CN111138640B - 受体聚合物、光活性层、能量器件及制备方法与应用 - Google Patents

受体聚合物、光活性层、能量器件及制备方法与应用 Download PDF

Info

Publication number
CN111138640B
CN111138640B CN202010010602.0A CN202010010602A CN111138640B CN 111138640 B CN111138640 B CN 111138640B CN 202010010602 A CN202010010602 A CN 202010010602A CN 111138640 B CN111138640 B CN 111138640B
Authority
CN
China
Prior art keywords
group
acceptor polymer
rings
polymer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010010602.0A
Other languages
English (en)
Other versions
CN111138640A (zh
Inventor
闵杰
王伟
吴强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202010010602.0A priority Critical patent/CN111138640B/zh
Publication of CN111138640A publication Critical patent/CN111138640A/zh
Application granted granted Critical
Publication of CN111138640B publication Critical patent/CN111138640B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了受体聚合物、光活性层、能量器件及制备方法与应用,制备的受体聚合物是以DAD稠环小分子为骨架,芳香环为连接基团,获得了兼具窄带隙和高消光系数的性能,将具有该性能的受体聚合物与中等带隙电子给体材料匹配,可以有效提高能量转换效率,因此能够广泛应用于锂离子电池、电化学器件、超级电容器、有机光伏器件、电致变色器件、场效应管晶体管和传感器中,具体地将该受体聚合物应用于全聚合物光伏器件中,能量转换效率可以达到13%以上。

