WO2021078307A1 - 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用 - Google Patents

一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021078307A1
WO2021078307A1 PCT/CN2020/133945 CN2020133945W WO2021078307A1 WO 2021078307 A1 WO2021078307 A1 WO 2021078307A1 CN 2020133945 W CN2020133945 W CN 2020133945W WO 2021078307 A1 WO2021078307 A1 WO 2021078307A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid phase
ptcu
preparation
solution
ceria
Prior art date
Application number
PCT/CN2020/133945
Other languages
English (en)
French (fr)
Inventor
安太成
孔洁静
李桂英
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2021078307A1 publication Critical patent/WO2021078307A1/zh
Priority to US17/344,989 priority Critical patent/US20220111364A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D49/00Separating dispersed particles from gases, air or vapours by other methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the field of environmental catalysis and the preparation of catalytic materials, and specifically relates to a low-dose PtCu ultrafine alloy catalyst supported by ceria, and a preparation method and application thereof.
  • VOCs and soot such as carbon black particles
  • the strong interaction between the precious metal and the carrier can reduce the mobility of the metal particles on the surface of the carrier, produce a highly dispersed active phase and a smaller metal active structure, affect the selectivity of the reactants, and inhibit the dissociation of hydrocarbon molecules.
  • the dehydrogenation reaction reduces the formation of carbon deposits.
  • the introduction of the second metal phase in the supported alloy catalyst can not only effectively reduce the precious metal particle size, increase the surface exposed atoms, reduce the total load of the precious metal, but also strengthen the interaction between the precious metal and the carrier. Improve the dispersion of precious metals to prevent them from coarsening and agglomeration under high temperature reactions.
  • the low loading and high dispersion of precious metals can not only effectively increase the utilization rate of precious metals, ensure high catalyst activity, but also reduce costs, and the dispersed active sites can delay the rapid accumulation of carbon deposits, thereby improving catalytic stability. Therefore, constructing a supported low-dose ultrafine alloy catalyst while reducing the acid strength of the carrier surface can effectively improve the catalytic activity and carbon deposition resistance of the catalyst during the catalytic oxidation process, thereby enhancing its catalytic stability.
  • the primary purpose of the present invention is to provide a method for preparing a low-dose PtCu ultrafine alloy catalyst supported by ceria, which strictly controls the PtCu particle size.
  • Another object of the present invention is to provide a low-dose PtCu ultrafine alloy catalyst supported by ceria prepared by the above preparation method; the PtCu alloy of the catalyst is small in size and low in loading, and the ceria carrier is rich in weak acid sites. , which is conducive to the adsorption and degradation of reactants and oxygen activation. Under the synergistic effect of the PtCu ultrafine alloy and the ceria carrier, the catalytic activity and carbon deposition resistance in the photothermal catalytic process are improved, and the traditional noble metal catalyst has a large load, low utilization rate and easy loss of active components. , Poor catalytic stability and other issues.
  • Another object of the present invention is to provide the application of the low-dose PtCu ultrafine alloy catalyst supported by ceria.
  • a method for preparing a low-dose PtCu ultrafine alloy catalyst supported by cerium oxide includes the following steps:
  • solution A After the solution A is subjected to an oil bath reaction under the protection of argon, it is cooled to 30°C to obtain solution B;
  • the molar ratio of chloroplatinic acid to copper acetate in step S1 is 1:1-30; the volume ratio of oleylamine to ethylene glycol is 1:0.1-10; the ratio of chloroplatinic acid to oleylamine is 0.3 ⁇ 0.6 ⁇ mol ⁇ mL -1 .
  • the specific process of performing the oil bath reaction under the protection of argon in step S2 is: continuously injecting argon into solution A to remove O 2 in solution A, and then sealing the round bottom flask containing solution A and putting it After being moved into a thermostatic magnetic stirrer for oil bath reaction, the oil bath reaction temperature is 80-320° C., and the oil bath reaction time is 1-36 h.
  • the centrifugal rotation speed in the step S3 is 5000-10000 rpm, and the centrifugal time is 10-360 min.
  • step S3 The specific washing and purification process in step S3 is as follows: I. Add absolute ethanol to the solid phase C, the volume ratio of the solid phase C to the absolute ethanol is 1:5-50, and perform centrifugal treatment after uniform ultrasonic mixing; II. Add n-hexane, the volume ratio of solid phase C to n-hexane is 1:5-50, ultrasonically mix uniformly before centrifugation; III, repeat step II once; IV, repeat step I three times, and then obtain the solid phase ⁇ D.
  • the volume ratio of the solid phase D to the n-butylamine is 1:10-50; the centrifugal speed is 3000-10000 rpm, and the centrifugal time is 3-30 min.
  • the ceria powder in the step S4 is obtained through modification treatment.
  • the specific modification method is: placing the ceria powder in a fixed bed reactor, and using a nitrogen bubbling device to control the humidity in the reactor. At the same time, it is calcined at 200-600°C for 1-12h under a mixed gas atmosphere of hydrogen and nitrogen, and the volume ratio of hydrogen to nitrogen in the mixed gas is 1:0.1-10; then it is dehumidified, that is, Keep the calcination temperature in the previous stage and blow in nitrogen for purging for 1 h, and finally calcine at 200-800° C. for 1-24 h under a mixed gas atmosphere of air and nitrogen. The volume ratio of air to nitrogen in the mixed gas is 1:0.1-10.
