CN110947397A - 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用 - Google Patents

一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN110947397A
CN110947397A CN201911011055.1A CN201911011055A CN110947397A CN 110947397 A CN110947397 A CN 110947397A CN 201911011055 A CN201911011055 A CN 201911011055A CN 110947397 A CN110947397 A CN 110947397A
Authority
CN
China
Prior art keywords
ptcu
solution
phase substance
cerium dioxide
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911011055.1A
Other languages
English (en)
Other versions
CN110947397B (zh
Inventor
安太成
孔洁静
李桂英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zike Equipment Co ltd
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201911011055.1A priority Critical patent/CN110947397B/zh
Publication of CN110947397A publication Critical patent/CN110947397A/zh
Priority to PCT/CN2020/133945 priority patent/WO2021078307A1/zh
Priority to US17/344,989 priority patent/US20220111364A1/en
Application granted granted Critical
Publication of CN110947397B publication Critical patent/CN110947397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D49/00Separating dispersed particles from gases, air or vapours by other methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于环境催化与催化剂材料的制备领域,公开了一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用。本发明是先采用油胺法制备得到金属态的PtCu超细合金颗粒,再将二氧化铈载体浸渍在PtCu超细合金的正丁胺溶液中,经离心、醇洗、干燥后得到二氧化铈负载的低剂量PtCu超细合金催化剂。本发明的催化剂在光热催化条件下具有同时降解VOCs与消减大气中炭黑颗粒的优良活性与稳定性。本发明制备得到的催化剂具有制备过程方法简单,Pt用量非常少且利用率高,且光热催化性能优良等特点。

