을 통해 본 상기 전해니켈박으로부터 용이하게 커패시터를 제작할 수 있을 것이나, 예를 들어 전해니켈박을 증착 플레이트에 위치시키고, 증착플레이트를 약 500 내지 800℃로 가열한 다음, 유전체를 스퍼터링함으로써 전해니켈박 상부에 유전체를 형성할 수 있다.
일정한 두께로 유전체를 침착한 후에는 유전체를 소성시켜 유전체층의 결정화 및 치밀화를 향상시킬 수 있다.
전극을 증착시키기 위해서 상부에 유전체가 형성된 전해니켈박을 냉각시킨 후, 그 표면에 스퍼터링 방식을 통해 전극을 증착시킴으로써 박막 커패시터를 완성할 수 있다. 상기 전극은 통상적으로 금 또는 구리 전극이 사용되나, 전기적 연결을 가능하게 하는 물질이라면 제한 없이 사용될 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예 1
니켈 이온 전구체로 황산 니켈을 약 450 g/L, pH 완충제로 붕산 약 25 g/L, 조도 조절제로 사카린 약 0.1 g/L와 소듐 알릴 술폰산 약 0.8 g/L를 함유하는 pH 약 3의 전해액을 사용하였으며, 전해액 온도 약 55℃에서 전류밀도 약 20 A/dm 2로 약 400초간 전류를 인가하여 두께 약 27㎛의 니켈박을 제조하였다.
제조된 전해니켈박은 연마되지 않은 상태에서 표면의 산술평균 거칠기 Ra가 약 0.05㎛, 10점 평균 거칠기 Rz가 약 0.19㎛, 돌기의 최대높이 Rt가 약 0.37㎛였으며, 60° 경면 광택도는 약 445GU이었다.
실시예 2 내지 10
아래 표 1에 기재된 전해액 및 전해조건을 적용한 것을 제외하고 실시예 1과 동일한 방법으로 전해니켈박을 제조하였다.
실시예 온도(℃) 전류밀도(A/dm 2) 니켈 전구체(종류, g/L) pH 버퍼(종류, g/L) 도금 시간(s) pH (C1)(g/L) (C2)(g/L)
1 55 20 (A1), 450 (B1), 25 400 3 0.1 0.8
2 (A2), 450 (B1), 25 0.1 0.8
3 (A1), 450 (B1), 25 0.3 0.8
4 (A2), 450 (B1), 25 0.3 0.8
5 (A1), 450 (B1), 25 0.8 0.8
6 (A2), 450 (B1), 25 0.8 0.8
7 (A1), 450 (B1), 25 1 0.6
8 (A2), 450 (B1), 25 1 0.6
9 (A1), 450 (B1), 25 1 0.4
10 (A2), 450 (B1), 25 1 0.4
A1: 황산니켈A2: 설파민산니켈B1: 붕산B2: 구연산나트륨C1: 사카린C2: 소듐 알릴 술폰산
비교예 1 내지 4아래 표 2에 기재된 전해액 및 전해조건을 적용한 것을 제외하고 실시예 1과 동일한 조건과 방법으로 전해니켈박을 제조하였다.
비교예 온도(℃) 전류밀도(A/dm 2) 니켈 전구체(종류, g/L) pH 버퍼(종류, g/L) 도금 시간(s) pH (C1)(g/L) (C2) (g/L)
1 55 20 (A1), 300 (B1), 45(B2), 50 400 3 0 0
2 (A1), 300 (B2), 50 0 0
3 (A2), 450 (B2), 35 2 0
4 (A1) 300 (B1), 45 3 5
A1: 황산니켈A2: 설파민산니켈B1: 붕산B2: 구연산나트륨C1: 사카린C2: 소듐 알릴 술폰산
물성 평가 조도 측정
조도 측정기 (Nano System社, 모델명 NV-2700)를 사용하여 ISO 25178 표준에 따라 시편 일면 전반의 조도 분포를 측정하고, 시편의 중심점을 기준으로 종방향 및 횡방향의 Rz, Rt, Ra를 측정하였다.
광택도 측정
광택도 측정기 (IG-410 Ultra High Gloss Meter, Horiba社)로 JIS Z 8741 표준에 따라 입사각 60°경면광택도를 측정하였다. 광택도의 측정 단위는 GU(Gloss Unit)이다.
상기 방법으로 측정된 각각의 실시예 및 비교예의 조도 및 광택도는 아래 표 3에 정리한 바와 같다.
시편 조도 (㎛) 광택도 (Gs 60)
Ra Rz Rt
실시예1 0.05 0.19 0.37 445
실시예2 0.04 0.16 0.26 473
