WO2012133403A1 - 反射型結像素子、反射型結像素子の製造方法、および光学システム - Google Patents

反射型結像素子、反射型結像素子の製造方法、および光学システム Download PDF

Info

Publication number
WO2012133403A1
WO2012133403A1 PCT/JP2012/057923 JP2012057923W WO2012133403A1 WO 2012133403 A1 WO2012133403 A1 WO 2012133403A1 JP 2012057923 W JP2012057923 W JP 2012057923W WO 2012133403 A1 WO2012133403 A1 WO 2012133403A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
elements
joint
imaging element
unit
Prior art date
Application number
PCT/JP2012/057923
Other languages
English (en)
French (fr)
Inventor
貴文 嶋谷
健太郎 今村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012133403A1 publication Critical patent/WO2012133403A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/006Systems in which light light is reflected on a plurality of parallel surfaces, e.g. louvre mirrors, total internal reflection [TIR] lenses

Definitions

  • the present invention relates to a reflective imaging element capable of forming an image of a projection object in space, a method for manufacturing such a reflective imaging element, and an optical system having such a reflective imaging element. .
  • Patent Documents 1 to 3 an optical system that forms an image of a projection object in a space using a reflective imaging element has been proposed (for example, Patent Documents 1 to 3).
  • the optical system has a reflective imaging element and a projection, and an image displayed in space (hereinafter referred to as “aerial image”) is in a plane-symmetric position with the reflective imaging element as a symmetry plane.
  • the image of the projection object is formed.
  • This optical system uses specular reflection of a reflective imaging element, and in principle, the ratio of the size of the image of the projection object and the image projected in space is 1: 1.
  • the reflective imaging element includes an optical element (also referred to as a “unit imaging element”) that includes a hole penetrating in the thickness direction of a flat substrate and is composed of two mirror elements perpendicular to the inner wall of each hole. .) (For example, see FIG. 4 of Patent Document 1), or two mirror surfaces orthogonal to the inner wall surface of each cylindrical body, including a plurality of transparent cylindrical bodies protruding in the thickness direction of the substrate An apparatus having an optical element composed of elements is disclosed (for example, see FIG. 7 of Patent Document 1).
  • Patent Documents 1 and 2 tens of thousands to hundreds of thousands of square holes each having a side of about 50 ⁇ m to 200 ⁇ m are formed on a substrate having a thickness of 50 ⁇ m to 200 ⁇ m.
  • the inner surface of each hole is mirror-coated by electroforming, nanoprinting or sputtering.
  • Patent Document 2 discloses a reflective imaging element capable of observing an aerial image from various directions by a large number of people.
  • Patent Documents 1 to 3 For the purpose of reference, the entire disclosure of Patent Documents 1 to 3 is incorporated herein by reference.
  • JP 2008-158114 A International Publication No. 2008/111426 International Publication No. 2009/136578
  • the reflective imaging element Since the size of the image projected on the space by the reflective imaging element is the same as the size of the image of the projection object, in order to display a large aerial image using the reflective imaging element, the reflective imaging element is used. It is necessary to increase the size of the image element. However, when one large reflective imaging element is manufactured, there is a problem that the manufacturing cost increases significantly. Therefore, from the viewpoint of manufacturing cost, a method of manufacturing a large reflective imaging element by tiling (bonding) a plurality of reflective imaging elements is preferable.
  • the present invention has been made in view of the above problems, and a main object of the present invention is to provide a reflective imaging element that can be manufactured by a simple method and can obtain a high-quality aerial image.
  • a reflective imaging element includes a first reflective element and a second reflective element disposed on the first reflective element, and the first reflective element includes a plurality of first mirror surfaces.
  • the plurality of first mirror surface elements and the plurality of first light transmission elements extend in a first direction
  • the second reflective element includes a plurality of second mirror surface elements and a plurality of second light transmission elements.
  • Each of the plurality of second light-transmitting elements is provided between two adjacent second mirror-surface elements of the plurality of second mirror-surface elements, and the plurality of second mirror-surface elements.
  • the element and the plurality of second light-transmitting elements extend in a second direction orthogonal to the first direction, and the first reflective element is A plurality of first unit reflective elements joined to each other by at least one first joint, wherein the second reflective elements are joined to each other by at least one second joint;
  • any of the other junctions Includes non-overlapping joints.
  • the at least one first joint includes a joint extending in the first direction, and the at least one second joint is joined in the second direction. including.
  • all of the at least one first joint are extended in the first direction, and all of the at least one second joint are extended in the second direction. It is a joint part.
  • the at least one first joint includes a joint extending in a direction intersecting with the first direction, and the at least one second joint intersects with the second direction. Includes a joint extending in the direction.
  • the refractive index of the at least one first junction is approximately equal to the refractive index of the plurality of first light-transmissive elements, and the refractive index of the at least one second junction is It is approximately equal to the refractive index of the two translucent elements.
  • a spacer or a film having a uniform thickness is disposed between at least one of the two adjacent first mirror elements and between the two adjacent second mirror elements.
  • each of the plurality of first unit reflective elements and second unit reflective elements is a rectangle, a square, or a triangle.
  • the reflective imaging element described above further includes two light-transmitting substrates, and the first and second reflective elements are disposed between the two light-transmitting substrates. ing.
  • An optical system includes the above-described reflective imaging element and a display panel, and an image displayed on the display surface of the display panel is plane-symmetrical with the reflective imaging element as a symmetry plane. Form an image at the position.
  • the light from the display panel is applied to the at least one first joint and the at least one second joint when the at least one first joint and the at least one second joint are exposed to the light. It is formed so that there is no.
  • the method of manufacturing a reflective imaging element includes a step (A) of preparing a plurality of transparent substrates each having a mirror element formed on a surface thereof, and the plurality of transparent substrates having the mirror element formed thereon.
  • one of the plurality of unit reflective elements and the other unit reflective element are joined to each other by at least one first joint to form a first reflective element
  • Step (E) Forming a mold element (D2), and A junction where at least one of the first junction and the at least one second junction does not overlap with any of the other junctions when viewed from the normal direction of the main surface of the first reflective element.
  • the second reflective element is disposed on the first reflective element so that the specular element of the first reflective element and the specular element of the second reflective element are orthogonal to each other Step (E).
  • the specular element of the first reflective element extends in a first direction
  • the specular element of the second reflective element extends in a second direction.
  • the at least one first joint is a joint extending in the first direction
  • the at least one second joint is a joint extending in the second direction.
  • the above-described reflection type imaging element manufacturing method includes a step of applying a spacer on the substrate on which the mirror element is formed (F) between the step (A) and the step (B). Or a step (G) of disposing an adhesive film having a uniform thickness on the substrate on which the mirror element is formed.
  • each of the plurality of unit reflection elements is a triangle, a rectangle, or a square.
  • a reflective imaging element that can be manufactured by a simple method and can obtain a high-quality aerial image.
  • (A) is a schematic perspective view of the reflective imaging element 100A in the embodiment according to the present invention
  • (b) is an exploded perspective view of the reflective imaging element 100A. It is a figure explaining the optical system 200 in embodiment by this invention.
  • (A)-(d) is a figure explaining the reflective type imaging element 100B in other embodiment by this invention.
  • (A)-(c) is a figure explaining the reflective type imaging element 100C in further another embodiment by this invention.
  • (A)-(c) is a figure explaining reflective type image formation element 100D in other embodiments by the present invention.
  • (A)-(d) is a figure explaining the manufacturing method of the reflection type imaging element in embodiment by this invention.
  • (A) And (b) is a figure explaining the reflective type imaging element of a comparative example
  • (c) is a figure which shows the optical system which has a reflective type imaging element of a comparative example.
  • FIG. 1A is a schematic perspective view of the reflective imaging element 100A
  • FIG. 1B is a schematic exploded perspective view of the reflective imaging element 100A.
  • the reflective imaging element 100 ⁇ / b> A has a first reflective element 10 and a second reflective element 20 disposed on the first reflective element 10.
  • the first reflective element 10 has a plurality of specular elements 14 and a plurality of translucent elements 15, and each translucent element 15 is provided between two specular elements 14. That is, the mirror surface elements 14 and the light transmitting elements 15 are alternately arranged in a stripe shape.
  • the second reflective element 20 includes a plurality of specular elements 24 and a plurality of translucent elements 25, and each translucent element 25 is provided between two specular elements 24.
  • the plurality of specular elements 14 and the plurality of translucent elements 15 included in the first reflective element 10 are extended in the first direction, and the plurality of specular elements 24 and the plurality of translucent elements included in the second reflective element 20 are provided.
  • the element 25 extends in a second direction orthogonal to the first direction. That is, the mirror surface elements 24 and the light transmitting elements 25 are alternately arranged in a stripe shape.
  • the mirror element 14 (of the first reflective element 10) and the mirror element 24 (of the second reflective element 20) that are orthogonal to each other constitute a unit imaging element.
  • the first reflective element 10 has a plurality of first unit reflective elements 11, and the second reflective element 20 has a plurality of second unit reflective elements 21.
  • the first reflective element 10 includes two first unit reflective elements 11a and 11b, and the second reflective element 20 includes two second unit reflective elements.
  • the mold elements 21a and 21b are included.
  • the number of the first and second unit reflection type elements included in the first and second reflection type elements is not limited to this, and is independently 2 or more.
  • the first unit reflective element 11 a and the first unit reflective element 11 b are joined to each other by the first joint 18.
  • the first joint 18 extends in the first direction in parallel with the mirror surface element 14 and the light transmitting element 15.
