WO2021077815A1 - 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物 - Google Patents

基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物 Download PDF

Info

Publication number
WO2021077815A1
WO2021077815A1 PCT/CN2020/102360 CN2020102360W WO2021077815A1 WO 2021077815 A1 WO2021077815 A1 WO 2021077815A1 CN 2020102360 W CN2020102360 W CN 2020102360W WO 2021077815 A1 WO2021077815 A1 WO 2021077815A1
Authority
WO
WIPO (PCT)
Prior art keywords
thienyl
bis
thiazolyl
thiazolo
conjugated polymer
Prior art date
Application number
PCT/CN2020/102360
Other languages
English (en)
French (fr)
Inventor
张茂杰
吴敬男
国霞
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to AU2020356808A priority Critical patent/AU2020356808B2/en
Priority to US17/284,462 priority patent/US20210395442A1/en
Publication of WO2021077815A1 publication Critical patent/WO2021077815A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of molecular technology, in particular to a ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl and a preparation method thereof, and the ternary non-conjugated polymer
  • Conventional conjugated polymers are used as active layer materials in organic semiconductor devices such as organic solar cells and organic field-effect transistors, organic electroluminescent devices, organic thermochromic components, and organic field-effect transistors.
  • the present invention aims to develop a new type of material, thereby greatly improving its energy conversion efficiency.
  • the purpose of the present invention is to provide a ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl and its preparation method and application.
  • R 1 is independently selected from any one of alkyl groups having 1-30 carbon atoms
  • R 2 , R 3 and R 4 are independently selected from hydrogen, alkyl groups having 1-30 carbon atoms, alkoxy groups having 1-30 carbon atoms, ester groups, aryl groups, aralkyl groups, halogenated alkyl groups, Any one of heteroalkyl, alkenyl, single bond, double bond, triple bond or a combination of substituent substituted aryl groups;
  • n represents the number of repeating units of the polymer, selected from a natural number between 1 and 5000;
  • X and Y are independently selected from decimals between 0-1, and the sum of X and Y is equal to 1.
  • the number average molecular weight of the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl is 1000 to 1,000,000.
  • the preparation method based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl ternary random conjugated polymer includes the steps of combining the compound represented by formula II and formula III The compound and the compound represented by formula IV undergo a ternary random copolymerization reaction under the action of a catalyst,
  • R 1 is independently selected from any one of alkyl groups having 1-30 carbon atoms
  • R 2 , R 3 and R 4 are independently selected from hydrogen, alkyl groups having 1-30 carbon atoms, alkoxy groups having 1-30 carbon atoms, ester groups, aryl groups, aralkyl groups, halogenated alkyl groups, Any one of heteroalkyl, alkenyl, single bond, double bond, triple bond or a combination of substituent substituted aryl groups;
  • X 1 is selected from any one of a boronic acid group, a borate ester group, a zinc halide group or a trialkyltin group;
  • Y 1 and Y 2 are selected from any one of I, Br, or Cl.
  • the boronic acid group is selected from 1,3,2-dioxaborolan-2-yl, 4,4,5,5-tetramethyl-1,2,3-dioxaborolane Any one of alkyl-2-yl or 5,5-dimethyl-1,3,2-dioxaborane-2-yl;
  • the zinc halide group is selected from zinc chloride or zinc bromide Any one of the above;
  • the trialkyltin group is selected from any one of trimethyltin, triethyltin or tributyltin.
  • the catalyst is [1,3-bis(diphenylphosphino)propane]dichloronickel, tetrakis(triphenylphosphine)palladium, [1,2-bis(diphenylphosphino)ethane ] Any one of nickel chloride, bis(dibenzylideneacetone) palladium, palladium chloride, or palladium acetate.
  • the molar ratio of formula III to formula IV is 100:0-100:100 and 0:100-100:100.
  • reaction temperature is 80-200°C
  • reaction time is 6-48 hours.
  • the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl prepared by the above method is used in thin film semiconductor devices, electrochemical devices, photovoltaic devices and optoelectronic devices In the application.
  • the present invention provides a ternary conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl, by substituting a fluorine-containing DA conjugated polymer (for example: PM6)
  • a fluorine-containing DA conjugated polymer for example: PM6
  • the introduction of 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl unit in the main chain as the third component to obtain a ternary random conjugated polymer, which can be processed by solution method (soluble In organic solvents such as chloroform, tetrahydrofuran and chlorobenzene), good thermal stability (initial thermal decomposition temperature exceeds 410°C), good light absorption, suitable electronic energy level, etc., can basically not affect the optical band gap of the polymer Under the circumstance, the energy level of the polymer is effectively reduced, thereby increasing the open circuit voltage of the device and the photoelectric conversion efficiency.
  • solution method soluble In organic
  • Figure 1 is the thermogravimetric analysis curve diagram of the 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl ternary random conjugated polymer described in the present invention in Example 1 ;
  • Example 2 is the ultraviolet-visible absorption spectrum of the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl according to the present invention in Example 1 Figure;
  • Figure 3 is a graph of the cyclic voltammetry curve of the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl according to the present invention in Example 1 ;
