WO2021077703A1 - 光学成像元件、光学成像元件制造方法 - Google Patents

光学成像元件、光学成像元件制造方法 Download PDF

Info

Publication number
WO2021077703A1
WO2021077703A1 PCT/CN2020/086928 CN2020086928W WO2021077703A1 WO 2021077703 A1 WO2021077703 A1 WO 2021077703A1 CN 2020086928 W CN2020086928 W CN 2020086928W WO 2021077703 A1 WO2021077703 A1 WO 2021077703A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting
transparent
imaging element
optical imaging
Prior art date
Application number
PCT/CN2020/086928
Other languages
English (en)
French (fr)
Inventor
颜展
洪增辉
张兵
韩成
Original Assignee
像航(上海)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 像航(上海)科技有限公司 filed Critical 像航(上海)科技有限公司
Publication of WO2021077703A1 publication Critical patent/WO2021077703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/35Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using reflective optical elements in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images

Definitions

  • the invention relates to a medium-free aerial imaging technology, in particular to an optical imaging element and a manufacturing method of the optical imaging element.
  • the medium-free aerial imaging technology mainly adopts a microchannel matrix optical waveguide plate, which is realized by reconverging in the air through two reflections of two orthogonally arranged transparent materials through the optical path, which can reflect point light sources and lines.
  • the light source and surface light source are still point light sources, line light sources, and surface light sources after converging in the air.
  • This special light path reflection effect makes the aerial imaging technology to be used in practice.
  • the two layers of orthogonally arranged transparent materials are now used.
  • the realized micro-channel matrix optical waveguide plate has insufficient resolution and clarity of aerial imaging, which not only affects the user experience, but also puts forward higher requirements on application scenarios, resulting in the commercial promotion and large-scale application of medium-free aerial imaging technology. Great constraints.
  • an optical imaging element including:
  • each layer of the light-transmitting laminate includes a plurality of transparent strips that are attached to each other, and the transparent strips are between the surfaces that are attached to two adjacent transparent strips. The distance is the width of the transparent strip.
  • the surfaces of the transparent strips that are attached to each other and/or opposite to the surfaces that are attached to each other are provided with a reflective surface.
  • the reflective surface includes, but is not limited to, a reflective film or a reflective sheet or metal plating.
  • the layer is used to reflect light to realize the transformation of the propagation direction of the light in the optical imaging element, and the transparent strips of two adjacent layers of light-transmitting laminates are orthogonal to each other;
  • the transparent strips of each layer of the light-transmitting laminate include: a first transparent strip, a second transparent strip, and a plurality of third transparent strips.
  • the first transparent strips and the second transparent strips are separately arranged on the transparent strips.
  • On both sides of the optical laminate a number of third transparent strips are arranged between the first transparent strip and the second transparent strip, and the sum of the widths of the first transparent strip and the second transparent strip is the same as the third transparent strip.
  • the widths of the transparent bars are equal.
  • the light-transmitting laminate of the outermost layer is marked as the first layer
  • the light-transmitting laminate adjacent to and orthogonal to the first layer is marked as the second layer
  • the numbers of the light-transmitting laminates of each layer are marked in this order Are: 1,2,3,...2N-1,2N, where N ⁇ 2, the widths of the first transparent strips of the first and second layers of the light-transmitting laminate are equal, and the third and fourth layers
  • the widths of the first transparent strips of the light-transmitting laminate are the same, and so on, the widths of the first transparent strips of the 2N-1 layer and the 2N-th layer of the light-transmitting laminate are the same.
  • first transparent strips of the light-transmitting laminates of the odd-numbered or even-numbered layers are respectively arranged on the same side of the light-transmitting laminates of the odd-numbered or even-numbered layers, and the light-transmitting laminates of the odd-numbered or even-numbered layers
  • the width of the first transparent strip of the body is not equal.
  • widths of the first transparent strips of the light-transmitting laminates of odd-numbered or even-numbered layers are in an arithmetic series.
  • the tolerance of the arithmetic sequence and the width of the first transparent strip of the 2N-1 or 2Nth layer are not greater than 1/N of the width of the third transparent strip.
  • the width of the third transparent strip ranges from 200 ⁇ m to 2000 ⁇ m.
  • each layer of the light-transmitting laminate is in the range of 200 ⁇ m to 2000 ⁇ m.
  • the thickness of the light-transmitting laminate decreases as the number of layers increases.
  • the thickness of the reflective surface ranges from 5 to 400 nm.
  • the adjacent transparent strips and the light-transmitting laminates of each layer are glued together by a uniform thin layer of colorless, high-light-transmitting and high-strength glue.
  • an optical imaging element including the following steps:
  • a reflective surface is provided on two opposite sides or one side of the transparent strip, and the reflective surface includes but is not limited to a reflective film or a reflective sheet or a metal-plated layer for reflecting light to realize the propagation direction of the light in the optical imaging element The transformation;
  • the third light-transmitting laminated body is laminated and orthogonal to the third light-transmitting laminated body.
  • the non-edge reflective surface of the laminated body and the first light-transmitting laminated body are parallel but not on the same plane;
  • the fourth light-transmitting laminated body is further laminated and orthogonal to the fourth light-transmitting laminated body.
  • the non-edge reflective surface of the laminated body and the second light-transmitting laminated body are parallel but not on the same plane;
  • the fourth light-transmitting laminate can be layered layer by layer and orthogonal even-numbered light-transmitting laminates layer by layer.
  • Each odd-numbered light-transmitting laminate is laminated with other odd-numbered light-transmitting laminates.
  • the body is arranged in a dislocation, so that the non-edge reflective surface of each light-transmitting laminated body is not on the same plane.
  • dislocation displacement directions of the odd-numbered light-transmitting laminated bodies are the same, and the dislocation displacement directions of the even-numbered light-transmitting laminated bodies are the same.
  • edge of the first light-transmitting laminate as a reference, cut the misaligned protrusions of each of the light-transmitting laminates to align the edges of the multilayer light-transmitting laminate;
  • a reflective surface is provided on the cut surface of the cut transparent strip and the side surface of the newly filled transparent strip.
  • a reflective surface is provided on the cut surfaces of the transparent strips cut on both sides of the multilayer light-transmitting laminate.
  • a square is cut on the last piece of light-transmitting laminate, any side of the square is not parallel to any light-transmitting strip, and the projection of the square on the plane where the first piece of light-transmitting laminate is located is in the first On a light-transmitting laminated body;
  • angle difference between any side of the square and the pair of transparent strips is not more than 60°.
  • the included angle between any side of the square and any light-transmitting strip is 45°.
  • the intercepting method of intercepting a square on the last transparent laminated body includes the following sub-steps:
  • the cutting angle is an acute angle and not less than 15°.
  • the cutting angle is 45°.
  • the displacement of the third light-transmitting laminated body is equal to the displacement of the fourth light-transmitting laminated body, and so on, and the displacement of any subsequent odd-numbered light-transmitting laminated body is the same as the displacement of the latter one. Even-numbered light-transmitting laminates have the same amount of displacement.
  • the displacement amounts of the third and subsequent odd-numbered light-transmitting laminated bodies or the fourth and subsequent even-numbered light-transmitting laminated bodies are not equal.
  • the displacement amounts of the third and subsequent odd-numbered light-transmitting laminated bodies or the fourth and subsequent even-numbered light-transmitting laminated bodies are in an arithmetic sequence.
  • the tolerance of the arithmetic sequence and the displacement of the last two light-transmitting laminates laminated are not more than 1/n of the width of the transparent strip, where n is 1/2 of the total number of light-transmitting laminates .
  • the thickness of the reflective surface ranges from 5 to 400 nm.
  • the adjacent transparent strips and the light-transmitting laminates of each layer are glued together by a uniform thin layer of colorless, high-light-transmitting and high-strength glue.
  • the glue includes, but is not limited to, photosensitive glue or UV glue.
  • each layer of the light-transmitting laminate is in the range of 200 ⁇ m to 2000 ⁇ m.
  • the thickness of the light-transmitting laminate decreases as the number of layers increases.
  • the resolution of aerial imaging is greatly improved through the misalignment arrangement, the dependence on the application scene and the use environment is reduced, the applicability is greatly expanded, and the manufacturing method is clever It is simple and has laid a solid technical foundation for mass production and large-scale commercial use.