Description

受体聚合物、光活性层、能量器件及制备方法与应用
技术领域
本发明属于光伏材料领域,具体涉及受体聚合物、光活性层、能量器件及其制备方法与应用。
技术背景
将太阳能转化为电能一直是科研工作者们研究热点之一,并且成果可观。全聚合物有机太阳能电池凭借其成本低、质量轻、柔性、良好的热稳定性和机械稳定性和可卷对卷大规模生产等优势而广受研究者关注。近几年,经过对分子结构、器件结构和加工工艺的优化,全聚合物有机太阳能电池的光电转化效率已突破11%,这显示出其巨大应用前景(见刘烽Adv.Mater.2019,31,1902899)。但之后光电转换效率迟迟未得到大的突破,这主要是因为缺乏兼顾窄带隙和高消光系数的受体聚合物。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供受体聚合物、光活性层、能量器件及制备方法与应用,受体聚合物兼具窄带隙和高消光系数,能够有效地提高全聚合物太阳能电池的效率。
本发明为了实现上述目的,采用了以下方案:
<受体聚合物>
本发明提供一种受体聚合物,其特征在于,结构通式为:
Figure GDA0002718927770000021
式中,Ar为下述4种单元中的任一种:
1)亚乙烯基、亚乙炔基、单环亚芳基、双环亚芳基、单环杂亚芳基、双环杂亚芳基或至少三个环的杂亚芳基;
2)单环杂亚芳基的环与环之间耦合或通过单键连接形成的基团;
3)双环杂亚芳基的环与环之间耦合或通过单键连接形成的基团;
4)至少三个环的杂亚芳基中的环与环之间耦合或通过单键连接形成的基团;
R1为H或烷基链,R2为烷基链,烷基链为碳原子数为1~24的直链或支链;
n代表稠环骨架和连接芳环的重复单元个数,为1~100之间的自然数。
优选地,本发明提供的受体聚合物还可以具有以下特征:R1为碳原子数为6~12的直链烷基,如正十一烷基,R2为碳原子数为20~24的支链烷基,如2-己基-癸烷或2-辛基-十二烷基。
优选地,本发明提供的受体聚合物还可以具有以下特征:Ar为共轭芳环、亚乙烯基、由共轭芳环构筑形成的稠环、或由共轭芳环与乙烯基构筑的共轭基团,共轭芳环为噻吩、并噻吩、苯环、呋喃或噻吩。
优选地,本发明提供的受体聚合物还可以具有以下特征:Ar为下述7种基团中的任一种:
Figure GDA0002718927770000031
在上述结构通式中,M表示H、Cl或F原子;N’表示H、烷基链或烷氧链;R3为烷基、烷氧链或烷硫链;并且,R3中所包含的烷基均为碳原子数为1~24的直链或支链。
优选地,本发明提供的受体聚合物还可以具有以下特征:Ar为下述3种基团中的任一种:
Figure GDA0002718927770000032
在上述结构通式中,R’3为2-乙基-己基或2-己基-癸烷。
优选地,本发明提供的受体聚合物具体可以为下式P1、P2或P3所示的聚合物:
Figure GDA0002718927770000041
<制备方法>
进一步,本发明还提供一种制备上述受体聚合物的方法,其特征在于,包括:在惰性气体保护下,将下式II与式III所示的化合物在催化剂的作用下进行共聚反应,得到式I所示的受体聚合物,
Figure GDA0002718927770000051
式中,Ar为下述4种单元中的任一种:
1)亚乙烯基、亚乙炔基、单环亚芳基、双环亚芳基、单环杂亚芳基、双环杂亚芳基或至少三个环的杂亚芳基;
2)单环杂亚芳基的环与环之间耦合或通过单键连接形成的基团;
3)双环杂亚芳基的环与环之间耦合或通过单键连接形成的基团;
4)至少三个环的杂亚芳基中的环与环之间耦合或通过单键连接形成的基团;
R1为H或烷基链,R2为烷基链,烷基链为碳原子数为1~24的直链或支链;
n代表稠环骨架和连接芳环的重复单元个数,为1~100之间的自然数。
优选地,本发明提供的制备受体聚合物的方法还可以具有以下特征:制备方法采用Stille法,Stille法中反应条件为:反应溶剂为四氢呋喃、甲苯和氯苯中的至少一种,催化剂为四(三苯基膦)钯(0)、氯化钯或醋酸钯,催化剂的加入量为式II所示化合物与式III所示化合物的总摩尔量的0.01%~10%。
优选地,本发明提供的制备受体聚合物的方法还可以具有以下特征:反应温度为30℃~200℃,反应时间为15min~72h。
<光活性层>
进一步,本发明还提供一种光活性层,其特征在于:通过将p-型电子给体和上文<受体聚合物>中所描述的受体聚合物溶解后均匀混合,然后旋涂制备而成,其中,p-型电子给体与受体聚合物的摩尔比为1:0.1~10。p-型电子给体可为有机小分子或有机聚合物,如A-D-A型小分子或D-A型聚合物给体。
<能量器件>
进一步,本发明还提供一种能量器件,其特征在于,包括:第一电极;第二电极;以及设置在所述第一电极和所述第二电极之间的至少一层半导体层,其中,所述半导体层包括上文<受体聚合物>中所描述的受体聚合物或上文<受体聚合物>中所描述的光活性层。
<应用>
上文<受体聚合物>中所描述的受体聚合物或上文<受体聚合物>中所描述的光活性层可以应用于锂离子电池、电化学器件、超级电容器、有机光伏器件、电致变色器件、场效应管晶体管和传感器中。
发明的作用与效果
本发明所提供的受体聚合物、光活性层、能量器件及制备方法与应用,制备的受体聚合物是以DAD稠环小分子为骨架,芳香环为连接基团,获得了兼具窄带隙和高消光系数的性能,将具有该性能的受体聚合物应用于全聚合物光伏器件中,极大地提高了全聚合物太阳能电池的效率,能量转换效率可以达到13%以上。
附图说明
图1为本发明实施例一中制备所得产物P1的核磁图;
图2为本发明实施例二中制备所得产物P2的核磁图;
图3为本发明实施例三中制备所得产物P3的核磁图;
图4为本发明实施例中涉及的受体聚合物P1的吸收光谱图;
图5为本发明实施例中涉及的受体聚合物P1的循环伏安曲线图;