  • Fig. 4 is the application of the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl according to the present invention in an organic solar cell in Example 1. JV curve diagram;
  • Fig. 5 is the application of the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl according to the present invention in an organic solar cell in Example 1.
  • External quantum efficiency (EQE) curve External quantum efficiency
  • Fig. 6 is a graph of thermogravimetric analysis of the 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl ternary random conjugated polymer according to the present invention in Example 2 ;
  • Fig. 7 is the ultraviolet-visible absorption spectrum of the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl according to the present invention in Example 2 Figure;
  • Figure 8 is a graph of the cyclic voltammetry curve of the 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl ternary random conjugated polymer according to the present invention in Example 2 ;
  • FIG. 9 is the application of the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl in the present invention to organic solar cells in Example 2 JV curve diagram;
  • Fig. 10 is the application of the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl according to the present invention in an organic solar cell in Example 2 External quantum efficiency (EQE) curve.
  • EQE External quantum efficiency
  • the present invention introduces 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazole unit into the main chain of a fluorine-containing substituted DA conjugated polymer (for example: PM6), and adjusts it to the main chain of the DA conjugated polymer (for example: PM6).
  • the functional group modification on the body unit or the alkyl chain length can adjust the relative properties of the polymer material, so that the obtained polymer has a lower electronic energy level and a better molecular arrangement without substantially affecting the optical band gap of the polymer. , Higher hole mobility and better photovoltaic performance of the device.
  • the general structure of the polymer provided by the present invention is as follows:
  • R 1 is independently selected from any one of alkyl groups having 1-30 carbon atoms
  • R 2 , R 3 and R 4 are independently selected from hydrogen, alkyl groups having 1-30 carbon atoms, alkoxy groups having 1-30 carbon atoms, ester groups, aryl groups, aralkyl groups, halogenated alkyl groups, Any one of heteroalkyl, alkenyl, single bond, double bond, triple bond or a combination of substituent substituted aryl groups;
  • n represents the number of repeating units of the polymer, selected from a natural number between 1 and 5000;
  • X and Y are independently selected from decimals between 0-1, and the sum of X and Y is equal to 1;
  • the number average molecular weight based on the 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl ternary conjugated polymer is 1000 to 1,000,000.
  • the above-mentioned preparation method based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl ternary random conjugated polymer includes the steps of: formulating formula II, formula III, and formula IV as shown in Under the action of a catalyst, a ternary random copolymerization reaction of the compound occurs, the reaction temperature is 80-200°C, the reaction time is 6-48 hours, and the polymer represented by formula I is obtained;
  • R 1 is independently selected from any one of alkyl groups having 1-30 carbon atoms
  • R 2 , R 3 and R 4 are independently selected from hydrogen, alkyl groups having 1-30 carbon atoms, alkoxy groups having 1-30 carbon atoms, ester groups, aryl groups, aralkyl groups, halogenated alkyl groups, Any one of heteroalkyl, alkenyl, single bond, double bond, triple bond or a combination of substituent substituted aryl groups;
  • X 1 is selected from any one of a boronic acid group, a borate ester group, a zinc halide group or a trialkyltin group;
  • Y 1 and Y 2 are selected from any one of I, Br or Cl;
  • the catalyst is [1,3-bis(diphenylphosphino)propane]dichloronickel, tetrakis(triphenylphosphine)palladium, [1,2-bis(diphenylphosphino)ethane]chloronickel , Any one of bis(dibenzylideneacetone) palladium, palladium chloride or palladium acetate;
  • the boronic acid group is selected from 1,3,2-dioxaborane-2-yl, 4,4,5, Any of 5-tetramethyl-1,2,3-dioxaborolan-2-yl or 5,5-dimethyl-1,3,2-dioxaborolan-2-yl
  • the zinc halide group is selected from any one of zinc chloride or zinc bromide;
  • the trialkyltin group is selected from any one of trimethyltin, triethyltin or tributyltin;
  • the molar ratio of formula III to formula IV is 100:0-
  • the present invention also claims the application of the above-mentioned ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl in the preparation of the following devices: thin-film semiconductor devices, Electrochemical devices, photovoltaic devices, and optoelectronic devices; the device is specifically a polymer solar cell device or a photodetector device, and the polymer solar cell device is further a polymer solar cell device containing a bulk heterojunction structure.
  • the ternary random conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl of the present invention is used as a semiconductor composition and dopant composition;
  • the agent is a fullerene derivative or a non-fullerene N-type organic semiconductor.
  • the photovoltaic device When a ternary conjugated polymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl is used in a photovoltaic device, the photovoltaic device includes a hole collecting layer, an electron collecting layer, and a void The photovoltaic material layer between the hole collecting layer and the electron collecting layer, the photovoltaic material layer contains the conjugated polymer; when the conjugated polymer based on the pyrazine-2-carboxylate unit is used in a photovoltaic device, the photovoltaic material layer