Description

一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方 法和应用
技术领域
本发明属于环境催化与催化材料的制备领域,具体涉及一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用。
背景技术
随着城市化进程的发展,城市生活垃圾的产生量日益增加,其中焚烧是处理城市生活垃圾的主要方式。在焚烧处理过程中,会产生大量VOCs与烟尘(如炭黑颗粒物),严重影响大气环境质量。
近年来,光热催化技术在大气净化方面备受关注,该技术核心是高活性和高稳定性催化剂的开发。负载型贵金属催化剂因其氧化活性高、氧化温度低,能在相对温和条件下降解大气污染物。但由于降解过程太快部分污染物中的碳氢分子不能够完全矿化,导致积碳容易覆盖在催化剂表面,严重影响其催化稳定性。此外,由于积碳与炭黑颗粒的形成过程比较相似,并且炭黑因其多孔结构容易吸附降解中间产物,容易引起碳物种聚集,加剧积碳的生成,因此,开发高抗积碳性能的贵金属催化剂在光热催化降解有机污染物和氧化炭黑方面具有一定的应用潜力。
对于负载型贵金属催化剂,影响积碳形成的主要因素有以下三个:(1)贵金属尺寸及负载量。由于积碳成核一般需要较大尺寸的金属活性结构,降低尺寸能抑制积碳的生成;此外,贵金属活性组分负载量过高使得密集的活性位参与更多催化反应,容易引起积碳快速累积。(2)载体的酸碱性。研究表明,强酸性位点更容易引起碳聚合,降低催化剂表面的酸强度,能有效抑制碳物种的成核与生长。(3)贵金属-载体的相互作用。强的贵金属-载体间的相互作用力能降低载体表面金属颗粒的移动性,产生高分散的活性相与尺寸较小的金属活性结构,并影响对反应物的选择性,抑制碳氢分子解离脱氢的反应,从而减少积碳的生成。
有研究表明,在负载型合金催化剂中,由于引入第二金属相,不仅能有效减小贵金属粒径,增加其表面暴露原子,降低贵金属的总负载量,而且能加强贵金属与载体间相互作用,提高贵金属的分散度,防止其在高温反应下粗化与团聚。贵金属的低负载量与高分散度不仅能有效提高贵金属的利用率,保证催化剂的高活性,同时降低成本,并且分散的活性位能延缓积碳的快速累积,进而提高催化稳定性。因此,构建负载型低剂量超细合金催化剂,同时降低载体表面酸强度,能有效提高催化剂在催化氧化过程中的催化活性与抗积碳能力,从而增强其催化稳定性。
发明内容
为了解决上述现有技术中存在不足和缺点,本发明的首要目的在于提供一种二氧化铈负载的低剂量PtCu超细合金催化剂的制备方法,该方法严格控制PtCu粒径。
本发明的另一目的在于提供一种上述制备方法制备得到的二氧化铈负载的低剂量PtCu超细合金催化剂;该催化剂的PtCu合金尺寸小,负载量低,二氧化铈载体富含弱酸性位,有利于反应物的吸附降解及氧气活化。在PtCu超细合金与二氧化铈载体的协同作用下,提升了其在光热催化过程的催化活性与抗积碳能力,解决了传统贵金属催化剂负载量大、利用率低、活性组分易流失、催化稳定性差等问题。
本发明的再一目的在于提供上述二氧化铈负载的低剂量PtCu超细合金催化剂的应用。
本发明的目的通过下述技术方案实现:
一种二氧化铈负载的低剂量PtCu超细合金催化剂的制备方法,包括以下步骤:
S1、取氯铂酸、醋酸铜与油胺混合,边搅拌边滴入乙二醇,得到溶液A;
S2、对所述溶液A在氩气保护下进行油浴反应后,冷却至30℃,得到溶液B;
S3、对所述溶液B进行离心后得到固相物C;并对所述固相物C进行洗涤纯化处理,得到固相物D。
S4、将所述固相物D溶于正丁胺中,得到溶液E;取二氧化铈粉末浸渍在所述溶液E中,避光磁力搅拌后,离心得到固相物F,并经醇洗、真空干燥后得到二氧化铈负载的低剂量PtCu超细合金催化剂。
所述步骤S1中的氯铂酸与醋酸铜的摩尔比为1:1~30;油胺与乙二醇的体积比为1:0.1~10;所述氯铂酸与油胺配比为0.3~0.6μmol·mL-1
所述步骤S2中的在氩气保护下进行油浴反应具体过程是:往溶液A持续通入氩气以除去溶液A中的O2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为80~320℃,油浴反应时间为1~36h。
所述步骤S3中的离心转速为5000~10000rpm,离心时间为10~360min。
所述步骤S3中的洗涤纯化具体过程是:I、往固相物C加入无水乙醇,固相物C与无水乙醇的体积比为1:5~50,超声混合均匀后进行离心处理;II、加入正己烷,固相物C与正己烷的体积比为1:5~50,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,之后得到固相物D。
所述步骤S4中的固相物D与正丁胺的体积比为1:10~50;所述离心转速为3000~10000rpm,离心时间为3~30min。
所述步骤S4中的二氧化铈粉末是经过改性处理得到的,具体改性方法为:将二氧化铈粉末置于固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为10%~90%,同时在氢气与氮气混合气氛围下200~600℃煅烧1~12h,所述混合气中氢气与氮气的体积比为1:0.1~10;随后进行除湿处理,即在保持前一段煅烧温度条件下通入氮气吹扫1h,最后在空气与氮气混合气氛围下200~800℃煅烧1~24h,所述混合气中空气与氮气的体积比为1:0.1~10。
在所述步骤S4中,所述醇洗的具体过程是:向固相物F中加入无水乙醇,固相物F与无水乙醇体积比为1:5~30,超声混合均匀后进行离心处理;所述真空干燥的具体条件为:真空干燥温度为30~120℃,真空干燥时间为6~72h。
一种由上述制备方法制备得到的二氧化铈负载的低剂量PtCu超细合金催化剂,其特征在于:所述催化剂以二氧化铈为载体,以Cu为助剂,负载活性组分Pt,其中PtCu超细合金的质量百分比为0.01~10%,Pt与Cu的摩尔比为1:1~30。
上述的二氧化铈负载的低剂量PtCu超细合金催化剂在光热催化条件下同时降解环己烷与消减炭黑颗粒方面的应用。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明严格控制了PtCu合金尺寸,并加强了活性组分Pt与二氧化铈载体间的相互作用力,进而提高其光热催化活性。
(2)本发明通过一步法得到金属态PtCu合金,无需经过还原气氛煅烧还原,避免了合金颗粒在高温煅烧情况下发生粗化。
(3)本发明在PtCu超细合金与弱酸性二氧化铈载体的协同作用下,提升了抗积碳能力,进而提高其光热催化稳定性。
(4)本发明的制备过程简单,Pt分散度高,用量少,利用率高。