图6为本发明实施例中涉及的受体聚合物P1的热失重曲线图;
图7为本发明实施例八中将受体聚合物P1制成光电器件后测得的J-V曲线图。
具体实施方式
以下结合附图对本发明涉及的受体聚合物、光活性层、能量器件及制备方法与应用的具体实施方案进行详细地说明。
在以下实施例中所使用的实验方法如无特殊说明,均为常规方法;所用溶剂都是以HPLC级购得,并且所有反应都是在氩气惰性气氛下进行,除非另外指出,否则所有试剂和原料均是商业上获得的;所用的压力以大气压或接近大气压。在以下实施例中,努力确保所用数字(包括量、温度、反应时间等的准确性),但应考虑到一些实验误差和偏差。
<实施例一>受体聚合物P1及其制备方法
Figure GDA0002718927770000081
按照上述反应方程式进行,取单体M1和M2各0.1mmol,溶于10ml甲苯后,用氩气排空气20分钟,接着加入8mg催化剂四(三苯基膦)钯(0),再继续排空气25分钟,然后在甲苯回流温度下聚合2小时后停止。将聚合物溶液冷却至室温,慢慢地沉析入甲醇中,过滤,真空干燥24小时后得到黑色固体粉末的式P1所示受体聚合物,产率为75%,GPC:Mn=20.6kg mol-1;Mw/Mn=1.86。
如图1所示,为本实施例中产物的核磁谱图,与式P1所示受体聚合物结构吻合,证实合成的产物具有分子式P1所显示的结构。
<实施例二>受体聚合物P2及其制备方法
Figure GDA0002718927770000091
按照上述反应方程式进行,取单体M1和M3各0.1mmol,溶于10ml甲苯后,用氩气排空气20分钟,再加入8mg催化剂四(三苯基膦)钯(0),继续排空气25分钟,然后在甲苯回流温度下聚合2小时后停止。将聚合物溶液冷却至室温,慢慢地沉析入甲醇中,过滤,真空干燥24小时后得到黑色固体粉末的式P2所示受体聚合物,产率为65%。
如图2所示,为本实施例中产物的核磁谱图,与式P2所示受体聚合物结构吻合,证实合成的产物具有分子式P2所显示的结构。
<实施例三>受体聚合物P3及其制备方法
Figure GDA0002718927770000101
按照上述反应方程式进行,取单体M1和M3各0.1mmol,溶于10ml甲苯后,用氩气排空气20分钟,再加入8mg催化剂四(三苯基膦)钯(0)后继续排空气25分钟,然后在甲苯回流温度下聚合2小时后停止。将聚合物溶液冷却至室温,慢慢地沉析入甲醇中,过滤,真空干燥24小时后得到黑色固体粉末的式P3所示受体聚合物,产率为73%。
如图3所示,为本实施例中产物的核磁谱图,与式P3所示受体聚合物结构吻合,证实合成的产物具有分子式P3所显示的结构。
<实施例四>成膜性和溶解性测试
将实施例一至三所制备的受体聚合物P1~P3分别置于常见的几种有机溶剂中,如氯苯、二氯苯、氯仿、甲苯、三氯苯或甲醇等。发现这些受体聚合物在氯化溶剂中都具有良好的溶解性,但在甲醇中不可溶。
进一步,将受体聚合物P1~P3中任一种的二氯苯溶液旋涂在玻璃片上,均可制得高品质的薄膜。
<实施例五>光学带隙测试
如图4所示,为实施例一所制备的受体聚合物P1在氯仿溶液和薄膜下测定的吸收光谱。聚合物的光学带隙可由经验公式(Eg=1240/λ吸收边)计算并示于下表1中。
表1聚合物P1的光学吸收数据
Figure GDA0002718927770000111
其中,a表示小分子在CHCl3溶液中测得的吸收峰;b表示在石英玻璃上的薄膜吸收峰;c表示通过公式计算所得,Eg opt为光学带隙。
<实施例六>最高分子未占有轨道(HOMO)和最低分子占有轨道(LUMO)测试
将实施例一制备的受体聚合物P1(0.5mg)溶解在1mL氯仿中,然后向将该溶液中滴加至工作电极如铂片上;使用0.1mol/L四丁基六氟磷酸铵的乙腈溶液作为电解液;以铂丝作为对电极;以银丝作为参比电极。使用电化学循环伏安法测量在该体系中进行。本发明实施例一修饰的受体聚合物P1的循环伏安数据示于图5。受体聚合物P1的HOMO能级是-5.69eV,LUMO能级是-3.93eV,表明P1为窄带隙受体聚合物。
<实施例七>热稳定性测试
采用TGA-2050热重分析仪评估了本发明实施例一制备的受体聚合物P1在0~500℃温度范围内的稳定性,热失重曲线示于图6。结果显示受体聚合物P1的热分解温度为305℃,表明P1具有良好的热稳定性。
<实施例八>光活性层和聚合物光伏器件及性能测试
将本发明实施例一制备的受体聚合物P1与下列给体聚合物PM6,以重量比为1:1.2共混溶解于二氯苯制备15g/L的共混活性层溶液。
Figure GDA0002718927770000121
在透明氧化铟锡(ITO)衬底上制备聚合物光伏器件:将常用的阳极修饰层聚3,4-亚乙基二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)旋涂在ITO表面进行修饰,使用膜厚仪测试PEDOT:PSS层的厚度为30nm;接着,将上述活性层溶液旋涂薄层;然后,在大约10-4Pa的压力下相继蒸镀钙和铝的薄层,得到常规结构的聚合物光伏器件。
在填充N2的手套箱中使用AAA级太阳光模拟器AM1.5 G(100mW/cm2)的强度下所制备聚合物光伏器件的开路电压、短路电流、填充因子和能量转换效率进行测试。如图7所示,为测试后的电流密度-电压曲线,开路电压为0.93V,短路电流为21.78mA/cm2,填充因子为66.33%,能量转换效率为13.44%。
以上实施例仅仅是对本发明技术方案所做的举例说明。本发明所涉及的受体聚合物、光活性层、能量器件及制备方法与应用并不仅仅限定于在以上实施例中所描述的内容,而是以权利要求所限定的范围为准。本发明所属领域技术人员在该实施例的基础上所做的任何修改或补充或等效替换,都在本发明的权利要求所要求保护的范围内。