  • the device includes a first electrode, a second electrode spaced apart from the first electrode, and at least one active material layer disposed between the first electrode and the second electrode; the active material layer contains the common Conjugated polymer.
  • the "one embodiment” or “embodiment” referred to herein refers to a specific feature, structure, or characteristic that can be included in at least one implementation of the present invention.
  • the appearances of "in one embodiment” in different places in this specification do not all refer to the same embodiment, nor are they separate or selectively mutually exclusive embodiments with other embodiments.
  • the reaction mixture was cooled to room temperature, then the polymer was settled in 100 mL HPLC methanol, the solid was collected by filtration, and finally Soxhlet extraction was performed with HPLC methanol, n-hexane and chloroform, and the chloroform extract was concentrated. Then, the solid polymer PM6-TTz20 was obtained by settling in HPLC methanol, and the solid was vacuum dried. Trichlorobenzene as a solvent, obtaining measured by gel permeation chromatography number average molecular weight (M n) for the 28.7kDa, polydispersity (PDI) of 1.98.
  • M n gel permeation chromatography number average molecular weight
  • PDI polydispersity
  • the polymer PM6-TTz20 prepared above was mixed with various organic solvents, and it was found that the polymer PM6-TTz20 has good solubility in toluene, chloroform, chlorobenzene, dichlorobenzene and other solvents, but it is insoluble in methanol.
  • a high-quality film is produced by spin-coating a chloroform solution of polymer PM6-TTz20 onto a glass slide.
  • Figure 2 shows the absorption spectrum of polymer PM6-TTz in chloroform solution and film-forming state.
  • the maximum absorption position of the polymer PM6-TTz20 in the solution is 570 nm, and the absorption starting position is 668 nm.
  • ITO indium tin oxide
  • the energy conversion efficiency of polymer solar cells is using SS-F5-3A (Enli Technology CO., Ltd.) as a solar simulator.
  • the photovoltaic performance of the device is tested under a light intensity of 100mW/cm 2 and the light intensity has passed the standard single crystal.
  • the three parameters of open circuit voltage, short circuit current and fill factor of the polymer solar cell device are obtained by the test.
  • the structure of the small molecule acceptor material Y6 used in the present invention is as follows:
  • Figure 5 is a ternary random conjugated polymer PM6-TTz20 based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl according to the present invention applied to organic solar cells EQE curve.
  • the integrated short-circuit current obtained from the EQE curve is 24.4 mA cm -2 , which is within 5% of the test value, indicating that our device data is highly reliable.
  • the reaction mixture was cooled to room temperature, then the polymer was settled in 100 mL HPLC methanol, the solid was collected by filtration, and finally Soxhlet extraction was performed with HPLC methanol, n-hexane and chloroform, and the chloroform extract was concentrated. Then, the solid polymer PM6-TTz50 was obtained by settling in HPLC methanol, and the solid was vacuum dried.
  • M n number average molecular weight measured by gel permeation chromatography was 23.2 kDa
  • PDI degree of dispersion
  • the polymer PM6-TTz50 prepared above was mixed with various organic solvents, and it was found that the polymer PM6-TTz50 had good solubility in solvents such as toluene, chloroform, chlorobenzene, dichlorobenzene, etc., but was insoluble in methanol.
  • a high-quality film is produced by spin-coating a chloroform solution of polymer PM6-TTz50 onto a glass slide.
  • Figure 7 shows the absorption spectrum of polymer PM6-TTz50 in chloroform solution and film-forming state.
  • the maximum absorption position of the polymer PM6-TTz50 in the solution is 554 nm, and the absorption start position is 656 nm.
  • ITO indium tin oxide
  • the energy conversion efficiency of polymer solar cells is using SS-F5-3A (Enli Technology CO., Ltd.) as a solar simulator.
  • the photovoltaic performance of the device is tested under a light intensity of 100mW/cm 2 and the light intensity has passed the standard single crystal.
  • the three parameters of open circuit voltage, short circuit current and fill factor of the polymer solar cell device are obtained by the test.
  • the structure of the small molecule acceptor material Y6 used in the present invention is as follows:
  • Figure 10 is a ternary random conjugated polymer PM6-TTz50 based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl according to the present invention applied to organic solar cells EQE curve.
  • the integrated short-circuit current obtained from the EQE curve is 22.9mA cm -2 , which is within 5% of the test value, indicating that our device data is highly reliable.
  • the beneficial effects of the present invention are: the present invention prepares a new type of novel, easy to synthesize, high yield, good solubility, and good thermal stability based on 2,5-bis(2-thienyl ) Thiazolo[5,4-d]thiazolyl ternary random conjugated polymers, this type of polymer has well-adjusted molecular energy levels, strong absorption spectra and high charge transport properties, suitable as electron donors Or electron acceptor materials are used to prepare organic solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物,其具有通式结构(I),通过引入2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑单元来提高聚合物的带隙,拓宽吸收光谱;引入2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑单元具有易修饰的光物理性质,其三元共聚合物显示出了优良的光伏性能;将引入2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑单元应用于有机太阳能电池中,可以提高有机太阳能电池光转化效率。