  • 1 is a schematic diagram of the orthogonal arrangement of two adjacent layers of light-transmitting laminates of an optical imaging element according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a multilayer light-transmitting laminate of an optical imaging element according to an embodiment of the present invention
  • FIG. 3 is a schematic side view of a multilayer light-transmitting laminate of an optical imaging element according to an embodiment of the present invention
  • FIG. 4 is a schematic top view of a micromirror imaging structure of an optical imaging element according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a first method of manufacturing an optical imaging element according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a second method of manufacturing an optical imaging element according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a third method of manufacturing an optical imaging element according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of cutting according to the method of Fig. 7;
  • FIG. 9 is a schematic diagram of the structure of a plurality of light-transmitting laminates cut as shown in FIG. 8;
  • FIG. 10 is a schematic diagram of the principle of the optimal viewing angle of the user of the optical imaging element according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the principle that the viewing angle of the user in FIG. 10 is 45°.
  • FIGS. 1 to 4 which is used for aerial imaging without media, and can be used for conferences, teaching, exhibition, media, urban infrastructure, etc., and has a wide range of application scenarios.
  • the optical imaging element of the embodiment of the present invention has a light-transmitting laminate 1 with an even number of layers stacked.
  • each layer of the light-transmitting laminate 1 is provided with a plurality of transparent strips 11 that are attached to each other.
  • the surfaces of the transparent strips 11 that are attached to each other and/or the opposite side of the mutually attached surfaces are provided with reflective surfaces.
  • the transparent strips 11 of the two-layer light-transmitting laminate 1 are orthogonal to each other, that is, the two-layer light-transmitting laminate 1 is orthogonal, so that the light path can be reflected in the air and can be imaged without a medium; the transparent strip 11 is set to have a reflective surface
  • the surface that is, the distance between the surface where multiple transparent strips 11 are attached to and the opposite surface is the width, that is, the edge connecting the two reflective surfaces is wide, and the other pair of edges on the surface is long. Therefore, another set of edges That is, high basically determines the thickness of the light-transmitting laminate 1.
  • the thickness of each layer of the light-transmitting laminate 1 ranges from 200 ⁇ m to 2000 ⁇ m.
  • the total thickness does not change, that is, the thickness of the light-transmitting laminate 1 is changing, that is, the height of the transparent strip 11 needs to be correspondingly reduced; at the same time, preferably, the width of the transparent strip 11
  • the range is 200 ⁇ m to 2000 ⁇ m, and the length of the light-transmitting laminate 1 can be set according to the size of the actual scene.
  • the bonding between the light-transmitting laminates 1 or the transparent strips 11 can be bonded by a uniform thin layer of colorless, high-light-transmitting and high-strength glue.
  • the thickness of the glue is in the range It is 1 ⁇ 200 ⁇ m.
  • the glue is colorless photosensitive glue or UV glue. It is also possible to use outer frames or other binding methods instead of glueing, so that the light-transmitting laminate 1 or the transparent strip 11 of each layer can be pasted. Close together.
  • the reflective surface is a reflective film or reflective surface or reflective sheet or metal-plated layer, plated with metals such as silver or aluminum.
  • the thickness of the reflective surface is in the range of 5 to 400 nm, and the specific shape of the reflective surface is The name is not limited to this.
  • the thickness of the reflective surface should be as thin as possible.
  • the transparent strip 11 of each layer of the light-transmitting laminate 1 includes: a first transparent strip 111, a second transparent strip 112, and the first transparent strip 111 and the first transparent strip 111.
  • the width of the third transparent strip 113 is a regular size, that is, its width ranges from 200 ⁇ m to 2000 ⁇ m.
  • the first transparent strip 111 and the second transparent strip 113 have a width of 200 ⁇ m to 2000 ⁇ m.
  • the transparent strip 112 is a transparent strip with a special size, and the sum of the widths of the first transparent strip 111 and the second transparent strip 112 is equal to the width of the third transparent strip 113.
  • the outermost layer of the light-transmitting laminate 1 is marked as the first layer, and the light-transmitting laminate 1 adjacent to and perpendicular to the first layer is marked as the second layer, which is marked in this order
  • the number of each layer of the light-transmitting laminate 1 is: 1,2,3,...2N-1,2N, where N ⁇ 2, the width of the first transparent strip 111 of the light-transmitting laminate 1 of the first and second layers Equal, the width of the first transparent strip 111 of the light-transmitting laminate 1 of the third and fourth layers is equal, and so on, the width of the first transparent strip 111 of the light-transmitting laminate 1 of the 2N-1 layer and the 2N layer equal.
  • the first transparent strips 111 of the light-transmitting laminate 1 of odd or even layers are respectively arranged on the same side of the light-transmitting laminate 1 of each odd or even layer.
  • the widths of the first transparent strips 111 of the light-transmitting laminate 1 of the layers are not equal, and the sum of the widths of the first transparent strips 111 and the second transparent strips 112 is equal to the width of the third transparent strips 113.
  • the first transparent strips 111 with unequal widths of each layer constitute the displacement of the reflective surface of each layer of the light-transmitting laminate 1, that is, the reflective surface of each non-edge transparent strip 11 of each odd-numbered layer or each even-numbered layer of light-transmitting laminate 1 is Not on the same plane, as shown in FIG. 4, a micro-mirror imaging structure is formed, which increases and decreases the number of units for displaying images, thereby greatly improving the resolution.
  • the widths of the first transparent strips 111 of the light-transmitting laminate 1 of odd or even layers are respectively distributed in arithmetic series.
  • the tolerance of the asymmetric sequence and the width of the first transparent strip 111 of the 2N-1 or 2N layer are not greater than 1/N of the width W of the third transparent strip 113, preferably, the first and second layers
  • the width of the transparent strip 111 is set to the width of the third transparent strip 113, and the width of the second head strip 112 is 0, that is, based on the reference that the first and second layers are the odd-numbered and even-numbered layers, the tolerance is set to the third
  • the width W of the transparent strip 113 is 1/N, that is, if the tolerance is W/N, the width of the first transparent strip 111 in the 2N-1 or 2Nth layer is also W/N.
  • the imaging effect is shown in Figure 4. It can be seen that by setting the width of the third transparent strip 13 of each layer with equal difference, the number of image display units is not only increased and reduced, but also very uniform. The resolution can reach only 2 layers of transparent. N 2 times of the optical laminate 1.
  • the resolution of aerial imaging is greatly improved, the dependence on the application scene and the use environment is reduced, and the applicability is greatly expanded.
  • optical imaging element according to the embodiment of the present invention is described above with reference to FIGS. 1 to 4. Further, the optical imaging element of the embodiment of the present invention can be manufactured by the method of manufacturing the optical imaging element of the following embodiment. The manufacturing method of the optical imaging element according to the embodiment of the present invention will be described below with reference to FIGS. 1-9.
  • the method for manufacturing an optical imaging element according to an embodiment of the present invention includes the following steps:
  • a reflective surface is provided on two opposite sides or one side of the transparent strip 11; in this embodiment, the reflective surface is a reflective film or a reflective surface or a reflective sheet or a metal-plated layer, silver or aluminum, etc.
  • Metal preferably, the thickness of the reflective surface is in the range of 5 to 400nm, and the specific shape or name of the reflective surface is not limited to this. At the same time, as the relevant technology and materials allow, the thickness of the reflective surface should be as thin as possible .
  • step S2 a plurality of transparent strips 11 on the sides with reflective surfaces are sequentially laminated to form a light-transmitting laminate 1; in this embodiment, the transparent strips 11 are bonded to other transparent strips 11 on both sides.
  • the edge between the sides is wide, the other edge of the surface is long, and the other edge of the transparent strip 11 is high.
  • the height determines the thickness of the light-transmitting laminate 1.
  • each light-transmitting laminate 1 The thickness ranges from 200 ⁇ m to 2000 ⁇ m. As the number of blocks increases, the thickness of the light-transmitting laminate 1 gradually decreases, that is, the height of the transparent strip 11 gradually decreases to ensure the light transmission rate.