Claims (10)

1.一种受体聚合物,其特征在于,结构通式为:
Figure FDA0002718927760000011
式中,Ar为下述4种单元中的任一种:
1)亚乙烯基、亚乙炔基、单环亚芳基、双环亚芳基、单环杂亚芳基、双环杂亚芳基或至少三个环的杂亚芳基;
2)单环杂亚芳基的环与环之间耦合或通过单键连接形成的基团;
3)双环杂亚芳基的环与环之间耦合或通过单键连接形成的基团;
4)至少三个环的杂亚芳基中的环与环之间耦合或通过单键连接形成的基团;
R1为H或烷基链,R2为烷基链,烷基链为碳原子数为1~24的直链或支链;
n代表稠环骨架和连接芳环的重复单元个数,为1~100之间的自然数。
2.根据权利要求1所述的受体聚合物,其特征在于:
其中,Ar为下述7种基团中的任一种:
Figure FDA0002718927760000021
在上述结构通式中,M表示H、Cl或F原子;N’表示H、烷基链或烷氧链;R3为烷基、烷氧链或烷硫链;并且,R3中所包含的烷基均为碳原子数为1~24的直链或支链。
3.根据权利要求2所述的受体聚合物,其特征在于:
其中,Ar为下述3种基团中的任一种:
Figure FDA0002718927760000031
在上述结构通式中,R’3为2-乙基-己基或2-己基-癸烷。
4.根据权利要求1所述的受体聚合物,其特征在于:
该受体聚合物为下式P1、P2或P3所示的聚合物:
Figure FDA0002718927760000032
Figure FDA0002718927760000041
5.制备如权利要求1至4中任意一项所述的受体聚合物的方法,其特征在于,包括:
在惰性气体保护下,将下式II与式III所示的化合物在催化剂的作用下进行共聚反应,得到式I所示的受体聚合物,
Figure FDA0002718927760000042
Figure FDA0002718927760000051
式中,Ar为下述4种单元中的任一种:
1)亚乙烯基、亚乙炔基、单环亚芳基、双环亚芳基、单环杂亚芳基、双环杂亚芳基或至少三个环的杂亚芳基;
2)单环杂亚芳基的环与环之间耦合或通过单键连接形成的基团;
3)双环杂亚芳基的环与环之间耦合或通过单键连接形成的基团;
4)至少三个环的杂亚芳基中的环与环之间耦合或通过单键连接形成的基团;
R1为H或烷基链,R2为烷基链,烷基链为碳原子数为1~24的直链或支链;
n代表稠环骨架和连接芳环的重复单元个数,为1~100之间的自然数。
6.根据权利要求5所述的制备受体聚合物的方法,其特征在于:
其中,反应溶剂为四氢呋喃、甲苯和氯苯中的至少一种,
催化剂为四(三苯基膦)钯(0)、氯化钯或醋酸钯,催化剂的加入量为式II所示化合物与式III所示化合物的总摩尔量的0.01%~10%。
7.根据权利要求5所述的制备受体聚合物的方法,其特征在于:
其中,反应温度为30℃~200℃,反应时间为15min~72h。
8.一种光活性层,其特征在于:
通过将p-型电子给体和权利要求1至4中任意一项所述的受体聚合物溶解后均匀混合,然后旋涂制备而成,
其中,p-型电子给体与受体聚合物的摩尔比为1:0.1~10。
9.一种能量器件,其特征在于,包括:
第一电极;
第二电极;以及
设置在所述第一电极和所述第二电极之间的至少一层半导体层,
其中,所述半导体层包括权利要求1至4中任意一项所述的受体聚合物或权利要求8所述的光活性层。
10.将权利要求1至4中任意一项所述的受体聚合物或权利要求8所述的光活性层应用于电化学器件、有机光伏器件、电致变色器件、场效应管晶体管和传感器中。
CN202010010602.0A 2020-01-06 2020-01-06 受体聚合物、光活性层、能量器件及制备方法与应用 Expired - Fee Related CN111138640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010010602.0A CN111138640B (zh) 2020-01-06 2020-01-06 受体聚合物、光活性层、能量器件及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010010602.0A CN111138640B (zh) 2020-01-06 2020-01-06 受体聚合物、光活性层、能量器件及制备方法与应用

Publications (2)

Publication Number Publication Date
CN111138640A CN111138640A (zh) 2020-05-12
CN111138640B true CN111138640B (zh) 2021-02-02

Family

ID=70523685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010010602.0A Expired - Fee Related CN111138640B (zh) 2020-01-06 2020-01-06 受体聚合物、光活性层、能量器件及制备方法与应用

Country Status (1)

Country Link
CN (1) CN111138640B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552489A (zh) * 2020-11-09 2021-03-26 山东师范大学 一种非对称非富勒烯化合物及其制备方法与应用
CN113024780A (zh) * 2021-03-11 2021-06-25 中国科学院化学研究所 一种基于a-da’d-a型小分子受体单元的聚合物受体材料及其制备方法与应用
KR102620987B1 (ko) * 2021-09-17 2024-01-04 울산과학기술원 유기 반도체 화합물, 이를 포함한 유기 반도체 박막 및 전자 소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003234A (zh) * 2019-04-10 2019-07-12 常州大学 一种基于二噻吩并苯并异芳杂稠环D(A-Ar)2型共轭化合物及其应用
KR20190142948A (ko) * 2018-06-19 2019-12-30 주식회사 엘지화학 중합체, 이를 포함하는 조성물 및 이를 포함하는 유기 태양 전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708346B2 (en) * 2015-10-19 2017-07-18 Flexterra, Inc. Semiconducting compounds and related devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190142948A (ko) * 2018-06-19 2019-12-30 주식회사 엘지화학 중합체, 이를 포함하는 조성물 및 이를 포함하는 유기 태양 전지
CN110003234A (zh) * 2019-04-10 2019-07-12 常州大学 一种基于二噻吩并苯并异芳杂稠环D(A-Ar)2型共轭化合物及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A new small molecule donor for efficient and stable all small molecule organic solar cells;Wang W, et al.;《Organic Electronics》;20190311;第70卷;第78-85页 *
Low-Bandgap n‑Type Polymer Based on a Fused-DAD-Type Heptacyclic Ring for All-Polymer Solar Cell Application with a Power Conversion Efficiency of 10.7%;Tang A L, et al.;《ACS Macro Letters》;20200429;第9卷;第706-712页 *

Also Published As

Publication number Publication date
CN111138640A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
Wang et al. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells
Chen et al. A chlorinated π-conjugated polymer donor for efficient organic solar cells
You et al. Donor–acceptor type polymer bearing carbazole side chain for efficient Dopant‐Free perovskite solar cells
US8367798B2 (en) Active materials for photoelectric devices and devices that use the materials
CN111138640B (zh) 受体聚合物、光活性层、能量器件及制备方法与应用
CN111019095B (zh) 基于2,5-二(2-噻吩基)噻唑并[5,4-d]噻唑基三元无规共轭聚合物
CN105524256A (zh) 一种含有苯并三氮唑类共轭聚合物及其制备方法与在非富勒烯聚合物太阳能电池中的应用
Xue et al. Two Birds with One Stone: High Efficiency and Low Synthetic Cost for Benzotriazole‐Based Polymer Solar Cells by a Simple Chemical Approach
Cheng et al. Coplanar phenanthro [9, 10-d] imidazole based hole-transporting material enabling over 19%/21% efficiency in inverted/regular perovskite solar cells
Pang et al. High-efficiency organic solar cells processed from a real green solvent
Liu et al. A rational design and synthesis of cross-conjugated small molecule acceptors approaching high-performance fullerene-free polymer solar cells
Zheng et al. Over 14% Efficiency Single‐Junction Organic Solar Cells Enabled by Reasonable Conformation Modulating in Naphtho [2, 3‐b: 6, 7‐b′] difuran Based Polymer
Yan et al. Naphthalene-diimide selenophene copolymers as efficient solution-processable electron-transporting material for perovskite solar cells
Cai et al. Effects of including electron-withdrawing atoms on the physical and photovoltaic properties of indacenodithieno [3, 2-b] thiophene-based donor–acceptor polymers: towards an acceptor design for efficient polymer solar cells
CN110066387B (zh) 基于吡嗪-2-羧酸酯单元的共轭聚合物及其制备方法和应用
Eom et al. n-Type core effect on perylene diimide based acceptors for panchromatic fullerene-free organic solar cells
Song et al. Solution-processed interlayer of n-type small molecules for organic photovoltaic devices: Enhancement of the fill factor due to ordered orientation
Duan et al. DTBDT‐Based Polymer Hole Transport Materials for Low Voltage Loss CsPbI2Br Perovskite Solar Cells
CN113980250B (zh) 可绿色溶剂加工的共轭聚合物材料及其制备方法
PanFeng et al. Synthesis, characterizations and photovoltaic applications of a thickness-insensitive benzodifuran based copolymer
CN112646130B (zh) 基于双自由基苯并双噻二唑的n型水/醇溶共轭聚电解质及其制备与应用
JP5701453B2 (ja) ジフルオロベンゾトリアゾリル太陽電池材料、調合法、およびその使用方法
Zhao et al. Influence of the positions of thiophenes and side chains on diketopyrrolopyrrole based narrow band-gap small molecules for organic solar cells
Shi et al. Fluorinated biselenophene-naphthalenediimide copolymers for efficient all-polymer solar cells
EP2759556B1 (en) Difluoro benzotriazolyl solar cell polymeric material and preparation method and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210202

Termination date: 20220106