  • the specific process of the alcohol washing is: adding anhydrous ethanol to the solid phase F, the volume ratio of the solid phase F to the absolute ethanol is 1:5-30, ultrasonic mixing and centrifugation Treatment;
  • the specific conditions of the vacuum drying are: the vacuum drying temperature is 30-120°C, and the vacuum drying time is 6-72h.
  • a low-dose PtCu ultrafine alloy catalyst supported by ceria prepared by the above preparation method, characterized in that: the catalyst uses ceria as a carrier, Cu is used as an auxiliary agent, and the active component Pt is supported, wherein PtCu
  • the mass percentage of the ultrafine alloy is 0.01-10%, and the molar ratio of Pt to Cu is 1:1-30.
  • the present invention has the following advantages and beneficial effects:
  • the present invention strictly controls the size of the PtCu alloy, and strengthens the interaction force between the active component Pt and the ceria carrier, thereby improving its photothermal catalytic activity.
  • the present invention obtains the metallic PtCu alloy through a one-step method, without calcination and reduction in a reducing atmosphere, and avoids the coarsening of the alloy particles under the condition of high temperature calcination.
  • the present invention improves the carbon deposition resistance and further improves its photothermal catalytic stability.
  • the preparation process of the present invention is simple, the Pt dispersion is high, the dosage is small, and the utilization rate is high.
  • Figure 1 is the cyclic stability test of PtCu ultrafine alloy catalyst supported by cerium oxide under light and heat conditions for simultaneous degradation of cyclohexane and reduction of carbon black particles.
  • the solid mark is the low-dose PtCu ultrafine supported by cerium oxide.
  • Alloy catalyst 1 the hollow symbol picture shows the low-dose Pt catalyst 1 supported by ceria.
  • solution E Dissolve the solid phase D in 15 mL of n-butylamine to obtain solution E; modify the ceria powder.
  • the preparation method of the ceria is: move 1.1 g of the ceria powder into a fixed bed
  • the reactor uses a nitrogen bubbling device to control the humidity in the reactor, the humidity is 30%, and is calcined at 400°C for 2 hours under a mixed gas atmosphere of hydrogen and nitrogen, and the volume ratio of hydrogen to nitrogen in the mixed gas is 1:1 , followeded by purging with nitrogen at 400°C for 1h for dehumidification, and then calcining at 400°C for 2h under a mixed atmosphere of air and nitrogen.
  • the volume ratio of air to nitrogen in the mixed gas is 1:1; then 1g is modified.
  • the cerium oxide powder is immersed in the solution E, and after magnetic stirring is avoided from light, the steps of centrifugation, alcohol washing, and vacuum drying are successively carried out.
  • the centrifugal speed is 8000 rpm and the centrifugation time is 10 min;
  • the specific process of alcohol washing is: adding 20 mL of absolute ethanol, ultrasonically mixing uniformly, and performing centrifugal treatment, repeated three times;
  • the vacuum drying temperature is 60°C, and the vacuum drying time is 12 hours.
  • a low-dose PtCu ultrafine alloy catalyst 1 supported by ceria is obtained, wherein the mass percentage of the PtCu ultrafine alloy is 0.27%.
  • solution E Dissolve the solid phase D in 15 mL of n-butylamine to obtain solution E; modify the ceria powder.
  • the preparation method of the ceria is: move 1.1 g of the ceria powder into a fixed bed
  • the reactor uses a nitrogen bubbling device to control the humidity in the reactor, the humidity is 20%, and is calcined at 300°C for 8 hours under a mixed gas atmosphere of hydrogen and nitrogen, and the volume ratio of hydrogen to nitrogen in the mixed gas is 1:0.5 , followeded by nitrogen gas at 300°C for 1h for dehumidification treatment, and then calcined at 300°C for 15h under a mixed atmosphere of air and nitrogen.
  • the volume ratio of air to nitrogen in the mixed gas is 1:0.5; then 1g is modified.
  • the cerium oxide powder is immersed in the solution E, and after magnetic stirring is avoided from light, the steps of centrifugation, alcohol washing, and vacuum drying are successively carried out.
  • the centrifugal speed is 5000 rpm, and the centrifugation time is 20 min;
  • the specific process of alcohol washing is: adding 20 mL of absolute ethanol, ultrasonically mixing uniformly and then performing centrifugation, repeating three times;
  • the vacuum drying temperature is 120° C., and the vacuum drying time is 6 hours.
  • a low-dose PtCu ultrafine alloy catalyst 2 supported by ceria is obtained, wherein the mass percentage of the PtCu ultrafine alloy is 0.1%.
  • the cerium oxide powder is immersed in the solution E, and after magnetic stirring is avoided from light, the steps of centrifugation, alcohol washing, and vacuum drying are successively carried out.
  • the centrifugal rotation speed is 3000 rpm and the centrifugation time is 30 min; the specific process of alcohol washing is: adding 15 mL of absolute ethanol, ultrasonically mixing uniformly and then performing centrifugation, repeating three times; the vacuum drying temperature is 30° C., and the vacuum drying time is 72 hours.
  • a low-dose PtCu ultrafine alloy catalyst 3 supported by ceria is obtained, wherein the mass percentage of the PtCu ultrafine alloy is 1%.
  • solution E Dissolve the solid phase D in 25 mL of n-butylamine to obtain solution E; modify the ceria powder.