附图说明
图1为二氧化铈负载的PtCu超细合金催化剂在光热条件下同时降解环己烷与消减炭黑颗粒的循环稳定性测试图,其中实心标志图为二氧化铈负载的低剂量PtCu超细合金催化剂1,空心标志图为二氧化铈负载的低剂量Pt催化剂1。
具体实施方式
以下通过具体实施方式的描述对本发明作进一步说明,但这并非是对本发明的限制,本领域技术人员根据本发明的基本思想,可以作出各种修改或改进,但是只要不脱离本发明的基本思想,均在本发明的范围之内。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
S1、取10.3μmol氯铂酸、10.3μmol醋酸铜与20mL油胺装入圆底烧瓶中,边搅拌边滴入20mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为180℃,油浴反应时间为1h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为10000rpm,离心时间为20min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入30mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入30mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于15mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将1.1g二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为30%,并在氢气与氮气混合气氛围下400℃煅烧2h,所述混合气中氢气与氮气的体积比为1:1,随后通入氮气400℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下400℃煅烧2h,所述混合气中空气与氮气的体积比为1:1;然后将1g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为8000rpm,离心时间为10min;醇洗具体过程为:加入20mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为60℃,真空干燥时间为12h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂1,其中PtCu超细合金的质量百分比为0.27%。
实施例2
S1、取1.2μmol氯铂酸、12μmol醋酸铜与4mL油胺装入圆底烧瓶中,边搅拌边滴入36mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为240℃,油浴反应时间为2h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为8000rpm,离心时间为60min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入20mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入20mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于15mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将1.1g二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为20%,并在氢气与氮气混合气氛围下300℃煅烧8h,所述混合气中氢气与氮气的体积比为1:0.5,随后通入氮气300℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下300℃煅烧15h,所述混合气中空气与氮气的体积比为1:0.5;然后将1g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为5000rpm,离心时间为20min;醇洗具体过程为:加入20mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为120℃,真空干燥时间为6h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂2,其中PtCu超细合金的质量百分比为0.1%。
实施例3
S1、取6.8μmol氯铂酸、136μmol醋酸铜与22mL油胺装入圆底烧瓶中,边搅拌边滴入3mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为300℃,油浴反应时间为1h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为5000rpm,离心时间为150min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入30mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入20mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于20mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将1.1g二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为80%,并在氢气与氮气混合气氛围下400℃煅烧8h,所述混合气中氢气与氮气的体积比为1:9,随后通入氮气400℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下400℃煅烧1h,所述混合气中空气与氮气的体积比为1:0.1;然后将1g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为3000rpm,离心时间为30min;醇洗具体过程为:加入15mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为30℃,真空干燥时间为72h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂3,其中PtCu超细合金的质量百分比为1%。