Description

基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物 技术领域
本发明涉及分子技术领域,具体涉及基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物及其制备方法,以及该三元无规共轭聚合物作为活性层材料在有机半导体器件如有机太阳能电池和有机场效应晶体管、有机电致发光器件、有机热致色变元件、有机场效应晶体管中的应用。
背景技术
利用廉价材料制备低成本、高效能的太阳能电池一直是光伏领域的研究热点和难点。目前用于地面的硅晶电池由于生产工艺复杂、成本高,使其应用受到限制。为了降低电池成本,拓展应用范围,长期以来人们一直在寻找新型的太阳能电池材料。有机半导体材料以其原料易得、廉价、制备工艺简单、环境稳定性好、有良好的光伏效应等优点备受关注。自1995年Heeger等人首次提出本体异质结概念并采用共轭聚合物MEH-PPV作为电子给体材料,富勒烯衍生物PCBM作为电子受体材料制备出世界上第一个本体异质结型(BHJ)单层有机太阳能电池后,人们在聚合物太阳能电池方面投入了大量研究,并取得了飞速的发展(G.Yu,J.G.,J.C.Hummelen,F.Wudi,A.J.Heeger,Science,1995,270(5243);L.Meng,Y.Zhang,X.Wan,C.Li,X.Zhang,Y.Wang,X.Ke,Z.Xiao,L.Ding,R.Xia,H.L.Yip,Y.Cao and Y.Chen,science.2018,361,1094;J.Yuan,Y.Zhang,L.Zhou,G.Zhang,H.-L.Yip,T.-K.Lau,X.Lu,C.Zhu,H.Peng,P.A.Johnson,M.Leclerc,Y.Cao,J.Ulanski,Y.Li and Y.Zou,Joule.2019,3,1;W.Su,Q.Fan,X.Guo,J.Chen,Y.Wang,X.Wang,P.Dai,C.Ye,X.Bao,W.Ma,M.Zhang and Y.Li,Journal of Materials Chemistry A.2018,6,7988;M.Zhang,Y.Gu,X.Guo,F.Liu,S.Zhang,L.Huo,T.P.Russell and J.Hou,Adv Mater.2013,25,4944;M.Zhang,X.Guo,W.Ma,H.Ade and J.Hou,Adv Mater.2014,26,5880.M.Zhang,X.Guo,W.Ma,H.Ade and J.Hou,Adv Mater.2015,27,4655.),但是仍比无机太阳能电池的转换效率低得多。限制性能提高的主要制约因素有:有机半导体材料的光谱响应与太阳辐射光谱不匹配,有机半导体相对较低的载流子迁移率以及较低的 载流子的电极收集效率等。
因此本发明旨在开发新型的材料,进而大幅度提高其能量转换效率。
发明内容
本发明目的是提供基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物其制备方法及应用。
本发明的一种技术方案是:
基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物,包括如下通式结构:
Figure PCTCN2020102360-appb-000001
其中,
R 1独立的选自具有1-30个碳原子的烷基中的任意一种;
R 2、R 3和R 4独立地选自氢,具有1-30个碳原子的烷基,具有1-30个碳原子的烷氧基,酯基,芳基,芳烷基,卤代烷基,杂烷基,烯基,单键、双键、三键或其组合的取代基取代的芳基中的任意一种;
n代表聚合物的重复单元个数,选自1-5000之间的自然数;
X和Y独立地选自0-1之间的小数,且X与Y之和等于1。
进一步的,所述基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物的数均分子量为1000至1,000,000。
本发明的另一技术方案是:
基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物的制备方法,包括步骤:将式Ⅱ所示的化合物、式Ⅲ所示的化合物和式Ⅳ所示的化合物在催化剂的作用下发生三元无规共聚反应,
Figure PCTCN2020102360-appb-000002
其中,
R 1独立的选自具有1-30个碳原子的烷基中的任意一种;
R 2、R 3和R 4独立的选自氢,具有1-30个碳原子的烷基,具有1-30个碳原子的烷氧基,酯基,芳基,芳烷基,卤代烷基,杂烷基,烯基,单键、双键、三键或其组合的取代基取代的芳基中的任意一种;
X 1选自硼酸基团、硼酸酯基团、卤化锌基团或三烷基锡基团中的任意一种;
Y 1和Y 2选自I、Br或Cl中的任意一种。
进一步的,所述硼酸基团选自1,3,2-二氧杂硼烷-2-基、4,4,5,5-四甲基-1,2,3-二氧杂环戊硼烷-2-基或5,5-二甲基-1,3,2-二氧杂硼烷-2-基中的任意一种;所述卤化锌基团选自氯化锌或溴化锌中的任意一种;所述三烷基锡基团选自三甲基锡、三乙基锡或三丁基锡中的任意一种。
进一步的,所述催化剂为[1,3-双(二苯基膦基)丙烷]二氯镍、四(三苯基膦)钯、[1,2-双(二苯基膦基)乙烷]氯镍、双(二亚苄基丙酮)钯、氯化钯或醋酸钯中的任意一种。
进一步的,式Ⅲ与式Ⅳ的摩尔比为100:0~100:100和0:100~100:100。
进一步的,反应温度为80~200℃,反应时间为6~48小时。
上述方式所制备的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在薄膜半导体器件、电化学器件、光伏器件和光电器件中的应用。
本发明提供了基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元共轭聚合物,通过在含氟取代的DA共轭聚合物(例如:PM6)主链中引入2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基单元作为第三组分得到三元无规共轭 聚合物,具有可溶液法加工(能溶于氯仿、四氢呋喃和氯苯等有机溶剂中)、热稳定性好(起始热分解温度超过410℃)、吸光性好、合适的电子能级等优点,能够在基本不影响聚合物光学带隙的情况下,有效的降低聚合物的能级,从而提高器件的开路电压以及光电转化效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中,
图1为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在实施例1中的热重分析曲线图;
图2为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在实施例1中的紫外-可见吸收光谱图;
图3为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在实施例1中的循环伏安曲线图;
图4为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在实施例1中应用于有机太阳能电池的J-V曲线图;
图5为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在实施例1中应用于有机太阳能电池的外量子效率(EQE)曲线。
图6为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在实施例2中的热重分析曲线图;