  • each of the first unit reflective elements 11a and 11b has a surface parallel to the first direction, and is bonded to each other on the surface.
  • the first unit reflective element 11 does not have a joint portion extending in a direction orthogonal to the first direction.
  • the second unit reflective element 21 a and the second unit reflective element 21 b are joined to each other by the second joint portion 28.
  • the second joint portion 28 extends in the second direction in parallel with the mirror surface element 24 and the translucent element 25.
  • Each of the second unit reflection type elements 21a and 21b has a surface parallel to the second direction, and is joined to each other on the surface.
  • the second unit reflective element 21 does not have a joint extending in a direction orthogonal to the second direction.
  • the reflective imaging element 100A has a structure in which a first reflective element 10 and a second reflective element 20 are stacked.
  • the first joint 18 overlaps the second joint 28.
  • the first joining portion 18 overlaps the second joining portion 28 means that the extending direction (long side 18a) of the first joining portion 18 is the extending direction (long side 28a) of the second joining portion 28.
  • the entire first joint 18 overlaps the second joint 28.
  • the second joint portion 28 overlaps the first joint portion 18 means that the entire second joint portion 28 overlaps the first joint portion 18.
  • the first joint 18 and the second joint 28 are completely overlapped with each other.
  • the first joint portion 18 overlaps the second joint portion 28, the first joint portion 18 is likely to be misaligned, resulting in deterioration of display quality.
  • difference in the 1st junction part 18 of the 1st reflective element 10 will be 2nd reflective element 20 for example.
  • a reflection type element having three or more unit reflection type elements is used as the first reflection type element 10 or the second reflection type element 20
  • at least one of a plurality of joints of one reflection type element is If it is set as the structure which does not overlap with any junction part of a reflection type element, the shift
  • the individual structures of the first unit reflection type element 11a, the first unit reflection type element 11b, the second unit reflection type element 21a, and the second unit reflection type element 21b may be the same as each other.
  • a common unit reflection type element is used. By adopting such a configuration, the manufacturing method can be simplified.
  • the mirror surface element 14 and the mirror surface element 24 are made of, for example, an Al (aluminum) thin film.
  • the mirror surface element 14 and the mirror surface element 24 may be formed from a metal thin film such as Ag (silver), for example.
  • the thickness of the metal thin film which comprises the mirror surface element 14 and the mirror surface element 24 is 200 nm, for example.
  • the translucent element 15 and the translucent element 25 are made of, for example, a glass member.
  • the translucent element 15 and the translucent element 25 can be formed of, for example, acrylic resin.
  • the width W of the translucent element 15 and the translucent element 25 is preferably, for example, 100 ⁇ m or more and 700 ⁇ m or less (500 ⁇ m in the reflective imaging element 100A).
  • the first joint 18 and the second joint 28 can be formed using an adhesive (for example, a thermosetting resin or a photocurable resin).
  • the first joint 18 and the second joint 28 are preferably arranged so that light from the projection object 80 does not strike. That is, the mirror surface element 14 in contact with the first joint 18 and the mirror element 24 in contact with the second joint 28 are positioned closer to the projection 80 than the first joint 18 and the second joint 28, respectively. Be placed.
  • the first joint 18 and the second joint 28 are arranged in this way, the light from the projection object 80 does not hit the first joint 18 and the second joint 28, and thus the first joint 18 and the second joint 28. It is possible to prevent light from being scattered or refracted at the joint portion 28.
  • a particulate spacer (for example, a bead spacer or a fiber spacer) is preferably disposed between at least one of the mirror elements 14 and between the mirror elements 24.
  • a photo spacer may be formed in advance on the surface of the mirror element 14 or / and 24 by using a photolithography technique.
  • the photo spacer is made of, for example, a photosensitive resin (photoresist).
  • the 1st junction part 18 and the 2nd junction part 28 have the same refractive index (for example, refractive index 1.5) as the translucent element 15 and the translucent element 25 (for example, glass member). Is preferred.
  • refractive index 1.5 refractive index 1.5
  • the translucent element 15 and the translucent element 25 for example, glass member.
  • Such a reflective imaging element 100A can be manufactured by a manufacturing method described later with reference to FIG. 7, and can be manufactured without using a mold.
  • the reflective imaging element 100A having a large size for example, a size of 300 mm ⁇ 300 mm
  • the reflective imaging element 100A has less deflection and distortion and is excellent in the regularity and continuity of the arrangement pattern of the mirror elements 14 and 24, a high-quality aerial image can be obtained.
  • FIG. 8A is a schematic diagram of the reflective imaging element 150
  • FIG. 8B is an exploded view of the reflective imaging element 150 shown in FIG. 8A
  • FIG. 8C is a diagram for explaining a problem of the optical system having the reflective imaging element 150. Components common to the reflective imaging element 100A are given the same reference numerals.
  • the reflective imaging element 150 shown in FIG. 8A has a long side 18a of the first joint 18 of the first reflective element 10 when viewed from the normal direction of the main surface of the first reflective element, This is a reflective imaging element in which the long side 28a of the second joint portion 28 of the second reflective element 20 completely overlaps.
  • Such a reflective imaging element 150 is configured so that the unit reflective elements 11 (or 21) have the same arrangement pattern of the mirror elements 14 (or 24) between the unit reflective elements 11 (or 21). ) Must be joined, and high alignment accuracy is required, so that the reflective imaging element 150 is extremely difficult to manufacture. In addition, when the alignment accuracy is poor, displacement and distortion occur in the large aerial image 90 (see FIG. 8C), and the display quality of the large aerial image 90 is degraded. In contrast, the reflective imaging element 100A does not require high alignment accuracy and is easy to manufacture. Furthermore, the large aerial image is less likely to be displaced or distorted, and the display quality of the large aerial image is high.
  • the portion 18A in the first joint 18 cannot be covered with the specular element 14, and the light from the projection object hits the adhesive layer, causing light scattering and refraction at the portion 18A.
  • the display quality of the video is reduced.
  • the reflective imaging element 100A has a structure in which light from the projection object does not easily hit the adhesive layer, so that the display quality of a large aerial image is unlikely to deteriorate.
  • FIG. 2 is a diagram illustrating a configuration of the optical system 200.
  • Reference symbol V in FIG. 2 represents an observer.
  • the optical system 200 shown in FIG. 2 includes a reflective imaging element 100A and a display panel (for example, a 30 to 40 inch liquid crystal display panel) 80 disposed on the light incident side of the reflective imaging element 100A. Yes.
  • the reflective imaging element 100A forms an image displayed on the display surface of the display panel 80 at a plane-symmetric position with the reflective imaging element 100A as a symmetry plane.
  • a high-quality aerial image 90 is obtained by the reflective imaging element 100A.
  • reflective imaging elements 100B to 100E which will be described later, may be arranged instead of the reflective imaging element 100A.
  • FIG. 3A is a schematic plan view of the reflective imaging element 100B.
  • FIG. 3B is a diagram showing a modified example of the reflective imaging element 100B.
  • 3C is a schematic plan view of the first reflective element 10 of the reflective imaging element 100B, and
  • FIG. 3D is a schematic diagram of the second reflective element 20 of the reflective imaging element 100B. It is a typical top view.
  • 3A includes a first reflective element 10 and a second reflective element 20 disposed on the first reflective element 10.
  • the first reflective element 10 shown in FIG. 3C has a plurality of specular elements 14 and a plurality of translucent elements 15, and each translucent element 15 is provided between two specular elements 14. It has been.
  • the first reflective element 10 includes, for example, three first unit reflective elements 11.
  • One first unit reflection type element 11a among the plurality of first unit reflection type elements 11 is joined to the other first unit reflection type element 11b by the first joint 18.
  • the second reflective element 20 shown in FIG. 3D includes a plurality of specular elements 24 and a plurality of translucent elements 25, and each translucent element 25 includes two specular elements 24. It is provided in between.
  • the second reflective element 20 includes, for example, three second unit reflective elements 21.
  • One second unit reflection type element 21 a among the plurality of second unit reflection type elements 21 is joined to the other second unit reflection type element 21 b by the second joining portion 28.
  • the first joint 18 does not overlap the second joint 28 when viewed from the normal direction of the main surface of the first reflective element 10.
  • the specular element 14 (of the first reflective element 10) and the specular element 24 (of the second reflective element 20) are orthogonal to each other.
  • the size of the reflective imaging element 100B shown in FIG. 3A is, for example, 600 mm ⁇ 600 mm.
  • the reflective imaging element 100B includes a first reflective element 10 and a second reflective element 20, which are respectively made of translucent substrates (eg, glass substrates) 30a to 30c. It can be modified to be placed between.
  • translucent substrates 30a to 30c are arranged, the mechanical strength of the reflective imaging element is improved.
  • the translucent substrate (the translucent substrate disposed between the first reflective element 10 and the second reflective element 20) 30b may not be disposed.
  • the shape of the first unit reflective element 11 shown in FIG. 3C is a rectangle, for example, the width W1 is 200 mm and the length L1 is 600 mm.
  • the shape of the second unit reflection type element 21 shown in FIG. 3D is a rectangle.
  • the width W1 is 200 mm and the length L1 is 600 mm.
  • FIG. 4A is a schematic plan view of the reflective imaging element 100C.
  • FIG. 4B is a schematic plan view of the first reflective element 10 of the reflective imaging element 100C, and
  • FIG. 4C shows the second reflective element 20 of the reflective imaging element 100C. It is a typical top view.
  • the reflective imaging element 100C illustrated in FIG. 4A includes a first reflective element 10 and a second reflective element 20 disposed on the first reflective element 10.
  • the reflective imaging element 100C illustrated in FIG. 4A includes a first reflective element 10 and a second reflective element 20 disposed on the first reflective element 10.
  • the first reflective element 10 shown in FIG. 4B has a plurality of specular elements 14 and a plurality of translucent elements 15, and each translucent element 15 is provided between two specular elements 14. It has been.
  • the first reflective element 10 includes, for example, two first unit reflective elements 11.
  • One first unit reflection type element 11a among the plurality of first unit reflection type elements 11 is joined to the other first unit reflection type element 11b by the first joint 18.
  • the second reflective element 20 shown in FIG. 4C has a plurality of specular elements 24 and a plurality of translucent elements 25, and each translucent element 25 includes two specular elements 24. It is provided in between.