실시예3 0.03 0.17 0.28 502
실시예4 0.03 0.15 0.22 511
실시예5 0.02 0.09 0.18 580
실시예6 0.03 0.12 0.19 542
실시예7 0.03 0.14 0.37 463
실시예8 0.03 0.15 0.45 475
실시예9 0.04 0.27 0.34 399
실시예 10 0.03 0.29 0.48 279
비교예1 0.38 1.91 3.66 4.7
비교예2 0.35 2.01 3.87 4.1
비교예3 0.38 1.8 3.4 50
비교예 4 0.04 0.17 2.4 554
상기 표 3에서 보여지는 바와 같이, 실시예 1 내지 10은 비교예 1 내지 4에 비하여 표면 조도 계수인 Ra, Rz, Rt 모두가 매우 낮고, 광택도(Gs 60)가 높음을 확인할 수 있다.
SEM 사진 평가
실시예 1 및 비교예 1의 전해니켈박의 평탄면을 1,000 배 비율로 확대하여 SEM 사진을 촬영하였고, 그 결과는 각각 도 1a와 도 1b와 같다. 도 1a와 도 1b를 비교하면, 실시예 1이 비교예 1보다 표면 돌기의 높이가 낮을 뿐만 아니라, 높이의 분포도 고르다는 점을 확인할 수 있다.
3D 프로파일링
실시예 1 및 비교예 1의 전해니켈박의 평탄면에 대하여 백색광 주사 간섭계 방식으로 3D 프로파일링하여 실시예 1에 대하여 도 2a 내지 2e, 비교예 1에 대하여는 도 3a 내지 3e의 프로파일링 결과를 도출하였다.
3D 프로파일링을 통해 얻어진 도 2a과 도 3a를 비교해 보면, 실시예 1이 비교예 1보다 규칙적면서도 낮은 높이의 표면 돌기를 가지는 표면을 가지고 있음을 확인할 수 있다. 방전 즉, 쇼트(short)는 주위보다 현저히 높은 돌기 부분에서 발생된다는 사실에 비추어 볼 때 실시예 1이 월등이 우수한 형태성(morphology)을 가지고 있음을 쉽게 알 수 있다.
도 2c와 도 3c는 각각 실시예 1과 비교예 1의 전해니켈박 표면의 조도 분포도를 나타낸 그래프이며, 도 2c의 돌기 높이(Rz)의 분포가 좁으면서도 돌기 높이의 최대치(Rt)가 낮다는 사실이 확인되며, 이는 실시예 1의 표면이 고르다는 것을 의미한다.
도 2d와 도 3d는 각각 실시예 1과 비교예 1의 전해니켈박의 횡방향 조도 분포도를 나타낸 그래프로, 실시예 1의 도 2d가 비교예 1의 도 3d보다 월등히 평탄하고 평활도가 높다는 것을 알 수 있다.
도 2e 와 도 3e는 각각 실시예 1과 비교예 1의 전해니켈박의 종방향 조도 분포도를 나타낸 그래프로, 실시예 1의 도 2e가 비교예 1의 도 3e보다 월등히 평탄하고 평활도가 높다는 것을 알 수 있다.
커패시터 제작
실시예 11
실시예 1의 전해니켈박을 스퍼터링 챔버 증착 플레이트 위에 놓고, 아르곤 95%, 산소 5%로 구성된 챔버 분위기 하에서 약 3 torr의 기압을 유지하였다. 증착 플레이트를 약 650℃로 가열한 후, RF 전력 약 150W를 사용하여 직경이 약 3인치인 바륨 티타네이트(BaTiO 3) 표적물을 사용하여 전해니켈박 위에 바륨 티타네이트를 스퍼터링하였다. 약 150분 동안 증착을 수행하여 두께 약 0.7㎛인 유전체를 형성하였다.
바륨 티타네이트가 코팅된 전해니켈박을 약 900℃ 온도의 챔버내에서 약 2시간동안 산소 부분 압력 약 2X10 -7atm에서 소성한 후 냉각시켰다. 바륨 티타네이트가 코팅된 전해니켈박 표면에 스퍼터링 방식을 통해 약 0.2㎛의 구리 전극을 증착함으로써 커패시터를 제작하였다.
비교예 5
비교예 1의 전해니켈박에 대하여 실시예 11과 동일한 방법으로 커패시터를 제작하였다.
커패시터 쇼트 실험
완성된 커패시터 샘플에 대해 디지털 LCR 미터를 이용하여 실온(25℃), 약 1khz, 발진전압 (oscillating voltage) 약 50mV에서 전압 약 -10 내지 10V의 바이어스를 가해 쇼트 발생여부를 확인하였다. 그 결과, 실시예 1의 전해니켈박으로 제조된 커패시터는 쇼트가 발생하지 않은 반면, 비교예 1의 전해니켈박으로 제조된 커패시터는 쇼트가 발생하였다.