图7为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在实施例2中的紫外-可见吸收光谱图;
图8为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在实施例2中的循环伏安曲线图;
图9为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在实施例2中应用于有机太阳能电池的J-V曲线图;
图10为本发明所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三 元无规共轭聚合物在实施例2中应用于有机太阳能电池的外量子效率(EQE)曲线。
具体实施方式
本发明将2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑单元引入到含氟取代的DA共轭聚合物(例如:PM6)主链中,并通过调节给受体单元上的官能团修饰或者烷基链长度来调控聚合物材料的相关性能,从而使所得聚合物在基本不影响聚合物光学带隙的情况下具有较低的电子能级,较好的分子排列,较高的空穴迁移率以及较优异的器件光伏性能。
本发明所提供的聚合物,其结构通式如下:
Figure PCTCN2020102360-appb-000003
其中,
R 1独立的选自具有1-30个碳原子的烷基中的任意一种;
R 2、R 3和R 4独立的选自氢,具有1-30个碳原子的烷基,具有1-30个碳原子的烷氧基,酯基,芳基,芳烷基,卤代烷基,杂烷基,烯基,单键、双键、三键或其组合的取代基取代的芳基中的任意一种;
n代表聚合物的重复单元个数,选自1-5000之间的自然数;
X和Y独立地选自0-1之间的小数,且X与Y之和等于1;
基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元共轭聚合物的数均分子量为1000至1,000,000。
上述基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物的制备方法,包括步骤:将式Ⅱ、式Ⅲ、式Ⅳ所示的化合物在催化剂的作用下发生三元无规共聚反应,反应温度为80~200℃,反应时间为6~48小时,得到式Ⅰ所示聚合物;
Figure PCTCN2020102360-appb-000004
其中,
R 1独立的选自具有1-30个碳原子的烷基中的任意一种;
R 2、R 3和R 4独立的选自氢,具有1-30个碳原子的烷基,具有1-30个碳原子的烷氧基,酯基,芳基,芳烷基,卤代烷基,杂烷基,烯基,单键、双键、三键或其组合的取代基取代的芳基中的任意一种;
X 1选自硼酸基团、硼酸酯基团、卤化锌基团或三烷基锡基团中的任意一种;
Y 1和Y 2选自I、Br或Cl中的任意一种;
其中,催化剂为[1,3-双(二苯基膦基)丙烷]二氯镍、四(三苯基膦)钯、[1,2-双(二苯基膦基)乙烷]氯镍、双(二亚苄基丙酮)钯、氯化钯或醋酸钯中的任意一种;硼酸基团选自1,3,2-二氧杂硼烷-2-基、4,4,5,5-四甲基-1,2,3-二氧杂环戊硼烷-2-基或5,5-二甲基-1,3,2-二氧杂硼烷-2-基中的任意一种;所述卤化锌基团选自氯化锌或溴化锌中的任意一种;三烷基锡基团选自三甲基锡、三乙基锡或三丁基锡中的任意一种;式Ⅲ与式Ⅳ的摩尔比为100:0~100:100和0:100~100:100。
本发明还要求保护上述基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在制备下述器件中的应用:薄膜半导体器件、电化学器件、光伏器件和光电器件;所述器件具体为聚合物太阳能电池器件或光检测器器件,所述聚合物太阳能电池器件进一步为包含本体异质结结构的聚合物太阳能电池器件。
本发明的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物作为一种半导体组合物和掺加剂组成;所述掺加剂选择富勒烯衍生物或者非富勒烯N型有机半导体。
当基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元共轭聚合物用于光伏器件时,光伏器件包括空穴收集层、电子收集层、以及空穴收集层和电子收集层之间的光伏材料层,所述光伏材料层中含有该共轭聚合物;当基于吡嗪-2-羧酸酯单元的共轭聚合物用于光电器件时,光电器件包括第一电极、与所述第一电极间隔开的第二电极、以及在所述第一电极和第二电极之间设置的至少一层活性材料层;所述活性材料层中含有该共轭聚合物。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和实施例进一步说明本发明的技术方案。但是本发明不限于所列出的实施例,还应包括在本发明所要求的权利范围内其他任何公知的改变。
首先,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
其次,本发明利用结构示意图等进行详细描述,在详述本发明实施例时,为便于说明,示意图会不依一般比例作局部放大,而且所述示意图只是实例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间。
实施例1
1.三元无规共轭聚合物PM6-TTz20的合成。
本实施例的化学反应路线图如下所示,具体反应步骤和反应条件如下:
Figure PCTCN2020102360-appb-000005
在50mL的两口圆底烧瓶中,分别加入0.3mmol的双锡单体M1,0.24mmol的双溴单体M2和0.06mmol的双溴单体M3以及10mL的无水甲苯,向反应瓶中通20分钟氩气后,将15毫克Pd(PPh 3) 4加入到烧瓶中作为催化剂,然后将反应混合物再通氩气30分钟。搅拌反应混合物并在氩气保护下加热回流7小时。聚合结束后将反应混合物冷却至室温,然后将聚合物在100mL HPLC甲醇中沉降,过滤收集固体,最后分别用HPLC的甲醇、正己烷和三氯甲烷进行索氏提取,将三氯甲烷提取液浓缩后通过在HPLC甲醇中沉降得到固体聚合物PM6-TTz20,同时将固体进行真空干燥。以三氯苯为溶剂,通过凝胶渗透色谱测得其数均分子量(M n)为28.7kDa,分散度(PDI)为1.98。
将以上制备的聚合物PM6-TTz20在氮气的氛围下进行热重分析,结果如图1所示,图1表明,聚合物PM6-TTz20在重量损失5%时的分解温度为411℃,表明该聚合物有很好的热稳定性。
将以上制备的聚合物PM6-TTz20与各种有机溶剂混合,发现聚合物PM6-TTz20在甲苯、氯仿、氯苯、二氯苯等溶剂中具有良好的溶解度,但在甲醇中不可溶。通过将聚合物PM6-TTz20的氯仿溶液旋涂至玻璃片上而制得高品质薄膜。
聚合物PM6-TTz在氯仿溶液和成膜状态下测得的吸收光谱如图2所示。聚合物的光学带隙使用公式(E g=1240/λ 吸收起始,其中:E g为聚合物的光学带隙;λ 吸收起始为吸收光谱在长波方向的起点)计算,并示于表1中。
表1聚合物PM6-TTz20的光学吸收数据
Figure PCTCN2020102360-appb-000006
从表1可看出,聚合物PM6-TTz20在溶液中的最大吸收位置为570nm,吸收起始位置为668nm。当聚合物PM6-TTz20旋涂成膜后,它的最大吸收和起始吸收都分别为610nm和670nm。说明聚合物在溶液中已经产生了一定的聚集。从聚合物膜起始吸收的位置,根据公式E g opt=1240/λ 吸收起始,膜(eV),得到聚合物PM6-TTz20的光学带隙为1.85eV。