  • the second reflective element 20 includes, for example, two second unit reflective elements 21.
  • One second unit reflection type element 21 a among the plurality of second unit reflection type elements 21 is joined to the other second unit reflection type element 21 b by the second joining portion 28.
  • the first joint 18 does not overlap the second joint 28 when viewed from the normal direction of the main surface of the first reflective element 10.
  • the specular element 14 (of the first reflective element 10) and the specular element 24 (of the second reflective element 20) are orthogonal to each other.
  • the size of the reflective imaging element 100C shown in FIG. 4A is, for example, 600 mm ⁇ 600 mm.
  • the shape of the first unit reflection type element 11 shown in FIG. 4B is a triangle.
  • the width W2 is 600 mm and the length L2 is 600 mm.
  • the shape of the second unit reflection type element 21 shown in FIG. 4C is a triangle.
  • the width W2 is 600 mm and the length L2 is 600 mm.
  • FIG. 5A is a schematic plan view of the reflective imaging element 100D.
  • FIG. 5B is a schematic plan view of the first reflective element 10 of the reflective imaging element 100D, and
  • FIG. 5C shows the second reflective element 20 of the reflective imaging element 100D. It is a typical top view.
  • 5A includes a first reflective element 10 and a second reflective element 20 disposed on the first reflective element 10.
  • the first reflective element 10 shown in FIG. 5 (b) has a plurality of mirror surface elements 14 and a plurality of light transmitting elements 15, and each light transmitting element 15 is provided between two mirror surface elements 14. It has been.
  • the first reflective element 10 includes, for example, two first unit reflective elements 11.
  • One first unit reflection type element 11a among the plurality of first unit reflection type elements 11 is joined to the other first unit reflection type element 11b by the first joint 18.
  • the extending direction of the first joint 18 of the first reflective element 10 of the reflective imaging element 100D is orthogonal to the extending direction of the mirror element 14.
  • the second reflective element 20 shown in FIG. 5C has a plurality of specular elements 24 and a plurality of translucent elements 25, and each translucent element 25 includes two specular elements 24. It is provided in between.
  • the second reflective element 20 includes, for example, two second unit reflective elements 21.
  • One second unit reflection type element 21 a among the plurality of second unit reflection type elements 21 is joined to the other second unit reflection type element 21 b by the second joining portion 28.
  • the extending direction of the second joint portion 28 of the second reflective element 20 of the reflective imaging element 100 ⁇ / b> D is orthogonal to the extending direction of the specular element 24.
  • the first joint 18 does not overlap the second joint 28 when viewed from the normal direction of the main surface of the first reflective element 10.
  • the specular element 14 (of the first reflective element 10) and the specular element 24 (of the second reflective element 20) are orthogonal to each other.
  • the size of the reflective imaging element 100D shown in FIG. 5A is, for example, 300 mm ⁇ 300 mm.
  • the shape of the first unit reflection type element 11 shown in FIG. 5B is a rectangle.
  • the width W1 is 150 mm and the length L1 is 300 mm.
  • the shape of the second unit reflective element 21 shown in FIG. 5C is a rectangle.
  • the width W1 is 150 mm and the length L1 is 300 mm.
  • FIG. 6 is a schematic plan view of the reflective imaging element 100E.
  • the reflective imaging element 100E shown in FIG. 1 includes a first reflective element 10 and a second reflective element 20 disposed on the first reflective element 10.
  • the reflective imaging element 100E shown in FIG. 1 includes a first reflective element 10 and a second reflective element 20 disposed on the first reflective element 10.
  • the first reflective element 10 has a plurality of specular elements 14 and a plurality of translucent elements 15, and each translucent element 15 is provided between two specular elements 14.
  • the first reflective element 10 includes, for example, nine first unit reflective elements 11.
  • One first unit reflection type element 11a among the plurality of first unit reflection type elements 11 is joined to the other first unit reflection type element 11b by the first joint 18.
  • the extending direction of the first joint portion 18 of the first reflective element 10 of the reflective imaging element 100E is parallel to the extending direction of the mirror element 14. Further, the extending direction of the first joint portion 18 of the first reflective element 10 of the reflective imaging element 100E may be orthogonal to the extending direction of the mirror surface element 14.
  • the second reflective element 20 has a plurality of specular elements 24 and a plurality of translucent elements 25, and each translucent element 25 is provided between two specular elements 24.
  • the second reflective element 20 includes, for example, 14 second unit reflective elements 21.
  • One second unit reflection type element 21 a among the plurality of second unit reflection type elements 21 is joined to the other second unit reflection type element 21 b by the second joining portion 28.
  • the extending direction of the second joint portion 28 of the second reflective element 20 of the reflective imaging element 100E is perpendicular to the extending direction of the specular element 24, and is parallel to the extending direction of the specular element 24. There are also things.
  • the first joint 18 does not overlap the second joint 28 when viewed from the normal direction of the main surface of the first reflective element 10.
  • the specular element 14 (of the first reflective element 10) and the specular element 24 (of the second reflective element 20) are orthogonal to each other.
  • the size of the reflective imaging element 100E shown in FIG. 6 is, for example, 300 mm ⁇ 900 mm.
  • the shape of the first unit reflection type element 11 is a rectangle, for example, the width is 100 mm and the length is 300 mm.
  • the shape of the second unit reflection type element 21 is a rectangle, and the size of each second unit reflection type element 21 may be the same or different. That is, the unit reflection type elements 11 and 21 can be appropriately changed in shape, size and combination depending on the size of the reflection type imaging element, and the degree of freedom in design is high. Therefore, the shape of each unit reflection type element 11 and 21 may be square.
  • FIGS. 7A to 7D are views for explaining a method of manufacturing a reflective imaging element in the embodiment according to the present invention.
  • a specular element (for example, Al) 14 is formed on a translucent substrate (for example, a glass substrate (size: 300 mm ⁇ 300 mm)) 2 by, for example, a sputtering method.
  • the mirror surface element 14 is formed over the entire surface of the substrate.
  • the thickness of the specular element 14 is, for example, 200 nm.
  • the mirror surface element 14 may be made of, for example, Ag instead of Al.
  • the method for forming the mirror element 14 is not limited to the sputtering method.
  • As the glass substrate alkali-free glass having excellent flatness was used.
  • the translucent substrate (hereinafter referred to as the mirror substrate) 2 on which the mirror element 14 is formed is cut by a known method to have a desired size (for example, 300 mm). ⁇ 150 mm).
  • a desired size for example, 300 mm.
  • substrate 2 is a desired magnitude
  • thermosetting resin adheresive
  • a spacer for example, plastic beads
  • a photo spacer may be formed on the mirror substrate 2
  • an adhesive film having a uniform thickness is formed on the mirror substrate 2 instead of the spacer and the thermosetting resin. You may arrange.
  • the thermosetting resin and the adhesive film preferably have transparency with respect to visible light, and more preferably have the same refractive index as that of the translucent substrate.
  • the interlaminar structure adhesive layer is preferably formed of a thermosetting resin.
  • the reflective imaging element 100 ⁇ / b> A when the reflective imaging element 100 ⁇ / b> A is disposed so that the light from the projection object 80 does not hit the first joint 18 and the second joint 28, the stacked layers are stacked. The light from the projection object 80 does not hit the inter-structure adhesive layer as well.
  • the black interlaminar structure adhesive layer can act to absorb stray light and improve display quality.
  • the interlaminar structure adhesive layer may be formed of a transparent material.
  • the transparent interlaminar structure adhesive layer can be used, for example, as a part of the light transmitting portion 15.
  • the refractive index of the transparent interlaminar structure adhesive layer is preferably the same as the refractive index of the translucent element 15 (the translucent substrate 2).
  • the substrate (multilayer structure) 3 is overlapped with a wire saw from the normal direction of the main surface of the mirror substrate 2 (surface on which the mirror element 14 is formed).
  • the unit reflection type element 5 was obtained by cutting.
  • the size of the unit reflection type element 5 is, for example, depth 300 mm ⁇ height 150 mm ⁇ width 10 mm.
  • the unit reflective elements 5 were bonded together to obtain a reflective imaging element 100A.
  • the same refractive index for example, refractive index 1. 5
  • an adhesive having transparency to visible light is preferably used.
  • a photocurable resin for example, an acrylic resin
  • the mirror substrate 2 is superimposed on the mirror substrate 2 up to a desired size (for example, height of 300 mm) of the reflection imaging element, so that the reflection imaging element is overlapped.
  • a desired size for example, height of 300 mm
  • a child can also be manufactured.
  • the inventor has found that the mass productivity of the reflective imaging element is poor according to this method.
  • the unit reflection type element 5 After manufacturing the unit reflection type element 5 by superimposing the mirror substrate 2 to about half the size of the desired reflection type imaging element (for example, height 150 mm) as in this embodiment, the unit reflection type element 5
  • the throughput of manufacturing the reflective imaging element is about 1 ⁇ 2 that of the above-described method, which is excellent in mass productivity.
  • a photo-curing resin can be used when forming the joint portions 18 and 28, and a thermosetting resin can be used when bonding the mirror substrate 2 together.
  • a photo-curing resin can be used when forming the joint portions 18 and 28, and a thermosetting resin can be used when bonding the mirror substrate 2 together.
  • the material for forming the joint portions 18 and 28 is different from the material for forming the adhesive layer between the laminated structures, when light that is not reflected by the mirror element 14 of the reflective imaging element is observed, Even if the material is a transparent resin, it is possible to distinguish between the bonding portions 18 and 28 and the adhesive layer between the laminated structures by a slight difference in refractive index and transmittance.
  • the joints 18 and 28 and the adhesive layer between laminated structures may be made of the same material so that the difference between them cannot be visually recognized.
  • a high-quality large aerial image can be obtained by the reflective optical element according to the embodiment of the present invention.
  • the present invention can be widely applied to an optical system having a reflective imaging element capable of forming an image of a projection object in space and a display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 本発明による反射型結像素子(100A)は、第1反射型素子(10)と、第1反射型素子(10)上に配置された第2反射型素子(20)とを有する。第1反射型素子(10)は、少なくとも1つの第1接合部(18)によって互いに接合された複数の第1単位反射型素子(11)を有する。第2反射型素子(20)は、少なくとも1つの第2接合部(28)によって互いに接合された複数の第2単位反射型素子(21)を有する。少なくとも1つの第1接合部(18)および少なくとも1つの第2接合部(28)の一方が、第1反射型素子(10)の主面の法線方向から見たとき、他方の接合部のいずれとも重ならない接合部を含んでいる。