  • step S3 as shown in FIG. 1, a second light-transmitting laminate 1 is laminated on the first light-transmitting laminate 1, and the transparent strips 11 of the two light-transmitting laminates 1 are orthogonal to each other. Floating in the air without medium for imaging.
  • step S4 as shown in FIG. 3, the second light-transmitting laminate 1 is laminated and crossed to the third light-transmitting laminate 1, and the third light-transmitting laminate 1 is laminated with the first light-transmitting laminate.
  • the body 1 is arranged in a staggered manner, so that the non-edge reflective surface of the third light-transmitting laminate and the first light-transmitting laminate are parallel but not in the same plane, forming a micromirror imaging structure.
  • step S5 the third light-transmitting laminated body 1 is further laminated and orthogonal to the fourth light-transmitting laminated body 1, and the fourth light-transmitting laminated body 1 is laminated with the second light-transmitting laminated body 1.
  • the body 1 is arranged in a staggered manner, so that the non-edge reflective surface of the fourth light-transmitting laminate 1 and the second light-transmitting laminate 1 are parallel but not on the same plane, which further increases and reduces the number of image display units of the micromirror imaging structure , So that the resolution is further improved.
  • the fourth light-transmitting laminate 1 can be layered layer by layer, and the even-numbered light-transmitting laminates can be crossed layer by layer.
  • Each odd-numbered light-transmitting laminate The laminates are all arranged in a staggered arrangement with other odd-numbered light-transmitting laminates, so that the non-edge reflective surfaces of each light-transmitting laminate are not on the same plane.
  • the dislocation displacement direction of each odd-numbered light-transmitting laminate 1 is the same, and the dislocation displacement direction of each even-numbered light-transmitting laminate 1 is the same, which is convenient for process standardization, stability, and easy mass production.
  • the displacement of the third light-transmitting laminate 1 and the displacement of the fourth light-transmitting laminate 1 is equal, and so on, the displacement amount of any subsequent odd-numbered light-transmitting laminated body is equal to the displacement amount of the following even-numbered light-transmitting laminated body.
  • the third and subsequent odd-numbered light-transmitting laminated bodies 1 or the fourth and subsequent even-numbered light-transmitting laminated bodies 1 have different displacements.
  • the displacement of the third and subsequent odd-numbered light-transmitting laminates or the fourth and subsequent even-numbered light-transmitting laminates is an arithmetic sequence, and the tolerance of the arithmetic sequence is the same as that of the final stack.
  • the displacement of the two light-transmitting laminates 1 is not more than 1/n of the width of the transparent strip 11, where n is 1/2 of the total number of light-transmitting laminates.
  • the transparent strip 11 The range of the width w of is 200 ⁇ m ⁇ 2000 ⁇ m, based on the width of the transparent strip 11 of the first and second transparent laminate 1, the tolerance is set to 1/n of the width w of the transparent strip, that is, the tolerance is w /n, the displacement of the last two transparent laminated bodies 1 relative to the previous odd-numbered or even-numbered transparent laminated bodies 1 is w/n.
  • the imaging effect is shown in Figure 4. It can be seen that through the displacement of each block The equal difference setting makes the number of image display units not only increase and decrease, but also very uniform, and the resolution can reach n 2 times that when there are only two light-transmitting laminates 1.
  • the bonding between the light-transmitting laminates 1 or the transparent strips 11 in the above steps are all bonded by a uniform and thin layer of colorless, high-light-transmitting and high-strength glue.
  • the glue The thickness ranges from 1 to 200 ⁇ m, and the glue is selected from colorless photosensitive glue and UV glue.
  • step S711 using the edge of the first light-transmitting laminate 1 as a reference, the translucent strips 11 are filled in the offset recesses of each of the light-transmitting laminates 1 so that the edges of the multiple light-transmitting laminates 1 are aligned. Since the displacement direction of each odd-numbered light-transmitting laminate 1 is the same, and the displacement direction of each even-numbered light-transmitting laminate 1 is the same, the filled transparent strip 11 constitutes the first transparent strip in the optical imaging element of the foregoing embodiment. 111.
  • step S712 using the edge of the first light-transmitting laminate 1 as a reference, cut the misaligned projections of each misaligned light-transmitting laminate 1 to align the edges of the multiple light-transmitting laminates. Due to the misalignment, therefore, the width of the cut transparent strip 11 is the displacement, that is, the width of the first transparent strip 111, and the remaining part constitutes the second transparent strip 112 in the optical imaging element of the foregoing embodiment.
  • the edge of the body 1 is used as a reference, and its width is the width of an integer number of transparent strips 11. Therefore, the sum of the widths of the first transparent strip 111 and the second transparent strip 112 is the width of the transparent strip 11.
  • step S713 a reflective surface is provided on the cut surface of the cut transparent strip 11, that is, the second transparent strip 112, and the side surface of the newly filled transparent strip, that is, the first transparent strip 111.
  • step S721 taking the edge of the first light-transmitting laminate 1 as a reference, when the size of the other light-transmitting laminate 1 is larger than that of the first light-transmitting laminate 1, although there is a displacement, it constitutes a whole that is transparent to the front.
  • the optical laminated body 1 is covered, so that a plurality of light-transmitting laminated bodies 1 that are stacked in a dislocation and orthogonal direction are directly cut along the direction of the reflective surface.
  • the first optical imaging element in the optical imaging element of the foregoing embodiment will be formed on both sides of each block.
  • step S722 reflective surfaces are provided on the cut surfaces of the transparent strips 11 cut on both sides of the plurality of light-transmitting laminates 1.
  • step S731 a square 10 is cut on the last piece of light-transmitting laminate 1, and any side of the square 10 is not parallel to any light-transmitting strip 11, and the square 10 is transparent in the first piece.
  • the projections of the plane where the optical laminate 1 is located are all on the first transparent laminate 1, which can avoid irregular edges caused by misalignment; in this embodiment, in order to make the user at the optimal viewing angle, as shown in Figure 10
  • the angles between the mutually orthogonal transparent bars and the user's line of sight are not less than 15°, that is, the user's line of sight is within 60° between the mutually orthogonal transparent bars 11, that is, any side of the square 10 is connected to a pair of
  • the difference in the included angle of the transparent strip 11 is not more than 60°.
  • the angle between the user's line of sight and the transparent strip 11 orthogonal to each other is 45°, that is, the angle between any side of the square 10 and any transparent strip 11 is 45°
  • the intercepting method of intercepting a square 10 on the last transparent laminated body 1 can also be divided into the following two steps:
  • step S7311 as shown in FIG. 8, a certain square shape is cut, and the two pairs of sides are respectively parallel to the light-transmitting strip 11;
  • step S7312 a cutting angle is rotated with the center of the shaped square as the axis to obtain a cut square, namely square 10.
  • the projection of the cut square on the plane where the first light-transmitting laminate 1 is located is both On the first light-transmitting laminate 1.
  • the cutting angle is an acute angle and not less than 15°. Further, preferably, as shown in FIG. 11, the cutting angle is 45°, which can ensure that the user is at the optimal viewing angle.
  • step S732 as shown in FIG. 9, with the square 10 as the bottom surface, cut in a direction perpendicular to the light-transmitting laminate 1 until all the light-transmitting laminates 1 are cut, and a new multi-layer with the same number of layers is obtained. Block light-transmitting laminate.
  • the manufacturing method is ingenious and simple through the process of dislocation arrangement, which greatly improves the resolution of aerial imaging and reduces the dependence on application scenarios and use environments.
  • the applicability has been greatly expanded, and a solid technical foundation has been laid for mass production and large-scale commercial use.
  • the expression of different number units of "layers” or “blocks” of the light-transmitting laminate 1 is just for more convenient accurate expression in different contexts, and does not constitute a difference in technical solutions.
  • the optical imaging element and the manufacturing method of the optical imaging element according to the embodiments of the present invention are described.
  • the resolution of aerial imaging is greatly improved, and the dependence on the application scene and use environment is reduced.
  • the manufacturing method is ingenious and simple, laying a solid technical foundation for mass production and large-scale commercial use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种光学成像元件及其制造方法。光学成像元件包含:层数为偶数的透光层叠体(1),每层包含若干根透明条(11),透明条(11)上设有反射面,相邻两层透光层叠体(1)的透明条(11)相互正交;每层透明条(11)包含:一根第一透明条(111)、一根第二透明条(112)、若干根第三透明条(113),第一透明条(111)和第二透明条(112)分设在透光层叠体(1)的两侧边缘,若干根第三透明条(113)设置在第一透明条(111)和第二透明条(112)之间,第一透明条(111)与第二透明条(112)的宽度之和与第三透明条(113)的宽度相等。通过错位布置,大幅度提高了空中成像的解析度,降低了对应用场景和使用环境的依赖度,大大扩展了适用性,同时制造方法巧妙且简单,为批量生产和大规模商用奠定了坚实的技术基础。