  • the preparation method of the ceria is: move 300 mg of ceria powder into a fixed bed for reaction
  • the humidity in the reactor is controlled by a nitrogen bubbling device, the humidity is 10%, and it is calcined at 200°C for 12 hours under a mixed gas atmosphere of hydrogen and nitrogen.
  • the volume ratio of hydrogen to nitrogen in the mixed gas is 1:0.1.
  • nitrogen was blown in at 200°C for 1 hour for dehumidification treatment, and then calcined at 200°C for 24 hours under a mixed atmosphere of air and nitrogen.
  • the volume ratio of air to nitrogen in the mixed gas was 1:0.1; then 200 mg of the modified The cerium oxide powder is immersed in the solution E, and after being stirred with magnetic force in the dark, it is subjected to centrifugation, alcohol washing, and vacuum drying steps in sequence.
  • the centrifugal speed is 10000 rpm, and the centrifugation time is 3 min; the specific process of alcohol washing is: adding 10 mL of absolute ethanol, ultrasonically mixing uniformly and then performing centrifugal treatment, repeating three times; the vacuum drying temperature is 60° C., and the vacuum drying time is 36 hours.
  • a low-dose PtCu ultrafine alloy catalyst 4 supported by ceria is obtained, wherein the mass percentage of the PtCu ultrafine alloy is 10%.
  • solution E Dissolve the solid phase D in 20 mL of n-butylamine to obtain solution E; modify the ceria powder.
  • the preparation method of the ceria is: move 2.1 g of ceria powder into a fixed bed
  • the reactor uses a nitrogen bubbling device to control the humidity in the reactor, the humidity is 50%, and is calcined at 600°C for 1 h under a mixed gas atmosphere of hydrogen and nitrogen, and the volume ratio of hydrogen to nitrogen in the mixed gas is 1:5 , followeded by blowing in nitrogen at 600°C for 1h for dehumidification treatment, and then calcining at 700°C for 1h under a mixed atmosphere of air and nitrogen.
  • the volume ratio of air to nitrogen in the mixed gas is 1:9; then 2g of the modified The cerium oxide powder is immersed in the solution E, and after being stirred with magnetic force in the dark, it is subjected to centrifugation, alcohol washing, and vacuum drying steps in sequence.
  • the centrifugal speed is 8000 rpm, and the centrifugation time is 5 min;
  • the specific process of alcohol washing is: adding 20 mL of absolute ethanol, ultrasonically mixing uniformly and then performing centrifugal treatment, repeating three times; the vacuum drying temperature is 80° C., and the vacuum drying time is 12 hours.
  • a low-dose PtCu ultrafine alloy catalyst 5 supported by ceria is obtained, wherein the mass percentage of the PtCu ultrafine alloy is 0.01%. Comparative example 1
  • solution E Dissolve the solid phase D in 15 mL of n-butylamine to obtain solution E; modify the ceria powder.
  • the preparation method of the ceria is: move 1.1 g of the ceria powder into a fixed bed
  • the reactor is calcined at 400°C for 2h under a dry hydrogen and nitrogen mixed gas atmosphere, the volume ratio of hydrogen to nitrogen in the mixed gas is 1:1, and then nitrogen is blown in at 400°C for 1h, and then in the dry air and Calcined at 400°C for 2h under a nitrogen mixed gas atmosphere, the volume ratio of air to nitrogen in the mixed gas is 1:1; then 1g of modified ceria powder is immersed in solution E, protected from light and magnetically stirred, and then passed through Centrifugation, alcohol washing, vacuum drying steps.
  • the centrifugal speed is 8000 rpm, and the centrifugation time is 10 min; the specific process of alcohol washing is: adding 20 mL of absolute ethanol, ultrasonically mixing uniformly and then performing centrifugation, repeating three times; the vacuum drying temperature is 60° C., and the vacuum drying time is 12 hours. Finally, a low-dose Pt catalyst 1 supported by ceria is obtained, in which the mass percentage of the PtCu ultrafine alloy is 0.2%.
  • the low-dose PtCu ultrafine alloy catalyst loaded by cerium oxide prepared by the present invention simultaneously degrades cyclohexane and reduces the cycle stability of carbon black particles under light and heat conditions.
  • Experimental method Use a photothermal fixed-bed reactor to characterize the photothermal catalytic performance of the catalyst (the reactor has a window on one side that can irradiate light). Take 100mg of the catalyst prepared by the method of Example 1 (or Comparative Example 1) and 10mg of carbon black after grinding uniformly, fill it into a quartz reaction tube with an inner diameter of 6mm, use a thermocouple to control the temperature, and conduct the experiment at 30-420°C . A N 2 bubbling device is used to generate cyclohexane vapor, which is diluted to 30 ppm with dry air and then passed into the reaction tube. The total gas flow rate is 50 mL min -1 and the space velocity is 30,000 mL h - 1 g -1 .
  • reaction tail gas is passed into a gas chromatograph (GC9800, dual FID detector) for online analysis of cyclohexane concentration and CO 2 production. During the experiment, the gas chromatograph was sampled and analyzed every 10 minutes.
  • GC9800 dual FID detector
  • Fig. 1 is the cycle stability test diagram of the PtCu ultrafine alloy catalyst supported by cerium dioxide under light and heat conditions for simultaneous degradation of cyclohexane and reduction of carbon black particles.
  • the catalyst was prepared by the method of Example 1, and Its catalytic performance is compared with the low-dose Pt catalyst 1 supported by ceria in Comparative Example 1.