Description

反射型結像素子、反射型結像素子の製造方法、および光学システム
 本発明は、空間に被投影物の像を結像させることができる反射型結像素子、そのような反射型結像素子の製造方法、およびそのような反射型結像素子を有する光学システムに関する。
 最近、反射型結像素子を用いて空間に被投影物を結像させる光学システムが提案されている(例えば、特許文献1~3)。光学システムは反射型結像素子と被投影物とを有し、空間に表示される像(以下、「空中映像」という。)は、反射型結像素子を対称面とする面対称な位置に、被投影物の像が結像したものである。この光学システムは、反射型結像素子の鏡面反射を利用しており、原理上、被投影物の像と空間に映し出される像との大きさの比は、1:1である。
 反射型結像素子としては、平板状の基板の厚さ方向に貫通させた穴を備え、各穴の内壁に直交する2つの鏡面要素から構成される光学素子(「単位結像素子」ともいう。)を有するもの(例えば、特許文献1の図4参照)、あるいは基板の厚さ方向に突出させた複数の透明な筒状体を備え、各筒状体の内壁面に直交する2つの鏡面要素から構成される光学素子を有するものが開示されている(例えば、特許文献1の図7参照)。
 特許文献1および2に開示されている反射型結像素子は、厚さが50μm~200μmの基板に、一辺が約50μm~200μmの正方形の穴が数万から数十万個形成されており、各穴の内面には、電鋳法、ナノプリント法やスパッタ法によって鏡面コーティングが施されている。特に、特許文献2は、空中映像を多人数で様々な方向から観察できる反射型結像素子を開示している。
 参考のために、特許文献1から3の開示内容の全てを本明細書に援用する。
特開2008-158114号公報 国際公開第2008/111426号 国際公開第2009/136578号
 反射型結像素子によって空間に映し出される像の大きさは、被投影物の像の大きさと同じであるので、反射型結像素子を用いて大きな空中映像を表示するためには、反射型結像素子を大型化する必要がある。しかしながら、1つの大きな反射型結像素子を製造すると、製造コストが大幅に増大するという問題がある。従って、製造コストの観点からは、複数の反射型結像素子をタイリングする(貼りあわせる)ことよって、大型の反射型結像素子を製造する方法が好ましい。
 しかしながら、タイリング方法においては、複数の反射型結像素子を互いに接合する際のアライメント精度が問題になる。すなわち、複数の反射型結像素子を高い精度で接合しないと、反射型結像素子の鏡面要素の配列パターンの規則性および連続性が失われる。また、反射型結像素子同士を接合する接合部が大きくなると、結像に寄与する光を不必要に屈折させる恐れがある。その結果、空中映像にズレや歪みが生じ、空中映像の表示品位が低下するという問題が生じる(図8(c)参照)。この問題は、高精細な空中映像を表示することができる、微細な鏡面要素を有する反射型結像素子において顕著になる。
 本発明は、上記問題に鑑みてなされたものであり、その主な目的は、簡便な方法で製造し得、高品位な空中映像が得られる反射型結像素子を提供することにある。
 本発明による反射型結像素子は、第1反射型素子と、前記第1反射型素子上に配置された第2反射型素子とを有し、第1反射型素子は、複数の第1鏡面要素と、複数の第1透光要素とを有し、前記複数の第1透光要素のそれぞれは前記複数の第1鏡面要素の内の隣接する2つの第1鏡面要素の間に設けられており、前記複数の第1鏡面要素および前記複数の第1透光要素は第1の方向に延設されており、第2反射型素子は、複数の第2鏡面要素と、複数の第2透光要素とを有し、前記複数の第2透光要素のそれぞれは前記複数の第2鏡面要素の内の隣接する2つの第2鏡面要素の間に設けられており、前記複数の第2鏡面要素および前記複数の第2透光要素は前記第1の方向に直交する第2の方向に延設されており、前記第1反射型素子は、少なくとも1つの第1接合部によって互いに接合された複数の第1単位反射型素子を有し、前記第2反射型素子は、少なくとも1つの第2接合部によって互いに接合された複数の第2単位反射型素子を有し、少なくとも1つの第1接合部および少なくとも1つの第2接合部の一方が、前記第1反射型素子の主面の法線方向から見たとき、他方の接合部のいずれとも重ならない接合部を含んでいる。
 ある実施形態において、前記少なくとも1つの第1接合部は前記第1の方向に延設された接合部を含み、前記少なくとも1つの第2接合部は前記第2の方向に延設された接合部を含む。
 ある実施形態において、前記少なくとも1つの第1接合部は全て前記第1の方向に延設された接合部であって、前記少なくとも1つの第2接合部は全て前記第2の方向に延設された接合部である。
 ある実施形態において、前記少なくとも1つの第1接合部は前記第1の方向と交差する方向に延設された接合部を含み、前記少なくとも1つの第2接合部は前記第2の方向と交差する方向に延設された接合部を含む。
 ある実施形態において、前記少なくとも1つの第1接合部の屈折率は、前記複数の第1透光要素の屈折率と概ね等しく、前記少なくとも1つの第2接合部の屈折率は、前記複数の第2透光要素の屈折率と概ね等しい。
 ある実施形態において、前記隣接する2つの第1鏡面要素の間、および前記隣接する2つの第2鏡面要素の間の少なくとも一方には、スペーサ、または厚さが均一なフィルムが配置されている。
 ある実施形態において、前記複数の第1単位反射型素子および第2単位反射型素子のそれぞれの形状は、長方形、正方形または三角形である。
 ある実施形態において、上述の反射型結像素子は、2枚の透光性基板をさらに有し、前記2枚の透光性基板の間に、前記第1および第2反射型素子が配置されている。
 本発明による光学システムは、上述の反射型結像素子と、表示パネルとを有し、前記表示パネルの表示面に表示される映像を、前記反射型結像素子を対称面とする面対称な位置に結像する。
 ある実施形態において、前記少なくとも1つの第1接合部および前記少なくとも1つの第2接合部は、前記少なくとも1つの第1接合部および前記少なくとも1つの第2接合部に前記表示パネルからの光が当たらないように形成されている。
 本発明による反射型結像素子の製造方法は、鏡面要素がそれぞれの表面上に形成された複数の透明基板を用意する工程(A)と、前記鏡面要素が形成された前記複数の透明基板を互いに重畳させ、多層構造体を形成する工程(B)と、前記多層構造体を前記多層構造体の主面の法線を含む面から切断し、複数の単位反射型素子を形成する工程(C)と、前記複数の単位反射型素子の内の1つの前記単位反射型素子と他の前記単位反射型素子とを少なくとも1つの第1接合部によって互いに接合して、第1反射型素子を形成する工程(D1)と、前記複数の単位反射型素子の内の1つの前記単位反射型素子と他の前記単位反射型素子とを少なくとも1つの第2接合部によって互いに接合して、第2反射型素子を形成する工程(D2)と、前記少なくとも1つの第1接合部および前記少なくとも1つの第2接合部の一方が、前記第1反射型素子の主面の法線方向から見たとき、他方の接合部のいずれとも重ならない接合部を含み、かつ、前記第1反射型素子の前記鏡面要素と、前記第2反射型素子の前記鏡面要素とが直交するように、前記第1反射型素子上に前記第2反射型素子を配置する工程(E)とを包含する。
 ある実施形態において、前記第1反射型素子の前記鏡面要素は、第1の方向に延設されており、前記第2反射型素子の前記鏡面要素は、第2の方向に延設されており、前記少なくとも1つの第1接合部は全て前記第1の方向に延設された接合部であり、前記少なくとも1つの第2接合部は全て前記第2の方向に延設された接合部である。
 ある実施形態において、上述の反射型結像素子の製造方法は、前記工程(A)と前記工程(B)との間に、前記鏡面要素が形成された基板上にスペーサを付与する工程(F)、または、前記鏡面要素が形成された基板上に厚さの均一な接着フィルムを配置する工程(G)を包含する。
 ある実施形態において、前記複数の単位反射型素子のそれぞれの形状は、三角形、長方形、または正方形である。
 本発明によると、簡便な方法で製造し得、高品位な空中映像が得られる反射型結像素子が提供される。
(a)は、本発明による実施形態における反射型結像素子100Aの模式的な斜視図であり、(b)は、反射型結像素子100Aの分解斜視図である。 本発明による実施形態における光学システム200を説明する図である。 (a)~(d)は、本発明による他の実施形態における反射型結像素子100Bを説明する図である。 (a)~(c)は、本発明によるさらに他の実施形態における反射型結像素子100Cを説明する図である。 (a)~(c)は、本発明によるさらに他の実施形態における反射型結像素子100Dを説明する図である。 本発明によるさらに他の実施形態における反射型結像素子100Eを説明する図である。 (a)~(d)は、本発明による実施形態における反射型結像素子の製造方法を説明する図である。 (a)および(b)は、比較例の反射型結像素子を説明する図であり、(c)は、比較例の反射型結像素子を有する光学システムを示す図である。
 以下、図面を参照して本発明の実施形態を説明するが、本発明は例示する実施形態に限定されない。
 図1を参照して、本発明による実施形態における反射型結像素子100Aを説明する。図1(a)は、反射型結像素子100Aの模式的な斜視図であり、図1(b)は、反射型結像素子100Aの模式的な分解斜視図である。
 反射型結像素子100Aは、第1反射型素子10と、第1反射型素子10上に配置された第2反射型素子20とを有している。
 第1反射型素子10は、複数の鏡面要素14と、複数の透光要素15とを有しており、各透光要素15は2つの鏡面要素14の間に設けられている。すなわち、鏡面要素14と透光要素15とは交互にストライプ状に配列されている。同様に、第2反射型素子20は、複数の鏡面要素24と、複数の透光要素25とを有しており、各透光要素25は2つの鏡面要素24の間に設けられている。第1反射型素子10が有する複数の鏡面要素14および複数の透光要素15は第1の方向に延設されており、第2反射型素子20が有する複数の鏡面要素24および複数の透光要素25は、第1の方向に直交する第2の方向に延設されている。すなわち、鏡面要素24と透光要素25とは交互にストライプ状に配列されている。
 反射型結像素子100Aにおいては、互いに直交する、(第1反射型素子10の)鏡面要素14と、(第2反射型素子20の)鏡面要素24とが、単位結像素子を構成する。
 第1反射型素子10は、複数の第1単位反射型素子11を有し、第2反射型素子20は、複数の第2単位反射型素子21を有している。ここで例示する反射型結像素子100Aにおいては、第1反射型素子10は、2つの第1単位反射型素子11aおよび11bを有し、第2反射型素子20は、2つの第2単位反射型素子21aおよび21bを有している。もちろん、第1および第2反射型素子が有する第1および第2単位反射型素子の数は、これに限定されず、それぞれ独立に2以上である。
 第1反射型素子10において、第1単位反射型素子11aと第1単位反射型素子11bとは、第1接合部18によって互いに接合されている。第1接合部18は、鏡面要素14および透光要素15と平行に第1の方向に延設されている。後に、図7を参照して説明するように、第1単位反射型素子11aおよび11bは、それぞれ、第1の方向に平行な面を有しており、その面において、互いに接合される。第1反射型素子10においては、第1単位反射型素子11には、第1の方向に直交する方向に延設された接合部は存在しない。このような構成を採用すると、第1単位反射型素子11aと第1単位反射型素子11bとを接合する際に、これらを高精度にアライメントする必要がないという利点が得られる。