实施例4
S1、取9.5μmol氯铂酸、285.5μmol醋酸铜与30mL油胺装入圆底烧瓶中,边搅拌边滴入20mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为100℃,油浴反应时间为36h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为5000rpm,离心时间为360min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入30mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入30mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于25mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将300mg二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为10%,并在氢气与氮气混合气氛围下200℃煅烧12h,所述混合气中氢气与氮气的体积比为1:0.1,随后通入氮气200℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下200℃煅烧24h,所述混合气中空气与氮气的体积比为1:0.1;然后将200mg改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为10000rpm,离心时间为3min;醇洗具体过程为:加入10mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为60℃,真空干燥时间为36h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂4,其中PtCu超细合金的质量百分比为10%。
实施例5
S1、取0.8μmol氯铂酸、0.8μmol醋酸铜与2mL油胺装入圆底烧瓶中,边搅拌边滴入20mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为150℃,油浴反应时间为12h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为10000rpm,离心时间为30min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入20mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入20mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于20mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将2.1g二氧化铈粉末移入固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为50%,并在氢气与氮气混合气氛围下600℃煅烧1h,所述混合气中氢气与氮气的体积比为1:5,随后通入氮气600℃吹扫1h进行除湿处理,然后在空气与氮气混合气氛围下700℃煅烧1h,所述混合气中空气与氮气的体积比为1:9;然后2g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为8000rpm,离心时间为5min;醇洗具体过程为:加入20mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为80℃,真空干燥时间为12h。最后得到二氧化铈负载的低剂量PtCu超细合金催化剂5,其中PtCu超细合金的质量百分比为0.01%。对比例1
S1、取10.3μmol氯铂酸与20mL油胺装入圆底烧瓶中,边搅拌边滴入20mL乙二醇,得到溶液A。
S2、往溶液A持续通入氩气以除去溶液A中的O2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为180℃,油浴反应时间为1h,冷却至30℃,得到溶液B。
S3、对溶液B进行离心后得到固相物C,所述离心转速为10000rpm,离心时间为20min;并对固相物C进行洗涤纯化处理,具体过程为:I、往固相物C加入30mL无水乙醇,超声混合均匀后进行离心处理;II、随后加入30mL正己烷,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,后得到固相物D。
S4、将固相物D溶于15mL正丁胺中,得到溶液E;并对二氧化铈粉末进行改性处理,所述二氧化铈的制备方法为:将1.1g二氧化铈粉末移入固定床反应器,在干燥的氢气与氮气混合气氛围下400℃煅烧2h,所述混合气中氢气与氮气的体积比为1:1,随后通入氮气400℃吹扫1h,然后在干燥的空气与氮气混合气氛围下400℃煅烧2h,所述混合气中空气与氮气的体积比为1:1;然后1g改性后的二氧化铈粉末浸渍在溶液E中,避光磁力搅拌后,依次经过离心、醇洗、真空干燥步骤。其中离心转速为8000rpm,离心时间为10min;醇洗具体过程为:加入20mL无水乙醇,超声混合均匀后进行离心处理,重复三次;所述的真空干燥温度为60℃,真空干燥时间为12h。最后得到二氧化铈负载的低剂量Pt催化剂1,其中PtCu超细合金的质量百分比为0.2%。
试验例1
本发明制备得到的二氧化铈负载的低剂量PtCu超细合金催化剂在光热条件下同时降解环己烷与消减炭黑颗粒的循环稳定性测试图。
实验方法:使用光热固定床反应器对催化剂的光热催化性能进行表征(该反应器一侧带有视窗,能将光线照射进去)。取100mg实施例1(或对比例1)方法制备得到的催化剂与10mg炭黑研磨均匀后,装填到内径为6mm的石英反应管中,利用热电偶进行控温,在30~420℃间进行实验。用N2鼓泡装置产生环己烷蒸汽,并用干燥空气稀释至30ppm后通入反应管。气体总流量为50mL min-1,空速为30,000mL h-1g-1。待催化剂在常温无光下吸附24h达到吸附-脱附平衡后,开启300W氙灯(λ=300~780nm,光强为200mw·cm-2),升温进行光热催化反应(升温速率为以1℃·min-1)。反应尾气通入气相色谱(GC9800,双FID检测器)中进行在线分析环己烷浓度与CO2产量。在实验过程中,气相色谱每隔10min进行采样分析。