2.将实施例1制备的聚合物PM6-TTz20(1.0mg)溶解于1mL氯仿中,然 后将该溶液滴加至工作电极上,如铂片上;使用0.1mol/L Bu 4NPF 6的乙腈溶液作为电解质;以铂丝作为对电极;银丝作为参比电极。使用电化学循环伏安法在该体系中进行测量,聚合物PM6-TTz20的循环伏安数据示于图3中。由图3结果计算可得,聚合物PM6-TTz20的HOMO能级为-5.50eV,LUMO能级为-3.60eV。
3有机太阳能电池器件的制备及性能测试:
将商业购买的氧化铟锡(ITO)玻璃先用丙酮搓洗,然后依次用洗洁剂、水、去离子水、丙酮、异丙醇超生清洗,干燥后旋涂一层30nm厚的PEDOT:PSS作为阳极修饰层待用。将实施例中的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元共轭聚合物与小分子电子受体材料Y6(重量比为1:1.25)以及添加剂氯萘(0.25%-3%)的氯仿共混溶液(10~30mg/ml)旋涂于PEDOT:PSS阳极修饰层上形成器件的活性层。最后再旋涂一层厚度约10nm的PDINO作为阴极修饰层和Al(100nm)作为器件阴极,得到聚合物太阳能电池器件。光伏器件有效面积为0.04cm 2。聚合物太阳能电池的能量转换效率是用SS-F5-3A(Enli Technology CO.,Ltd.)作为太阳模拟器,在100mW/cm 2光强下对器件进行光伏性能测试,光强通过标准单晶硅太阳能电池(SRC-00019)校准;J-V曲线使用Keithley 2450进行测量。测试得到聚合物太阳能电池器件的开路电压、短路电流以及填充因子这三个参数。其J-V曲线示于图4,其中聚合物太阳能电池器件的开路电压V oc=0.87V,短路电流J sc=26.9mA/cm 2,填充因子FF=73%,转化效率PCE=17.1%。
本发明所用的小分子受体材料Y6的结构如下:
Figure PCTCN2020102360-appb-000007
图5为本发明所述的一种基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物PM6-TTz20在应用于有机太阳能电池的EQE曲线。根 据EQE曲线得到的积分短路电流为24.4mA cm -2,这与测试值的误差在5%以内,表明我们的器件数据具有高度可靠性。
实施例2
1.三元无规共轭聚合物PM6-TTz50的合成。
本实施例的化学反应路线图如下所示,具体反应步骤和反应条件如下:
Figure PCTCN2020102360-appb-000008
在50mL的两口圆底烧瓶中,分别加入0.3mmol的双锡单体M1,0.15mmol的双溴单体M2和0.15mmol的双溴单体M3以及10mL的无水甲苯,向反应瓶中通20分钟氩气后,将15毫克Pd(PPh 3) 4加入到烧瓶中作为催化剂,然后将反应混合物再通氩气30分钟。搅拌反应混合物并在氩气保护下加热回流7小时。聚合结束后将反应混合物冷却至室温,然后将聚合物在100mL HPLC甲醇中沉降,过滤收集固体,最后分别用HPLC的甲醇、正己烷和三氯甲烷进行索氏提取,将三氯甲烷提取液浓缩后通过在HPLC甲醇中沉降得到固体聚合物PM6-TTz50,同时将固体进行真空干燥。以三氯苯为溶剂,通过凝胶渗透色谱测得其数均分子量(M n)为23.2kDa,分散度(PDI)为2.89。
将以上制备的聚合物PM6-TTz50在氮气的氛围下进行热重分析,结果如图6所示,图6表明,聚合物PM6-TTz50在重量损失5%时的分解温度为418℃,表明该聚合物有很好的热稳定性。
将以上制备的聚合物PM6-TTz50与各种有机溶剂混合,发现聚合物 PM6-TTz50在甲苯、氯仿、氯苯、二氯苯等溶剂中具有良好的溶解度,但在甲醇中不可溶。通过将聚合物PM6-TTz50的氯仿溶液旋涂至玻璃片上而制得高品质薄膜。
聚合物PM6-TTz50在氯仿溶液和成膜状态下测得的吸收光谱如图7所示。聚合物的光学带隙使用公式(E g=1240/λ 吸收起始,其中:E g为聚合物的光学带隙;λ 吸收起始为吸收光谱在长波方向的起点)计算,并示于表1中。
表1聚合物PM6-TTz50的光学吸收数据
Figure PCTCN2020102360-appb-000009
从表1可看出,聚合物PM6-TTz50在溶液中的最大吸收位置为554nm,吸收起始位置为656nm。当聚合物PM6-TTz50旋涂成膜后,它的最大吸收和起始吸收都分别为586nm和656nm。说明聚合物在溶液中已经产生了一定的聚集。从聚合物膜起始吸收的位置,根据公式E g opt=1240/λ 吸收起始,膜(eV),得到聚合物PM6-TTz50的光学带隙为1.89eV。
2.将实施例2制备的聚合物PM6-TTz50(1.0mg)溶解于1mL氯仿中,然后将该溶液滴加至工作电极上,如铂片上;使用0.1mol/L Bu 4NPF 6的乙腈溶液作为电解质;以铂丝作为对电极;银丝作为参比电极。使用电化学循环伏安法在该体系中进行测量,聚合物PM6-TTz50的循环伏安数据示于图8中。由图8结果计算可得,聚合物PM6-TTz20的HOMO能级为-5.60eV,LUMO能级为-3.63eV。
3有机太阳能电池器件的制备及性能测试:
将商业购买的氧化铟锡(ITO)玻璃先用丙酮搓洗,然后依次用洗洁剂、水、去离子水、丙酮、异丙醇超生清洗,干燥后旋涂一层30nm厚的PEDOT:PSS作为阳极修饰层待用。将实施例中的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元共轭聚合物与小分子电子受体材料Y6(重量比为1:1.25)以及添加剂氯萘(0.25%-3%)的氯仿共混溶液(10~30mg/ml)旋涂于PEDOT:PSS阳极修饰层上形成器件的活性层。最后再旋涂一层厚度约10nm的PDINO作为阴极修饰层和Al(100nm)作为器件阴极,得到聚合物太阳能电池器件。 光伏器件有效面积为0.04cm 2。聚合物太阳能电池的能量转换效率是用SS-F5-3A(Enli Technology CO.,Ltd.)作为太阳模拟器,在100mW/cm 2光强下对器件进行光伏性能测试,光强通过标准单晶硅太阳能电池(SRC-00019)校准;J-V曲线使用Keithley 2450进行测量。测试得到聚合物太阳能电池器件的开路电压、短路电流以及填充因子这三个参数。其J-V曲线示于图9,其中聚合物太阳能电池器件的开路电压V oc=0.90V,短路电流J sc=24.9mA/cm 2,填充因子FF=69%,转化效率PCE=15.5%。
本发明所用的小分子受体材料Y6的结构如下:
Figure PCTCN2020102360-appb-000010
图10为本发明所述的一种基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物PM6-TTz50在应用于有机太阳能电池的EQE曲线。根据EQE曲线得到的积分短路电流为22.9mA cm -2,这与测试值的误差在5%以内,表明我们的器件数据具有高度可靠性。
与现有技术相比,本发明的有益效果是:本发明制备了一类全新的、容易合成、产率高、溶解性好、热稳定性好的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物,这类聚合物具有很好调节的分子能级、强的吸收光谱以及高的电荷传输性能,适合作为电子给体或电子受体材料应用于制备有机太阳能电池。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

  1. 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物,其特征在于,包括如下通式结构:
    Figure PCTCN2020102360-appb-100001
    其中,
    R 1独立的选自具有1-30个碳原子的烷基中的任意一种;
    R 2、R 3和R 4独立的选自氢,具有1-30个碳原子的烷基,具有1-30个碳原子的烷氧基,酯基,芳基,芳烷基,卤代烷基,杂烷基,烯基,单键、双键、三键或其组合的取代基取代的芳基中的任意一种;
    n代表聚合物的重复单元个数,选自1-5000之间的自然数;
    X和Y独立的选自0-1之间的小数,且X与Y之和等于1。
  2. 根据权利要求1所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物,其特征在于:所述基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物的数均分子量为1000至1,000,000。
  3. 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物的制备方法,其特征在于,包括步骤:将式Ⅱ所示的化合物、式Ⅲ所示的化合物和式Ⅳ所示的化合物在催化剂的作用下发生三元无规共聚反应,
    Figure PCTCN2020102360-appb-100002
    其中,
    R 1独立的选自具有1-30个碳原子的烷基中的任意一种;
    R 2、R 3和R 4独立的选自氢,具有1-30个碳原子的烷基,具有1-30个碳原子的烷氧基,酯基,芳基,芳烷基,卤代烷基,杂烷基,烯基,单键、双 键、三键或其组合的取代基取代的芳基中的任意一种;
    X 1选自硼酸基团、硼酸酯基团、卤化锌基团或三烷基锡基团中的任意一种;
    Y 1和Y 2选自I、Br或Cl中的任意一种。
  4. 根据权利要求3所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物的制备方法,其特征在于:所述硼酸基团选自1,3,2-二氧杂硼烷-2-基、4,4,5,5-四甲基-1,2,3-二氧杂环戊硼烷-2-基或5,5-二甲基-1,3,2-二氧杂硼烷-2-基中的任意一种;所述卤化锌基团选自氯化锌或溴化锌中的任意一种;所述三烷基锡基团选自三甲基锡、三乙基锡或三丁基锡中的任意一种。
  5. 根据权利要求3所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物的制备方法,其特征在于:所述催化剂为[1,3-双(二苯基膦基)丙烷]二氯镍、四(三苯基膦)钯、[1,2-双(二苯基膦基)乙烷]氯镍、双(二亚苄基丙酮)钯、氯化钯或醋酸钯中的任意一种。
  6. 根据权利要求3所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物的制备方法,其特征在于:式Ⅲ与式Ⅳ的摩尔比为100:0~100:100和0:100~100:100。
  7. 根据权利要求3所述的基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物的制备方法,其特征在于:反应温度为80~200℃,反应时间为6~48小时。
  8. 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物在薄膜半导体器件、电化学器件、光伏器件和光电器件中的应用。
PCT/CN2020/102360 2019-10-23 2020-07-16 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物 WO2021077815A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2020356808A AU2020356808B2 (en) 2019-10-23 2020-07-16 Terpolymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl
US17/284,462 US20210395442A1 (en) 2019-10-23 2020-07-16 Terpolymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911012216.9A CN111019095B (zh) 2019-10-23 2019-10-23 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物
CN201911012216.9 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021077815A1 true WO2021077815A1 (zh) 2021-04-29