 同様に、第2反射型素子20において、第2単位反射型素子21aと第2単位反射型素子21bとは、第2接合部28によって互いに接合されている。第2接合部28は、鏡面要素24および透光要素25と平行に第2の方向に延設されている。第2単位反射型素子21aおよび21bは、それぞれ、第2の方向に平行な面を有しており、その面において、互いに接合される。第2反射型素子20においては、第2単位反射型素子21には、第2の方向に直交する方向に延設された接合部は存在しない。このような構成を採用すると、第2単位反射型素子21aと第2単位反射型素子21bとを接合する際に、これらを高精度にアライメントする必要がないという利点が得られる。
 反射型結像素子100Aは、第1反射型素子10と第2反射型素子20とが積層された構造を有している。ここで、反射型結像素子100Aを、被投影物からの光を受ける第1反射型素子10の主面の法線方向から見たとき、第1接合部18は第2接合部28と重なっていない。ここで、「第1接合部18が第2接合部28と重なる」とは、第1接合部18の延設方向(長辺18a)が第2接合部28の延設方向(長辺28a)と平行で、第1接合部18の全部が、第2接合部28と重なっていることをいう。また、「第2接合部28が第1接合部18と重なる」とは、第2接合部28の全部が、第1接合部18と重なっていることをいう。さらに、上記の両方を満足するとき、第1接合部18と第2接合部28とは互いに完全に重なっているという。
 第1接合部18が第2接合部28と重なっていると、第1接合部18におけるズレが大きくなりやすく、表示品位の低下の原因となる。これに対し、第1接合部18と第2接合部28とが重ならないよう配置されていると、例えば、第1反射型素子10の第1接合部18におけるズレは、第2反射型素子20の第2単位反射型素子21aおよび第2単位反射型素子21bの面によって抑制され、その結果、表示品位の低下が抑制される。第1反射型素子10または第2反射型素子20として、3以上の単位反射型素子を有する反射型素子を用いるとき、一方の反射型素子の複数の接合部の内の少なくとも1つが、他方の反射型素子のいずれの接合部とも重ならない構成とすれば、少なくともその接合部におけるズレを抑制することができる。もちろん、ここで例示したように、一方の反射型素子の接合部の全てが、他方の反射型素子の接合部のいずれとも重ならないように構成することが最も好ましい。
 第1単位反射型素子11a、第1単位反射型素子11b、第2単位反射型素子21aおよび第2単位反射型素子21bの個々の構造は互いに同じあってよく、例えば、後に例示する製造方法においては、共通の単位反射型素子が用いられる。このような構成を採用することによって、製造方法を簡略化することができる。
 鏡面要素14および鏡面要素24は、例えばAl(アルミニウム)薄膜から形成されている。この他、鏡面要素14および鏡面要素24は、例えば、Ag(銀)などの金属薄膜から形成され得る。鏡面要素14および鏡面要素24を構成する金属薄膜の厚さは、例えば200nmである。透光要素15および透光要素25は、例えばガラス部材から形成されている。この他、透光要素15および透光要素25は、例えばアクリル樹脂から形成され得る。透光要素15および透光要素25の幅Wは、例えば、100μm以上700μm以下が好ましい(反射型結像素子100Aにおいては、500μm)。
 第1接合部18および第2接合部28は、それぞれ接着剤(例えば、熱硬化性の樹脂、または光硬化性の樹脂)を用いて形成され得る。第1接合部18および第2接合部28は、図2に示す光学システムにおいて、被投影物80からの光が当たらないように配置することが好ましい。すなわち、第1接合部18に接する鏡面要素14および、第2接合部28に接する鏡面要素24が、それぞれ第1接合部18および第2接合部28よりも被投影物80側に位置するように配置される。このように第1接合部18および第2接合部28を配置すると、被投影物80からの光が第1接合部18および第2接合部28に当たらないので、第1接合部18および第2接合部28において光が散乱されたり屈折されたりすることを防ぐことができる。
 なお、鏡面要素14間および鏡面要素24間の少なくとも一方に、例えば、粒子状のスペーサ(例えば、ビーズスペーサやファイバースペーサ)を配置することが好ましい。また、粒子状のスペーサに代えて、フォトリソグラフィ技術を用いて、鏡面要素14または/および24の表面に予めフォトスペーサを形成してもよい。フォトスペーサは、例えば感光性の樹脂(フォトレジスト)から形成されている。また、スペーサの代わりに、厚さが均一な接着フィルムを用いてもよい。
 また、第1接合部18および第2接合部28(接着層)は、透光要素15および透光要素25(例えば、ガラス部材)と同じ屈折率(例えば、屈折率1.5)を有することが好ましい。このような構成を採用すると、第1接合部18および第2接合部28と、それぞれに接する透光要素15または透光要素25との界面における反射や屈折を抑制することができる。
 このような反射型結像素子100Aは、図7を参照して、後述する製造方法で製造でき、金型を用いることなく製造できる。特に、大型(例えば、大きさ300mm×300mm)の反射型結像素子100Aを簡便な方法で製造できる。さらに、反射型結像素子100Aは、撓みや歪みが少なく、鏡面要素14、24の配列パターンの規則性および連続性に優れるので、高品位な空中映像が得られる。
 次に、図8を参照しながら、比較例の反射型結像素子150を説明する。図8(a)は、反射型結像素子150の模式的な図であり、図8(b)は、図8(a)に示す反射型結像素子150の分解図である。図8(c)は、反射型結像素子150を有する光学システムの問題点を説明する図である。なお、反射型結像素子100Aと共通する構成要素は同じ参照符号を付す。
 図8(a)に示す反射型結像素子150は、第1反射型素子の主面の法線方向から見たとき、第1反射型素子10の第1接合部18の長辺18aと、第2反射型素子20の第2接合部28の長辺28aとが完全に重なる反射型結像素子である。
 このような反射型結像素子150は、単位反射型素子11(または、21)間での鏡面要素14(または、24)の配列パターンを一致させるように各単位反射型素子11(または、21)を接合しなければならず、高いアライメント精度が要求されるので、反射型結像素子150の製造は極めて困難である。また、アライメント精度が悪いと、大型の空中映像90にズレや歪みが生じ(図8(c)参照)、大型の空中映像90の表示品位が低下する。それに対し、反射型結像素子100Aでは、高いアライメント精度は要求されず、製造が容易である。さらに、大型の空中映像にズレや歪みが生じにくく、大型の空中映像の表示品位が高い。
 さらに、第1接合部18の内の部分18Aは鏡面要素14で覆うことができず、被投影物からの光が接着層に当たってしまい、その部分18Aで光の散乱および屈折が生じ、大型の空中映像の表示品位が低下する。それに対し、反射型結像素子100Aでは、被投影物からの光が接着層に当たりにくい構造を有しているので、大型の空中映像の表示品位が低下しにくい。
 次に、図2を参照しながら反射型結像素子100Aを有する光学システム200を説明する。図2は、光学システム200の構成を示す図である。図2中の参照符号Vは、観察者を表す。
 図2に示す光学システム200は、反射型結像素子100Aと、反射型結像素子100Aの光入射側に配置された表示パネル(例えば、30~40インチの液晶表示パネル)80を有している。反射型結像素子100Aは、表示パネル80の表示面に表示される映像を、反射型結像素子100Aを対称面とする面対称な位置に結像する。反射型結像素子100Aにより、高品位の空中映像90が得られる。なお、反射型結像素子100Aの代わりに、後述する反射型結像素子100B~100Eを配置してもよい。
 次に、図3を参照しながら本発明による他の実施形態における反射型結像素子100Bを説明する。反射型結像素子100Aと共通する構成要素には、同じ参照符号を付す。また、説明の重複を避ける。図3(a)は、反射型結像素子100Bの模式的な平面図である。図3(b)は、反射型結像素子100Bの改変例を示す図である。図3(c)は、反射型結像素子100Bの第1反射型素子10の模式的な平面図であり、図3(d)は、反射型結像素子100Bの第2反射型素子20の模式的な平面図である。
 図3(a)に示す反射型結像素子100Bは、第1反射型素子10と、第1反射型素子10上に配置された第2反射型素子20とを有している。
 図3(c)に示す第1反射型素子10は、複数の鏡面要素14と、複数の透光要素15とを有しており、各透光要素15は2つの鏡面要素14の間に設けられている。第1反射型素子10は、例えば3つの第1単位反射型素子11を有する。複数の第1単位反射型素子11の内の1つの第1単位反射型素子11aは、他の第1単位反射型素子11bと第1接合部18で接合されている。
 同様に、図3(d)に示す第2反射型素子20は、複数の鏡面要素24と、複数の透光要素25とを有しており、各透光要素25は2つの鏡面要素24の間に設けられている。第2反射型素子20は、例えば3つの第2単位反射型素子21を有する。複数の第2単位反射型素子21の内の1つの第2単位反射型素子21aは、他の第2単位反射型素子21bと第2接合部28で接合されている。
 図3(a)に示したように、第1反射型素子10の主面の法線方向から見たとき、第1接合部18は第2接合部28と重なっていない。(第1反射型素子10の)鏡面要素14と、(第2反射型素子20の)鏡面要素24とは、互いに直交する。
 図3(a)に示した反射型結像素子100Bの大きさは、例えば、600mm×600mmである。また、図3(b)に示すように、例えば反射型結像素子100Bは、第1反射型素子10および第2反射型素子20が、それぞれ透光性基板(例えばガラス基板)30a~30cの間に配置されるように、改変され得る。このように、透光性基板30a~30cを配置すると、反射型結像素子の機械的強度が向上する。なお、透光性基板(第1反射型素子10と第2反射型素子20との間に配置されている透光性基板)30bを配置しなくてもよい場合もある。
 図3(c)に示した第1単位反射型素子11の形状は長方形であり、例えば、幅W1は200mmで、長さL1は600mmである。同様に、図3(d)に示した第2単位反射型素子21の形状は長方形であり、例えば、幅W1は200mmで、長さL1は600mmである。
 次に、図4を参照しながら本発明によるさらに他の実施形態における反射型結像素子100Cを説明する。反射型結像素子100Aと共通する構成要素には、同じ参照符号を付す。また、説明の重複を避ける。図4(a)は、反射型結像素子100Cの模式的な平面図である。図4(b)は、反射型結像素子100Cの第1反射型素子10の模式的な平面図であり、図4(c)は、反射型結像素子100Cの第2反射型素子20の模式的な平面図である。
 図4(a)に示す反射型結像素子100Cは、第1反射型素子10と、第1反射型素子10上に配置された第2反射型素子20とを有している。