Claims (8)

  1. 산술평균 거칠기 Ra가 0.05㎛ 이하이고, 10점 평균 거칠기 Rz가 0.20㎛ 이하이며, 돌기의 최대높이 Rt가 0.50㎛ 이하이고, 60° 경면 광택도가 200GU 이상인 평탄면을 적어도 일면에 구비한 전해니켈박.
  2. 제1항에 있어서, 상기 평탄면은 Ra가 0.03㎛ 이하이고, Rz가 0.15㎛이하이며, Rt가 0.30㎛ 이하이고, 60°경면 광택도가 400GU 이상인 전해니켈박.
  3. 제1항 또는 제2항에 있어서, 상기 전해니켈박의 두께는 1 내지 100㎛인 전해니켈박.
  4. 니켈 이온 전구체 400 내지 600 g/L, pH 완충제 10 내지 30 g/L, 및 조도 조절제 0.5 내지 2.0 g/L를 포함하고, pH가 1-5인 전해액을 사용하여 전해 도금하는 단계를 포함하는 전해니켈박 제조방법.
  5. 제4항에 있어서, 상기 니켈 이온 전구체는 황산니켈, 설파민산니켈, 염화니켈 및 질산니켈로 이루어진 군에서 1종 이상 선택되는 것을 특징으로 하는 전해니켈박 제조방법.
  6. 제4항에 있어서, 상기 조도 조절제는 상기 조도 조절제는 사카린, 염화 카복시에틸 이소티오로늄 (carboxyethyl isothiuronium chloride), 소듐알릴 술폰산염 (sodium allyl sulfonate), 부틴디올 프로폭실레이트 (butynediol propoxylate), 부틴디올 에톡실레이트 (butynediol ethoxylate), 프로파르길 알코올 프로폭실레이트 (propargyl alcohol propoxylate), 피리디늄 프로필 설포베타인 (pyridinium propyl sulfobetaine), 프로판설폰산 소듐염 (propanesulfonic acid sodium salt)으로 이루어진 군으로부터 2종 이상 선택되는 것을 특징으로 하는 전해니켈박 제조방법.
  7. 제4항에 있어서, 상기 전해 도금은 40℃ 내지 60℃에서 전류밀도 10 내지 100A/dm 2의 전류를 인가하는 것을 특징으로 하는 전해니켈박의 제조방법.
  8. 제1항 또는 제2항의 전해니켈박, 상기 전해니켈박의 상부에 형성된 유전체, 상기 유전체 위에 형성된 전도성 금속층을 포함하는 박막 커패시터.
PCT/KR2019/017919 2019-10-24 2019-12-17 박막형 커패시터 제조용 니켈박 및 그의 제조방법 WO2021080085A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980101536.3A CN114586121A (zh) 2019-10-24 2019-12-17 薄膜电容器制造用镍箔及其制造方法
US17/753,873 US20220367114A1 (en) 2019-10-24 2019-12-17 Nickel foil for production of thin-film capacitor, and manufacturing method for same
EP19950163.6A EP4050628A4 (en) 2019-10-24 2019-12-17 NICKEL SHEET FOR THE PRODUCTION OF A THIN-FILM CAPACITOR AND METHOD OF MANUFACTURING THEREOF
JP2022521004A JP2022551136A (ja) 2019-10-24 2019-12-17 薄膜型キャパシタ製造用ニッケル箔及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0132806 2019-10-24
KR1020190132806A KR102281132B1 (ko) 2019-10-24 2019-10-24 박막형 커패시터 제조용 전해니켈박 및 그의 제조방법

Publications (1)

Publication Number Publication Date
WO2021080085A1 true WO2021080085A1 (ko) 2021-04-29

Family

ID=75620770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017919 WO2021080085A1 (ko) 2019-10-24 2019-12-17 박막형 커패시터 제조용 니켈박 및 그의 제조방법

Country Status (6)

Country Link
US (1) US20220367114A1 (ko)
EP (1) EP4050628A4 (ko)
JP (1) JP2022551136A (ko)
KR (1) KR102281132B1 (ko)
CN (1) CN114586121A (ko)
WO (1) WO2021080085A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060052135A (ko) * 2004-10-08 2006-05-19 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. 캐패시터 구조
JP2006165400A (ja) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd キャパシタ層形成材の製造方法及びその製造方法で得られたキャパシタ層形成材
US20070071999A1 (en) * 2005-09-27 2007-03-29 Hitachi Cable, Ltd. Nickel plating solution and its preparation method, nickel plating method and printed wiring board copper foil
JP2008536292A (ja) * 2005-02-22 2008-09-04 オークミツイ,インク., 抵抗器及びコンデンサ形成のための多層構造体
JP2008239420A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd セラミックグリーンシートの製造方法、セラミックグリーンシートとそれを用いたセラミックコンデンサ
KR20120007064A (ko) 2009-04-28 2012-01-19 이 아이 듀폰 디 네모아 앤드 캄파니 박막 커패시터 및 그의 제조 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK422181A (da) * 1980-10-23 1982-04-24 Hooker Chemicals Plastics Corp Bad og fremgangsmaade til hoejhastigheds-nikkelelektroplettering
JP3270948B2 (ja) * 1993-06-03 2002-04-02 九州日立マクセル株式会社 ニッケル積層体並びにその製造方法
JPH07278845A (ja) * 1994-04-14 1995-10-24 Marui Kogyo Kk クロムめっき製品及びその製造方法
JP4090467B2 (ja) * 2002-05-13 2008-05-28 三井金属鉱業株式会社 チップオンフィルム用フレキシブルプリント配線板
JP2004087772A (ja) * 2002-08-27 2004-03-18 Shin Kobe Electric Mach Co Ltd ニッケルめっき電極
JP4641446B2 (ja) * 2005-03-31 2011-03-02 ダイセルポリマー株式会社 被メッキ樹脂組成物及びメッキ被覆体
CN101851769B (zh) * 2005-03-31 2012-07-04 三井金属矿业株式会社 电解铜箔及其制造方法、表面处理电解铜箔、覆铜层压板及印刷电路板
JP3841814B1 (ja) * 2005-04-28 2006-11-08 三井金属鉱業株式会社 キャパシタ層形成材及びそのキャパシタ層形成材の製造方法
US20060283715A1 (en) * 2005-06-20 2006-12-21 Pavco, Inc. Zinc-nickel alloy electroplating system
JP5070767B2 (ja) * 2006-08-28 2012-11-14 トヨタ自動車株式会社 めっき処理方法及びファインピッチ配線基板の製造方法
JP5588607B2 (ja) * 2007-10-31 2014-09-10 三井金属鉱業株式会社 電解銅箔及びその電解銅箔の製造方法
JP2011168818A (ja) * 2010-02-16 2011-09-01 Brother Co Ltd 炭素繊維強化炭素複合材からの炭素繊維の脱落防止方法及びその方法を用いて得られる金属被覆炭素繊維強化炭素複合材
CN102320559B (zh) * 2011-09-14 2014-06-18 上海交通大学 一种中空结构的微阵列电极的制备方法
JP5930175B2 (ja) * 2012-02-23 2016-06-08 Nok株式会社 定着用金属複層部材
JP6190104B2 (ja) * 2012-11-01 2017-08-30 Dowaメタルテック株式会社 ニッケルめっき材およびその製造方法
US9732434B2 (en) * 2014-04-18 2017-08-15 Lam Research Corporation Methods and apparatuses for electroplating nickel using sulfur-free nickel anodes
JP6582669B2 (ja) * 2015-07-22 2019-10-02 Tdk株式会社 薄膜キャパシタ及び半導体装置
JP2017199706A (ja) * 2016-04-25 2017-11-02 住友金属鉱山株式会社 薄膜キャパシタ材、及び薄膜キャパシタ材の製造方法
JP7033905B2 (ja) * 2017-02-07 2022-03-11 Jx金属株式会社 表面処理銅箔、キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060052135A (ko) * 2004-10-08 2006-05-19 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. 캐패시터 구조
JP2006165400A (ja) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd キャパシタ層形成材の製造方法及びその製造方法で得られたキャパシタ層形成材
JP2008536292A (ja) * 2005-02-22 2008-09-04 オークミツイ,インク., 抵抗器及びコンデンサ形成のための多層構造体
US20070071999A1 (en) * 2005-09-27 2007-03-29 Hitachi Cable, Ltd. Nickel plating solution and its preparation method, nickel plating method and printed wiring board copper foil
JP2008239420A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd セラミックグリーンシートの製造方法、セラミックグリーンシートとそれを用いたセラミックコンデンサ
KR20120007064A (ko) 2009-04-28 2012-01-19 이 아이 듀폰 디 네모아 앤드 캄파니 박막 커패시터 및 그의 제조 방법

Also Published As

Publication number Publication date
KR102281132B1 (ko) 2021-07-26
CN114586121A (zh) 2022-06-03
JP2022551136A (ja) 2022-12-07
EP4050628A1 (en) 2022-08-31
US20220367114A1 (en) 2022-11-17
EP4050628A4 (en) 2023-01-11
KR20210048757A (ko) 2021-05-04

Similar Documents

Publication Publication Date Title
US10366834B1 (en) Ceramic electronic component
KR100317467B1 (ko) 모놀리식 세라믹 전자 부품
US6272002B1 (en) Electrostatic holding apparatus and method of producing the same
KR0174594B1 (ko) 실리콘 웨이퍼상에 백금 박막을 형성하는 방법, 그 방법에 의하여 제조된 실리콘 기판 및 그 기판을 이용한 반도체 소자
US7460352B2 (en) Flexible dielectric film and method for making
US5101319A (en) Pre-engineered electrode/dielectric composite film and related manufacturing process for multilayer ceramic chip capacitors
WO2021080085A1 (ko) 박막형 커패시터 제조용 니켈박 및 그의 제조방법
JP2002015977A (ja) 基板ホルダー
EP0389228A1 (en) High temperature operating element
JPH07326655A (ja) 静電チャック
US7332231B2 (en) Ceramic substrate for thin film electronic component, production method for the same and thin film electronic component using the same
US20230150882A1 (en) Dielectric for electrostatic chuck
JP4184407B2 (ja) 回路板用剥離性箔
US20010013388A1 (en) Laminated ceramic electronic part and method for manufacturing thesame
Mäntylä et al. Electrical insulating properties and thermal stability of rf-sputtered alumina coatings
JP3934983B2 (ja) 積層型電子部品およびその製法
JP4479302B2 (ja) ヒータユニット及びそれを搭載した装置
WO2020222430A1 (ko) 연성 금속박 적층 필름, 이를 포함하는 물품 및 상기 연성 금속박 적층 필름의 제조방법
WO2017018655A1 (ko) 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
Keller et al. Tantalum Oxide-Silicon Oxide Duplex Dielectric Thin-Film Capacitors
WO2021172850A1 (ko) 삼성분계 화합물을 포함하는 연성 회로기판 적층구조체의 제조방법 및 제조장치
WO2023075197A1 (ko) 이차전지 집전체용 전해동박
WO2020017671A1 (ko) 내 플라즈마 코팅을 위한 에어로졸 증착 코팅방법
JPS60197335A (ja) 静電チヤツク装置
EP0685436A1 (en) Ceramic substrates for hybrid integrated circuits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019950163

Country of ref document: EP

Effective date: 20220524