Family

ID=70201528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102360 WO2021077815A1 (zh) 2019-10-23 2020-07-16 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物

Country Status (4)

Country Link
US (1) US20210395442A1 (zh)
CN (1) CN111019095B (zh)
AU (1) AU2020356808B2 (zh)
WO (1) WO2021077815A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019095B (zh) * 2019-10-23 2021-08-31 苏州大学 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物
CN112375212A (zh) * 2020-10-20 2021-02-19 华南理工大学 一类n型有机半导体材料及其制备方法与应用
CN112778504B (zh) * 2021-02-02 2022-12-27 中原工学院 一种d-a型共轭聚合物给体光伏材料及其制备方法和应用
CN114409878A (zh) * 2022-01-27 2022-04-29 华南理工大学 一类噻唑并噻唑线性共轭聚合物及其制备方法与应用
CN115612068A (zh) * 2022-09-30 2023-01-17 武汉工程大学 一类卤代噻唑类宽带隙聚合物及其在光电器件中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535042A (en) * 1983-02-24 1985-08-13 Hiroyuki Kitayama Electrophotographic photosensitive member with electron donor and acceptor layers
CN102388085A (zh) * 2008-10-22 2012-03-21 艾尼股份公司 包含苯并三唑单元的π-共轭低带隙共聚物
CN102782011A (zh) * 2009-10-28 2012-11-14 华盛顿州大学 含噻唑并噻唑或苯并双噻唑、或苯并双噁唑电子受体亚单元、和电子供体亚单元的共聚物半导体以及它们在晶体管和太阳能电池中的用途
CN109891615A (zh) * 2016-10-11 2019-06-14 香港科技大学 基于一种供体聚合物和两种受体的三元混合物有机太阳能电池
CN111019095A (zh) * 2019-10-23 2020-04-17 苏州大学 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030942A1 (en) * 2010-09-02 2012-03-08 Konarka Technologies, Inc. Photovoltaic cell containing novel photoactive polymer
CN103159922A (zh) * 2011-12-09 2013-06-19 海洋王照明科技股份有限公司 苯并二噻吩基共聚物太阳能电池材料及其制备方法和应用
CN103848969B (zh) * 2012-11-28 2016-03-30 海洋王照明科技股份有限公司 一种含噻唑并噻唑-二苯并噻吩苯并二噻吩聚合物及其制备与应用
CN104140521A (zh) * 2014-07-11 2014-11-12 太原理工大学 宽吸收谱的三元共轭聚合物给体材料及其制备方法和用途
KR102283124B1 (ko) * 2017-09-27 2021-07-28 주식회사 엘지화학 중합체 및 이를 포함하는 유기 태양 전지
CN108250222A (zh) * 2018-01-30 2018-07-06 常州大学 基于苯并二噻吩-4,8-二酮的(D-A)n+1D型齐聚物光伏供体材料的合成及应用
CN108409944A (zh) * 2018-02-11 2018-08-17 苏州大学 一种含氯取代共轭侧链的共轭聚合物及其制备方法和应用
CN109265656B (zh) * 2018-09-05 2020-10-16 苏州大学 双烷硫链取代的共轭聚合物及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535042A (en) * 1983-02-24 1985-08-13 Hiroyuki Kitayama Electrophotographic photosensitive member with electron donor and acceptor layers
CN102388085A (zh) * 2008-10-22 2012-03-21 艾尼股份公司 包含苯并三唑单元的π-共轭低带隙共聚物
CN102782011A (zh) * 2009-10-28 2012-11-14 华盛顿州大学 含噻唑并噻唑或苯并双噻唑、或苯并双噁唑电子受体亚单元、和电子供体亚单元的共聚物半导体以及它们在晶体管和太阳能电池中的用途
CN109891615A (zh) * 2016-10-11 2019-06-14 香港科技大学 基于一种供体聚合物和两种受体的三元混合物有机太阳能电池
CN111019095A (zh) * 2019-10-23 2020-04-17 苏州大学 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENCHAO ZHAO ET AL.: "Molecular Optimization Enables Over 13% Efficiency In Organic Solar Cells", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, 17 May 2017 (2017-05-17), XP055511228, DOI: 10.1021/jacs.7b02677 *

Also Published As

Publication number Publication date
CN111019095A (zh) 2020-04-17
AU2020356808A1 (en) 2021-05-13
US20210395442A1 (en) 2021-12-23
CN111019095B (zh) 2021-08-31
AU2020356808B2 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
WO2021077815A1 (zh) 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物
Yang et al. Influence of fluorine substituents on the film dielectric constant and open-circuit voltage in organic photovoltaics
WO2013018951A1 (ko) 3,6-카바졸을 포함하는 전도성 고분자 및 이를 이용한 유기태양전지
US9246110B2 (en) Organic material and photoelectric conversion element
Li et al. The effect of thieno [3, 2-b] thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers
Hwang et al. Synthesis, characterization, and photovoltaic applications of dithienogermole-dithienylbenzothiadiazole and-dithienylthiazolothiazole copolymers
CN110066387B (zh) 基于吡嗪-2-羧酸酯单元的共轭聚合物及其制备方法和应用
Xue et al. Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers
CN111138640B (zh) 受体聚合物、光活性层、能量器件及制备方法与应用
Cheon et al. Synthesis and characterization of new TPD-based copolymers and applications in bulk heterojunction solar cells
Jiang et al. Impact of an electron withdrawing group on the thiophene-fused benzotriazole unit on the photovoltaic performance of the derived polymer solar cells
Eom et al. n-Type core effect on perylene diimide based acceptors for panchromatic fullerene-free organic solar cells
Zhang et al. Designing a thiophene-fused quinoxaline unit to build D–A copolymers for non-fullerene organic solar cells
Helgesen et al. Photochemical stability and photovoltaic performance of low-band gap polymers based on dithiophene with different bridging atoms
Kim et al. Deep HOMO polymers comprising anthracene units for bulk heterojunction solar cells
Liu et al. Synthesis of low band-gap 2D conjugated polymers and their application for organic field effect transistors and solar cells
Huang et al. Effects of a heteroatomic benzothienothiophenedione acceptor on the properties of a series of wide-bandgap photovoltaic polymers
KR101183528B1 (ko) 반도체성 유기 고분자 재료 및 이를 포함하는 광기전력 소자
Tamilavan et al. Synthesis and application of low band gap broad absorption oligomers based on 2, 5-bis (2-thienyl)-N-arylpyrrole for bulk heterojunction solar cells
PanFeng et al. Synthesis, characterizations and photovoltaic applications of a thickness-insensitive benzodifuran based copolymer
US11114619B2 (en) Conjugated polymer for a photoactive layer, a coating composition including the conjugated polymer, and an organic solar cell including the photoactive layer
KR101400077B1 (ko) 신규한 중합체, 이의 제조방법 및 이를 함유하는 유기 광전자 소자
Chau et al. Complementary absorbing ternary blend containing structural isomeric donor polymers for improving the performance of PC61BM-based indoor photovoltaics
Al-Azzawi et al. Synthesis, optical and electrochemical properties of naphthothiadiazole-based donor-acceptor polymers and their photovoltaic applications
Gao et al. Synthesis of a side chain conjugated polythiophene copolymer and its photovoltaic property

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020356808

Country of ref document: AU

Date of ref document: 20200716

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879721

Country of ref document: EP

Kind code of ref document: A1