 図4(b)に示す第1反射型素子10は、複数の鏡面要素14と、複数の透光要素15とを有しており、各透光要素15は2つの鏡面要素14の間に設けられている。第1反射型素子10は、例えば2つの第1単位反射型素子11を有する。複数の第1単位反射型素子11の内の1つの第1単位反射型素子11aは、他の第1単位反射型素子11bと第1接合部18で接合されている。
 同様に、図4(c)に示す第2反射型素子20は、複数の鏡面要素24と、複数の透光要素25とを有しており、各透光要素25は2つの鏡面要素24の間に設けられている。第2反射型素子20は、例えば2つの第2単位反射型素子21を有する。複数の第2単位反射型素子21の内の1つの第2単位反射型素子21aは、他の第2単位反射型素子21bと第2接合部28で接合されている。
 図4(a)に示したように、第1反射型素子10の主面の法線方向から見たとき、第1接合部18は第2接合部28と重なっていない。(第1反射型素子10の)鏡面要素14と、(第2反射型素子20の)鏡面要素24とは、互いに直交する。
 図4(a)に示した反射型結像素子100Cの大きさは、例えば、600mm×600mmである。図4(b)に示した第1単位反射型素子11の形状は三角形であり、例えば、幅W2は600mmで、長さL2は600mmである。同様に、図4(c)に示した第2単位反射型素子21の形状は三角形であり、例えば、幅W2は600mmで、長さL2は600mmである。
 次に、図5を参照しながら本発明によるさらに他の実施形態における反射型結像素子100Dを説明する。反射型結像素子100Aと共通する構成要素には、同じ参照符号を付す。また、説明の重複を避ける。図5(a)は、反射型結像素子100Dの模式的な平面図である。図5(b)は、反射型結像素子100Dの第1反射型素子10の模式的な平面図であり、図5(c)は、反射型結像素子100Dの第2反射型素子20の模式的な平面図である。
 図5(a)に示す反射型結像素子100Dは、第1反射型素子10と、第1反射型素子10上に配置された第2反射型素子20とを有している。
 図5(b)に示す第1反射型素子10は、複数の鏡面要素14と、複数の透光要素15とを有しており、各透光要素15は2つの鏡面要素14の間に設けられている。第1反射型素子10は、例えば2つの第1単位反射型素子11を有する。複数の第1単位反射型素子11の内の1つの第1単位反射型素子11aは、他の第1単位反射型素子11bと第1接合部18で接合されている。反射型結像素子100Dの第1反射型素子10の第1接合部18の延設方向は、鏡面要素14の延設方向と直交する。
 同様に、図5(c)に示す第2反射型素子20は、複数の鏡面要素24と、複数の透光要素25とを有しており、各透光要素25は2つの鏡面要素24の間に設けられている。第2反射型素子20は、例えば2つの第2単位反射型素子21を有する。複数の第2単位反射型素子21の内の1つの第2単位反射型素子21aは、他の第2単位反射型素子21bと第2接合部28で接合されている。反射型結像素子100Dの第2反射型素子20の第2接合部28の延設方向は、鏡面要素24の延設方向と直交する。
 図5(a)に示したように、第1反射型素子10の主面の法線方向から見たとき、第1接合部18は第2接合部28と重なっていない。(第1反射型素子10の)鏡面要素14と、(第2反射型素子20の)鏡面要素24とは、互いに直交する。
 図5(a)に示した反射型結像素子100Dの大きさは、例えば、300mm×300mmである。図5(b)に示した第1単位反射型素子11の形状は長方形であり、例えば、幅W1は150mmで、長さL1は300mmである。同様に、図5(c)に示した第2単位反射型素子21の形状は長方形であり、例えば、幅W1は150mmで、長さL1は300mmである。
 次に、図6を参照しながら本発明によるさらに他の実施形態における反射型結像素子100Eを説明する。反射型結像素子100Aと共通する構成要素には、同じ参照符号を付す。また、説明の重複を避ける。図6は、反射型結像素子100Eの模式的な平面図である。
 図6に示す反射型結像素子100Eは、第1反射型素子10と、第1反射型素子10上に配置された第2反射型素子20とを有している。
 第1反射型素子10は、複数の鏡面要素14と、複数の透光要素15とを有しており、各透光要素15は2つの鏡面要素14の間に設けられている。第1反射型素子10は、例えば9個の第1単位反射型素子11を有する。複数の第1単位反射型素子11の内の1つの第1単位反射型素子11aは、他の第1単位反射型素子11bと第1接合部18で接合されている。反射型結像素子100Eの第1反射型素子10の第1接合部18の延設方向は、鏡面要素14の延設方向と平行である。また、反射型結像素子100Eの第1反射型素子10の第1接合部18の延設方向が、鏡面要素14の延設方向と直交してもよい。
 同様に、第2反射型素子20は、複数の鏡面要素24と、複数の透光要素25とを有しており、各透光要素25は2つの鏡面要素24の間に設けられている。第2反射型素子20は、例えば14個の第2単位反射型素子21を有する。複数の第2単位反射型素子21の内の1つの第2単位反射型素子21aは、他の第2単位反射型素子21bと第2接合部28で接合されている。反射型結像素子100Eの第2反射型素子20の第2接合部28の延設方向は、鏡面要素24の延設方向と直交するものもあれば、鏡面要素24の延設方向と平行なものもある。
 第1反射型素子10の主面の法線方向から見たとき、第1接合部18は第2接合部28と重なっていない。(第1反射型素子10の)鏡面要素14と、(第2反射型素子20の)鏡面要素24とは、互いに直交する。
 図6に示した反射型結像素子100Eの大きさは、例えば、300mm×900mmである。第1単位反射型素子11の形状は長方形であり、例えば、幅は100mmで、長さは300mmである。同様に、第2単位反射型素子21の形状は長方形であり、各第2単位反射型素子21の大きさが同じものもあれば、異なっているものもある。つまり、各単位反射型素子11および21は、反射型結像素子の大きさによって、適宜、その形状、大きさおよび組み合わせ方を変えることができ、設計の自由度が高い。従って、各単位反射型素子11および21の形状は、正方形でもよい。
 次に、図7を参照しながら、本発明による実施形態における反射型結像素子の製造方法を説明する。図7(a)~7(d)は、本発明による実施形態における反射型結像素子の製造方法を説明する図である。
 図7(a)に示すように、透光性基板(例えば、ガラス基板(大きさ:300mm×300mm))2上に、鏡面要素(例えば、Al)14を例えばスパッタ法で形成する。鏡面要素14は、基板全面にわたり形成される。鏡面要素14の厚さは、例えば200nmである。鏡面要素14は、Alの代わりに、例えばAgから形成されてもよい。鏡面要素14を成膜する方法は、スパッタ法に限られない。ガラス基板として、平坦性に優れる無アルカリガラスを用いた。
 次に、図7(b)に示すように、鏡面要素14が形成された透光性基板(以下、鏡面基板という)2を、公知の方法により切断して、所望の大きさ(例えば、300mm×150mm)にする。なお、透光性基板2が所望の大きさであれば、この工程は省略し得る。
 次に、図7(c)に示すように、例えば高さが150mmとなるまで、鏡面基板2を重畳させた。鏡面基板2間は、例えば熱硬化性の樹脂(接着剤)を付与し、一枚一枚を貼りあわせた。なお、スペーサ(例えば、プラスティックビーズ)を鏡面基板2上に付与し、鏡面基板2間のギャップを均一にさせてもよい。プラスティックビーズを鏡面基板2上に付与する代わりに、鏡面基板2上にフォトスペーサを形成してもよく、スペーサおよび熱硬化性樹脂の代わりに、厚さが均一な接着フィルムを鏡面基板2上に配置してもよい。熱硬化性の樹脂および接着フィルムは、可視光に対し透明性を有することが好ましく、透光性基板と同じ屈折率を有することがより好ましい。
 複数の鏡面基板2を互いに接合する接着層(以下、「積層構造間接着層」という)には、光を照射することが難しいことがある。従って、積層構造間接着層は、熱硬化性樹脂で形成することが好ましい。また、図2を参照して述べたように、第1接合部18および第2接合部28に、被投影物80からの光が当たらないように、反射型結像素子100Aを配置すると、積層構造間接着層にも、被投影物80からの光が当たらない。この場合には、積層構造間接着層を透明な材料で形成する必要はなく、例えば、黒色の熱硬化性樹脂を用いて形成してもよい。黒色の積層構造間接着層は、迷光を吸収し、表示品位を向上させるように作用し得る。もちろん、積層構造間接着層を透明な材料で形成してもよい。透明な積層構造間接着層は、例えば、透光部15の一部として用いることができる。このとき、透明な積層構造間接着層の屈折率は、透光要素15(透光性基板2)の屈折率と同じであることが好ましい。
 次に、図7(d)に示すように、重畳させた基板(多層構造体)3を、鏡面基板2の主面(鏡面要素14が形成されている面)の法線方向からワイヤーソーを用いて切断し、単位反射型素子5を得た。単位反射型素子5の大きさは、例えば、奥行き300mm×高さ150mm×幅10mmである。
 その後、上述したように、各単位反射型素子5を貼りあわせて、反射型結像素子100Aを得た。各単位反射型素子5を貼りあわせる際には、結像に寄与する光が接合部18、28に当たる可能性もあるので、使用した透光性基板2と同じ屈折率(例えば、屈折率1.5)を有し、可視光に対し透明性を有する接着剤を用いることが好ましい。接着剤としては、光硬化性樹脂(例えば、アクリル樹脂)を用いることができる。接合部18、28に光硬化性樹脂を用いると、上記積層構造間接着層に熱履歴を加えることがないという利点が得られる。
 なお、図7(c)に示した工程において、鏡面基板2を高さが反射型結像素子の所望の大きさ(例えば、高さ300mm)まで鏡面基板2を重畳させて、反射型結像素子を製造することもできる。しかしながら、この方法によると反射型結像素子の量産性が悪いということを発明者は見出した。本実施形態のように、所望の反射型結像素子の大きさの半分程度(例えば、高さ150mm)まで鏡面基板2を重畳して単位反射型素子5を製造した後、単位反射型素子5を貼りあわせて反射型結像素子100Aを製造すると、上述した方法よりも反射型結像素子の製造のスループットが約1/2となるので、量産性に優れる。
 上述したように接合部18、28を形成する際には、光硬化性の樹脂が用いられ得、鏡面基板2間を貼りあわせる際には、熱硬化性の樹脂が用いられ得る。このように、接合部18、28を形成する材料と、上記積層構造間接着層を形成する材料とが異なる材料の場合、反射型結像素子の鏡面要素14で反射されない光を観察すると、いずれの材料が透明な樹脂であっても、屈折率や透過率のわずかな違いによって、接合部18、28と、上記積層構造間接着層とを区別することができる。もちろん、接合部18、28と、上記積層構造間接着層とを同じ材料を用いて、これらの違いを視認できないようにしてもよい。
 以上、本発明の実施形態による反射型光学素子により、高品位な大型の空中映像が得られる。
 本発明は、空間に被投影物の像を結像させることができる反射型結像素子と、表示パネルとを有する光学システムに、広く適用することができる。
 10、20   反射型素子
 11、11a、11b、21、21a、21b   単位反射型素子
 14、24   鏡面要素
 15、25   透光要素
 18、28   接合部
 18a、28a   長辺
 100A   反射型結像素子
 W   透光要素の幅