Description

光学成像元件、光学成像元件制造方法 技术领域
本发明涉及无介质空中成像技术,特别涉及一种光学成像元件、光学成像元件制造方法。
背景技术
现有技术中,无介质空中成像技术主要采用微通道矩阵光波导平板,是通过光路经过正交排列的两层透明材料的两次反射,从而在空中重新汇聚实现的,能够反射点光源、线光源、面光源,在空中汇聚后仍然是点光源、线光源、面光源,这一特殊的光路反射效果使得空中成像技术走向了实际引用,但是,现在所采用的两层正交排列的透明材料实现的微通道矩阵光波导平板,空中成像的分辨率和清晰度不够,不仅影响用户体验,还对应用场景提出了更高的要求,导致无介质空中成像技术的商业推广和大规模应用受到了极大的制约。
发明内容
根据本发明实施例,提供了一种光学成像元件,包含:
层数为偶数的层叠设置的透光层叠体,所述每层透光层叠体包含若干根相互贴合的透明条,所述透明条上与相邻两根透明条贴合的面之间的距离为透明条的宽度,所述透明条上相互贴合的面和/或所述相互贴合的面的对面设有反射面,所述反射面包含但不限于反射膜或反射片或镀金属层,用于反射光线以实现光线在光学成像元件中的传播方向的变换,相邻两层透光层叠体的透明条相互正交;
所述每层透光层叠体的透明条包含:一根第一透明条、一根第二透明条、若干根第三透明条,所述第一透明条和第二透明条分设在所述透光层叠体的两侧边缘,若干根第三透明条设置在所述第一透明条和第二透明条之间,所述第一透明条与第二透明条的宽度之和与所述第三透明条的宽度相等。
进一步,标记最外层的透光层叠体为第1层,标记所述与第1层相邻并正交的透光层叠体为第2层,依此次序标记各层透光层叠体的编号为:1,2,3,……2N-1,2N,其中,N≥2,所述第1与2层的透光层叠体的第一透明条的宽度相等,所述第3与4层的透光层叠体的第一透明条的宽度相等,依此类推,所述第2N-1层与第2N层的透光层叠体的第一透明条的宽度相等。
进一步,所述奇数层或偶数层的透光层叠体的第一透明条分别设置在各奇数层或偶数层的透光层叠体的同一侧,所述各奇数层或各偶数层的透光层叠体的第一透明条的宽度不相等。
进一步,奇数层或偶数层的透光层叠体的第一透明条的宽度分别呈等差数列。
进一步,所述等差数列的公差和所述第2N-1或2N层的第一透明条的宽度不大于所述第三透明条的宽度的1/N。
进一步,所述第三透明条的宽度范围为200μm~2000μm。
进一步,所述每层透光层叠体的厚度范围为200μm~2000μm。
进一步,所述透光层叠体的厚度随层数增多而减小。
进一步,所述反射面的厚度范围为5~400nm。
进一步,所述相邻透明条之间以及各层透光层叠体之间通过均匀薄层的无色高透光高强度的胶水贴合胶接。
根据本发明又一实施例,提供了一种光学成像元件制造方法,包含如下步骤:
在透明条的两个相对的侧面或一个侧面上设置反射面,所述反射面包含但不限于反射膜或反射片或镀金属层,用于反射光线以实现光线在光学成像元件中的传播方向的变换;
将若干根透明条上设有反射面的侧面依次贴合构成透光层叠体;
在第一块透光层叠体上层叠第二块透光层叠体,所述两块透光层叠体的透明条正交;
在第二块透光层叠体上再层叠并正交第三块透光层叠体,所述第三块透光层叠体与第一块透光层叠体错位设置,使所述第三块透光层叠体与第一块透光层叠体的非边缘反射面平行但不在同一平面;
在第三块透光层叠体上再层叠并正交第四块透光层叠体,所述第四块透光层叠体与第二块透光层叠体错位设置,使所述第四块透光层叠体与第二块透光层叠体的非边缘反射面平行但不在同一平面;
根据实际需要,可在第四块透光层叠体上再逐层层叠并逐层正交偶数块透光层叠体,每块第奇数块的透光层叠体都与其他第奇数块的透光层叠体错位设置,使每块透光层叠体的非边缘反射面都不在同一平面。
进一步,所述各奇数块透光层叠体的错位位移方向一致,所述各偶数块透光层叠体的错位位移方向一致。
进一步,还包含如下步骤:
以第一块透光层叠体的边缘为基准,在各块错位的透光层叠体的错位凹陷处填补透明条,使多层透光层叠体的边缘对齐;
以第一块透光层叠体的边缘为基准,切割各块错位的透光层叠体的错位凸出处,使多层透光层叠体的边缘对齐;
在切割后的透明条的切割面以及新填补的透明条的侧面上设置反射面。
或者,进一步,还包含如下步骤:
以第一块透光层叠体的边缘为基准,沿反射面的方向切割多层错位层叠并正交的透光层叠体;
在多层透光层叠体的两侧切割后的透明条的切割面上设置反射面。
进一步,还包含如下步骤:
在最后一块透光层叠体上截取一方形,所述方形的任一边不与任一透光条平行,且所述方形在第一块透光层叠体所在平面的投影,都在所述第一块透光层叠体上;
以所述方形为底面,沿垂直于所述透光层叠体的方向切割,直至将全部透光层叠体切割完成,获得一具有相同层数的新的多层透光层叠体。
进一步,所述方形的任一边分别与一对透明条的夹角的差值不大于60°。
进一步,所述方形的任一边与任一透光条的夹角为45°。
进一步,所述在最后一块透光层叠体上截取一方形的截取方法包含如下子步骤:
截取一定型方形,所述定型方形的两对边分别与所述透光条平行;
以该定型方形的中心为轴旋转一切割角,获得一切割方形,所述切割方形在第一块透光层叠体所在平面的投影,都在所述第一块透光层叠体上。
进一步,所述切割角为锐角且不小于15°。
进一步,所述切割角为45°。
进一步,所述第三块透光层叠体的错位位移量与第四块透光层叠体的错位位移量相等,依次类推,后续任一第奇数块透光层叠体的错位位移量与后一第偶数块透光层叠体的错位位移量相等。
进一步,所述第三块及后续的第奇数块透光层叠体或所述第四块及后续的第偶数块透光层叠体的错位位移量不相等。
进一步,所述第三块及后续的第奇数块透光层叠体或所述第四块及后续的第偶数块透光层叠体的错位位移量呈等差数列。
进一步,所述等差数列的公差和最后层叠的两块透光层叠体的错位位移量不大于所述透明条的宽度的1/n,其中n为透光层叠体总块数的1/2。
进一步,所述反射面的厚度范围为5~400nm。
进一步,所述相邻透明条之间以及各层透光层叠体之间通过均匀薄层的无色高透光高强度的胶水贴合胶接。
进一步,所述胶水包含但不限于光敏胶或UV胶。
进一步,所述每层透光层叠体的厚度范围为200μm~2000μm。
进一步,所述透光层叠体的厚度随层数增多而减小。
根据本发明实施例的光学成像元件及其制造方法,通过错位布置,大幅度提高了空中成像的解析度,降低了对应用场景和使用环境的依赖度,大大扩展了适用性,同时制造方法巧妙且简单,为批量生产和大规模商用奠定了坚实的技术基础。
要理解的是,前面的一般描述和下面的详细描述两者都是示例性的,并且意图在于提供要求保护的技术的进一步说明。
附图说明
图1为根据本发明实施例光学成像元件的相邻两层透光层叠体正交布置的原理示意图;
图2为根据本发明实施例光学成像元件的多层透光层叠体的结构示意图;
图3为根据本发明实施例光学成像元件的多层透光层叠体的侧视示意图;
图4为根据本发明实施例光学成像元件的微镜成像结构俯视示意图;
图5为根据本发明实施例光学成像元件制造方法一的流程图;
图6为根据本发明实施例光学成像元件制造方法二的流程图;
图7为根据本发明实施例光学成像元件制造方法三的流程图;
图8为按图7方法的切割示意图;
图9为按图8所示切割后的多块透光层叠体的结构示意图;
图10为根据本发明实施例光学成像元件的用户最优观看视角的原理示意图;
图11为图10中用户观看视角为45°的原理示意图。
具体实施方式
以下将结合附图,详细描述本发明的优选实施例,对本发明做进一步阐述。
首先,将结合图1~4描述根据本发明实施例的光学成像元件,用于空中无介质成像,可用于会议、教学、展示、传媒、城市基础设施等,应用场景很广。
如图1~4所示,本发明实施例的光学成像元件,具有偶数层的层叠设置的透光层叠体1。其中,每层透光层叠体1都设有若干根相互贴合的透明条11,透明条11上相互贴合的面和/或所述相互贴合的面的对面设有反射面,相邻两层透光层叠体1的透明条11相互正交,即两层透光层叠体1正交,从而实现光路反射后能够在空中浮空无介质成像;设定透明条11上设有反射面的面,即多根透明条11贴合的面与其对面之间的距离为宽度,即连接两个反射面面的棱为宽,该面的另一对棱为长,因此,另一组棱即为高,高基本决定了透光层叠体1的厚度,在本实施例中,优选地,每层透光层 叠体1厚度范围为200μm~2000μm,为了保证光学成像元件的光线通过率,随着透光层叠体1的层数增加,总厚度不变,即,透光层叠体1的厚度在变化,也即透明条11的高需要相应变小;同时,优选地,透明条11的宽度范围为200μm~2000μm,透光层叠体1的长度根据实际场景的尺寸需要进行设置即可。
在本实施例中,各层透光层叠体1之间或透明条11之间的贴合可通过均匀薄层的无色高透光高强度的胶水贴合胶接,优选地,胶水的厚度范围为1~200μm,胶水选用无色光敏胶、UV胶,也可以不采用胶接的方式,而采用外框或其他束缚的方式,使各层透光层叠体1或透明条11之间的贴合紧密。
在本实施例中,反射面为反射膜或反射面或反射片或镀金属层,镀银或铝等金属,优选地,反射面的厚度范围为5~400nm,并且,反射面的具体形状或名称并不以此为限,同时,随着相关工艺和材料允许,反射面的厚度应越薄越好。
具体地,如图1~4所示,每层透光层叠体1的透明条11包含:一根第一透明条111、一根第二透明条112、以及设置在第一透明条111和第二透明条112之间的若干根第三透明条113,在本实施例中,第三透明条113的宽度为常规尺寸,即其宽度范围也为200μm~2000μm,第一透明条111与第二透明条112为特殊尺寸透明条,第一透明条111与第二透明条112的宽度之和与第三透明条113的宽度相等。
进一步,如图1~4所示,标记最外层的透光层叠体1为第1层,标记与第1层相邻并正交的透光层叠体1为第2层,依此次序标记各层透光层叠体1的编号为:1,2,3,……2N-1,2N,其中,N≥2,第1与2层的透光层叠体1的第一透明条111的宽度相等,第3与4层的透光层叠体1的第一透明条111的宽度相等,依此类推,第2N-1层与第2N层的透光层叠体1的第一透明条111的宽度相等。
进一步,如图1~4所示,奇数层或偶数层的透光层叠体1的第一透明条111分别设置在各奇数层或偶数层的透光层叠体1的同一侧,奇数层或偶数层的透光层叠体1的第一透明条111的宽度都不相等,并且第一透明条111与第二透明条112的宽度之和与第三透明条113的宽度相等,由于边缘对齐,因此各层宽度不相等的第一透明条111构成了各层透光层叠体1的反射面的错位,即各奇数层或各偶数层透光层叠体1的各个非边缘透明条11的反射面都不在同一平面,如图4所示,形成了微镜成像结构,使得显示图像的单元数量增多、变小,从而使得解析度大大提高。
优选地,在本实施例中,为了保证生产工艺标准化和产品品质,保证图像解析度均匀,将奇数层或偶数层的透光层叠体1的第一透明条111的宽度分别呈等差数列分布,该等差数列的公差和第2N-1或2N层的第一透明条111的宽度不大于第三透明条113的宽度W的1/N,优选地,以第1、2层的第一透明条111的宽度设置为第三透明 条113的宽度,则第二头型条112的宽度为0,即以第1、2层分别为奇数层和偶数层的基准,设定公差为第三透明条113的宽度W的1/N,即,公差为W/N,则第2N-1或2N层的第一透明条111的宽度也为W/N。成像效果如图4所示,可见,通过对各层第三透明条13的宽度的等差设置,使得显示图像的单元数量不仅增多、变小,还很均匀,解析度能达到只有2层透光层叠体1时的N 2倍。
如上所述,在根据本发明实施例的光学成像元件,通过错位布置,大幅度提高了空中成像的解析度,降低了对应用场景和使用环境的依赖度,大大扩展了适用性。
以上结合附图1~4描述了根据本发明实施例的光学成像元件。进一步地,本发明实施例的光学成像元件可以通过下述实施例的光学成像元件制造方法来制造,以下将参照附图1~9描述根据本发明实施例的光学成像元件制造方法。
如图1~9所示,根据本发明实施例的光学成像元件制造方法,包括如下步骤:
在步骤S1中,在透明条11的两个相对的侧面或一个侧面上设置反射面;在本实施例中,反射面为反射膜或反射面或反射片或镀金属层,镀银或铝等金属,优选地,反射面的厚度范围为5~400nm,并且,反射面的具体形状或名称并不以此为限,同时,随着相关工艺和材料允许,反射面的厚度应越薄越好。
在步骤S2中,将若干根透明条11上设有反射面的侧面依次贴合构成透光层叠体1;在本实施例中,透明条11上两侧与其他透明条11相贴合的面之间的棱为宽,该面的另一条棱则为长,而透明条11的另一条棱则为高,该高决定了透光层叠体1的厚度,优选地,每块透光层叠体1厚度范围为200μm~2000μm,随着块数的增加,透光层叠体1的厚度逐渐变小,即透明条11的高需要逐渐变小,以保证光线的通过率。
在步骤S3中,如图1所示,在第一块透光层叠体1上层叠第二块透光层叠体1,两块透光层叠体1的透明条11正交,实现光路反射后在空中浮空无介质成像。
在步骤S4中,如图3所示,在第二块透光层叠体1上再层叠并正交第三块透光层叠体1,第三块透光层叠体1与第一块透光层叠体1错位设置,使第三块透光层叠体与第一块透光层叠体的非边缘反射面平行但不在同一平面,形成微镜成像结构。
在步骤S5中,如图3所示,在第三块透光层叠体1上再层叠并正交第四块透光层叠体1,第四块透光层叠体1与第二块透光层叠体1错位设置,使第四块透光层叠体1与第二块透光层叠体1的非边缘反射面平行但不在同一平面,进一步使微镜成像结构的显示图像的单元数量增多、变小,从而使解析度进一步提高。
在步骤S6中,如图2所示,根据实际需要,可在第四块透光层叠体1上再逐层层叠并逐层正交偶数块透光层叠体,每块第奇数块的透光层叠体都与其他第奇数块的透光层叠体错位设置,使每块透光层叠体的非边缘反射面都不在同一平面。在本实施例 中,各奇数块透光层叠体1的错位位移方向一致,各偶数块透光层叠体1的错位位移方向一致,便于工艺标准化、稳定性,易于规模生产。
进一步,优选地,在本实施例中,为了保证生产工艺标准化和产品品质,保证图像解析度均匀,第三块透光层叠体1的错位位移量与第四块透光层叠体1的错位位移量相等,依次类推,后续任一第奇数块透光层叠体的错位位移量与后一第偶数块透光层叠体的错位位移量相等。同时,第三块及后续的第奇数块透光层叠体1,或,第四块及后续的第偶数块透光层叠体1的错位位移量不相等。进一步,第三块及后续的第奇数块透光层叠体或所述第四块及后续的第偶数块透光层叠体的错位位移量呈等差数列,该等差数列的公差和最后层叠的两块透光层叠体1的错位位移量不大于透明条11的宽度的1/n,其中n为透光层叠体总块数的1/2,在本实施例中,优选地,透明条11的宽度w的范围为200μm~2000μm,以第一块和第二块透明层叠体1的透明条11的宽度为基准,设定公差为透明条的宽度w的1/n,即,公差为w/n,则最后叠加两块透明层叠体1相对前块奇数块或偶数块透明层叠体1的错位位移量为w/n,成像效果如图4所示,可见,通过对各块位移量的等差设置,使得显示图像的单元数量不仅增多、变小,还很均匀,解析度能达到只有两块透光层叠体1时的n 2倍。
在本实施例中,上述步骤中的各块透光层叠体1或透明条11之间的贴合都通过均匀薄层的无色高透光高强度的胶水贴合胶接,优选地,胶水的厚度范围为1~200μm,胶水选用无色光敏胶、UV胶,在本发明中,也可以不采用胶接的方式,而采用外框或其他束缚的方式,使各块透光层叠体1或透明条11之间的贴合紧密。
进一步,在方法一中,如图5所示,还包含如下步骤:
在步骤S711中,以第一块透光层叠体1的边缘为基准,在各块错位的透光层叠体1的错位凹陷处填补透明条11,使多块透光层叠体1的边缘对齐,由于各奇数块透光层叠体1的错位位移方向一致,各偶数块透光层叠体1的错位位移方向一致,因此,填补的透明条11则构成前述实施例光学成像元件中的第一透明条111。
在步骤S712中,以第一块透光层叠体1的边缘为基准,切割各块错位的透光层叠体1的错位凸出处,使多块透光层叠体的边缘对齐,由于错位凸出,因此被切割的透明条11的宽度即为位移量,即为第一透明条111的宽度,剩下部分则构成前述实施例光学成像元件中的第二透明条112,由于第一块透光层叠体1的边缘为基准,其宽度为整数个透明条11的宽度,因此,第一透明条111和第二透明条112的宽度之和为透明条11的宽度。
在步骤S713中,在切割后的透明条11即第二透明条112的切割面以及新填补的透明条即第一透明条111的侧面上设置反射面。
进一步,在方法二中,如图6所示,还包含如下步骤:
在步骤S721中,以第一块透光层叠体1的边缘为基准,当其他透光层叠体1的尺寸大于第一块透光层叠体1时,虽然有位移,但是构成了整体对前面透光层叠体1的覆盖,因此直接沿反射面的方向切割多块错位层叠并正交的透光层叠体1,切割后,则会在每块的两侧形成前述实施例光学成像元件中的第一透明条111和第一透明条112,由于第一块透光层叠体1的边缘为基准,其宽度为整数个透明条11的宽度,因此,第一透明条111和第一透明条112宽度之和与透明条11相等。
在步骤S722中,在多块透光层叠体1的两侧切割后的透明条11的切割面上设置反射面。
进一步,在方法三中,如图7~11所示,还包含如下步骤:
在步骤S731中,如图8所示,在最后一块透光层叠体1上截取一方形10,该方形10的任一边不与任一透光条11平行,且该方形10在第一块透光层叠体1所在平面的投影,都在第一块透光层叠体1上,可以规避因错位而导致的边缘不齐整;在本实施例中,为了使用户处于最优观看视角,如图10所示,相互正交的透明条分别与用户视线的夹角不小于15°,即用户视线位于相互正交的透明条11之间的60°范围内,即方形10的任一边分别与一对透明条11的夹角的差值不大于60°。优选地,如图11所示,使用户视线与相互正交的透明条11的角度为45°,即,方形10的任一边与任一透光条11的夹角为45°。
进一步,在本实施例中,如图8、9所示,在最后一块透光层叠体1上截取一方形10的截取方法也可以分为如下两步:
在步骤S7311中,如图8所示,截取一定型方形,其两对边分别与透光条11平行;
在步骤S7312中,如图8所示,以该定型方形的中心为轴旋转一切割角,获得一切割方形,即方形10,切割方形在第一块透光层叠体1所在平面的投影,都在第一块透光层叠体1上。在本实施例中,切割角为锐角且不小于15°,进一步,优选地,如图11所示,切割角为45°,能够保证用户处于最优观看视角。
在步骤S732中,如图9所示,以方形10为底面,沿垂直于透光层叠体1的方向切割,直至将全部透光层叠体1切割完成,获得一具有相同层数的新的多块透光层叠体。
如上所述,根据本发明实施例的光学成像元件制造方法,通过错位布置的工艺,制造方法巧妙且简单,大幅度提高了空中成像的解析度,降低了对应用场景和使用环境的依赖度,大大扩展了适用性,为批量生产和大规模商用奠定了坚实的技术基础。
在本发明中,关于透光层叠体1的“层”或“块”的不同数量单位的表述,只是为了更便于在不同语境下的精准表述,不构成技术方案的区别。
以上,参照图1~11描述了根据本发明实施例的光学成像元件、光学成像元件制造方法,通过错位布置,大幅度提高了空中成像的解析度,降低了对应用场景和使用环境的依赖度,大大扩展了适用性,同时制造方法巧妙且简单,为批量生产和大规模商用奠定了坚实的技术基础。
需要说明的是,在本说明书中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个光学成像元件”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (29)

  1. 一种光学成像元件,其特征在于,包含:
    层数为偶数的层叠设置的透光层叠体,所述每层透光层叠体包含若干根相互贴合的透明条,所述透明条上与相邻两根透明条贴合的面之间的距离为透明条的宽度,所述透明条上相互贴合的面和/或所述相互贴合的面的对面设有反射面,所述反射面包含但不限于反射膜或反射片或镀金属层,用于反射光线以实现光线在光学成像元件中的传播方向的变换,相邻两层透光层叠体的透明条相互正交;
    所述每层透光层叠体的透明条包含:一根第一透明条、一根第二透明条、若干根第三透明条,所述第一透明条和第二透明条分设在所述透光层叠体的两侧边缘,若干根第三透明条设置在所述第一透明条和第二透明条之间,所述第一透明条与第二透明条的宽度之和与所述第三透明条的宽度相等。
  2. 如权利要求1所述的光学成像元件,其特征在于,标记最外层的透光层叠体为第1层,标记所述与第1层相邻并正交的透光层叠体为第2层,依此次序标记各层透光层叠体的编号为:1,2,3,……2N-1,2N,其中,N≥2(数列{2N|N>=2}是:4,6,8,10……,与1,2,3,……2N-1,2N有矛盾,需要修改成更准确的描述),所述第1与2层的透光层叠体的第一透明条的宽度相等,所述第3与4层的透光层叠体的第一透明条的宽度相等,依此类推,所述第2N-1层与第2N层的透光层叠体的第一透明条的宽度相等。
  3. 如权利要求1或2所述的光学成像元件,其特征在于,所述奇数层或偶数层的透光层叠体的第一透明条分别设置在各奇数层或偶数层的透光层叠体的同一侧,所述各奇数层或各偶数层的透光层叠体的第一透明条的宽度不相等。
  4. 如权利要求3所述的光学成像元件,其特征在于,奇数层或偶数层的透光层叠体的第一透明条的宽度分别呈等差数列。
  5. 如权利要求4所述的光学成像元件,其特征在于,所述等差数列的公差和所述第2N-1或2N层的第一透明条的宽度不大于所述第三透明条的宽度的1/N。
  6. 如权利要求1或5所述的光学成像元件,其特征在于,所述第三透明条的宽度范围为200μm~2000μm。
  7. 如权利要求1所述的光学成像元件,其特征在于,所述每层透光层叠体的厚度范围为200μm~2000μm。
  8. 如权利要求7所述的光学成像元件,其特征在于,所述透光层叠体的厚度随层数增多而减小。
  9. 如权利要求1所述的光学成像元件,其特征在于,所述反射面的厚度范围为5~400nm。
  10. 如权利要求1所述光学成像元件,其特征在于,所述相邻透明条之间以及各层透光层叠体之间通过均匀薄层的无色高透光高强度的胶水贴合胶接。
  11. 一种光学成像元件制造方法,其特征在于,包含如下步骤:
    在透明条的两个相对的侧面或一个侧面上设置反射面,所述反射面包含但不限于反射膜或反射片或镀金属层,用于反射光线以实现光线在光学成像元件中的传播方向的变换;
    将若干根透明条上设有反射面的侧面依次贴合构成透光层叠体;
    在第一块透光层叠体上层叠第二块透光层叠体,所述两块透光层叠体的透明条正交;
    在第二块透光层叠体上再层叠并正交第三块透光层叠体,所述第三块透光层叠体与第一块透光层叠体错位设置,使所述第三块透光层叠体与第一块透光层叠体的非边缘反射面平行但不在同一平面;
    在第三块透光层叠体上再层叠并正交第四块透光层叠体,所述第四块透光层叠体与第二块透光层叠体错位设置,使所述第四块透光层叠体与第二块透光层叠体的非边缘反射面平行但不在同一平面;
    根据实际需要,可在第四块透光层叠体上再逐块层叠并逐层正交偶数块透光层叠体,每块第奇数块的透光层叠体都与其他第奇数块的透光层叠体错位设置,使每块透光层叠体的非边缘反射面都不在同一平面。
  12. 如权利要求11所述光学成像元件制造方法,其特征在于,所述各奇数块透光层叠体的错位位移方向一致,所述各偶数块透光层叠体的错位位移方向一致。
  13. 如权利要求12所述光学成像元件制造方法,其特征在于,还包含如下步骤:
    以第一块透光层叠体的边缘为基准,在各块错位的透光层叠体的错位凹陷处填补透明条,使多块透光层叠体的边缘对齐;
    以第一块透光层叠体的边缘为基准,切割各块错位的透光层叠体的错位凸出处,使多块透光层叠体的边缘对齐;
    在切割后的透明条的切割面以及新填补的透明条的侧面上设置反射面。
  14. 如权利要求12所述光学成像元件制造方法,其特征在于,还包含如下步骤:
    以第一块透光层叠体的边缘为基准,沿反射面的方向切割多块错位层叠并正交的透光层叠体;
    在多块透光层叠体的两侧切割后的透明条的切割面上设置反射面。
  15. 如权利要求12所述光学成像元件制造方法,其特征在于,还包含如下步骤:
    在最后一块透光层叠体上截取一方形,所述方形的任一边不与任一透光条平行,且所述方形在第一块透光层叠体所在平面的投影,都在所述第一块透光层叠体上;
    以所述方形为底面,沿垂直于所述透光层叠体的方向切割,直至将全部透光层叠体切割完成,获得一具有相同块数的新的多层透光层叠体。
  16. 如权利要求15所述光学成像元件制造方法,其特征在于,所述方形的任一边分别与一对透明条的夹角的差值不大于60°。
  17. 如权利要求16所述光学成像元件制造方法,其特征在于,所述方形的任一边与任一透光条的夹角为45°。
  18. 如权利要求15所述光学成像元件制造方法,其特征在于,所述在最后一块透光层叠体上截取一方形的截取方法包含如下子步骤:
    截取一定型方形,所述定型方形的两对边分别与所述透光条平行;
    以该定型方形的中心为轴旋转一切割角,获得一切割方形,所述切割方形在第一块透光层叠体所在平面的投影,都在所述第一块透光层叠体上。
  19. 如权利要求18所述光学成像元件制造方法,其特征在于,所述切割角为锐角且不小于15°。
  20. 如权利要求19所述光学成像元件制造方法,其特征在于,所述切割角为45°。
  21. 如权利要求12~15任一条所述光学成像元件制造方法,其特征在于,所述第三块透光层叠体的错位位移量与第四块透光层叠体的错位位移量相等,依次类推,后续任一第奇数块透光层叠体的错位位移量与后一第偶数块透光层叠体的错位位移量相等。
  22. 如权利要求21所述的光学成像元件,其特征在于,所述第三块及后续的第奇数块透光层叠体或所述第四块及后续的第偶数块透光层叠体的错位位移量不相等。
  23. 如权利要求22所述的光学成像元件,其特征在于,所述第三块及后续的第奇数块透光层叠体或所述第四块及后续的第偶数块透光层叠体的错位位移量呈等差数列。
  24. 如权利要求23所述的光学成像元件,其特征在于,所述等差数列的公差和最后层叠的两块透光层叠体的错位位移量不大于所述透明条的宽度的1/n,其中n为透光层叠体总块数的1/2。
  25. 如权利要求11或12所述光学成像元件制造方法,其特征在于,所述反射面的厚度范围为5~400nm,用于反射光线以实现光线在光学成像元件中的传播方向的变换。
  26. 如权利要求11或12所述光学成像元件制造方法,其特征在于,所述相邻透明条之间以及各块透光层叠体之间通过均匀薄层的无色高透光高强度的胶水贴合胶接。
  27. 如权利要求26所述光学成像元件制造方法,其特征在于,所述胶水包含但不限于光敏胶或UV胶。
  28. 如权利要求11所述的光学成像元件,其特征在于,所述每块透光层叠体的厚度范围为200μm~2000μm。
  29. 如权利要求28所述的光学成像元件,其特征在于,所述透光层叠体的厚度随层数增多而减小。
PCT/CN2020/086928 2019-10-25 2020-04-26 光学成像元件、光学成像元件制造方法 WO2021077703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911021229.2A CN110596907A (zh) 2019-10-25 2019-10-25 光学成像元件、光学成像元件制造方法
CN201911021229.2 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021077703A1 true WO2021077703A1 (zh) 2021-04-29

Family

ID=68850442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086928 WO2021077703A1 (zh) 2019-10-25 2020-04-26 光学成像元件、光学成像元件制造方法

Country Status (2)

Country Link
CN (1) CN110596907A (zh)
WO (1) WO2021077703A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596907A (zh) * 2019-10-25 2019-12-20 像航(上海)科技有限公司 光学成像元件、光学成像元件制造方法
WO2021179109A1 (zh) * 2020-03-09 2021-09-16 安徽省东超科技有限公司 光波导单元阵列和具有其的光学透镜
CN111517190A (zh) * 2020-04-30 2020-08-11 像航(上海)科技有限公司 无接触空中成像电梯厅外设备
CN114397768B (zh) * 2022-01-19 2022-09-23 像航(如东)科技有限公司 一种微通道矩阵光波导平板及其制备方法
CN114488563B (zh) * 2022-04-15 2022-06-21 北京中建慧能科技有限公司 具有阵列式反射单元的光学成像器件的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5047403B1 (ja) * 2011-10-24 2012-10-10 株式会社アスカネット 光学結像装置
CN107636496A (zh) * 2015-09-08 2018-01-26 松浪硝子工业株式会社 光控制面板的制造方法、光控制面板、光学成像装置以及空中影像形成系统
US20180045972A1 (en) * 2016-08-15 2018-02-15 Hon Hai Precision Industry Co., Ltd. Aerial display and image forming system having the same
CN108318948A (zh) * 2018-02-23 2018-07-24 像航(上海)科技有限公司 一种光学成像元件及光学成像元件的制造方法
CN207799124U (zh) * 2018-02-23 2018-08-31 像航(上海)科技有限公司 一种光学成像元件
CN109239819A (zh) * 2018-11-08 2019-01-18 像航(上海)科技有限公司 光学成像元件及光学成像元件制造方法
CN208737108U (zh) * 2018-09-29 2019-04-12 像航(上海)科技有限公司 一种实现无介质空中实像的成像装置
CN110596907A (zh) * 2019-10-25 2019-12-20 像航(上海)科技有限公司 光学成像元件、光学成像元件制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410030B2 (ja) * 2014-09-24 2018-10-24 日本電気硝子株式会社 光学結像部材、及び光学結像部材の製造方法
JP6624714B2 (ja) * 2015-05-29 2019-12-25 信越ポリマー株式会社 光透過方向制御シート、照明装置及び光センサー装置
JP6654446B2 (ja) * 2016-01-26 2020-02-26 有限会社オプトセラミックス 空中映像表示デバイスおよび空中映像表示装置
CN207148423U (zh) * 2017-07-12 2018-03-27 陈科枫 平面对称成像光学板
CN211014882U (zh) * 2019-10-25 2020-07-14 像航(上海)科技有限公司 光学成像元件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5047403B1 (ja) * 2011-10-24 2012-10-10 株式会社アスカネット 光学結像装置
CN107636496A (zh) * 2015-09-08 2018-01-26 松浪硝子工业株式会社 光控制面板的制造方法、光控制面板、光学成像装置以及空中影像形成系统
US20180045972A1 (en) * 2016-08-15 2018-02-15 Hon Hai Precision Industry Co., Ltd. Aerial display and image forming system having the same
CN108318948A (zh) * 2018-02-23 2018-07-24 像航(上海)科技有限公司 一种光学成像元件及光学成像元件的制造方法
CN207799124U (zh) * 2018-02-23 2018-08-31 像航(上海)科技有限公司 一种光学成像元件
CN208737108U (zh) * 2018-09-29 2019-04-12 像航(上海)科技有限公司 一种实现无介质空中实像的成像装置
CN109239819A (zh) * 2018-11-08 2019-01-18 像航(上海)科技有限公司 光学成像元件及光学成像元件制造方法
CN110596907A (zh) * 2019-10-25 2019-12-20 像航(上海)科技有限公司 光学成像元件、光学成像元件制造方法

Also Published As

Publication number Publication date
CN110596907A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2021077703A1 (zh) 光学成像元件、光学成像元件制造方法
WO2014073650A1 (ja) 光制御パネルの製造方法
JP5728748B2 (ja) リフレクタアレイ光学装置およびそれを用いた表示装置
WO2016088385A1 (ja) 拡散シート、積層プリズムシートおよび積層光学シート
WO2012133403A1 (ja) 反射型結像素子、反射型結像素子の製造方法、および光学システム
JP2001004828A (ja) 偏光分離装置の製造方法
JP2011081300A (ja) 反射型面対称結像素子の製造方法
JP5921243B2 (ja) 反射型結像素子および光学システム
WO2014024677A1 (ja) 倍率変更型光学結像装置及びその製造方法
JP2017134151A (ja) 空中映像表示デバイスおよび空中映像表示装置
CN211014882U (zh) 光学成像元件
JP6357361B2 (ja) 再帰性反射体及びこれを利用した立体像表示装置
JP2008158144A (ja) クロスプリズムの製造方法
JP2017173527A (ja) 空中映像表示装置
JP5170114B2 (ja) 光学素子の製造方法
JP5904436B2 (ja) 大型の反射型面対称結像素子の製造方法
WO2016132984A1 (ja) 光学素子、それを用いた反射型空中結像素子及びこれらの製造方法
JP2017194535A (ja) 結像素子の製造方法
JP2013167670A (ja) 反射型結像素子、反射型結像素子の製造方法、および光学システム
CN211293326U (zh) 柔性基元膜、柔性全息膜和硬质基元膜、硬质全息膜
TW201518784A (zh) 顯示裝置、其光學元件以及光學元件之製作方法
JP6614021B2 (ja) 反射素子の製造方法および結像素子の製造方法
JP2017181854A (ja) 結像素子の製造方法
JP2017181853A (ja) 結像素子の製造方法
JP5458545B2 (ja) 光学物品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878468

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20878468

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20878468

Country of ref document: EP

Kind code of ref document: A1