实验结果:图1为二氧化铈负载的PtCu超细合金催化剂在光热条件下同时降解环己烷与消减炭黑颗粒的循环稳定性测试图,该催化剂由实施例1方法制得,并将其催化性能与对比例1二氧化铈负载的低剂量Pt催化剂1作比。其中二氧化铈负载的低剂量PtCu超细合金催化剂1与二氧化铈负载的低剂量Pt催化剂1含Pt的质量百分比均为0.2%,并通过NH3-TPD表征证实了两者酸量差别不大,但前者的表面酸强度有所降低。由图1可以看出,与二氧化铈负载的低剂量Pt催化剂1相比,二氧化铈负载的低剂量PtCu超细合金催化剂1表现出更好的光热催化活性与稳定性。在新制备的二氧化铈负载的低剂量PtCu超细合金催化剂1与二氧化铈负载的低剂量Pt催化剂1的光照条件下(λ=300~780nm,光强为200mw·cm-2),环己烷完全降解(>99%)的温度分别为250℃与350℃,CO2量达到最大值的温度分别为320℃与360℃。经过2次循环稳定性测试后,二氧化铈负载的低剂量Pt催化剂1对完全降解环己烷与炭黑所需的温度均明显升高了。而经过3次循环稳定性测试后,二氧化铈负载的低剂量PtCu超细合金催化剂1的催化性能并没有明显降低,说明在PtCu超细合金与弱酸性二氧化铈载体的协同作用下,提升了其光热催化稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种二氧化铈负载的低剂量PtCu超细合金催化剂的制备方法,其特征在于包括以下步骤:
S1、取氯铂酸、醋酸铜与油胺混合,边搅拌边滴入乙二醇,得到溶液A;
S2、对所述溶液A在氩气保护下进行油浴反应后,冷却至30℃,得到溶液B;
S3、对所述溶液B进行离心后得到固相物C;并对所述固相物C进行洗涤纯化处理,得到固相物D。
S4、将所述固相物D溶于正丁胺中,得到溶液E;取二氧化铈粉末浸渍在所述溶液E中,避光磁力搅拌后,离心得到固相物F,并经醇洗、真空干燥后得到二氧化铈负载的低剂量PtCu超细合金催化剂。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤S1中的氯铂酸与醋酸铜的摩尔比为1:1~30;油胺与乙二醇的体积比为1:0.1~10;所述氯铂酸与油胺配比为0.3~0.6μmol·mL-1
3.根据权利要求1所述的制备方法,其特征在于:所述步骤S2中的在氩气保护下进行油浴反应具体过程是:往溶液A持续通入氩气以除去溶液A中的O2,随后密封装有溶液A的圆底烧瓶,并将其移入恒温磁力搅拌器中进行油浴反应后,所述的油浴反应温度为80~320℃,油浴反应时间为1~36h。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤S3中的离心转速为5000~10000rpm,离心时间为10~360min。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤S3中的洗涤纯化具体过程是:I、往固相物C加入无水乙醇,固相物C与无水乙醇的体积比为1:5~50,超声混合均匀后进行离心处理;II、加入正己烷,固相物C与正己烷的体积比为1:5~50,超声混合均匀后再进行离心处理;III、重复步骤II一次;IV、重复步骤I三次,之后得到固相物D。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤S4中的固相物D与正丁胺的体积比为1:10~50;所述离心转速为3000~10000rpm,离心时间为3~30min。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤S4中的二氧化铈粉末是经过改性处理得到的,具体改性方法为:将二氧化铈粉末置于固定床反应器,采用氮气鼓泡装置控制反应器内湿度,所述湿度为10%~90%,同时在氢气与氮气混合气氛围下200~600℃煅烧1~12h,所述混合气中氢气与氮气的体积比为1:0.1~10;随后进行除湿处理,即在保持前一段煅烧温度条件下通入氮气吹扫1h,最后在空气与氮气混合气氛围下200~800℃煅烧1~24h,所述混合气中空气与氮气的体积比为1:0.1~10。
8.根据权利要求1所述的制备方法,其特征在于:在所述步骤S4中,所述醇洗的具体过程是:向固相物F中加入无水乙醇,固相物F与无水乙醇体积比为1:5~30,超声混合均匀后进行离心处理;所述真空干燥的具体条件为:真空干燥温度为30~120℃,真空干燥时间为6~72h。
9.一种由权利要求1~8任一项所述制备方法制备得到的二氧化铈负载的低剂量PtCu超细合金催化剂,其特征在于:所述催化剂以二氧化铈为载体,以Cu为助剂,负载活性组分Pt,其中PtCu超细合金的质量百分比为0.01~10%,Pt与Cu的摩尔比为1:1~30。
10.根据权利要求9所述的二氧化铈负载的低剂量PtCu超细合金催化剂在光热催化条件下同时降解环己烷与消减炭黑颗粒方面的应用。
CN201911011055.1A 2019-10-23 2019-10-23 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用 Active CN110947397B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911011055.1A CN110947397B (zh) 2019-10-23 2019-10-23 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用
PCT/CN2020/133945 WO2021078307A1 (zh) 2019-10-23 2020-12-04 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用
US17/344,989 US20220111364A1 (en) 2019-10-23 2021-06-11 Cerium dioxide-supported low-dose ptcu ultrafine alloy catalyst, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911011055.1A CN110947397B (zh) 2019-10-23 2019-10-23 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110947397A true CN110947397A (zh) 2020-04-03
CN110947397B CN110947397B (zh) 2022-08-12

Family

ID=69975671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911011055.1A Active CN110947397B (zh) 2019-10-23 2019-10-23 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用

Country Status (3)

Country Link
US (1) US20220111364A1 (zh)
CN (1) CN110947397B (zh)
WO (1) WO2021078307A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021078307A1 (zh) * 2019-10-23 2021-04-29 广东工业大学 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用
CN113231061A (zh) * 2021-03-04 2021-08-10 广东工业大学 一种二氧化铈纳米棒负载型催化剂及其制备方法与应用
CN115591559A (zh) * 2022-09-16 2023-01-13 武汉榆汐科技有限公司(Cn) 一种PtCu合金三元异质结光催化剂的制备方法及其产品和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974365A (zh) * 2012-12-12 2013-03-20 天津工业大学 负载型高分散多组份贵金属纳米颗粒催化剂的制备方法
CN103230804A (zh) * 2013-05-09 2013-08-07 浙江师范大学 一种用于α,β-不饱和醛选择性加氢的催化剂及其制备方法
CN108940306A (zh) * 2018-06-25 2018-12-07 广东工业大学 一种有序多孔PtCu/CeO2催化剂及其制备方法和应用
CN109012660A (zh) * 2017-06-09 2018-12-18 厦门大学 一种脱除氢气中氧气的催化剂及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135268A1 (en) * 2015-02-25 2016-09-01 Universiteit Utrecht Holding B.V. Method for preparing a chemical compound using a ruthenium metal catalyst on a zirconium oxide support in the presence of a contaminant
CN105470531B (zh) * 2015-11-19 2018-03-09 中山大学 一种八足‑通透框架结构合金电催化剂及其制备方法
ES2644751B1 (es) * 2016-05-31 2018-09-11 Universitat De Valéncia Procedimiento de obtención de B-Amino alcoholes
CN109108303B (zh) * 2018-04-19 2021-12-21 哈尔滨理工大学 一种高分散性Pt-Cu合金纳米颗粒的制备方法
CN108620092B (zh) * 2018-05-16 2021-05-25 天津大学 氧化铝负载的PtCu单原子合金催化剂及其制备方法和应用
CN110947397B (zh) * 2019-10-23 2022-08-12 广东工业大学 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974365A (zh) * 2012-12-12 2013-03-20 天津工业大学 负载型高分散多组份贵金属纳米颗粒催化剂的制备方法
CN103230804A (zh) * 2013-05-09 2013-08-07 浙江师范大学 一种用于α,β-不饱和醛选择性加氢的催化剂及其制备方法
CN109012660A (zh) * 2017-06-09 2018-12-18 厦门大学 一种脱除氢气中氧气的催化剂及其制备方法和应用
CN108940306A (zh) * 2018-06-25 2018-12-07 广东工业大学 一种有序多孔PtCu/CeO2催化剂及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021078307A1 (zh) * 2019-10-23 2021-04-29 广东工业大学 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用
CN113231061A (zh) * 2021-03-04 2021-08-10 广东工业大学 一种二氧化铈纳米棒负载型催化剂及其制备方法与应用
CN115591559A (zh) * 2022-09-16 2023-01-13 武汉榆汐科技有限公司(Cn) 一种PtCu合金三元异质结光催化剂的制备方法及其产品和应用

Also Published As

Publication number Publication date
WO2021078307A1 (zh) 2021-04-29
CN110947397B (zh) 2022-08-12
US20220111364A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
CN110947397B (zh) 一种二氧化铈负载的低剂量PtCu超细合金催化剂及其制备方法和应用
JP4028939B2 (ja) 触媒の製造方法
CN108465466B (zh) 一种二氧化铈包裹Pd的球形催化剂及其制备方法
CN113877579B (zh) 一种用于降解内分泌干扰物的催化剂的制备方法及其应用
CN110052287B (zh) 一种协同控制no和甲苯的核壳结构分子筛催化剂及制备方法
CN109794241A (zh) 一种氧化铈选择性包覆负载型钯催化剂及其制备方法
CN111921541B (zh) 一种铂铁合金催化剂及其制备方法和在VOCs催化氧化中的应用
CN110494216B (zh) 簇载持多孔载体及其制造方法
CN109289937B (zh) 一种高分散负载型金属催化剂的制备方法
CN113976115A (zh) 分层核壳结构催化剂、制备方法、低温催化氧化甲苯应用
CN108786896B (zh) 一种贵金属催化剂的制备方法
CN113042093A (zh) 一种一氧化碳低温氧化用含铂催化剂及其制备方法
CN114308063B (zh) 一种PtCo/Co3O4-x-Al2O3多界面结构催化剂及其制备方法与应用
CN114682269B (zh) 一种掺钯型PdO-LaCoO3/膨胀蛭石催化臭氧氧化降解含硫废水的方法
EP2870997B1 (en) Catalyst for emission gas purification and production method thereof
TW201622802A (zh) 藉由錳系混合物而氧化有害性化合物的方法及錳系混合物
CN114345333A (zh) 一种可控贵金属含量的汽车尾气净化催化剂的制备方法及所得产品
CN113663708A (zh) 一种高效光催化材料及其制备方法和应用
CN113649065A (zh) 一种利用金属催化剂协同净化己内酰胺多组分尾气的方法及金属催化剂的制备方法
CN112892554A (zh) 一种具有双原子活性相的二维层状材料及制备方法和应用
CN115025747B (zh) 一种高性能ph3吸附剂的制备方法、产品及应用
CN108671885B (zh) 一种挥发性有机废气吸附材料及其制备方法
Han et al. Confinement chemistry of FeO x centers for activating molecular oxygen under ambient conditions
CN112916023B (zh) 一种利用氧化亚铜相变过程稳定单原子材料及制备方法和应用
CN114073987B (zh) 具有存储-氧化串联消除甲醛的催化剂及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: An Taicheng

Inventor after: Kong Jiejing

Inventor after: Li Guiying

Inventor after: Wen Meicheng

Inventor before: An Taicheng

Inventor before: Kong Jiejing

Inventor before: Li Guiying

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231010

Address after: 510006 No. 100 West Ring Road, Panyu District University, Guangdong, Guangzhou

Patentee after: GUANGDONG University OF TECHNOLOGY

Patentee after: Zike Equipment Co.,Ltd.

Address before: No. 100, Waihuan West Road, University Town, Guangzhou, Guangdong 510062

Patentee before: GUANGDONG University OF TECHNOLOGY