Claims (14)

  1.  第1反射型素子と、前記第1反射型素子上に配置された第2反射型素子とを有し、
     第1反射型素子は、複数の第1鏡面要素と、複数の第1透光要素とを有し、前記複数の第1透光要素のそれぞれは前記複数の第1鏡面要素の内の隣接する2つの第1鏡面要素の間に設けられており、前記複数の第1鏡面要素および前記複数の第1透光要素は第1の方向に延設されており、
     第2反射型素子は、複数の第2鏡面要素と、複数の第2透光要素とを有し、前記複数の第2透光要素のそれぞれは前記複数の第2鏡面要素の内の隣接する2つの第2鏡面要素の間に設けられており、前記複数の第2鏡面要素および前記複数の第2透光要素は前記第1の方向に直交する第2の方向に延設されており、
     前記第1反射型素子は、少なくとも1つの第1接合部によって互いに接合された複数の第1単位反射型素子を有し、
     前記第2反射型素子は、少なくとも1つの第2接合部によって互いに接合された複数の第2単位反射型素子を有し、
     前記少なくとも1つの第1接合部および前記少なくとも1つの第2接合部の一方が、前記第1反射型素子の主面の法線方向から見たとき、他方の接合部のいずれとも重ならない接合部を含んでいる、反射型結像素子。
  2.  前記少なくとも1つの第1接合部は前記第1の方向に延設された接合部を含み、前記少なくとも1つの第2接合部は前記第2の方向に延設された接合部を含む、請求項1に記載の反射型結像素子。
  3.  前記少なくとも1つの第1接合部は全て前記第1の方向に延設された接合部であって、前記少なくとも1つの第2接合部は全て前記第2の方向に延設された接合部である、請求項2に記載の反射型結像素子。
  4.  前記少なくとも1つの第1接合部は前記第1の方向と交差する方向に延設された接合部を含み、前記少なくとも1つの第2接合部は前記第2の方向と交差する方向に延設された接合部を含む、請求項1または2に記載の反射型結像素子。
  5.  前記少なくとも1つの第1接合部の屈折率は、前記複数の第1透光要素の屈折率と概ね等しく、前記少なくとも1つの第2接合部の屈折率は、前記複数の第2透光要素の屈折率と概ね等しい、請求項1から4のいずれかに記載の反射型結像素子。
  6.  前記隣接する2つの第1鏡面要素の間、および前記隣接する2つの第2鏡面要素の間の少なくとも一方には、スペーサ、または厚さが均一なフィルムが配置されている、請求項1から5のいずれかに記載の反射型結像素子。
  7.  前記複数の第1単位反射型素子および第2単位反射型素子のそれぞれの形状は、長方形、正方形または三角形である、請求項1から6のいずれかに記載の反射型結像素子。
  8.  2枚の透光性基板をさらに有し、
     前記2枚の透光性基板の間に、前記第1および第2反射型素子が配置されている、請求項1から7のいずれかに記載の反射型結像素子。
  9.  請求項1から8のいずれかに記載の反射型結像素子と、
     表示パネルとを有し、
     前記表示パネルの表示面に表示される映像を、前記反射型結像素子を対称面とする面対称な位置に結像する、光学システム。
  10.  前記少なくとも1つの第1接合部および前記少なくとも1つの第2接合部は、前記少なくとも1つの第1接合部および前記少なくとも1つの第2接合部に前記表示パネルからの光が当たらないように形成されている、請求項9に記載の光学システム。
  11.  鏡面要素がそれぞれの表面上に形成された複数の透明基板を用意する工程(A)と、
     前記鏡面要素が形成された前記複数の透明基板を互いに重畳させ、多層構造体を形成する工程(B)と、
     前記多層構造体を前記多層構造体の主面の法線を含む面から切断し、複数の単位反射型素子を形成する工程(C)と、
     前記複数の単位反射型素子の内の1つの前記単位反射型素子と他の前記単位反射型素子とを少なくとも1つの第1接合部によって互いに接合して、第1反射型素子を形成する工程(D1)と、
     前記複数の単位反射型素子の内の1つの前記単位反射型素子と他の前記単位反射型素子とを少なくとも1つの第2接合部によって互いに接合して、第2反射型素子を形成する工程(D2)と、
     前記少なくとも1つの第1接合部および前記少なくとも1つの第2接合部の一方が、前記第1反射型素子の主面の法線方向から見たとき、他方の接合部のいずれとも重ならない接合部を含み、かつ、前記第1反射型素子の前記鏡面要素と、前記第2反射型素子の前記鏡面要素とが直交するように、前記第1反射型素子上に前記第2反射型素子を配置する工程(E)と
    を包含する、反射型結像素子の製造方法。
  12.  前記第1反射型素子の前記鏡面要素は、第1の方向に延設されており、
     前記第2反射型素子の前記鏡面要素は、第2の方向に延設されており、
     前記少なくとも1つの第1接合部は全て前記第1の方向に延設された接合部であり、
     前記少なくとも1つの第2接合部は全て前記第2の方向に延設された接合部である、請求項11に記載の反射型結像素子の製造方法。
  13.  前記工程(A)と前記工程(B)との間に、前記鏡面要素が形成された複数の基板のそれぞれに、スペーサを付与する工程(F)、または、前記鏡面要素が形成された基板上に厚さの均一な接着フィルムを配置する工程(G)を包含する、請求項11または12に記載の反射型結像素子の製造方法。
  14.  前記複数の単位反射型素子のそれぞれの形状は、三角形、長方形、または正方形である、請求項11から13のいずれかに記載の反射型結像素子の製造方法。
PCT/JP2012/057923 2011-03-31 2012-03-27 反射型結像素子、反射型結像素子の製造方法、および光学システム WO2012133403A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011078834 2011-03-31
JP2011-078834 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133403A1 true WO2012133403A1 (ja) 2012-10-04