  • the low-dose PtCu ultrafine alloy catalyst 1 supported by ceria and the low-dose Pt catalyst 1 supported by ceria both contained 0.2% by mass of Pt, and the NH 3 -TPD characterization confirmed the difference in acid content between the two. Large, but the surface acid strength of the former has been reduced.
  • the low-dose PtCu ultrafine alloy catalyst 1 supported by ceria shows better photothermal catalytic activity and stability.
  • the ring The temperature at which hexane completely degrades (>99%) is 250°C and 350°C, and the temperature at which the CO 2 amount reaches the maximum is 320°C and 360°C, respectively.
  • the low-dose Pt catalyst 1 supported by ceria has significantly increased the temperature required for the complete degradation of cyclohexane and carbon black.
  • the catalytic performance of the low-dose PtCu ultrafine alloy catalyst 1 supported by ceria did not decrease significantly, indicating that under the synergistic effect of the PtCu ultrafine alloy and the weakly acidic ceria support, the catalytic performance was improved. Improved its photothermal catalytic stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

公开了一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用,属于环境催化与催化剂材料的制备领域,先采用油胺法制备得到金属态的PtCu超细合金颗粒,再将二氧化铈载体浸渍在PtCu超细合金的正丁胺溶液中,经离心、醇洗、干燥后得到二氧化铈负载的低剂量PtCu超细合金催化剂。所得催化剂在光热催化条件下具有同时降解VOCs与消减大气中炭黑颗粒的优良活性与稳定性。具有制备过程方法简单,Pt用量非常少且利用率高,且光热催化性能优良等特点。

Description

一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用 技术领域
本发明属于环境催化与催化材料的制备领域,具体涉及一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用。
背景技术
随着城市化进程的发展,城市生活垃圾的产生量日益增加,其中焚烧是处理城市生活垃圾的主要方式。在焚烧处理过程中,会产生大量VOCs与烟尘(如炭黑颗粒物),严重影响大气环境质量。
近年来,光热催化技术在大气净化方面备受关注,该技术核心是高活性和高稳定性催化剂的开发。负载型贵金属催化剂因其氧化活性高、氧化温度低,能在相对温和条件下降解大气污染物。但由于降解过程太快部分污染物中的碳氢分子不能够完全矿化,导致积碳容易覆盖在催化剂表面,严重影响其催化稳定性。此外,由于积碳与炭黑颗粒的形成过程比较相似,并且炭黑因其多孔结构容易吸附降解中间产物,容易引起碳物种聚集,加剧积碳的生成,因此,开发高抗积碳性能的贵金属催化剂在光热催化降解有机污染物和氧化炭黑方面具有一定的应用潜力。
对于负载型贵金属催化剂,影响积碳形成的主要因素有以下三个:(1)贵金属尺寸及负载量。由于积碳成核一般需要较大尺寸的金属活性结构,降低尺寸能抑制积碳的生成;此外,贵金属活性组分负载量过高使得密集的活性位参与更多催化反应,容易引起积碳快速累积。(2)载体的酸碱性。研究表明,强酸性位点更容易引起碳聚合,降低催化剂表面的酸强度,能有效抑制碳物种的成核与生长。(3)贵金属-载体的相互作用。强的贵金属-载体间的相互作用力能降低载体表面金属颗粒的移动性,产生高分散的活性相与尺寸较小的金属活性结构,并影响对反应物的选择性,抑制碳氢分子解离脱氢的反应,从而减少积碳的生成。
有研究表明,在负载型合金催化剂中,由于引入第二金属相,不仅能有效减小贵金属粒径,增加其表面暴露原子,降低贵金属的总负载量,而且能加强贵金属与载体间相互作用,提高贵金属的分散度,防止其在高温反应下粗化与团聚。贵金属的低负载量与高分散度不仅能有效提高贵金属的利用率,保证催化剂的高活性,同时降低成本,并且分散的活性位能延缓积碳的快速累积,进而提高催化稳定性。因此,构建负载型低剂量超细合金催化剂,同时降低载体表面酸强度,能有效提高催化剂在催化氧化过程中的催化活性与抗积碳能力,从而增强其催化稳定性。
发明内容
为了解决上述现有技术中存在不足和缺点,本发明的首要目的在于提供一种二氧化铈负载的低剂量PtCu超细合金催化剂的制备方法,该方法严格控制PtCu粒径。
本发明的另一目的在于提供一种上述制备方法制备得到的二氧化铈负载的低剂量PtCu超细合金催化剂;该催化剂的PtCu合金尺寸小,负载量低,二氧化铈载体富含弱酸性位,有利于反应物的吸附降解及 氧气活化。在PtCu超细合金与二氧化铈载体的协同作用下,提升了其在光热催化过程的催化活性与抗积碳能力,解决了传统贵金属催化剂负载量大、利用率低、活性组分易流失、催化稳定性差等问题。
本发明的再一目的在于提供上述二氧化铈负载的低剂量PtCu超细合金催化剂的应用。
本发明的目的通过下述技术方案实现:
一种二氧化铈负载的低剂量PtCu超细合金催化剂的制备方法,包括以下步骤:
S1、取氯铂酸、醋酸铜与油胺混合,边搅拌边滴入乙二醇,得到溶液A;
S2、对所述溶液A在氩气保护下进行油浴反应后,冷却至30℃,得到溶液B;
S3、对所述溶液B进行离心后得到固相物C;并对所述固相物C进行洗涤纯化处理,得到固相物D。
S4、将所述固相物D溶于正丁胺中,得到溶液E;取二氧化铈粉末浸渍在所述溶液E中,避光磁力搅拌后,离心得到固相物F,并经醇洗、真空干燥后得到二氧化铈负载的低剂量PtCu超细合金催化剂。
所述步骤S1中的氯铂酸与醋酸铜的摩尔比为1:1~30;油胺与乙二醇的体积比为1:0.1~10;所述氯铂酸与油胺配比为0.3~0.6μmol·mL -1
所述步骤S2中的在氩气保护下进行油浴反应具体过程是:往溶液A持续通入氩气以除去溶液A中的O 2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为80~320℃,油浴反应时间为1~36h。
所述步骤S3中的离心转速为5000~10000rpm,离心时间为10~360min。
所述步骤S3中的洗涤纯化具体过程是:I、往固相物C加入无水乙醇,固相物C与无水乙醇的体积比为1:5~50,超声混合均匀后进行离心处理;II、加入正己烷,固相物C与正己烷的体积比为1:5~50,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,之后得到固相物D。
所述步骤S4中的固相物D与正丁胺的体积比为1:10~50;所述离心转速为3000~10000rpm,离心时间为3~30min。
所述步骤S4中的二氧化铈粉末是经过改性处理得到的,具体改性方法为:将二氧化铈粉末置于固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为10%~90%,同时在氢气与氮气混合气氛围下200~600℃煅烧1~12h,所述混合气中氢气与氮气的体积比为1:0.1~10;随后进行除湿处理,即在保持前一段煅烧温度条件下通入氮气吹扫1h,最后在空气与氮气混合气氛围下200~800℃煅烧1~24h,所述混合气中空气与氮气的体积比为1:0.1~10。
在所述步骤S4中,所述醇洗的具体过程是:向固相物F中加入无水乙醇,固相物F与无水乙醇体积比为1:5~30,超声混合均匀后进行离心处理;所述真空干燥的具体条件为:真空干燥温度为30~120℃,真空干燥时间为6~72h。
一种由上述制备方法制备得到的二氧化铈负载的低剂量PtCu超细合金催化剂,其特征在于:所述催化剂以二氧化铈为载体,以Cu为助剂,负载活性组分Pt,其中PtCu超细合金的质量百分比为0.01~10%,Pt与Cu的摩尔比为1:1~30。
上述的二氧化铈负载的低剂量PtCu超细合金催化剂在光热催化条件下同时降解环己烷与消减炭黑颗粒方面的应用。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明严格控制了PtCu合金尺寸,并加强了活性组分Pt与二氧化铈载体间的相互作用力,进而提高其光热催化活性。
(2)本发明通过一步法得到金属态PtCu合金,无需经过还原气氛煅烧还原,避免了合金颗粒在高温煅烧情况下发生粗化。
(3)本发明在PtCu超细合金与弱酸性二氧化铈载体的协同作用下,提升了抗积碳能力,进而提高其光热催化稳定性。
(4)本发明的制备过程简单,Pt分散度高,用量少,利用率高。
附图说明
图1为二氧化铈负载的PtCu超细合金催化剂在光热条件下同时降解环己烷与消减炭黑颗粒的循环稳定性测试图,其中实心标志图为二氧化铈负载的低剂量PtCu超细合金催化剂1,空心标志图为二氧化铈负载的低剂量Pt催化剂1。
具体实施方式
以下通过具体实施方式的描述对本发明作进一步说明,但这并非是对本发明的限制,本领域技术人员根据本发明的基本思想,可以作出各种修改或改进,但是只要不脱离本发明的基本思想,均在本发明的范围之内。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
S1、取10.3μmol氯铂酸、10.3μmol醋酸铜与20mL油胺装入圆底烧瓶中,边搅拌边滴入20mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O 2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为180℃,油浴反应时间为1h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为10000rpm,离心时间为20min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入30mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入30mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于15mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将1.1g二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为30%,并在氢气与氮气混合气氛围下400℃煅烧2h,所述混合气中氢气与氮气的体积比为1:1,随后通入氮气400℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下400℃煅烧2h,所述混合气中空气与氮气的体积比为1:1;然后将1g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为8000rpm,离心时间为10min;醇洗具体过程为:加 入20mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为60℃,真空干燥时间为12h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂1,其中PtCu超细合金的质量百分比为0.27%。
实施例2
S1、取1.2μmol氯铂酸、12μmol醋酸铜与4mL油胺装入圆底烧瓶中,边搅拌边滴入36mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O 2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为240℃,油浴反应时间为2h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为8000rpm,离心时间为60min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入20mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入20mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于15mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将1.1g二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为20%,并在氢气与氮气混合气氛围下300℃煅烧8h,所述混合气中氢气与氮气的体积比为1:0.5,随后通入氮气300℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下300℃煅烧15h,所述混合气中空气与氮气的体积比为1:0.5;然后将1g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为5000rpm,离心时间为20min;醇洗具体过程为:加入20mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为120℃,真空干燥时间为6h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂2,其中PtCu超细合金的质量百分比为0.1%。
实施例3
S1、取6.8μmol氯铂酸、136μmol醋酸铜与22mL油胺装入圆底烧瓶中,边搅拌边滴入3mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O 2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为300℃,油浴反应时间为1h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为5000rpm,离心时间为150min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入30mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入20mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于20mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈 的制备方法为:将1.1g二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为80%,并在氢气与氮气混合气氛围下400℃煅烧8h,所述混合气中氢气与氮气的体积比为1:9,随后通入氮气400℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下400℃煅烧1h,所述混合气中空气与氮气的体积比为1:0.1;然后将1g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为3000rpm,离心时间为30min;醇洗具体过程为:加入15mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为30℃,真空干燥时间为72h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂3,其中PtCu超细合金的质量百分比为1%。
实施例4
S1、取9.5μmol氯铂酸、285.5μmol醋酸铜与30mL油胺装入圆底烧瓶中,边搅拌边滴入20mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O 2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为100℃,油浴反应时间为36h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为5000rpm,离心时间为360min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入30mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入30mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于25mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将300mg二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为10%,并在氢气与氮气混合气氛围下200℃煅烧12h,所述混合气中氢气与氮气的体积比为1:0.1,随后通入氮气200℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下200℃煅烧24h,所述混合气中空气与氮气的体积比为1:0.1;然后将200mg改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为10000rpm,离心时间为3min;醇洗具体过程为:加入10mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为60℃,真空干燥时间为36h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂4,其中PtCu超细合金的质量百分比为10%。
实施例5
S1、取0.8μmol氯铂酸、0.8μmol醋酸铜与2mL油胺装入圆底烧瓶中,边搅拌边滴入20mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O 2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为150℃,油浴反应时间为12h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为10000rpm,离心时间为30min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入20mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入20mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于20mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将2.1g二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为50%,并在氢气与氮气混合气氛围下600℃煅烧1h,所述混合气中氢气与氮气的体积比为1:5,随后通入氮气600℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下700℃煅烧1h,所述混合气中空气与氮气的体积比为1:9;然后2g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为8000rpm,离心时间为5min;醇洗具体过程为:加入20mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为80℃,真空干燥时间为12h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂5,其中PtCu超细合金的质量百分比为0.01%。对比例1
S1、取10.3μmol氯铂酸与20mL油胺装入圆底烧瓶中,边搅拌边滴入20mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O 2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为180℃,油浴反应时间为1h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为10000rpm,离心时间为20min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入30mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入30mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于15mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将1.1g二氧化铈粉末移入固定床反应器,在干燥的氢气与氮气混合气氛围下400℃煅烧2h,所述混合气中氢气与氮气的体积比为1:1,随后通入氮气400℃吹扫1h,然后在干燥的空气与氮气混合气氛围下400℃煅烧2h,所述混合气中空气与氮气的体积比为1:1;然后1g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为8000rpm,离心时间为10min;醇洗具体过程为:加入20mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为60℃,真空干燥时间为12h。最后得到二氧化铈负载的低剂量Pt催化剂1,其中PtCu超细合金的质量百分比为0.2%。
试验例1
本发明制备得到的二氧化铈负载的低剂量PtCu超细合金催化剂在光热条件下同时降解环己烷与消减炭黑颗粒的循环稳定性测试图。
实验方法:使用光热固定床反应器对催化剂的光热催化性能进行表征(该反应器一侧带有视窗,能将 光线照射进去)。取100mg实施例1(或对比例1)方法制备得到的催化剂与10mg炭黑研磨均匀后,装填到内径为6mm的石英反应管中,利用热电偶进行控温,在30~420℃间进行实验。用N 2鼓泡装置产生环己烷蒸汽,并用干燥空气稀释至30ppm后通入反应管。气体总流量为50mL min -1,空速为30,000mL h - 1g -1。待催化剂在常温无光下吸附24h达到吸附-脱附平衡后,开启300W氙灯(λ=300~780nm,光强为200mw·cm -2),升温进行光热催化反应(升温速率为以1℃·min -1)。反应尾气通入气相色谱(GC9800,双FID检测器)中进行在线分析环己烷浓度与CO 2产量。在实验过程中,气相色谱每隔10min进行采样分析。
实验结果:图1为二氧化铈负载的PtCu超细合金催化剂在光热条件下同时降解环己烷与消减炭黑颗粒的循环稳定性测试图,该催化剂由实施例1方法制得,并将其催化性能与对比例1二氧化铈负载的低剂量Pt催化剂1作比。其中二氧化铈负载的低剂量PtCu超细合金催化剂1与二氧化铈负载的低剂量Pt催化剂1含Pt的质量百分比均为0.2%,并通过NH 3-TPD表征证实了两者酸量差别不大,但前者的表面酸强度有所降低。由图1可以看出,与二氧化铈负载的低剂量Pt催化剂1相比,二氧化铈负载的低剂量PtCu超细合金催化剂1表现出更好的光热催化活性与稳定性。在新制备的二氧化铈负载的低剂量PtCu超细合金催化剂1与二氧化铈负载的低剂量Pt催化剂1的光照条件下(λ=300~780nm,光强为200mw·cm -2),环己烷完全降解(>99%)的温度分别为250℃与350℃,CO 2量达到最大值的温度分别为320℃与360℃。经过2次循环稳定性测试后,二氧化铈负载的低剂量Pt催化剂1对完全降解环己烷与炭黑所需的温度均明显升高了。而经过3次循环稳定性测试后,二氧化铈负载的低剂量PtCu超细合金催化剂1的催化性能并没有明显降低,说明在PtCu超细合金与弱酸性二氧化铈载体的协同作用下,提升了其光热催化稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种二氧化铈负载的低剂量PtCu超细合金催化剂的制备方法,其特征在于包括以下步骤:
    S1、取氯铂酸、醋酸铜与油胺混合,边搅拌边滴入乙二醇,得到溶液A;
    S2、对所述溶液A在氩气保护下进行油浴反应后,冷却至30℃,得到溶液B;
    S3、对所述溶液B进行离心后得到固相物C;并对所述固相物C进行洗涤纯化处理,得到固相物D。
    S4、将所述固相物D溶于正丁胺中,得到溶液E;取二氧化铈粉末浸渍在所述溶液E中,避光磁力搅拌后,离心得到固相物F,并经醇洗、真空干燥后得到二氧化铈负载的低剂量PtCu超细合金催化剂。
  2. 根据权利要求1所述的制备方法,其特征在于:所述步骤S1中的氯铂酸与醋酸铜的摩尔比为1:1~30;油胺与乙二醇的体积比为1:0.1~10;所述氯铂酸与油胺配比为0.3~0.6μmol·mL -1
  3. 根据权利要求1所述的制备方法,其特征在于:所述步骤S2中的在氩气保护下进行油浴反应具体过程是:往溶液A持续通入氩气以除去溶液A中的O 2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为80~320℃,油浴反应时间为1~36h。
  4. 根据权利要求1所述的制备方法,其特征在于:所述步骤S3中的离心转速为5000~10000rpm,离心时间为10~360min。
  5. 根据权利要求1所述的制备方法,其特征在于:所述步骤S3中的洗涤纯化具体过程是:I、往固相物C加入无水乙醇,固相物C与无水乙醇的体积比为1:5~50,超声混合均匀后进行离心处理;II、加入正己烷,固相物C与正己烷的体积比为1:5~50,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,之后得到固相物D。
  6. 根据权利要求1所述的制备方法,其特征在于:所述步骤S4中的固相物D与正丁胺的体积比为1:10~50;所述离心转速为3000~10000rpm,离心时间为3~30min。
  7. 根据权利要求1所述的制备方法,其特征在于:所述步骤S4中的二氧化铈粉末是经过改性处理得到的,具体改性方法为:将二氧化铈粉末置于固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为10%~90%,同时在氢气与氮气混合气氛围下200~600℃煅烧1~12h,所述混合气中氢气与氮气的体积比为1:0.1~10;随后进行除湿处理,即在保持前一段煅烧温度条件下通入氮气吹扫1h,最后在空气与氮气混合气氛围下200~800℃煅烧1~24h,所述混合气中空气与氮气的体积比为1:0.1~10。
  8. 根据权利要求1所述的制备方法,其特征在于:在所述步骤S4中,所述醇洗的具体过程是:向固相物F中加入无水乙醇,固相物F与无水乙醇体积比为1:5~30,超声混合均匀后进行离心处理;所述真空干燥的具体条件为:真空干燥温度为30~120℃,真空干燥时间为6~72h。
  9. 一种由权利要求1~8任一项所述制备方法制备得到的二氧化铈负载的低剂量PtCu超细合金催化剂,其特征在于:所述催化剂以二氧化铈为载体,以Cu为助剂,负载活性组分Pt,其中PtCu超细合金的质量百分比为0.01~10%,Pt与Cu的摩尔比为1:1~30。
  10. 根据权利要求9所述的二氧化铈负载的低剂量PtCu超细合金催化剂在光热催化条件下同时降解环己烷与消减炭黑颗粒方面的应用。
PCT/CN2020/133945 2019-10-23 2020-12-04 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用 WO2021078307A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/344,989 US20220111364A1 (en) 2019-10-23 2021-06-11 Cerium dioxide-supported low-dose ptcu ultrafine alloy catalyst, preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911011055.1 2019-10-23
CN201911011055.1A CN110947397B (zh) 2019-10-23 2019-10-23 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/344,989 Continuation-In-Part US20220111364A1 (en) 2019-10-23 2021-06-11 Cerium dioxide-supported low-dose ptcu ultrafine alloy catalyst, preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2021078307A1 true WO2021078307A1 (zh) 2021-04-29

Family

ID=69975671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133945 WO2021078307A1 (zh) 2019-10-23 2020-12-04 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用

Country Status (3)

Country Link
US (1) US20220111364A1 (zh)
CN (1) CN110947397B (zh)
WO (1) WO2021078307A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947397B (zh) * 2019-10-23 2022-08-12 广东工业大学 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用
CN113231061A (zh) * 2021-03-04 2021-08-10 广东工业大学 一种二氧化铈纳米棒负载型催化剂及其制备方法与应用
CN115591559A (zh) * 2022-09-16 2023-01-13 武汉榆汐科技有限公司(Cn) 一种PtCu合金三元异质结光催化剂的制备方法及其产品和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470531A (zh) * 2015-11-19 2016-04-06 中山大学 一种八足-通透框架结构合金电催化剂及其制备方法
WO2016135268A1 (en) * 2015-02-25 2016-09-01 Universiteit Utrecht Holding B.V. Method for preparing a chemical compound using a ruthenium metal catalyst on a zirconium oxide support in the presence of a contaminant
WO2017207839A1 (es) * 2016-05-31 2017-12-07 Universitat De València PROCEDIMIENTO DE OBTENCIÓN DE β-AMINO ALCOHOLES
CN108620092A (zh) * 2018-05-16 2018-10-09 天津大学 氧化铝负载的PtCu单原子合金催化剂及其制备方法和应用
CN108940306A (zh) * 2018-06-25 2018-12-07 广东工业大学 一种有序多孔PtCu/CeO2催化剂及其制备方法和应用
CN109108303A (zh) * 2018-04-19 2019-01-01 哈尔滨理工大学 一种高分散性Pt-Cu合金纳米颗粒的制备方法
CN110947397A (zh) * 2019-10-23 2020-04-03 广东工业大学 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974365B (zh) * 2012-12-12 2016-03-30 天津工业大学 负载型高分散多组份贵金属纳米颗粒催化剂的制备方法
CN103230804B (zh) * 2013-05-09 2014-12-10 浙江师范大学 一种用于α,β-不饱和醛选择性加氢的催化剂及其制备方法
CN109012660B (zh) * 2017-06-09 2020-05-19 厦门大学 一种脱除氢气中氧气的催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135268A1 (en) * 2015-02-25 2016-09-01 Universiteit Utrecht Holding B.V. Method for preparing a chemical compound using a ruthenium metal catalyst on a zirconium oxide support in the presence of a contaminant
CN105470531A (zh) * 2015-11-19 2016-04-06 中山大学 一种八足-通透框架结构合金电催化剂及其制备方法
WO2017207839A1 (es) * 2016-05-31 2017-12-07 Universitat De València PROCEDIMIENTO DE OBTENCIÓN DE β-AMINO ALCOHOLES
CN109108303A (zh) * 2018-04-19 2019-01-01 哈尔滨理工大学 一种高分散性Pt-Cu合金纳米颗粒的制备方法
CN108620092A (zh) * 2018-05-16 2018-10-09 天津大学 氧化铝负载的PtCu单原子合金催化剂及其制备方法和应用
CN108940306A (zh) * 2018-06-25 2018-12-07 广东工业大学 一种有序多孔PtCu/CeO2催化剂及其制备方法和应用
CN110947397A (zh) * 2019-10-23 2020-04-03 广东工业大学 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUCHESNE PAUL N.; LI Z. Y.; DEMING CHRISTOPHER P.; FUNG VICTOR; ZHAO XIAOJING; YUAN JUN; REGIER TOM; ALDALBAHI ALI; ALMARHOON ZAIN: "Golden single-atomic-site platinum electrocatalysts", NATURE MATERIALS, NATURE PUB. GROUP, LONDON, vol. 17, no. 11, 24 September 2018 (2018-09-24), London, pages 1033 - 1039, XP036902471, ISSN: 1476-1122, DOI: 10.1038/s41563-018-0167-5 *

Also Published As

Publication number Publication date
CN110947397B (zh) 2022-08-12
CN110947397A (zh) 2020-04-03
US20220111364A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2021078307A1 (zh) 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用
Wang et al. Enhanced performance of low Pt loading amount on Pt-CeO2 catalysts prepared by adsorption method for catalytic ozonation of toluene
CN106944092B (zh) 一种具有高效光热协同催化净化VOCs的Fe-MnO2催化剂的制备方法
CN104226240B (zh) 以硅藻土为载体的催化/吸附材料的制备方法
CN103143322A (zh) 一种改性活性炭基汽油脱硫吸附剂的制备方法
Qin et al. Mesoporous TiO 2–SiO 2 adsorbent for ultra-deep desulfurization of organic-S at room temperature and atmospheric pressure
CN111921541B (zh) 一种铂铁合金催化剂及其制备方法和在VOCs催化氧化中的应用
CN113877579A (zh) 一种用于降解内分泌干扰物的催化剂的制备方法及其应用
CN104676610A (zh) 一种催化氧化去除甲苯的方法
Hao et al. Enhanced removal of elemental mercury using MnO2-modified molecular sieve under microwave irradiation
CN110314685B (zh) 一种用于甲苯低温催化氧化的核壳结构催化剂制备方法
CN109289937B (zh) 一种高分散负载型金属催化剂的制备方法
CN112691542B (zh) 一种用于吸附-催化氧化VOCs的金属复合分子筛材料及其制备方法与应用
CN106824175A (zh) 一种具有可控酸性的核壳型铂基催化剂及其制备和应用
CN108786896A (zh) 一种贵金属催化剂的制备方法
CN111151247A (zh) 一种负载型催化剂及其制备方法和应用
CN113042093A (zh) 一种一氧化碳低温氧化用含铂催化剂及其制备方法
CN110302819B (zh) 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用
KR101538000B1 (ko) 망간계 혼합물에 의해서 유해성 화합물을 산화시키는 방법
CN114797847B (zh) 一种金属掺杂的介孔碳基催化剂及其制备方法与应用
CN108448123B (zh) 一种用于低温水煤气变换反应的铈基催化剂及其制备方法
CN114308063B (zh) 一种PtCo/Co3O4-x-Al2O3多界面结构催化剂及其制备方法与应用
CN113649065A (zh) 一种利用金属催化剂协同净化己内酰胺多组分尾气的方法及金属催化剂的制备方法
CN112892554A (zh) 一种具有双原子活性相的二维层状材料及制备方法和应用
CN107469762B (zh) 一种微负载型氧化钛与硅胶的复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878611

Country of ref document: EP

Kind code of ref document: A1