Family

ID=46931119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057923 WO2012133403A1 (ja) 2011-03-31 2012-03-27 反射型結像素子、反射型結像素子の製造方法、および光学システム

Country Status (1)

Country Link
WO (1) WO2012133403A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024677A1 (ja) * 2012-08-10 2014-02-13 株式会社アスカネット 倍率変更型光学結像装置及びその製造方法
WO2014129454A1 (ja) * 2013-02-19 2014-08-28 日本電気硝子株式会社 ガラス積層体、光学結像部材、ガラス積層体の製造方法及び光学結像部材の製造方法
WO2016132985A1 (ja) * 2015-02-18 2016-08-25 コニカミノルタ株式会社 光学素子及び結像素子の製造方法
JP2016173539A (ja) * 2015-03-18 2016-09-29 コニカミノルタ株式会社 光学素子の製造方法およびマイクロミラーアレイの製造方法
WO2016178424A1 (ja) * 2015-05-07 2016-11-10 コニカミノルタ株式会社 結像光学素子の製造方法、結像光学素子の製造装置、ミラーシートおよび結像光学素子
JP2016212369A (ja) * 2015-05-07 2016-12-15 コニカミノルタ株式会社 結像光学素子の製造方法
WO2016203894A1 (ja) * 2015-06-17 2016-12-22 コニカミノルタ株式会社 結像光学素子の製造方法
WO2017014221A1 (ja) * 2015-07-22 2017-01-26 コニカミノルタ株式会社 光学パネル、光学パネルの製造方法、空中映像表示デバイスおよび空中映像表示デバイスの製造方法
WO2017061389A1 (ja) * 2015-10-05 2017-04-13 コニカミノルタ株式会社 光学素子の製造方法及び反射型空中結像素子の製造方法
WO2017086233A1 (ja) * 2015-11-20 2017-05-26 コニカミノルタ株式会社 光学パネルの製造方法および空中映像表示デバイスの製造方法
WO2017146016A1 (ja) * 2016-02-26 2017-08-31 コニカミノルタ株式会社 結像素子
WO2017175634A1 (ja) * 2016-04-04 2017-10-12 コニカミノルタ株式会社 結像素子の製造方法
JP2017203809A (ja) * 2016-05-09 2017-11-16 コニカミノルタ株式会社 反射素子の製造方法および結像素子の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165631A (ja) * 1984-02-08 1985-08-28 Kikuchi Kagaku Kenkyusho:Kk 超大型スクリ−ンの製造法
JP2002258019A (ja) * 2000-12-26 2002-09-11 Olympus Optical Co Ltd 光学シート、光学シート製造システム、光学シート切断装置
WO2006090646A1 (ja) * 2005-02-22 2006-08-31 Fujinon Sano Corporation 光学ガラスの製造方法,偏光変換素子の製造方法及び偏光変換素子
WO2009136578A1 (ja) * 2008-05-09 2009-11-12 パイオニア株式会社 空間映像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165631A (ja) * 1984-02-08 1985-08-28 Kikuchi Kagaku Kenkyusho:Kk 超大型スクリ−ンの製造法
JP2002258019A (ja) * 2000-12-26 2002-09-11 Olympus Optical Co Ltd 光学シート、光学シート製造システム、光学シート切断装置
WO2006090646A1 (ja) * 2005-02-22 2006-08-31 Fujinon Sano Corporation 光学ガラスの製造方法,偏光変換素子の製造方法及び偏光変換素子
WO2009136578A1 (ja) * 2008-05-09 2009-11-12 パイオニア株式会社 空間映像表示装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024677A1 (ja) * 2012-08-10 2014-02-13 株式会社アスカネット 倍率変更型光学結像装置及びその製造方法
JPWO2014024677A1 (ja) * 2012-08-10 2016-07-25 株式会社アスカネット 倍率変更型光学結像装置及びその製造方法
WO2014129454A1 (ja) * 2013-02-19 2014-08-28 日本電気硝子株式会社 ガラス積層体、光学結像部材、ガラス積層体の製造方法及び光学結像部材の製造方法
JP2015083527A (ja) * 2013-02-19 2015-04-30 日本電気硝子株式会社 ガラス積層体、光学結像部材、ガラス積層体の製造方法及び光学結像部材の製造方法
JP2018065746A (ja) * 2013-02-19 2018-04-26 日本電気硝子株式会社 ガラス積層体及び光学結像部材
WO2016132985A1 (ja) * 2015-02-18 2016-08-25 コニカミノルタ株式会社 光学素子及び結像素子の製造方法
JP2016173539A (ja) * 2015-03-18 2016-09-29 コニカミノルタ株式会社 光学素子の製造方法およびマイクロミラーアレイの製造方法
WO2016178424A1 (ja) * 2015-05-07 2016-11-10 コニカミノルタ株式会社 結像光学素子の製造方法、結像光学素子の製造装置、ミラーシートおよび結像光学素子
JP2016212417A (ja) * 2015-05-07 2016-12-15 コニカミノルタ株式会社 結像光学素子の評価方法および結像光学素子の製造方法
JP2016212369A (ja) * 2015-05-07 2016-12-15 コニカミノルタ株式会社 結像光学素子の製造方法
JPWO2016178424A1 (ja) * 2015-05-07 2018-02-22 コニカミノルタ株式会社 結像光学素子の製造方法、結像光学素子の製造装置、ミラーシートおよび結像光学素子
WO2016203894A1 (ja) * 2015-06-17 2016-12-22 コニカミノルタ株式会社 結像光学素子の製造方法
JPWO2016203894A1 (ja) * 2015-06-17 2018-04-05 コニカミノルタ株式会社 結像光学素子の製造方法
WO2017014221A1 (ja) * 2015-07-22 2017-01-26 コニカミノルタ株式会社 光学パネル、光学パネルの製造方法、空中映像表示デバイスおよび空中映像表示デバイスの製造方法
JPWO2017014221A1 (ja) * 2015-07-22 2017-08-03 コニカミノルタ株式会社 光学パネルの製造方法よび空中映像表示デバイスの製造方法
CN108027462A (zh) * 2015-07-22 2018-05-11 柯尼卡美能达株式会社 光学面板、光学面板的制造方法、空中影像显示设备以及空中影像显示设备的制造方法
WO2017061389A1 (ja) * 2015-10-05 2017-04-13 コニカミノルタ株式会社 光学素子の製造方法及び反射型空中結像素子の製造方法
JPWO2017061389A1 (ja) * 2015-10-05 2017-10-05 コニカミノルタ株式会社 光学素子の製造方法及び反射型空中結像素子の製造方法
WO2017086233A1 (ja) * 2015-11-20 2017-05-26 コニカミノルタ株式会社 光学パネルの製造方法および空中映像表示デバイスの製造方法
WO2017146016A1 (ja) * 2016-02-26 2017-08-31 コニカミノルタ株式会社 結像素子
JPWO2017146016A1 (ja) * 2016-02-26 2018-06-07 コニカミノルタ株式会社 結像素子
JP6237957B1 (ja) * 2016-04-04 2017-11-29 コニカミノルタ株式会社 結像素子の製造方法
WO2017175634A1 (ja) * 2016-04-04 2017-10-12 コニカミノルタ株式会社 結像素子の製造方法
JP2017203809A (ja) * 2016-05-09 2017-11-16 コニカミノルタ株式会社 反射素子の製造方法および結像素子の製造方法

Similar Documents

Publication Publication Date Title
WO2012133403A1 (ja) 反射型結像素子、反射型結像素子の製造方法、および光学システム
JP6225657B2 (ja) 光学素子および画像表示装置並びにこれらの製造方法
US20140354920A1 (en) Multi-panel display apparatus and manufacturing method thereof
JP5462443B2 (ja) 反射スクリーン、表示装置及び移動体
WO2017077934A1 (ja) ライトガイドおよび虚像表示装置
JP6446335B2 (ja) 結像光学素子およびその製造方法
JP5904437B2 (ja) 空間映像表示装置
JP5921243B2 (ja) 反射型結像素子および光学システム
US10222528B2 (en) Display device
JP2016224110A (ja) 光学結合素子
JP2017173527A (ja) 空中映像表示装置
WO2017175671A1 (ja) 結像素子
JP6357361B2 (ja) 再帰性反射体及びこれを利用した立体像表示装置
WO2016132984A1 (ja) 光学素子、それを用いた反射型空中結像素子及びこれらの製造方法
TW201518784A (zh) 顯示裝置、其光學元件以及光學元件之製作方法
JP5904436B2 (ja) 大型の反射型面対称結像素子の製造方法
US20140254009A1 (en) Optical imaging apparatus
JP6394829B2 (ja) 結像素子
JP2018045052A (ja) ルーバーフィルム、表示装置、液晶表示装置、有機el表示装置、ルーバーフィルムの製造方法、液晶表示装置の製造方法、および有機el表示装置の製造方法
US10761341B2 (en) Display device
WO2021182246A1 (ja) 光学結像装置に用いる光制御パネルの製造方法
JP2015166845A (ja) 光学結像素子及びその製造方法
JP6614021B2 (ja) 反射素子の製造方法および結像素子の製造方法
JP2017194535A (ja) 結像素子の製造方法
JP2017194538A (ja) 光学結合素子、および光学結合素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP